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Za natis odobrila: Tiskovna komisija fakultete za

agronomijo, gozdarstvo In vete

r I no

dne 30„ marca 1961



Skripta o statističnih metodah v gozdar¬

stvu so napisana po predavanjih enosemestrskega kur

za o "Metodiki ra zis kov a I ne ga dela v gozdarstvu" v

zimskem semestru študijskega leta 1960/61 na Gozdar

skem oddelku FAGV v Ljubljani.

Po vsebin? so skripta razdeljena v 11 po¬
glavij, ki vsebujejo osnovne statistične metode, ki
jih mora poznat? gozdarski strokovnjak pr? svojem

vsakodnevnem delu. Sorazmerno obsežneje in podrob¬
neje je obdelano vzorčenje, ker so v specifičnih po

trebah v gozdarstvu sodobni način? ocenjevanja po¬
sebno pomembni.

Osnova za večino primerov je gradivo raz¬
iskav, ki so ga iz prijaznosti dal? na razpolago

I GL IS in posamezne katedre Gozdarskega oddelka FAGV

za kar se vsem zahvaljujem.

Ljubljana, september 1961

M. Blejec
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1, MNOŽIČNI POJAVI

Proučevanje množičnih pojavov

1.1
ve

Ce se omejimo na prirodo, spoznamo, da je ses+avl je¬
na iz nebroj stvari, rastlin, živali, dogodkov in drugih po¬
javov* Ti so med seboj različni ali podobni, sorodni ali tuji,
povezani in odvisni, vplivajo drug na drugega itd. Vsaka iz¬

med teh rastlin, živali, dogodkov ali na kratko pojavov se v
prostoru in času pojavlja v velikem številu« Vse te pojave
imenujemo množične pojave.

V večini znanostih, v prirodoslovnih pa še posebej,
v

ima izolirano opazovanje posameznih primerov omejen pomen. Ze
dolgo ravno v prirodoslovnih znanostih izkoriščamo dejstvo,
da se šele pri opazovanju velikega števila sorodnih pojavov
pokažejo zakonitosti, katere z individualnim opazovanjem ne

moremo odkriti.
Metode proučevanja množičnih pojavov so specifične

in se je razvila posebna znanstvena disciplina proučevanja

množičnih pojavov - statistika. Ta se ukvarja z opisovanjem,

raziskavo in analizo množičnih pojavov. Statistika se je raz-
v ?I a v znanost, ki s kvantitativnim proučevanjem množičnih
pojavov s specifičnimi metodami odkriva zakonitosti množične¬

ga pojavljanja in podaja kvalitativno sliko proučevanega poja-

va* Statistika ima torej svoj predmet proučevanja - množične
pojave, specifične metode kvant?tatlvnega proučevanja In svo¬
je področje - odkrivanje zakonitosti množičnega pojavljanja«

Gozdarstvo je tipTčno področje, kjer je večine po¬
javov, ki jih proučujemo, množičnih* Tako je množično drevo
določene drevesne tfrste, ker v prostoru in času nastopa v ve¬
likem številu. Iz istega vzroka je množičen pojav določene
vrsta insekta, posek drevesa, veja, list drevesa, izvrtek iz
drevesa pri gozdarskih poskusih itd. Zato so statistične me¬
tode važno orodje pri proučevanju pojavov v gozdarstvu.

- 1 -



1.2
Pr? statističnem proučevanju množičnih pojavov zdru¬

žujemo sorodne pojave, k? j?h nameravamo proučevati, v stati -

stično množico a!? popuiac f j o « Posamezen pojav v populacij?

imenujemo statistična enota ali na kratko e nota . V gozdarstvu

je najoblčajnejša populacija sestoj, enote te populacije pa
morejo bit? posamezna drevesa v proučevanem sestoju*

Populacija je določena z opredeljujoč imi pogoji , k?
predpfsoje jo, kateri pojav je enota proučevane populacije In

kateri ni. Tako n. pr. so opredeljujoč! pogoj? za proučevan?

sestoj: enote populacije so vse drevesa,, ki rastejo v sestojih
gozdno gospodarskega območja N.N. na dan 30. junija 1960, S
temi oprede!jujočImi pogoji je točno določeno, Iz katerih dre¬
ves je sestavljena populacija. Tako ne spada v populacijo dre¬
vo, k? je bilo posekano 29. junija 1960, niti drevesa, ki ra¬
stejo na negozdnih površinah gozdnega gospodarskega območja
N,N.

Čeprav so posamezne enote v smislu opredeljujočih

pogojev med seboj sorodne, se med seboj razlikujejo v najraz¬
ličnejših značilnostih. V konkretnem proučevanju nit? ne more¬
mo nit? nimamo interesa proučevati vse značilnosti enot. Zna¬
čilnost? enot, k? so predmet konkretnega proučevanja, Imenuje-
m0 st atistične znake al? na kratko znake . Tako so v n,ašem pri¬
meru znaki: vrsta drevesa, premer drevesa v pr$n? višini, vi¬
šine drevesa, velikost krošnje Itd., če proučujemo lesno maso,
al! vrsta drevesa, starost, višina, jakost nap adenosti z do! oce¬
nim insektom Itd., če proučujemo okuženost gozda itd.

Statistični znaki imajo v principu za vsako enoto
različno vrednost znaka . Pravimo, da statistični znak! variira¬
jo. Variiranje znakov je eden izmed osnovnih lastnost! znakov.

V našem primeru so drevesa različne vrste, premeri dreves so
različni, enako je z višino dreves in razsežnostjo krošnje,
starostjo dreves pri neenodobnem sestoju, j a kost j o na padenost?

z insekti Itd. Značilnosti enot, ki ne variirajo, so torej za
vse enote Iste, Te niso predmet statističnega proučevanja. Ta¬

ko statistično nit? ni možno nit? nima smisla proučevati sta¬
rost pr! enodobnem sestoju, al« vrsto gozda pr? čistem smreko¬
vem sestoju, ker sta starost In vrsta za vsa drevesa Ista.
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Kot ima vsaka enota svoje značilnost?, jih ima tudi
populacija«. Pravimo jim parametrj populacije«, Parametri so iz¬
vedeni oziroma odvisni od vrednost? znakov enot«. Tako je para¬

meter število dreves v gozdu, število dreves dane vrste, skupen
volumen vseh dreves v sestoju, povprečen premer dreves v sesto¬
ju, odstotek okuženih dreves, mere variabilnost? premera itd.

Ugotavljanje fn izračunavanje parametrov za populacije je osnov¬

ni cilj opisovanja populacij in eden izmed obširnih in važnih

problemov statistike«,

Statistične .enote 1
.. — .«

1.3
Po zgornjem splošnem uvodu smatramo za statistično

enoto vsak pojav, k? v času ?n prostoru množično nastopa in je

predmet statističnega proučevanja« Po tej opredelitvi morejo
biti statistične enote v gozdarstvu najrazličnejši pojavi«, Naj¬

pogostejša enota je drevo. Enota pa more bit? tud? veja, list
ali izvrtek na drevesu, posamezen gozdni škodljivec, gozdna
parcela ali gozdno gospodarstvo, posamezen poskus trdnosti le¬

sa, če proučujemo lastnosti lesa, posek drevesa, odprema hloda

iz gozda itd«,
Formalno je važna delitev enot na: a) rea I ne enote

in b) dogodke . Realne enote so n.pr. drevo, gozdni škodljivec,
parcela, gospodarstvo itd«, ker v času in prostoru dalj časa
obstajajo. Dogodki kot enote pa so posek drevesa, spravilo hlo¬
dov iz gozda Itd., ker se v času dogode. Dogodek se dogodi v
trenutku ali v razmeroma krajšem časovnem razdobju. Kot bomo
spoznal? kasneje, je ta delitev enot važna zaradi časovne o-
predelftve populacij, k! je različna za populacije realnih e-
not in za populacije dogodkov.

Statistične enote so bodisi: ai enostavne enote ali
b) a gre ga ti o Tako je enostavna enota n.pr. drevo, Če proučuje¬
mo gozd, ali list drevesa, če raziskujemo lastnost? listov.
Agregat? pa so skupinice enostavnih enot. Tako so agregat?

skupnost dreves rta en? parcelici, enem gospodarstvu itd.



Statistični znak?

1 «4
Statistični znak? dajo enotam vsebino« Znak? so tis¬

te značilnosti enot, k? so predmet konkretnega proučevanja« Za
to more neka značilnost pr? enem proučevanju b ? t ? znak opazo¬
vanja, pr? drugem pa ne« Tako Širina branike pr? določanju vo¬

lumna v nekem sestoju n? znak, medtem ko je pr? raziskavi kva¬
litete lesa Širina branike važen znak«

1 « 5

Vrste statističnih znakov « Vsebinsko delimo stati¬

stične znake v tele skupine: a) kraj evne , b) Časovne in

o) stvarne « Stvarne znake pa naprej delimo v atrIbutivne in
numerične«

Kra j evn ? so vsi znaki, k? določajo kraj, kjer se eno¬
ta nahaja, ali kjer se je zgodil za enoto pomemben dogodek« Ta¬
ko je krajevni znak mesto, kjer raste drevo, kraj, kjer se na¬

haja parcela ali gospodarstvo, ki ga proučujemo itd«
Časovni znak? so znaki, k? so v zvezi s časom, ki je

kakorkoli pomemben za proučevano enoto« Tako je časovni znak

čas, ko je bila vsajena sadika, čas poseka itd«
Vsi drugi znak? so stvarni « Glede na to, kako izra¬

žamo vrednosti znakov, stvarne znake delimo na: atribut ? vne in

numerične «
Atrlbutlvni znak? so vsi oni stvarni znak?, za kate¬

re vrednosti izražamo z besedam? oziroma opisno« Tako je atri-
butiven znak n«pr« okuženost z insekti, če vrednost? znaka iz¬
ražamo z: okužen, neokužen. Enako je vrsta 'drevesa atrfbuttven
znak, ker posamezne vrste dreves- označujemo z besedami: bukev,

javor, smreka, macesen, bor itd« Atributiven znak je tud? vrsta
tal, na katerem raste drevo, redka ali gosta poraslost v okoli¬

ci drevesa itd«
Za numerične znake izražamo vrednost? Številčno« Po

tem, katere vrednosti na danem razmaku številčne premice more
zavzeti numeričen znak, imamo: a) nezvezne znake , ki morejo

zavzeti samo nekatere, običajno cele vrednost? in b) zvezne

znake, k? morejo zavzeti vse vrednost? na danem razmaku« Tako
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je nezvezen numeričen znak n.pr« število novih odganjkov v
enem letu, število vej na drevesu, število dreves na parceli,

število storžev na smreki Itd* Zvezni znaki pa so n.pr. volu¬

men drevesa; trdnost, merjeena z utlsom pri določen? sili, pre¬
mer drevesa, specifična teža lesa Itd, Vrednosti prvih so samo
cela števila, ker drevo ne more Imet? 25,1 vej, parcela ne 12

In 1/4 dreves Itd, Pač pa je volumen dreves lahko teoretično

vsaka vrednost v določenih mejah«,

1 »6
Posebna odlika numeričnih znakov je, da se dajo eno¬

te populacije uredit? po nedvoumnem vrstnem redu po vrednost?

numeričnih znakov. To dopušča za časovne In numerične znake
poglobljeno analizo. Te lastnost? krajevni In atrlbutlvnl zna¬
ki nimajo. Vendar moremo tud? vrednost? nekaterih atrlbutlvnlh
znakov urediti po velikosti. Tako moremo opredelit? okuženost

z vrednostmi: neokužen, malenkostno okužen, srednje okužen,
precej okužen, popolnoma okužen. Enako kvaliteto lesa označu¬

jemo z: prav slaba, slaba, dobra, prav dobra In odlična. Ozad¬

je teh atrlbutlvnlh znakov je vedno nek numeričen znak, ki ga

včasih nit? ne moremo določiti, včasih pa n? potrebe, da ga nu

merlčno Izrazimo. Tako je pr? znaku okuženost osnova število
Insektov ali odstotek vej, k? je napaden, v osnovi kvalitete

morda trdnost lesa, k? se da numerično Izraziti, al? enakomer¬

nost branik, k? se da tud? na en ail drug način numerično Iz¬
raziti. Za atrlbutivne znake te vrste moremo včasih uporabit?
nekatere metode analize, k? so sicer uporabne samo za numerič¬

ne znake.

1.7
Za analizo je posebno važna delitev znakov na:

a) faktorlaIne In b) re zu I tat Ivne . Faktorlalnl znak? izražajo
jakost faktorjev, k? vplivajo na določeno značilnost, k? je
rezultat teh faktorjev. Rezultat delovanja faktorjev pa je Iz¬

ražen z rezil I ta 11 vn? m znakom. Tako so faktorlalnl znak? n.pr.

kvaliteta tal, starost drevesa, povprečna letna temperatura,

količina letnih padavin, relativna višina drevesa Itd., rezul-
tatlven znak, ki je Izraz delovanja vseh teh faktorjev, pa je
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širina branike v določenem letu, prirast l+d. Običajno več
bistvenih faktorjev vpliva na velikost rezu I tatIvnega znaka.
Jasno je, da je nemogoče naenkrat vzeti v proučevanje vse fak¬
torje, k? vplivajo na rezultatlven znak, bodisi ker jih je
preveč ai? pa je njih delovanje tako kompleksno, da ne moremo
vse upoštevati <>

1 „8

Po drugem načelu delimo znake na: a) ekstenzIvne
In b) I n t e n z Ivne . Ekstenzivni znaki nakazujejo količino In mo¬
remo vrednosti ekstenzivnih znakov seštevati v smiselno koli¬
čino !n»pro volumne posameznih dreves v volumen sestoja)* In¬
tenzivni znak? pa nakazujejo kakovost. Tako je n.pr. Intenziv¬
ni znak specifična teža lesa za posamezno drevo, povprečna ši¬
rina branike Itd. Vsote vrednosti intenzivnih znakov nimajo
vsebinske osnove.

1 .9
Variiranje statističnih znakov . Vsak znak Ima dolo¬

čeno število vrednosti. Najmanjše število vrednosti znaka je
dva, ker značilnost, ki je za vse enote ena in ista, ni stati¬
stični znak, temveč kvečjemu opredeljujoč pogoj. Največje šte¬
vilo vseh možnih vrednosti je neomejeno. Vsi zvezni znaki Ima¬
jo teoretično neomejeno število možnih vrednosti, ker morejo
zavzeti vse možne vrednosti na danem razmaku. Tako Ima volumen
dreves teoretično neomejeno možnih vrednosti, Isto je z višino
drevesa, s specifično težo lesa Itd. Pojav, da Ima teoretično
vsaka enota drugo vrednost določenega znaka, Imenujemo varia¬
bilnost znakov. To, da Ima več enot v populaciji eno In Isto
vrednost za dan znak, ni v nasprotju z def I n I c I j o var 11 ran ja.
Bistvo variiranja znaka je v tem, da nimajo vse enote popula¬
cije Iste značilnosti, ne pa v tem, da bi morale vse enote Ime¬
ti med seboj različne vrednosti danega znaka.

Variabilnost vrednosti znakov je ena Izmed osnovnih
značilnost? množičnih pojavov. Zato se statistika ukvarja pred¬
vsem z variabilnostjo pojavov v najrazličnejših oblikah In z
naj raz IIčnejšI mI metodami. Posebno podrobno moremo proučevati
variabilnost numeričnih znakov. Zato je tud? največ In na£boSj
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podrobnih statističnih metod, kf se bavfjo z analizo numerič¬
nih znakov«

1.10
Pojmu znaka In vrednost? znakov ustreza v matematiki

pojem spremenljivke. Kot Ima posamezen znak različne vrednosti,

tako tudi spremenljivke zavzema različne vrednosti. Faktorlal-

nemu znaku ustreza pojem neodvisne, rezu I ta11 vnemu znaku pa po

jem odvisne spremenljivke. Zaradi te ozke sorodnost? med sta¬

tističnim? znak? In spremenljivkam? v matematiki, k? se Izkaže
predvsem pri proučevanju numeričnih znakov, privzamemo Iz mate

matlke simbole za spremenljivke: x, y, z, u, w, v Itd. in z
njimi zaznamujemo tud? statistične znake.

Popu taci je

t.11
Populacija je skupnost Istovrstnih pojavov, k? so

opredeljen? z opredeljujočim? pogoji. Pojavi, ki so enote dane

populacije, morajo zadoščat? tem opredeljujočim pogojem. Popu¬
lacije moramo opredeliti krajevno, časovno In stvarno. Tako je
populacija: drevesa na gozdnih površinah v občini A na dan
30. junija 1960 opredeI je na: kra jevno (območje občine A), ča¬
sovno C30« junija 1960 ob polnoč?) In stvarno (vsa drevesa na
površinah, ki jih v smislu definicije smatramo kot gozdne po¬
vršine).

Sestoj, za katerega vzamemo, da je sestavljen Iz po¬
sameznih dreves, je v gozdarstvu na j pogoste jša populacija. To
populacijo proučujemo v različnih oblikah«

1.12
Sestoj je sestavljen Iz končnega števila enot - dre¬

ves. Take populacije Imenujemo končne populacije. Končna popu¬
lacija je na primer tud? populacija gospodarstev, k? Imajo
gozd v Sloveniji 31. decembra 1960. Ta populacija je končna ,
ker je na ta datum število gospodarstev, k? Imajo gozd, pre-

števna množica.
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Končna populacija je tud? gozdna površina, če jo raz¬
delimo v eno+e tako, da jo z vodoravnimi In navpičnimi pasovi
razdelimo v kvadrate 25 m x 25 ra, ki so eno+e populacije. Zna¬

ki feb eno+ so n.pr.: število dreves določene vrste na elemen¬

tarnih kvadratnih površinicah, sestava tal, volumen vseh dre¬
ves na osnovnih površinlcah, število okuženih dreves l+do

Ce pa vzamemo, da je enota površine na gozdni povr¬
šin? vsak kvadrat 25 m x 25* ra, ne glede na način, kako kvadrat

leži, In se posamezni kvadrati med seboj prekrivajo, dobimo
populacijo, k? Ima neskončno štev!lo enot.

Za zvezne populacije , k? so take narave kot gozdna
površina, za katero niso eno+e vnaprej dane In ločene med se¬

boj, moremo glede na določitev enote sestavit? populacije s
končnim ali neskončnim številom enot.

Tud? posamezno drevo moremo smatrati kot zvezno po¬
pulacijo, k? je sestavljena Iz koščkov lesa n.pr. 3 cm x 5 cm
x 2 cm volumna. Drevo moremo razžagati na take ploščice, ki
jih je v tem primeru končno število. Znaki teh enot so n.pr«

teža, trdnost, mesto, kjer je bila ploščica v deblu, število
branik Itd. Iz drevesa pa dobimo neskončno populacijo koščkov

lesa, če predpos+avI jamo, da moremo koščke lesa odrejene obli¬
ke In velikost! Izrezat? Iz debla na katerikoli način.

1 .13

Če preskušamo n.pr. vpliv Impregnacije lesa na trd¬
nost lesa, sestavimo v ta namen poskus, pri katerem vzamemo

dva koščka lesa, k? sta po kvalitet? čim bolj enaka In en
košček Impregn? ramo, drugega pa ne. Na koncu poskusa merlroo
razliko v trdnost? med Impregniranim In ne Impregniranim koščkom

lesa. Takih poskusov napravimo več. Če hočemo rezultate teh po¬

skusov posplošiti, smatramo Izvedene poskuse kot nekaj enot Iz
neskončne,, umi š I j ene - hipotetične populacije vseh možnih enakih
poskusov pod enakim! pogoji. V raziskovalnem delu pogosto sma¬
tramo skupnost poskusov pod enakim? pogoji kot del Iz umišlje ¬

nih - hipotetičnih populacij . To delamo vselej, kadar zaključ¬

ke poskusov posplošujemo.
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1 .14
Delne populacije . Če drevesom v populaciji: drevesa

za sestoje gozdnega gospodarskega območja N.N. konec leta 1960
dodamo nov opredeljujoč pogoj: listavec, Iz osnovne populacije
Izdvojimo novo populacijo: drevesa listavcev v sestojih gozd¬
nega gospodarskega območja N.N. konec leta. Vsa drevesa v tej
delni popuiacljl so enote osnovne populacije, ker zadoščajo
vsem opredeljujočim pogojem Iz osnovne populacije. V tem smis¬
lu so stvarno Izvršen? poskusi, k? jih smatramo kot enote hi¬
potetične populacije vseh možnih poskusov pod enakim? pogoji/
tud? delna populacija, ker so to on? poskus? Iz hipotetične
populacije, k? so bil? stvarno Izvršeni.

1 .15
Za analizo populacij je posebno pomembno razdelit?

osnovno populacijo po danem znaku v več detnih populacij tako,
da je vsaka enota osnovne populacije v eni, a v en? sam? delni
populaciji, če razdelimo drevesa v sestoju v delne populacije
po drevesnih vrstah, dobimo osnovo za proučevanje sestoja po
drevesnih vrstah. Če razdelimo drevesa v populacij? po debeli¬
ni v delne populacije po debelinskih stopnjah, dobimo osnovo
za uvid v sestav po debelin? dreves Itd.

ParametrI

1.16
Vsak numerični podatek o populaciji je parameter po¬

pulacije. Ena Izmed osnovnih nalog statističnega proučevanja
množičnih pojavov je Izračunavanje parametrov o populaciji. V
nadaljevanju se bomo ukvarjal? z elementarnimi parametri , ki
jih dobimo z enostavnim preštevanjem al? seštevanjem podatkov
za enote populacij. Iz osnovnih podatkov pa najprej podatke
analiziramo tako, da Izračunavamo različne Izvedene parametre
kot so: relativna števila, srednje vrednosti, mere variacije,
mere korelacije Itd.
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2« GRUPIRANJE

Zaokrožava n je podatkov

2.1
Numerične podatke, kot so n.pr. premer, višina, vo¬

lumen in starost dreves merimo samo do določene stopnje natanč¬

nosti. Te podatke zaokrožujemo do natančnosti, k? je potrebna

za praktično uporabo. Tako zaokrožujemo premere dreves na cen¬
timetre, višino dreves na decimetre ali metre, starost na leta
Itd.

Podatke zaokrožujemo na dva načina. Premer dreves

zaokrožujemo ne centimetre na na j bližjo celo vrednost v cm,
ali pa na na j višjo celo vrednost v cm. Po prvem načinu zaokro¬
žimo n.pr. premer 32,7 cm na 33 cm, ker je to najbllžj« cela

vrednost In se od prave vrednosti razlikuje le za 0,3 era. Po

drugem načinu pa zaokrožimo premer na 32 cm, ker je 32 cm naj-
višja vrednost v zaokroženih enotah (cml, ki n! večja kot ob¬

ravnavan premer« Prednost pri prvem načinu zaokroževanja je,

da je v splošnem razlika med pravo in zaokroženo vrednostjo

vedno manjša kok polovica enote mere, na katero zaokrožujemo.
Izkaže pa se, da je pr? nadaljnji obdelav? zaokroženih podat¬

kov bolje, če jih zaokrožujemo na najvišjo celo vrednost, če¬

prav je razlika med pravo in zaokroženo vrednostjo lahko tudi

večja kot pa pr? prvem načinu.
Ne zaokrožujemo pa samo numerične znake. Če navajamo

čas pogozdovanja, je včasih zadosti,da povemo, v katerem Setu
je bil sestoj osnovan in ni potrebe, da povemo točno do dneva,

kdaj je bilo zasajeno posamezno drevo«
Tudi krajevne podatke zaokrožujemo. Tako običajno ne

navajamo točnega kraja, kjer je bi So drevo posejano, temveč
zadošča, če navedemo, v katerem sestoju ali odseku je rast I o

posekano drevo.

Grupiranje vrednosti znakov

2.2
Zaokroževanje, ki g« poznamo iz vsakdanjega življe¬

nja, se ujem© z grupiranjem vrednosti znakov, k! ga uporablja-



mo v statistiki. Za znake z velikim s lev ?iom vrednosti običaj¬
no n? potrebno oziroma je nepregledno, da navajamo podatke za

vse vrednost?. V takih, primerih sorodne vrednosti znakov gru¬
piramo v grupe. Pri krajevnih, časovnih In zveznih numeričnih

znakih, k? Imajo neomejeno Število vseh močnih vrednosti, pa
je grupiranja nujno potrebno, ker je Število vseh možnih osnov¬

nih vrednost? neomejeno.

Z grupiranjem Izgubimo na natančnosti, pridobimo pa

na preglednosti, k! je v večini primerov statističnega prouče¬

vanja bistvena. Razen tega pa se zakonitost! In tipičnosti pri

množičnih pojavih pokažejo Sele, če pojav nastopa v velikem

številu. To pa dosežemo s tem, da podatke ne navajamo Indivi¬

dualno, temveč po grupah.

Načela grupiranja

2.3

Kako Izvedemo grupiranje, je odvisno od vrste znaka,
ki ga grupiramo, od vsebinskih razlogov In cilja statistične¬

ga proučevanja« Po pravilu n? enotnih načel In navodil za se¬
stavljanje grup.

Za vse znake pa veljajo neka sploSna načela.
Za vse, vrste znakov mora biti grupiranje eno! fčrto .

To pomeni, da mora biti grupiranje izvedeno tako, da vsaka os¬

novna vrednost spada v eno In eno samo grupo. V tej zvezi j®

poseben problem mejnih vrednosti. Tako je pri časovnem grupi¬

ranju treba paziti In določiti, v katero grupo spada na primer
pr? grupiranju v dneve moment ob koncu enega In začetku druge¬
ga dne# Pri geografskih grupah je podoben problem pri odločit¬

vi, kam spadajo meje med posameznim? grupami. Sporno more biti,

kam spada drevo, ki raste točno na me j! med dvema geografskima
grupama.

Vse Individualne vrednosti v eni grupi pri grupira¬
nem znaku so Izenačene In dobe neko novo gruprvo vrednost .Tako

pr? zaokroževanju Štejemo, da imajo vs? premer? v grup? od

32,5 cm do 33,5 cm skupno grupno vrednost 33 cm in se ne ozi¬
ramo na podrobnejSe vrednosti.

Pri časovnih grupah vse trenutke enega dne združuje¬
mo v dneve In je za vse trenutke enega dneva grupna vrednost
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datum itd. Enako je ime občlpe grupna vrednost za vse kraje
občine, če grupiramo kraje v grupe po občinah.

Grupe vsakega znaka moremo naprej grupirati v grupe

višjega reda , enako kot grupiramo individualne vrednosti. Gru¬
pe premerov po en centimeter združujemo v debelinske stopnje,

k? so sestavljene iz petih grup po en centimeter. Tako dobimo
drugo debelinsko stopnjo, če združimo premere 5 cm, 6 cm, 7 cm,

8 cm, 9 cm v novo grupo - drugo debelinsko stopnjo. Enako ča¬

sovne grupe - dneve združujemo v grupe višnje stopnje - tedne,

mesece, lete; geografske grupe - občine v okraje Itd,
Grupe imajo torej iste lastnosti kot vrednosti zna¬

kov. Imajo svoje ime, ki jih označuje, in jih moremo grupirat?

kot osnovne vrednosti znaka.
Posamezne znake moremo grupirat? po različnih nače¬

lih. Za vsak znak moremo sestaviti različne grupe, ker je za
vsak znak več načel, po katerih izvedemo grupiranje. Omenili
smo že, da je načelo grupiranja sorodnost med vrednostmi, ki
so v eni grupi. Načelo sorodnost? pa je lahko različno. Tako
zemljišča grupiramo po lastniškem ali vsebinskem načelu. Po

prvem združujemo v grupe vsa zemljišča, k? so last istega last¬

nika, po drugem pa zemljišča, k? so si vsebinsko podobna, zasa¬

jena z isto vrsto drevja itd.
Enako imamo upravno teritorialno grupacijo, če je

načelo geografske ga grupiranja pri pa dnost v isto upravno teri¬

torialno grupo, ali rajone, če je načelo geografskega grupira¬

nja vsebinsko.

Grupiranje numeričnih znakov

2.4
Pri numeričnih znakih je merilo sorodnosti dveh vred¬

nosti absolutna razlika med njima. Grupam za numerične znake
pravimo ra zredi . Vsak razred je od drugega razred« razmejen z
mejo razreda tako, da nobena vrednost v razredu, k* je pod me¬

jo, ni večja, nobena vrednost v razredu, ki je nad njo, pa ni

manjša kot meja razreda. S4mo mejo štejemo bodisi v spodnji
ali v zgornji razred. Take je 25 cm meja med peto in šesto de¬
belinsko stopnjo, ker vključuje peta debelinska stopnja premere
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med 20 cm do 25 cm, šesta pa premere od 25 on do-30 cm., S predpi¬

som določimo al! spada meja (25 cm) v spodnji ali zgornji raz¬

red, To v grupaciji tud? naznačimo. Če vključimo meje razredov

v spodnje razrede, debelinske stopnje označimo z;
5 cm1• deb. stop.

2. deb. stop.
"3. deb. stop.
4. deb. stop.

itd.
Da so pa meje razredov vključene

pa je razvidno iz naslednje grupacije:

do
nad 5 cm do 10 cm
nad 10 cm do 15 cm
nad 15 cm do 20 cm

zgornje razrede,

1 . deb. stop.
2. deb. stop*

3. deb. stop.

4. deb. stop.
Ker iz grupacije:

1. deb. stop«
2. deb. stop.

3. deb. stop.

4. deb. stop.

itd.

do pod 5 c rr.

5 cm do pod 10 cm

10 cm do pod 15 cm

15 cm do pod 20 cm itd.

- 5 cm
5 cm - 10 cm

10 cm - 15 cm

15 cm - 20 cm

ni razvidno, v katere razrede spadajo meje razredov, ta grupa
c?ja ni enolična tn je zato pomanj k I jiva.

Če zaokrožujemo premere na najvišje cele vrednosti,

moremo grupacijo v debelinske
1. deb. stop.
2. deb. stop«
3. deb, stop.
4. deb. stop*
itd.

stopnje pisati tudi takole:
0 cm - 4 cm
5 cm - 9 cm

10 cm - 14 cm
15 cm - 19 cm

Da grupacija ni enolična In da ne spada vsaka izmed
vrednosti v en l n en sam razred, izgieda le navidezno. Premer
14,7 cm spada v 3. deb. stopnjo, ker zaokrožen premer 14 cnr»
vključuje vse premere do pod 15 cm* Ne prvi pogled pa izgieda,

da se spodnja in zgornja meja dveh zaporednln razredov ne pre¬

krivata.
Iz navedenega primera vidimo, da zaokroževanje na

(najbližjo celo vrednost ni primerno. Pri tem načinu zaokrože¬
vanja so namreč meje med posameznimi razredi 4,5 cm, 9,5 cm,
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14,5 cm, 19,5 cm in zaio ?z njih ne moremo sestaviti pravih
debelinskih stopenj, za katere so meje razredov 5 cm, 10 cm,
15 cm, 20 cm itd.

Vsak razred ima širino razreda , k? je razlika med
zgornjo in spodnjo mejo razreda, če zaznamujemo na splošno ka¬

terikoli razred z indeksom k, z x, . spodnjo, z x, zgor-

njo mejo razreda, z i^ pa širino razreda, je po zgornji defi¬
niciji

— Ki * (2*11k *v, ma x k, m in

Kot smo omenili, ima vsaka grupa neko gruprto vred¬
nost, ki reprezentlra vse vrednosti razreda. Ta grupna vred¬

nost je pr? numeričnih znakih sredina razreda , k? jo zaznamu¬

jemo z x^ f izračunamo pa po obrazcu ♦

X. = X,kž.?.i* 12.23
k 2

Pri analizah vzamemo v vsakem primeru približek, da

so vse vrednosti v razredu enake grupnl vrednost? - sredini
razreda, ker se nobena vrednost v razredu ne razlikuje od nje

za več kot za polovico širine razreda.

2.5

Nezvezne numerične znake grupiramo po istih načelih

kot zvezne. Vendar je glede na to, da so za nezvezne numerične
znake vrednosti izolirane, nekaj tehničnih razlik v grupiranju.

če vzamemo kot primer za nezvezni znak število dre¬
ves na površinah 10 a v določenem gozdnem sestoju, morejo bit?

grupe naslednje: 0-9 dreves, 10 - 19 dreves, 20 - 39 dreves,

40 in več dreves. Nepravilna je grupacija 0 - 10, 10 - 20,
20 - 40, 40 jn več. Ta grupacija nf enolična, ker so meje

vključene v po dva razreda.
Tudi za nezvezne razrede moremo določiti meje razre¬

dov, širine razredov in sredine razredov po istih obrazcih kot

za zvezne znake, če teoretično predpostav I jarao, da vsaka indi¬
vidualna vrednost za nezvezni znak predstavlja grupo, ki ob¬
sega razmak, ki je širok 1, individualna vrednost pa je sredi¬
na tega enotinege razmaka. Tako n.pr. vrednost 9 dreves teore-
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flčno predstavlja vrednosti v razmaku od 8,5 do 9,5, čeprav

vemo, da je število dreves nezvezen numeričen znak. Če to upo¬

števamo, so pri zgornjem primeru teoretične meje 9,5, 19,5,

29.5, 39,5 dreves. Ker je n.pr. v drugem razredu spodnja meja

9.5, zgornja meja pa 19,5, Izračunamo, da je širina razreda

i 2 - 19,5 - 9,5 = 10, sredina razreda P* x _ 9,5 + 19,5

14,5. Tako Izenačimo postopek grupiranja zveznih In nezveznih

znakov. Zveznim vrednostim v določenem razmaku pripišemo sre¬

dino razreda, kf je reprezentant vrednost? v razmaku, nezvez¬
nim vrednostim pa pripišemo enotln razmak, ki predstavlja raz¬

mak, na katerega se nanaša posamezna nezvezna vrednost.

2.6
Kot vidimo Iz zgornje grupacije dreves, morejo biti

širine posameznih razredov glede na pojav, ki ga proučujemo In
\

glede na cilj proučevan ja, raz I Sčne. Zadnji razred 40 in več

dreves pa ima celo samo špodnJ o.mejoi Za take razrede, ki ima¬

jo samd spodnjo ali samd zgornjo mejo, ne moremo določiti niti
sredine niti širine razreda. Imenujemo jih odprte razrede ,tvo-
rimo jih pa takrat, kadar pričakujemo, da je le nekaj enot, za

katere je podatek nad ali pod določeno vrednostjo, ti podatki

pa zelo variirajo.

Za formalno statistično analizo je na j pr imernej e, če

so širine vseh razredov enake, vsI razredi pa zaprti. Iz vsebin¬
skih raziogov pa to ni vedno najboljše.

2.7
Grupiranje numeričnih znakov . Časovne znake grupira¬

mo v naravne časovne razmake, ure, dneve, tedne, mesece, leta,
pet ali desetletja, čeprav je dolžina posameznih Izmed njih
različna (n.pr. pr? mesecih). Vedno pa ne, združujemo zapored¬

ne časovne razmake v večje grupe. Tako n.pr. prt sezonskem pro¬

učevanju pojavov združujemo v eno grupo Iste mesece za več let.

Tako dobTmo grCipo vseh januarjev, vseh februarjev, vseh marcev

itd* za več zaporednih let In proučujemo, kakšne so sezonske
razlike n.pr, v sečnji. Če pa hočemo proučevati časovni razvoj
sečnje v daljšem razdobju, pa združimo vse mesece posameznih
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I e + v letna razdobja. Grupiranje je torej ozko povezano s ci¬

ljem analize.

Kot smo že omenili, se pri krajevnih grupacijah na¬

vadno oslonimo na teritorialne razdelitve, ki so izvedene v

druge - običajno administrativne namene. Najmanjše teritorial¬

ne grupe, k? pridejo v poštev v gozdarstvu, so parcele, sesto¬
ji oziroma odsek?. Te združujemo po različnih načelih dalje v

višje gr upe: oddelke, gospodarske razrede, gospodarske enote
?td. Razen zgornjega grupiranja pa poznamo tud? vsebinsko kra¬

jevno grupiranje v rajone. V rajone združujemo vse kraje z

istimi značilnostmi pojava. Ker je rajonizacija težaven posel,
dostikrat združujemo v rajone manjše administrativne enote po
pr e težnost?.

Problematika grupiranja atributivnlh znakov je spe¬

cifična. Načelo sorodnosti je dano s kako lastnostjo, k? jo

posamezna vrednost atributivnega znaka izraža. Tako moremo po¬
samezne vrste dreves grupirati v listavce ali drevesa z mehkim
in trdim lesom In podobno.
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3. ELEMENTARNI PARAMETRI

Število eno* ?n vsote . Najenostavnejši parametri

o statistični populaciji so absolutni podatki,, katere dobimo
s preštevanjem enot v populacij? in s seštevanjem vrednosti

za numerične znake. Osnovni parameter je število enot v popu¬

laciji, kf ga dobimo, če preštejemo, koliko enot sestavlja po¬
pulacijo. Tako dobimo število dreves v sestoju, če je populaci¬
je, ki jo proučujemo, sestavljena iz dreves v sestoju. Števi¬

lo enot v populaciji dogovorno zaznamujemo vedno z N (numerush

Preprost parameter o populaciji, ki ga dobimo s sešte¬

vanjem vrednost? znaka, je n.pr. lesna zaloga v sestoju. Tega
dobimo, če volumen posameznih dreves (vrednosti znaka "volumen

drevesa") seštejemo. Podobno dobimo tud? skupno temeljnlco, če

seštejemo temetjnice posameznih dreves v sestoju. Vsote podat¬

kov v populaciji zaznamujemo z velikimi črkam? X, Y, Z, U, V,

analogno kot zaznamujemo z x, y, z, u, v znake. Glede na to

velja zveza
N

M

oznaka za seštevanje od 1 do N; yj

(3.1 )

= individualna vrednost

3.2
• Statistične vrste . Vendar ti parametri, čeprav so

pomembni, povedo razmeroma malo o populaciji. Če pa preštevamo
enote in seštevamo podatke po grupah določenega znaka, dobimo

zelo dober uvid v sestav in osnovo za analizo populacije.

Za populacijo ~ "posekana drevesa v letu 1958 v FLRJ”,
je skupna posekane bruto lesna masa 13.296 tisoč m', Ta podatek
sam zase je pomemben, vendar či razmeroma male Informacij o po¬
sekan? lesni mesi. Če pa seštejemo posekano lesno maso po dre¬

vesnih vrstah, dobimo uvid v sestav posekanega lesa po vrstah.

Tako dobimo niz podatkov-parametrov, k? kompleksno prikazujejo

sestav posekane lesne mase po vrstah lesa.



Tabel® 3.1 Posekana bruto lesna masa po vršil lesa
v I e+u 1958 v FLRJ v tisoč m3
(Vir SG 1959)

Tak niz istovrstnih podatkov, od katerih se vsak

nanaša na eno izmed vrednosti ali na grupo vrednosti določe¬
nega znaka, imenujemo stati stično vrsto . Ker je v našem pri¬

meru posekana lesna masa razdeljena po atrtbutivnem znaku -

vrsta dreves, imenujemo to s tat?stično vrsto - atributivno

statistično vrsto.
3.3

Časovne vrste . Analogno je časovna vrsta niz

istovrstnih podatkov, od katerih se vsak nanaša na določen za¬

poreden časovni trenutek ali razmak.
Primer za časovno vrsto je izvoz gozdnih sortiraentov

na glavna skladišča po letih v FLRJ.

Tabela 3.2 Izvoz gozdnih sortimentov na glavna
skladTšča v FLRJ v razdobju 1946-1958
v tisoč m 3 (Vir: SG 1959)
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Iz navedene časovne vrste moremo slediti časovni
razvoj izvoza posekane lesne mase v razdobju 1946-1958. Iz

nje opazimo izreden porast poseka v razdobju od leta 1946 do

le+a 1949, ko je posek največji (12326 tisoč m^) in ustaljen
posek v naslednjem razdobju 1950-1959, kar je rezultat plani¬
ranega poseka. Nazorneje kot iz tabele moremo slediti časoven
razvoj poseka iz grafičnega prikaza v sliki 3.1.

Slika 3.1
Izvoz gozdnih sortimentov na glavna skla¬
dišča v FLRJ v razdobju 1946-1958.
(Vir: SG 1959)

Z linijskim grafikonom je prikazana časovna vrsta v

pravokotnem koordinatnem sistemu tako, da je abscisna os ča¬
sovna os, na ordinatno os pa nanašamo podatek. V našem prime¬

ru je to obseg izvoza. Velikost podatka merimo s skalo, k? da-
je odnos med enoto mere (m ) in geometrijsko velikostjo - dol¬
žino. Sistem pomožnih črt, ki o I a jšuj e j o č11a nj e grafikona,

imenujemo mrežo grafikona. Velikost podatka je prikazana z od¬

daljenostjo ustrezne točke od abscisne osi. Kako odberemo na
ordšnatni - količinski skali, kolik je uvoz, pa je nakazano za
leto 1948 v sliki. Ker se posek nanaša na celo leto, po pravi¬
lu točke nanašamo nad sredine razmakov, ki pomenijo na abscisi
leta. V primeru, da v grafikonu prikazujemo časovno vrsto po-



daikov, k? se nanašajo na določene časovne momente, pa rišemo
točke točno nad mesto, k? na časovni skali ustreza danemu mo¬
ment u« Tak primer bi imeli, če bf grafično prikazovali časovno
vrsto lesne mase stoječega Sesa. Ti podatki so momentnega znača¬
ja, ker moremo dati stanje lesne zaloge za stoječi sestoj le za
določen datum, oziroma trenutek«
3.4

• • Kombiniran? podatki . Včasih dobimo osnovo za a -
nalizo, če preštevamo ali seštevamo podatke po kombinaciji dveh
ali več znakov hkrati« Tako dobimo kombinirano tabelo« Primer
kombinirane tabele je pregled gozdnega fonda po družbenih sek¬
torjih in kvaliteti gozda v tabel! 3.3.

Tabela 3.3 Lesna masa gozdnega fonda v FLRJ v letu
1958 po družbenih sektorjih in kvaliteti
gozda (v milijon m^) (Vir: SG 1959)

Frekvenčne porazdelitve
3.5

* Za statistično analizo množičnih pojavov so po¬
sebno pomembne statistične vrste, ki za numeričen znak pokaže¬
jo, koliko enot ima vrednosti v posameznih razredih. Take sta¬
tistične vrste imenujemo frekvenčne porazdelitve , ker pokažejo
pogostnost pojavI janj a vrednost I. Število enot v posameznem
razredu imenujemo frekvenca. Dogovorno zaznamujemo v frekvenč¬
ni porazdelitvi frekvence z f, oziroma z f^, kadar hočemo z in¬
deksom k naznačfti, da se frekvenca nanaša na konkretne razrede
v frekvenčni porazde!Itvi. V frekvenčnih porazdelitvah nimamo
pregleda o točnih vrednostih znaka v populaciji, ker pokaže sa¬
mo koliko enot Ima vrednost v posameznih razredih. Pač pa da,
če je pravilno sestavljena, kompleksen in nazoren pregled o va¬
riiranju vrednosti v populaciji.
3.6

* Sestavljanje frekvenčnih porazdelitev . Iz neure¬
jene vrste individualnih podatkov za posamezne enote tehnično
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sestavimo frekvenčno porazdeIt+ev po več metodah.
Za manjše In enostavnejše populacije je prikladna

metoda črtic. Po fej me+odl ses+avlmo najprej obdelovalno ta¬
belo, v ka+erl so za razrede predvidena večja polja* Ko po

vrs+t pregledujemo posamezne vrednosti, za vsak podatek napra¬

vimo v ustreznem razredu črtico. To ponavljamo, dokler ne Iz¬

črpamo celotne populacije. Na koncu v posameznem razredu pre¬

štejemo črtice. Število črtic v vsakem razredu je enako števi¬

lu enot, ki Imajo vrednosti v danem razredu. V praksi uporab¬

ljamo več načinov črtanja. Črtice moremo enostavno nizati dru¬

go poleg druge (////////////J. Štetje črtic pa sl olajšamo, če

sestavljamo grupe po pet črtic tako, da s peto črtico, v vsaki

grupi po pet, štiri črtice prečrtamo ( /■///) . Upor a b I j amo pa

tudi sistem, pri katerem sestavljamo grupe po deset enot. To
dosežemo s štirimi točkami za prve štiri enote. Za nadaljnje
štiri enote k tem točkam narišemo stranice kvadrata, diagonal?

o——o

pa dopolnita deveto in deseto enoto |X| •

3.7
Za populacijo premerov za N=53 dreves 27-letne marl-

landske topole so Individualni podatki naslednji:
49 51 54 54 61 60 64 68 74 57 54 62 37 51 49 45 51 58 43 56 43

61 45 68 33 51 48 41 53 58 72 54 49 48 55 55 36 64 49 44 41 69

52 58 47 50 54 49 52 57 65 55 47.

V sliki 3.2 je po vseh treh načinih naznačeno, kako
sestavimo frekvenčno porazdelitev. Za prvi podatek 14-9 cm) smo
vrisali črtico v razred 45-49 cm, za drugega (51 cm) v razred

50-54 cm Itd. do zadnjega podatka (47 cm), za katerega smo

vnesli črtico v razred 45-49 cm.
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53=N

Slika 3.2 Sestavljanje frekvenčne porazdelitve

po metod? črtic ?n točk

3.8
Za večje populacije Tn bolj zamotane obdelave pa me¬

toda črtic n? preveč prikladna. Zamotanost posla In velika mož

nost napak so hibe, k? govore proti uporab? te metode za večje

obdelave. V takih primerih je primerneje, da podatke napišemo

na Individualne obdelovalne listke. Obdelovalne listke sortira
mo po grupah fn razredih, ustrezno s planom obdelave tako, da
posamezne listke polagamo na kupe, k? ustrezajo posameznim
grupam. Na koncu sortiranja preštejemo listke v posameznih raz

redih In dobimo zanje frekvence. Z mehaničnim? sredstvi stroj¬

ne obdelave ta posel pomembno skrajšamo fn mehaniziramo.

3.9

F rekvenčne porazdelitve za premere dreves . Najznačil

nejšt primer frekvenčnih porazdelitev v gozdarstvu so frekvenč

ne porazdelitve premerov dreves v prsni višini. Porazdelitve
premerov za različne sestoje kažejo tipične oblike, k? so po¬
gojene s tipom sestoja. Zato preglejmo frekvenčne porazdelitve
za nekaj najznačilnejših tipov sestojev.
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V tabeli 3.4 imamo šest frekvenčnih porazdelitev

premerov za različne tipe sestojev. Prva in druga frekvenčna
porazdelitev se nanašata na enodobna smrekova sestoja h in B

na Pokljuki. Oba sestoja sta raziskovalni ploskvi IGLiS -a in
obsegata vsak po en hektar površine. Starost prvega sestoja je
130 do 140 let, starost drugega sestoja pa 120 do 130 let.

Frekvenčna porazdelitev C se nanaša na prebiralni

j e I ov-bukov sestoj na Snežniku (2 ha raziskovalne ploskve

I GL IS), porazdelitev D pa prikazuje porazdelitev premerov za
dvoetažni gozd površine 1 ha na Otoku, oddelek 13 b na razis¬
kovalni ploskvi FAGV. V prvi etaž? je zasajen« meri(©noska to¬

pole s podrastem jelše v drug? etaži. ločeR® frekvenčna poraz¬

delitev za topolo in jelšo je podana v stolpcih 0^ ?n Dg*

Tabele 3.4 Frekvenčne porazdelitve za enodobna smrekova se¬
stoja, za prebiralen je Ikovo-bukov sestoj in dvo¬
etažni sestoj topole in jelše.

T Enodobna smre
kova sestoja
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3.10

Grafično prikazovanje frekvenčnih porazde11 te v . Osnov
ne zakonitos11 In tipičnosti za posamezne vrste sestoj ev, k?
jih izražajo frekvenčne porazdelitve premerov, nazorneje In

lepše kot Iz tabele 3.4 proučimo Iz grafičnega prikaza posamez¬

nih frekvenčnih porazdelitev.

Grafično prikazujemo frekvenčne porazdelitve na dva
načina:

s ) s h? stograssi? I n
b) s poli goni.

S histogramom prikažemo frekvenčno porazdelitev s

stolpci. Za vsak razred je frekvenca ponazorjena s stolpcem,

ki je visok, v sorazmerju s frekvenco. Skupnost stolpcev za vse
razrede da sliko celotne frekvenčne porazdelitve.

Frekvenčni poligon pa dobimo, če za vsak razred v
frekvenčni porazdelitvi narišemo nad sredino razreda točko, ki

je od abscisne os? oddaljen« v sorazmerju s frekvenco, te toč¬

ke pa med seboj povežemo z daljicami. Poligon nazorneje in pra¬
vilneje prikaže stvarno variiranje vrednost? znaka kot histo¬
gram.

V slik? 3.3 je za čist? smrekov sestoj A Iz tabele

3.4 grafično prikazana frekvenčna porazdelitev premerov s hi¬

stogramom In s poligonom. Iz slike moremo kompleksno analizi¬

rat? variacijo premerov v sestoju. Največ premerov je v razre¬
du 30 cm do 34 cm, čim bolj pa se od tega centra oddaljujemo,

je število premerov manjše In manjše. Frekvence se od mesta

največje gostitve zmanjšuje j o na levo In desno razmeroma ena¬

komerno In je slika frekvenčne porazdelitve na obe stran? od
središča precej simetrična. Taka porazdelitev frekvenc je ti¬
pična za enodobne sestoje na Izenačenem terenu, kjer so sploš¬
ni pogoj? rast? več ali manj enak? za celo ploskev.

Frekvenčne porazdeIItve, ki Imajo tako obliko kot jo

Imamo v primeru sestoja A v slik? 3.3, Imenujemo zaradi tipič¬
ne oblike sImetrIčne In zvonaste , ker pa Imajo eno samo mesto
gostitve, pa e novršne alf unI mod a i ne .

Frekvenčna porazdelitev za čisti enodobni smrekov

sestoj B ns Pokljuki v slik? 3.4 kaže še vedno tipično zvona¬

sto obliko, vendar je lahno asimetrična v desno stran, kar na -
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-'r. .1--1--1--1-T ■■ ■ 1---r-®'^ I-1--1--1--1- f °~+-

10 X 30 40 50 60 70 10 20 30 40 50 60 70
em a) histogram cm b) poligon

SI t ka 3.3 Grafikon za frekvenčno porazdelitev
enodobnega čistega smrekovega sesto¬

ja A iz tabele 3.4

kazuje, da pogoji rasti v tem sestoju niso povsem enakomerni,

da je n.pr. lega posameznih delov parcele različna.
i

Slika 3.4 Frekvenčni poligon za premere dreves
v čistem enodobnem smrekovem sestoju

B na Pokljuki

Slika 3.5 kaze tipično porazdelitev premerov za pre
biralen gozd. Porazdelitev je zelo asimetrična v desno, ker
močno prevladujejo drevesa z majhnim premerom, ker se močnej¬

ša drevesa postopoma izsekavajo. Porazdelitev za prebiralni
gozd ima tipično obliko črke J, zato take porazdelitve imenu¬

jemo kar J-pora zde Iitve .
Slika 3.6 ponazarja porazdelitev premerov za dvoe¬

tažni sestoj Otok. Kot je nakazano, je sestavljena iz dveh po

razdelitev: porazdelitve za nasad marilandske topole (D-j ) in

podrasta jelše (Dg). Porazdelitvi za posamezni etaži kažeta
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cm

Slika 3„5 Frekvenčni poligon za premere

dreves v bukovo-j e Iovem sestoju
na Snežniku

0 5 10 15 20 25 30 35 40 45 5 0 55 60 65 70 75 00 65 90
cm

Slika 3 0 6 Frekvenčni pollgpn? za dvoetažni
sestoj Otok

tipično zvončasto obliko,, skupna porazdelitev, ki je vsota

frekvenc za obje etaži, pa odstopa od te lastnosti in nakazuje
dva vrha (blmodalna porazdelitev), ker je sestavljena iz dveh

unlmodalnlh porazdelitev,,
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3.11

Pručke frekvenčne porazdelitve . Zaradi pomembnosti

frekvenčnih porazdelt+ev navedimo še dva primera. Frekvenčne

porazdelitev v tabeli 3.5 podaja porazdelitev specifične teže
lesa za N=3376 preskusov na zeleni duglaziji*

Tabela 3.5 Frekvenčna porazdelitev specifične teže lesa za
zeleno duglazijo (Po podatkih IGLIS-a)

3376 = N

Frekvenčna porazdelitev lepo pokaže variabilnost
specifične teže lesa za zeleno duglazijo. Slika 3.7 nazorno
pokaže, da je porazdelitev specifičnih tež za zeleno duglazi¬

jo simetrična, zvonasta porazdelitev, da je torej močno pribli¬
žana tipični porazdelitvi za primer, če na pojav razen opre¬
deljujočih pogojev vplivajo le slučajni vplivi. Take porazde¬
litve imenujemo normalne porazdelitve.
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320 40 60 9040020 40 60 60 50020 40 60 6060020 40
kg/m3

' S! ika 3.7 Porazde I i fev specifičnih tež N=3376
preskusov za les za zeleno duglazijo

3.12 !
Kof zadnji primer navedimo Se porazdeli+ev N=1256

kme+ijskih gospodars+ev v bivšem okraju Novo mesto po gozdni
površini, po stanju leta 1956.

