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Abstract. The spin-charge-family theory, which is a kind of the Kaluza-Klein theories in
d = (13 + 1) — but with the two kinds of the spin connection fields, the gauge fields
of the two Clifford algebra objects, Sab and S̃ab — explains all the assumptions of the
standard model: The origin of the charges of fermions appearing in one family, the origin
and properties of the vector gauge fields of these charges, the origin and properties of
the families of fermions, the origin of the scalar fields observed as the Higgs’s scalar and
the Yukawa couplings. The theory explains several other phenomena like: The origin of
the dark matter, of the matter-antimatter asymmetry, the ”miraculous” triangle anomaly
cancellation in the standard model and others. Since the theory starts at d = (13 + 1) the
question arises how and at which d had our universe started and how it came down to
d = (13 + 1) and further to d = (3 + 1). In this short contribution some answers to these
questions are presented.

Povzetek. Avtorica obravnava teorijo spinov-nabojev-družin, ki sodi v družino Kaluza-
Kleinovih teorij v d = (13 + 1) — vendar z dvema vrstama polj spinskih povezav, ki so
umeritvena polja dveh vrst objektov v Cliffordovih algebrah — in pojasni predpostavke
standardnega modela: izvor nabojev fermionov v posamezni družini, izvor in lastnosti vek-
torskih