Tabela 3.6 Kmetijska gospodarstva v okraju Novo mesto
po gozdni površ? n?

1256 = N

Ta frekvenčna porazdelitev kaže, da je največ gospo¬
darstev, k? imajo malo gozda. Število gospodarstev z večjo po¬
vršino je vedno manjše. Vendar ta zakonitost iz zgornje frek¬
venčne porazdelitve ni povsem vidna, ker so širine razredov
različne, frekvence v posameznih razredih pa so razen od dru¬
gih vplivov odvisne tud? od širine razredov. Podrobnejši uvid
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v porazdelitev frekvenc, če so razred? neenaki, bomo dobili v
naslednjem odstavku, ko bomo spoznali relativna števila.

3.13
Problem širine razredov . Poseben problem pr! sestav¬

ljanju frekvenčnih porazdelitev je širina razredov. Pr? tem se
namreč kosata dva momenta. Če je širina razreda premajhna, so
frekvence v posameznih razredih močno pod vplivom slučajnih

faktorjev. Zato ne pride dovolj do Izraza množičnost pojavlja¬
nja. Če pa so razred? preširoki, je slika pregroba In zabriše
osnovne težnje gostitve pojava®

V sliki 3.8 so vrisane frf frekvenčne porazdelitve
premerov za Isto populacijo premerov dreves v čistem smrekovem

sestoju B na Pokljuki. V prvi frekvenčni porazdelitvi so širi¬

ne razredov 1 cm, v drug? 5 cm, v tretji pa 10 cm. Iz slike na¬
zorno vidimo, da je širina razreda 1 cm v prvi porazdelitvi
premajhna. Zaradi slučajnih vzrokov frekvence po razredih pre¬

več nihajo, širina 10 cm v tretji porazdelitvi pa je prevelika

In ne pride do Izraza zakonitost gostitve. Najboljša oziroma
pravilna je druga frekvenčna porazdelitev, za katero so razre¬
di 5 cm. Razredi so tako široki, da se Izravnajo rezultat? In¬
dividualnih vplivov, niso pa preširoki, tako da pride dobro do

izraza zakonitost gostitve premerov.

Določnega pravila o ve ItkosfT razredov v posameznih

prlmrrih ni. Število razredov je lahko večje, če je populacija
obsežnejša, In mora bit? manjše, če je populacija manj obsežna.
Običajno dobimo prlrererno sliko o variabilnost? pojava, če vza¬
memo glede na obseg populacije število razredov med deset In
dva j sef.

3.14
Kumulativne frekvenčne porazdelitve . Iz frekvenčne

porazdelitve dobimo s postopnim seštevanjem frekvenc kumulativ¬

no frekvenčno porazdelitev« V tabel! 3.7 je za primer specifič¬

ne teže lesa za zeleno duglazijo nakazano, kako iz frekvenčne

porazdelitve Izračunamo kumulativno frekvenčno porazdelitev.
Če z F^ zaznamujemo člene v kumulativni frekvenčni porazdelit¬
vi, Iz frekvenčne porazdelitve izračunamo člene v kumulativni

vrst? po obrazcu
F'k+i = Fk + fh (3.2)
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cm

Slika 3„8 Histogrami populacije premerov za čisti
smrekov sestoj B na Pokljuki pr? različnih Širinah
razredov
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KumulatTvo za naslednji razred (k+1) dobimo, če ku-

mulatlvf v danem razredu Fy prištejemo frekvenco f^ Iz istega

razreda o

Tabela 3.7 Kumulativna frekvenčna porazdell+ev za speci¬
fično težo lesa za zeleno duglazijo

Teža v kg/m^

!ž fabele 3.7 je razvidno, da v prvem razredu vzame¬

mo, da je kumula+lva enaka nič, za vse druge razrede pa Izra¬
čunamo kumulativne vrednosti po obrazcu 3.2. Kontrola pri Iz¬
računavanju je zadnji člen v kumulativni vrsti, k? je že pod
črto. če je kumulativna vrsta Izračunana pravilno, je ta člen

enak obsegu populacije N.
Posamezni členi v kumulativni frekvenčni porazdelit¬

vi povedo, koliko enot Ima vrednosti, ki so manjše kot je
spodnja meja ustreznega razred«. Tako na primer osmi člen v
kumulativni vrsti F g = 1942 pomeni, da je bila v 1942 presku¬
sih specifična teža manjša kot je spodnja meja ustreznega raz-

3reda, x Q . = 460 kg/m •o,m f n
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Podobno kof za frekvenčne porazdelitve, da tudi za
kumulativne porazdelitve grafičen prikaz kompleksno sliko, ka¬
ko so kumulafivne frekvence odvisne od vrednosti znaka. V gra¬
fikonu ponazorimo kumulativno frekvenčno porazdelitev tako, da
v pravokotnem koordinatnem sistemu nanesemo nad meje razredov
točke, ki so od abscisne os? oddaljene v sorazmerju z vrednost¬
jo ustreznega člena kumulatlve. Ko zvežemo te točke med seboj,
dobimo iomljeno Črto, k? nazorno prikazuje kumulativno frek¬
venčno porazdelitev. Za unimodalne, simetrične In zvonaste
frekvenčne porazdelitve Ima slika kumulativne frekvenčne poraz¬
delitve značilno obliko velike črke S. To značilnost opazimo
tud? na našem primeru v sliki 3.9.

F

300 20 40 60 80400 20 40 SO 6050020 40 60 8060020
kg/m3

Slika 3.9 Kumulativna frekvenčna porazdelitev
za specifično težo lesa za zeleno
duglazijo
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4. RELATIVNA ŠTEVILA

4.1
Vrsta primerjav . Že v prejšnjih odstavkih smo spoz¬

nali, da en sam podatek, kljub svoji operativni vrednosti, ni¬
ma posebnega analitičnega pomene. Zato podatke navajamo v sta¬
tističnih vrstah, v katerih jih ne obravnavamo posamezno, tem¬

več kot celoto. Tako dobimo vpogled v sestav populacije, če

Imamo podatke po grupah, uvid v variabilnost, če proučujemo
frekvenčno porazdelitev kot celoto, ne pa posamezno frekvenco

itd. Niz podatkov proučujemo kompleksno, če podatke med seboj

primerjamo. Primerjava je najenostavnejši, obenem pa tud? naj-

pogostejši prijem pri analiz? statističnih podatkov. Če pri¬

merjamo Istovrstne podatke med seboj, ugotovimo: a) da je po¬
datek večji al? manjši od podatka, s katerim ga primerjamo,

b) za koliko je podatek večji al? manjši od podatka, s katerim
ga primerjamo in c) kolikokrat je podatek večji ali manjši od

podatka, s katerim ga primerjamo. Najboljše primerjamo podatke
na tretji način, pr? katerem z deljenjem primerjanih podatkov

dobimo relativna števila, k? so zelo primerno sredstvo za ana¬

lizo statističnih podatkov. Relativna števila pa niso omejena
samo na primerjavo Istovrstnih podatkov, ampak moremo z njimi
primerjati tudi raznovrstne podatke.

V splošnem poznamo tri vrste relativnih števil. 0

strukturah ali strukturnih deležih govorimo, če primerjamo po¬
datek za del populacije z Istovrstnim podatkom za celo popula¬
cijo. Indekse dobimo, če primerjamo Istovrstne podatke za raz¬
lične populacije, k? pa so med seboj sorodne. O statističnih
koefI c? e nt I h In gostotah pa govorimo, če primerjamo dva razno¬

vrstna podatka za Isto populacijo.

4.2
Strukture . Od skupno N^ = 785 dreves v sestoju A je

okuženih = 352 dreves, od skupno Ng = 1695 dreves v sestoju

B pa Hg = 542 dreves, če hočemo primerjati okuženost v obeh se¬

stojih, nima smisla primerjati absolutnega števila okuženih
dreves In Hg v obeh sestojih, ker je velikost sestojev raz¬
lična. Objektivno merilo okuženost? dobimo, če Izračunamo, kak-
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šen de! dreves v posameznem sestoju je okuženih. Ta podatek
dobimo, še število okuženih dreves delimo s skupnim številom

dreves v sestoju. Da Izrazimo ta delež v odstotkih, dobljeni

kvocient pomnožimo s 100. Za pojave, za katere so deleži zelo

majhni, izražamo strukturne deleže v promilih. V takih prime¬

rih pomnožimo kvocient s 1000. Strukturni delež P° pove, koli¬

ki del od celote 1 Ima dano značilnost, strukturni odstotek

P% y kolik? del od celote 100, strukturni delež Izražen v pro¬

milih ?%o pa pove, koliki del od celote 1000 Ima dano značil¬

nost. Z obrazci moremo vse tri vrste struktur Izrazit? takole:

P'* > p%*tOO-£L ; Py~* 1000-&- {4 " 1)
N N N

Pr? tem pomen?: P°, P% ?n P%o so strukturni deleži,lz-

ražen? z delom od celote, v odstotkih In promilih, H = delni

podatek.
V našem primeru nazorno vidimo uporabnost struktur¬

nih dele že v. Za prvi sestoj je odstotek okuženih dreves
H

P .% — 100 — = 100 = 44,8 %, odstotek okuženih dreves

NA 785 H
v drugem sestoju pa je P R% - 100 —- = 100 —4 — 32,0

a Ng 1695
Okuženost drugega sestoja je torej znatno nižja kot

okuženost v prvem sestoju, kljub temu, da je število okuženih

dreves v prvem sestoju manjše.

4.3
Enostavne strukturne vrste . Strukture Izračunavamo

vselej, kadar primerjamo sestave več populacij, za katere so

podatki za celoto različno veliki. Zato strukture s pridom
uporabljamo pri proučevanju frekvenčnih porazdelitev. Zaradi

različnega obsega populacij frekvence v istih razredih za raz¬
lične populacije med seboj niso neposredno primerljive. Pač pa
so med seboj primerljivi strukturni delež? - relativne frekven-

ce .
V tabeli 4.1 sta dani frekvenčni porazdelitvi za se¬

stoja A In B na Pokljuki Iz tabele 3.4. Zanju sta Izračunani
frekvenčni porazdelitvi relativnih frekvenc, ki ju moremo zelo

dobro med seboj primerjati.
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Tabela 4.1 Relativne frekvenčne porazdelitve za čista

enodobna smrekova sestoja na Pokljuki

Enako Izračunamo tudi za relativne frekvence kumula¬
tivne frekvenčne porazdelitve. Iz tabele 4*1, Se nazorneje pa
Iz slike 4.1, je razvidno, da je struktura dreves po premeru v
obeh sestojih različna.

%

cm primer

Slika 4.1 Kumulativni porazdelitvi relativnih
frekvenc za čista smrekova sestoja A
In B Iz tabele 4.1

35 -



4.4

Kombinirane s-t-rukturne vrste . Za kombinirano razde¬

ljene podatke proučujemo sestav s trem? vrstami struktur. V

tabel? 3.3 je n.pr. lesna masa v gojenih gozdovih, ki so last
* 3

družbenega sektorja (641 m f i j. m ), de i treh populacij: s) skup
3

ne populacije (880 milj. m J, b) skupne lesne mase v gojenih
gozdovih (771 milj. in c) skupne lesne mase v družbenem
sektorju C700 milj. m }. Analogno je z vsem? drugim? podatki

v kombinacijski tabel?. Zato moremo sestaviti tr? tabele struk
tur.

Tabeia 4.2 Strukturni sestav lesnega fonda v FLRJ v letu

1958 po družbenih sektorjih fn kvaliteti gozde
(Vir: tab. 3.3)

V tabeli A je celota skupni fond, v tabeli B
posamezni družbeni sektorji, v tabeli C pa ustrezne kvalitete
gozda.

Katero Izmed navedenih- treh načinov uporabimo
v konkretnem primeru za analizo, je odvisno od problema in ci¬

lja analize. V zgornjem primeru je najbolj poučna tabela B, ki

prikazuje kvalitetni sestav po posameznih sektorjih. Kvalitet¬
ni sestav v družbenem sektorju je znatno boljši kot v privat¬
nem sektorju.
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4.5
Strukturni sestav po kombinacij? najlepše prikažemo

v kvadratu* Če hočemo ponazorit? spremembe v kvalitetnem sesta

vu gozda po sektorjih, je na j nazor neje, da kvadrat razdelimo

v pokončne stolpce v sorazmerju z udeležbo posameznih sektor¬

jev v celotnem fondu, dobljene stolpce pa dalje razdelimo v
sorazmerju s kvalitetnim sestavom gozda iz tabele B. Po teh

vodilih je izdelan grafikon v sliki 4.2.

100
90
no
70
60
50
40
30
20
10

grmičje

0 10 20 30 40 50 60 70 90 90 100
% družbeni sektor priratni

Slika 4.2 Struktura lesnega fonda v FLRJ v letu

1958 po sestojih in kvaliteti"-

Medtem ko je v družbenem sektorju 92 % lesne mase v

gojenih gozdovih, jo je v privatnem le 72 %. Obraten redosled

pa imajo odstotki v degradiranih gozdovih in odstotki lesne ma

se iz grmičevja.

I ndeksI

4.6
Indeksi s sta I no os nov o . Omenili smo že, da dobimo

Indekse, če primerjamo istovrstne podatke za različne popula¬

cije. Indekse moremo torej izračunati za izvoz gozdnih sorti-

mentov na glavna skladišča po letih v FLRJ fz tabele 3*2. Če
vzamemo, da je letni izvoz na glavna skladišča samostojna po¬
pulacija, so podatki o Izvožen? letni lesni masi Istovrstni
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podatki za istovrstne populacije« Indeks I^/o z osnovo a ®' ba~
zo o dobimo, če podatek, ki ga primerjamo (tekoč? podatek ),
delimo s podatkom, s katerim ga primerjamo (osnovni ali bazič¬
ni podatek YQ ), kvocient pa pomnožimo s sto. Z obrazcem moremo
+o napisati

14.2)

Indeks izvoza gozdnih sortimentov v letu 1958, če
vzamemo za osnovo ali bazo leto 1955, dobimo po zgornjem pra¬
vilu, če izvoz v letu 1958 delimo z izvozom v letu 1955, kvo¬
cient pa pomnožimo s 100

‘58/55 = 100 = -100^28
55 6880

101,7

4.7
Za dano časovno vrsto običajno izračunamo celo vrsto

Indeksov z isto - stalno bazo ali osnovo. Tako dobimo za naš
primer Indeksno vrsto za izvoz s stalno bazo (leto 193^, če
vsak člen v časovni vrsti primerjamo z izvozom v bazičnem letu

ft39 = 7159}. t
Indekse izračunavamo največ na eno decimalko. Če so

pa razlike med podatki znatne, pa najraje zaokrožujemo indekse
na cele, ker so nazornejšl. Pri indeksnih vrstah namreč ne gre
za pretirano natančne odnose, temveč le za grob vtis o dinami¬
ki pojava.

V tabeli '4.3 je nanizana indeksna časovna vrsta iz¬
voza na glavna skladišča v FLRJ v razdobju 1956-1959 s stalno
bazo 1939 = 100.

Tabela 4.3 Indeksna časovna vrsta izvoza lesnih sortimentov
na glavna skladišča v FLRJ v razdobju 1946-1958
(leto 1939 = 100 }
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Indeksna vrs+a z osnovo predvojnim stanjem 1939 po¬
kaže, da smo v letih 1948-1950, posebno pa v letu 1949

H49/39 = 172 * znatno presegli predvojni Izvoz na glavna skla¬
dišča, da pa jev razdobju 1953 do 1958 posek na grobo precej

enak kot v letu 1939. Indeks ^49/39 = 172 za leto 1949 z osno¬
vo 1939 pomeni, da je bil Izvoz Iz gozda v ietu 1949 za 72 od¬
stotkov večji kot v predvojnem letu 1939.

Vsebinski prob I em pr I • Izračunavanju Indeksov je pred

vsem Izbira baze. Pri tem ni nekega krutega pravila, temveč se
ravnamo pri Izbiri baze po cilju analize. V splošnem pa Izbe¬

remo za bazo člen oziroma čas, za katerega smatramo, da je sta
nje pojava tipično ali normalno. Lažje, kot kaj je tipično ozl
roma normalno, je povedati, kaj ni normalno. Zato v splošnem
ne jemljemo pri primerjavah za daljša razdobja kot osnovo leta
tik pred, med ali tik po vojni, leta oziroma čas Izjemnih ukre
pov (n.pr. v naši vrst! leto 1949), leta slabih letin Itd. Do¬
stikrat vzamemo kot bazo večletna povprečja, ker smatramo, da
se v povprečju netlplčnostl Izravnajo. Tako b? v našem primeru
mogli vzeti za ba 20 povprečen letni Izvoz v petletnem razdobju
1954-1958.

4.8
Verižni Indeksi . Razen Indeksov s stalno osnovo poz¬

namo tudi Indekse s premično osnovo. Najobičajnejši Indeksi s
premično osnovo so verižni Indeksi. Te dobimo, če z Indeksi
primerjamo po dva In dva zaporedna člena. Baza pri verižnih
Indeksih je vedno predhodni člen. Tako dobimo verižni Indeks
za leto 1947, če podatek za leto 1947 primerjamo s podatkom za
leto 1946, za leto 1948, če podatek za leto 1948 primerjamo s
podatkom za leto 1947 Itd. Verižni Indeks I k za splošen člen k

Izračunamo po obrazcu

Vrsta verižnih Indeksov pokaže spremembe pojava od
člena do člena. Če se pojav ne spreminja, je vrsta verižnih
Indeksov enaka sto, verižni Indeksi pa so med seboj enaki,
vendar različni od 100 , če se pojav spreminja v eksponencI a I-
ni funkciji.
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Za naš primer je vrsta verižnih Indeksov podan« v
tabeli 4.4.

Tabela 4.4 Izvoz lesnih sortfmentov na glavna skladišča
v FLRJ v razdobju 1946 - 1958

Za leto 1946 verižnega Indeksa ne moremo Izračunati,
ker ne poznamo predhodnega člena. Iz vrsie verižnih Indeksov
vidimo, da ! z voz Iz gozda prva št 1 r I leta naglo narašča, po
tem letu pa odkloni od 100, ki pomeni popolno stagnacijo, niso
preveliki. Verižne Indekse • Izračunavamo na eno decimalko, ka¬
dar so razlike od člena do člena majhne, ker bi bilo zaokrože¬
vanje na cele pregrobo.

4.9
Včasih namesto verižnih Indeksov Izračunavamo koefi ¬

ciente dinamike ki so samo koeficienti zaporednih členov
In jih ne pomnožimo s 100. Zveza med njimi je torej enostavna

K„ -- ^ ; k -- KO Kk (4.4)

Če pa od verižnega Indeksa odštejemo 100, dobimo temp rasti

Tk
rk = 4 - ioo ( 4 . 5 )

ki v odstotkih pokaže, za koliko se je pojav spremenil od čle¬

na do č I e n a o
Za leto 1947, za katero je verižni Indeks I^y=163,6,

je koeficient dinamike K= 1,636, temp rasti pa T^ = +63,6.
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Koeficient? In gostote

4.10
Koef T c Tent? . S koeficienti primerjamo med seboj raz¬

novrstne podatke. Primerjana podatka pa morata biti enako opre¬
deljena. Razen tega pa mora biti primerjava vsebinsko upravi¬

čena.
Vzemimo kot primer za Izračunavanje In uporabo koe¬

ficientov vrednost In težo smole, proizvedene v gozdovih v

splošno družbenem sektorju v FLRJ v razdobju 1956-1958.

Tabela 4.5 Proizvodnja smole v gozdovih splošno družbenega

Razmerje vrednosti In proizvodnje za proizvedeno

smolo pomen? povprečno ceno smole v posameznih letih. Za leto

1956 je koeficient, k? vsebinsko pomeni povprečno ceno, če de¬

limo vrednost s količino

P 1 956

V

Q
1956 _ 237027

1956 1315

= 180 din/kg

Analogno dobimo za leto 1957 P 1 Q r 7 = = 128 din/kg
1678

In za leto 1958: P 10t- fl = = 89 din/kg.
1650

Izračunan? koeficient? pokažejo, da je povprečna cena smole v
letih 1956-1958 vztrajno padala, kar iz absolutnih podatkov o
vrednost? In količin? n? neposredno razvidno.

4.11
Pomembne koeficiente dobimo tudi s primerjavo drugih

podatkov. S primerjavo posekane lesne mase s porabljenim časom
za posek dobimo pokazatelje o produktivnost? dela, s primerjavo
posekane lesne mase v določenem razdobju s povprečnim številom



preb?vaSstva v tem razdobju, pokazatelj, k? pove, kakšna je

preškrbI jenost prebivalstva z lesom Itd. Seveda morajo bH-S

primerjan? podatki enako opredeljeni. Jasno je, da primerjamo
posekano lesno maso s številom ur, kf so bile porabljene za po¬
sek tega lesa In ne drugega. Enako moramo v letu 1958 posekano
lesno maso v Sloveniji primerjati s prebivalstvom na istem te¬

ritoriju in v Istem času. V ferr. primeru nastop! problem, kako

časovno enako opredeliti posekano lesno maso In prebIvaIstvo#
Posekana lesna mase se nanaša na leto, medtem ko se število
prebivalstva nanaša ns določen moment. Iz momentnlh podatkov

za prebivalstvo dobimo podatek o prebivalstvu, ki se nanaša ns
celo leto, če Iz več podatkov o prebivalstvu Izračunamo povpreč-

je. Ce Imamo podatke za sredino vsakega mesece v leto, izraču¬

namo povprečno število prebivalstva Y tako, da podatke za vse
mesece seštejemo, vsoto pa delimo z dvanajst.

? r ±(Yj + Hf * ••• * Ya * Yd ) {4 ' 6)

Če pa Imamo podatke za začetke mesecev, Izračunamo povprečje

po obrazcu

p * y +r, (4.7)

tako, da seštejemo polovico momentnega podatka v začetku ja¬

nuarja, cele podatke za začetke drugih mesecev v letu in polo¬

vico podatka v začetku januarja naslednjega let« Yj, dobljeno
vsoto pa delimo z 12. To je potrebno zato, da se Izračunano
povprečje nanaša točno na letni razmak.

4.12
Gostote . S primerjavo raznovrstnih podatkov pa dobi¬

mo tudi gostote. Y primeru gostot primerjamo parametre, ki so
vsota podatkov za populacijo, z ustreznim razmakom al? Izmero
za nek znak. Tako dobimo gostoto prebivalstva, če primerjamo
prebivalstvo na danem terotorlju s površino tega teritorija«

Enako govorimo o gostot? gozda, če primerjamo Število dreves

al? lesno maso stoječega gozda s površino gozda Itd.
V gozdu, k? ima površino X = 7,57 ha, stoji

Y = 2274 dreves«
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Gostota gozda je torej

a = — = ££Z£ = 300 dreves/ha
X 7,57

Pr? gostotah, pa tud! pr? koeficientih, so sm?seln?
tud? recipročni pokazatelj?. Gostoto gozda moremo ?zraz?t? v
številu dreves na enoto površ?ne (v našem primeru na 1 hal al?
s površino, k? odpade na eno drevo. Ta drug? pokazatelj dobi¬
mo, če delimo površino s številom dreves.

s' = - = lili s 0,333 a/drevo
Y 2274

4.7 3
Med relativna števT la sodi tud? prirastek na enoto

časa v, k? je kvoctent med prirastkom volumna AV In časovnim
razmakom At

V = # (4.8)

Relativni prirastek na enoto časa, k? pove, za koliko povpreč
no priraste v enot? časa enota volumna, pa Izračunamo po ob¬
razcu

„0 . _AV_
' V. A t (4.9)

4.14
Gostote Izračunavamo tud? pr? proučevanju frekvenč-

nlh porazdelitev, k? Imajo neenake širine razredov. Frekvence
pri takih frekvenčnih porazdelitvah niso neposredno primerlji¬
ve, ker so v bistven? meri odvisne od širine razredov, k? so
različne. Vpliv različnih širin razredov odpravimo, če Izraču¬
namo za vsak razred gostoto frekvence g^. Gostota frekvence za
vsak razred pove, kolik? del od skupne frekvence v razredu od¬
pade na enoto razmaka. Gostoto frekvence Izračunavamo po ob¬
razcu

(4.10)
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Ker je relativna frekvenca enaka fP ~ f^/N,
izračunamo gostoto relativne frekvence g° po obrazcu

g? s J** P? (4*11)

iz tega obrazca dobimo nazaj, da je frekvenca v da¬
nem razredu enaka

4 * NJk ti (4.123

Frekvenca v danem razredu je forej odvisna od velikosti po¬
pulacije H, od širine razreda In gostote relativne frekvence
g£* Medtem ko moremo za določen pojav sprem? nje +1 obseg popu¬

lacije N ?n 'Strine razredov, je gostota relativne frekvence

najošje povezana z vsebino proučevanega pojava.

4,15
Kof primer za proučitev frekvenčne porazdelitve z

neenakim? razred? vzemimo frekvenčno porazdelitev gozdnih po¬

vršin za N = 1256 anketiranih gospodarstev v okraju Novo mesto,

Iz tabele 3.6.

Tabela 4,6 Frekvenčna porazdelitev gozdnih površin za
N = 1256 anketiranih gospodarstev v Novem mestu

posredno zakonitost? o var IabtInostI pojava. Frekvenca je v
prvem razredu sicer najvišja, potem pade na 208, neto v tret¬
jem razredu zopet naraste na 282 In potem polagoma pada.
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V razredu od 2 ha - pod 4 ha je frekvenca izjemno velika, ker
je širina razreda enkraf večja kot v predhodnem. Enako je tudi

v

naprej, ker so razredi stalno širši. Sele,če proučimo vrsto za

gosto+o frekvenc g^, spoznamo pravo tendenco zakonitosti o va¬
riiranju gozdne površine po gospodarstvi h. Gostota frekvenc je
v prvem razredu največja, potem pa rapidno pada, če se površina

veča. Iz tega zaključimo, da se kmetijska gospodarstva razpore-

jujejo po gozdni površin? v J-porazde I?tv? in Imamo največ go¬

spodarstev z manjšo površino gozda, število gospodarstev z
večjimi površinam? gozda pa rapidno pada. Enak odnos kot med
frekvenco in gostoto frekvence velja tud? za odnos med relativ¬
nim? frekvencam? in gostoto relativne frekvence.

Da je frekvenca prf frekvenčnih porazdelitvah z ne¬

enakimi razredi v bistveni meri odvisna od širine razreda,
moramo upoštevati tudi pri grafični ponazoritvi takih frekvenč¬
nih porazdelitev. Zanje v histogramu prikažemo frekvence v po¬
sameznih razredih s stolpci, za katere so širine v sorazmerju
s širino razreda, višine pa v sorazmerju z gostoto frekvence.

V takem grafikonu je ploščina stolpcev (f^.g^ = f^) proporcio¬

nalna frekvenci f^, vsofa ploščin vseh stolpcev pa = N)
obsegu populacije.

Slika 4.3 Grafični prikaz frekvenčne porazdelitve
kmetijskih gospodarstev v Novem mestu po

gozdnipovrsin?
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5» KVANTIH

Ranžirna vrsta. Rang.

5.1

Osnovne podatke, k? jih zberemo s statističnim opa¬

zovanjem, običajno pregledno prikažemo v frekvenčni porazdellt-

vi» Za manjše populacije pa osnovne poda+ke uredimo v ranžirno

vrsio s Ranžirna vrs+a je niz poda+kov za posamezne eno+e popu¬
lacije, ki so urejen? po velikosti. Vsaka eno+a oziroma podatek

Ima v ranžirni vrs+f svoje mesto, k? je označeno z zaporedno
š+evllko - rangom « Rang za neko eno+o je +orej zaporedna šte¬
vilka v vrsti, v ka+erf so eno+e populacije urejene po veliko¬
sti po nekem numeričnem znaku«

Vzemimo na primer poda+ke o premerih za 19 modelnih
dreves za čls+l smrekov ses+oj na Pokljuki. Neurejeni osnovni
podatki so dani v tabeli 5.1

Tabela 5.1 Premeri za 19 modelnih dreves v čls+em smrekovem

sestoju na Pokljuki

18, 36, 17, 33, 28, 39, 19, 25, 24, 30, 21, 23, 32, 27, 44,
14, 31, 28, 34.

TI podatki so nepregledni, ker so vpisani v Istem vrstnem re¬
du, kot so stala drevesa. Ranžirna vrsta teh poda+kov je v ta¬
bel I 5.2.

Tabela 5.2 Ranžirna vrsta o premerih za 19 modelnih dreves

v čistem smrekovem sestoju A

R 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

x 14 17 18 19 21 23 24 25 27 28 28 30 31 32 33 34 36 39 44

Ker Ima vsaka enote svoj rang R, smatramo rang za statistični

znak. čeprav je v zgornjem primeru rang za posamezno drevo do¬

ločen po premeru drevesa, pa rang pove nekaj drugega kot pre¬

mer. Če povemo, da je premer drevesa, k? ga proučujemo, 36 cm,

ne vemo nič o tem ali je to drevo glede na ostala drevesa v
sestoju majhno ali veliko. Medtem pa spozhamo, da je drevo re-
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lativno debelo, če povemo, da je proučevano drevo s premerom
36 cm 17. po rangu od skupno N = 19 dreves« Samo dvoje dreves

Ima namreč večji premer, medtem ko je 16 dreves tanjših.

Kvant lini rang

5.2

Hiba ranga pa je v tem, da moramo za dano enoto ra¬

zen ranga R navesti še obseg populacije N, če hočemo z rangom

nakazati mesto enote v populaciji, ker Imajo populacije raz¬

lične obsege. Tako je 17. enota po rangu v populaciji z 19 eno¬
tami razmeroma velika, medtem ko b? bila 17. enota po rangu v

populaciji z N = 500 enotami k I a s 5f1 c Irsna kot majhna, ker b|

Imelo 483 dreves večje premere, le 16 pa manjše kot je drevo z

rangom 17. Za+o je primerneje, da Izražamo mesto enote v popu¬

laciji, namesto z rangom R In obsegom populacije N, s kvant?I-
nlm rangom F. Kvantllnl rang v relativnem številu pove, na ka¬
terem mestu v ranžirni vrsti leži dana vrednost, ker celoto

merimo z 1, ne pa z N. Od enote, za katero je kvantllnl rang

P = 0,25, je 0,25 ali 25 % vseh enot manjših, 0,75 ali 75 %

pa večjih od proučevane vrednosti« Podobno velja za druge vred¬
nosti kvantiInega ranga. Enota s kvantiInlm rangom P =0,93
je zelo velika, ker je 0,93 del celote ali 93 % enot z manjši¬

mi vrednostmi. Glavna prednost kvant?Inega ranga je v tem, da

je mesto enote v populaciji podano z eno samo vrednostjo. Razen

tega pa je to mesto določeno nazorneje, ker je v vsakem prime¬
ru, ne glede na obseg populacije, celota merjena z enoto, če
so kvantllnl rangi izražen? z delom od ena, ali s sto, če so

kvantllnl rang? izražen? v odstotkih.

5.3
V tabel? 5.2 je rang določen samo za premere, ki jih

Imajo posamezna dreves«. Zanje so rang? cela števila« Pojem
ranga pa moremo razširit? tud? na druge vrednosti med najniž¬

jo cm) In najvlšjo i*max = 44 cm) vrednostjo v popu¬
laciji. Tako štejemo, da je rang za premer x = 37 cm, R (x = 37)
med R (x = 36) = 16 In R (x = 39) = 17, ker leži vrednost
x =37 cm med 36 cm In 39 cm. Točen rang določimo z linearno
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interpoleci jo« Ker je razlika med x = 36 csn In x = 39 cm enaka

3 cfiij, x = 37 cm pa je od 36 oddaljen za 1 cm, razlika med u-

strežnima rangoma pa je t, pripišemo vrednosti x = 37 cm rang
R = 16 Enako določimo rang za poljuben premer med 14 in

•5

44 cm« Rang je torej zvezen znak, ker more zavzet? praktično
vse vrednost? na določenem razmaku« Vsakemu celemu rangu pri¬

pišemo enotin razmak, ki obsega polovico enote pod, polovico
enote pa nad danim rangom« Tako pripišemo rangu R = 1 razmak
od 0,5 do 1,5, rangu R = 2 razmak od 1,5 do 2,5 itd« do R = N
razmak od N—0,5 do N+0,5. Celoten ranžirni razmak sega torej
od 0,5 do N+0,5, ima pa širino N.

Glede na to, da obsega rang razmak od 0,5 do N 4-0,5,

kvantiini rang pa razmak od 0 do 1, je zveza med rangom R ?n
kvant?Inim rangom P dana z obrazcem

R - NP + 0,5 {5.1)

? n obra tno

P = °'5 (5.2)
N

Preskus z obrazcem 5.1 pokaže, da resnično ustreza P = o,

R = 0,5 ?n P = 1 rang R = N + 0,5
Za premer x = 36, za katerega je R = 16 po obrazcu

5.2, izračunamo, ds je kvant? In? rang P = »■£■■■ = 0,82. Iz

tega podatka nazorno sklepamo, da je premer proučevanega dre¬
vesa tako velik, da ima 0,82 del vseh dreves ali 82 % vseh dre¬

ves manjši premer od proučevanega.

KventiS ?

5.4
Z obrazcem 5.1 in 5.2 rešujemo dva po vsebini raz¬

lična prob Šema.
če imamo dano vrednostx,moremo zanjo določiti ustrez¬

ni kvantfln? rang P , ki nakaže mesto te vrednosti v populaciji.
Nalogo moremo pa tudi obrniti ?n se vprašamo, kakšna

vrednost Xp ustreza danemu kvant?Inemu rangu P. Te vrednosti
pa niso več karakteristike posameznih enot, ampak so parametri

za populacijo, če n.pr. za dani sestoj poiščemo premer, k?
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ustreza kvantiInemu rangu P = 0,50, dobimo vrednost Xq

x0 50 on * od katerega ima polovica dreves manjše,
polovica pa večje premere. Ta vrednost karakterIzira populaci¬
jo in je za mlad sestoj majhna, za starejši sestoj pa večja*
Vrednost, s katero razdelimo populacijo v dva po obsegu enaka
dela, je pomemben parameter in jo imenujemo mediana«

Na splošno imenujemo vrednosti, ki ustrezajo danim

kvant? I nlm rangom, kva ntI le *
Teoretično moremo izračunati kvanti le za katerokoli

*

vrednost kvantiInega ranga« V praksi 'pa običajno izračunavamo

kvantile, ki razdelijo populacijo na dva (mediana), na štiri

(kvartilf), na deset (dec? i T) ali na sto (centi!?) delov.

Tako imamo tri kvartiie

°T = x0,25 Q2 “ x0,50 °3 = x0,75

devet deciIov

D 1 = x0,t0 °2 = x 0,20 . °9 = x0,90
in devetindevetdeset cent?lov

C 1 = X 0,01' C2 = x 0,02' C3 = x0,03 . C99 = xO,99

5.5
Izračunavanje kvantilnih rangov in kvantilov iz ne -

grupiranih podatkov . Za premere dreves ?z tabele 5.2 je v sli¬
ki 5.1 nazorno razvidna zveza med osnovnim? vrednostmi, rangi
in kvant?Inlmi rangi. Lomljena črta, ki kaže zvezo med premeri

in rangi oziroma kvantUnim? rangi, je stvarno slika kumulativ¬
ne črte za naš primer. Iz nje ni težko grafično določiti dani
vrednost? ustrezni kvantiln? rang (primer A) al? danemu kvan¬
ti Inemu rangu ustrezni kvanti! (primer B).

Računsko pa dobimo dan? vrednosti x ustrezen kvan¬

tiln? rang P po naslednjem postopku:

a) V ranžirni vrsti podatkov poiščemo, med kateri zaporedni

vrednost? pade dana vrednost x tako, da je x c < x < x -j • Vred¬
nosti x Q naj ustreza rang R Q .

«• <»■**
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Slika 5.1

b} Po obrazcu

Odnosi med x ( R In P za 19 premerov

Iz ta be i e 5.2

Rt R0 +
x - xe
xt -x0 (5.3)

Izračunamo reng R^, ki uslreza vrednost? x.
Po tem obrazcu Izračunan rang je enostavna linearna

interpolacl ja med dvema c;ellma rangoma.

c) Iz dobljenega ranga R Izračunamo ustrezni P po obrazcu
X A

8* - Q5
N

(5.4)

Če za primer Izračunamo po tem splošnem postopku

kvanti int reng za premer x = 26 cm, dobimo, da je x Q = 25 cm,

x 26 erapX| = 27 cm. = 25 cm ustreza rang R Q = 8. Obseg

populacije N ~ 19. Iz teh podatkov dobimo po obrazcu 5.3

' x=26 - 8 + g6.."?5 . = 8,5
2 7-25

Po obrazcu 5.4 pa dobimo dalje, da je kvanti Inl rang P,
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p = I. 9..il = 0,42
X 19

Proučevan? premer x = 26 cm je srednje velik*

5*6

Danemu kvantiInemu rangu P pa poiščemo ustrezni kvan^

bratnlm postopkom tako, da:

a) Danemu P poiščemo po obrazcu

Rp = NP + 0,5 (5*5)

ustrezen rang Rp*

b) V ranžirni vrsti poiščemo, med katerima celima

rangoma R Q< Rp < R-j je Rp* Rangoma R q In R^ ustrezata vred¬
nost? x Q In x^.

c) Iz dobljenih podatkov Izračunamo ustrezni kvant?I

Xp z linearno Interpolacijo po obrazcu

i

5*6
Vzemimo, da Iščemo za populacijo premerov Iz tabele

5*2 kvartlle. Izračun vseh treh kvartllov Izvedemo hkrati, kot

je navedeno v tabel? 5*3*

Tabela 5*3 Izračun kvartllov za populac?jo premerov N = 19

smrekovih dreves Iz tabele 5*2

Četrtina premerov je manjša kot"Q^ = 21,50 cm, polovi¬

ca manjša kot 0^ ~ 28,00 cm In tri četrtine manjših kot Q3 =

32,75 cm* Nadalje je polovica premerov v razmaku med =21,5 cm
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i n = 32,75 ceh« S kvarili? je populacija premerov torej Že

precej op?san®a

5 o 7

* 2 r ačunavanje kvatvUinfh rangov ?n kvantTlov Iz frek¬
venčnih porazdelitev « Običajno populacije nimajo nekaj desetin

enot, temveč več sto alf tisoč. Zanje direktna pot za Izračuna¬

vanje kvantllov preko ranžirne vrste ne pride v poštev, ker je

preobsežna In neprI k I adna* Pač pa moremo zanje ocenit? vred¬
nost kvantllov, če Imamo podatke urejene v frekvenčni porazde■”
i ? tv 1» Podobno kot so v ranžirni vrsti vse vrednosti, k? so

pod določeno vrednostjo, manjše, vse vrednost?, ki so nad dolo¬

čeno vrednostjo, pa večje, velja tud? za frekvenčne distribuci¬
je« Vse vrednost? v razredih, k? so pod danim razredom, so
manjše, vse vrednosti v razredih nad danim razredom, pa so
večje« Frekvenčne porazdelitve imajo torej podobne lastnosti
kot ranžirna vrsta, samo da ne veljajo za posamezne vrednosti,

temveč za vse enote v posameznih razredih.
Če za frekvenčno porazdelitev izračunamo kumulativno

porazdelitev in napravimo predpostavko, da je največja stvarna
vrednost enot v posameznem razredu enaka zgornji mej? razreda,
so posamezni člen? v kumulativni vrsti rangi, k? ustrezajo me¬

jam razredov. Kumulativna porazdelitev tako nakaže range le za

meje razredov, ne pa za vse vrednosti, k? se pojavljajo v po¬

pulaciji. Vendar moremo kljub temu Iz nje, z linearno Interpo¬
lacijo, zadosti dobro ocenit? range tud? za vmesne vrednosti,
če predpostavljamo, da se v prvem približku vrednosti v posa¬
meznih razredih porazde!juje j o na vsem razmaku enakomerno.

V tabel? 5.4 je za frekvenčno porazdelitev specifič¬

nih tež za zeleno duglazijo Iz tabele 3.5 pod zgornjimi pred¬
postavkam? nakazana zveza med mejami razredov In člen? v kumu¬

lativni vrsti«
Sz tabeie 5.4 je razvidno, da je kumulativna vrsta

obenem vrsta rangov za spodnje meje ustreznih razredov.

V ranžirni vrst? ima n»pr» specifična teža
n

x = 480 kg/m rang = 2395« S frekvenčno pora zde I?tv?j o mo¬
remo določiti ustrezne range tolikim vrednostim, kolikor Imamo

razredov.
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Tabela 5*4 Kumulativna frekvenčna porazdelitev In okrnjena
ranžirna vrsta za specifično težo lesa za zeleno
duglazijo

5®8
Glede na to, da dobimo range za druge vrednos+1 z

linearno 1nferpolaclj o, moremo Iz frekvenčne porazdelitve oce¬
niti kvanti In? rang P^ za vsako vrednost x po naslednjem po¬

stopku«

a) Za frekvenčno porazdelitev Izračunamo kumulativno
vrsto«

b) Poiščemo, v katerem razredu leži vrednost x, za
katero Iščemo kvant?In? rang ? x * Za ta "kvanti In? razred" po¬
iščemo spodnjo mejo x q širino razreda frekvenco f Q In

kumuI a 11vo F .o
c! iz teh podatkov Izračunamo pod zgornjimi predpo¬

stavkami po obrazcu
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{5.7)D = f + f .* 7 Xo,mn
°jr *o 'o i

'O i

d) Iz dobljenega dobimo ustrezni kvanflln? rang

P x po znanem obrazcu

<5-e>

Ker je glede na fo, da je obseg populacije N velik,

običajne količino 0,5 Izpuščamo, ker je nebistvena«

5.9

Vzemimo kot primer, da moramo za določen les zelene

duglazije ocenit? kvaliteto, k? je dana s specifično težo« S

preskusom ugotovimo, da je specifična feža preskušanega lesa
x = 554 kg/m~» Zanima nas, alf je fa specifična feža lesa gle¬
de na splošno kakovosf lesa za zeleno duglazijo ugodna oziro¬
ma dobre al? ne« Odgovor na fo vprašanje dobimo, če izračunamo

kvanflln? rang P , ki ustreza x = 554 kg/m .
Po zgornjem navodilu najprej v tabel? 5.4 poiščemo,

v katerem razredu v frekvenčni porazdelitvi je ta vrednost«

Kvanflln? razred je torej razred 540 kg - pod 560 kg, količi¬

ne, potrebne za I zračunavanj e kvantllnega ranga, pa so:

x o,mfn = 540 k s/m3 » ? 0 = 20 k g/m 3 j f Q = 94 j F q = 3220. Iz teh
podatkov dobimo po obrazcu 5.7 najprej R^

R = 3220 + 94 o --- 4. .Z~— = 3285,8
x 20

po obrazcu 5 0 8 pa dalje kvanflln? rang

P ~ £/---2-»--—- 0,973
x 3376

Kvaliteta lesa je relativno zelo dobra In I e ca 3 %

lesa zelene duglazije dano kvaliteto presega.

5.10
Obratno za dan kvant?I nI rang P poiščemo ustrezni

kvant? I Xp z. Istimi predpostavkami po naslednjem postopku.

a) Enako kot pr! Iskanju kvant!Inlh rangov najprej

Izračunamo kumulativno vrsto F^.
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b) Po znanem obrazcu

, ■ s ■ Rp - NP *> 0,5 15.9)

Izračunamo P ustrezni rang Rp. Količino 0,5 moremo Izpustiti,
ker je običajno naprara N.P. nebistvena.

c} V kumulativni vrsti poiščemo, med katerima vred-
nostlma kumulatlve je Izračunan? rang Rp ( Fq ^ Rp < F^J. Raz¬

red, za katerega je kumulatlve F q , je kvanti Inl razred o. Zanj

ugotovimo: spodnjo mejo x q širino ? Q , Frekvenco f In ko¬
mu la t Ivo F .o

d) Kvanti Inemu rangu P ustrezni kvanti I Xp ocenimo

po ob raze »j

V ' Rp" ^6
w vnr* (5.10)

5.11
Kot primer za Izračunavanje kvanti lov Iz frekvenč¬

nih porazdelitev sestavimo tablico deeflov za specifično težo
lesa zelene duglazije Iz tabele 5.4! V tabeli 5.4 je že Izra¬

čunana kumulativna vrsta frekvenc. Sistematičen Izračun vseh
kvantllov hkrati je nakazan v tabeli 5.5.

V tabeli 5.5 smo najprej po obrazcu 5.10 Izračunali

P ustrezajoče range Rp. Za vsak dobljeni rang smo v tabel! 5.4

poiskali, med katera zaporedna člena v kumulativni vrsti pade
posamezen Rp. V stolpce (3), (4) In (5) smo vpisali ustrezne
količine . . f. In F za ksantllne razrede. V glavi je za©»ml nr o ©
stolpce (6) do (9) nakazane, kako Iz teh podatkov postopoma iz

računamo po obrazcu 5.10 dec?le.
Tablica decllov more služit? kot pripomoček za rela¬

tivno klasifikacijo kakovost? lesa zelene duglazije glede na

specifično težo.
Tako moremo Iz decllne tablice oceniti, da je les s

3specifično težo 500 kg/m med osmim In devetim dec!lom, ker

pomeni, da je najmanj 80 % lese zelene duglazije, ki Ima spe¬
cifično težo manjšo, In najmanj 10 % lesa zelene duglazije, ki
Ima večjo specifično težo. Natančna vrednost kvantllnega ranga
za specifično težo x = 500 kg/m^ je 0,823. Zgornja naše Izjava
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Tabela 5.5 Izračun decllov za specifično teče lesa za zeleno
duglazije

se torej skleda s točnim rezu Itatom, samo da je bolj groba.

Točnejše vrednost? za kvantfln<e range dobimo Iz cent? J n? h skal.
Z decll? ocenimo kvant?In! rang za posamezno vrednost na eno
decimalko natančno. V tablic? centllov pa b? dobil? kvant?Ine

range ocenjene na dve decimalklo
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6. SREDNJE VREDNOSTI

6.1
Premer, višina, temeljnlca alf volumen za posamezno

drevo so rezultat vseh faktorjev, ki vplivajo na rast In raz¬
voj drevesa. Ker je učinek vseh faktorjev po pravilu za vsako

drevo različen, Imajo posamezna drevesa različne premere, raz¬

lične višine, temeljnlce In volumne. Če proučimo posamezne fak¬

torje, jih moremo združiti v tr? različne skupine. Proučujmo

enodoben smrekov sestoj, ki raste na pobočju spremenljivo skal
natega terena. Iz teh podatkov moremo k I a s 1f 1 cira11 faktorje

rast? tega sestoja takole. Ker je sestoj enodoben In smrekov,

je starost fn drevesna vrsta za vsa drevesa sestoja Ista. Fak¬

torja starost In drevesna vrsta sta torej faktorja, k? vpli¬

vata na vsa drevesa enako - Imenujemo jih sp Iošne fa ktor je .
Razen splošnih faktorjev pa na posamezno drevo vplivajo še dru
gl faktorji, katerih učinek se menja od drevesa do drevesa.

Ker je vpliv teh faktorjev različen za posamezno enoto - drevo
jih imenujemo Individualne faktorje . V našem primeru je eden

Izmed 1ndlv IduaI n I h vplivov višinska lega drevesa, ker je se¬
stoj na pobočju. Drug Individualni faktor je skalovltost, ker
se spreminja od drevesa do drevesa. Oba ta faktorja moremo za
posamezno drevo določiti, ker moremo za vsako drevo ugotoviti

višinsko lego ali stopnjo skalovltost! terena, na katerem posa

mezno drevo raste. Razen tega pa na rast drevesa vplivajo še
faktorji, ki jih ne moremo za vsako drevo natančno določiti,
čeprav vplivajo na rast drevesa. To so mlkrosestav zemlje, ka¬
kovost sadike, zasenčenost kraja Itd. Te faktorje, katerih u-
člnek ne moremo natančneje oprede I1 tl, združujemo v skupino

slučajnih faktorjev oziroma vplivov.
če bi na pojav vplivali samo splošni vplivi, bi bila

vsa drevesa enaka. Njihov premer, višina, temeljnlca »n volumen
bi bili pogojeni le s splošnimi faktorji: starostjo, drevesno
vrsto In krajem, kjer sestoj raste. Zaradi 1ndlv IduaI n 1 h vpli¬

vov pa se drevesa med seboj razlikujejo In to tem bolj, čim
večji je vpliv Individualnih faktorjev. Individualni faktorji
vplivajo na rast dreves ugodno ali neugodno. Zato se premeri,
temeljnlce, višine In volumni dreves odklanjajo navzgor in
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navzdol od premera, višine, temeijhlce In volumna, kf b! ga dre¬
vesa Imela, še bi nanj vplival? samo splošni vpliv!« Premeri,

višine, temeljnlce alf volumni zaradi Individualnih vplivov va¬

riirajo okrog nekih Idealnih vrednosti, ki bi bile rezultat sa¬
mo splošnih vplivov. Ker b? bile te vrednost? za vse enote popu¬
lacije enake, so parametri populacije, imenujemo pa jih Srednje
vrednosti.

6.2
Če je vpliv individualnih faktorjev majhen al? pa še

celo na enote populacije vplivajo samo splošni In slučajni
vplivi, katerih učinek je običajno majhen, se posamezna dreve¬

sa med seboj malo razlikujejo. V takem homogenem sestoju je vo¬

lumen vseh dreves precej Izenačen. Za homogene populacije sred¬
nja vrednost volumna ni le pokazatelj splošnih vplivov. Ker se
volumni za posamezna drevesa malo razlikujejo od srednje vred¬
nosti, smatramo srednjo vrednost tudi za reprezentanta vseh

vrednosti populacije. Čim večji je vpliv Ind I v IduaI n I h faktor¬

jev, tem slabše srednja vrednost reprezentlra enote v populaci¬
ji In obratno: srednja vrednost je tem boljši reprezentant za
vrednosti enot v populaclj I, čI m manjši je vpliv Individualnih
oziroma slučajnih faktorjev.

Jasno je namreč, da srednji premer, srednja višina

al? srednji volumen bolje reprezentlra premere, višine in vo¬

lumne posameznih dreves v sestoju, če je sestoj enodoben, Isto¬
vrsten, na ravnini, z enakim? talnim? pogoji, kot pa če je ob¬
ravnavan? sestoj prebiralen ali večetažen, na področju, ki je
različno skalovit. Za drugi primer srednje vrednosti niso niti

približno reprezentant? razmer v populaciji. Zato nimajo velike
analitične vrednosti, čeprav jih moremo formalno v vsakem pri¬
meru Izračunat?.

Vrste srednjih vrednost?

6.3
Parametrov, k? na en ali drug način kažejo centralno

težnjo vrednosti znaka za populacijo, Imamo več. Od njih bomo
obravnavali naslednje:
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a) mediano
b) modus

c) aritmetično sredino

d) kvadratično sredino

e) harmonično sredino
f) geometrijsko sredino

Mediana In modus sta srednji vrednosti, k? sta dani

z lego vrednosti, medtem ko so druge štiri Izračunane srednje

vrednosti. Razlika srednjih vrednosti po legi v primerjavi z
izračunanim? srednjimi vrednostmi je v tem, da srednje vredno¬
sti po legi niso odvisne od vseh vrednosti, medtem ko so izra¬
čunane srednje vrednosti odvisne od vseh vrednosti v populaci¬

ji. Ta lastnost je v nekem smislu prednost, v nekem smislu pa

pomanjkljivost srednjih vrednosti po legi.

Medi a na

6.4

Mediana je vrednost, od katere ima polovica enot po¬
pulacije manjše, polovica pa večje vrednosti. Zaradi te svoje
lastnosti mediana dobro služi kot srednja vrednost, ker je v
vsakem primeru vrednost, ki se vsem individualnim vrednostim

dobro približuje, ker je v sredini med njimi.

Določanje mediane se sklada z določanjem kvanti la

x O 50* ^ er smo ^ zra ^ unan J e kvanti lov obravnavali že v prejšnjem
poglavju, postopka ne bomo ponavljali.

V prejšnjem poglavju smo izračunali mediano iz ne-
grupiranih podatkov o premerih za 19 smrekovih dreves na Po¬

kljuki. Za ta primer je mediana, ki se sklada z drugim kvar-
tilom, enaka Me = Xq = 28,00 cm. Za specifično težo lesa
za zeleno duglazijo pa smo v odstavku 5.9 izračunat f, da je
mediana, ki se v tem primeru sklada s petim decilom , enaka
Me = = 450 kg/m^. Polovica lesa za zeleno duglazijo ima to¬
rej manjšo specifično težo kot Me = 450 kg/m^, polovica pa

večjo. Oba zgornja parametra sta tipični lastnosti populacij,
ne pa posameznih enot.
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6.5

Lastnost! mediane . Prednost mediane je predvsem v

tem, da je lahko razumljiva In zato pr IporočI j Iva kot opisni

parameter. Velika prednost mediane pred izračunanimi srednjimi
vrednostmi je tudi ta, da moremo mediano določiti, četudi po¬

znamo le vrednosti, ki leže okrog sredine v ranžirni vrst? ure

jenih vrednosti. Ta lastnost je posebno ugodna, kadar določamo

srednjo vrednost Iz frekvenčnih porazdelitev z odprtimi razre¬

di. Za frekvenčne porazdelitve z odprtimi razredi namreč obi¬
čajno nit? približno- ne vemo, kakšne so vrednosti v odprtih
razredih. Mediana je priporočljiva srednja vrednost tudi tak¬

rat, kadar so ekstremne vrednost? take, da sumimo, da so Izraz

nekih drugih kvalitet In zato sploh ne spadajo v populacijo.
Vsota absolutnih odklonov od neke stalne vrednosti

je najmanjša, če te odklone računamro od mediane. Po tem načelu
je mediana najboljši reprezentant vseh vrednost? populacije.

Pomanjkljivost mediane pa je v tem, da je le premalo

odvisna od Individualnih vrednosti. Za dve različni populaciji
je mediana Ista, če je le polovica vrednosti manjših kot medla
na, ne glede na to, kakšne so Individualne vrednosti.

Modus

6.5
Mediana pa n? vedno parameter, k? dobro reprezentira

vrednosti v populaciji. Za asimetrične In pollmodalne distri¬
bucije more bit? mediana celo vrednost, od katere je večina

vrednosti zelo različna. Zanje mediana ni reprezentant vredno¬

sti v populaciji. Za take primere je veliko bolje, da vzamemo
za srednjo vrednost tisto vrednost, okrog katere se gost? naj¬
več vrednosti v populacij?« Mesto največje gostitve vrednost?
nekega znaka Imenujemo na j pogoste jšo vrednost ali modus .

Če Imamo frekvenčno krivuljo, kf ponazarja razpore-

dltev vrednosti v populaciji, je modus enostavno poiskati. V
tem primeru je modus abscisna vrednost za tisto točko na frek¬
venčni krivulji, za katero je ordinata, ki predstavlja gostoto
frekvence, največja. To vidimo Iz slike 6.1
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Slika 6«1 Določanje modusa iz frekvenčne
krivulje

Za populacije z majhnim številom enof in za primere,
v ka+erih vrednos+i posameznih enof niso grupirane v frekvenč¬
ni porazdelitvi, je neposredno nemogoče določiti modus. Modus
moremo oceniti le za populacije z razmeroma velikim številom
enot, ki so grupirane v frekvenčni porazdelitvi, ker moremo le
v tem primeru izsledit? mesto največje gostitve.

6.6
Izračunavanje modusa iz frekvenčnih porazdelitev.

V frekvenčni porazdelitvi z enako širokimi razredi iščemo modus
v razredu, za katerega je frekvenca največja, ker predvidevamo,
da je v tem razredu mesto največje gostitve. Za frekvenčne po¬
razdelitve z različno širokimi razred? pa iščemo modus v razre¬
du, za katerega je gostota frekvence največja. Vendar se bomo
omejili le na določanje modusa za frekvenčne porazdelitve z
enako širokimi razredi.

Prvi približek modusa je sredina modalnega razreda,
to je razreda z največjo frekvenco. Vendar je sredina modalne¬
ga razreda modus le za simetrične frekvenčne distribucije. Za
asimetrične distribucije pa se modus od sredine modalnega raz¬
reda odklanja v smer onega sosednega razrede, v katerem je frek¬
venca večja.

Zaznamujmo modalni razred z o, razred pred njim z -1,
razred za modalnim razredom pa s +1. Ustrezne sredine razredov
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so x_^ , x Q , x +^, ustrezne frekvence pa f _.j, f Q in . S para¬

bolo druge stopnje, ki gre skoz? točke s koordinatam? Cx__.j ,

f_^), (x q , ^ Q ) * n (*^.j, f + .j) , v P r ^ nri€ru približamo frekvenč¬
no krivuljo v območju modusa. Kot oceno modusa vzamemo absciso
najvišje fočke v fej paraboli. Pri fej predpostavki Izračunamo

drugo oceno za modus po naslednjem postopku- :
a) v frekvenčni porazdelitvi poiščemo razred z naj¬

večjo frekvenco - modalni razred. Modalni razred zaznamujemo

z o. x Q m | n je spodnja meja, f pa frekvenca v modalnem razre¬

du. f_.j je frekvenca v razredu pred modalnim razredom, f + ^ pa
je frekvenca v razredu za modalnim razredom;

b) izračunamo diferenci sosednih frekvenc:

d., = f 0 - d+, = f 0 - f +1 j
c) modus Mo Izračunamo Iz zgornjih količin po obraz¬

cu

Mo X . f*o,mm
d-t *

( 6.1 )

6.7
Proučujmo frekvenčno porazdelitev premerov za čisti

smrekov enodobni sestoj B na Pokljuki.
Proučevana frekvenčna porazdelitev je naslednja.

Tabela 6.1 Porazdelitev premerov za čisti, enodobni smrekov

sestoj na Pokljuki.

Debelinska stopnja

381 = N
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Iz zgornje frekvenčne porazdelitve sklepamo, da je
modus v razredu 30 cm - 34 cm, ker je frekvenca v tem razredu

največja (931 o Prva ocena modusa je torej Mq = 32,5 cm, ker se

modalni razred razteza od 30 cm do pod 35 c« 0
Drugo oceno modusa dobimo, če najprej iz frekvenčne

porazdelitve v tabeli poiščemo potrebne količine® Modalni raz¬
red je razred 30 cm - 34 cm® Za modalni razred je spodnja mej«

x . = 30-cm® frekvenc« f = 93, širina razreda pa 1 = 5 era®o^rru rt o
Frekvenca razreda pred modalnim razredom je f^ = 87, frekven¬
ca razreda za modalnim razredom pa = 74® Iz teh podatkov

dobimo, da je:

d m1 = 93 - 87 = 6; d+1 = 93 - 74 s 19

Iz teh podatkov je po obrazcu 6®1

Mo = 30 + 5 — s 31,2 cm
6 + 19

Rezultat resnično pokaže, da je modus odklonjen od sredine

razreda x Q = 32,5 cm navzdol v smer? večje sosedne frekvence.

6.8
Kako grafično ocenimo modus iz histograma, je naka¬

zano v slik? 6.2® Če zvežemo točko A s C, točko B pa z D, je

projekcija presečišča obeh daljic £ na abscisno os - modus.

Teoretično se ta rezultat sklada z rezultatom, ki ga dobimo

računsko. Eventuelne razlike gredo na račun nenatančnega ri¬

sanja«

cm premer Mo*3i,2

Slika 6.2 Grafično določanje modusa
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6.9 *

Lastnost? modusa . Modus je srednja vrednost, k? Ima
že po svoj? definicij? kvall+e+e reprezentanta Individualnih
vrednosti, ker je mesto, na katerem se gos+f največ vrednost?«

Enako kof mediana, pa je tudi modus neobčutljiv za spremembe

Individualnih vrednos+l« Modus os+ane v dan? populacij? nespre
menjen vse do+iej, dokler s+opnja gos+f+ve na nekem drugem me¬
stu ne prekorači s+opnje gos+?+ve v modusu«

Heterogene porazdelitve morejo lme+1 več mest gos+lt
ve« Tako Imamo pr? frekvenčni porazdell+v? posameznih karakte¬
ristik za drevesa v dvoetažnem sestoj« običajno dva modusa«

Eden Izraža tipičnost za eno, drugi pa tipičnost za drugo eta¬
žo« Podobno Imamo pri več-modalnlh porazdelitvah še več rela¬

tivnih modusov« V vsakem takem primeru j« pa običajno en modus

Izmed njih tfs+l, k? kaže mesto absolutno največje gostitve.

Aritmetična sredina

6.10
Izmed vseh srednjih vrednost? zaradi praktičnih In

teoretičnih lastnosti najpogosteje uporabljamo aritmetično
sredino« Aritmetična sredino 7 je enostavno povprečje Iz vseh
Individualnih vrednosti za vse enote v populacij?« Dobimo jo,

če vsoto vseh vrednosti 2 x f delimo s številom enot v popula¬
cij? N. Z obrazcemi moremo to definicijo aritmetične sredine za
pisat?

jf ±
N

N jr
N ( 6 , 2 )

Aritmetično sredino zaznamujemo običajno z x, y Prečna
črtica nad simbolom za znalk pomeni, da gre za aritmetične sre¬
dine ustreznih znakov«

Aritmetična sredina je Izpeljana Iz predpostavke,

da je Individualna vrednost x. vsota rezultata splošnih vpli¬
vov 7 In rezultata Individualnih vplivov e| (xg = 7 + ej)« Na¬
daljnja predpostavka pa je, da se v vsot? rezultat? Indlvldual

nlh vplivov uničijo, če seštejemo vse Individualne vrednosti,

dobimo glede na to

N N/ - ir*,-
/«/ /•/

N
Nx +■ JT e/ = N x

;*/
(6.3)
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Iž te enačbe pa je x = X/N, kar je po definicij? aritmetična
sredina®

Lasfnosf? aritmetične sredine

6.11
Ar Ifmetlžna sredina je najvažnejša Izračunana sred¬

nja vrednost. Zaradi svojih lastnost? je najvažnejša In najpo-
gos+eje uporabljana srednja vrednost na sploh«

Najvažnejše lastnost? aritmetične sredine so:
a) Aritmetična sredina za linearno zvezo

z = a + bx + cy med znakom x In y za Isto populacijo je enaka
linearni zvezi aritmetičnih sredin« V obrazcu je ta stavek na¬
slednji:

ž = a + bx + cy = a + bx + cy (6.4)

Ta stavek je zlahka dokazat? In Izhaja neposredno Iz znanega
stavka, da je vsota linearnih Izrazov enaka linearnemu Izrazu
Iz vsot.

Iz obrazca neposredno sledi, da je aritmetična sre¬
dina konstante konstanta sama

a = a (6.5)

In da je aritmetična sredina produkta konstante z znakom enaka
produktu konstante z aritmetično sredino znaka

bx = bx (6.6)

b) Vsota odklonov Individualnih vrednost? od arltme
tlčne sredine

Z(x,- Z)=0 (6.7)
»-/

je nič.

c) Vsota kvadratov odklonov od neke konstantne vred¬
nosti je najmanjša, če računamo odklone od aritmetične sredine

K = JT (x; - C)2 = Min, če je C = x (6.8)
/*/

Ta lastnost aritmetične sredine je zelo važna in je osnova ene
Izmed najvažnejših mer varla c I j e-var I ance •
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6.12
izračunavanje aritmetične sredine iz ne grupiranih

podaikov o Iz negrup?ranfh podatkov izračunavamo aritmetično

sredino neposredno po obrazcu 6.2.

Če proučujemo pet dreves, za katere so voiumni v m 3

lesa 1,04 1,35 1,28 1,57 1,17, je aritmetična sredina al?
povprečen volumen zanje enak

7 = 1 (1,04 + 1,35 + 1 ,28 -J- 1,57 + 1,17) = = 1 282 m3
5 5

~ 3Povprečen volumen zgornjih petih dreves je x = 1,282 m .
To pomeni: če bi vsako izmed dreves imelo isti volumen kot je
povprečen (1,282 m I, bi se skupna lesna masa teh dreves skla¬
dala z dejansko skupno lesno maso vseh petih dreves«

6.13

Izračunavanje aritmetične sredine iz frekvenčnih po¬
ra zde I ? tev . Izračunavanje aritmetične sredine Iz individualnih
podatkov bi bilo za stvarne populacije, ki Imajo navadno veli¬
ko število enot, neprikladno in zamudno« Frekvenčna porazdeli¬
tev daje približno sliko o vseh vrednostih v populaciji. Zato

moremo iz njih oceniti aritmetično sredino. To velja predvsem

za simetrične porazdelitve. Čim bolj pa je porazdelitev asime¬
trična, tem večja je sistematična napaka v ocen? za aritmetič¬
no sredino. V skrajnost? je najslabša ocena za J-d?strIbucije,

ker so ekstremno asimetrične. Kakovost ocene za aritmetično
sredino ?z frekvenčne porazdelitve je jasno odvisna tudi od
širine razredov v frekvenčni porazdelitvi in je tem boljša,
čim manjši so razredi«

6.14

Neposredna metoda . Če predpostavljamo, da so sredine
razredov reprezentant? posameznih vrednost? v ustreznih raz¬
redih, je ocena za vsoto vrednosti v danem razredu produkt
frekvence in sredine razred« f^^. Ocena vsote vseh vrednosti

v populaciji pa je vsota produktov frekvenc In ustreznih sre¬

din razredov za vse razrede V obrazcu 6.2 za izračuna-
* N

vanje aritmetične sredine moremo torej vsoto jTx. nadomestiti
Ki •
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z oceno vsoie t f, x, « Tako dobimo, da je ocena za aritmetično
, k-1 K K , .

sredino iz frekvenčne porazdelitve

j = \xt* = 4^ is-«'ft + r2 +■■■■+ fr Zfk

Ta način ?zračunavan ja aritmetične sredine imenujemo tehtan ali
ponder iran način Izračunavanja « Pri tem so frekvence teže ali

ponderTo
Po tem obrazcu izračunavamo aritmetično sredino po

naslednjih stopnjah:

a) Za frekvenčno porazdelitev poiščemo frekvencam f^ ustrezne

sredine razredov x^«
b) Izračunamo produkte frekvenc In sredin razredov ^ x «
c) Izračunamo vsoto v točki b dobljenih produktov ^f^x^•

d) Vsoto I f k x,. delimo z vsoto frekvenc oziroma Številom enot

N in dobimo aritmetično sredino x

6,15
Kot primer za izračunavanje aritmetične sredine po

neposredni metodi vzemimo izračun povprečnega premera za čisti

smrekov sestoj A na Pokljuki iz tabele 3,4, Izračun je siste¬

matično prikazan v tabel? 6,2,
Če za oceno kakovost? izračunane aritmetične sredine

primerjamo dobljen? rezultat s pravo aritmetično sredino, iz¬

računano.iz individualnih podatkov 3Tp = 38,55 cm, spoznamo, da
je razlika resnično neznatna: A 3T = 38,62 - 38,55 = 0,07 cm
al? ca 2 °/oo<> Ta dober rezultat je* pripisat’ temu, da je ob¬
ravnavana porazdelitev precej simetrična« Povprečje, zaokrože¬

no na eno decimalko - 38,6 cm, se sklada s pravim rezultatom«
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Tabela 6.2 Izračun povprečnega premera po neposredni metod?

za čisti smrekov sestoj A na Pokljuki (Iz tabele
3.4)

N = 507 19582,5 = £fx

x = H2L = 'J****! = 38p 62 cm
N 507

6.15
Metoda s pomožnim znakom u . Za frekvenčne porazdelit¬

ve z enakim? širinam! razredov izračunavanje aritmetične sredi¬

ne poenostavimo, če vpeljemo namesto osnovnega znaka x pomožni
znak u, ki je z znakom x v linearni zvez?

x ' .u x = x0 + i.u (6.10)

Pr? tem je x q sredina poljubnega razreda nekje v sredin? frek¬

venčne porazdelitve, I pa širina razredov. Iz znanih lastnost?

o aritmetičnih sredinah sledi, da sta tud? aritmetični sredin?
znakov x In u v linearni zvez?

r

Z fk uk
x r x * i.u s x * i — (6.11 )e »N

Če proučimo, katere vrednost? za u ustrezajo sredinam razredov,

s katerim! moramo pr? direktni metod? pomnožit? frekvence, spo¬
znamo, da so za sredine razredov u^ zelo enostavne vrednosti.
Za razred, za katerega je sredina razreda x q , je u = O, za dru¬
ge razrede pa je po vrst? navzgor +1, +2, 4-3, +4 Itd., po vrst?
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navzdol pa -1, ~2, -3, -4 Itd* Izračun aritmetične sredine se
poenostavi, ker IT Izračunamo enostavno, x pa dobimo po obrazcu
6o 1 1 o

6*17
V tabeli 6*3 je nakazan Izračun povprečnega premera

za Isti sestoj kot po neposredni metodi, da s primerjavo spo¬
znamo prednosti metode pomožnega znaka u*

Tabela 6*3 Izračun povprečnega premera po metodi s pomožnim
znakom u za čisti smrekov sestoj A

N = 507 +114 - £fu

V našem primeru smo vzeli Izhodišče v razredu 35 cm - 39 cm,
tako da je x Q = 37,5, širina razreda I = 5 cm. Iz teh podatkov
dobimo po obrazcu 6.11

x = 37,5 + 5 iill = 38,62
507

Primerjava postopka po neposredni metodi s postopkom po metodi
pomožnega znaka u pokaže, da smo se Izognili množenju večmest-
nlh števil, rezultata pa sta enaka*

6*18
Metoda kumulatlv « Metoda kumulativ Ima pred metodo

pomožnega znaka še to prednost, da se izognemo sploh vsakemu
množenju, ker pridemo do elementov za Izračun aritmetične sre-
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dine s kumulativnim seštevanjem frekvenc« Po fej metodi izra¬
čunamo aritmetično sredino po naslednjih stopnjah:

a) Za frekvenčno porazdelitev z enakimi, širinami raz¬
redov izračunamo kumulativno frekvenčno porazdelitev F^. Zadnji
člen v kumulativni vrst? je N«

b) Seštejemo vrednost? vseh členov v kumulativni
vrst? F^, brez zadnjega pod črto. Tako dobimo količino A.

c) Iz dobljenih podatkov izračunarnio aritmetično sre¬
dino po obrazcu

< x s x0 + /-4. (6.12)
N

pri čemer pomeni razen znanih količin x q sredino za zadnji
razred v frekvenčni porazdelitvi.

6.19
Na istem primeru kot po prejšnjih metodah preizkusi¬

mo še metodo kumulativ.

Tabela 6.4 Izračun povprečnega premera po metodi kumulativ
za čist? smrekov sestoj na Pokljuki

DS Premer v cm F^

4+10+65...+493+502=
= 2421 = A

N = 507
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Po obrazcu 6.12 je aritmetična sredina

7 = 62,5 - 5 ~1 = 38,62 cm
507

Iz pr?mera vidimo, da je la metoda izmed vseh treh najjprlklad-
nejša, m glede na to, da dobimo kot postranski rezultat še ku¬

mulativno vrsto, k? jo mnogokrat potrebujemo za izračunavanje

drugih parametrov ali za analizo«,

Aritmetična sredina aritmetičnih sredin

6 o 20
če poznamo aritmetične sredine In obsege populacfj

za delne populacije, k? sestavljajo populacijo, Izračunamo

aritmetično sredino za celotno populacijo po obrazcu

N.Xj + N2 x2 + ■ ■ • + Nrxr ¥Nk xk
N,+ N2 +---+Nr - £Nk

k

(6.13)

kot tehtano aritmetično sredino Iz grupnlh sredin. Pri tem
vzamemo število enot v delnih populacijah za pondere.

Lastnost, da moremo neposredno Iz grupnlh arlmetlč-
nlh sredin Izračunati skupno aritmetično sredino, je velika
prednost aritmetične sredine pred srednjimi vrednostmi po legi.

Zanje namreč to ni mogoče. Če hočemo za skupno populacijo dolo¬
čiti mediano ali modus, moramo Iz delnih populacij sestaviti
skupno populacijo In šele Iz te določiti skupno mediano at!

modus o

6.21
Vzemimo za primer dvoetažni sestoj na Otoku Iz tabe¬

le 3.4. Za obravnavan? sestoj je povprečen premer za prvo eta¬
žo (topol) 7| = 46,82 cm, število dreves pa = 103. Za drugo

etažo (jelša) z Ng = 132 drevesi pa je povprečen premer

^2 - 19,70 cm. Po,obrazcu 6.13 je povprečen premer dreves v

sestoju

x = N 1 X 1 + N2 X 2 _ 103.46,82 + 132.19,70 _ 31 59 cm

N 1 + N2 103 + 132
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Ta rezultat pa ima omejeno analitično vrednost, ker ni repre¬
zentativen niti za prvo, nit! za drugo etažo« Zato moramo za
skupinska povprečja za heterogene populacije paziti, da jih
pravilno tolmačimo oziroma jih moramo uporabljati s primernim!
omejitvami.

6 0 22
Tehtan način za izračunavanj e povprečij velja tud!

za izračunavanje relativnih števil za populacijo iz relativnih
števil za grupe« Tako računamo n.pr« skupni odstotek P iz grup-
nih odstotkov P^ po obrazcu

( 6 « 14 )

6<>23
V treh mešanih sestojih nekega gozdnega gospodarstva

je število dreves in odstotek jelke po posameznih sestojih na¬
slednje: N 1 = 500j Pt = 20 %, N2 = 1000, P 2 = 15 % In Ng = 2000,
P 3 = 10 %.

Povprečen odstotek jelke v sestojih gozdnega gospo¬
darstva je po obrazcu

= Vt + n2 p 2 + n3 p 3 =

N 1 + N2 + N3

: 500.20 + 1000.15 + 2000.10 _ 12 9
500 + 1000 + 2000

6.24
S tehtano aritmetično sredino izračunavamo tudi raz¬

lične druge parametre iz gozdarstva.
Volumen za posamezno drevo je dan z zvezo V = g.h.t,

pri čemer pomeni: V = volumen, g = temeljnica, h = višina,
t = telesninski koeficient.

Če povprečno temeljnTco izračunamo po obrazcu

(6.15)
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povprečno višino drevesa po obrazcu

(6.16)

kot tehtano aritmetično sredino individualnih višin, pri čemer

vzamemo temeljnico posameznega drevesa kot ponder,

povprečni telesninsk? koeficient f pa po obrazcu

kot tehtano aritmetično sredino, pri čemer vzamemo kot ponde-

re produkte temeljnice in višine g ^ h ^, dobimo, da je skupen

volumen v sestoju direktno enak produktu

prečni teiesninskl koeficient po zgornjih obrazcih, je zveza

med povprečji za sestoj enaka kot za individualne vrednosti,
le da pri posameznem drevesu upoštevamo individualne vrednosti,

pri sestoju pa računamo s povprečji.

Harmonična sredina '

iz recipročnih vrednosti za posamezne podatke. Po tej defini¬

ciji izračunamo harmonično sredino po obrazcu

(6.17)

- v V - N.g.h. f (6.1

Če izračunamo povprečno temeljnico, povprečno višino in pov-

(6.18)

6.25
Harmonična sredina je recipročna vrednost povprečja

(6.19)

Tehtano harmonično sredino pa izračunamo po obrazcu

( 6 . 20 )
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Ce Iz ?s + ? h podatkov Izračunamo aritmetično sredino In harmo¬
nično sredino, spoznamo, da so razlike lahko znatne* Vzemimo
za shematičen primer pet vrednosti: 1, 2, 4, 7, 9» Za te vred¬
nosti je aritmetična sredina

7= 4 ,- 7 + 9 = 4.6
5

harmonična sredina pa

Harmonično sredino Izračunavamo redkeje kot aritmetično. Kadar
pa se osnovne vrednosti v populaciji porazdeljujejo asimetrič¬
no, njihovi redprok! pa simetrično, harmonična sredina bolje
reprezentlra vrednosti populacije kot aritmetična sredina.

6.26
Razen tega pa je harmonična sredina, ne pa aritmetič¬

na sredine upravičena pri Izračunavanju nekaterih relativnih
Štev? I.

Vzemimo kot primer pet smrekovih dreves z enakim vo¬
lumnom. Zanje so telesnlnskl koeficienti: 0,38 0,36 0,4t
.0,35 0,40. Povprečen telesnlnskl koeficient f Izračunamo s
harmonično sredino

f =
1 1 1 t 1

= 0,3786

0,38 0,36 0,41 0,35 40
Upravičenost zgornjega rezultata sledi Iz naslednje¬

ga sklepanja. Po obrazcu 6.17 je povprečen telesnlnskl koefi¬
cient

7 _ Z 9i hj fj _ X
X9,hi X Vi/fi

NV N
vHA ZA

( 6 . 21 )

Izpeljava tega obrazca se naslanja na to, da je V = g.h.f, Iz
tega dalje V/f = h.g In da je pri drevesih z enakimi volumni
IV f = NV.
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Izračunavanje suitiarn I h rz I at ? vn l h števil

6*27
Al? pr? praktičnem izračunavanju povprečnih vrednosti

iz relativnih števil uporabljamo aritmetično ali harmonično

sredino, je odvisno od- tega, katere količine so ponderi.
To moremo ugotoviti v vsakem posameznem primeru iz

strukture relativnih Število
Če vzamemo, da je za individualne enote, grupe In po¬

pulacijo relativno Število kvocient dveh absolutnih podatkov,

je sumarno relativno Število R

( 6 « 22 )

kvocient vsot absolutnih podatkov Y in X.

Sumarno relativno Število pa izračunamo kot tehtano

aritmetično sredino

IXkRk
Ih (6.23)

kadar so ponderi absolutne količine, ki v relativnem Številu

nastopajmo v imenovalcu .
Tehtano harmonično sredino pa uporabljamo pri izra¬

čunavanju relativnih Števil, če so ponderi absolutni podatki,

k? nastopajo v relativnem Številu v Števcu. To vidimo iz zveze

R I%_
TVh (6.24)

6.28
Izračunajmo povprečno teracljnlco za dvoetažni sestoj,

_ 2
za katerega je povprečna temcljnlca v prvi etaži g. = 0,050 m ,

Ji 2v drug? etaž? pa g 0 = 0,075 m . Razen teh podatkov poznamo
* o , o

skupni temeljnlcl = 50 m in Gg = 150 m za obe etaži.
Povprečna temeljnlca je kvocient med skupno temeljnl-

co In Številom dreves v sestoju g" = G/N. Razen povprečnih te-
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me I j n ?c za vsako e+ažo pa poznamo še skupno +emeljn!co, k! je
v reI a + ?vnem š+evliu v Imenovalcu« Po zgornjem pravilu v + em

primeru Izračunamo povprečno +emeljn?co za dvoe+ažn? ses+oj po
obrazcu za +eh+ano harmonično sredino

g
50 + 150

50 + 150

0,050 0,075

= 0,067 m 2

Kvadra+lčna sredina

6.29

Kvadra+lčna sredina je kvadra+nf koren Iz povprečij
kvadra+ov Iz Individualnih vrednos+1

(6.25)

Kvadra+fčno sredino samos+ojno redkeje uporabljamo ko+ druge

Izračunane vrednos+l« Pač pa je pomembna predvsem za+o, ker je
najvažnejša mera variacije - s+andardnl odklon kvadra+lčna sre¬
dina odklonov Individualnih vrednos+f od arl+me+lčne sredine

f >•

6.30

V gozdars+vu pa so še drugi problemi, v ka+er?h upo¬
rabljamo kvadra+tčne sredine.

Če Iščemo, kakšen povprečen premer bi morala Ime+I
vsa drevesa v ses + oju, da b? bila skupna +emeljnlca za +ak. se¬
s+oj enaka s+varnl skupni +eraeljn!cl, spoznamo, da +emu pogoju

us+reza kvadra+lčna sredina Iz s+varnlh premerov v ses+oju. To
zlahka spoznamo Iz naslednje zveze.

Če z x f za z na mu jemo premer za posamezno drevo v se¬
s+oju, je -?■ x? +emeljnlca posameznega dr eve sa , ]jT pa vso-

H x
+a +eme!jnlc vseh dreves v ses + oju a I ¥ skupna lemeljnlca. Ce s

K zaznamujemo povprečem premer, je +emeljnlca povprečnega dre-?

vesa » skupna +emeljnlca vseh N dreves pa N ^ . Zaradi

zgornje zah+eve, ki naj jo Izpolni povprečen premer, velja
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Če to enačbo najprej delimo z N ^ , Iz desne in leve strani pa

poiščemo kvadratni koren, dobimo, da je

Iskan? povprečni premer je torej kvadratična sredina Iz indi¬
vidualnih premerov*

6*31
Vzemimo kot shematičen primer pet dreves. Njihovi

premeri so: 38 cm, 28 cm, 32 cm, 35 cm, 41 cm. Povprečen pre¬
mer, ki ustreza pogoju, da je skupna temeljnica enaka Kot skup¬
na teme I j nica, če bi vseh pet dreves imelo enak p ovprečen pre¬
mer, je enak K s iV{382 + 282 + 322 + 35 2 + 41 2 )= 35,1 cm.

5
Aritmetična sredina za isti primer je xf = 34,8 cm.

Če napravimo preskus, kateri povprečen premer ustreza zahtev?
glede skupne temeljnice, dobimo:

0,4836 m2
o

Skupna temeljnica je torej 0,4836 m •
Za povprečen premer K = 35,1 cm je temeljnica =

0,09676 m2 , skupna temeljnica petih povprečnih dreves pa
o

5 . 0,09676 = 0,4838 m . Za aritmetično sredino premera
x" = 34,8 cm pa dobimo, da je temeljnica povprečnega drevesa

2g— = 0,09541 m, skupna temeljnica petih povprečnih dreves pa
5 . 0,09541 = 0,37705 m2 .
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Geometrijska sredina

60 32
Geometrijska sredina Iz N vrednosti je N-tI koren Iz

produkta Individualnih vrednosti«. Po tej definicij? je geome¬
trijska sredina

Iz det I n I c I j e ' za geometrijsko sredino sklepamo, da. Ima smisel
Izračunavat? geometrijsko sredino le, če noben osnovni podatek
n I nič a I I ne ga 11 ven «

Izračunavanje geometrijske sredine po osnovnem obraz¬
cu je, razen za najenostavnejše primere, nemogoč« Pač pa jo mo¬
remo razmeroma enostavno Izračunat? z logaritmi« Če levo In des¬
no stran osnovnega obrazca IogarI trn?ramo, dobimo

log G = -L(logxj+ log xi + • • • + log xN ) (6.27)

Logaritem Iz geometrijske sredine je torej povprečje Iz loga¬
ritmov Individualnih vrednost?«

Zaradi razmeroma zamotanega Izračunavanja In težje¬
ga t o I ma če n j a, geometr I j sko sredin,© ne Izračunavamo pogosto. V
poštev pride pri Izračunavanju centralne tendence za J poraz¬
delitev, če se zanje logaritmi Individualnih vrednosti porazde¬
ljujejo v normalni porazdelitvi ali v porazdelitvi, k? je nor¬
malni podobna.

6.33
Razen tega pa je geometrijska sredina logično upra¬

vičena za Izračunavanje povprečnega koeficienta dinamike pr?
proučevanju časovnih vrst. Vzemimo časovno vrsto, ki Ima prvi
člen Yq , zadnji člen Y^ In zaporedne koeficiente dinamike

k 1 = VV k 2 = VY1 ••••• kN = VV-r VP raSan J e i e > 5 kak ~
šnlm stalnim povprečnim koeficientom dinamike bi se moral raz¬
vijat? pojav, da bi Iz začetne vrednosti Y q po N razdobjih bil
pojav na ravni Yjsj.

Glede na definicijo koeficientov dinamike In povpreč¬
nega koeficienta dinamike veljajo med zgornjimi količinam? na-
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s lednje zveze

VN = Y0 .kj.k2. k" - Y0 .k.k...k = Y0 .kN (6.28)

Če začetno vrednost Yq postopoma množimo z Individu¬
alnim? koeficient? dinamike, dobimo končno vrednost Y|^. Zaradi
definicije povprečnega koeficienta dinamike k pa enako dobimo
končno vrednost Y^, če začetno vrednost N krat pomnožimo s
povprečnim koeficientom dinamike k. Iz zveze (6.281 dobimo dva
obrazca, po katerih Izračunavamo povprečen koeficient dinamike

k =^k,.k2.kN (6.30)

Po obrazcu 6.29 je povprečen koeficient dinamike N-ti koren Iz
kvocienta med začetnim In končnim členom v časovni vrsti. V
splošnem se stopnja korena ravna po časovnem razmaku med začet¬
nim In končnim členom. Stopnja korena je enaka številu osnovnih
razmakov med začetno In končno vrednostjo pojava, za katerega
Izračunavamo povprečen koeficient dinamike«

Po obrazcu 6.30 pa je povprečen koeficient dinamike
geometrijska sredina Iz Individualnih koeficientov dinamike v
razdobju, za katerega iščemo povprečje.

6.34
Vzemimo za primer razvoj površine gozdnih drevesnic

v FLRJ.
Konec leta 1955 je bilo Y55 = 1383 ha drevesnic, ko¬

nec leta 1959 pa Y^^ = 2677 ha. Povprečen letni koeficient di¬
namike v razdobju 1955-1959 je po obrazcu 6.29 enak

k = YY59/X5s= i/fS?

Povprečen koeficient dinamike Izračunajmo z logarit¬
mi. če levo In desno stran zgornje enačbe IogarItmiramo, dobimo

log k = 1 (log 2677 - log 1383) =
4

=1 (3,42765 - 3,14082) =0,07171
4
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Z ant?!ogar]+rafran]em dobimo, da je k = 1,1795. Po¬
vršina gozdnih drevesnic se je v razdobju 1955-1959 vsako leto
povečala povprečno za ca 18

Za isti problem polščimo povprečen koeficient dinami¬
ke, če poznamo Individualne koeficiente dinamike o razvoju dre¬
vesnic v razdobju 1955-1959. Koeficienti dinamike v tem razdob¬
ju so k 56 = 1,067* k 5? = 1,077 k5Q = 1,246 k 59 = 1,352

Po obrazcu 6.30 je povprečen koeficient dinamike
4_ 4_

k = y k56 ok 57 <,k 58 ok 59 = 1 »067.1,077.1,246.1,352

Tudi v tem primeru si pomagajmo z logaritmih Če levo In desno
stran Iogar1 trn?ramo, dobimo

log k = 1 (log 1,067 + log 1,077 + log 1,246 + log 1,352)=
4

= ! 10,02816 + 0,03222 + 0,09552 + 0,13098) =
4

= 0,07172

Z ant IIogar1 trn 1 ra n j era dobimo, da je k = 1,1796. Razlika v re-
*

zultatu Izvira Iz zaokroževanja.

Zveze med srednjimi vrednostmi

6.35
Vse štiri obravnavane Izračunane srednje vrednost?

so podobno definirane. Za vse velja, da so povprečja določenih
transform?ran 1 h podatkov enaka Isti transformac 1 j 1 Iz ustrezne
sredine. Tako je aritmetična sredina povprečje Iz osnovnih po¬
datkov. Povprečje Iz recipročnih podatkov je enako recipročni
vrednosti iz harmonične sredine. Povprečje Iz kvadratov osnov¬
nih podatkov je enako kvadratu Iz kvadratlčne sredine, povpreč¬
je 1z logaritmov osnovnih vrednosti pa logaritmu Iz geometrij¬
ske srednje vrednosti.

7 = jfZ*i

(6.31 )

log G = -faz log-*f
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Če Izrazimo vsako Izmed navedenih sredin v ekspile I t n I obliki,

dobimo obrazce, ki smo jih navedi? kot definicije posameznih

sred? n.

6.36

Če Iz Isflh poda+kov Izračunamo vse štiri Izračunane

srednje vrednos+l: K, x", G In H, velja, da je

K > x > G > H (6.32)

Prelskuslmo navedeno pravilo na shematičnem prImeru za dve
vrednosti: 1 I n 4.

K 2,9 t

G =ff74 = 2 ;

x

H

1 + 4

2

2

= 2,5

= 1,6

Vse štiri sredine so med seboj enako le, če so vse Individual¬

ne vrednost? med seboj enake.

6.37
Med aritmetično sredino x" In obema srednjima vredno-

stlma po legi, mediano Mg In modtinsom Mq , veljajo tud? določen?

stalni odnosi. Za simetrične porazdelitve so aritmetična sredi¬
na x\ modus M In mediana med seboj enake (x" = = M ) .y o e J e o
Za porazdelitve, k? so asimetrične v levo, je aritmetična sre¬
dina manjša, modus pa večji kot mediana (>r< M^< Mq) . Za poraz¬

delitve, k? so asimetrične v desno, pa je modus manjši, arit¬
metična sredina pa večja kot mediana (Mq < < >T) . Razlike so
tem večje, čim večja je stopnja asimetrije.

Za zvezne, ne preveč asimetrične porazdelitve velja,

da je razlika med aritmetično sredino In moduusom približno

trikrat večja kot razlika med aritmetično sredino .?n modusom

(x - Mo) = 3.(x - Me) (6.33)

Za ne preveč asimetrične porazdelitve moremo s tem
obrazcem posredno Izračunat? modus Iz negruplranlh podatkov.

Če za populacijo Izračunamo aritmetično sredino x In določimo
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mediano Me, Izračunamo Iz teh dveh srednjih vrednost? modus Mo

po obrazcu

ii'y' Mo = F - 3.(x ~ Me) 16.34)

k? ga dobimo Iz obrazca 6«33.

I
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7« MERE VARIACIJE

7 o 1
Ze v prejšnjih poglavjih smo poudaril?, da je ena »z

med osnovnih značilnost? statističnih znakov variabilnost« Za¬
radi vpliva najraz!ičnejš?h faktorjev se značilnost? pojavov

od enote do enote spreminjajo«, Srednja vrednost je izraz sp I oš
n ? h vplivov, k? z enakim učinkom vplivajo na vsako enoto«, Tako
je povprečna višina dreves rezultat splošnih vplivov (starosti
vrste sestoja itd«,}«, Zaradi individualnih vplivov (Individual¬
na lega dreves, zasenčenost, kvaliteta sadike itd«) pa se viši
ne dreves med seboj razlikujejo« Čim večji so individualni

vplivi, tem večje so razlike med drevesi, oziroma odkloni vi¬
šin posameznih dreves od povprečne višine« Variabilnost oziro¬

ma učinek individualnih vplivov moremo torej merit? z odklon?
od sredine« Z meram? variacije, s katerim? z eno količino me¬
rimo velikost variacije v populaciji, pa merimo učinek indivi¬
dualnih vplivov na ves sestoj, enako kot merimo s srednjimi

vrednostmi učinek splošnih vplivov« Proučevanje variabilnost?

v najrazličnejših oblikah je osnova dobršnega dela statistič¬
nega proučevanja«

Vrste mer variacije

7«2
Kot imamo več vrst srednjih vrednosti, Imamo tud?

več vrst mer variacije, od katerih vsaka Ima svoje prednost?
Tn pomanjkljivost?« Vsaka izmed njih na svoj način mer? varia¬
bilnost pojava« Prednost enih je v lažjem razumevanju in dolo¬

čanju, prednost drugih pa v večji analitični vrednosti«
Najobičajnejše mere variacije so:

a) variacijsk? razmak R
b) kvartllni odklon Q
c) povprečen absolutni odklon AD
d) standardni- odklon 6 oziroma varianca 6^, iz katere je

standardni odklon izpeljan«

Od navedenih mer variacije sta prv? dve dani z lego,
zadnji dve pa sta fzračunanni iz podatkov za vse enote populaci
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je 0 Zaradi tega sta solldnejš? in stabilnejši kot mere variac?-
je po legio Zaradi posebnih lastnosti, ki so v zvezi s teorijo
statistike, pa je najvažnejša mera variacije varianca oziroma
standardni odklon, k? je izpeljan iz variance«,

Variacijsk? razmak

7.3

Najenostavnejša, a tud? najslabša mera variacije je
variacijsk? razmak

• R = Xmax ~ xmin C 7 o "f S

k? je razlika med največjo in najmanjšo vrednostjo v populaci¬
ji.

Iz ranžirne vrste premerov za 19 modelnih smrekovih

dreves v tabeli 5.2 povzamemo, da je premer najtanjšega dreve-
sa xm ^ n = 14 cm, premer na jdebeI e j šega drevesa pa xmax = 44 cm.
Variacijsk? razmak je torej

R - x - x j = 44 - 14 = 30 cmma x min

Premeri devetnajstih modelnih dreves variirajo tor^j v razmaku

30 cm.
Včasih nakažemo variacijsk? razmak tudi tako, da po¬

vemo najmanjšo ?n največjo vrednost v populaciji. Tak način da
večjo informacijo kot sam razmak variacije, k? ga moremo iz teh

dveh podatkov neposredno izračunati.

7.4

Variacijsk? razmak je odvisen samo od obeh skrajnih
vrednost? v populaciji. Zato je ta mera variacije zelo podvrže-

na individualnim vplivom!, ker so ekstremne vrednosti dostikrat

izraz netipičnih vplivov. Razen tega pa variacijsk? razmak ni

odvisen od razmestitve vseh drugih vrednost? v razmaku variaci¬
je, k? bistveno vplivajo na variabilnost.

Prednost variacijskega razmaka pa je v tem, da je

treba zanj poznati samo obe skrajni vrednosti, kateri zlahka

določimo, če so vrednost? urejene v ranžirni vrsti. Zato zara¬

di lahkega določanja uporabljamo variacijsk? razmak vselej,
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kadar hočemo predvsem za manjše populacije hitro In orientacij¬
sko oceniti variabilnost pojava«

KvartII n ? odkI on

7„5 * .
Hibe, k? jih Ima varlacljskl razmak, deloma odpravi¬

mo s kvartllnlm odklonom. Osnovna hiba varlacfjskega razmaka
Izvira Iz tega, da je odvisen samo od skrajnih, netipičnih
vrednosti. To hibo odpravimo tako, da variabilnost merimo z
razmakom, v katerem niso vse, temveč samo del enot v populaci¬
ji, brez ekstremnih vrednosti. Tako moremo meriti var lab?inosf
z razmakom med prvim In devetim dectlom. V tem razmaku je 80 %

vseh vrednost! tn je Iz njega Izločeno 10 % najmanjših In 10 %

največjih vrednost?«
Pogosteje kot z decllnlm razmakom merimo variabilnost

s kvartllnlm razmakom, k! določa razmak, v katerem je 50 %

osnovnih vrednosti Iz populacije. Iz kvart? Inega razmaka je
Izločena četrtina najmanjših In četrtina na j več j Ih vrednosti.

Običajno pa namesto kvart?Inega razmaka vza¬
memo za mero variacije kvart!1 nT odklon

k! je polovica kvart?Inega razmaka.
Kvart? In? razmak oziroma kvartllnl odklon pravilneje

pokažeta variabilnost v populacij? kot varlacljskT razmak, ker
sta določena Iz stabilnega dela vrednosti v populaciji.

V sliki 7.1 je nakazano, kako je varlacljskl razmak
neobčutljiv za različno razmestitev vrednosti v varlacljskem
razmaku, kako pa različna razmestitev vpliva na kv&rtllnf raz¬
mak oziroma kvartllnl odklon.

Vendar pa tud? kvartllnl odklon nima vseh prednosti,
k? jih Imajo Izračunane mere variacije, ki so odvisne od vseh
vrednost? v populaciji, ki najbolj natančno merijo variabil¬
nost .
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Qi
2Q

Q.1

'/n/n '/na*

S ls? ka 7.1 R In Q pr? različnih razmestitvah

7.6

Izračunavanje kvartlSnega odklona sovpada z Izraču¬
navanjem kvartllov, k? so posebna vrsta kvartllov, katere smo
obravnaval? v posebnem poglavju.

Za premere 19 modelnih smrekovih dreves, za katere
smo že Izračunal? varlacljsk? razmak, so v tabeli 5.3 Izraču¬

nan? kvantill. Za to populacijo je = 21,50 cm In =
= 32,75 cm. KvartlIn? odklon pa je G = (32,75 - 21,501/2 =
5,62 cm.

Povprečen absoluten odklon

7.7

Ker je višina posameznega drevesa Xj Izraz delovanja
Individualnih In splošnih faktorjev na drevo, aritmetična sre¬

dina pa rezultat splošnih vplivov, sklepamo, da je razlika
e^ = x| - x rezultat Individualnih vplivov na enoto 1. Odklo¬

ni od aritmetične sredine so pozitivni ali negatlvnlo Za merjen
nje jakosti učinka Individualnih vplivov na enoto I pa pred¬
znak n? pomemben. Zato vzamemo za merilo jakosti Individualnih
vplivov na enoto I absoluten odklon Individualne vrednost? od
sredine |X| - 1T|« Za skupno merilo jakost? Individualnih vpli¬

vov na vse enote pa dobro služi aritmetična sredina iz Indivi¬

dualnih absolutnih odklonov. Povprečen absoluten odklon je to¬
re j
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17 « 3 )AD> - wiisi ' 11
Povprečen absoluten odklon od aritmetične sredin« je mere va¬
riacije, k? je odvisna od vseh vrednosti v populacij! fn je to¬
rej občutI j I ve j la In ob jektIvnej?a mera variabilnosti kot varla
cljskf razmak ali kvartlln! odklon«

NI nujno, da povprečen avsoluten odklon Izračunamo
Iz odklonov od aritmetične sredine« Močno ga je Izračunat? Iz
absolutnih odklonov od katerekoli srednje vrednost?« Izkaže se,
da je teoretično In praktično celo bolj utemeljeno, da ga Iz¬
računamo Iz odklonov od mediane. Povprečen absoluten odklon je
namreč najmanj??

(7,4)

če ga Izračunamo Iz odklonov od mediane«

7*8
Vzemimo v potrditev zgornje trditve shematičen pri¬

mer petih dreves, za katere poznamo premere: 27 cm, 29 cm,
33 cm, 34 cr», 37 cm. Zanje Izračunajmo povprečen absoluten od¬
klon od aritmetične sredine AD^ In od mediane ADj^l Za zgornjih
pet premerov je x = 32 cm In Me = 33 cm.

Tabela 7.1 Izračun povprečnega absolutnega odklona AD— In
ADj^g za premere petih dreves (shematičen primer)

A D— = “X! x l“*"l = 16/5 =3,2 cm; AS^e = — ]T|x ? -Me| = 15/5 =3,0
N N

Resnično je AD— = 3,2 cm večji kot AD^e = 3,0 cm

cm
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Varianca In standardni odklon

7.9
Teoretično najbolj utemeljeno In najboljše merilo

variabilnost? je varianca ali Iz nje Izpeljan standardni odklon.
Analitično vrednost Ima predvsem varianca, kot opisni parameter
pa uporabljamo običajno standardni odklon 0

2Varla nca , katero konvencionalno zaznamujemo s 6

Islgma kvadrati, je povprečen kvadratlčn? odklon od aritmetič¬
ne sredi ne« Jz definicije sled? obrazec

6X = 4rž(*i-'*) 2
/v/«r

Pr? povprečnem absolutnem odklonu jakost Individual¬

nih vplivov merimo z absolutnim odklonom od sredine, pr? va¬

rianci pa s kvadratom odklona od aritmetične sredine. Pr? va¬
rianc? torej smer učinka Individualnih vplivov, k? za mero va¬
riacije ni bistvena, odpravimo s kvadrIranjem.

Varianca je Izražena v enoti mere, k? je kvadrat eno¬

te mere za osnovni podatek, za katerega jo Izračunamo. Zato je
varianca kot opisni parameter težko razumljiva In neprlkladna.

V osnovni enot? mere Izraženo mero variacije pa dobimo, če Iz¬
računamo Iz variance kvadratni koren. Ta parameter, k? ga Ime¬

nujemo standardnI odkI on , zaznamujemo pa s 6 , je torej

tJ r*; - ~T) 2 (7.6)
*

Vse metode analize variabilnost? so zasnovane na analiz? odno¬
sov med variancami. Standardni odklon kot opisno merilo varia¬

bilnost? pa je posebno važen zaradi zveze z eno Izmed najvaž¬
nejših teoretičnih frekvenčnih porazdelitev - z normalno po¬

razdelitvijo.

Izračun variance In standardnega odklona
l ' .

7.10
Izračunavanje variance oziroma standardnega odklona

je zahtevnejše kot Izračunavanje drugih mer variacije. Ker pa
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pr? statističnem analiziranju podatkov dnevno naletimo na Izra¬
čunavanje varianc ?n standardnih odklonov, je praktično pomemb-
no poznat? določene tehnične olajšave, s katerim! pridemo hit¬

reje do rezultata« Enako kot sredine moremo tud? varianco izra¬

čunat? iz negrupiranih podatkov In oceniti ?z grupiranih podat¬

kov«

7.11
Izračun variance in standardnega odklona ?z negrupi¬

ranih podatkov « Neposredna metoda « Če vzamemo za osnovo obrazec

7«5, izračunamo varianco po naslednjem postopku:

a)
bi

c i
d)

e i

?z osnovnih podatkov izračunamo aritmetično sredino 7
izračunamo individualne odklone posameznih vrednost!

od aritmetične sredine I
-x2dobljene individualne odklone kvadriramo (X|-xV

varianco dobimo, če Izračunamo povprečje ?z kvadratov
individualnih odklonov od aritmetične sredine

s: RS'*!
standardni

s=<=všy
odkI on je kvadratni koren Iz variance

7.12
Za primer izračunajmo varianco za premere sedmih dre¬

ves: 31 cm, 27 cm, 35 cm, 32 cm, 29 cm, 36 cm in 32 cm« Po

zgornjem pravilu izračunamo najprej aritmetično sredino

7 = (31+27+35+32+29+36+32) : 7 = 222 : 7 = 31,71 cm

Nadaljnji postopek je nakazan v tabeli 7«2

Postopek je jasen« Edina težava je v tem, d® so obi¬
čajno aritmetične sredine decimalna števila« Zato so odkloni od

aritmetične sredine večmestna decimalna števila, zaradi česar
so težave s kvadrira njem«
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Tabela 7<>2 Izračun variance In standardnega odklona po nepo¬
sredni metod? za premere sedmih dreves

V* = M,«8? , 8,4898
x N 7

ax = V8 . 4898 = 2,91 cm

7*13

Metoda pomožnega znaka u * Zgornjo hibo neposredne
metode odpravimo z metodo pomožnega znaka u* Zlahka moremo do¬
kazati* da je varianca tud?

I uf - U2/N

N
17*7)

Pr? tem je razen znanih oznak pomožni znak u^ - Xj - x q odklon
Individualnih vrednost? x^ od poljubne vrednost? x q * U = ]Tu| =
vsota vseh vrednost? Uj* £ u 2 pa vsota kvadratov za pomožni
znak U| za vse enote v populaciji*

S tem obrazcem Izračunamo varianco po tehle točkah:

a) glede na osnovne vrednost? x^ Izberemo poljubno okrog¬
lo vrednost x Q nekje med stvarnim? vrednostmi* s čemer zmanj¬
šamo vrednosti za pomožni znak u£

b) Izračunarmo posamezne odklone u^ = Xj - x Q * Dobljene

vrednost? Uj kvadriramo:

c) poiščemo vso-hot ' U = £ U| In vsoto kvadratov ]Tu 2 ;

d) dobljen? vsot? vnesemo v obrazec 7*7*
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Z metodo pomožnega znaka u se izognemo zamudnemu
kvadriranju in seštevanju večmesimih števil* kar je hiba nepo¬

sredne met ode 0 '
V /

Ce n? moč najt? neke vrednost ?* k! b? mogla služit!

kot pomožno izhodišče za znak u* vzamemo* da je - 0» V tem

primeru obrazec 7o7 preide v

-a _ Ixf - X2/N
* N ilcQ)

Pri tem pomeniš X = X vsota osnovnih podatkov*
Y_ xf = vsota kvadratov osnovnih podatkov* N = štev? Ib enot v

popu I a c ? jio
Ta obrazec je primeren za izračunavanje variance po¬

sebno v primerih* Če jo računamo z računskim strojem in kvadri

ranje ni poseben probleme

7.14
Za primerjavo z neposredno metodo izračunajmo po me

tod? pomožnega znaka u varianco za iste podatke. Izračun vari-

ance po metodi pomožnega znaka u je nakazan v tabeli 7.3. Iz

pregleda osnovnih vrednosti povzamemo* da je najugodneje* če
vzamemo* da je x Q = 32 cm.

Tabela 7.3 Izračun variance za premere 7 dreves po metodi

pomožnega znaka u

= I«:

če vnesemo dobljene vmesne rezultate v obrazec 7.7* dobimo



Dobljen? rezultat se sklada z rezultatom, k! smo ga dobri? po

neposredni metod?® Ker smo dobil! z znatno lažjim postopkom

?stf rezultat, metodo pomožnega znaka v praks? uporabljamo sko
ro Izključno®

7 0 15

izračun variacije In standardnega odklona Iz frek¬

venčnih porazdelitev ® Ža populacije z velikim številom enot mo

rerno tud? varianco ocenit? Iz frekvenčne porazdelitve® Ocena

variance Iz frekvenčne porazdelitve je po obrazcu

6x = Tri fk (h' V* (7®9)
'VA*7 *

ponderirana aritmetična sredina kvadratov odklonov sredin raz¬
redov x^ od aritmetične sredine Pr? tem so frekvence ustrez
nlh razredov ponderl® Ocena variance po tem obrazcu je tem
boljša, čim manjši so razredi, ker frekvenčna porazdelitev z
ožjim? razred? verneje kaže sliko vseh vrednosti v populacij!«

Iz Istih razlogov kot pr? negruplranlh podatkih pa je Izračuna

vanje variance po osnovnem obrazcu 7«9 zamudno In neprlkladno®

Zato ga v splošnem v praks? ne uporabljamo® Pač pa v praks?
uporabljamo za frekvenčne porazdelitve, k? Imajo enake razrede
dve metodi: metodo pomožnega znaka u In metodo kumulatlv ® Pr!

obeh razširimo načeli, k? smo ju uporabil? že pr! Izračunavanj

ar I tmet I čne *sr ed I ne Iz frekvenčnih porazdelitev®

7 ® 16

Metoda pomožnega znaka u P Pomožni znak u, kf je z
osnovnim znakom x v zvez?

x x ' „ u x - x0 + i.u (7*10)

smo uporabil? že pr! Izračunavanju aritmetične sredine Iz
frekvenčnih porazdelitev® Sredine razredov v frekvenčni poraz¬
delitvi za znak u so ®o® -3, -2, -1, O, +1, +2, +3 ®.®, pr?

čemer velja vrednost 0 za razred, za katerega je sredina raz¬

reda x ®o



9

Po metodi pomožnega znaka u izračunamo varianco po
naslednjem postopku«

a) V frekvenčni porazdelitvi upeljemo pomožni znak u

... -3 -2 -1 0 +1 +2 +3 ...;

b) frekvence f^ pomnožimo z ustreznimi vrednostmi u^« Tako

dobimo produkte f^u^;
c) dobljene produkte f^u^. ponovno pomnožimo z ustreznim?

vrednostmi u^, da dobimo vrednosti, f^uj^

d) izračunamo vsoti £ f^u^ = U in£f k u k'
e) dobljene izraze vnesemo v obrazce

K = Ib uj>- U^N , 62= i2.K/N (7.11)

in dobimo varianco.

7.17
Izračunavanje variance po metod? pomožnega znaka po¬

nazorimo na frekvenčni porazdelitvi premerov v čistem smreko¬
vem sestoju A na Pokljuki iz tabele 3.4. Izračun je prikazan

v tabeli 7.4.

Tabela 7.4 Izračun variance in standardnega odklona po metodi

pomožnega znaka u za premere dreves v čistem smre¬

kovem sestoju A na Pokljuki
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Ce dobljene podatke vnesemo v obrazca 7.9, dobimo:

K = I fu 2 - U2/N = 1330 -{+114) 2/507 = 1304,3669

62 = I 2 .K/N = 5 2 .1304,3669/507 = 64,3178

ocena standardnega odklona pa je

6 = V? = V64,3178 = 8,02 cm

7.18

Metoda kumulat I v . Podobno kot aritmetično sredino

moremo tudi varianco Izračunat? z metodo kumulattv. Po metodi

kumulatlv Izračunamo varianco tako, da:

a) Iz frekvenc f v frekvenčni porazdelitvi Izračunamo

enako kot pri Izračunavanju aritmetične sredine prvo kumula-
11 vo F.

b) Za Izračun variance pa potrebujemo če drugo kumulatlv-

no vrsto frekvenc FF. To dobimo Iz prve kumulativne vrste frek¬
venc F, če postopek kumulativnega seštevanja ponovimo na prvi
kumulativni vrsti frekvenc F.

c) Zadnji člen (pod črto) v prvi kumulativni vrsti je e na k

obsegu populacije N, zadnji člen v drugi kumulativni vrsti (pod

črto) je količina A, vsota členov Iz druge kumulativne vrste FF

(brez zadnjega člena pod črto) pa je količina B.

d) Iz dobljenih podatkov dobimo varianco po obrazcih:

K s 2B + A - A2/N 6? = i2. K/N (7.12)

7.19

Prednosti postopka kumulatlv najlepše ponazorimo na
primeru. Zaradi kontrole vzemimo Isti primer kot pr? postopku
pomožnega znaka u.

Dobljene pomožne rezultate Iz tabele 7.5 vnesimo v
obrazec 7.10. ,

K= 2. B + A - A 2/N = 2.5222 + 2421 - 2421 2/507 = 1304,3669

0 2 _ | 2 0 k/n = 5 2 .1304,3669/507 = 64,3178

6x s = -/64,3178 = 8,02 cm
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Tabela 7<>5 Izračun variance za premere v čistem smrekovem

sestoju A na Pokljuki Iz tabele 3«4

507 2421
N A

Rezultat je skladen z rezultatom, k? smo ga dobili
po metod? pomožnega znaka u« Primerjava obeh metod pa govor? v
prid metode kumulatlv, ker odpade za Izračunavanje pomožnih ko¬

ličin vsako množenje« Razen tega pa dobimo kot postranski re¬

zultat Se kumulativno vrsto frekvenc, k? more služit? za anali¬
zo frekvenčne porazdelitve«

7»20
Sheppardov popravek « Ker je frekvenčna porazdelitev

le približna slika vrednost? v populaciji, k? je tem natančnej¬
ša, čim ožji so razredi, je tud? varianca, Izračunana Iz frek¬
venčne porazdelitve, le ocena variance, k? jo dobimo, če jo Iz¬
računamo Iz Individualnih vrednost?« Za unlmodalne, ne preveč
asimetrične porazdelitve, se pr? Izračunavanju aritmetične sre¬

dine Iz frekvenčnih porazdelitev učinek grupiranja v razrede v
vsot? Izravna« Pr? Izračunavanju variance Iz frekvenčnih poraz¬
delitev pa dobimo sistematično preveliko oceno« Učinek grupira¬
nja je odvisen od širine razredov In znaša 1^/12« Oceno varian¬
ce za unlmodalne, ne preveč asimetrične porazdelitve, Izračuna¬
no po prejšnjih postopkih, popravimo tako, da jo zmanjšamo za
popravni člen 1^/12« Tako dobimo obrazec
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(7.13)

Ta popravek Imenujemo Sheppardov popravek,.

Cist? smrekov sestoj A na Pokljuki izpolnjuje pogoj

za uporabo popravka, ker je porazdelitev unimodalna In se frek¬

vence v najn?žj?h In najvlžjlb razredih približujejo nič® Po¬
pravljena varianca je torej

<3p 0p = S 2 - 1 2/l2 = 64,3178 - 5 S/12 = 62,2345

popravljen s+andardn? odklon pa

6 n on = "Js 2 = "/62,2345 = 7,89 cmpop V PPR v * *
* i' ’

O
Popravljena varianca je od variance 6 = 62,3190, k? je Izra¬

čunana Iz osnovnih, negruplranlh vrednosti, različna le za

0,141 % t medtem ko je nepopravljena ocena variance prevelik«
za 3,2 %o

7 0 21

Zveza standardnega odklona z normalno pora zdei11v?jo»
Varlacljsk? razmak, kvartlln? odklon In tudi povprečen absolut¬

ni odklon so mere variacije, za katere je pomen In smisel do¬
kaj jasen® Navidezno pa je manj jasen standardni odklon, dokler

ga ne obravnavamo v zvezi z lastnostmi nekih frekvenčnih poraz-
de I1 tev o

Čeprav kasneje obravnavamo normalno porazdelitev po¬
sebej, navedimo nekaj lastnost? normalne porazdelitve v zvezi
s standardnim odklonom® Normalna porazdelitev je ena Izmed o-
snovnih teoretičnih porazdelitev In se v približku pod določe¬
nim? pogoji pogosto pojavlja tudi v praksi® Vse normalne poraz¬

delitve so sl med seboj podobne, med seboj se razlikujejo samo

po aritmetični sredini In standardnem odklonu® Vsaka normalna

porazdelitev je določena z aritmetično sredino In standardnim
odklonom® čeprav so posamezne normalne porazdelitve glede na
različne aritmetične sredine In standardne odklone različne,

velja splošna zakonitost, da je v razmaku

F - 6 do F + 6 68,27 % ali okroglo 2/3 vseh vrednosti j,
v razmaku
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x - 26 do x + 20 95,45 % al? okroglo 19/20 vseh vred¬
nost? ?n v razmaku

7-30 do 7 + 36 99,73 % ali praktično vse vrednosti v
popu I a c I j 1 0

Tl odnos? veljajo strogo za normalno porazdelitev«
Približno pa veljajo tud? za unlmodalne, simetrične In zvona¬
ste sts^alrhfe poražde 11 t^fc.

v razmakih x ! 6, x - 2S In x ! 36

Skupna varianca

7.22
Prednost variance pred drugim? meram? variacije je

tudi v tem, da moremo Iz podatkov o delnih populacijah Izraču¬
nat? skupno varianco, če poznamo za delne populacije, k? se¬
stavljajo skupno populacijo, število enot N,, aritmetične sre-

— 2 Kdlne X|(, In variance 6^. Te možnosti nimamo za nobeno drugo
mero variacije« Če upoštevamo osnovne obrazce o varianci, mo-

o
remo dokazati, da je skupna varianca S enaka

d - faŽ H, (xk - * faf Nkel (7«14)

Prvi člen v obrazcu je tehtan povprečen kvadratlčnl
odklon grupnlh sredin 7^ od skupne arltmetl.čne sredine za celo
populacijo 7« Drug? člen pa je tehtana aritmetična sredina Iz

2grupnlh varianc 6^«
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7.23
Za prfmer izračunajmo skupno varianco za premere v

borovem sestoju, ki je razdeljen po kakovost? v pet delov« Za

ta sestoj so osnovni podatki dani v tabel? 7.6. V tej tabeli

je tud? nakazan Izračun za skupno varianco«

Tabela 7«6 Izračun skupne variance za premere borovega sesto¬

ja iz grupnfh podatkov za pet oddelkov
(Vir: R« Frauendorfer: Planung und Durcbfuhrung
von Stfchprobe nabmen, Wlen, Munchen 1957)

_ k _ 25886,92 .
N 1202

ilNk <7k -x) 2 ♦ i 2Nk 62 18665,1548 13923,32

1202 1202

= 15,5284 + 11,5835 = 27,1119

7.24

Obrazec 7.14 za i zr ačunavanj e skupne variance pa ni

važen le, ker moremo z njim iz grupnfh podatkov izračunati

skupno varianco, temveč predvsem zato, ker moremo z njim skup¬
no varianco razdeliti v dva dela: v varianco med grupami in v

varianco v grupah. Ker so grupne aritmetične sredine izraz
splošnih pogojev v grupah, so razlike med grupnlm? aritmetični¬

mi sredinam? rezultat razlik v pogojih med grupami, torej re¬

zultat vpliva faktorjev, po katerem je populacija razdeljena

v grupe. Varianca med aritmetičnim? sredinami torej meri jakost
faktorja, po katerem Je populacija razdeljena v grupe. Od skup-
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ne variance 6^ = 27*1119 izvira 6 - = 15*5284 variance iz raz-

lik v kakovost? posameznih delov sestoja«. Zato imenujemo ta del

variance pojasnjena varianca o Če razlike v delovanju faktorjev

po delih ne bi vplivale na premere dreves* b? bile povprečne
debeline v vseh delih ena k®* varianca med grupnlm? sredinam!
pa nlčo Obratno pa so grupne variance rezultat vplivov drugih*
Individualnih faktorjev* ki vplivajo na premere dreves v posa¬

meznih dellho Povprečna varianc« Iz varianc v grupah je torej

merilo jakosti Individualnih nepojasnjenih vplivov v grupah po¬

pulacije« Zato Imenujemo-to varianco nepojasnjena varianca «. V
skrajnem primeru* da na drevesa razen kakovost? tal ne b?
vplival noben drug spreminjajoč faktor* bi bili premeri vseh
dreves v posameznih grupah enak?« V tem primeru b? bile grupne

variance In povprečna varianca Iz njih enaka n?č 0

Skupno varianco moremo torej po zgornjem postopku

razdelit? v del* k? Izvira Iz vpliva faktorjev* po katerem smo
populacijo razdelil? v grupe* In varianco* k? je rezultat osta¬
lih Individualnih vplivov« Zato moremo obrazec 7«12 pisati ana¬

litično v oblik?

el = <? + I7 -15'
2Skupna varianca 6^j * k? je rezultat faktorjev A In Individual¬

nih vplivov l* je vsota variance 6?* k? Izvira Iz faktorja A
2 nIn variance 6j* k? Izvira Iz vplivov Individualnih faktorjev«

Tako moremo za poljuben faktor določiti jakost njego¬

vega vpliva na proučevan? podatek« Populacijo po tem faktorju
razdelimo v grupe* Iz njih Izračunamo varianco med grupam! In
varianco v grupah In sklepamo: čim večji del skupne variance
odpade na varianco med grupami* tem večji je vpliv proučevanega

faktorja na pojav* k? ga proučujemo«
Kolik del skupne variance odpade na varianco med

grupami* pa nazorneje prikažemo v relativnem številu* če posta¬
vimo skupno varianco enako 1 In Izračunamo v delih od enote

prispevka vsakega dela variance«
V našem primeru od skupne variance odpade 15,53/27*11

= 0,573 al? 57*3 % na vpliv razlik v kakovost? delov« Iz tega

sklepamo* da je razmeroma velik del skupne variance pojasnjen

z razlikam? v kakovost? de Iov o
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Relativne mere variacije

7.25

Absolutne mere variacije:, kf smo jih obravnavali v
prejšnjih odstavkih, so primerljive le v omejenem obsegu. Nemo«

goče je,absolutne mere variacije primerjati za raznovrstne po¬
jave, čeprav so tl v vsebinski zvezi In bi bila primerjava va¬

riabilnosti pr I poročI j Iva. Absolutne mere variacije pd ne more¬
mo primerjati med seboj dostikrat niti za Istovrstne pojave«

Vzemimo za primer debeline dreves. Razlika 3 cm v debelini

dveh dreves je za debla, katerih povprečen premer je 10 cm,
zelo velika (30 %) , medterm ko je za debla, katerih povprečna

debelina je 60 cm, Ista razlika 3 cm komaj 5 torej znatno

manj pomembna. Enako velike absolutne razlike so relativno bolj

ali manj pomembne. Absolutne mere variacije so torej primerlji¬

ve le za Istovrstne pojave s približno enakimi sredinami. Zato
pri analiziranju pojavov dostikrat uporabljamo relativne mere
variacije. Te dobimo, če primerjamo absolutno mero variacije
z ustrezno srednjo vrednostjo.

Varfacljskl razmak najpogosteje primerjamo kar s sre¬

dino med naj*manjšo in največjo vrednostjo

x
v

2(x,max xmJ
*max + Xmin

(7.16)

kvartllnl odklon z mediano ali aritmetično sredino med obema

kvar11I orna

Q * Qj — Qf
Me Qj + Q}

(7.17)

povprečen absoluten odklon pa ali z aritmetično sredino ali pa
z mediano

ACj/M ADM/Me (7.18)

odvisno od tega, katera srednja vrednost je osnova za povprečen
a bsd I ut n! odkI on .

Ker pa je standardni odklon na j s o 11 d nejša mera varia¬

cije, je tudi relativna mera \narlaclje, ki Ima za osnovo stan¬
dardni odklon, najpomembnejša. Ta koeficient, ki ga Imenujemo
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koeficient variacije , je razmerje med standardnim odklonom, s
s katerim merimo jakost Individualnih vplivov In aritmetično
sredino, ki je odvisna od splošnih vplivov® Koeficient varlacl-
je KV 0 je razmerje standardnega odklona In aritmetične sredine

KV0 = ( 7 * 19 )

pogosto pa ga Izražamo v odstotkih

KV% = 100 4- (7.20)
x

S koeficientom variacije odstranimo vpliv različne

ravni za pr I mer jame pojave. Razen tega pa je KV neimenovano
število, zato z njim razširimo področje pr I mer I j I vost I In ana¬
lize variabilnosti na populacije z različnim? srednjim? vred¬

nostmi in na raznovrstne populacije®

7® 26
Vzemimo za primer borov sestoj, ki je po kakovosti

tal razdeljen v pet oddelkov I, II, lil, IV, V® Oddelek I je
najboljši, drugi pa so po rangu vedno slabše kakovosti, do naj¬

slabšega oddelke V® V tabeli 7.6 so po vrsti vnešeni podatki o
povprečnih premerih v prsni višini jT, o standardnih odklonih
premerov 6 In koeficienti variacije KV % za vseh pet delov.

Tabela 7®6 Pregled o variabilnosti premerov v prsni višini za
borov sestoj, razdeljen v pet delov I-V po kakovo¬

sti tel (po podatkih R® Frauendorfer: Planung und
Durchfuhrung von Stlchprobenahmen, W?en-Munchen 1957)

Analiza podatkov v tabel? 7®6 pokaže zanimivo sliko«

Če analiziramo standardni odklon po oddelkih, opazimo, da se s

slabšanjem kakovost? tal manjša tudi standardni odklon. To pa
je navidezno v protislovju s pričakovanjem® Boljši del? sesto-
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ja imajo verjetno bolj urejene In s tem tudi enotnejše pogoje
rasli kot slabši deli ses+oja. če pa standardne odklone primer¬

jamo s povprečnimi premeri, spoznamo, da je s+andardnl odklon

Sy = 2,65 cm za najslabši del ses+oja zago+ovo pomembnejši ko+

absolu+no večji s+andardnl odklon 6j = 4,08 cm za najboljši del

gozda, ker se prvi nanaša na del gozda z majhnim povprečnim pre¬

merom, med+em ko so drevesa v najbolj kakovos+nem delu v povpreč¬

ju več ko+ enkra+ debelejša. Pravilno sliko dajo v +em primeru

edino rela+lvne mere variacije. Resnično poka čej o koeflc I eniI

variacije, ki so Izračunani v tretji vrs+I tabele, ravno obrat¬

no oziroma pravilno sliko. Med+em ko je koeficient variacije za
najboljši del najmanjši, se večajo s padanjem v kakovos+l tal
posamezni h de Iov.
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8 KORELACIJA

8.1
Do sedaj smo proučevali le posamezne znake populacij

In brez zveze z drugimi znaki. Z Izoliranim opazovanjem In pro

učevanjem enega samega znaka prodremo dosti globoko v značilno

st? populacij. Vendar se pri lem ne dotaknemo važnega svojstva

pojavov, to je medsebojne odvisnosti. Že pri bežnem razmišlja¬

nju spoznamo, da so posamezne značilnosti pojavov odvisne od

niza faktorjev, k? vplivajo nanj. Tako je volumen drevesa od¬
visen od starosti, vrste drevja, lege kraja, kjer drevo raste
Itd« Prirastek volumna v enem letu je odvisen od starost? dre¬
vesa, drevesne vrste, povprečne letne temperature, množine pa¬

davin Itd. Enako opazimo, da je tudi specifična teža lesa od¬
visna od niza faktorjev, k? vplivajo na drevo itd«

8.2
Funkcijske odvisnosti . Pr? funkcijskih odvisnostih

vsak? vrednosti neodvisne spremen I j 1vke ustreza ena ali nekaj

točno določenih vrednost? za odvisno spremenljivko. Funkcijsko
zvezo med x in y izražamo s simbolom

f ( v ) y = f(x) (8.15

kaf pomeni, da je odvisna spremenljivka y funkcij* odvisne

spremenljivke x. Pri tem z f na splošno naznačlmo pravilo o

funkcijski zvezi med x in y.

Tako je na primer z enačbo

ž-x x y - 2 + 3x + x 2 (8.2)

dano pravilo, s katerim moremo k vsaki vrednosti x poiskat?

ustrezno vrednost y.
Funkcijsko odvisnost med dvema spremenljivkama more¬

mo podati tudi s tabelo, v kateri so vpisani pari ustreznih po
sameznih vrednosti za x Jn y. Tako imamo za zgornji primer v
tabel? 8.1 dane dvojice vrednosti x 1 n y za nekaj pozitivnih,

celih vrednost?"za x.

Tabela 8.1 Tabela funkcije y = 2 + 3x + x^

x O 1 2 3 4 5 6
y 2 6 12 20 30 42 56
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Seveda s tabelo dvojic vrednosti ne moremo vselej Izčrpat? vseh

možnih vrednosti za neodvisno spremenljivko.

Pravilo o odvisnosti y od x pa moremo dat? tudi gra¬

fično. V pravokotnem koordinatnem sistemu s točkam? oziroma s

krivuljam? prikažemo pravilo, po katerem najdemo vrednstlm ne¬
odvisne spremenljivke x ustrezne vrednost? y. Za zgornji primer
je funkcija dana v sliki 8.1.

Slika 8.1 Slika funkcije y = 2 + 3x + x^

Korelacijske odvisnosti

8.3

Pr? opazovanju množičnih pojavov pa odvisnost v no¬
benem primeru n? funkcijska. Volumen danega drevesa je vseka¬
kor odvisen od starosti, vendar ta odvisnost n? funkcijska. Za
drevesa iste starost? je volumen po pravilu različen, kar n? v

skladu s funkcijsko odvisnostjo. Razlog za to je v tem, da na

volumen ne vpliva samo starost, temveč niz drugih, individual¬

nih vplivov. Zato je volumen enako starih dreves različen. Če¬
prav v splošnem pričakujemo, da Ima starejše drevo večji volu¬
men, more zaradi individualnih vplivov imet? v posameznem pri-
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meru starejše drevo tudi manjši volumen kot mlajše« V splošnem

pa je vol umen vež ji, čim starejše je drevo« Iz tega zaključimo

naslednje. Zaradi Individualnih vplivov, ki vplivajo na vsak

pojav, v naravi ne zasledimo funkcijskih odvisnosti, kljub te¬
mu pa so pojavi med seboj odvisni. Te vrste odvisnosti Imenuje¬

mo, za razliko od funkcijskih, korelacljske odvisnosti . Zakoni¬
tost korelacljske odvisnost? ne velja v vsakem posameznem pri¬

meru, temveč na splošno v množici pojavov. Zato odkrijemo ko¬

relacljske odvisnost? med pojav? le z množičnim proučevanjem
p o j a v ov.

8.4

Vzročne In čiste korelacljske odvisnosti . Pr? prou¬

čevanju odvisnost? volumna posameznih dreves od starosti opa¬

zimo, da starost vpliva na volumen, ne pa obratno. V tem smi¬
slu vsebinsko tud? delimo znake na faktorlalne In rezu!tat?vne.
Vselej, ko je od dveh odvisnih pojavov eden faktor, drugi pa re¬

zultat, govorimo o vzročnih koreiac?jskI h odvisnostih . Takih

primerov proučevanja imamo največ. Prirastek je vzročno pove¬

zan s količino padavin In povprečno temperaturo, višina dreve¬
sa s starostjo Itd«

Imamo pa tudi korelacljske odvisnost? In zveze, k?
niso vzročne. Če n.pr. opazujemo pr? posameznih drevesih debe¬

lino skorje na severni ?n južni stran? drevesa, spoznamo, da
sta debelin? skorje v različnih smereh v korelacljskf zvezi

oziroma odvisnosti. Vendar ta odvisnost n? vzročna. Ne moremo
namreč trditi, da debelina skorje na južni strani vpliva na de¬
belino skorje drevesa na severni strani, nit? obratno. Kljub
temu pa sta debelin? skorje v naznačenih smereh v odvisnosti.

To pa zato, ker na debelino skorje na južni In severni stran?
vplivajo pr? Istem drevesu Isti faktorji. Rezultat teh faktor¬
jev je posredna odvisnost skorje na severni fn južni stran?« V
takih primerih govorimo o čistih kore I a c I jskI h odvisnostih In
zvezah.
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Prikazovanje kore IacijskI h odvisnost?

8.5

Tabela parov vrednosti . Na j enos tavne j 51 in na j ob?čaj¬

ne jš i prikaz korelacljske odvisnost? med dvema pojavom* je tabe¬

la parov vrednosti za znaka x in y za posamezne enote v popula¬

ciji.

Tako imamo v tabel? 8.2 podatke o premerih (x) in

povprečni debelin? skorje (y) v smeri sever-jug za dvajset

dreves mariiandske topole z Otoka.

Tabela 8.2 Premer? in povprečna debelina skorje v smer? sever-

jug za dvajset dreves mariiandske topole z Otoka

Iz zgornjih podatkov opazimo, da se v splošnem debe¬

lina skorje veča, čim večji je premer drevesa. V Individualnih

primerih ,pa ta zakonitost ne pride vselej do izraza« Tako ima

n.pr. tretje drevo premer 45 cm, debelino skorje pa 26 mm, če¬
trto drevo pa ima večji premer (49 cm), debelina skorje pa je
manjša (22 mm).

8.6
Korelacijskl grafikon . Zgornje podatke grafično pri¬

kažemo v kore la c?jskem grafikonu v pravokotnem koordinatnem
sistemu tako, da par podatkov za vsako drevo ponazorimo s toč¬
ko v pravokotnem koordinatnem sistemu, v katerem je premer dre¬

vesa (x|) abscisa, povprečna debelina skorje (y|) pa ordinata.
Iz gostitve točk v korelacijskem grafikonu nazorno

vidimo, da velja splošna težnja, da se povprečna debelina skor¬
je veča,- če se veča premer drevesa. V splošnem so ordinate točk
vedno večje, čim večje so abscise. V Individualnih primerih pa
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opazimo več odstopanj od tega pravila.

35 40 45 50 55 60 65 70 75 80
premer cm

Slika 8.2 Korelacfjskl gratikon odvisnosti med
premerom in povprečno debelino skorje
za martlandsko topolo z Otoka

Zaradi splošne problematike je v sliki 8.3 narisan
še korelacijsk? gratikon, ki kaže odvisnost volumna od premera
za 50 modelnih smrekovih dreves sestoja na Pokljuki.
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Slika 8«3 Korelacljskl grafikon med premerom In

volumnom za 50 modelnih smrekovih dreves
poskusnega sesfoja na Pokljuki

8,7

Koreiacljska tabela « Pr? proučevanju enega samega

znaka da frekvenčna porazdelffev pregledno sliko o variiranju
proučevanega znaka® Enako da kombinacijska fabela med korellra-
nIma znakoma pregledno sliko o korelacijsk? odvlsnosf? za veli-

ke populacije«. Ta fabela, k? jo Imenujemo korelacljska fabela ,

Ima vse prednost? In hibe frekvenčnih porazdelitev, ker je v

stvar? frekvenčna porazdelitev po dveh znakih hkrati® Korela¬
cljska tabela je pregledna In služi kot osnova za numerično
proučevanje kore I a c?jsk5 h odvisnosti, je pa nenatančna In to
tem bolj, čim širši so razred? bodisi po znaku x ali y, Enako

=-108»



kot pr? frekvenčni pora zde!? + v ?, je tudi pr? koreiacijski tabe-

I? v vsakem posameznem primeru problem z izbiro širine razre¬
dov za znak x oziroma y. Ta ne sme b ? + T niti premajhna (tabela

nepregledna), niti prevelika (zakonitosti ne pridejo do izraze).

Tabela 8*3 Korelacijska tabela med širino branike in specifič-
' \

no težo za zeleno duglazijo
(Vir: Katedra za tehnologijo lese FAGV)

Za primer je v tabeli 8*3 prikazan® korelacijska ta¬

bela o odvisnost? specifične teže za zeieno duglazijo od širi¬
ne branike za N = 3376 meritev«

3Frekvenca 1 v razredu 600-619 kg/rn in 4,0-4,9 mm

za širino branike pomeni, da je v skupnem en primer, da je spe¬

cifična teža enaka od 600 kg/m^ do pod 620 kg/m^, širina brani¬

ke za ta primer pa 4,0 mm do pod 5,0 mm. Analogen pomen imajo
tudi druge frekvence. Korelacijska tabela je zelo podobna ko-
relacijskemu grafikonu, le da imamo namesto točk s točnimi ko-
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ord 5 nata m! Število enof v posameznih) poljih.

808
Znač j I nost ? kore la cT j sk ih odvisnost? ,, S primerjavo

obeh kore Iac?jsk?h grafikonov in korelacijske tabele napravimo
pomembne zaključke o kore Iac?j s kih odvisnostih,

V obeh primerih se ordina+e v meglic? točk, k? po¬
nazarja jo podalke za posamezno drevo, večajo, če se večajo ab¬
scise, V obeh primerih govorimo za+o o pozitivni korelacijski
povezanosti, ker se en podatek veča, če se veča drugi, V sploš¬
nem se veča debelina skorje, če se veča premer. Podobno je z
volumnom, Niso pa vse korelacijske odvisnosti pozitivne. Pr?
proučevanju specifične teže v odvisnosti od širine branike na¬
letimo na primer na nega t j vno korelacijsko odvisnost, ker se
specifična teža v splošnem manjša, če se širina branike veča,

V primeru odvisnosti debeline skorje od premera o-
pazimo, da se točke goste v nek? določeni smeri, ki bi bila za
ta primer verjetno premica, V takih primerih govorimo o line ¬
arnih odv i snostih , za razliko od primerov, kakršen je primer
odvisnost? volumna od premera, v katerem smer povezanosti n?
premica, temveč krivulja, V takih primerih govorimo o krivulj -
čn ? h odv 1 snost? h ,

Pr? odvisnost? debeline skorje od premera je smer
odvisnosti manj izrazita kot pri odvisnosti volumna od preme¬
rov. Če proučimo vzroke večje ali manjše izrazitosti smeri od¬
visnosti, spoznamo, da je vzrok temu večja ali manjša jakost
individualnih vplivov. V skrajnem) primeru, če individualnih
vplivov ne bf bilo, bi bila odvisnost funkcijska. Vse fočke bi
v fem primeru ležale na neki krivulji, k? bf podajala funkcijsko
odvisnost znaka y od x, Ker v vsakem primeru individualni vpli¬

vi v množičnih pojavih obstajajo, se točke od idealne smer?
oziroma krivulje, ki nakazuje, kakšna bi bila zveza med x in y,
če individualnih vplivov ne bi bilo, odklanjajo navzgor in
navzdol, I? odkloni so tem manjši ?n smer tem izrazitejša, čim
manjši so individualni vpliv?« Odklon? so pa tem večji oziroma
smer tem bolj zabrisana, čim večji so individualni vplivi. Ide¬
alno krivuljo, k? pokaže, kakšna bi bila zveza med proučevani¬
ma pojavoma, če b? nanju ne delovali individualni vplivi, ime-
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nujemo regresljske krivuljo «
Pojava pa sfa fem bolj odvisna, čim manjši so indi¬

vidualni vpliv? oziroma čim izrazitejša je smer odvisnosti. V

splošnem je stopnja odvisnost? večja ali manjša. Največja je v
ekstremnem primeru pr? funkcijski odvisnosti, najmanjša pa je
v primeru, če pojava nista odvisna In v meglic? točk n? mogoče
začrtati določene smer?«

Problem proučevanja korelacI j s kfh odvisnost? sestoji

v glavnem v tem, da za proučevane pojave poiščemo regresljsko
krivuljo In Izračunamo koeficient stopnje odvisnosti«

Na splošno pa nimamo ene same regresljske krivulje,
temveč dve« Pr? čistih kore I a cl j s k I h odvisnostih moremo rtamreč

proučevati, kako je y odvisen od x al? obratno kako je x odvi¬

sen od y. Tako pri proučevanju korelac?jske povezanost? med

premerom In debelino lubja Iščemo regresljske krivulje, k? po¬

kažejo, kako je debelina lubja odvisna od premera al? obratno,
kako je premer dreves odvisen od. debeline lubja«

Določanje regresi j skl h krivulj

8.9
Prostoročna metoda . Najenostavnejši način za določa¬

nje regresijsklh krivulj je prostoročna metoda« Po tej metod?

glede na položaj meglice točk v kore I a c?jskem grafikonu prosto

ročno vrišemo krivuljo, ki poteka med točkami tako, da se toč¬

kam čim bolje prilega. Ta način je sicer subjektiven, Ima pa to

dobro lastnost, da je hiter In enostaven. Zato ga običajno upo
rahljamo pr? analizah odvisnosti, da z njim ugotovimo tip kri¬
vulje alf druge lastnost? regresijsklh krivulj, k? so važne za

analitično proučevanje regresije«

8.10
Metoda sredi n « Če simboliko za funkcijske odvlsnosfl

prenesemo na korelacijske odvlsnosfl, z enačbo

/* f(x.l) 18.3)

naznačlmo, da je y odvisen od x In individualnih vplivov, kafe

re izrazimo z enofnlm simbolom I«
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Izkaže se, da je za praktično proučevanje koristna
predpostavka, da sta rezultat vpliva x In rezultat vpliva Indi¬
vidualnih faktorjev na y v aditivni zvezi

f X 5 y = f(x) + e(I) (8.4)'

Učinek Individualnih vplivov je bodisi pozitiven ali

negativen In predpostavi jamo* da se v povprečju, če že ne uniči,

vsaj omili. Če za dano vrednost Izračunamo Iz vseh vredno-

st? y, ki tej vrednosti ustrezajo, povprečje, dobimo

yk = f(xk) + e(I) = f(xk) (8 0 5)

Ker je povprečje za f(x^), če ga Izračunamo pri stalnem x^,

konstanta, je povprečje TTx^T = f^^). To pa je ordinata f{x^)
na regresljskl krivulji za vrednost Ker je povprečje Iz

učinka Individualnih vplivov po predpostavk? enako nič

/e(I)=0/, zaključimo, da dobimo ordinato regresljske krivulje
za vrednost X|,, če 'zračunamo povprečje Iz vrednost? y za vse

enote, ki Imajo Isto vrednost x^. Če Izračunamo povprečje 7^

za različne vrednost? x^, dobimo niz točk (7^, 7^* k? leže na
oziroma v bližini regresljske krivulje. Če zvežemo te točke
sredin, dobimo lomljeno črto, k? nazorno pokaže odvisnost y od
x In jo smatramo za regresljske črto.

8.11
Iz korelacljske tabele 8.3 o odvisnost? specifične

teže od širine branike moremo Izračunat? vrsto povprečnih spe¬
cifičnih tež za posamezne grupe branike po 1 mm. Tako dobimo
naslednjo vrsto sredin: (Glej tabelo na naslednji strani.)

Tl podatki so narisan? v grafikonu v sl. 8.4. Iz

slike sredin je nazorno razvidno, da je regresija krlvuljčna,
ker se z večanjem širine branike specifična teža najprej dvig¬
ne, nato pa v krivulji polagoma pada In sicer se spremembe v

specifični tež? manjšajo, čim širša je branika.

/
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Tabela 8 0 4 Povprečna specifična feža pril različnih širinah

branike za les zelene duglazije«

kg/m3

o\ I I 1 I I I I 1 M 1 1 I i I .1 ! .L-.LJ
0 1 2 3 4 5 6 7 5 9 tO
širina branike mm

Silka 8 0 4 Regresljska čria grupnlh sredin za spe¬

cifično fe?o lesa za zeleno duglazijo v

odvlsnosff od širine branike
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8 o 12
Če Imamo Individualne podatke, ustreza posamezni

vrednost? X| ena al? par vrednost? za y. Zato za posamezne
vrednost? x ne moremo Izračunati aritmetične sredine za y« V

tem primeru sl pomagamo tako, da zgruplramo enote po znaku x

v razrede In Izračunamo za posamezne grupe povprečja In y^ 0

Kot točke na regresljsk? krivulji vzamemo točke s koordlnata-
mi (jT^, 7k * o Grupe ne smejo biti niti preobširne (regresljsk«

krivulja Izravnana) niti premalo zasedene (učinek individual¬

nih vplivov se ne odstrani)«

Če je število enot v populaciji majhno, dobimo po

zgornjem postopku malo grup oziroma malo točk na regresljsk?

črt? o

Tako v našem primeru o odvisnosti debeline skorje od

premera iz tabele 8«2 dobimo samo dve grupn? sredini, če vza¬
memo v vsako grupo po deset dreves« V takih primerih s? poma¬
gamo z drsečim? sredinam?«

*»»■

Ce uredimo drevesa po velikost? premerov v ranžirno

vrsto, dobimo enajst grup po deset dreves, če vzamemo vanje

enote od 1 do 10, od 2 do 11, od 3 do 12 Itd. do zadnje od 11
do 20« Tako dobimo namesto dveh ločenih grup 11 grup, k? se si¬
cer med seboj prekrivajo, dajo pa osnovo za Izračun enajstih
točk, kf so na alt v bližin? regresljske črte. V tabel? 8.5 je

za ta primer nakazano, kako Izračunamo vrst? drsečih sredin za

premer In debelino skorje.

Vsoto za prvih deset enot dobimo s seštevanjem prvih
desetih podatkov n.pr. za premer: S.j .j =40+41+45+.. .+52+53 = 477.

Vsoto podatkov od druge do enajste enote n? treba

računati direktno. Ker poznamo vsoto prvih desetih podatkov,

dobimo naslednjo vsoto, če enajst? podatek prištejemo In prvi
podatek odštejemo od prve vsote: Torej ^ = 477 + 54 - 40 =
= 491. Še enostavneje pa je, da prvi vsot? prištejemo razliko
med enajstim In prvim podatkom: 477 + (+14) = 491. Iz te vsote

dobimo na podoben način S^, S-j ^ Itd. do konca vrste. Če doblje¬

ne drseče vsote po deset podatkov za premer In debeline skorje
delimo z deset, dobimo ena jst-čIensko vrsto koordinat za sredi¬

ne >Tk ? n 7k .

'I
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Tabel« 8»5 Izračun koordinat za regresljsko črto drsečih sre'
din za odvisnost debeline skorje od premera drevesa

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

y?
24.3
25.0
25.8
26.1
26.5
26.9
27.5
28.4
29.5
30,0
30.6

Slika 8*5 Regresijska črta
beline skor j e od

drseč!h sredi n za
premera dreves

odvisnost de-
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Dobljene drseče sredine so vnešene v korelacljsk? grafl-
kon» Slika 8*5 pokaže, kako sta premer ?n debelina skorje pozi¬
tivno odvisna In da je regresija precej linearna*

8*13

Analitična metoda za določanje regresljsklh krivuljo
Teoretično najustreznejša je za regresljsko analizo analitič¬
na metoda, pr? kateri poiščemo regresljsko krivuljo po metod?
najmanjših kvadratov«, Po tej metod? po predhodni analiz? podat¬
kov določimo najprej tip In analitično obliko funkcije

v -N . y' = f (x,aJ bJ c ...) ( 8 * 6 )

k? glede na stvarne podatke ustreza kot regresljska funkcija®
aoboCooo v obrazcu so parametri, k? določajo konkretno

funkcijo danega tipa® Po metod? najmanjših kvadratov je Izmed
vseh možnih funkcij Izbranega tipa regresljska funkcija tista,
za katero so vrednost? parametrov take, da zadoščajo pogoju,
da je vsota kvadratov odklonov stvarnih vrednosti za y od
ustreznih vrednost? y 1 najmanjša

£(y - y') 2 = ][[y -f(xJaJ b,c ...)f s F(a,b,c...) = min (8*75

Po znanih pravilih za določanje ekstremov za funkcije več spre¬
menljivk je Izraz Iz 8*7 najmanjši, če parametri zadoščajo po¬
goju, da so parcialni odvodi po posameznih parametrih enaki O*

dF(aAc:.J. - o ; s o ; = q .... (8*85
da db dc

Tako dobimo toliko enačb, kolikor parametrov Ima regre¬
sljska funkcija* Iz zgornjega slsfema enačb, k? jih Imenujemo
norma I ne e načbe , Izračunamo vrednosf! za parametre za dano re¬
gresljsko funkcijo*

8.14
Mera stopnje odvisnosti * Če upoštevamo obrazce 8*4, 8*6

In 8*7 zaključimo, da je

■ki<y-y> 2 - jjim * - «*>] ! -- -«/ < s. ? i
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povprečen kvadratičen odklon s+varnTh vrednosti za y od regre¬

si j s ke krivulje y* merilo jakosti individualnih vplivov I, k?

razen znaka x vplivajo na znak y.
2

Varianco S g imenujemo nepojasnjeno varianco , ker iz¬
vira Iz individualnih vplivov, katerih ne poznamo. Nepojasnjene

varianca je tem manjša, čim manjši so individualni vplivi ozi¬
roma čim večja je stopnja povezanosti in obratno. Ker je razi?
ka med skupno varianco za y in nepojasnjeno varianco 6^ -

varianca, k? je pojasnjena z odvisnostjo y od x, kvocient

r 2
S e>

V* ; - £ (8010)

pove, kolik del od skupne varjance je pojasnjen z odvisnostjo
y od x. Koeficient I , ki ga imenujemo determinacijski koefi ¬

cient , uporabljamo za merilo jakosti odvisnost? znaka y od x.
N/

Cim večja je odvisnost, tem večji je namreč determinacijski
koeficient. Pr? funkcijski odvisnosti je determinacijski koe¬
ficient največji in sicer 1, ker je vsa variabilnost pojasnje¬
na z odvisnostjo y od x. De term?na cij s k? koeficient ?ma vred¬
nost? med 0 do 1. Če pojava nista odvisna, je determinacijski
koeficient 0, in je tem večji, čim večja je stopnja odvisno¬

sti znaka y od x.
Včasih merimo jakost odvisnost? s kvadratnim korenom

iz determ?na c?jskega koeficienta

v.* 7 -
6>

( 8.-11 )

Ta koeficient imenujemo na splošno i nde ks kore Iac T j e
Iz obrazca 8.10 moremo izračunati standardni odklon,

k? je merilo jakost? ? nd ? vi dua i n itr vplivov.

•V' - z ( 8 . 12 )

Če je odvisnost y od x tesna, se stvarne vrednost?
za y ne odklanjajo dosti od vrednosti y f , k? jih izračunamo iz

regresijske enačbe, če poznamo za posamezne enote vrednosti x.

Zato moremo v takih primerih vzeti izračunane vred¬
nosti y f za ocene stvarnih vrednosti y. V koliko se stvarna
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vrednost y odklanja od ocene y f , ne vemo natančno. Pač pa vemo,
da približno 2/3 primerov odklonov ni večjih kot en standardni

odklon, da približno 19/20 odklonov n? večjih kot dva standard¬

na odklona ?n da skoro noben odklon n? večji kot trije stan¬

dardni odkloni. To povzamemo iz lastnosti? standardnih odklonov

iz odstavka 7.21. Zato imenujemo standardni odklon tudi

standardno napako ocene , ker daje informacijo o tem, kolik je

možen odklon stvarne vrednosti od ocene y', ki jo dobimo z re¬

gres ? j s ko krivuljo, če za dano enoto vemo, kolika je vrednost x«

Linearna regresija in korelacija

8.15

V naravi najdemo dosti pojavov, k? so povezani line¬

arno. Za dosstl pojavov pa je regresijska krivulja premici tako
podobna, da moremo zanje v približku vzeti, da so povezani li¬
nearno. Tudi za krfvuljčne odvisnosti moremo regresijo na kraj¬
šem razmaku v približku smatrati za linearno. Zato s proučeva¬
njem linearne regresij* rešujemo velik del problemov s področja

korelac?jskih odvisnost? med pojavi. Zato se bomo omejili na
proučevanje linearne odvisnosti.

če je regresijska krivulja premica, je v splošnem
enačba premice

“■ < -V ) y‘ - O * b (x - x) (8.13)

Po metodi najmanjših kvadratov je za parametra a in b za regre¬
si jsko premico,pogoj, da je

Z(y ~ y')2 = X[y-a-b(x-x)] 2 - F(a,b) - min (8.14)

Če izraz 8.14 parcialno odvajamo po a in b, dobimo naslednji
o

norma I n ? enačb ? :

dF(da/-t = -2Z[y-a-b(x-x)]= 0

° = ~ ^Z[y - 0- b(x- x)](x -x) = 0

Iz teh dveh normalnih enačb povzamemo, da izračunamo
parametra a In b po obrazcih
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o = y b =. Z(x~ x)(y - y)
I(x - x ) 2

(8.16)

Če v obrazcu za izračunavanje parametra b, ki ga imenujemo

regresijski koeficient , izraz v števcu in imenovalci delimo s

številom enot N, dobimo v imenovalcu varianco za znak X, v

števcu pa Izraz

Z(* - *)(y - y)
"V N 18*17)

k? ga Imenujemo kovaria nca 0 Kovarianca je po definiciji povpre

čen produkt odklonov znakov x i n y od ustreznih aritmetičnih

sredin« Če vnesemo vrednosti parametrov v obrazec (8<>13) za

premico, dobimo, da je

y' = y + b,(x - x) ; _ c*x
Gr

(8.18)

Ker moremo pr? č?s>tih korelacijskih povezavah iskati

razen odvisnosti y od x tud? odvisnost znaka x od y, dobimo z

analognim sklepanjem poleg zgornje, ki jo imenujemo prvo regre

sijsko premico, če drugo regresijsko premico

x' = X + bJy - y) h- (8.19)

Medtem ko prvi regresijski koeficient b^ pove, za koliko se v

splošnem spremeni vrednost za y, če se spremen? x za enoto,

pove drugi regresijski koeficient bg, za koliko se v splošnem

spremeni x, če se y spremeni za enoto«

Peter iti j na c ? j sk j koeficient pr? linearni korelaciji

izračunamo pa ga po obrazcuzaznamujemo z r xy ■

r*r =

2

$*}
( 8 « 20 )

Kva drat* n I koren Iz determinaci jskega koeficienta, ki ga v

splošnem imenujemo Indeks korelacije, imenujemo pr? linearni

korelacij? koeficient korelacije

rxy ~
'~xy

$*y
( 8 . 21 )
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Koeficient korelacije r Ima vrednost! med -1 do +1 • Če je ko._

relacija pozitivna, je korelacfjskl koeficient pozitiven, pr?
negativni linearni korelacij? pa je korelacfjskl koeficient ne¬
gativen« Absolutna vrednost kore Iacljskega koeficienta pa je

tem večja, čim večja je stopnja odvisnost? 3 In je ena, kadar je

odvisnost linearna In funkcijska«

8 o 1 6
Izračunavanje pokazateljev za linearno regresijo In

kore ladjo « Če Izračunavamo pokazatelje linearne korelacije,

najprej Izračunamo Iz osnovnih podatkov za x in y količine x,
_ 2 d
y, 6 , S,, ?n c . Vse izmed teh količin, razen kovarlance,x y x y
že znamo Izračunavat?«

Enako kot prt Izračunavanju varianc Iz negrupiranih

podatkov se tud? pri izračunavanju pokazateljev linearne regre¬

sije In korelacije obnese metoda pomožnega znaka« Pr? tem uve¬

demo za znak x In za znak y pomožna znaka

u = x - x0 ; v = y - y0 (8.22)

tako, da od osnovnih vrednost? za znak x odštejemo neko ustrez¬

no vrednost x od y pa ustrezno vrednost y Q tako, da dobimo

čim prlkladnejše vrednosti za pomožna znaka u In v

n I sredin? x In

obraze? h

pri čemer je U = ]T u; V = ]T v

Iz teh vmesnih rezultatov pa Izračunamo pokazatelje linearne

korelacije po obrazcih 8.18 do 8.21.

o
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8.17
Iz kore I a c?jskega grafikona v sliki 8.2 smo ugoto-

vili, da je debelina skorje za marllandsko fopolo linearno po¬
vezana s premerom drevesa. V +abeI5 8.6 so po postopku, ki je
nakazan v odstavku 8.16, izračunani pokazatelji linearne re¬
gresije in korelacije po shemi, ki tehnično najbolj ustreza za
izračunavanje.
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I

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Tabela 8.6 Izračun pokazateljev linearne regresije in korela¬
cije za povezanost debeline skorje In premera dreves za
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Slika 806 KorelacTjsk! grafikon za povezanost debeline
skorje (y) in premera dreves (x) za merilandsko iopolo z

regresijskima premicama.
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9. TEORETIČNE PORAZDELITVE

9.1
Pomen proučevanja teoretičnih porazde I itev . Do sedaj

obravnavane frekvenčne porazdelitve so bile rezultat statistič¬
nega opazovanja stvarnih populacij. Stvarne frekvenčne porazde¬
litve so na j raz I ičnejš?h oblik, odvisno od faktorjev in pogo¬
jev, v katerih se je proučevana populacija razvijala.

Kazen porazdelitev, ki jih dobimo z opazovanjem stvar¬
nih populacij, pa imamo tud? teoretične frekvenčne porazdelitve,
k? jih sestavimo na osnov? logičnih predpostavk in izpeljemo
matematično. Teoretične porazdelitve so važne za razvoj stati¬
stične teorije in prakse in jih uporabljamo v najrazličnejših
postopkih pri statistični analizi.

Proučevanje teoretičnih porazdelitev je važno iz več
v idikov:

a) Če se stvarna porazdelitev sklada s teoretično po¬
razdelitvijo, do katere pridemo z določenimi predpostavkami;
v nekaterih primerih iz tega sklepamo na stvarne pogoje, ki so
identični pogojem, pod katerimi je sestavljena teoretična po¬
razdelitev. Tako sklepamo, da je n.pr. sestoj enodoben ?n čist
in da so nanj vplivali samo slučajni, nebistven? faktorji, če
je stvarna porazdelitev premerov podobna normalni. Normalna po¬
razdelitev je namreč teoretično izdelana pod predpostavko, da
na pojav razen slučajnih vplivov ne delujejo nobeni drugi 5n-
d! v Idua Ini vplivi.

bi Če ne poznamo stvarne porazdelitve, s teoretični¬
mi por az de I i tva m? ugotovimo, kakšna bi bila približno stvarna
porazdelitev pojava, če poznamo faktorje in predpostavke, kate¬
rim stvarna populacija oziroma enote zadoščajo. Za dan sestoj
poznamo število dreves, aritmetično sredino in standardni od¬
klon. Če predpostavljamo, da je sestoj enodoben in čist, skle¬
pamo, da se premeri p©razdeljujejo v normalni porazdelitvi.
Pr? tej predpostavki moremo izračunati, koliko je približno
stvarno število dreves v posameznih debelinskih stopnjah, ne
da poznamo individualne premere dreves.

c) Posebno pomembne pa so teoretične porazdelitve v
vzorčenju, ki je posebna in najj pomembnejša^ metoda ocenjevanja v
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s tatistlk i , in pri preizkušanju hipotez, k? je osnova za pose b-
no statistično disciplino - planiranje eksperimentov.

Normalna por a zde I j tev

9.2
Normalna porazdelitev je ena izmed najvažnejših, a

tudi najbolj poznanih teoretičnih porazdeIitev» Veliko pojavov
se porazdeljuje v unimodalni, simetrični in zvonasti obliki,
kar so tipične značilnosti za normalno porazdelitev. Razen te¬
ga je normalna porazdelitev osnova za izpeljavo raznih drugih,
za statistično teorijo ?n prakso važnih porazdelitev, kot so:
t-por a zde I ? te v, "X -por azde I ? tev, F-por a zde I l te v. Pod določeni¬
mi pogoji preide v normalno porazdelitev večina teoretičnih
porazdelitev: binominalna, Poissonova, hipergeometrična in vse
tri zgoraj naštete: t-porazdeI?tev, X -porazdeI?te v in F-poraz-
de I ? tev.

9 o 3
Opis normalne por a zde I11ve . Normalna porazdelitev

je določena z dvema parametroma: aritmetično sredino M in stan¬
dardnim odklonom S . Gostota relativne frekvence <p(x) za nor¬
malno porazdelitev je dana s funkcijo

(X-M)2
~Yer C9.i)

Če narišemo zgornjo funkcijo tako, da je znak x abscisa, gosto¬
ta relativne frekvence <p(x) pa ordinata, dobimo funkcijsko sli¬
ko za normalno porazdeI?tev. Iz slike 9.1 vidimo, da je normal¬
na porazdelitev unimodalna, simetrična in zvonasta. Ker je sime¬
trična, velja, da je M = Me = Mo. Med meram? variacije: kvar-
tilnim odklonom Q, povprečnim absolutnim odklonom AD in stan¬
dardnim odklonom 6 pa veljajo za normalno porazdelitev nasled¬
nje zveze:

Q = 0,675 S =« 6 ?n
AD = 0,79796 % ~,6 .

Največja gostota je za x = M, od tu pa gosfota frekvence vztraj¬
no pada v obe smer?, čim bolj se oddaljujemo od modusa. Gostota

<p(x) = 6m
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relativne frekvence se asimptotično približuje abscisni osi,

če se x oddaljuje od modusa čez vse meje«

x v cm
Slika 9.1 Normalna porazdeli+ev premerov ža

sestoj z'Y ~ 30 cm, S= 3 era

Normalni porazdelitvi, ki imata enak standardni odkIou in raz¬

lični sredini, sta si podobni, le da sta premaknjeni ustrezno

razliki med aritmetičnima sredinama. Normalni porazdelitvi, za

kateri sta aritmetični sredini enaki, standardna odklona pa

različna, pa se razlikujeta po tem, da se normalna porazdeli¬
tev z manjšim standardnim odklonom porazdeljuje na ožjem raz¬

maku kot porazdelitev, za katero je standardni odklon večji.
Obe pa imata vrh (modus) za Isto vrednost x. Različne normalne

porazdelitve so med seboj podobne. Glede na velikost aritmetič¬

ne sredine pa so premaknjene v levo ali v desno, glede na veli¬
kost standardnega odklona pa se relativne frekvence porazdelju¬

jejo na ožjem ali širšem razmaku.
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9

Slika 9.2 Normalne porazdelitve z različnimi sre¬
dinam? in različnim? standardnimi odkloni

9.4
Določen i ntegra I

r*
P(x) = J <p(x)dx (9.2)

-OO

iz gostote relativne frekvence je funkcija zgornje meje x in

določa kumulativno relativno frekvenco za normalno porazdeli¬

tev. P(x) je monotono naraščajoča funkcija« Grafična slika ku¬
mulativne relativne frekvence ima tipično obliko iztegnjene čr¬

ke S (glej sliko 9.3). Kumulativna relativna frekvenca pove, ko¬
liki del frekvence pr? normalni porazdelitvi leži v razmaku od

- oo do x. Če poznamo funkcijo za kumulativno relativno frek¬

venco, moremo zlahka ugotoviti, kolika je relativna frekvenca

v kateremkoli razmaku x^ x^ Xg

f°(Xj 4 x 4. x2) * J <p(x)dx =Jcp(x)dx - j<p(x)dx = P(x2)~P(xf) (9«3
Xj -a> -oo
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P(x)
1,00

* \UiUU

25 30 35
X

S IT k a 9.3 Kumulativna normalna porazdelitev

9.5

Za vsako normalno porazdelitev je P(M) = 0,50.

Zaradi simetrije normalnih porazdelitev je za vsako normalno

porazdelitev polovica frekvence pod aritmetično sredino M. Na¬
dalje je ne glede na velikost parametrov M In 6 za vsako nor¬
malno porazdelitev

P(x = M + z.6) = P(z) (9.4)

Kumulativna relativna frekvenca za x = M +■ zS je za vsako nor¬
malno porazdelitev odvisna samo od koeficienta z, nič pa od pa¬
rametrov M in 6 . Iz tega dalje sklepamo, da je tudi frekvenca
v razmaku NA - z6 do M + z0 pri stalnem koeficientu z enaka

za vse distribucije, ne glede na velikost M in 6 .To sledi iz
zveze

f ° (M - z6 ^ x< M + z6 ) = P ( x= M+ z6 ) - P { x = M - z6 ) =

= P(z) - P(-z)
Tako je relativna frekvenca v razmaku enega standardnega odklo¬
na od aritmetične sredine navzdol in navzgor (od M - 6 do
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M + 0 ) za vse normalne porazdelitve enaka 0*6827, v razmaku od

M - 26 do M + 26 enaka 0,9545, v razmaku od M - 36 do

M + 36 enaka 0,9973 l+d.

9.6
Standardiz I ra n znak z . Pomen koeficienta z najbolje

spoznamo, če Izhajamo iz zveze med količinami z, x, M InS .

Iz obrazca

x - M + 2.6

dobimo, da je

» x - M
6

(9.5)

Za dano vrednost x je z, ki ga Imenujemo standardi¬
ziran znak, odklon osnovne vrednosti x od aritmetične sredine
M, merjen v standardnih odklonih S . Standardiziran znak z je
neimenovano Število in podaja mesto vrednosti v normalni poraz¬
delitvi. Za vse vrednosti, ki so večje kot aritmetična sredina

M, je z pozitiven, In obrafno, za vrednost? x, ki leže pod a -
ritmetično sredino, je z negativen. Za približno 2/3 (natančno
68,27 %\ vseh vrednost? v normalni porazdelitvi je z torej ab¬
solutno manjši kot 1. Analogno je za približno 19/20 (natančno

95,45 %) vseh vrednosti" z absolutno manjši kot 2, za skoro vse

(natančno 99,73 %) vrednosti pa z absolutno ni večji kot 3.

Vzemimo sestoj, ki se normalno porazdeljuje in ima
aritmetično sredino M £ 35 cm in 6=8 cm. Za drevo, ki Ima
premer x = 48 cm, ne vemo, al? je glede na ta sestoj drevo z
velikim al? majhnim premerom. Če pa izračunamo zanj ustrezni
standardiziran znak

z x - M _ 48 - 35

0 8
+ 1,625

spoznamo, da je drevo glede na drevesa vsega sestoja nad pov¬

prečjem in razmeroma veliko. Ustrezni z je namreč pozitiven in

razmeroma velik.
Kot vidimo Iz primera, s standardiziranim znakom, po¬

dobno, vendar na drug način kot s kvanti I n I m 1 rangi, določamo
mesto enote v populaciji.

-129 -



9.7

Standardizirana normalna porazdelitev , če se x poraz
deljuje v normalni porazdelitvi, se v normalni porazdelitvi po

razdeljuje tudi sta n dar d? z ? rann znak z, ker je z znakom x v li¬
nearni zvezi. Iz zveze

z = x - M
6

'i

zlahka dokažemo, da je za standardizira n znak aritmetična sre¬
dina = O, standardni odklon pa Sz = 1.

Sta ndardi z ? ra n znalk z se torej porazdeljuje normalno

s parametri Mz = O I n 6Z = 1.
Za to normalno porazdelitev, ki jo imenujemo sta nda r

dlzlrano normalno porazdelitev, je gostota relativne frekvence

<p(z) (9.6)

kumulativna relativna frekvenca P(z) pa

-00

(9.7)

V tablic? 9.1 imamo tabelirane podatke za gostoto relativne
frekvence za standardizirano normalno porazdelitev 9(z) in re¬

lativne frekvence <X(z) v razmaku o do z

(9.8)

za pozitivne vrednost? za z. Ker je normalna porazdelitev si¬
metrična, je $( Z ) s kumulativno relativno frekvenco v enostav¬
ni zvezi

, <■: P(z) = 0,50+fiz) (9.9)

Zato iz tablic za (z) P° obrazcu 9.9 dobimo posredno tudi ku¬
mulativne relativne frekvence P(z). Pri tem moramo upoštevati,
da je

§(-*) = - $(z) (9.10)

Zaradi enostavne zveze med osnovnim znakom tn stan¬
dardiziranim znakom tablice za standardizirano normalno poraz-
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Tabela 9*1 Gostota relativne frekvence za standardtz?ra no

/ / -i-z2 )normalno porazdelitev |yi(z) = ^==- e -2 J
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Tabela 9® 2 Re I a + ivna frekvenca za s+andardfz? rano normalno

O

132



delitev uporabljamo za katerokoli normalno porazdeI!+ev tako,

da najjprej vrednosti za znak x prevedemo v ustrezne vrednosti

za standardiziran?, znak, za dobljene z pa poiščemo ustrezne

vrednost? ordinat ali relativnih frekvenco

9„8
Prilagoditev normalne porazdelitve stvarni, poraz¬

de I itvT o S tablicam? za normalno porazdelitev moremo rešit?

problem, ki se v praks? pogosto pojavljao K dan? frekvenčni

porazdelitvi večkrat prilagajamo ustrezno normalno porazdeli¬
tev, da ju v nadaljnji analiz? primerjamo med seboj o Kot naj-
bolje prilagojeno normalno porazdelitev smatramo ono, k? Ima
enak obseg N, enako aritmetično sredino M in enak standardni

odklon 6 kot stvarna porazdelitev, kateri prilagajamo normal¬

no porazde11tev o
To nalogo rešimo s tablicam? za standardizirano nor¬

malno porazdelitev, k? je dana v tabeli 9<*2, s tako le;
al Za stvarno frekvenčno porazdelitev, kateri hočemo

prilagodit? normalno porazdelitev, poiščemo osnovne parametre:

obseg populacije N, aritmetično sredino M In standardni od¬

klon So
bi Meje razredov Iz stvarne porazdelitve najprej pre

vedemo po.obrazcu z^ = (x^ m o n - Mi/0 v s t a ndar d I z I ra ne

vrednost I o

c) Iz tablic za relativne frekvence za standardizira

no normalno porazdelitev po?ščemo §{ z) , k? ustrezajo mejam raz

redov z k ( m!n- x
dl Po obrazcu 9„9: P(zi = 0,50 + j* ( z ) Izračunamo ku¬

mulativno vrsto relativnih frekvenc P(zlo
el Če P(z) pomnožimo z obsegom populacije N, dobimo

teoretično kumulativno frekvenčno porazdelitev F£.<>
f) Razlike dveh zaporednih členov Iz vrste so

teoretične frekvence za prilagojeno normalno porazdelitev,,

9 0 9 ...
Za primer prilagodimo normalno porazdelitev frekvenč

ni porazdelitvi premerov za čisti smrekov sestoj A na Pokljuki
Iz tabele 3„4o Sestoj Ima N = 507 dreves. Zanj smo Izračunali,
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da je aritmetična sredin« M s 38,62 ero, standardni odklon pa
6 = 7 p 89 cm o

V tabel? 9o3 je nakazan Izračun prilagojene normalne
porazdelitve po postopka ?z prejšnjega odstavka«.

Tabela 9<>3 Prilagoditev norme 3rac porazdelitve za frekvenčno
porazdelitev premerov za čist? smrekov sestoj A rsa Pokljuki

Za spodnjo mejo v četrt? debelinski stopnji je n 0 pr 0
ustrezna vrednost za

'4,m? n
‘4,m? n

S

'4,m? n'

» M 5 - 38,62
7.S9

~~2 «99

V tabel? 9<>3 so v zadnjem stolpcu vpisane še stvarne
■frekvenčno Če stvarne frekvence primerjamo z dobljenim? ieore=
tičnlm? frekvencam? za pr?l«g©°en© porazde8?tev, vidimo, da raz
Sike niso znatne«, Večje razlike so edino v sedmi ?sn os m? debe =
I Inski stopnji«,

Nenavadno Izgled®, da teoretične frekvence niso cela,
temveč decimalna štev?la 0 Vendar je, glede na to, da so teore=
tične frekvence Izračunane vr ednos11, to ume strn©«,

34=



f r

premer cm

Slika 9.4 Frekvenčna porazdelitev premerov dreves

v čistem smrekovem sestoju A na Pokljuki,

s prilagojeno normalno porazdelitvijo
J

Verjetnostne porazdelitve

9.10
Predpostavljajmo, da poznamo osnove verjetnostnega

računa« (Glej Rajko Jamnik, Ljubljana, 1959s Matematika za
gozdarje, str. 263-296.) Porazdelitev relativnih frekvenc smatra¬
mo kot verjetnostno porazdelitev za določen statistični znak,
če vzamemo kot poskus v smislu verjetnostnega računa s I uča j nosten

Izbor posamezne enote populacije. Pogoj za slučajnostnl Izbor

je, da Ima vsaka enota enako možnost, da jo Izberemo, kot do¬
godek v smislu verjetnostnega računa pa vzamemo dejstvo, da Ima
Izbrana enota določeno vrednost znaka al? slučajnostne spremen¬
ljivke« Ta opredelitev verjetnost? se sklada z definicijo apri¬

orne verjetnost?« Tako moremo za sestoj Iz tabele 4.1 povzeti,
da je verjetnost, da slučajnostno Izberemo Izmed N = 507 dreves

drevo, za katerega je premer med 30 cm In 35 cm, enaka Pr =
0,233, ker je v tem razredu 23,3 % od vseh enot v populacij?«

Do verjetnosti pa pridemo aposterlorno tako, da po¬

navljamo slučajnosten Izbor In Iščemo relativno frekvenco po-
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gosfnostl, s katero Izbiramo slučajnostno Iz populacije dreve¬

sa s premeri 30-35 cm« Čim večkrat poskus izbora ponovimo, tem

bolj se relativna frekvenca pogostnosti približuje verjetnosti,

da s s lučajnostnlm Izborom Izberemo drevo s premerom 30 cm do

35 cm .

Pod Istim? pogoji smatramo za verjetnostne porazde¬
litve tud? relativne frekvence pr? feoreflčnlh porazde!Itvah«

Tablice relaflvnlh frekvenc za feoreflčne porazdelitve so ob¬

enem verjetnostne porazdelitve za določene slučajnostne spre¬
men I jIvke«

Za normalno porazdelitev Iz tablice o relativnih
frekvencah z) n«pr. razberemo, da je verjetnost, da Iz nor¬
malno porazdeljene vrednosti, s Iučajnostno Izberemo enoto, za

katero je standardiziran odklon vrednosti med z=0 In z=1,00,
enaka Pr = 0,3413, ker je

Pr (0< z< ? } = }(z) = yi(z)dz = 0,3414
o

Verjetnost, da Iz normalno porazdeljene populacije slučajnost-

no Izberemo enoto, za katero je standardiziran znak v razmaku

od -1,96 do +1,96, je enaka

Pr (-1,96< z<+1 ,96) =0,95

Iz tablic za relativne frekvence za normalno porazdelitev da¬

lje sklepamo, da je verjetnost, da Iz normalno porazdeljene po¬

pulacije z naključnim Izborom Izberemo enoto, za katero je stan¬

dardiziran znak z večji kot +1,645, enaka Pr=0,05 o Podobno mo¬
remo določit? verjetnost za z v poljubnem razmaku«

Pojem tveganja

9 o 11

Popolnoma gotovih dogodkov v življenju n? vellkOo
Za večino dogodkov je le neka določena verjetnost, da se zgode,,
Vendar smatramo dogodke, za katere je velika verjetnost, da se

zgode, praktično za gotove. Tako pri prečkanju ceste pričakuje¬

mo, da nas ne bo povozi I avto, čeprav to ni gotovo In je neka
verjetnost, da bomo povoženi® Pr? prekoračenju ceste zato tve¬
gamo, da bomo povoženi, ker je določena verjetnost, da se to
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zgod?o Če vzamemo, da se bo dogodek* ki je samo verjeten, zago¬
tovo zgod!!, več ali manj tvegamo« Stopnja tveganja je enaka

verjetnost?, da se dogodek, k! ga napovedujejo, ne zgod?«

Vs? zaključki, k? jih napravimo z metodam! statistič¬

ne indukcfje, zavestno vsebujejo določeno stopnjo tveoanja. Pr?

teh sklepih stopnjo tveganja ne samo poznamo, temveč jo moremo

po želj? uravnavati«

9.12
Pojem tveganja v statističnem smislu podrobneje po-

nazorlmo na normalni porazdeIItv?I
Vzemimo, da Imamo Idealen sestoj, v katerem se preme¬

ri dreves, merjen? v prsni višini, pora zde I juj e j o v normalni

porazdelitvi. Za to populacijo je povprečen premer y = 30 cm

In standardni odklon 0=3 cm.
Normalna krivulja relativnih frekvenc (k? je narisa¬

na v slik? 9.51 je slika o gostot? verjetnost? za slučajnostno
spremenljivko - premer drevesa, če Ima vsako drevo enako mož¬
nost, da ga Izberemo Iz populacije, al? z drugimi besedami, če

drevo Izberemo slučajnostno. Napravimo trditev: Če Iz populaci¬
je dreves slučajnostno Izberemo drevo, je premer Izbranega dre¬
vesa večji kot y = 24,1 cm In manjši kot y = 35,9 cm« Kot vi-
dlmo Iz slike, ta trditev n? absolutna In se more zgoditi, da

slučajno Izberemo drevo, k? Ima al? manjši premer kot 24,1 era

al? večji premer kot 35,9 cm. V populaciji so namreč drevesa,
k? Imajo premere tudi Izven tega razmaka. Verjetnost, da se na¬
ša trditev ne uresniči, je a. = 0,05. Trditev je napravljena s
tveganjem a= 0,05. To pomeni: če poskus slučajnostne Izbere
dreves ponavljamo, v povprečju v petih od sto al? v enem od

dvajset poskusov zgornja trditev ne drži. Če razmak zožimo, je

tveganje večje« če n.pr« trdimo: Slučajnostno Izbrano drevo Ima
premer v razmaku od 25,1 cm do 34,9 cm, je tveganje te trditve

a = 0,10.
Ta trditev se v povprečju v enem primeru od desetih

Izkaže za nepravilno« Nasprotno se stopnja tveganja zmanjša,

če razmak razširimo« Tako je premer za slučajnostno Izbralo
drevo s tveganjem a = 0,01 v razmaku med 22,3 cm do 37,7 cm.
Če to trditev preskušamo In slučajnostno Izbiramo drevesa, v
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S! ? ka 9.5 Verjetnostna porazdelitev premerov v nor¬

malno porazdeljenem sestoju z Y = 30 cm
?n 0 = 3 cm

povprečju le v enem od sto poskusov naša trditev ne drži. Za¬

nesljivost te trditve je zelo velika. Stopnjo zanesljivosti,

ki je verjetnost, da se določena trditev uresniči, In stopnja

tveganja, ki je verjetnost, da se določena trditev ne uresniči,

za normalno distribuirane slučajne spremenljivke ugotovimo
prek s tandardI z?ra ne ga odklona z. Za normalno porazdelitev je
namreč relativna frekvenca v razmaku T - z6 do Y + z6 odvis¬
na le od standardiziranega znaka z.

9.13

Ker je normalna porazdelitev ena izmed najvažnejših
verjetnostnih porazdelitev, podajamo neke običajne trditve o
slučajnostno Izbranih enotah iz normalno porazdeljenih popula¬

cij In stopnje tveganja za te trditve.

Trditev: če Iz normalno porazdeljene populacije slu^
čajnostno izberemo enoto, je standardI z Ira n I odklon z za vred¬
nost x za to enoto v razmaku:
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Razmak Tveganje oC

Če n«pr. trdimo, da je za vsako slučajnostno izbra¬
no enoto fz normalno porazdeljene populacije standardiziran
odklon z večji kot -2,32, je tveganje naše trditve <x = 0,01«
To pomeni, da to trditev raziskovalec, kt jo preverja, z ver¬
jetnostjo 0,01 ovrže..

9« 1 4
Običajno postavljamo statistične trditve na stopnji

tveganja a = 0,05 ali za trditve, ki morajo biti Iz katerega
koli vzroka zanesljivejše, na stopnji cc = 0,01« Stopnja tve¬
ganja a = 0,10 je razmeroma visoka, ker se trditev na tej
stopnji tveganja Izkaže kot napačna že v enem Izmed desetih
preskusov. Tveganje 0,001 pa je praktično zelo visoko«

Pri trditvah, ki jih delamo s statističnimi metodami
Indukcije, se kosata dva momenta« Trditev, k? jo napravimo, je
lahko določnejša, stopnja tveganja takih trditev pa je velika«
Moremo pa trditev prirediti tako, da je stopnja tveganja poljub¬
no majhna, vendar je trditev pr? zmanjševanju tveganja bolj in
bolj nedoločna« To smo uvideli že v prejšnjem odstavku« Prvi
Štirje ra zrna k? za standardiziran znak so večji In večji, čim
bolj stopnjo tveganja manjšamo. Če trdimo, da je standardlzi-
ran odklon za slučajnostno Izbrane enote fz normalno porazde¬
ljene populacije v razmaku med -10,0 do +10,0, v naši trditvi
tveganja skoro ni. Pač pa je ta razmak tako velik, da je brez
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pomena, ker da zelo nedoločeno predstavo o tem, kakšen je

stan dardI z I ra n znak za »zbrano enoto. Nasprotno pa je trditev,

da leži standardiziran odklon z za slučajnostno Izbrano enoto

Iz normalne populacije v razmaku med -1,0 do +1,0 zelo določen«

Stopnja tveganja pa je pri tem tako velika { cl = 0,32), da ta
trditev nima praktične vrednosti,

9.15

Podobni problemi nastopijo pri vseh sklepih statlsttč

ne Indukcije, ne glede na to, kako je določena slučajnostna

spremenljivka porazdeljena. Vsaka trditev In sklep Ima določe¬

no stopnjo tveganja, kar pomeni, da moremo pri ponavljanem pre¬

skušanju trdTtev ovreči v skladu s stopnjo tveganja, s katero

je trditev postavljena.
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10« VZORČENJE - OCENJEVANJE PARAMETROV

10o1
Metode delnega opazovanja «Metode popolnega opazovanja

ne zadovoljijo več vedno večjih potreb po statističnih podatkih

na nobenem področju in tud? ne v gozdarstvu« Dostikrat nimamo

zadostnih finančnih ?n materialnih sredstev in časa, večkrat pa

rezultat, ki ga Iščemo, n? vreden naporov, k? bi bil? potrebni,

da bi. ga iskali s popolnim opazovanjem« Ker so gozd ?n pojavi,
ki so z njim v zvezi, populacije z izredno velikim številom e-
not, ni slučaj, da v gozdarstvu Že razmeroma dolgo uporabljamo
metode, s katerim? na lažji, cenejši ?n hitrejši način dobimo

i
potrebne podatke, k? so, če Že ne prav? rezultati, vsaj dobre

?n uporabne ocene« Izbor tipičnih ^modelnih dreves", k? naj s
svojim? značilnostmi predstavljajo celoto ?n ne.osnovi katerih
sklepamo na celotno populacijo, j(e metoda, ki jo v gozdarstvu
uporabljamo Že dolgoo Vendar Ima ta metoda, kljub svojim pred¬

nostim, omejeno vrednost, ker je subjektivna in zato ne vemo,

v koliko je ocena izraz pravih razmer v populaciji«.
Subjektivne metode ocenjevanja bolj in bolj zamenju¬

je objektivna in znanstveno zasnovana metoda slučajnostnega f z-
bora al? vzorčenje«, Prednost? vzorčenja pred drugim? metodami

ocenjevanja so nesporne, kljub temu, da v posameznih primerih

z drugim? metodam? dobimo zanesljivejše ocene«

10 «, 2
Vzorčenje « Vzorčenje je metoda statistične Indukcije,

s katero ?z delne populacije enot, k? jih iz osnovne populacije

izberemo naključno al? s I uča j nost no , sklepamo na celoto«, Vzor¬

čenje ima predvsem tele prednost?:
Vzorčenje je objektivna metoda ocenjevanja« Na pa ko

ocene, k? Izvira Iz vzorčenja, moremo numerično ocenit?« Razen

tega jo moremo, glede na potrebe, tud? uravnavat?«
V primerjav? s celotnim popisom pa se odlikuje vzor¬

čenje po tem, da je znatno cenejše, hitrejše in do neke mere
tudi kvalitetnejše« Pr? vzorčenju sicer nastopa vzorčna napaka,
k? izvira iz tega, da je ocenjevan? podatek rezultat vzorčenja«
Nevzorčne napake, k? so rezultat nepravilnih osnovnih podatkov,
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nepopolnega zajetja vseh enoi itd«, so pri popisih zaradi veS?W
kega obsega dela pogosie. Pri vzorčenju pa jih zmanjšamo na naj¬

manjšo možno mero« Zaradi manjšega; obsega opazovanja je namrečj
Izbor In delo opazovalcev kva I I te tnejj še o Tako uspemo, da ne-
vzorčne napake z vzorčenjem zmanjšamo, na novo nastalo vzorčno(

napako pa moremo določiti In uravnavat?« V raziskovalnem delu

pa je vzorčenje edino možna metoda opazovanja In proučevanja,
če proučujemo tako Imenovane hipotetične populacije«.

Vzorčenje Ima tudi svoje hibe oziroma omejitve« Upo-t
rabno je le za velike populacije« Z vzorčenjem ne moremo dobi¬

ti podrobnih rezultatov« Zanesljivost ocen za različne vrste

podatkov v Istem vzorcu je različno« Ocenjevanje pojavov, ki

so v populaciji redki, je razmeroma nezanesljivo. Plan za Iz¬
vedbo vzorčenja In Izračunavanje ocen sta bolj zamotana kot
plan In Izvedba za popolno opazovanje, če ne upoštevamo več¬
jega obsega dela pri kompletnem' opazovanju«

Induktivna metoda sklepanja Iz dela na celoto se v
vzorčenju uporablja z dvema ciljema« Z vzorčenjem oce nj uj emo
parametre populacije, kot so: lesna zaloga, število dreves, ki
so okužena z določenim škodljivcem, povprečni premer dreves

danega sestoja, variabilnost volumna dreves v sestoju Itd« Z

vzorci pa dostikrat tudi preskušamo hipoteze o populacijah«

|Tako z vzorci preskušamo hipoteze o učinkovitosti ukrepov v ne¬
gi gozda, hipoteze o razlikah v rasti pod različnim? pogoji,

hipoteze o sredinah, merah variacije za različne podatke Iz
gozdarstva«

10*3
Osnovna populacija« Enota opazovanja « Populacijo,

katero proučujemo z vzorčenjem, Imenujemo osnovno populacijo.
Tako more bit? osnovna populacija sestoj, za katerega Iščemo
lesno zalogo; vsa gospodarstva v Sloveniji, kf posedujejo

gozd, če proučujemo ekonomiko gozdarstva v Sloveniji; posamez¬
no drevo, če proučujemo kvalitete tega drevesa Itd.

Osnovna populacija je sestavljena Iz enot opazovanja«
Enote opazovanja so za proučevanje vsebinsko pomembni elementi,
k? sestavljajo osnovno populacijo. Če proučujemo določen se¬

stoj , je osnovna populacija sestoj, enote opazovanja pa posa¬

mezna drevesa sestoja, ker skušamo z vzorčenjem dobltt pregled
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o številčnem stanju, porazdelitvi dreves po debelin!, višini,
volumnu Itd« Podobno so enote opazovanja posamezna gospodarstva
k! imajo gozd, če proučujemo skupnost vseh takih gospodarstev v
Sloveniji« Pr! določenem posebnem proučevanju morejo bit? enote
opazovanja vs? list? določenega drevesa, katerega proučujemo.,
V vseh navedenih primerih so enote opazovanja med seboj ločen?
element?, katerih število v osnovn? populacij? je končno in
točno določenoc

Zvezne populac?je kot je n 0 pr« lesna masa danega dre¬
vesa, pa n?so sestavljene ?z nek?h med seboj ločenih enot opa~
z ov a n j a o

Vzorčenje je ed?n? način za proučevanje hipotetičnih
osnovnih populacijo Določeno število poskusov o učinkovanju da¬
nega zaščitnega sredstva je vzorec Iz neomejeno velike hipote¬
tične popu.lacfje vseh močnih poskusov, k? bi jih Izvedi? pod
enakimi pogoj 1 o

10o4
Enote vzorčenja o Enote opazovanja niso vselej prlklad

ne enote za Izbiranje v vzorec. Tako je vzorčenje velikega se¬
stoja sila neprfkladno, če so enote vzorčenja posamezna dreve¬
sa« Register vseh dreves, Identifikacija pos ameznIh 1zbra n 1 h
dreves na terenu Itd«, je v tem primeru zamotan In obsežen po¬
sel« Zato za potrebe vzorčenja osnovno populacijo običajno raz¬
delimo na vzorčne enote , k? so za vzorčenje prikladnejše kot
osnovne enote. Zato površino sestoja razdeljujemo v prikladnej¬
še enote - pasove ali Iregularne površlnlce, k? so določene z
naravnim? mejam? {potmi, potok? Itdo)« Edin? namen razdelitve
osnovne populacije na vzorčne enote je omogočiti In olajjšat?
Izbor« Vzorčne enote niso nujno povezane z vsebino pojava, k?
ga proučujemo«

Prav posebno pride do Izraza sestavljanje vzorčnih
enot pr? zveznih populacijah, za katere ne moremo vzet? za osno
vo vzorčenja enote opazovanja, ker jih n?« Tako moremo na pri¬
mer proučevat? variabilnost v značilnostih lesa za določeno
drevo le, če drevo razdelimo na vzorčne enote in.pr, kvadre do¬
ločene stalne Izmere ?td«)» Površino sestoja razdelimo na konč¬
no število vzorčnih enot, vzorčnih površin« če pa je n«pr«
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vzorčna enota kakorkoli? položen kvadrat n«pr« s površino 25 a,
moremo la kvadra! na površino sestoja položil? na neomejeno
mnogo različnih načinov, ki se morejo med seboj lud? delno pre»

krivat?« V lem primeru je !o neskončna populacij« vzorčnih enoto

10o5
Vzorec« Skupnosl vzorčnih enot, k? jih ?z osnovne

populacije izberemo s Iučajnostno, da iz njih ocenimo podalke

za osnovno populacijo, imenujemo vzorec o

Vzorec je populacija, ker ima svoje enole (vzorčne

enole), le pa znake, k? so isli, kakor znaki za enole v osnov¬

ni populaciji« Kakor vsaka populacija ima tud? vzorec svoje pa|■=

rametre« Ti so n«pr 0 vsola podalkov za vse enole v vzorcu, pro¬

porci, povprečja, variance, kore IacfjsM koeficienti itd« izra¬
čunan? iz podalkov vzorca«

Število enol v vzorcu običajno zaznamujemo z n, za
razliko od števila enol v osnovni populaciji, k? ga zaznamuje^
mo z N« Ker je teorija vzorčenja različna, če je število enol

v vzorcu majhno ali veliko, razlikujemo male vzorce od velikih

vzorcev , glede na lo, ali je število enol v vzorcu majhno ali
v iliko« Ostre meje med velikim? in malimi vzorci n?« Pač pa ve¬

lja teorija rpalih vzcrcev -za-vzorce z neka] deset enotami, medlem ko ima¬
jo velik? vzore? običajno po več slo ?n tudi več tisoč enot«
Medtem ko uporabljamo male vzorce predvsem pr? eksperimental-
nerr delu in z njim? predvsem preskušamo hipoteze, z velikimi

vzorci nadomeščamo popolna opazovanja in z njim? ocenjujemo
parametre«

10 « 6
Po planu vzorčenja ima vsaka enota osnovne populaci¬

je dano verjetnost, da je vključena v vzorec« Ta verjetnost
more bit? za posamezne enote enaka al? različna« Pri enostav ¬
nem s I uča j nostnem vzorcu ima vsaka enota enako verjetnost, da

je vključena v vzorec« Pri st rat?fj cira nem slučajnem izboru

ima vsaka enota določenega dela - stratuma enako verjetnost,

da bo vključena v vzorec« čeprav enostaven slučajen vzorec naj¬

pogosteje uporabljamo, je pr? nekih metodah vzorčenja ver j et nosi

izbora raz I ? č na za vsako enoto« Imamo pa tud? metode delnega
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opazovanja, pr? katerih je izbor vseh ostalih enot v vzorcu

določen s s 1učajnos + n?m izborom prve enote vzorcao Tak primer

je sistematični vzorec , k? zaradi tega ne sod? čisto med slu-
čajnostne vzorce, vendar ga zarad? njegovih posebnih prednosti

zlasti v gozdarstvu pogosto uporabljamo«.
Enota osnovne populacije, k? je izbrana v vzorec, mo¬

re biti v nadaljevanju izbora ponovno izbrana, ali pa, glede na

plan vzorčenja, nima več možnosti, da je ponovno vključena v
vzorec« Glede na to govorimo o vzorčenju s ponavljanjem , kadar
more biti posamezna enota osnovne populacije izbrana v vzorec
večkrat in o vzorčenju brez ponavljanja , kadar more bit? posa¬
mezna enota osnovne populacije izbrana v vzorec enkrat samkrat«
Teorija vzorcev s ponavljanjem je nekako enostavnejša kot teori
ja vzorcev brez ponavljanja, vendar v praksi pogosteje uporab¬
ljamo vzorce brez ponavljanja, ker so bolj logični in dajo pri
enako velikem vzorcu nekaj zanesljivejše ocene« Razlike med
vzorci s ponavljanjem ?n vzorci brez ponavljanja pa se manjšajo

č?m večja je osnovna populacija«,

10o7
Populacija vseh možnih vzorcev « Vzorec, k? ga slu-

čajnostno izberemo ?z osnovne populacije, ni edin? možni vzo¬
rec« Če pod enakim? pogoj? izbor ponovimo, dobimo vzorec, v ka¬

terem z veliko verjetnostjo niso iste enote kot v prvem vzorcu«
Število vseh možnih različnih vzorcev je že za razme¬

roma majhne populacije in vzorce presenetljivo veliko«, Matema¬
tično je število vseh možnih različnih vzorcev brez ponavljanja
z n enotami, k? jih izberemo iz osnovne populacije, ki ima N
vzorčnih enot, enako številu vseh možnih kombinacij po n ele¬

mentov iz kompleksa N elementov«, S simbolom izrazimo to

(N) = UO.1)

Število vseh slučajnostnih vzorcev s ponavljanjem pa je še več¬

je«, Če ima os n ov na -.popu I a c I j a N enot, je število vseh možnih
različnih vzorcev s ponavljanjem z n enotami enako številu vseh

možnih kombinacij s ponavljanjem n elementov iz osnovnega kom=?
pleksa N elementov, torej
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(N+n-1)^ N(N + 1)(N*2)„.(N + n-1) (10#2)
n J. 2.3....n

Vzemimo za Ilustracijo, kako veliko je število vseh možnih

vzorcev, populacijo z N=75 enotami In Izbirajmo vzorce z n =25

enotami. Že v tem primeru je število vselil možnih vzorcev brez

ponavljanja 52,59 trilijonov, število vseh možnih vzorcev s po-

navijanjem pa 181890 tr?l?jonov<> Že za neobičajno majhne popu¬

lacije In vzorce je torej število vseh možnih vzorcev velikan¬

sko. V stvarnih primerih, v katerih je v osnovni popu Iaclj I več

sto oziroma več tisoč enot In Imajo tudi vzore? po več sto
enot, pa je število vseh možnih vzorcev praktično neomejeno«

10.8
Če proučimo skupnost vseh možnih vzorcev, spoznamo,

da Ima ta skupnost vse lastnost? statističnih populacijo Vzor¬

ci so Istovrstne količine, k? jih moremo štet? za enote v po¬
pulacij? vseh možnih vzorcev. Enote v populacij? vseh možnih

vzorcev - vzorci, Imajo svoje znake, kot so povprečja, varian¬
ce, relativna števila, koeficienti korelacije Itd. v vzorcih.
Tl znak? variirajo, ker so Izračunan? za vsak vzorec Iz podat¬
kov za različne enote Iz osnovne populacije. Skupnost vseh
možnih vzorcev je torej populacija, v kateri so posamezni vzor¬

ci enote, povprečja, proporcF, variance, korelacljsk? koeflclen
tl Itd., Izračunani Iz vzorcev pa so znak? enot - vzorcev. Pa¬
rametri v populaciji vseh možnih vzorcev pa so povprečja, va¬
riance Itd. Iz povprečij, proporcev, varianc, kore I a c I jskI h
koeficientov Itd. posameznih vzorcev.

i ■

i

10.9

Teoretične vzorčne porazdelitve . Neposredno prouče¬
vanje porazdelitev znakov In Izračunavanje parametrov za popu¬
lacije vseh možnih vzorcev je zaradi ogromnega Števila vseh

možnih vzorcev nemogoče. Praktično nemogoče je v stvarnih pri¬

merih sestavit? vse možne vzorce, za vsakega Izmed njih Izra-j
čunatl n.pr. vzorčno povprečje, Iz teh povprečij sestavit?
frekvenčno porazdelitev, Iz nje pa Izračunati dalje aritmetično
sredino In varianco Iz povprečij za vse vzorce. !
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Izkaže pa se, da pridemo do teh količin po krajši
pot? s teoretičnim razglabljanjem, če zadosti podrobno poznamo
osnovno populacijo«, V dosti primerih moremo namreč sklepat? na
odnose v populaciji vseh možnih vzorcev, če poznamo osnovno po¬
pulacijo«, Te zakonitost? med osnovno populacijo In populacijo
vseh možnih vzorcev pomaga odkrit? verjetnostni račune Prav
zato, da veljajo osnovne zakonitost?" med osnovno populacijo
In populacijo vseh možnih vzorcev, je potrebno, da je vzorec
Izbran tako, da je zagotovljena naključnost Izbora, ker le te¬
daj veljajo teoretični Izsledki o medsebojnih odnoslhe Te za¬
konitosti v populaciji vseh možnih vzorcev so za nekatere vrste
osnovnih populacij In za nekatere probleme odkriti natančno, za
druge pa samo približno«, V obeh primerih pa jih Izkoriščamo v
praks? pr? ocenjevanju In sklepanju Iz vzorca na osnovno popu¬
lacij O o

Zakonitost? v populacij? vseh možnih vzorcev so od¬
visne od količine, k? jo proučujemo, od osnovne populacije In
od tipa vzorca<> Vendar so pr? velikih vzorcih te razlike vedno
bolj zabrisane In so zakonitost? v populacij? vseh možnih vzor¬
cev bolj In bolj 'enotne, čim večji je vzorec« Zato bomo sploš¬
na načela vzorčenja podrobno razložili na aritmetični sredini,
ki je eden Izmed najvažnejših In na j pogoste j š? h parametrov«,
Vse Izsledke, ki veljajjo za aritmetično sredino, pa zlahka pre-

i

nesemo tud? na druge parametre«,

Enostavno s^uča £nost n o_vz orč e n |e

Ocenjevanje aritmetične sredine

10 «, 10
Vzorčenje, pri katerem Ima vsaka enota populacije

enako verjetnost, da je Izbrana v vzorec, Imenujemo enostavno

slučajnosino vzorčen j e«,
Za enostavne slučajnostne vzorce, Izbrane Iz neomeje¬

ne populacije, In za enostavne slučajnostne vzorce, k? so Iz¬
bran? Iz končnih populacij z Izborom s ponavljanjem, veljajo
za aritmetične sredine vzorcev naslednje zakonitosti:
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a) Aritmetična sredina Iz povprečij 7 za vse možne
vzorce je enaka aritmetični sredin? Y v osnovni populacij?« V

skladu s pojmi Iz verjetnostnega računa se ta zakonitost glas?

tud? takole: Matematično upanje za slučajnostno spremenljivko

y s IučajnostnI h vzorcev je enako aritmetični sredini v popula¬

cij? 7
I

; . i •/: M(y) * E(y) = V d o« 3)

b) Varianca ar I trne 11 čn I h^ sred I n v s Iučajnostn?h

vzorcih Vart^) j« n krat manjša kot varianca znaka y v osnov-
n I popu I a c I j I

Var(y) = ( 10 « 4 )

če Iz variance aritmetičnih sredin v vzorcih Izračunamo kva¬

dratni koren, dobimo standardni odklon za aritmetične sredine
v vzorcih, ki ga na splošno Imenujemo standardna pogreška oce -
ne, zaznamujemo pa ga z SE« -

SE(y) z VVar(y) = (10«5Jin

c) V praksi običajno proučujemo končne populacije z

vzore? brez ponavljanja« Zanje pa veljajo za aritmetične sredi
ne vseh vzorcev nekoliko drugačne zakonitosti«

Matematično upanje za aritmetične sredine vzorcev

brez ponavljanja je še vedno enako aritmetični sredini v osnov

ni popu IacI j I:

4r*>\- . i-f* V M(y) = E(y) = V (10« 6)

varianca za aritmetične sredine v vzorcih pa je enaka

Var(y) = ^ * iL^j - f) (10o 7)
n /v n

Pr? tem je srednji kvadratlčn? odklon z;a znak
računan po obrazcu

V > k? je I z -

( 10 . 8 )
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Razen neznatne spremembe, da je 6 V zamenjani z nebI st
2 ”veno različnim izrazom S , je v obrazcu dodan Se korekturni fak

tor = 1 -f« Ta je tem bllžj.? 1, čim manjši je vzorčni delež

f = h/N; ki izraža, kolik? del osnovne populacije je vključen v

vzorec o

d) Ne glede na to, ali gre za enostavno vzorčenje z

al? brez ponavljanja, se aritmetične sredine y" iz vzorcev po¬

razdeljujejo v normalni porazdelitvi, če se znak Y| porazde¬

ljuje v osnovni populacij? v normalni por a zde ! 11 v 5 .

Če se pa Y. v osnovni populacij? ne porazdeljuje
normalno, se aritmetične sredine ~ kljub temu porazdeljujejo

v porazdelitvah, k? so normalni tem bolj podobne, čim večji je

vzorec. Ta približek je dokaj dober že pri razmeroma majhnih
vzorcih, tako da praktično vzamemo, da se aritmetične sredine

iz velikih vzorcev porazdeljujejo v normalni dl strIbuc I j S, ne
glede na to, kakšna je porazdelitev znaka v osnovni populaciji«.

Iz zgornjih zakonitosti povzamemo, da poznamo poraz¬

delitev povprečij y v populaciji vseh možnih vzorcev, če pozna-

mo parametre y, S in S v osnovni populaciji«. Tako dobimo po¬
sredno porazdelitev povprečij y", k? je za teorijo in prakso

vzorčenja osnovnega pomena.

10.11
Točkovna ocena. Odklon zaupanja. Intervalna ocena.

Razmak zaupanja . Glede na zakonitosti v populaciji sredin v
vzorcih in glede na lastnosti normalne porazdelitve v zvezi s
stopnjo tveganj«, na splošno postavimo trditev, da je aritme¬

tična sredina za enostaven slučajnostni vzorec y° s tveganjem

cc - 0,05 v razmaku

’7 - 1,96.SE(y) < y < 7 + 1,96.SE(y)

Aritmetične sredine Iz vzorcev se tem bolj goste okrog prave
aritmetične sredine, čim manjša je standardna pogreška sredine.

Ta pa je tem manjša; čim večji je vzorec.

če iz sestoja, za katerega je Y = 30 cm In B = 3 cm

izberemo enostaven slučajnostni vzorec z n = 400 drevesi, leži
povprečje, izračunano iz vzorca, s tveganjem o. = 0,05, v raz-

matu „
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330 - 1*96 -1— <r y < 30 + 1,96 _
V400 V400

29,71 cm < y < 30,29 cm

Povprečje Sz vzorca se torej s tveganjem ot = 0,05 odklanja od

pravega povprečja za največ 0,29 cm. Zato moremo vzet? povpreč¬

je Sz vzorca Y za oceno pravega povprečja Y. To oceno Imenujemo

točkovno oceno , ker je dana z eno samo vrednostjo.

Ys, = y = -J-J1 = y/n (10.9)

Količino D(7S = 1,96 SE C > ali v splošnem

0(yj = zSE(y) (10.10)
I

Imenujemo odk S on zaupa nj a . Ta pove, za koliko se z določenim

tveganjem točkovna ocena za aritmetično sredino največ odklanja
od prave sredine za populacijo. V našem primeru je s tveganjem
a = 0,05 odklon zaupanja D{7) = Op 29 cm. S tveganjem oc = 0,05

ocena z vzorcem n? različna od prave vrednosti za več kot

D(y) = 0,29 cm.

Če s tveganjem a ocena Iz vzorca 7 od prave vred¬
nosti različna za več kot D(yT» tudi prava vrednost povprečja Y

ni od ocene y s tveganjem ct različna za več kot D(7)» Iz tega

sledi, da je slučajnostno Izbrani vzorec s tveganjem a = 0,05

tak, da je prava sredina v razmaku

y - 1,96SE(y) < Y < y + 1,96SE(y) (10.11)

Ta razmak Imenujemo razmak zaupanja , obe meji pa spodn j o In j
zgornjo mejo zaupanja ocene« Ta ocena prave vrednost? povpreč-

ja je Interva 5 na ocena , ker je dane z razmakom zaupanja, v ka¬
terem se z določenim tveganjem nahaja pravo povprečje.

v

V slik? 10.1 je nakazana porazdelitev sredin Iz
vzorcev za zgohnj? primer.

Iz slike vidimo, da za vzorce, za katere leže sredi¬

ne v razmaku od 29,71 cm do 30,29 cm (glej 7-} In 7g^» prava
vrednost Y leži v razmakih zaupanja okrog ocen 7* Za ocene, k?
leže Izven tega razmaka', pa razmak zaupanja ne vključuje prave
prednost? Y (glej 73 J «

*
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Slika 1 Co 1 Porazde I f fev sredini vzorcev s ponavljanjem z
n = 400 enotami iz populacije premerov z
Y = 30 ? n S = 3 cm

10.12
Nepr?stranska ocena variance in povprečnega kvadra-

tičnega odklona . Vendar obrazec 10.11 za praktično ocenjevanje
povprečja z razmakom zaupanje nima posebnega pomena. Da izra-

2čunamo odklon zaupanja, moramo namreč poznati parameter S
2 y

oziroma S“~ v osnovni populaciji. Ker pa teh parametrov ne po-
7

znamo, si pomagamo z oceno varianc Iz podatkov v izbranem slu-

čajnostnem vzorcu.
O

Ocene variance S* iz vzorca s ponavljanjem In oceno
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povprečnega kvadra t ? čne ga odklone S^, Iz vzorcev brez ponavlja
nja ocenimo z enotnim obrazcem

I(y,’-y)2 Zy?-y*/n
- Jii—-- /»/ _

n - J n-1
( 10 . 12 ) *

1j

To oceno imenujemo nepristransko oceno za varianco 6 , če je

vzorec s ponavljanjem oziroma nepr?sira nsko oceno povprečnega
2kvadratičnega odklona S , če je vzorec brez ponavljanja, ker je

za vzorec s ponavljanjem

E(s2) * 62 (10* 1 3a )

in za vzorec brez ponavljanja

E(s2) = S2 (10.13b)

Dan izraz, k? ga izračunamo Iz vzorca, je namreč nepristranska
!

ocena nekega parametra Iz osnovne populacije, če je matematično
upanje tega izraza enako parametru.

Zato je tudi aritmetična sredina, izračunana Iz
vzorca, zaradi obrazcev 10.3 In 10.6 nepristranska ocena arit-

« i '
metlčne sredine v osnovni populacij?.

Če v obrazcih 10.4 in 10.7 nadomestimo prave vredno-
2 2 2st? za 6 ?n $ z oceno s , dobimo oceni varianc za ar f tmet ? č-
y y y

no sredino.

Za vzorce s ponavljanjem je ocena variance sredine
enaka

var(y) = —E.
n

( 10 . 14 )

za vzorce brez ponavljanja pa

var(y) = —č_-
n

N-n
N d - f) ( 10 . 15 )

10.13

Preskus zakonitost? vzorčenja na shematični popula¬

ciji . Zgornje zakonitost? za aritmetično sredino preskusimo na

shematični populacij? z N = 5 enotam?, iz katere izbiramo
vzorce z n = 3 enotamil Osnovni podatki za to populacijo so:
Y, = 1, Y2 = 2, Y 3 = 3, Y4 = 4, Y5 = 5. Zanjo je:
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Y = 1 (1+2+3+4+5) = 3
5

62 = i [ (1 -3) 2+(2-3) 2+(3-3) 2+(4-3) 2+(5-3) 2l = 2
y 5 J

S 2 = — f(1-3) 2+(2-3) 2+(3-3) 2+(4-3) 2+(5-3) 2l = 5/2
y 5-1 L J

Najprej proučimo populacijo vzorcev s ponavljanjem In sestavi¬
mo sliko vseh možnih vzorcev s ponavljanjem s tremi enotamlo
Glede na obrazec 10.2 je število vseh možnih vzorcev s ponav->
Ijanjem enako šteyllu kombinacij s trem! element? s ponavlja¬
njem Iz kolektiva petih elementov, torej:

/N+n-1\ /5+3-1 \ _ 5.6.7 _ 35<
l n / \ 3 / 1.2.3

Vseh teh 35 različnih vzorcev pa se ne pojavlja z enako ver¬
jetnostjo.

Medtem ko je samo ena možnost, da Izberemo vzorec, v
katerem v prvem, drugem In tretjem fzvlačenju Izberemo prvo
enoto (111), so n.pr. tri različne možnosti, da Izberemo vzo¬
rec, v katerem sta dvakrat" prva, enkrat pa druga enota (112
121 211) In šest različnih možnost? za vzorec, v katerem je
prva, druga In tretja enota (123 132 213 231 312 321). Ker je
vsaka izmed teh permutacij enakomožna, vseh možnost? pa je v
celot? 125, je verjetnost, da Izberemo v vzorec trikrat prvo
enoto 1/125, da izberemo dvakrat prvo In enkrat drugo enoto
3/125 In verjetnost, da Izberemo v vzorec prvo, drugo In tret¬
jo enoto, enaka 6/125. Podobno je tud? za druge podatke in kom¬
binacije.

V tabel? 10.1 so nanizan? osnovni podatki o vsakem
izmed petintridesetih različnih vzorcev s ponavljanjem z ustrez
no verjetnostjo P, ocena za aritmetično sredino 7 In ocena va¬
riance s 2 .

Za vzorec, v katerega smo Izbral? enote 113, je n.pr.

7 = 1 [1 + 1+3] = 5/3 s 2 = 2f3 2 . .I . 5.2/3 _ 8/6
3 3-1
Iz zgornjih podatkov za posamezne vzorce sestavimo

najprej verjetnostno porazdelitev za aritmetično sredino v
vzorcih 7 kot slučajnostno spremenljivko. To verjetnostno po-
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I _-_-„ I II ■ III——« ' j

■Tabela 10<>1 Populacija vseh možnih vzorcev z n=3 enofsm! s po¬

navljanjem Iz populacije z N=5 endamic Osnovna populacija

Iz dobljenih rezultatov spoznamo, da je res E(y) = 3 =
= 7o

! • . /

Če pa Izračunano Iz podatkov za populacijo po obrazcu
10o 4 če

• f

Var (y) = -JlL = 1
n 3

spoznamo, da je tudi la rezullal skladen z rezullalom, ki ga
dobimo neposredno Iz verjetnostne porazdelltveo Ostane še pre-

o
skus stavka, da je ocena variance Iz vzorca s nepristranska

2 xocena za varianco v osnovni populacij? So Ce podobno, kot za
... . / .. -

=•1 54-



Tabela 10<>2 Verjetnostna porazdelitev za aritmetične sredine v
vzorcih Iz populacije Y = 1, 2, 3, 4, 5 za vzorce z n=3 s po¬
navljanjem

— =1 H££-3=E(y) 212_ - 1 = Var «y)
125 375 1125 3

povprečja Iz vzorcev, sestavimo verjetnostno porazdelitev že
o

za oceno variance s , dobimo tabelo 10 o 3

Tabela 10<>3 Verjetnostna porazdelitev za ocene varianc s 2' Iz
vzorcev

— = 1 = 2 = E ( s 2 )
125
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^es

Rezultat pokaže skladnost s teorijo. Matematično upa-
nje za varianco ocen je enako varianc? v osnovni populaciji:

£(s 2 ) = e 2 = 2.

10o1 4
Napravimo za Isto populacijo Y(1 2345} podoben

preskus če za vzorce brez ponavijanjao
Število različnih vzorcev brez ponavljanja z n=2

enotami Iz populacije z N=5 enotam? je po obrazcu 10,1 enako
¥

(^) = (^) = = 10» če proučimo, kakšna je verjetnost za
n “ 1o2«3

Izbor posameznega vzorca brez ponavljanja, spoznamo, da moremo

v vzorec brez ponavljanja Izbrat? Iste enote na toliko različ¬
nih načinov, kolikor je permutacij Iz n=3 eiementovo V našem

l
primeru torej na 3 = 1 0 2<,3 = 6 različnih načinov In.pr, 123

132 213 231 213 321 ) „ Ker je skupno 5 0 4»3 = 60 različnih mož¬

nost? za vse vzorce, je verjetnost za vsak vzorec P = 6/60 =

1/10 o Vsak vzorec je pr? vzorčenju brez ponavljanja enakover-
jeten. Vsi možni vzore? za naš" primer so nakazan? v tabel? 10.4.

Tabela 10.4 Vzore? brez ponavljanja Iz populacije Y(1 2345)

Enako kot za vzorce s ponavljanjem sestavimo tud? za

vzorce brez ponavljanja verjetnostno porazdelitev za arltmetlč-
ne sredine Iz vzorcev In Izračunajmo matematično upanje In va¬

rianco za aritmetične sredine Iz vzorcev’
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Tabela 10 o 5 Verjetnostna porazdelitev sredin y Iz vzorcev

brez ponavljanja

9Q/30=3=E(yl 30/90=f/3=Var(y)

Če; Izračunamo E(yl In VaiHyT posredno Iz parametrov
za osnovno populacijo, dobimo po obrazcih 10 o 6 In 10<>7

E(y) =7=3

Var(yS = = Ul0l^L = %
n ° N ~ 3 ° 5 3

Dobljena rezultata sta v skladu z rezultati, k? jih dobimo ne¬

posredno Iz verjetnostne porazdelitve aritmetičnih sredin In

vzorcev«
Preskusimo če stavek o neprIstranostI ocene povpreč-

9
nega kvadra11čnega odklona s*« Najprej sestavimo ver j etnostno
porazdelitev za s „ tako da grupiramo rezultate Iz stolpca za

s 2 Iz tabele 10 0 4

Tabela 10 o 6 Verjetnostna por a zde I?te v,var I anc s v vzorcih

E (s 2 I

>

Če matematično upanje ze oceno variance s Izračuna¬

mo posredno Iz parametrov za populacijo, dobimo po obrazcu __

10«13b
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E C s 2 5

Tud? ta rezultata sta skladna«,
P

y ±211111 'l A 1Q.1L 1111 K lih 17
33333333333333333

y 1 2 3 4 5

Slika 10 0 2 Verjetnostni porazdelitvi za povprečja

Iz vzorcev z In brez ponavljanja

Iz verjetnostne porazdelitve aritmetičnih sredin

vzorcev s ponavljanjem v sliki 10«2 vidimo težnjo k normalni

porazdelitvi, k? smo jo navedli kot zakonitost« Čeprav poraz-
delitev osnovnih podatkov n? normalna In gre za Izjemno majhne

vzorce, se aritmetične sredine vzorcev porazdeljujejo v poraz¬
delitvi, k? je simetrična, zvonasta, torej v porazdelitvi, k?
Ima Iste značilnost? kot normalna« Ta težnja je manj vidna pr?
verjetnostni porazdelitvi sredin vzorcev brez ponavljanja, ker

je vsega le deset možnih različnih vzorcev«

•*-

10.15
Ocenjevanje/ parametrov z enostavnim s I uča j nostnlm

vzorčenjem na splošno« Zgornji zaključki ne veljajo samo za
ocenjevanje aritmetične sredine, ampak pr? ocenjevanju za k a te;
r?kolI drug parameter z enostavnim? velikim? vzore?« V prlblfž
ku se namreč za katerikoli parameter C ocene c porazdeljujejo
n-er-ma-lno s sredi no C In standardnim od klonom SEt-o)«-
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Če s C zaznamujemo pravo vrednost ocenjevanega para¬

metra, s c pa točkovno oceno tega parametra ?z velIkega vzorca,

je odklon zaupanja za oceno

D(c) * z.SE(c) (10.16)

razmak zaupanja pa

c - z.SE(c) < C < c + z.SE(c) (10.17)

s tvega n j em, k ? ustreza koeficientu z<> (Cer v praks? ne poznamo

parametrov populacije, v odklonu zaupanja ?n razmaku zaupanja

nadomestimo pravo vrednost za standardno pogreško SEIcl z oceno

Iz vzorca, se (c} o Glede na to je ocena odklona zaupanja.

d(c) = z.se(c) ’• (10.18)

ocena za razmak zaupanja pa

c-z.se(c)< C< c+z.se(c) ‘ (10.19)

Ocenjevanje agregata Y, strukturnega deleža P% In števila enot

z dano značilnostjo H s

10.16
Razen aritmetične sredine pogosto ocenjujemo vsoto

vrednost? za dan znak, n.pr. skupen volumen, alf temeljnlce za

sestojTfd.
Med aritmetično sredino za populacijo Y In vsoto ali

agregatom Y = £Y| Je enostavna zveza

Fs| Yf/N ali Z Y; * Y = N.Y (10.20)
i*1 1:1

Oceno agregata Y.dobimo, če v obrazcu 10.20 nadome¬

stimo pravo vrednost Y z oceno Iz vzorca y°.
Ceno agregata z enostavnim slučajnim vzorcem Y g j Iz¬

računamo torej po obrazcu

= N.y = = -§y ( 10. 21 )

pr? čemer pomeni: y = vsota podatkov Iz enostavnega slučajnega

vzorca.
I
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Ker je po znanih stavkih o varianci Var(ax) =
= a Var(x), velja, da je

Yar(Ysl ) = Var(Ny) = N*Var(y) = ?N(N-n&n N n ( 10 . 22 )

Ker agregat običajno ocenjujemo z vzorčenjem brez ponavljanja,
navajamo samo obrazec za ta tip vzorčenja.

Iz podatkov vzorca pa ocenj-ujemo varianco agregata
var (Y ,) po obrazcu, k? je prav tak kot obrazec 10.22, samo da

2 s 1 2
je S zamenjan z oceno s

varYst - N(N - n) (10.23)

!

I

10.17

Pogosto ocenjujemo tudi strukturni delež P, ki ga do
blmo, če Število enot z dano značilnostjo H v populaciji de I1H
mo z obsegom populacije N

p - JL
r ~ N (10.24)

Oceno strukturnega deleža p dobimo Iz podatkov eno¬
stavnega s I učajnostnega vzorca analogno tako, da Število enot
z dano značilnostjo h Iz vzorca delimo s skupnim Številom enot
v vzorcu n

Psi = P =
_h_
n (10.25)

Varianca za oceno strukturnega deleža Iz neomejene populacije
al? Iz vzorca s ponavljanjem je enaka

Var(p) = n ti Pd - P) (10.26)

Za vzorce brez ponavljanja Iz končnih populacij pa je

Var(p) = šl.ltJL . s2 - H(N-H)
{PJ n N • 5p ~ NfN-1) (10.27)

Analogno je ocena variance za ocene strukturnih deležev za vzor¬
ce Iz neomejenih populacij In za ^vzorce -s pona v I j an j eim.Iz kolč¬
nih populacij
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var (p) = ( 10 . 28 )
za vzorce brez ponavljanja fz končnih populacij pa

var(p)= (10.29)

Pr? t em je Izraz

s2 _ h(n-h)
SP ' n(n-I)

2
analogen povprečnemu kvadratnemu odklonu Sp,

nan Iz podatkov vzorca..

Opomba« Če strukturne deleče Izražamo v odstotkih, je
?% - 100.P In p% = 100.p. Ker je Var(p^) = VardOO.p) =

2
= 100 Var(p), moramo v tem primeru vse obrazce za Izračunavanje

2
variance pomnožiti s 100 , če ocenjujemo strukturne deleže v

odstot k? h.

10.18
Število enot z dano značilnostjo H v populaciji do¬

bi mo, če •

H = N-tL = NP (10.31 )
N

strukturni delež P pomnožimo s skupnim številom enot v popula¬

ciji N. Analogno kot pr? ocen? za vsoto pa dobimo oceno skupne¬
ga števila enot z dano značilnostjo Hs j, če v obrazcu 10.31

pravo vrednost strukturnega deleža zamenjamo z oceno p

Hs, = Np = N-L (10.32)

Podobno kot pri agregatih je varianca za oceno skupnega števi¬
la enot z dano značilnostjo za vzorce brez ponavljanja enaka

Var(Hsl)= N(N-n)^- ; sj* MLdjj (10.331

(10.30)

le da je Izraču-
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( 10 * 34 )

”- mi i«

var(HJ - N(N - n) ^ ; s} *

10*19
Simbolika in obrazci za ocene parametrov Y,

H so sistematično nakazani v naslednjem pregledu*

Popu la cT ja

Znak za seštevanje

ŠteviI o enot
Število enot z dano značilnostjo
Struktur n ? delež
Strukturni postotek

Individualna vrednost

\jf
i .

N
H
P

Vzorec
n

n
h

P

Vsota za znak y

Povprečj e

Povprečni kvadratni odklon

Varia nca
Povprečen kvadratni odklon za

strukto de ler

Varianca strukturnega deleža

Var ianca
Standardna pogreška
Odklon zaupanja

Prava vrednost Ocena
Var var
SE se
D d

Parametr ? :

P = H/N p = h/n

H
n

in
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Variance ocen parame+rov z
vzorcem s ponavljanjem:

Variance ocen parame+rov z

vzorcem brez ponavljanja:

Prava vrednost Ocena
2 #2

6 s
Var (V) = —X varly’)= -X

n n

6 dVar (p)= —E.
n

va
n

S 2 s 2
Var Cy) = X 0 var(yJ= -X0£LJI
'n N n ■ N

S 2 s 2
Var (Y ») =N (N-n )-X vaHY ,)=N{N-n)-Xsl n sl n

N-nVar {p ) = -H, „
n N

, x p NCN-n5varlpl= —J” o -
n N

S 2 s 2
Var (H ,)=N(N-n) -£ var (H .) =N{N-nsl n s I n

N

6 ' . S IY rYI
N

“ t

N
CY 9 -Y)

N - 1

o »~y *
5 =
^ n - 1

6 = P(1-P)
P

$ 2 _ H C N-H)
P NIN-11

Tehnika fzbora enos + avnega s Iučajnos+nega vzorca

2 _ h ( n4 )
S P n C n *=11

t 0 o 20
Prvi In glavni problem pri Izvedbi enos+avnega slu-

čajnos+nega vzorčenja je, kako lzbra+1 slučajnos+nl vzorec, da

bo zados+ll osnovnemu pogoju, da Ima vsaka eno+a vzorčenja v
populaciji enako možnost, da je vključena v enos+avnl vzorec«

Pr? vsakem sls+emu vzorčenja Ima posamezna eno+a po¬

pulacije določeno, vnaprej dano verjetnost, da je vključena v

vzorec« Način Izbora enot mora bl+l tak, da zadosti temu osnov¬

nemu pogoju, ker le v +em primeru veljajo zakonl+os+1 vzorče¬

nja, ki so Izpeljane Iz verj etnos + nega računa«, Pri enostavnem
vzorčenju Ima vsaka enota populacije enako verjetnost oziroma
možnost, da je vključena v vzorec« Izbor takega vzorca Imenuje¬
mo Izbor brez omejitve«.
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10.21 i

Okvir vzorčenja . Tehnično Izberemo enostavni slučaj¬
nostmi vzorec po naslednjem postopku« Osnova s l učajnostnega Iz¬
bora je v vsakem primeru pregled vseh enot v populacij!. V tem
p>reg!edu, k? ga Imenujemo okvir vzorčenja , je vsaka enota obvez¬
no tako označen«, da jo moremo Identificirat?« Pregled enot po¬
pulacije, ki sestavlja okvir vzorčenja, more bit? dan različno«
Navadno je to spisek enot, ki so oštevilčene z zaporednim? šte¬
vilkami« Zelo prikladen okvir je tud? oštev?Ičena kartoteka
enot populacije« Tud? geografska karta, v katero so vnesene
enote populacije glede na geografsko lego In zaznamovane z za¬
porednimi številkami, more bit? nazoren okvir populacije« Če
so enote geografska območja {sestoj, oddelek, gospodarska eno¬
ta al? podobno?, je geografska karta teh območij, v kateri je
vsako območje označeno z zaporedno številko, tud? primeren
okvir vzorčenja« Kot okvir vzorčenja moremo uporabit? tud?
vsako drugo shemo oziroma način, Iz katerega je možno Identi¬
ficirati enote osnovne populacije«

10,22
LoterI j skI načI n « Eden Izmed načinov slučajnega Iz¬

bora je loterijski način« Pr? loterijskem načinu Imamo v žar?
listke z zaporednim? številkam? enot« V žari je torej toliko
listkov, kolikor je enot v populacij?«

Enako možnost za Izbor vsake enote ustvarimo tako,
da oštevilčene listke dobro premešamo In Iz žare "na slepo”
potegnemo listek. Enoto, ki Ima Izžrebano zaporedno številko,
vzamemo kot enoto s Iučajnostnega vzore«. Postopek žrebanj«
enot vzorca ponavljamo vse dotlej, dokler nimamo Izžrebanih
ustrezno število enot n« Pri tem posamezne Izžrebane listke
pred Izborom nove enote vračamo v žarro, če gre za Izbor s po¬
navljanjem« Tako dosežemo, da Ima Ista Izbrana enota možnost,
da je ponovno vključena v Izbor« Če pa Izbiramo vzorec brez
ponavljanja, Izžreban? listek Izločimo, da ga ne moremo ponov¬
no Izbra 11 ,

Loterijski način s Iučajnostnega Izbora pa je posebno
;

za večje populacije zamuden In okorel«
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10o 23
8 s + ? c»!] dosežemo na drug način, brez listkov za

vsako enotoo
Vzemimo žaro, v kateri je deset enakih listkov, krog¬

lic al? kock s Številkam? od O do 9„ Če Imamo populacijo z

N = 999 enotami, dobimo slučajnostno zaporedno Številko tako,

da s trikratnim žrebanjem sestavimo tromestno slučajnostno šte¬

vilko« Izbor seveda vrSImo s ponavljanjem,, Če dobimo s prvim

žrebom številko 3, z drugim 1, s tretjim žrebom pa številko 3,
ta trojni žreb ustreza Izžreban? zaporedni številki 313 po
prejšnjem načinu« V vzorec vključimo torej enoto, k? Ima v okvi¬
ru vzorčenja zaporedno številko 313« Prednost tega načina, v

primerjav? s prvim, je v tem, da n? treba sestavljat? obširnih

žar, pomanjkljiv pa je v tem, da je treba za Izbor ene same
enote toliko žrebanj, kolikor mestno je število enot v popula¬
cij? N« To pa je zamuden poselo

10o24
Tablice slučajnostnlh številk o Hibe loterijskega Iz¬

bora odpravimo s tablicam? slučajnostnlh številko Številke od
O do 9, k? jih enkrat Izberemo, zabeležimo« Te slučajnostne
številke moremo uporabit? za več različnih vzorcev« Tako dobi¬

mo tablice slučajnostnlh števil, v katerih so zapisane števil¬

ke od 0 do 9, kot so bile po vrst? slučajnostno Izbrane Iz ža¬
re z desetimi številkami« En del Iz tablic slučajnostnlh šte¬
vilk Iz knjige: Flsher and Yates: Statlstlcal Tables for B?o-
loglcal, agrlcultlral and medica! research, je dana v tabel?

10o7 o •
Večmestna slučajnostna števila Iz teh tablic dobimo,

če združimo več slučajnostnlh številk v skuplneo Vzemimo prvo
vrsto Iz tablic slučajnostnlh številk Iz tabele 10 o 1:
03 47 43 73 86 36 96 47 36 61 46 98 63 71 Itd« Zaporedne šte¬
vilke enot, k? jih Iz populacije z N=8324 Izberemo v slučaj-

nosfnl vzorec, določimo tako, da vzamemo po vrst? skupine po

štiri slučajnostne številke« Prva Izbrana enota Ima zaporedno

številko 0347o
Skupine zaporednih štirimestnih slučajnostnlh šte¬

vilk so: 0347 4373 8636 9647 3661 4698 6371«
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Tabel« 10*7 S Iučaj nosTne številke

63

32

79

72

43

93

74

50

07

46

86

46

32

76

07

51

25

36

34

37

78

38

69
57

91

00

37

45

66

82
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TabeI a 10o 7 S Iučajnos + ne š + ev ke (nadaljevanje)? I

65
51
62
33
10

51
62
08
50

63

94
02
48
33
59

93
46
27
82
78

67
90
31
44
12

70
13
69
65
48
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3

Prva izbrana enota fma torej zaporedno številko 347
(0 na prvem mestu odpade)« Naslednja enota ima zaporedno števil¬

ko 4373« SSučajnos+n? številk? 8636 in 9647 ne prideta v poštev,

ker sta večji kot je obseg populacije in ima zadnja trota v po¬
pulaciji zaporedno številko 8324« Pač pa vključimo v vzorec še
enote z zaporednimi številkami 3661, 4698 in 6371.

Skupine sfučajnostnlh zaporednih številk pa se morejo
med seboj tud? delno prekrivati. Tako znatno povečamo obseg

tablic s Iučajnostnih številk. Če za zgornji primer tvorimo

štirimestne skupine s luča jnostn? h številk tako, da s I uča j nos trie
številke premikamo po eno mesto, dobimo tele rezultate: Prva

skupina 0347 ostane« Naslednjo skupino pa dobimo, če se v vrsti
s Iučajnostnlh številk premaknemo le za eno mesto. Druga skupina

je torej: 3474. Naprej dobimo po istem postopku nadaljnje sku¬
pine: 4743 7437 4373 3738 itd. Namesto sedmih skupin po štiri

ločene slučajnostne številke, izmed katerih jih moremo le pet
uporabiti kot zaporedne številke Izbranih enot, dobimo 25 sku¬
pin, od katerih je 21 manjših kot 8324« Namesto 5 enot Iz iste¬

ga dela tablic s Iučajnostni h številk izberemo 21 enot.
Po potreb? obseg tablic s Iučajnostnih številk pove-

č.mo tud? tako, da slučajnostne številke v tablic? beremo v
obratni smeri, od zgoraj navzdol ali od spodaj navzgor. V vsa¬
kem primeru dobimo nove skupine s Iučajnostn?h številk.

10.25

V primeru, k? smo ga navedli, nekatere skupine štiri¬
mestnih s Iučaj nostn?h številk niso uporabne, ker presegajo ob¬
seg populacije, število skupin, ki zaradi tega odpadejo, je v
nekaterih primerih zelo veliko. Če je n.pr. obseg populacije

N=1832, od 10000 različnih petmestnih skupin odpade 10000 -

1832 = 8168 s Iučajnostn?h števil. To pa zelo okrni uporabnost
ta bI? c.

S preprostim postopkom obseg uporabnih skupin poveča¬

mo. Od vseh štirimestnih skupin pridejo po zgornjem v konkuren¬
co le one, ki imajo prvo številko O alf 1. Vse ostale izpadejo.

Če pa postavimo pravilo, da štejemo kot 0 na prvem mestu štiri¬

mestnega števila vsako sodo (0, 2, 4, 6, 8), kot 1 pa vsako II-
ho (1, 3, 5, 7, 9) slučajnostno številko, se uporabnost tablic
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znatno poveča. Namesto 8168 neuporabnih skupin se število neu¬
porabnih skupin od 8168 zniža na 840. Ker je n.pr. prva števil¬

ka v skupini 5674 liha, ustreza tej slučajnostnl številk? eno¬

ta z zaporedno številko 1674. Po prvem načinu pa je to slučaj-

nostno število neuporabno.
Podobno reduciramo prva mesta skupin s i uča jnostn?h

številk za populacije, katerih obseg N začenja s števTIko 2«

Številke 0, 3, 6 štejemo kot 0, slučajnostne številke 1, 4, 7

kot 1, slučajnostne številke 2, 5, 8 pa kot 2. Sistem je v tem,

da je ustrezna prva številka ostanek, s I uča j nostnega števila,
če prvo slučajnostno številko od 0 do 8 delimo s tri. Opozorit?

moramo, da slučajnostne skupine, k? začenjajo z 9, Izpuščamo.
Analogno je pri populacijah, katerlg obseg začne s

številko 3, merodajen ostanek, če delimo prvo slučajnostno

število s štiri, ne upoštevamo pa 8 In 9.
Če pa se število enot N začne s 4, je prva številka

zaporednega števila ostanek, če deilmo prvo slučajnostno šte¬

vilko s 5.

10.26
Primer za ocenjevanje z enostavnim slučajnostniro

vzorcem . Uporabo različnih vrst vzorčenj«, med njim? tud? za

enostavno slučajnostno vzorčenje, borna uporabil? na shematič¬
ni preskusni kvadratni ploskvi s površino 57,6 ha. Ta je razde¬

ljena na N = 24 x 24 = 576 osnovnih površlnlc kvadratne oblike

po 10 a. Kljub temu, da je primer shematičen, je populacija za¬
dosti velika, da bomo mogli na različnih primerih ocenit? kva¬
litete posameznih vrst vzorčenja. V skici ploskve v sliki 10.3
so nakazane osnovne površlnlce In vanje vpisan? podatki o volum¬
nih na posameznih površlnlcah. Tl podatki v nadaljevanju služi¬

jo za to, da z njihovo pomočjo dobimo podatke o Izbranih parce¬
lah. V stvarnem primeru dobimo za 'zbrane enote te podatke z
opazovanjem na terenu.

Prave vrednostT parametrov, katere bomo v nadaljeva¬

nju ocenjevali, so": Število parcel, za katere je volumen večji
3

kot 30 m : H = 320. Odstotek parcel, na katerih je volumen

večji kot 30 m^ : P$ = 55,6$. Skupen volumen sestoja: Y =
= 17439 m . Povprečen volumen na osnovno parcelo : Y = 30,3 m .
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Slika 10.3 Skica poskusne ploskve z N=576 osnovnimi parcelicam?

s poda+ki o volumnih na osnovnih ploskvah.
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10.27
Z enostavnim s Iučajnostn»m vzorcem brez ponavljanj«

n=72 osnovnih parcel na poskusni ploskvi, ocenimo:
a) povprečni volumen na osnovno površino: y"
b) skupni volumen v sestoju: Y £ ^
c) odstotek osnovnih parcelic v sestoju, ki Imajo vo-

O
lumen manjši kot 30 m : p%

d) število parcelic v sestoju, nakaterrh je volumen
manjši kot 30 j

Vzorčna enota je v našem primeru posamezna parcelica
Izmed N=576 osnovnih parcelic« Osnovna populacija pa je sestav¬
ljena Iz vseh N=576 osnovnih parcelic«'

Glede na to, da so osnovne enote površine, je naj-
prlkladnejšl okvir shematična karta sestoja, v kateri so posa¬
mezne vzorčne enote - osnovne parcelice oštevilčene z zapored¬
nimi številkami od 1 do 576.

Enostaven slučajnostnl Izbor n=72 osnovnih parcelic
brez ponavljanja Izvedemo tako, da Iz tablic s Sučajnostn?h šte¬
vilk vzamemo kot zaporedne številke Izbranih enot vsa tromestna
slučajnostna števila od 001 do 576« Tromestne slučajnostne šte¬
vilke sestavimo po določenem pravilu«

V našem primeru vzemimo po vrstnem redu tromestna
števila Iz zaporednih stolpcev v tablici s IučajnostnI h števil
v dodatku. ■ - / '

Najprej vzemimo kot tromestna slučajnostna števila
prvo skupino tromestnlh številk (prva, druga, tretja) Iz vsake
vrste v tablici s Iučajnostnlh številk v dodatku, nato drugo
skupino (četrte, pete, šeste slučajnostne številke) Iz vsake
vrste, nato tretjo skupino *td« vse dotlej, dokler ne dobimo
n=72 s IučajnostnI h tromestnlh številk brez ponavljanja« n=72
tako ugotovljenih tromestnlh s Iuča j nosi n I h številk brez ponav¬
ljanja je nanizanih v tabeli 10.8« Iz te tabele je razvidno,
da se je v Izboru pet tromestnlh Š'tevllk ponovilo (dv)« Izbra¬
ne parcele so v okvirju vzorce v sliki 10.3 uokvirjene. V tabe¬
li 10.8, kakor tud? v slik? 10.4 so za Izbrane parcele navede¬
ni tudi volumni, katere smo ugotovil1 ! Iz skice 10.3. Z 0 ali 1
pa je zaznamovano, da volumen nf (0) oziroma da je (1) večji
'kot 30 m^.
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S I?ka H0o 4 Okvir enostavnega s Iučajnos+nega vzorca
lic z vrisanim? slučajnosino Izbranimi parcelicami

ml vol umni o

n=72 parce-
n vplsa ni -
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Tabela 10.8 Osnovni podatki o enostavnem s!učajnoslnem izboru

vzorca z n = 72 parcelicam?

Iz individualnih podatkov za n=72 izbranih parcel dob?
mo naslednje pomožne rezultate: število parcel, ki imajo volu-

3men večji kot 30 m , h = 43, vsota volumnov na izbranih parce-
3

licah y = ~ 2226 m . Vsota kvadratov volumnov na izbranih
parcelicah J y? = 71902.

Če upoštevamo teoretične osnove za enostavni slučaj-
nostn? vzorec, dobimo naslednje rezultate:

Točkovna ocena za povprečni volumen na eno parcelo

je po obrazcu 10.9-

Y s| = y/n = 2226/72 = 30,92 m3

Iz pomožnih rezultatov dobimo dalje, da je ocena variance za
osjiovo I znak y
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n 2 2 /
s 2 = žy ' ~ y _ - 71902 - 2226 2/72 . 43>40
y R - 1 72-1

Ocena variance za ar ? + me + Ično sredino z vzorcem brez ponavlja¬

nja je po obrazcu 10*15

var fy) = %1 . ±1 = * 576-72 = 0, 52?431
n N 72 576

seiy) = /var(y7~ = /3,527431 = O,.726 m 3

d(y) = + (0,05*72-1 ).se(y) = 2,00.0,726 = 1,45 m 9

Y = 30,92 - 1,45

Ker je vzorec z n=72 enotam? v smislu vzorčenja če
majhen, ko+ fak+or, s ka+erlm množimo oceno, da dobimo oceno
odklona ni ločno enak koe+IcTen + u z za normalno por a zde II+ev,

lemveč I (oc ,n- 1 )» Ta koeficient je +em bližji vrednos+f z za u -

s + rezno tveganje OC , čim večji je vzorec. To vidimo Iz +abele

za I porazdell + ev v labe I? 11.1. V našem primeru je + (oi=0,05;
n-1 =71) =2,00. Za velike vzorce pa je us + rezn? z (oc =0,05) =1,96.
Razlika +orej ni znal na.

Prava vrednosl arl+me+ične sredine volumna na eno
3

parcelo lež? s tveganje® 04= 0,05 v razmaku od 29,47 m do
32,37 m3 .

Ocena arl + me+ične sredi n e ».vo I umna torej s tveganjem
oc= 0,05 ni od prave arT+me + fčne sredine Y različna za več kof

6%[J) = 100.d(y)/y = 100.1,45/30,92 = 4,7 %

Ocena, ki smo jo dobili z vzorcem, je razmeroma dobra.
Podobno ocenimo tud? skupen volumen v sestoju. Toč¬

kovna ocena skupnega volumna Y fi j je

Y = - y = ŽZ6 2226 = 17808 m 3
sl n 72

Ocena variance za skupen volumen pa je

s 2
var(Y ,) = N(N-n) -X = 576(576-72) ■—= 174988,80

S ' n 72
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se(Yg j) = yV ar(Y s !"5 = -^174988,80 = 418,32 m 3

d(Ys3 ) = t(0,G5.71).se(Y sJ l = 2,00.418,32 = 837 m3

Y = 17808 t 837

Pravi skupni volumen sestoja je s tveganjem cC = 0,05

med 16971 m 3 In 18645 m 3 .

Ce primerjamo dobljen? rezultat ocene z enostavnim
vzorčenjem brez ponavljanja s pravim volumnom v raziskovanem

3
sestoju Y = 17439 m , vidimo, da je rezultat v skladu s teori¬

jo. Prava vrednost volumna v sestoju resnično leži v razmaku

zaupanja. Dobljena točkovna ocena za volumen v sestoju Y , =
3 s 3= 17808 m je razmeroma d©br a ocena skupnega volumna Y=174 3 9 m.

Razlika ocene od prave vrednosti je 17808 - 17439 = + 369 m3

alf v odstotkih 100 = 2,1 $
17439 P

Ocena strukturnega deleža parcel z volumnom nad

30 m3 je p = h/n = 43/72 = 0,597 ali v odstotkih

p$ = 100.0,597 = 59,7$

Da ocenimo vsrla

vzorca, Izračunamo oceno s

Da ocenimo varianco te ocene najprej Iz podatkov
2

„2 h(n-h 1Sp „— 43(72-43)

n(n-1) 72(72-1)
0,243936

Ocena variance za p je
2

N-n
N

var(p) j? 0,243936 576-72

72 576
= 0,00296450

se(p) = Yvar(p) = Vo,00296450 = 0,0544

a i 1

se f p$) = 1 00.se (p) = 100.0,0544 = 5,44$

d(p$) = t(0,05.71).se(p$) = 2,00.5,44 = 10,9$

Odstotek parcel, k.1 Imajo volumen večji kot 30 m3 , je P$ =
59,7$ - 10,9$. Prav? odstotek, s tveganjem oC = 0,05 n? manjši
kot - 49$ In ne večji kot 71$.
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Hs ~ . 43 = 344
72n

0,243936

72
= 983,55

se(H,|J *y7ar(Hs| ) = ^983,55 =31,4

d?Hsi ) = f(0,05»71y,sej > = 2,00*31 ,4 = 62,8

H = 344 ~ 63

potrdilo teorije ?n za preskus stvarne zanesljivost? rezultata

primerjamo dobljeno oceno s pravim številom parcel, k? smo ga

dobili s pregledom vseh parcel, dobimo, da je pravo število
parcel H = 320 v mejah zaupanja In da se ocena H, = 344 od

s 94
pravega števila razlikuje za 344 - 320 = 24 ai? 100 —^=7,5$*

Določanje velikosti vzorca pri zahtevan? natančnosti ocene

dosedanjem obravnavanju ocenjevanja z vzorčenjem je bila veli¬

kost vzorca vnaprej znana In smo pr? dan? velikost? vzorca oce¬

njeval? parametre ?n njihovo zanesljivost*

določit? velikost vzorca tako, da bo dal predpisano natančnost.
Če na velikost vzorca ne polagamo pažnje, se zna zgoditi, da so

ocene, k? jih dobimo, neuporabne ali pa Imajo omejeno vrednost,
ker so premalo zanesljive, če je vzorec premajhen. Obratno pa
je ocena glede na stvarne potrebe lahko predobra tn smo po ne¬

potrebnem vzeli prevelik vzorec.
Zanesljivost ocene z enostavnim vzorcem je dana s

standardno pogreške ocene SE, ali pa z odklonom zaupanja D=z.S£,

10.28
Določanje velikost? vzorca za oceno povprečja . Pr?

Pr? planiranju vzorcev pa običajno nastopi problem
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k! pomen? največji odklon ocene od prave vrednost? pr? danem
tveganju ca * Kot je znano, zavlsi od stopnje tveganja koefi¬

cient Z o

Najprej skušajmo rešit? problem o velikost? vzorca za

oceno povprečja z vzorcem s ponavl jan jem» Vprašanje je, koliko

enot moramo vzet? v vzorec, da se ocena povprečja z danim tve-

ganjem a. ne odklanja od prave vrednost? za več kot D Cy) *

Iz obrazca 10*5 ?n obrazca 10o6 povzamemo, da je za
enostaven slučajnosin? Izbor s ponavljanjem

D(y) = z.SE(y) = z -^=- 110*361

Iz te ga obrazca dobimo, da je za vzorec s ponavljanjem

110*37)

Vzemimo našo poskusno ploskev z N=576 parcelicam! In

skušajmo določiti, kako velik vzorec s ponavljanjem moramo vze¬
ti, da se ocena povprečja od pravega povprečnega volumna na eno
parcelo s tveganjem ot = 0,05 ne bo odklanjala za več kot

D(y) = 1 m 3 *
Za tveganje a= 0,05 je z = 1,96* Standardni odklon

za volumen po parcelicah je £ = 6,29* Iz teh podatkov dobimo

po obrazcu 10*37, da je

n / 1,96*6,29
' 1

152

Da z enostavnim vzorčenjem s ponavljanjem ocenjen? povprečni
volumen na eno parcelo od pravega povprečja ne bo različen za

3več kot D = 1 m , je treba v slučajnosten vzorec vključiti

n'=152 enot*

10,29
Med številom enot v vzorcu s ponavljanjem n In števi¬

lom enot v vzorcu brez ponavljanja n f pr? Isti natančnosti oce¬

ne je zveza
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. I fc- il • N n ^ n
' N+n-1 ~ 1 + f

(10 0 38)

V našem primero dobimo

n® = -576i152. = 120
576+152-1

Ce ocenjujemo povprečje z vzorcem brez ponavljanja, dosežemo

predpisano za nesi j Tvos+ ocene že z vzorcem, v katerega vklju¬
čimo le n=l20 parcelic.

10.30

Velikost vzprca pr? predpisan? relativni natančnosti.

Zanesljivost ocene pa večkrat predpisujemo tud? relativno. Na¬
mesto absolutnega dopustnega odklona zaupanja Izrazimo odklon
relativno v odstotku od parametra, v našem primeru v odstotku
od aritmetične sredTne.

obrazec 10.37 ustrezno preuredimo, je

n z KV% f
D%(y)J

(10.391

V obrazcu 10.39 smo števec In Imenovalec pomnožil? s 1Q0/Y. Ta¬

ko dobimo v števcu namesto standardnega odklona 6 koeficient
variacije KV/S, v Imenovalcu pa namesto absolutnega odklona zau¬
panja D(y) relativen odklon D/S(y"). Iz tako dobljenega obrazca

za število enot v vzorcu s ponovi jan jem pa*dobimo število enot

v vzorcu brez ponavljanja po obrazcu 10.38o

10^31 ■
Skušajmo določiti, s kako velikim vzorcem brez ponav¬

ljanja bi se ocena povprečnega volumna na eno parcelo v našem
preskusnem sestoju s tveganjem a= 0,01 ne odklanjala od pra¬

vega povprečja za več kot D%Cy) = 5/S.

Tveganju a = 0,01 ustreza koeficient z =? 2,576
(glej odstavek 9.131. Ker je koeficient variacije za poskusni
sestoj KV^ = 20,8/S, dobimo po obrazcu 10.39

„ = 12,576.20,8^ „ 5
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Potrebno število enot v vzorcu brez ponavljanja pa je po obraz¬

cu 10»38

= 576,115 , = , 6
576+115r1

Določanje števila enot v vzorcu za ocene parametrov Y„ Y g D%, H

1 0 o 32
Analogno dobimo obrazce za določanje števila eno+ v

vzorcu + u d ? za ocene parametrov: Y, P in PL Obrazci za vse šti-
ri osnovne parametre so dan? v -tabel? 10 o 9 o

Tabela 10»9 Obraze? za določanje potrebnega števila enot prt
dan? zanesljivost?
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10,33
H?ba navedenega postopka je v tem, da moramo poznali

določene parametre Iz osnovne populacije* če hočemo določit?

potrebno število enot za planirani vzorec. Teh pa običajno ni¬

mamo, Zato sl pr? planiranju vzorcev pomagamo z ocenam? za po¬

trebne parametre, Te dobimo s predhodno analizo pojava* k? ga
proučujemo al? Iz razpoložljivih podatkov že Izvršenih sorodnih

raz?skaw. Včasih vrednosti teh parametrov ocenimo z manjšim

vzorcem* katerega kasneje vključimo v glavni vzorec.

Drug problem* k? se pojav? v zvez? z določanjem veli¬

kost? vzorca* pa je v tem*da običajno z enim vzorcem ne opazu¬
jemo enega samega znaka In ne ocenjujemo enega samega parametra.
Vsak Izmed teh znakov pa Ima drugo variabilnost* ocena pa drugo
zanesljivost. Zato pr? planiranju velikost? vzorca dobimo za
oceno vsakega parametra drugačno potrebno velikost vzorca. Tež¬
ko se je Izmed različnih n odločit? za velikost vzorca* ki naj
bo osnova za vzorec* s katerim dobimo podatke za ocene vseh pa¬
rametrov, V tem primeru se odločimo za kompromisno srednjo ve¬
likost vzorca. Pr? tem se oziramo predvsem na važnejše parame¬

tre In skušamo vzeti vzorec tako velik* da zanesljivost ocen

ustreza predvsem zanje,

Strat?f?c?rano vzorčenje

10,34
Osnova In lastnosti . Obraze? o varianci ocen z eno¬

stavnim vzorčenjem pokažejo, da je zanesljivost ocene* razen
od velikost? vzorca v bistven? mer? odvisna od variabilnost?
proučevane populacije. Za homogene populacije, za katere je
variabilnost majhna, je ocena boljša* za heterogene populacije

oziroma za populacije z veliko variabilnostjo* pa so ocene pr?
Isti velikost? vzorca manj zanesljive. Medtem ko moremo veli¬
kost vzorca spreminjat? In tako vplivat? na kvaliteto ocene*
na variabilnost neposredno ne moremo vplivati, ker je lastnost

popu ladje.
Vendar kljub temu pr? vzorčenju Izkoriščamo zakoni¬

tost* da so ocene za homogene populacije zanesljivejše kot za
heterogene. Če namreč uspemo heterogeno populacijo razdelit? v
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homogene populacije, je variabilnost v posameznih delnih popu¬
lacijah, ki jih imenujemo - stratume , manjša o S samostojnimi
enostavnimi vzorci v posameznih stratumfh dobimo ocene za posa¬

mezne stratume, iz teh ocen pa sestavimo ocene za populacijo«

Tak način ocenjevanja je v primerjavi z enostavnim vzorcem tem

uspešnejši, čim manjša je variabilnost pojava znotraj stratumov
in čim večje so razlike med stratumi. Zato skušamo pri stratifi-

ciranem vzorčenju razdeliti populacijo v stratume po onem zna¬

ku oziroma znakih, ki bistveno vplivajo na proučevani pojav.

Najpopularnejša je regionalna stratifikacija, pri kateri popu¬

lacijo razdelimo v homogene grupe glede na geografske rajone.

Tako je uspešna razdelitev sestoja na stratume po kvaliteti
tal, glede na nadmorsko višino itd. Kot načelo za razdelitev
na stratume pa more služit? vsak drug kriterij, ki prispeva k

temu, da so razmere v stratumih čim bolj Izenačene. Tako more¬

mo v dvoetažnem sestoju vzeti kot stratume posamezni etaži. Vo¬
lumni, premeri, višine drevja itd. so namreč v bistveni meri
odvisni od tega, iz katere etaže je drevo. Zato je variabilnost
teh značilnosti močno odvisna od etaže. Dve homogeni populaciji
dobimo, če vzamemo v en stratum drevesa Iz prve etaže, v drug

stratum pa drevesa iz druge etaže.
Hiba str a t i f le i ranega v zor če n j a pa je predvsem v tem,

da moramo populacijo razmeroma dobro poznati, če hočemo izve¬
sti stratifikacijo. Medtem ko moramo pri enostavnem vzorčenju

poznati le okvir vzorčenja, t.j. spisek enot, moramo pri stra-
tiflclranem vzorčenju populacijo znatno bolje poznati, če jo
hočemo razdelit! v homogene dele. Vsako enoto v osnovni popula¬
ciji je treba namreč pred izborom vzorca vključit? v ustrezno

grupo - stratum.
Običajno ne proučujemo popolnoma neznanih pojavov.

Zato izvedemo stratifikacijo po poznavanju o kvaliteti drevja,
po poznavanju tal ali na osnovi prejšnjih pregledov sestoja.

Ker je stratifikacija običajno izvedena po nekem nače¬
lu, ki je v vsebinski zvez? s proučevanim pojavom, dobimo s
stratific?ranim vzorčenjem kot postranski rezultat tudi rezul¬

tate po grupah - stratumih. Zavedati pa se moramo, da so rezul¬

tat? za posamezne stratume nezanesljivi, če je število enot
vzorcev v posameznih stratumih majhno.
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10.35
Ocenjevanje agregata s stra tlfic?ra n!m vzorcem . Naka¬

zali smo že, da pr? strat?f?cira nem vzorčenju ?z delnih ocen,

k? jih dobimo iz samostojnih enostavnih vzorcev po stratumih,

sestavimo skupno oceno za celotno populacijo.

Ocena agregata s s tra t i f i cT ra n 5 m vzorčenjem Y g ^. r je

vsota ocen agregatov v posameznih stratumih Y, .

'str TUI 'isl * * = X
k*1

( 10 . 40 )

Varianca z« oceno agregata s strat it iciranim vzorčenjem
Var(Y pa je vsota varianc ocen agregatov po stratumih

Var(Yitr ) = Var(Y, sl ) + Var(Y2sl)+ - +fer(Yrsl) * XVar(Yks,) ( 10 . 41 )
' ' ' k*1 '

Iz teh dveh obrazcev moremo z upoštevanjem zvez med
Y, Y, P ?n H, pravim? vrednostmi in ocenam? razviti analogne
obrazce za prave vrednosti ali ocene parametrov ali varianc za
katerikoli izmed navedenih štirih parametrov.

10.36
Razmestitev enot vzorčenja po stratumih . Pri stratT-

flciranem vzorčenju je ena izmed osnovnih nalog določiti, koli¬
ko enot od skupnega števila enot v vzorcu vzamemo v posamezen

stratum. Vnaprej ta razmestitev namreč ni dana. Pri podrobnej¬

šem študiju stratif?c i ra ne ga vzorčenja opazimo, da je od tega,

koliko enot od skupnega števila enot v celotnem vzorcu je v po¬
sameznem stratumu, v bistven? mer? odvisna zanesljivost ocene.
Zato je ta problem toliko bolj pomemben.'

10.37
Proporcionalna razmestitev . Najenostavnejša razmesti¬

tev, ki jo uporabljamo pr? strat?f?cira nem vzorčenju, je pro¬
porcionalna razmestitev. Pri pr opore?ona I n? razmestitvi je ve¬
likost vzorcev v posameznih stratumih sorazmerna skupnemu šte¬

vilu enot v stratumih. Če z zaznamujemo skupno število enot,
z n^ pa število enot v vzorcu v stratumu k, fbri pr opore ? ona I n i
razmestitvi določimo n^ po obrazcu
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nk = a Nk '• 0 ~ n/N (10.42)

10.38

Vzemimo naš kompleksen primer sestoja z N = 576 par¬

celicami, kf so razdeljene v tr1 stratume 1, 2 Tn 3. Osnovna
razdelitev na stratum za to populacijo je nakazana v okvirju

v s I1 k 1 10.5.
Zanj je v tabeli 10.10 nakazano, kako skupno n = 72

enot vzorca razmestimo po stratumlh pri pr oporc 1 ona I n 1 razme¬

stitvi. Razen tega je v Isti tabel? tudi nakazano, kolika je
varianca za oceno skupnega volumna pri proporc 1 onaln 1 razme¬
stitvi. Konstanta, s katero pomnožimo N^, da dobimo n^, je po
obrazcu 10.42 a = 72/576 = 0,125.

Tabela 10.10 Izračun števila enot po stratumlh In variance
agregata (lesne zaloge) pr? proporc?ona I n * razmestitvi na pre-

s kusn l ploskvi

N = 576 n = 72 33703 = Var(Y. )str ,p

Dalje je: SE(Y s + r ) =^ar(Y s + rJ = ■$3703 = 183,6

SE$(Y s + r?p ) = 100.SE(Y s + r>p )/Y= 100.183,6/17439 = 1,05$

Stra1111cira no vzorčenje da v našem primeru torej

znatno boljše rezultate kot enostavno vzorčenje. Medtem ko je

relativna pogreška za oceno agregata Y z enostavnim vzorčenjem
enaka SE$(Ys |) = 2,29$, je relativna pogreška ocene pr? strati-
flciranem vzorčenju s pr op or c 1 ona I n o razmest 1 tv 1 j o skrčena na

SE* (Ys+r,p> =
Uspešnost posameznih vrst vzorčenja običajno merimo

s primerjavo varianc ocen pr? posameznih planih vzorčenja. To
razmerje namreč približno pokaže, kolikokrat večji enostavni
vzorec b? morali vzeti, če bi z njim hotel? doseč? isto natanč-
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nost, ko! jo dosežemo z določenim Upom vzorčenja. V našem pri¬
meru je to razmerje

Var { Y s l ? _ 160180 _ 4 ?5

VarlY e . J 33703str,p

To pomeniš Če hočemo z enostavnim vzorcem doseč? tako kvalite¬

to za oceno lesne zalloge, kot jo dosežemo s strat?f?c Iranlm
vzorcem s proporcionalno razmestI tv I j o enot s skupno n = 72

osnovnimi površ Inf cam?, moramo v enostaven slučajen vzorec vze¬

ti približno 4,75 krat več enot kot pri stra1111 c I ra nem vzorče-

nj.Uo Str a t ? f 5 ka c o j a je v tem primeru zelo uspešna.
Varianco ocene agregatov v posameznih stratumlh smo

Izračunali po znanem obrazcu 10.22 za Izračunavanje variance
za ocene agregatov z enostavnim? slučajnostnlm? vzorci.

10.39
Optimalna razmestitev . Kljub uspešnost? proporcional¬

ne razmestitve pr? stra 15fI c I ra nem vzorčenju pa pr opor c I onal na
razmestitev ni najboljša. Ocena v posameznih stratumlh je tem

zanesljivejša, čim manjša je variabilnost v stratumu In obrat¬

no. V stratumlh, k? so zelo homogeni, je potrebno za razmeroma
dobro oceno vzet? sorazmerno manjše vzorce kot v var IabII n e jšlh
stratumlh. Sz tega zaključimo, da dobimo povolnejšo razmestitev
enot v stratumlh, če razen števila enot v posameznih stratumlh

pr? določanju velikost? vzorcev upoštevamo tud? variabilnost«

Račun pokaže, da je optimalna razmestitev enot v stratumlh dana

z obrazcem

nL = a-Nk.Sk o = ”/I nk .Sk ( 10 . 43 )

Po tem obrazcu dobimo dano število enot v vzorcu optimalno raz¬

meščeno po stratumlh, če vzamemo, da je število enot v posamez¬
nem stratumu pr oporc I ona I n o številu enot In standardnemu od¬
klonu v ustreznem stratumu.
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to.40
Za naš primer je Izračun optimalne razmestitve enot

In variance ocene za tak stratIfI c?ra n vzorec nakazan za oceno

skupne lesne zaloge v tabel? 10.11.

Tabela 10.11 Izračun velikost? vzorcev v stratumlh ?n variance

ocene skupne lesne zaloge na preskusni ploskvi pr? optimalni
ra zme st I tv ?

Število enot po stratumfh dob?mo po obrazcu 10.43, pr? čemer

je a = n/XNk S k = 72/1602,24 = 0,044937.

Osnovne podatke o N k ?n $ k smo dob?l? ?z tabele 10.9.

Dalje je:

SE,Ystr,0! =yVi”" (Y s+'-.C> ) =1/30850 = 175,6

Relativna standardna pogreška pa S ^ s -j- r = 100«3E(0^Y=
= 100.175,6/17439 = 1,01$.

Primerjava variance za stret?f?c?ra no vzorčenje z opti¬
malno razmestitvijo s strat?t?c?ran?m vzorčenjem s proporcio¬
nalno razmestitvijo da

Var(Ystr p } /Var(Ystr O* = 33703/30850 = 1,092.

Da b? s pr oporc?ona I no razmes111v I j o dobil? enako zanesljivost
kot z optimalno razmest 11v?j o n=72 enot vzorca, b? moral? vze¬
ti približno za 9$ večj? vzorec.

10.41
Optimalna razmestitev enot glede na stroške . Optimalna

razmestitev, k? smo jo obravnaval? v zgornjem odstavku, je opti¬
malna glede na število enot. V praktičnem delu pa so pomembnejši
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element pr? planiranju vzorca stroški opazovanja. Zato skušamo

dalje ?ska+? optimalno razmes+i+ev enot glede na skupne stroške

opazovanja. Ta razmestitev je enaka pri optimalni razmestitvi

glede na število enot, če so stroški za opazovanje ene enote v

vseh stratumih enak?, če pa so stroški za opazovanje vzorčnih
enot različni, more optimalna razmestitev glede na stroške

bistveno odstopati od optimalne razmestitve glede na število

enot. Glede na stroške je optimalno tisto število enot v posa¬

meznih stratumih, ki da pr? Istih stroških najmanjšo skupno

varianco in s tem na j zanesljivejšo oceno.
Vzemimo enostavno funkcijo stroškov, ki upoštevala*

mo konstantne stroške in stroške, k? so v zvez? z opazovanjem

posamezne enote vzorčenja. Konstantni stroški so oni, k? niso

odvisni od tega, kakšno število enot vzamemo v vzorec. To so

stroški za pripravo ankete, za sestavo okvirja itd. V variabil¬
ne stroške pa vzemimo stroške, k? so v zvez? z opazovanjem po¬
samezne enote. Pri enostavni funkciji stroškov predposta v I jamo,
da so stroški po posameznih stratumih proporclona I ni številu

enot v vzorcih po stratumih. V tem primeru so skupni stroški

dan? s funkcijo

C = C0 + C, s C0 + J>ck nk (10.44)

Pri tem pomen?: C = skupni stroški, CQ = konstantni stroški,

C y = variabilni stroški, c^ = stroški za opazovanje ene enote

v stratumu; = število enot v stratumu k.
Pri optimalni razmestitvi enot glede na stroške do¬

ločimo število enot po posameznih stratumih po obrazcu

nk = cr-^S- / a = CY/][Nk Sk k̂ (10.45)
V cAr

10.42

Za naš primer vzemimo, da so stroški za opazovanje
ene osnovne parcele (potni stroški, stroški merjenja itd.) po
stratumih naslednji:

c 1 = 3600 din, c 2 = 2500 din, c 3 = 1600 din.
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Stroški so različni zaradi različnega terena, veli¬
kosti teritorije sestoja Itd« če upoštevamo zgornje stroške na

enoto po posameznih stratumlh, znašajo spremenljivi stroški

glede na število enot po stratumlh pri optimalni razmestitvi

I z tabele 10.11 :

c., n .j +c gn n 2 =3600 . 12 ♦ 2500.33 + 1600.27 = 168900 din.

Po nakazanem postopku določimo optimalno razmestitev

enot po stratumlh tako, da pri enakih spremenljivih stroških

168900 din dobimo čim manjšo varianco. Postopek izračuna opti¬
malne razmestitve enot po stratumlh glede na stroške je nakazan

v tabeli 10.12.

Tabela 10.12 Določitev optimalne razmestitve glede na stroške

po stratumih za enote

Konstanta a, s katero pomnožimo izraze da dobimo šte¬
vilo enot v posameznih stratumlh, je

a = Cy/X Nk S k,VS. = 168900/76608 = 2,2047

Iz variance za oceno agregata s stra11fI c Ira n I m vzorčenjem pri

novi razmestitvi spoznamo, da smo za isti denar kot pri optimal¬
ni razmestitvi glede na število enot, dobili večji vzorec in
boljše rezultate. Primerjava varianc za obe razmestitvi

Var(Ystr o ) /Var(Ystt,c > = 30850/30001 = 1,028

namreč pokaže, da bi morali v stra11fI c 1 ra n vzorec pri optimal¬
ni razmestitvi ne glede na stroške vzet? za 2,8^ več sredstev,
če bi hotel? z njim dobiti enako kvalitetno oceno kot s streti-
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ficlranim vzorčenjem, pr! katerem upoštevamo razlike v stroš¬

kih opazovanja«

10» 43
Primer za ocenjevanje s strat?f?cIran?m vzorčen?em«

Omenili smo že, da pr? s tr a 11 f 1 c 1 ra nem vzorčenju v vsakem stre*-

tumu Izvedemo samostojen, od drugih stratumov neodvisen vzorec,

da ocenimo Iskan? parameter za vsak stratum posebej, Iz ocen

za posamezne stratume pa sestavimo oceno za populacijo«
Prva naloga pri Izvedb? stra11f1 c 1 ranega vzorčenja je

' i
Izdelava okvira vzorčenja« Pr? stra1111 c 1 ra nem vzorčenju je
okvir sestavljen Iz samostojnih seznamov enot po stratumlh® V

seznamu enot po posameznih stratumlh Ima vsak stratum svojo po¬

sebno numerac?jo, k? omogoča, cja pri Izboru 1 dent 111 c 1 ramo na

slučajnosfen na čin Izbrane enote« Tud? pri st ratificiranem

vzorčenju more bit? osnova okvirja seznam, kartoteka, geograf¬
ska karta, skice In podobno, le da so okvirji sestavljen? po
stratumlh« Vsak stratum smatramo za samostojno populacijo s

samostojnim okvirjem In numeracijo.

V slik? 10«5 je nakazan okvir vzorčenja za poskusni

sestoj. Ploskev je glede na kvaliteto tal razdeljena v tri
stratume: 1, 2 In 3® Vsak stratum Ima v okvirju samostojno nu¬

meracijo parcelic«
Okvir vzorčenja je v našem primeru shema ploskve z

vpisanim? zaporednim? številkam! parcelic v posameznem sfratumu.
Zaporedne številke Izbranih parcel dobimo iz tablic

s Iučajnosfn?h številk v dodatku. Ker je skupno število osnov¬
ni« parcelic v prvem sfratumu = 144, v drugem = 192 in
v tretjem = 240, Iz tablic s Iuča j nosfn 1 h številk dobimo za¬
poredne Številke Izbranih parcelic po naslednjem pravilu: Od
začetka tablic s Iučaj nostn1 h številk sestavljamo drseče tri¬
mestne slučajnostne številke tako, da tromestno skupino pomikamo
za eno slučajnostno številko« Ker je število enot v prvem stra-
tumu pod 200, dobimo Iz tromestne slučajnostne številke, ki je

večja kot 200, zaporedno številko Izbrane parcele tako, da od

nje odštevamo ustrezen mnogokratnik od 200. Enako postopamo v
drugem sfratumu, ker tud? v njem število enot n? večje kot 200«
V tretjem sfratumu je število enot = 240. Zanj od tromestnlh
š I uča j nost n ? h številk odštevamo p'6 znanem postopku 300. Vendar



slučajnostne številke, k! so večje kot 900, v tretjem stratumu

ne pridejo v poštev, ker b? sicer ne imela vsaka enota v stra¬

tumu enake možnost?, da jo izberemo ?n zato ocena ne b! bila

nepr ? str a nska» V tabeli 10<>13 je prikazan izbor vzorcev v posa¬

meznih stratumlh« Poleg slučaj nost ne številke je v drugem stolp¬

cu vpisana zaporedna številka parcele, ki ustreza posamezni slu-
čajnostn? Štev?lk? 0 Sz tabele je razvidno, da nekatere slučaj-

nostne številke ne pridejo v poštev, ker so večje kot je skup¬

no število enot po stratumlh«

V prvem stratumu dobimo na primer zaporedno številko
izbrane parcele, če ostanek tromestne slučajnostne številke,

k? smo jo delil? z 200 ni večji kot N^=144» Po tem načelu ustre¬

za prv? tromestni s Iučajnostn? številk? 034 parcela z zaporedno

številko 34, slučajnostna številka 347 ne pride v poštev, ker

je ostanek 347-200=147 večji kot N.j=144o Slučajnostmi številk?
474 ustreza parcela z zaporedno številko 474-400=74 Itd«, Podob¬
no postopamo pr? drugem In pr? tretjem stretumuo

V tretjem stolpcu je vpisan volumen na izbranih par¬
celicah« Te volumne dobimo z merjenjem na Izbranih parcelah,
oziroma iz slike 10«3« V četrtem stolpcu Je z o naznačeno, če

O
je volumen na izbran? parcel? manjši al? enak 30 m , z 1 pa so
označene parcele, na katerih je volumen večji kot 30 m^.

Izbrane parcele z vpisanim? osnovnim? podatki o vo¬
lumnih so vrisane v okvirju v sliki 10 o 5«

Da ocenimo skupen volumen In standardno pogreško

oziroma meje zaupanja, najprej IzračunaTro Iz osnovnih podatkov
n

o vzorcih za vsak stratum posebej pomožne količine in

iz teh količin pa dalje po obrazcih Iz pregleda obrazcev v od¬
stavku 10«19

ocene agregata - volumna Y^ s j in ocene varianc var ^^s |^ za po¬
samezen stratum« Vsota ocen volumnov po stratumlh je stratlfi-

clrana ocena volumna na celi ploskvi, vsota ocen varianc pa o-
cena variance volumna s sirat?fIcfra n I m vzorcem« Analogno za

3
oceno parcel z volumnom nad 30 m najprej preštejemo za posamez-



Tabela 10<,13 Osnovni poda+k? o si ra + ? f 1 c 5 ra nem vzorcu na eks¬

perimenti* I n! ploskvi
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J. stratum 2. stratum 3. stratum

Slika 10«5 Okvir za strat?fIcfrano vzorčenje z vrisanim? slu
čajnostno Izbranim? parcelam? po stratumlh pri optimalni raz¬
mesti t vi e
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ne straturae število parcel z nad 30 m volumna h, ?n Izračuna-
2 *

mo s .o Iz ieh količin pa dalje po obrazcih Iz pregleda 10.19
P& 2

Izračunamo oceno števila enot z nad 30 m ^I n ocene varian¬

ce -tega števila vartH^^ za posamezen stratum. Enako kot pri
agregatu je vsota ocen po stratumlh enaka s+ratltlclran? oceni

za celotno ploskev. Pomožne količine In osnovni Izračun stratl-

flciranlh ocen je nakazan v tabeli 10.14.

10.14 Ocenitev lesne zaloge In števila parcelic z lesno zalo-
3

co nad 30 ra na poskusni ploskvi s stratIfIclranlm vzorčenjem

Iz varianc ocen izračunamo standardne pogreške In meje zaupa¬
nja:

se(Y s tr ,=VVar(Ystr ) = -/25434 = 159,5 rts3

d(Y s + r ) = 2,00 se(Y s + rJ = 2,00.159,5 = 319 m3

Prava lesna zaloga s tveganjem ct= 0,05 ni manjša kot

YmIn =r 5 +r -dirst r ,=17512-319=17193 m3 ,n ne ve! i a kot

k.x=YS tr+d(Ystr , =17512+319=17831 m3 -

Če primerjamo dobljeni rezultat s pravo lesno zalogo
3

Y = 17439 m , vidimo, da ta vrednost leži v mejah zaupanja.
Razlika ocene od prave vrednosti Y s ^. r - Y = 17512 - 17439 =

*$•73 m 3 je komaj 0,43$ od skupnega volumna. Dobljena ocena je
znatno boljša, kot pa smo jo dobili z enostavnim vzorcem.

3
Za število parcel z lesno zalogo nad 30 m pa je:

se(Hs+ ) = V^arThT^J = ^238,27 = 15,44



d(Hs+r ) = 2,00.se(Hsip ) = 2,00.15,44 = 31

3
Pravo število parcel z nad 30 m je s tveganjem a - 0,05 večje

k0+ Hmln = Hstr * dlH.+r» = 339 ’ 31 = 308
in manjše kot HmJx = Hs(r + d( +r ) = 339 + 31 = 370

Ker je stratifikacija v našem primeru zelo uspešna, se ocena
3

H s | r = 339 od , •• • pravega števila parcel z nad 30 m H = 344
razlikuje samo za 5«,

Vz orčenje v skupinicah

10.44
Hiba enostavnega vzorčenja je med drugim tud? v tem,

da so enote vzorčenja po vsej ploskvi razmeščene tako, da so v
posameznih primerih stroški za pregled ene same enote znatni,
ker v okolic? te enote n? drugih enot Iz vzorca, čeprav je to
dejstvo za kvaliteto ocene ugodno, ker je vzorec bolj reprezen¬
tativen, če so enote vzorca razmeščene po vsej ploskvi, je tak
vzorec sorazmerno drag. Te hibe ne odpravi niti stra 11 f1 c 1 ra no
vzorčenje, pri katerem ta problem ostane, čeprav v okviru stra-
tumoVo Zato v določenih primerih težimo za tem, da so sosedne
osnovne enote vzorca združene v skupinice. S slučajnim vzorcem
v tem primeru ne Izbiramo posamezne osnovne enote vzorca, tem¬
več celotne skupinice.

Kvaliteta ocene za populacijo je predvsem odvisna od
tega, kako so osnovne enote združene v skupinice, oziroma kakšne
so lastnost? skupinic.

10.45
Kljub temu, da so skupinice sestavljene Iz več osnov¬

nih enot, skupinice smatramo kot samostojne enote vzorčenja«
Zato je osnovno vzorčenje skupinic zelo sorodno enostavnemu
vzorčenju, le da so namesto osnovnih enot enote vzorčenja sku¬
pinice.

Če z zaznamujemo vrednost osnovne enote 1 v skupi¬
nic? k, je vrednost agregata v skupinici k vsota vseh vrednost?
osnovnih enot
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(10.46)

če je v populaciji M skupinic In s s I uča j nosi ni m vzorcem Izbere¬

mo m enot, je po znanih stavkih za ocenjevanje agregata z eno¬
stavnim vzorčenjem ocena agregata z vzorčenjem v skupinicah

Tsk - k*l
(10.47)

varianca za oceno agregata z vzorčenjem v skupinicah pa je

s; , m-?? ,«
- M(M- m)-J- ; Sy ; Y --ij V* (10.46)

Ocena variance pa je analogno

0 Jbfc “ /J
var & = M(M - ; s} = k ‘’m

f m

£2*
mk*f

(10.49)

Obrazci so analogni obrazcem za enostavno vzorčenje, le da se

nanašajo na podatke o skuplhlcah. Analogni so tudi drugi obraz¬

ci za ocene varianc agrega'ta, za ocene aritmetične sredine Itd.
Iz obrazca 10.48 za Izračun variance agregata z vzor¬

čenjem v skupinicah sklepamo, da je ocena agregata z vzorčenjem

v skupinicah tem uspešnejša, čim manjša je varianca med vred¬

nostmi za posamezne skupinice. Iz tega spoznamo, da ocena z

vzorčenjem v skupinicah ni odvisna od var1ab1I n ost 1 osnovnih
podatkov v skupinicah, ampak samo od var 1ab? Inost1 podatkov med
skupinicami. Ta lastnost je ravno obratna kot pri stratlflclra-
nem vzorčenju, pri katerem je zanesljivost ocene odvisna samo
od varlablInost? znotraj skup 1n-stratumov. Zato pr? stratlflcl-

ranem vzorčenju težimo za tem, da so razlike med stratum? čim
večje, variabilnost znotraj stratumov pa čim manjša. Pri vzor¬
čenju v skupinicah pa je obratno ocena tem boljša, čim manjša
je variabilnost med skupinicami.

10.46
Vrste s kup 1 n 1 c . Osnovne enote združujemo v skupinice

po različnih načelih. Kot sledi Iz prejšnjega odstavka pa pr?
sestavljanju skupinic težimo za tem, da združujemo enote tako,
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da so razlike med skupinicam? čim manjše«
Če vzamemo, da je v gozdarstvu osnovne enota drevo,

združujemo drevesa v skupinice na različne načine« Skupinice

morejo bit? vsa drevesa na Iregularnlh površlnlcah , k? so z na¬

ravnimi mejami (poti, potoki) al? kako drugače (meje Parcel)

lahko določljive. Pr? tem težimo za tem, da tako sestavljene
skupinice niso med seboj preveč različne niti po obsegu niti po

štev! I u dreves <>

Pogoste pa so v gozdarstvu skupinice regularnih povr -
\

š I n I c . Tako sestavljajo skupinice krogi z določenim radijem,

kvadrati z dano stranico, pravokotniki, pasovi oziroma proge.
Posebna oblika vzorčenja v skupinicah je s Istematlčno

vzorčenje . Sistematični vzorci so po svoji naravi taki, da je v

posebnih pogojih variabilnost med skupinicami tako majhna, da

moremo eno samo skupinico vzet? za osnovo pr? ocenjevanju pa¬
rametrov populacije.

10.47
Primer vzorčenja skupinic Iregularnlh površin. Na

poskusni ploskvi smo združil? osnovne enote (kvadratne površi¬

ne po 10 a) po naravnem kriteriju v Iregularne površlnlce, ki
so po obsegu različne. Vsekakor moremo kombinirati vzorčenje v
skupinicah s stratIfTkacIje. V slik? 10.6 Imamo sestavljen

okvir za s trat?11 c I ra no vzorčenje skupinic na poskusni ploskvi.

V stratumu t je = 32 skupinic, v stratumu 2 je M0 = 43 sku¬

pinic, v stratumu 3 pa = 58 skupinic.
Ker je število skupinic v posameznih stratumfh samo

dvomestno število, Iz tablic s Iuča jnostn I h številk sestavimo
samo dvomestne slučajnostne številke. Ker je = 32, tablice

racionalneje Izkoristimo, če slučajnostne številke do 32 sma¬
tramo kot zaporedne številke Izbranih parcel. Iz s I učaj nostn I h
številk od 4j do 72 pa dobimo zaporedne številke Izbranih par¬
cel, če odštejemo od njih 40. Podobno v stratumu 2 slučajnost¬
ne številke od 1 do 43 ustrezajo zaporednih številkam Izbranih

parcel, Iz s Iučaj bostn?h številk od 51 do 93 pa dobimo zapored¬

ne številke, če od njih odštejemo 50. Za stratum 3 pa Izkori¬
stimo kot zaporedne številke Izbranih skupinic slučajnostne
številke, ki so manjše kot = 58.
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t.stratum 2.stratum 3.straium

Slika 10 o 6 Okvir za s+ratific?rano vzorčenje v skupinicah z

vrisanimi slučajnos+no izbranim? skupinicam? po s+ra+um?ho



V vzorec vključimo 25$ skupinic In enote vzorca razme¬
stimo med stratuml proporcionalno številu skupinic. Tako dobimo,
da je število skupinic v vzorcih po stratumlh:

m^ =8, mg = 11. In = 15.

Po zgornjih pravilih s tablicami slučajnostnlh števil
Izberemo ustrezno število skupinic. Podatki Izbora so za posa¬
mezne stratume nakazani v tabeli 10.15. Slučajnostne številke
so dvomestne slučajnostne številke Iz 21. stolpca v tablici
slučajnostnlh številk.

Tabela 10.15 Podatki o Izboru enot v stra1111 c I ra nem vzorcu
skupinic. (5I.št.psIučajnostna številka, Z.št.^zaporedna šte¬
vilka skupinice v okvirju, y|=volumen v Izbrani skupinici,
x.=štev?lo osnovnih parcel v skupinici.)

Stratum 1
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dardno pogreške oziroma meje zaupanja za oceno volumna enako

kot za enostaven strat Itfclran vzorec, le da se podatki nanaša¬

jo na skupinice.

70.16 Izračun variance za stratIf I c I ra no vzorčenje skupinic

na poskusni ploskvi

Iz osnovnih podatkov po stratumlh smo Izračunal? .ocene volumnov

Y^ s j za posamezne stratume po obrazcu 10.47, ocene varianc za

ocene agregatov pa po obrazcu 10.49. Vsota ocen za lesno zalo¬
go po posameznih stratumlh je s tr a 11 f ?c Ira na ocena za celoten
sestoj, vsota varianc pa ocena variance za strat?fIclrano oce¬

no agregata.
Po zgornjih rezultatih sta meji zaupanja

4«< Y s k, s tr> = fai- (Ysk, S + r> = 1*85705 = 534,5 m 3

odklon zaupanja s tveganjem oc = 0,05 pa je

d(Ysk str 1 = +l°»°5{30).se(Ys|^ s+r ) = 2,04.534,5 = 1090 m3

Prav? volumen je torej s tveganjem cc - 0,05 v mejah

Y = 16921 - 1090.
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10«48

Vzorčenje v pasovih « Zelo cenjen način vzorčenja v

skupinicah v gozdarstvu so pasovi ali proge«. Prednost pasov

pred skupinicami Iregularnlh oblik je v lažji tehnični oprede¬

litvi proge In v lažjem sestavljanju okvirja« Vsebinsko oa so
pasovi prikladne]?! zato, ker je pri poznanem terenu možno po¬

ložit? proge v tak? smeri, da je variabilnost znotraj pasov ve¬

lika, variabilnost med pasovi pa čim manjše. Če namreč za dolo¬
čen sestoj vemo, da se kvaliteta gozda spreminja v določeni
smer? (n.pr. v smer? največjega padca terena), usmerimo proge

v tej smer? In dobimo razde 11tev populacije na enote z želeni¬
mi I a stnostm?.

Proge se lahko raztezajo od meje do meje sestoja In
so lahko različne dolžine, morejo pa bit? tud? krajše In enako
dol ge *

Pr? vzorčenju prog površino sestoja razdelimo po

zgornjem načelu v proge, k? so enote vzorčenja. S slučajnost-

nlm Izborom Izberemo ustrezno število prog, katere proučimo v
celot?« Iz podatkov o Izbranih progah pa ocenimo parametre In
standardne pogreške za celoto po obrazcih za ocenjevanje z eno¬
stavnim vzorčenjem, pr? čemer so posamezne proge vzorčne enote.

10.49

Primer za ocenjevanje s progami . Za poskusni sestoj

proučimo možnost uporabe prog za ocenjevanje skupnega volumna
v sestoju« Če proučimo skico poskusnega sestoja v slik? 10.3,
opazimo, da se kvaliteta sestoja bolj spreminja v smer? od le¬
ve na desno, kot pa v smer? od zgoraj navzdol« Zato je primer¬

neje, da usmerimo proge horizontalno kot pa vertikalno. Zaradi
potrditve zgornjega zaključka proučimo, kakšne rezultate da
vzorčenje v vertikalnih tn kakšne v horizontalnih pasovih.

Vzemimo, da so proge široke toliko kot osnovne kva-

dratlčne parcele In da se raztezajo skoz? vso dolžino oziroma

širino sestoja. V vsako progo je torej vključenih 24 osnovnih
parcelic« Zaradi možnosti primerjave kvalitet ocen, dobljenih
s progami, s kvaliteto ocen po drugih metodah, vzemimo število
osnovnih parcelic v vzorčenju v progah enako številu parcelic
pri enostavnem vzorčenjul V vzorec vključimo 3 naključno Izbra¬
ne pasove, kt Imajo skupno 3 x 24 = 72 osnovnih parcelici
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V slik? 10.7 je narisana shema okvirja za vzorčenje v

progah, če so proge orientirane navpično In shema okvirja, v

katerem so proge* orientirane vodoravno. Poleg oznake prog z

zaporednimi č+evllkaml so v posameznih progah podatki o skup¬

nem volumnu v posameznih pasovih. Ti podatki služijo za teore¬

tično proučitev obeh sistemov vzorčenja.

Za navpične proge Iz shneme 10.7 dobimo, da je povpre-
2

čen kvadratlčen odklon med progami S = 18630. Ker je številop«n
prog v populaciji M = 24, število prog v vzorcu pa m = 3, je

varianca za oceno volumna z vzorcem v navpičnih progah

S2
Var (Y ) = M (M -m J -E-lEL = 24.(24-3) l- -3° = 3129840

P* n m ^

Nasprotno pa je vzorčenje v vodoravnih progah, ki so

usmerjene v smeri Intenzivne spremembe v kvaliteti sestoja,
2povprečen kvadratlčen odklon med vodoravnimi progami Sp V=

236,70. Ker je tudi za vodoravne proge M = 24 In m = 3, je va¬

rianca za oceno lesne zaloge z vzorcem Iz vodoravnih prog

Var (Y ) = M.CM-m) = 24.(24-3) 236 rl9
P' v m 3

= 39766

Primerjava varianc za obe oceni

Vflr(Yp.n ) _ 3129840 _ 78 7

Var(Y. >p • v 39766

pokaže, da je razlika v zanesljivosti ogromna. Varianca za oce¬

no agregata s progami, usmerjenim? v smeri razlik v kvaliteti

je skoraj devetinsedemdesetkrat manjša kot prf progah v obrat-

n ? smeri•

Sistematično vzorčenje

10.50

Osnova . Čisti slučajnostnl Izbor s tablicami slučaj-

nostnlh številk je kljub določenim poenostavitvam še vseeno

razmeroma okoren. Zato v gozdarski praksi pogosto uporabljamo

sistematični izbor, ki je tehnično enostavnejši, more pa pod

do I oč e-n-fmT- predpostavkami zamen j atlč? st I slučajnostnl ? zbor.
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b) vodoravni pasovi

Slika 10o 7 Shema okvfrrja vzorčenja v pasovih na po
skusnl ploskvl
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Včasih pa da sistematični Izbor celo boljše rezultate kot či¬

sti slučajnostnl Izbor«.

Najenostavnejša oblika sistematičnega Izbora je na¬

slednja«, Sz spiska vseh enot populacije izberemo v vzorec vsako

s-to enoto, ustrezno s planirano velikostjo vzorca« s i e rf °p f “
n j a vzorčenja In pove, vsako katero enoto po vrsti Izberemo v

sistematičen vzorec«. Če Izbiramo vzorec, za katerega je vzorčni

dele? 10%, vključimo v sistematični vzorec vsako deseto enoto

‘z spiska«. Prvo enoto Izberemo Izmed prvih s enot s slučajnost¬

im vzorcem«, S prvo Izbrano enoto pa so vse druge enote siste¬

matičnega vzorca dane avtomatično«, Če s s I u ča j nostn I m Izborom J

‘zberemo kot prvo enoto enoto z zaporedno številko 3, Ima dru¬

ga enota v lO% sistematičnem vzorcu zaporedno številko 13,

tretja 23, četrta 33, peta 43 Itd«,, dokler ne Izčrpamo celot¬
ne populacije«,

Stopinja s pri sistematičnem vzorčenju pove, vsako
koliko enoto po vrsti moramo vključiti v sistematični vzorec«.
Stopinja pr? sistematičnem vzorčenju je z vzorčnim deležem f,

ki pove, koliki del od celotne populacije je vključen v vzorec,
v enostavni zvez?« Stopinja sistematičnega vzorčenja s je reci¬
pročna vrednost vzorčnega deleža f« Obratno pa je vzorčni dele?
recipročna vrednost stopinje pri sistematičnem vzorčenju«

s = JL ; s = 1 . f s J- (10o50)
n f * s

Če je vzorčni dele? f = 0,02, pomeni, da v vzorec vključimo 2%
enot populacije« Stopinja sistematičnega vzorčenja je za ta pri-
mer enaka s = 1/0,02 = 50« V sistematičen vzorec Izberfemo vsa¬

ko petdeseto enoto«
Obratno je vzorčni dele? za sistematične vzorce, prt

katerih je stopinja vzorčenja n«pr. s = 20, enak t - 1/20 = 0,05«

Sistematično vzorčenje kot vzorec skupinic

10,51
Sistematično vzorčenje je po svoji osnov? vzorčenje

v skupinicah« To razvldlmo Iz naslednjega sklepanja« Če je zna¬
na stopinja vzorčenja s, moremo k vsak? številk? o.d 1 do s pr i -
fedlt? skupnost enot, ki Imajo zaporedne števi lke , kI so za mno-
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gokratnik od s večje kot prva številka. (Tako v prvo skupino
spadajo enote z zaporednim? številkami 1, s+1, 2s+1, 3s+1, 4s+l „

v drugo enoto z zaporednim? številkami sl, s+2, 2s+2, 3S+2, 4s+j2
' i

v tretjo enoto z zaporednim? števitkam? 3, s+3, 2s+3, 3s+3, 4s+3
.'.ir ' ‘ i

in tako dalje do skupine s, v katero spadajo enote z zaporednii-
mi številkami, s,*2s, 3s, 4s, ........ ...

Populacijo tako razdelimo po določenem pravTIu v s skupinic.
• l f

Kot velja za vzorčenje v skupinicah na splošno, da je
ocena tem boljša, 1 čim manjša je variabilnost med skupinicami, j

veija to tud? za sistematično vzorčenje. Iz tega izhaja niz za¬
ključkov o kvalitet? ocen s sistemat?čnim vzorčenjem. Predvsem
je sistematično vzorčenje tehnično mnogo enostavnejše kot čisti

slučajnostni vzorec in ga moremo zato izvajat? neposredno na

terenu. Razen tega pa ?e na prvi pogled izgleda, da da siste¬
matični vzorec boljše rezultate kot čist? slučajnostni vzorec,
ker je s tehniko sistematičnega izbora zagotovljeno, da so eno¬
te razporejene enakomerno po vsej populaciji, kar n? vselej

primer pr? čistem s I učajnostnem vzorčenju.

Če je vrstni red enot v okvirju slučajnosten in n? v
pojavljanju nfkake zakonitosti, je sistematičen vzorec enako¬
vreden čistemu s I učajnostnemu vzorčenju, k? ima enako število
enot.

Če vrstni red pojavljanja glede na proučevan? znak ne

moremo smatrati kot slučajnosten, ampak so enote razmeščene po

naravnem vrstnem redu tako, da- posamezni deli v spisku predstav¬
ljajo homogene celote, ima sistematični vzorec v sebi elemente
strat?f iciranega vzorčenja s proporc?ona I n o razmestitvijo. Zato
dobimo z njim boljše ocene kot s čistim slučajnostnim vzorče¬

njem oziroma ocene, ki so ekvivalentne stratificfranemu vzor¬
čenju. Sistematični vzorec v tem primeru predstavlja v nekem
smislu samostratifikacij o, kar je vsekakor pozitiven element.

Sistematičen vzorec da v splošnem boljše ocene kot
čist? slučajnostni vzorec tud? v primeru, če v okviru vzorče¬

nja zasledimo neko tendenco enakomernega spreminjanja pojava,
k? ga proučujemo.

Sistematično vzorčenje pa daje obratno slabše ocene
kot čist? slučajnostni vzorec, če še v spisku enot značilnost,
k? jo proučujemo, periodično spreminja, s periodo, ki je mnogo¬
kratnik stopinje sistematičnega vzorčenja.
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10.52
Sistematično vzorčenje na površinah . V prejšnjem od¬

stavku smo navedli, kako »zbiramo enote v sistematični vzorec,

če je okvir vzorčenja spisek enot. Večkrat pa je v gozdarstvu

okvir vzorčenja geografska kai*ta oziroma sama ploskev ali se¬
stoj na terenu. V teh primerih način sistematičnega izbora pri¬
lagodimo novim pogojem. Pri okvirju, ki je dan s spiskom enot,

je stopinja za sistematično vzorčenje dana s tem, da povemo vsa¬

ka kolika zaporedna enota v spisku je vključena v izbor. Stopi¬

nja pri sistematičnem vzorčenju na površinah pa pove, koliko
Je posamezna enota sistematičnega vzorca oddaljena druga od
druge. Primer sistematičnega vzorčenja na površinah je nasled¬

nji sistem izbora. Vzemimo, da je vzorčna enota krog z radijem

5,64m ali površine 1 a, stopinja sistematičnega Izbora pa 50 m.

Da sistematično prepredemo celotno proučevano ploskev s krogi,
ploskev najprej prepredemo s sistemom vzporednih daljic, ki so
oddaljene druga od druge po 50 m. Na 50 metrskem odseku prve
daljice na slučajnosten način določimo središče prvega kroga.

Središče drugega kroga leži na Isti daljici oddaljeno od sre¬

dišča prvega kroga 50 m. Središče naslednjega kroga leži na
isti daljici oddaljeno od središča drugega kroga 50 m itd. Ko
pridemo na prvi daljici do meje ploskve in ne moremo več odme¬
rit? 50 m, da bi Izbrali središče naslednjega kroga, preidemo

v obratni smer? na drugo daljico. Pr? tem pa pri izboru upošte¬

vamo ostanek v metrih iz prve daljice, če je n.pr. središče zad¬

njega kroga na prvi daljic! oddaljeno od meje 23 m, je središče
prvega kroga na naslednji daljici od meje oddaljeno 50-23 = 27 m.
Postopek določanja drugih krogov v vzorcu ponavljamo po istem
postopku vse dotiej, dokler ne preidemo v odsekih po 50 m vseh

daljic. Da se izognemu vplivu mejnega področja na oceno, v goz¬

darstvu v praksi kroge pri sistematičnem vzorčenju določamo ta¬
ko, da so od robov oziroma mej odmaknjeni vsaj 20-25 m.

Nakazan? postopek Izbora je razviden iz sheme v sli¬
ki 10.7. Sistematično vzorčenje na površinah Ima pod enakimi po¬

goj? kot sistematično vzorčenje iz spiska enot prednost? oziro¬
ma pomanjkljivosti pred čistim s Iučaj n ostnI m vzorčenjem. Perio¬
dičnosti, k? so nevarne pri sistematičnem vzorčenju, se pr?
vzorčenju površin pojavljajo, kadar je na ploskvi več vzpored-
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nlh pasov spreminjajoče se kvalitete. Sistematično vzorčenje na
površinah pa da boljše rezultate kot čisti slučajnostnl vzorec,

Če je populacija nehomogena.

10.53, .«

Ocenjevanje parametrov s sistematičnim vzorčenjem.
3 sistematičnim vzorčenjem ocenjujemo parametre z obrazci, kf

so slični obrazcem za ocenjevanje z enostavnim s I učaj nosinlm

vzorčenjem. Agregat In aritmetično sredino ocenjujemo po ob-

r a z c 1 h

Ysi> -- -*-> -- V ; %;s -- ,/n 110.51)

strukturni dele? P in število enot z dano značilnostjo H pa po

obra z c i h

P,u -- h/n ; - M-h 110.52)

pri čemer pomeni: N = število enot v populaciji; n = število

enot v sistematičnem vzorcu; y - vsota podatkov v sistematič¬

nem vzorcu; h - število enot z dano značilnostjo v sistematič¬
ne^ vzorcu.

10.54

Ocenjevanje variance za ocene parametrov . Pri siste¬

matičnem vzorčenju je populacija skupinic sestavljena iz s sku¬
pinic. Od teh je v danem sistematičnem vzorcu v vsakem primeru
Izbrana le ena sama. Varianca za oceno agregata za ta primer je
po obrazcu 10.22 enaka

Pri tem

čarni .

Var(Ys)s ) -- s(s-/;s/s .s

= povprečen kvadratičnl odklon med

110.53)

skup ?ni -

Kor pa je pri sistematičnem vzorčenju v vsakem pri- ,
meru od s skupinic vključena v vzorec le ena, ne moremo iz nje

g
oceniti povprečnega kvadratičnega odklona S .To dejstvo je

y s i s
hiba sistematičnega vzorca.

Pod določenim? predpostavkami o vrstnem redu enot v
populacij? pa moremo vseeno oceniti varianco oziroma standard¬
no pogreško in meje zaupanja.
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Če predpostavljamo, da je vrstni red enot glede na

proučevano karakteristiko s Iučajnosten, smo nakazali, da je si¬

stematičen vzorec po svojih kvalitetah enakovreden čistemu stu-

čajnostnemu vzorčenjuo V tem primeru moremo s sistematičnim I z\-
I

borom Izbrane enote In podatke smatrati kot da so Izbran? s ;

s Iučajnostn?m Izborom« Za ta primer upravičeno ocenimo varianco

ocene agregata po Istem obrazcu kot za čisti slučajnostni vzo,->:

rec po obrazcu

var(Ys!s) = N(N - n) 110« 54)

pr? čemer pomeni: N = Število osnovnih enot v populaciji,
o

n = Število enot v sistematičnem vzorcu In = ocena variance
za y iz osnovnih podatkov v sistematičnem vzorcu.

Izdelane so metode za ocenjevanje variance ocen tudi 1
za primere, da razpored enot v okvirju ni s Iučajnosten. Ena od

teh je dana v primeru v nadaljevanju, druge pa presegajo naS

okvIr o

10.55
Primer za sistematično vzorčenje . Vzemimo, da v na -

Sem poskusnem sestoju ocenjujemo lesno zalogo s sistematičnim

vzorcem. Lesno zalogo ocenimo z n = 64 osnovnimi parcelicami,

k? jih izberemo s sistematičnim vzorčenjem. Ker ploskev sesto¬
ji iz N = 576 osnovnih parcelic, dobimo, da s sistematičnim
vzorcem opazujemo na s=N/n=576/64=9 parcel po eno. To pomeni,

da v vsak? tV9=3) tretji vrst? določimo lesno zalogo na vsak?

tretji parcelici. Kot je razvidno Iz sheme v slik? 10 0 7 pri
prehodu Iz ene vrste v drugo upoStevamo, da morata bit? med
vsako izbrano parcelo po dve parceli. Prva parcelica je 'zbra¬
na s s Iučajnostnim vzorcem Izmed 3x3=9 parcelic v skrajnem zgor
njem levem delu ploskve. Vse druge parcele pa so s prvo parcelo

določene s sistemom sistematičnega Izbora. Oceno volumna dobimo

po obrazcu 10.52 In je

Y Sc = — y = 1921 = 17289 m 3
S,S n 64

Primerjava ocenes pravim volumnom v sestoju Y=17439 pokaže, da

je sistematično vzorčenje dalo zelo dober rezultat. Razlika je
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Slika 10<>7 Sistematičen Izbor na poskusni ploskvi

namreč samo j s - Y = 17289 - 17439 = -150 alf v odstotkih
-0 , 86$» Ocena je tako dobra zato, ker je sestoj sestavljen Tz
več homogenih delov«

v

Ce bi ocenili varianco za dobljeno oceno po obrazcu
za slučajnostnl vzorec, bi bila vsekakor previsoka, ker popu¬
lacija n? dana v s Iučaj nostnem vrstnem redu enot temveč v na¬
ravnem vrstnem redu, ki kaže Izrazite zakonitosti različne kako¬
vosti v različnih delih sestoja« Ta varianca v tem primeru znaša
VarCY s | s » = 207176.

če predpostav I jarao, da v naravni razporeditvi v se¬
stoju ni periodičnih sprememb v kvaliteti, moremo smatrati, da
je populacija sestavljena iz n delnih populacij po s=9 parcelic,
■v katerih je po ena parcelica izbrana v vzorec.



Sistematično vzorčenje je v tem primeru enakovredno
s stra t H Iclran Im vzorčenjem,, ki Ima n strafumov, v vsakem stra-

tumu pa N/n=$ enot, Izmed katerih v vsakem stratumu Izberemo pp

eno enofo. Ker pa Iz ene same enote ne moremo oceni ti var’ anco'y
\

združimo po dva sosedna elementarna stratuma v nove str3t»?me z

Njf =2s enotam? In smatramo, da smo Iz vsakega vzel? v vzorec po
dve e not I .

Ocena variance agregata v stratumu je dana z znanim
2 2obrazcem . ' *• s V na še« primeru le N=2s, n=2.:s

var(Y j)=N(N-n) JL . ^sl n

izračunan Iz dveh podatkov

(V x, + x.
zbt

2 - 7
(*f- h) m

2
d2
2 (10,55)

je polovica kvadrata diference med obema vrednostlma v stratu¬

mu. Varianco ocene agregata s sistematičnim vzorcem ocenimo v
tem primeru po obrazcu

d/
VarYs!s = Z2s(2s-2) = s(s~J)Zd2 (10,56)

k k

ker je ocena variance agregata s stratlflclranlm vzorčenjem
enaka vsoti ocen varianc v posameznih stratumlh.

Uporabimo to metodo v našem primeru pri predpostavki,
da n? v populacij? neke periodičnosti, k? bi onemogočila upo¬
rabo te metode.

Kombinirajmo prvi dve Izbran? parcel? z volumnoma 18

In 24, drug? dve z volumnoma 23 In 28 In tako dalje. Tako do¬
bimo ustrezne razlike:

d 1 =1-8-24i -6,^ d 2 =23 "28= "5 » d 3 =27-35=-8, d 4=43-43= O

d^=34-34- O, d^=32-35= -3, dy=32-28= 4-4 Itd. do zadnje raz¬

like d32=34-35= -1

^ d 2 = d 2 + d 2 + d 2 + ... + d 32 = (-6) 2+(-5) 24-(-8) 2+...

... +(-1) 2 = 453

Po obrazcu 10.56 dobimo končno
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var{Y sfs > = 9(9-1J ° 453 = 32616

se i YsU » = V'"”’ Yits = V32616 = 180- 6 m

odklon zaupanja pa:

dl YsTs ) = t(0,05.321 seCYs|s 5 = 2,04.180,6 = 368

Ocena volumna j e Y - 17289 - 368 s tveganjem a = 0,05» To je v
skladu z dejanskim stanjem, ker je ocena od prave vrednosti

različna le za 150 m^.

Vzorčenje v dveh In več stopnjah

10.56
Osnova . Vzemimo, da z vzorčenjem v skupinicah ocenju¬

jemo gozdno površino v privatnih gospodarstvih v FLRJ. V sku¬

pinice združimo privatna gospodarstva v Istih občinah. Pri vzor

čenju skupinic so vzorčne enote skupinlce-občlne. Če ocenjujemo

skupno gozdno površino z vzorčenjem v skupinicah, Izberemo eno¬
staven slučajnostn? vzorec skup I n Ic-občI n In v Izbranih občinah
popišemo vsa gospodarstva. Oceno za skupno gozdno površino do¬
bimo po obrazcu 10.47 (Y s ^ = j- Pr? tem pomen? Y^ skupno
gozdno površino v posameznih Izbranih občinah. Ta podatek dobi¬

mo tako, da seštejemo podatke o gozdni površin? za vsa gospodar
stva v posameznih Izbranih občinah.

Ker pa je število gospodarstev po občinah veliko, se
Izkaže, da je koristno, če gozdno površino v posameznih Izbra¬
nih občinah ocenfmd s samostojnim? s Iučajnostnlml vzorci v posa
meznlh Izbranih občinah. Ocena za gozdno površino v Izbrani ob¬
čin? k je po znanem obrazcu enaka

k, s I y k? y ki P°'
"k M

v

meni gozdno površino za gospodarstvo I v občini k. Ce prave
vrednost? za gozdne površine v Izbranih občinah v obrazcu za

ocenjevanje z vzorčenjem skupinic zamenjamo z ocenami s |,

dobimo novo oceno.
Tak način vzorčenja In ocenjevanja ‘‘Imenujemo vzorče

nje v dveh stopnjah. Pr? zgornjem primeru vzorčenja v dveh stop
i

njah^smo v prvi stopnji Izbrali vzorec enot prve stopnje - obči
v drugi stopnji pa v Izbranih enotah prve stopnje samostojne
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vzorce enot druge stopnje - gospodarstev.
Razlika med vzorčenjem v skupinicah in vzorčenjem v

dveh stopnjah je v tem, da pri vzorčenju v dveh stopnjah prave
vrednost? agregatov v skupinicah zamenjamo z ocenami, ki 'Ih
dobimo z vzorci v drug? stopnji«,

Če v posameznih gospodarstvih, k? jih izberemo z vzqt
čertjem v dveh stopnjah, ne premerimo vseh gozdnih: parcel, tem¬
več gozdne površine po posameznih Izbranih gospodarstvih dalje
ocenimo s samostojnim? s IučajnostnIm I vzorci parcel, dobimo
vzorčenje v treh stopnjah«, V tem primeru so enote vzorčenja v
prvi stopnji občine, enote vzorčenja v drug? stopnji gospodar¬
stva znotraj Izbranih občin, enote tretje stopnje pa parcele v
Izbranih gospodarstvih«,

10 o 57
Prednosti In pomanjkljivosti «, Vzorčenje v več stopnjah

ima osnovne kvalitete vzorčenja v skupinicah«, Odpravi namreč dve
osnovni hib? enostavnega slučajnostnega vzorčenja«, Če Izvajamo
enostaven slučajnosten vzorec gospodarstev za vso Jugoslavijo,
je okvir vzorčenja spisek vseh gospodarstev v Jugoslaviji«, Se¬
stavljanje takega okvirja In Izbor Iz njega je obsežno delo, E -
nako je s terenskim delom pri Izvedbi takega vzorčenja«, Ker so
posamezna gospodarstva pr? enostavnem s Iučajnostnem vzorcu raz¬
meščena, več ali manj po vseh občinah v Jugoslaviji, je tehnična
izvedba takega vzorca komplicirana in draga, ker je za anketar¬
ja zamudno obiskovanje posameznih, na slučajnosten način izbra¬
nih gospodarstev«,

Tehnika vzorčenja pa se z vzorčenjem v dveh ali več
stopnjah za velike populacije zelo poenostavi. Za zgornji pri¬
mer je pr? vzorčenju v dveh stopnjah okvir za Izbor v prvi stop¬
nji le spisek vseh občin v Jugoslaviji«, Okvir za izbor v drug?
stopnji pa so spiski gospodarstev le za one občine, k? so bile;
Izbrane v prvi stopnji. Razen tega je bistveno olajšano tud?
delo anketarjev. Pri vzorčenju v dveh stopnjah so gospodarstva,
k? jih mora obiskat? in popisati, združena le v občinah,- k? srno
jih Izbral? v prvi stopnji. Anketar gre v posamezno občino, da
pregleda več gospodarstev. Tako se terensko delo pr? vzorčenju
v dveh al? več stopnjah bistveno poenostavi In poceni.



Res je, da moramo pri vzorčenju v dveh al? več stop¬
njah za Isto zanesljivost ocen pregledati več osnovnih enot kot

pri enostavnem s Iuča j nostnem vzorčenju«. Vendar dobimo z vzorče¬

njem v dveh alf več stopnjah zaradi tehničnih prednosti pr? ena¬
kih stroških zanesljivejše ocene kot z enostavnim s Iučajnostnlm

vzorčen jemo

100 58

Ocenjevanje agregata In varianca za oceno agregata z
vzorčenjem v dveh stopnjah o Agregat ocenjujemo z vzorčenjem v

dveh stopnjah po postopku, ki smo ga navedli v odstavku 10.56,

tako da najprej ocenimo za'vsako enoto prve stopnje agregat

sl* °,z * eh pa sku Pen agregat Y 2s ^.

Y*t - ^Z Krk.st (10.57)

Pr? tem pomeni: ^2st = ocena agregata z vzorčenjem v dveh stop¬
njah; M = število enot v prvi stopnji; m = število enot v vzor¬

cu v prvi stopnji; Y^ s j = ocena agregata v enoti k Iz prve
stopnje z vzorcem v drug? stopnji; = število enot druge stop¬
nje v Izbrani enoti k prve stopnje; n^ = število enot v vzorcu
druge stopnje v enoti k prve stopnje; y^,„ = osnovni podatek za
enoto I druge stopnje v enot? k prve stopnje c

Varianca za oceno agregata z vzorčenjem v dveh stop¬
njah Izvira Iz variance vzorčenja v prvi frj Iz varianc vzorče¬
nja v drug? stopnji. Izračunamo jo po obrazcu:

Var(Y:sl ) -- Var (Ysll ) + ^fvar(Ytsl ) (10.58)
kat

Pri tem pomeni: Var(Y2s f) = varianca za oceno agregata z vzor¬
čenjem v dveh stopnjah; Var(Y £ ^) = varianca za oceno agregata Iz
skupinic oziroma Iz vzorca v prvi stopnji; Var(Y, ,) = varianca
ocene agregata Y^ v enot? k Iz prve stopnje s s Iučajnostn?m vzor¬

cem v drug? stopnji«, Tl prispevki so Izračunan? po znanih obraz¬
cih 10o 48 In 10.22«.

Oceno variance za oceno agregata z vzorčenjem v dveh
stopnjah varlY9 ,I pa Izračunamo po obrazcu
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var(Y2st ) = var(Ysk ) * var(Yks,) (10.59);
Hst

k? je analogen obrazcu 10.58, le da so prave vrednost? zamenja¬
ne z ocenam?.

r

Ocenjevanje po metod? razmerij

10.59

Osnova in ocena agregata . Zanesljivost ocene za dolo¬

čen podatek znatno povečamo z metodo razmerij, če poznamo za

celotno populacijo vrednost agregata za kak znak, k? je s pro¬
učevanim podatkom v korelaciji. Če n.pr. poznamo, kolika je

skupna temeljnlca za celoten sestoj, zelo uspešno ocenimo skup¬
no lesno zalogo tako, da slučajnostno Izberemo vzorec dreves In
zanje Izmerimo volumen In temeljnlco. Po metodi razmerij najprej

za Izbrana drevesa Izračunamo, kolik volumen v povprečju odpade
na enoto temeljnlce. Ta koeficient je razmerje med skupnim vo¬
lumnom 'n skupno temeljnlco za vsa Izbrana drevesa. Oceno skup¬
ne lesne zaloge v sestoju pa dobimo, če to razmerje pomnožimo
z znano skupno temeljnlco v vsem sestoju.

V splošnem ocenjujemo agregat po metod? razmerij po
obrazcu

v - Y JIYr,sl A X (10.60)

pr! čemer pomeni: Y , = ocena agregata Y, Izračunana Iz eno-• •Sl
stavnega s Iuča j n ost nega vzorca po metodi razmerij; X = prava
vrednost agregata, ki ga poznamo; y = t y, - vsota za znak y

n fri '
v enotah vzorca, x = ^x.= vsota za znak x v enotah vzorca.

Cim tesnejša je povezava med proučevanim znakom In
znakom, za katerega poznamo agregat za celoto, tem zanesljivej¬
ša je ocena.

Ocena agregata po metod? razmerij pa n? nepristran¬

ska temveč samo dosledna ocena pravega agregata. To pomenil, da
aritmetična sredina vseh ocen agregatov Iz vseh možnih vzorcev
ni enaka pravi vrednosti agregata, pač pa se ji tem bolj pri¬

bližuje, čim večji je vzorec. Zato za velike vzorce to prlstra-
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nost zanemarimo In me+odo razmerij s pridom uporabljamo pri oce
njevanju z velikimi vzorci«

10.60
Varianca ocene za agregat po metodi razmerij . Varian¬

ca za oceno agregata z me+odo razmerij Iz poda+kov enos+avnega

s Iučajnostne ga vzorca je približno

Var(Yrsl ) * N(N-n) -f- (10.61 )

Pr? +em je: ^ ^ Jf^-RK,) 2

S r = ““- R =1
N - 1

Približek je +em boljši čim večji je vzorec.
Oceno približka za varianco var(Y .) pa Izračunamor j 5 i.

po obrazcu

var(Yr sl ) z N(N-n)-fr (10.62)

2 2Pri tem je s^ analogen Izra^ ko+ S r , samo da je Izračunal Iz
poda+kov !z vzorca.

pr,-r*/
s; *

n - 7
ž rf - 2rZ y,*i + r>Z x? (10.63)

n - 1

Razvl+l obrazec v nadaljevanju obrazca 10.63 je opera+lvn? ob¬
razec In je prikladen za s+varno Izračunavanje.

10 . 61T
Primeri za uporabo me+ode razmerij v gozdarstvu. Ker

običajno razpolagamo z različnim? poda+kl za populacijo, navedi
mo nekaj primerov Iz gozdarstva, v ka+erlh moremo uporabit? me¬
todo r azmerlj.

Nakazali srpo že, da po me + odl razmerij ocenjujemo vo¬
lumen, če poznamo skupno temeljnlco.

Znatno Izboljšamo oceno volumna tudi, če pri vzorče¬
nju površin, pri čemer so skupinice vsa drevesa na določeni
površini, poznamo površino sestoja alf skupno število dreves v
sestoju.



Po metodi razmer?j ocenjujemo različne podatke tudi,
če razpolagamo s podatki o proučevanem pojavu v preteklosti« Če
smo pred petimi let? s popolno premerbo dobili skupno temcljnico
sestoja, moremo po metod? razmerij oceniti, kolikšna je temelj ni¬
ča danes«

Tudi ocene na oko korigiramo po metod? razmerij. Če
n.pr« na oko ocenimo volumen za vsa drevesa v sestoju in z eno¬
stavnim s 1 učaj nostnim vzorcem izberemo drevesa, za katera volu¬
men določimo, moremo oceno lesne zaloge na oko popraviti po me¬
tod? razmerij«

Podobno po metodi razmerij popravljamo tudi rezulta¬
te popisov« Vzemimo, da popisujemo v nekem okraju kmetijska go¬
spodarstva, ki imajo gozdno površino« Popis vrše popisovalci,
k? se zadovolje z napovedmi gospodarjev kmetijskih gospodarstev.
NK

Ce ? zmed vseh gospodarstev iz beremo slučajnostni vzorec gospo-
darstev, v teh pa s podrobnim poizvedovanjem, izpiski ?z katastra
in drugim? dokumenti pridemo do natančnih podatkov, moremo po
metod? razmerij popravit? podatke popisa.

10.62
Primer za ocenjevanje po metod? razmerij . Da prika¬

žemo postopek ocenjevanja z metodo razmerij, vzemimo vzorčenje
v skupinicah iz primera v odstavku 10.47« Volumen v posameznih
skupinicah je vsekakor odvisen od velikosti skupinice. Ker po¬
znamo skupno površino ploskve (X=576), moremo pr? ocenjevanju
volumna s skupinicam? uporabiti metodo razmerij. Pr? tem nas
ne moti, da imamo vključeno v plan vzorčenja stratifikacijo«
Za vsak stratum posebej po metodi razmerij ocenimo volumen in
varianco. Vsota ocen po stratumih je stratificirana ocena vo¬
lumna, vsota varianc po stratumih pa ocena variance za skupno
oceno.

Ker imamo v tabeli 10.14, v kateri so vnešeni osnov¬
ni podatki o vzorčenju v skupinicah na naš? poskusni ploskvi,
že vse potrebne podatke o vzorcu, izračunamo strat?ficira no
oceno volumna po metodi razmerij, kot je nakazano v tabel?
10.17.

Za posamezen stratum smo ocenil? volumen po obrazcu
10.60. Str a111icfra no vzorčenje skupinic po metodi razmerij da
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Tabela 10„17 Izračun ocene volumna po me+odl razmeri] s stra-'
ftflclranlm vzorčenjem skupinic

17424 = Y .r ,s + r

znatno bol j S ? rezultat kot enostavna s + ra +1fI c!ra na ocena sku¬

pinic« Med+em ko po me+odl skupinic dobimo za oceno volumna

Y sk s + r^ 692 ^* J e ocl P rave vrednost? različen za 518 m 3 ,
po me+odl razmerij Iz Is+ega vzorca dobimo Y , = 17424 m3o r,str
od prave vrednos+l različen le 15 m • To je delno slučajno, v

veliki meri pa k Izboljšanju ocene pripomore me + oda razmerij,,

Izračun za oceno variance za s + r*+TfI cI ra no vzorčenje po me + o¬
dl razmerij je nakazan v tabel? 10o18„

Tabela 10»18 Izračun variance za s+ra+1fIcIrano vzorčenje sku¬
pinic po me+odl razmerij

varW = 80060r »str

Prvih sedem s + olpcev dobimo s preš + eva n j em, seš + eva n j etn, kvadrl-
ranjem In množenjem osnovnih podatkov iz vzorca« r, za posamezen

,2 *s+ra+um je = y k/x k » 'za posamezen s+ra+um Izračunajo Iz

podatkov v prejšnjih stolpcih po obrazcu 10„63» var(Y, ) pok p r*
obrazcu 10 o 62o Za prvi s+ra+um je račun naslednji;

= y./Xl = 777/36 = 21 ,583
|po obrazcu 10 0 63 je

s? = -L- [81107-2.21,583.3738+21 ,583 2 e 174 1 = 115,17
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.. !■

115.17in po obrazcu 10*62 VarlV. ,) - 32(32-8) ' .... = 110561,r ,s I 8

Ce primerjamo dobljeno oceno variance var(Yr 2

oceno variance za strat 1 f 1 c 1 ra n 5 vzorec skupinic varlV^ t. ^ r ) 1:

ocisfavka 10.47, dobimo

—-- £§.5195 _ 2 t 57c Me + oda razmerij je v zn atn? meri
Var(Y r s+r ) 80060

pripomogla k Izboljšavi za ne s I j 1vosl1 ocene.

Vzorčenje v dveh fazah

Vzorčenje v dveh fazah prt mefodl razmerij

10.63
Pri ocenjevanju lesne zaloge v sesloju s pridom upo¬

rabljamo mefodo razmerij, če poznamo za proučevani sesfoj skup-
v

no lemeljnlco. Ce pa skupne femeljntce ne poznamo, moremo volu¬
men ocenili v dveh fazah po mefodl, k? je mefodt razmerij zelo

podobna.

Analiza pokaže, da lemeljnlco določamo za posamezno

drevo znafno lažje kol volumen. Zalo skupno lemeljnlco za ves
sesloj v prvi fazi vzorčcnjaB ocenimo z velikim vzorcem. Tako do¬
bimo za skupno taemeljnlco zanesljivo oceno X, ..Ker pa sla vp-

lumen In lemeljnlco v lesni korelacljskl odvlsnosf?, dobimo za-
dosl? zanesljivo oceno za razmerje med volumnom fn lemeljnlco

Tg z majhnim vzorcem v drugi fazi vzorčenja v dveh fazah.
Iz dobljenih ocen za agregal X In razmerje R z vzor¬

čenjem v dveh fazah sesfavlmo oceno za skupni volumen v sesloj
ju po obrazcu

K,2/ = Xi.sl- r2.sl (10.64)

ki je v osnovi sličen obrazcu za ocenjevanje agregata po metod?
ra zme r f j .

V obrazcu 10.64 pomeni: Y ^ - ocena agregata z vzor¬

čenjem v dveh fazah; X^ | = ocena agregata za dopolnilni znak!x»

r 2 sl = ^2^x 2 = ocena razmerij R = Y/X z vzorcem v drugi fazi.
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x.j = vsota podatkov za x v vzorcu v prv? fazi; Xg» ~ vso+a
poda+kov za x in y v vzorcu v drugi faz!«

Zgornjo metodo vzorčenja v dveh fazah uporabljamo

vselej, kadar ocenjujemo agregat za podatek, ki ga določamo raz¬

meroma težko, obstaja pa podatek x, ki je z ocenjevanim znakom

y v tesni korelacijsk? zvezi i n ga določimo na lažji način..

Glede na to je nakazano vzorčenje v dveh fazah pri
metod? razmerij priporočljivo pri kombiniranju ocen na oko s

pravim? vrednostmi, ki jih dobimo z.merjenjem in v drugih po¬

dobnih problemih«

Vzemimo na primer sestoj z N = 5000 drevesi« Z vzor¬

cem n = 500 dreves smo z oceno na oko določil? lesno zalogo
3

V Q = 3000 m c Iz vzorca n = 500 dreves tega sestoja smo izbra¬
li s s Iučajnostni m vzorcem n = 50 dreves, za katera smo dolo¬

čil? volumne z izmero« Če vzamemo, da je lesna masa dreves v
3vzorcu po oceni na oko v Q = 36 m , s premerbo pa smo za ta dre¬

vesa dobil? Vj = 32 Je popravljena ocena po metodi razmerij

V 0 , = vA = 3000 — = 2670 m 3 «r«2f ov„

Vzorčenje v dveh fazah pri stratifikacij?

10 0 64
Z vzorčenjem v dveh fazah rešujemo tud? prpblem stra¬

tifikacije« Če razdelitev populacije na homogene dele ni vnaprej

dana, je običajno obsežno delo, če hočemo enote populacije kla¬

sificirat? v stratume«
Za oceno agregata s strat?f?cira n im vzorčenjem moramo

po obrazcih 10o 32 in 10«,21

ŽYK5l = ŽNk.y.
M K'sl • k*t * *

110.65)

poznat? število enot v posameznih stratumih in ocene za arit¬
metične sredine TJ, za posamezne stratume.

Če nimamo populacije razdeljene v stratume, moremo
število enot v posameznih stratumih oceniti z razmeroma velikim

vzorcem z n enotami v prvi fazi« n enof iz vzorca v prvi fazi

k las? f i dramo v strafume« Tako-dobimo n^, ng o«« n r enot po po¬
sameznih stratumih. Če je od n enot iz vzorca v prvi stopnji,
n^ enot v stratumu k, je ocena skupnega števila enot v stratumu k
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( 10 . 66 )

Iz rij, enot, ki smo Jih z vzorcem v prvi fazi dobil? y

stratumu k, izberemo manj?? vzorec z enotami in zanj poišče-

mo vrednosti za znak y. Iz vzorca v drogi stopnji dobimo oceno

za aritmetično sredino v stratumu k po obrazcu

( 10 . 67 )

? z podatkov vzorca w drugi fazi. Enako ocenimo aritmetične sre¬

dine v stratumih z vzorčenjem v drug? fazi tudi za droge stra-
tume. Ocena za agregat za stratific5 ra no vzorčenje v dveh fa¬
zah je končno dana s skupnim obrazcem

Ystrt2J Ak' s' ■ Ji"?
N_ f _2k_
n fa n'k

( 10 . 68 )

Pri tem pomeni: Y c .j. r ^ - ocena agregata Y z vzorčenjem v dveh

tazah s strat?t?kac?jo; ^ & j = ocena števila enot po

stratumih z vzorcem v prvi fazi; 7^ 2 = ocena povprečja Y^ v
stratumu k z vzorcem v drug? fazi; n = število enot v vzorcu v
prvi fazi; n, = število enot v stratumu k v vzorcu iz prve faze,

! = Število enot, k - *,«v ? ,0

,ta podatkov za znak y v vzorcu v drug? fazi v stratumu k.

v vzorcu v drug? faz? v stratumu k; = vso-

10.64
Primera za ocenjevanje z vzorčenjem v dveh tazah pri

stra t ? f1keclj ? o Kot primer za uporabo vzorčenja v dveh tazah pr?
stratifikacij? vzemimo določanje lesne zaloge za določen sestoj,
n dreves, k? smo jih izbral? iz sestoja z velikim vzorcem v prvi

faz?, razdelimo po premeru v debelinske stopnje: , Og« »o« n r «
Iz dreves, ki smo jih z vzorcem v prvi faz? dobil? po posamez¬
nih debelinskih stopnjah, izberemo v drugi fazi v vsaki debelin¬
ski stopnji samostojen manjši vzorec z drevesi in zanje ugoto¬
vimo volumrae y k |« Oceno volumna za sestoj dobimo iz dobljenih
podatkov po obrazcu 10.68.

Vzemimo, da na nekem obsežnem kompleksu, k? je napaden
z določenim škodljivcem, ocenjujemo število okuženih dreves. Z
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jvzorcem v prv? faz?, v ka+erem smo zajel? n parcel, ?zbrane
■parcele na grobo kategoriziramo v fr? sfratume: malo okužene,
srednje okužene ?n močno okužene parcele«. Iz n^ parcel, k? smo
!j?h ?z vzorca v prv? faz? ka f egor ?z i ra I ? kot malo okužene, Izbe-
jremo z vzorcem v drug? faz? n^ parcelo Za teh nj parcel s štet¬
jem ugotovimo točno štev?lo dreves, k? so okuženao Postopek po¬
novimo v drugem In tretjem strafumuo Iz dobljenih podatkov se-j
istavlmo oceno za celoten sestoj po obrazcu 10«,68„ j

1 Oo 65
i

Varianca ocene z vzorčenjem v dveh fazah «, Var? a n ca
za oceno z vzorčenjem v dveh fazah je odvisna od vzorca v prv?
fazi In vzorcev v drugi faz?« Vendar ?zvrednotenj e varianc za
ocene Iz vzorcev v dveh fazah presega naš okvir,

Sestavljanje pianov vzorčenje v praks?

10*66
Pr? obravnavanju ocenjevanja z vzorčenjem smo naved¬

li nekatere postopke, ki Jih uporabljamo, da ocenjujemo para¬
metre za populacijo«. Tako smo navedli dvoje vrst Izborov: čist?
slučajnostn? Izbor In sistematičen Izbor; več vrst vzorčenj:
enostavno vzorčenje, stratlfIq?rano vzorčenje, vzorčenje v sku¬
pinicah, vzorčenje v dveh stopnjah In vzorčenje v dveh fazah;
In več vrst ocenjevanj: enostavne ocene In ocene po metod? raz¬
merij«, Že pr? obravnavanju posameznih metod smo včasih kombini¬
ra I? po dva al? več navedenih elementov« V praktičnem Izvajanju
vzorčenja za ocenjevanje parametrov pa po pravilu kombiniramo ;
najrazličnejše elemente vzorčenja tako, da dobimo s čim manjši¬
mi stroški čim bolj zanesljivo oceno«,
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11« Vzorčenje - Preskušanje hipotez

11 «1
Os nove . Z vzorčenjem ocenjujemo parametre populacij

na dva načina: s točkovnimi In z intervalnimi ocenam?« Te oce¬

ne pa dajo uporabne rezultate le v primerih, da je vzorec, k?

sluz* kot osnova za ocenjevanje, zadosti velik. Ocene za male

vzorce so običajno tako ne za nesi jive, da nimajo velike prak¬

tične vrednosti. Ocena, za katero je n.pr. relativna standard¬

na pogreška 50% ali še celo več, je praktično brez vrednosti.
V raziskovalnem delu pa z vzorčenjem rešujemo tudi

druge probleme, ki so dostikrat rešljivi tudi z razmeroma majh¬

nimi vzorci. S s Iučajnostnimi vzorci namreč z uspehom presku¬

šamo določene hipoteze- o populacij? oziroma populacijah. V

praksi pogosto naletimo na probleme preskušanja hipotez. Z
vzorčenjem moremo preskusiti, ali proizvodnja desk na žagi
ustreza predpisu o povprečni širini. S statističnimi metodami

preskušanja hipotez ugotavljamo, ali dol.očeno prepariranje le¬

sa vpliva na karakt eristike lesa ali ne. Enako moremo s tehni¬

ko preskušanja hipotez odkriti alf je odstotek žagarsk« hlo¬
dovine v dveh bukovih sestojih različen ali ne. Podobno z
vzorči preskušamo odstopanja okularnfh ocen od stvarnih vred¬

nost? parametrov itd. Z enostavno analizo variance, ki temelji

na preskušanju hipotez o proučevani populaciji, moremo odkriti

ali določen faktor vpliva na neke značilnost? populacije ali
ne. Z enostavno analizo variance moremo n.pr. kompleksno ugo¬
toviti ali več različnih postopkov da različne rezultate. S
kompIic‘ra ne j sim? postopki analize variance, ki so osnova po¬

sebne discipline - planiranja eksperimentov - pa moremo isto¬
časno analizirati in preskusiti vpliv več*h faktorjev.

11 .2
Splošno problematiko preskušanja hipotez proučimo

na primeru. Proučujmo tedensko proizvodnjo desk v nekem žagar¬

skem obratu. Vzemimo, da se širine desk porazdeljujejo v nor¬

malni porazdelitvi, za katero poznamo standardni odklon S=3xm.
Povprečno širino desk pa ne poznamo.

Vzemimo, da proizvajalec trdi, da je povprečna ši-
jrina proizvedenih desk M =18 cm. Prevzemnik skuša trditev' o

-220 -



proizvajalca preskusit? oziroma ovreči«

Hipoteza o povprečni širin! desk je, da je M = 18 cm.

Z vzorcem skušamo to hipotezo potrdit? alf ovreči« Vzemimo, da

hipotezo preskušamo z vzorcem n = 36 desk, ki j ? h na slučajno-

sten način izberemo ?z osnovne populacije« Po znanih stavkih se
povprečja vseh možnih vzorcev po n = 36 desk p orazde1 juj e j o v
normalni por azde S 5 1 v? , za katero je standardni odklon enak
standardni pogreški za sredino SE{y") = 6/pfrT = 3/ ~/l~6 =

= 0,5 cm. Ce postavljena hipoteza drži, je aritmetična sredi¬
na normalne porazdelitve enaka hipotetični sredini M = Mq =
= 18 cm«

Porazdelitev povprečij iz vzorcev za vse možne
vzorce za ta primer je narisana v sliki 11«1. iz slike je raz-

16 17 IB 19 20
r kritično | ( ,kritično^
območje območje

Slika 11.1 Porazdelitev povprečij iz vzorcev

vidno, da je velika verjetnost, da iz populacije vseh desk
jizberemo vzorec, za katerega se aritmetična sredina od M = 18
ne razlikuje mnogo, če postavljena hipoteza, da je M - -

= 18 cm, drži. V tem primeru z verjetnostjo 0,95 aritmetična
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sredina preskusnega vzorca ne bo manjša kot 18 - 1,96*0,5 -
= 17,02 cm in ne večja kot 18 + 1,96.0,5 = 18,98 cm. Ker je

razmeroma majhna verjetnost ( oc = 0,05), da s preskusnim vzor¬

cem dobimo povprečje, k? je manjše kot 17,02 ali večje kol
18,98 cm, postavimo naslednje pravilo: Hipotezo, da je širina
desk enaka M = = 18 cm,, sprejmemo, če je povprečje preskus-

V

nega vzorca v razmaku od 17,02 cm do 18,98 cm. Ce pa je pov¬

prečje iz vzorca manjše kot 17,02 era ali večje kot 18,98 cm,

hipotezo, da je prava aritmetična sredina širine desk enaka

M = 18 cm, zavrnemo in sklepamo, da povprečna širina desk n?

18 ero. Območje, v katerem hipotezo zavrnemo, imenujemo kritič ¬

no območje .

Če podrobneje proučimo to pravilo, spoznamo, da ob¬

staja možnost, da hipoteza drži, jo pa po našem pravilu zavr¬

nemo. Z določeno, sicer majhno verjetnostjo ( oc - 0,05) more
povprečje iz preskusnega vzorca biti v kritičnem območju,
kljub temu, da hipoteza drži. To napako, ki je v tem, da hipo¬
tezo zavrnemo, kljub temu, da hipoteza drži, imenujemo napako

prve vrste.
Razen napake prve vrste pa je v tem načinu sklepanja

še druga nevarnost. Vzemimo, da naša hipoteza o povprečni ši¬
rini desk ne drli in je prava povprečna širina M = 19 cm.
Aritmetične sredine tz preskusnih vzorcev se v tem pr imeru go¬

ste okrog M = 19 cm in ne okrog = 18 cm, ker je pravo pov¬

prečje 19 cm ?n ne 18 cm. Iz slike 11.2 je razvidno, v kakšni
situacij? smo v tem primeru. Če ohranimo zgornje pravilo, da
hipotezo M = Mq = 18 cm sprejmemo, če je povprečje iz preskus¬
nega vzorce v razmaku 17,02 cm do 18,98 cm, prava vrednost
povprečja pa je M = 19 cm, spoznamo, da obstaja določena in
sicerprecejšnja ver j etn os t (ji = 0,484), da hipotezo M =Mq =

= 18 cm sprejmemo, čeprav ne drži. Napako, k? je v tem, da hi¬
potezo sprejmemo, kljub temu, da je napačna, imenujemo napako
druge vrste in jo zaznamujemo z (J . Obratno pa je 1- P , ki jo
imenujemo moč preskusa , verjetnost, da osnovno hipotezo sprej¬

memo, če ta drži.
Kot vidimo iz primera, je napaka druge vrste znatna

in v bistven? mer? odvisna od prave povprečne širine desk.
Čim manjša je razlika med hipotetično in stvarno vrednostjo,

tem večja je napaka druge vrste in obratno, čim večja
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kritično | | [ kritično ^
"območje .območje

Mo M

Slika 11.2 Preskušanje ničelne hipoteze

lika med stvarno in hipotetično vrednostjo, tem manjša je na¬

paka druge vrste.
Sz zgornjega spoznamo, da je po zgornjem pravilu ve

I »k o bolj -tvegano hipot-eze sprejemati kot- pa zavračat-?, ker j
napaka druge vrste, da hipotezo sprejmemo, čeprav ne drži, v
splošnem neznana oziroma velike.

Nasprotno pa moremo kritično območje določiti tako,
da je napaka prve vrste, k? je v tem, da hipotezo zavrnemo,
čeprav je pravilna, poljubno majhna.

• »

11.3
Ničelna hipoteza . Iz zgornjega izvajanja sledi, da

v splošnem lahko razmeroma zanesljivo hipoteze zavračamo, med
tem ko je pri sprejemanju hipotez tveganje lahko zelo veliko.
|Da se izognemu temu navideznemu nesoglasju, običajno postavi-
!mo hipoteze tako, da jih razmeroma zanesljivo sprejemamo in
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pe zavračamo. To dosežemo z vpeljavo ničelne hipoteze.

Po tem principu vsaki hipotezi, katero preskušamo,

postavimo ustrezno negativno proti hi potezo, ki jo imenujemo
ničelno hi potezo . V nadaljnjem preskušamo ničelno hipotezo.

Če uspemo, da zavrnemo ničelno hipotezo, smo Istočasno spreje¬

li osnovno hipotezo.

Ce preskušamo hipotezo, al? je povprečna širina des¬
ka na Žagi različna od = 18 cm : M / = 18 cm), je

Ustrezna ničelna hipoteza, da je povprečna širina enaka 18 cm
(H :'M = M = 18 cis).o o

Osnovni hipotezi, da je v nekem sestoju več kot

40 % turnirske hlodovine (H^ : P > 40 %), ustreza ničelna

hipoteza, da je odstotek turnirske hlodovine manjši od 40 %
(Hq : P < 40 %).

Osnovni hipotezi, da je določen postopek impregni-

ranja učinkovit, ustreza ničelna hipoteza, da postopek ni u-
čInkovit.

Po tem principu preskušamo hipoteze po naslednjem
postopku:
a) Osnovni hipotezi priredimo ustrezno ničelno hipotezo

H „o
b) If osnovne populacije izberemo vzorec, ki služi za presku¬

šanje hipotez o proučevani populaciji.
c) Za vzorčni Izraz, ki ga izračunamo iz podatkov preskusnega

vzorca in ničelne hipoteze, določimo kritično območje, v
katerem moremo z določenim tveganjem ct ničelno hipotezo

zavrnI tl .

d) Iz podatkov preskusnega vzorca in podatkov o ničelni hipo¬
tezi Izračunamo ustrezni vzorčni Izraz.

e) Ce se dobljena izračunana vrednost nateaja v kritičnem: ob¬
močju, ničelno hipotezo zavrnemo oziroma osnoviao hipotezo

sprejmemo na določeni stopnji tveganja prve vrste za ničel¬

no hipotezo. Ce vrednost, ki jo dobimo, če podatke preskus-
nega vzorca in ničelne hipoteze vnesemo v vzorčni izraz,
pade v kritično območje, pravimo, da je stvarno stanje zna¬
čilno različno od ničelne hipoteze. Običajno določamo kri-

tična območja na treh stopnjah tveganja oc = 0,05; oc = 0,01;
oc - 0,001 .
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Pr e skuša e hl[po+ez_z ma I f m| vzore?

Preskušanje hipoteze o sred?n?

11.4
Ker se za vzorce, k? jih Izberemo ?z normalne popu¬

lacije, aritmetične sredine vzorcev porazdeljujejo v normalni
populaciji z aritmetično sredino, ki je enaka aritmetični sre

d ? n? v osnovni populaciji M In s standardnim odklonom SE(y") =
= se vzorčni Izraz

1^-^tT . Z (11.1)o

porazdeljuje v standardizirani normalni porazdelitvi. Zato
moremo z izrazom

. z (11.2)
o

preskušati ničelno hipotezo, da je prava aritmetična sredina
enaka hipotetični Mu (H : M = Mu ) .

v li O H
Ce ničelna hipoteza drž? In je = M, je Izračunan

z z verjetnostjo 0,95 v razmaku -1,96 < z <+1,96, z verjet¬
nostjo 0,99 v razmaku -2,58 ; < z < +2,58 In z verjetnostjo
0,999 v razmaku -3,29 < z < +3,29.

Iz tega zaključimo na s I e dn j e: a iče ' je a bs o I ut na vred¬
nost po obrazcu 11.2 izračunanega izraza z manjša kot kritič¬
na vrednost 1,96, zaključimo, da je razlika med pravo In hi¬
potetično aritmetično sredino neznačilna. To pomeni, da pre¬
skus razlik n? odkril, ne pa da je prava aritmetična sredina
enaka h Ipotetf čn?.

b) Če je absolutna vrednost po obrazcu 11.2 Izračunanega z

večja kot kritična vrednost 1,96 In manjša kot kritična vred¬

nost 2,58, zaključimo, da so razlike med stvarno in hipotetič
no sredino značilne na stopnji tveganja ot = 0,05. To pomeni,
da je ver j etnost 0,95, da je stvarna sredina resnično različ¬

na od hipotetične.

jc) Če je po obrazcu 11.2 izračunana vrednost z večja kot 2,58
in manjša kot 3,29 s tveganjem ot = 0,01, zaključimo, da je
stvarna aritmetična sredina značilno različna od hipotetične.
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č) Če pa je po obrazcu 11.2 Izračunan? izraz absolutno večj?

kot 3,29, zaključimo, da so razlike med M ?n značilno raz¬
lične s tveganjem «= 0,001.

11.5

Vzemimo kot praktičen problem nakazan primer prouče¬
vanja širine desk in preskusimo hipotezo, da je povprečna ši¬
rina desk značilno različna od Mj_j = 18 cm. Ustrezna ničelna
hipoteza je Ho : M = = 18 cm. Da preskusimo dano ničelne
hipotezo, smo izbrali slučajnostn? vzorec n = 36 desk, in zanj
ugotovili, da je povprečje iz vzorca y~ = 16,5 cm. Ker poznamo
standardni odklon proizvodnje desk (6=3 cm), moremo izra¬
čunati po obrazcu 11.2 vzorčni izraz

z = 7.: Vn = 16 > 5 - 18 >° V36 » -3,00
6 3,0

Ker je absolutna vrednost izračunanega vzorčnega izraza večja

kot kritična meja 2,58 za tveganje oi = 0,01 in manjša kot kri¬
tična meja 3,29 za tveganje oc - 0,001, s tveganjem oc. - 0,01
sklepamo, da je stvarna povprečna širina desk značilno različ¬
na od = 18 cm.

11.6
Če ne poznamo prave vrednosti za standardni odklon

v osnovni populaciji, se za preskušanje hipotez o sredin? ne
moremo poslužiti obrazca 11.2. V tem pr imeru preskušamo hipo¬
teze o aritmetičnih sredinah za normalne populacije po obrazcu

¥ M. -/7T = t(m m n-f) 111.3)

ki je zelo sličen obrazcu 11.2, le da imanamesto prave vred¬
nosti standardnega odklona oceno s, k? jo izračunamo po zna¬
nem obrazcu za nepristransko ocenjevanje varianc

2 £<y ry > 2 _ £r? - v 2/*
n-1 n-1

Izraz t pa se ne porazdeljuje v standardizirani nor¬

malni porazdelitvi, temveč v distribuciji, k? je enako kot

normalna porazdelitev unimoda Ina, simetr ična In zvonasta in se

P '
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normalni porazdelitvi tembolj približuje, čim večji je pre¬
skusni vzorec, t-rperazdel I tev je odvisna od velikosti vzorca
ali točneje od Števila stopinj prostosti m, ki je z velikost¬
jo vzorce v ozki zvezi* Pri zgornjem preskusu je Število sto¬
pinj prostosti za eno marrjSe kot je Število enot v preskusnem
vzorcu: ra - r« - 1•

Glede na to, da je t-porazdeIItev odvisna ©d sto-



Vzemimo za primer preskus, ali je povprečna upogib-
na trdnost lesa za določeno drevo za črni gaber značilno raz-

lična od = 1500 kg/cm . V ta namen smo v preskusni vzorec
vzel? n = 8 preskušancev ?z različnih delov drevesa ?n zanje
ugotovili naslednje upogibne +rdnos-H : v kg/cm2 : 1560, 1530,

1400, 1650, 1360, 1430, 1440, 1440. Iz teh podatkov dobim©:

y = 5 = 1560 + 1530 + .„» + 1440 = 11810

£y 2 = 15602 + 15302 + ..+ 14402 = 1749870

y = y/n = 11810/8 = 1476
•f*

f 2 2/ 0
s 2 = ' ~ Y /n - 1749870 - 11810 /8 _ gi7Q

n -1 8-1

s =-/š2' =-/9170 = 95,76

Iz teh podatkov dobimo po obrazcu 11.3

t = L:. MHyir = 1476 - lsg0rj = _1t00
s 95.76

Ker je kritična meja za t-porazdeI?tev za m = 8 - 1 =7 sto¬

pinj prostosti za oc= 0,05 po tabel? 11.1 enaka 1 q Q^(m=7) =
= 2,36, zaključimo, da stvarna povprečna upogibna trdnost pro¬
učevanega drevesa črnega gabra ni značilno različna od hipote¬
tične, ker je izračunani t manjši kot ustrezna kritična vred¬
nost za ©c= 0,05. Neznačilnost razlike pa ne pomeni, da razlik
ni, temveč samo, da jih z izvršenim preskusom nismo odkrili.

Preskušanje značilnosti razlik med aritmetičnim? sredinami

11.8
V raziskovalnem delu se dostikrat pojavlja vpraša¬

nje, ali so povprečja za različne populacije med seboj raz¬
lična ali ne. Ničelno hipotezo, da sta aritmetični sredin? za

dve populacij?, k? se porazdeljujeta v normalnih porazdelit¬
vah z enakima variancama, med seboj enaki (Hq : = Mg), pre¬

skušamo z naslednjim izrazom
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(11.4)iLlA * t(m = n.+ n, - 2)s,, ynj+n2 i 2

k? se porazdeljuje v t-porazdeIItvi s številom stopinj pro¬

stosti m - + ng - 2 .
Da po tem obrazcu preskusimo značilnost razlik med

aritmetičnima sredinama in Mg, moramo iz prve in druge po¬

pulacije izbrati dva samostojna vzorca. Pri tem z n^ , 7-; ' n
s? zaznamujemo Število enot, oceno povprečja in oceno varian-

! — 2ce za vzorec iz prve popu la c!j e, z n 2 , y ^ ' n s g P a analogne
količine iz drugega vzorca.

11.9
Če vzamemo za primer preskušanje značilnosti razlik

v upogibni trdnosti med dvema drevesoma črnega gabra, poteka
preskus po naslednjih stopnjah.

Za drevo 1 smo na slučajnosten način izbrali n„ =

= 8 kosov lesa in zanj dobili naslednje rezultate o upogibni
trdnosti v kg/cm2 : 1460, 1500, 1330, 1550, 1570, 1510, 1560,

1500. Enako smo tudi za drugo drevo vzel? Hg = 8 -preskušancev
na slučajnostno izbranih mestih fn zanje izmerili upogibno-

trdnost v kg/cm2 ; Dobili smo naslednje rezultate: 1240, 1320,

1400, 1240, 1320, 1340, 1440, 1400. Iz teh podatkov dobimo

elemente za preskus značilnosti razlik med povprečno upogibno
trdnostjo po znanih obrazcih za ocenjevanje sredine in varian¬

ce :

ni =8; y 1 = 1498; s 2 = 5936

=8; y 2 = 1337; s 2 = 5421

2 2
2 - (nl“ 1 )s 1 * ln2~1 )s 2 _ (8-1)5936 + (8-1 »5421 .

S d “ n^+ng-2 8+8-2
5678

s d =-|5678 = 75,35

“ 72 n 1 . n 2

s d V n l +n 2
1498 - 1337 / 8.8

75,35 V 8+8
= +4,41

Ker je izračunani t = 4,41 absolutno večji kot kri-
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p

tična vrednost t za m = 4- - 2 = 14, pr? tveganju

dc = 0,001 [t{m=14; <x=0,001 ) =4,14] , zelo zanesljivo (oc =0,001 5

sklepamo, da so razlike v upogibn? trdnost! med proučevanima
drevesoma značilne.

Preskušanje hipotez o varianc?

mre
Proučevanje variabilnosti v na j ra z I ?čne jših oblikah

zajema velik del problemov v zvez? s statističnim proučevanjem

eksperimentaI n?h podatkov. Velika variabilnost v izdelkih je

znak slabe kvalitete proizvodnje, velika variabilnost določe¬

nih značilnosti v lesu je izraz neenovitih pogojev rast? in
ima posledice pri nadaljnji obdelavi lesa itd. Čim manjša va¬
riabilnost je v večin? izraz boljše kvalitete surovin, dela
itd. *

V zvez? s proučevanjem variabilnost? je najenostav¬

nejši problem preskušanje hipotez o varianci za določeno po¬
pulacijo.

Če predpostavljamo, da smo iz populacije, ki se nor¬
malno porazdeljuje, izbrali slučaj nostni vzorec n enot, se
izraz

fc-1 . x2 (m=n-l) (11.5)

v populacij? vseh možnih vzorcev porazdeljuje v porazdelitvi,
2 2k? jo imenujemo X. {h?-kvadrat porazdelitev). X -porazdelitev

je podobno kot t-porazdeIite v odvisna od stopinj prostosti, ki
so pri zgornjem izrazu za eno manjša kot je velikost vzorca

(m = n - 1) (glej tabelo 11.2).
Glede na število stopinj prostost? je- iz poda-Hkov

2
s Iučaj nostnega vzorca izračunan! X s tveganjem u = 0,05 manj-

2
ši kot je kritična vrednost Xqq^ v tabeli 11.2; s tveganjem

pt = 0,01 manjši kot so kritične vrednost? Xq in s tveganjem

oc = 0,001 manjši kot so kritične vrednosti . Xq qqi «
Zgornje lastnosti izkoriščamo za preskušanje hipo¬

tez o varianci. Hipotezo, da je varianca v osnovni populaciji

različna od predpisane hipotetične variance preskušamo z
ničelno hipotezo, da je varianca za preiskovano populacijo

enake (Hq : 62 = 6^).
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Tabela 11 «2. X -pora zde l i + ev
Kri+Ične vrednos+i za oc = 0,05, a- 0,01 in ot= 0,001

(
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Podobno kot pri preskušanju hipotez o sredinah,

tudi za varianco zaključimo, da prava varianca ni značilno
2različna od hipotetične variance če je izraz

(n - 1)s2

«2h
- r ( 11 . 6 )

pod kritično vrednostjo Xq q^, da je prava varianca s tvega-

njem oc= 0,05 'značilno različna od ničelne hipoteze, če je po
n

obrazcu izračunan? izraz med ustreznima vrednostima Xl ?n
2 U,Uo

Xq Q|» znač? len s tveganjem ©C= 0,01, če je izračunani izraz
med 01 ?n x ; ,°oj
če je izračunani X večji kot Xq qq^

?n značilen na stopnji tveganja oc - 0,001
2

11.11
Za smrekov les preiskujemo, ali je varianca nomi¬

nalne pr ostor n?nske teže smrekovega lesa določene partije več-
ja kot i>^j = 30,00 kg/m . V ta namen smo izmerili nominalno
prostor ninsko težo za n = 25 preskušancev in iz njih ugotovi¬

li, da je ocena variance = 37,91 kg/im

Če dobljene podatke vnesemo v obrazec 11o6, dobimo

y2 _ (_n- 1 ?

i?2bH
Ji = illllLtllzli = 30o 33

30,00

Ker f
. 2

m = n-1 = 25-1 = 24 stopinjam prostost? ustreza

Xq = 36,42, sklepamo, da varianca nominalne pr ost or ninske
teže ni znač? I no večja kot 6^ = 30,0 kg/ml

11.12
o

V tabeli 11.2 so dane kritične vrednosti za X samo
do m = 30. Za primere, v katerih je m ^30, dobimo ustrezne
kritične vrednosti za posamezne stopinje prostosti po obrazcih
i ‘
Za oc = 0,05 je

za oc = 0,01 j«

za ct = 0,001 je

x0,05

X0,01

0,001

jN2m -/ + 1t 645.)

4 N2m - 7 + 2,326f

2

j (j2m - 7 + 3,090)

\

> (11.7)

J
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11.13
Vzemimo, da smo zaradi neznačiInosti razlik v varian¬

ci v prejšnjem primeru vzorec podvojili In izmerili nominalno

prost or n Insko težo za skupno n = 50 preskušancev lesa. Nova
2 2ocena za varianco je s = 42,0. Izračunan? X je enak

X2 = L0.~lj-.JL. = ! 5Q~T *.f 2,.ž-9 = 68,60
62 30,0

Ker je m = n - 1 = 50 - 1 = 49 večji kot 30, Izračunamo kr 1 -

tične vrednost? za m = 49 po obrazcih 11.7

X2 05 = \ ( ^ 2m-1 + 1,645) 2 = 1 (-J2.49-1 + 1,645) 2 = 66,11

X0 01 ~ \ 1 V 2m " 1 + 2,326) 2 = i (| 2.49-1 ±.2,326) 2 = 74,12

X2 001 = 1 ( -/ŠnTT + 3,090) 2 = 1 (J2.49-1 + 3,090) 2 = 83,71

o o
Izračunani X = 68,60 pade med Xq = 66,11 in

X0 l 01 = 74,12. Iz tega sklepamo, da je varianca v nominalni
prostorni nsk ? teži za proučevan les s tveganjem oi = 0,05 zna¬

čilno večja kot = 30,00.

Preskušanje različnosti med variancama

11.14
Ker je majhna variabilnost znak dobre kvalitete su¬

rovin, vestnega dela delavcev al? preciznega dela strojev, je
velike važnosti primerjava varianc med surovinami iz različnih

virov,medproizvodi, ki šobil? proizveden? pod različnimi po¬

goj i dela, po različnih postopkih, z različnimi stroji Itd.

Hipoteze, da sta za dve populaciji, k? se normalno porazdelju-
2 2jeta, varianc? različni (H^ : 6^ / @2 ) preskušamo z ničelno

hipotezo, da sta ..vari a'nc i v obeh populacijah enak?
2 2

• <$y = Bpo *.

Če velja ničelna hipoteza, da sta varianci v obeh
2

populacijah enaki, se kvocient ocen varianc Iz prve s. ?n dru-
2'ge popu laci je s 2
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Mufi!

(pri tem vzamemo kot prvo populacijo ono, za katero je ocena

variance večja: > s 2 ) v populaciji vseh močnih vzorcev z

n.j enotami v prvi In z n 2 enotami v drugi populaciji, poraz¬

deljuje v F-pora zde 1Ttv I. F porazdelitev je odvisna od stopinj
prostosti m.j = n^ - t, ki zavlsi od števila enot v prvem vzor¬

cu In stopinj prostosti m 2 = n 2 ” **» ^1 zavlsi od števila enot
v drugem vzorcu. V tabelah 11.3 a, b, c so dane m^ In m2 u-

strezne kritične vrednosti za stopnje tveganja .oc- 0,05,
oc = 0,01 In o0,001. Tabele vsebujejo kritične vrednosti sa¬

mo za nekatere stopinje prostosti. Za vmesne vrednosti za sto¬
pinje prostosti dobimo ustrezne kritične vrednosti z linearno
Interpo!a c I j o tako, da vzamemo za osnovo pri Interpolacij? re¬

cipročne vrednosti Iz stopinj prostosti.

11.15

Vzemimo, da preskušajo alf je kvaliteta dela na no¬

vo nabavljenega stroja značilno boljša od starega. V ta namen
smo na starem stroju proizvedli n^ = 20 lesenih profilov, na

;novem stroju pa n 2 - 30 lesenih profilov enake specifikacije.

iVarlancs, Izračunana Iz podatkov vzorca za stari stroj, je
2

s 1 = 9,21, varianca, Izračunana Iz vzorcev proizvodov na dru-
2gemstroju, pa je S2=3,82.

Da preskusimo značilnost razlike v variabilnost? nč
starem In novem stroju, Izračunamo

F 9,2 1
3,82

2,41

Zgornjim vzorcem ustrezne stopinje prostosti so m^ = n^-1 =

i—• 20-1 =19 In m2 = n 2 ~1 = 30-1 = 29.

Ker v tabelah nimamo vrednosti, ki ustrezajo m^ = 19,
dobimo ustrezne kritične vrednosti z linearno Interpolacijo.
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TAB.11.3d F - PORAZDEL ITEV (KRITI ČNE VREDNOSTI U ec«. O.OS F0o01 )
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TAB. 11 »3b F - PORAZDELITEV (KRITIČNE VREDNOSTI ZA «. - O.OI; F0.05 )
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TAB.ll.3c F - PORAZDELITEV (KRITIČNE VREDNOSTI ZA ot - O.OOl F0.001 )
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I nterpoI1ra no vrednost F(19) za = 19 pa dobTmo Iz razmerja:

1/19 - 1/24 _ F(19) - 1 y 90
1/12 - 1/24 2,10 - 1,90

Iz tega razmerja dobimo, da je Fq (m^=19, m2=29) = 1,95.
Če analogno poiščemo kritično vrednost še za oc= 0,01,

dobimo Iz tabele 11.3b

f0,01 {ro-)=l2; m 2=29) = 2,87

F 0,01 (m i =24 J m 2=29) = 2,49

InterpoI1 ra n o vrednost F(19) za m^=19 dobimo analogno Iz raz¬
merje

1/19 - l/24 <_ F(19) - 2,49
1/12 - 1/24 “ 2,87 - 2,49

Iz tega razmerja je Fq (m^=19; m2=29) = 2,59.
Ker je Iz preskusa dobljeni F = 2,41 večji kot

F 0 05 (19,29) man J^’ kot F 0 q^( 19,29), zaključimo, da nov?
stroj s tveganjem oc = 0,05 resnično dela kvalitetnejše kot
stari.

11.16
Enostavna analiza variance . V odstavku 11.8 in 11.9

smo Iz t-preskusov preskušal? značilnost razlik med dvema
ar Itmet?čnIma sredinama. Dostikrat pa se pojavljajo problemi,
pr? katerih nastopa več grupnlh sredin hkrati. Izolirano pre -
skušanje vseh mogočih parov sredin s t-preskusom je zamudno,
ne glede na to, da analitično n? neoporečno.

S postopkom, k? ga Imenujemo analiza variance, pa
moremo kompleksno preskusit? značilnost razlik med več sredi¬
nam? hkrati. Če so namreč v r populacijah, v katerih se
vrednost? znaka, katerega proučujemo, porazdeljujejo v normal¬
nih p or a zde 111vah, vse aritmetične sredine med seboj enake
* 2 2 2(M^ = M2 = ... ) In vse variance enake (6^ = C>2 = • •• č> r )>
se 1zra z

ra, - oyir - n
r<v oy(n - r)

- F(m,= r - 1; m2= n-r)

(11.19)
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porazdeljuje v F-porazdeI?tvi z = r-1 in mg = n-r stopinja¬
mi prostost?. Pr? ten pomen? n = število vseh osnovn?h podat¬

kov v celotnem preskusu; n^ = število osnovnih podaf-kov v

grup? k; r = število grup; = individualna vrednost ? v

grupi k; = vsota podatkov za vse enote v grupi k; Y = vso¬
ta vseh osnovnih podatkov v vseh grupah«

Anali zo variance običajno podajamo v standardni she¬

mi, k? je za naš enostaven primer naslednja:

Tabela 11.4 Shema enostavne analize variance

če postavimo kot ničelno hipotezo, da so aritmetič¬

ne sredine v r populacijah med seboj enake (Hq : = Mg =
= »»o MjJ, moremo pr? pogoju, da so variance po populacijah
enake, zgornjo shemo analize variance uporabiti za preskušanje

razlik med aritmetičniml sredinami. Po standardnem načinu za¬

ključevanja smatramo, da so razlike med sredinam? za različne
grupe oz I roma popu I a c ? je neznačilne, če je iz analize
Izračunani F manjši kot ustrezni Fq ^^{m^=r-1; mg=n-r). Razli¬
je med grupnlmi sredinam? so značilne * s tveganjem
oc = 0,05, če je Izračunan? F med ustreznima vrednostima

F 0 05 {m 1 =r_1 * m 2“n_r * fn F 0 01 (m 1 =r - 1 i m 2=n -r). Razlike med
grupnim? sredinami so značilne s tveganjem oi = 0,01,

če je Izračunani F med Fq Q^(m^=r-1? mg=n-r) ?n

F 0 001 {m i =r -1 » m2=n-r) ?n značilne s tveganjem

oC = 0,001, če je izračunan? F večji kot Fq 001 * m 1 =r ”^ * m2=n “’r) *

11 .17
Kot enostaven primer preskušanja razlik med sredina¬

mi' za več populacij vzemimo preskušanje razlik v povprečni upo-
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!glbnl trdnosti za pet dreves črnega gabra z raziskovalne

ploskve v Kamniški Bistrici. Od vsakega drevesa je vzetih po

osem kosov lesa na slučajnosten način In zanje Izmerjena upo-
glbna trdnost v kg/cm2 . Osnovni podatki so dani v tabeli 11*5.

Tabela 11.5 Osnovni podaikf o upoglbnl trdnosti za pet dre¬

ves črnega gabra z raziskovalne ploskve v Kamniški Bistrici

Iz osnovnih podatkov v tabel? 11.5 povzamemo, da je
r = 5; n.j =8; n 2 = 8; n 3 = 8; n 4 = 8; n 5 = 8; n = 40

QKI ^ŽlNk? = 14602 + 15002 + 13302 + .
k*1 M

= 82069800
,2

+ 1440^ + 1440^ =

°K =E
—^k 11980‘ . 10700

£i ri k 8 8
+ ... + —11^- = 81832375

8

Q = — = = 81624490
n 40

Če te vmesne rezultate vnesemo v shermo analize variance, do¬

bimo tabeI o 11.6.
Ker je Izračunani F = 7,66 večji kot Fq qq.j( 4;35) =

5,88, sklepamo, da so razlike v povprečni upoglbnl trdnosti
med proučevanimi petimi dreves? črnega gabra značilne s tve¬

ganjem ot = 0,001. Vrednost Fq q01 35) smo + abel« 11.3c
dobili z Interpolacijo, ki je nakazana v odstavku 11.15.
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Tabela 1f»6 Analiza variance za upogibno trdnost med petim?
drevesi

Preskušanje hipotez z velikim? vzorci

11.18

Kljub temu-, da z velikimi vzorci obl ča j no ocenjujemo

parametre, z njim? včasih tud? preskušamo hipoteze o paramet¬

rih proučevanih populacije Medtem ko je, kot smo videl? v

prejšnjih odstavkih, preskušanje hipotez z malimi vzorci raz¬

meroma zamotano, glede ns to, da se posamezni vzorčni izrazi
por a zde I juj ej o v različnih pora zde Iitvah in da je pr? tem tre¬

ba pazit? še na stopinje prostost?, je preskušanje hipotez z

velikimi vzorci razmeroma enotno. Ocene kateregakoli paramet¬
ra z velikimi vzorci se namreč pora zde I ju je jo bolj in bolj v
normalni porazdelitvi, čim večji je vzorec.

Zato se v populaciji vseh možnih vzorcev za splošen pa¬
rameter C porazdeljuje izraz

c ~ -9 = z oziroma -c =z 111.20)
SEtc) se (c)

v standardizirani normalni porazdelitvi. V teh obrazcih pome¬

ni: c = ocena parametre C ?z vzorca, SElc) = prava vrednost

stahdardne pogreške; se(c) ♦= ocene standardne pogreške iz po¬

da tkov vzorca.
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Zato moremo ničelno hipotezo, da je prava vrednost

parametra enaka hipotetični (Hq : C = C^) preskušati z Izrazom

c ■ G
S£Ycj

'tL = oz f roma c - G'H
se(c)

S 2 m «21 )

Pri tem so kritične vrednosti za absolutne vrednost? teh izra-

20V z0,05 = 1 ’ 96 ^ 20,01 2,58 I n
'0.001 = 3,29«

Način zakijočevanja pa je enak kot pr? malih vzor¬

cih,

11.19 .
Glede na zgornje splošno pravilo preskušamo z ve¬

likim? vzore? hipoteze o najvažnejših parametrih: aritmetični
sredin? M, strukturnem deležu P % I n standardnem odklonu 6

z naslednjimi vzorčnim? Izrazi:
Aritmetično sredino preskušamo z Izrazom

S z (11.22)
e v

kadar poznamo pravo yrednost za standardni odklon, al? z Iz¬

razom

y - Mh Y7T r Z (11,23)

kadar ne poznamo pravega standardnega odklona, ampak ga oce¬

nimo Iz podatkov preskusnega vzorca.
Strukturni delež P % preskušamo z izrazom

p% - P%H _ z (11.24)

\jP%H (100 -P°/y)

standardni odklon pa analogno z vzorčnim Izrazom

V3n = z 111.25)
6h

<er je standardna pogreška za standardni odklon za velike

vzorce enaka SE(s) = 6>/-|/2n.
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11.20
Vzemimo za primer preskušanja hipotez z velikim vzor¬

cem naslednji problem« Z okularno oceno je bilo ocenjeno, da je
v nekem hrastovem sestoju 40 odstotkov turnirske hlodovine.
Ničelna hipoteza je, da je dejanski odstotek turnirske hlodo¬
vine enak okularni oceni (HQ : P % = - 40 %). To ničelno

hipotezo smo preskusili z vzorcem n s 250 dreves«. V vzorcu je
h = 79 dreves, ki Ima turnirsko hlodovino«, Odstotek iz vzorca
je torej p% = 31,6 %„ Če zgornje podatke vnesemo v obrazec

11«24, dobimo

- P£H
'Vp%H (100-P%H )

= 3 ,1 .. ž1t.,40_ {250 = -2,71 = z
V40 (100-40)

Ker je absolutna vrednost Izračunanega vzorčnega
izraza z = 2,71 večja kot kritična vrednost zq = 2,58

*n manjša kot Zq = 3,29, s tvegan j em ot »0,01 sklepamo, da

je pravi odstotek dreves v sestoju, ki Ima turnirsko hlodovi¬
no, značilno različen od okularne ocene.

Preskušanje značilnosti razlik za velike vzorce

11.21
Podobno kot za preskušanje ničelnih hipotez o veli¬

kosti parametrov veljajo tudi za preskušanje hipotez o razli¬
kah med parametri enotna pravila, če so preskusni vzorci ve-
i Iki .

Če proučujemo dve populaciji 1 ?n 2, preskušamo ni¬
čelno hipotezo, da vrednost? za proučevani parameter v
populacijah 1 in 2 nista različni (H = = Cg), z dvema sa¬
mostojnima vzorcema iz proučevanih populacij 1 in 2. Z vzorč¬
nim Izrazom

g? - <k?

iSE2(cj) * SE2(cJ
(11.26)

preskušamo hipotezo o razlikah, če poznano prave vrednosti
standardnih pogrešk SE(c^) ?n SE(cg) za oceni parametrov c^

‘z prvega in Cg iz drugega vzorca« Če pa pravih vrednosti
standardnih pogrešk ne poznamo, preskušamo zgornjo ničelno
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hipotezo z obrazcem

°f ~ °» (11.27)
^se2(c,) +se*(c2)

pri čemer sta se(c^) In selCg) ocen? standardnih pogrešk za

oceni c-j In Cg, Izračunani Iz podatkov vzorca. Na značilnost

oziroma na neznačllnost raillk v parametrih zaključujemo po

znanem postopku tako, da Izračunano vrednost primerjamo s kri¬
tičnim? vrednostmi Zq = 1,96, zq = 2,58 In Zq qq^ =

= 3,29.

11.22
Če splošna obrazca 11.26 In 11.27 priredimo za pre¬

skušanje razlik med aritmetičnimi sredinami, strukturnim? de¬

lež? Tn standardnim? odkloni, dobimo naslednje obrazce:
Razlike med aritmetičnim? sredinami za populaciji 1

In 2 preskušamo z obrazcem

ali z obrazcem

(11.28)

(11.29)

glede na to al? poznamo prave vrednost? za varianc« v obeh
2 w2 2populacijah { (5^ In tog) al? jih ocenjujemo v vzorcema ls^ In

Sg).
n^ In r\2 J € število enot v vzorcu Iz prve oziroma

druge populacije, In P a s + a oceni za aritmetični sredi¬
ni, Izračunan? Iz prvega In drugega vzorca.

Razlike med dvema strukturnima deležema za dve po¬

pulaciji preskušamo z obrazcem

pr I

ne ga

P//« P//«
Z (11.30)

J PjKHOO - p; % ) P2%(J00 - p2 %)
V n,- 1 + n2 - 7

čemer sta poleg znanih Izrazov in P 2$ ocen? struktur-

deleža, Izračunan? Iz podatkov prvega In drugega vzorca.

Razlike med standardnima odklonoma za dve populacl-
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j? pa preskušamo z obrazcem

s.
s Z (11.31 )

JA
12n.2nf n2

v katerem je ocena standardnega odklona za prvo, $>2 P a

ocena standardnega odklona za drugo populacijo«.

11.23

Vzemimo za primer, da preskušamo značilnost razlik

v premeru dreves v prsni višini za dva jstodobna sestoja, ki

rasteta v različnih pogojih. V ta namen smo na slučajnosten

način izbral? iz prvega sestoja n^ = 100 dreves in zanje iz¬
merili premere v prsni višini. Iz podatkov vzorca smo ugoto¬
vil?, da je ocena za povprečen premer y"^ = 42, ocena variance

pa s^ = 106, Enako smo v drugem sestoju na slučajnosten način

r zbral? ng = 100 dreves in tudi zanj ocenil? z vzorcem aritme

J-?čno sredino premerov y"n = 38,5 cm in ocenili varianco
- 90. Ce te podatke vnesemo v obrazec^l 1.2>9, adobimo

y? - y 2 _ 42 - 38,5 _

~ Ji™. + _90
V100 100

+2,5 z

Ce dobljeno vrednost|z|= 2,5 primerjamo s kritičnimi vrednost

ml z ^ 05 — 1 p96j Zq — 2,58 in zq 001 — 3,29, zaključimo,

da je razlika v povprečnem premeru v prsni višin? med obema
sestojema značilno različna ?n sicer s tveganjem oc = 0,05.

11.24
Z vzorcem n^ = 200 dreves v prvem bukovem sestoju

smo ocenili, da je odstotek žagarske hlodovine v prvem sestoj

p^% - 38 Z vzorcem ng = 200 dreves v drugem bukovem sesto¬
ju pa smo ugotovili, da je ocena za odstotek žagarske hlodo¬
vine v drugem sestoju pg/6 = 43 %c Preskusiti je treba, ali je
razlika v kvaliteti proučevanih sestojev značilna.

Če vstavimo rezultate vzorcev v obrazec 11.30, do¬

bimo?



P^% ~ P2^ 38 !^ 43

(p t «{TOO-Pl *) p 2^(100-p2^)

n 1 ” 1 n2 “l 1 38(100-38) + 43(100-43)
= -1,02

200-1 200-1

Ker je absolutna vrednost Izračunanega z = 1,02 manjša kot

z 0 05 = ^»96, zaključimo, da razlike v kvaliteti niso značilne.

11.25

Za smrekov sestoj 1 je Iz vzorca n^ = 100 dreves
ocenjeni standardni odklon v premeru dreves v prsni vIšTnf
s.j = 6 cm. Za smrekov sestoj 2 pa je iz vzorca n 2 = 200 dreves

ocenjeni standardni odklon za premere v prsni višini s 2 = 8 cm.

Značilnost razlik med sta nda rdn ima odk I onoma preskusimo z obraz¬
cem 11.31

= -3,43 = zS 1 " S 2 _/ 6-8

*? 'pi- ♦ _sL
20l 2n2 I 2.100 2.200

Ker je absolutna vrednost izračunanega z = 3,43 večja kot
Zq 001 = 3,29, sklepamo, da so razlike v homogenosti visoko

značilne in sicer s tveganjem oc = 0,001.
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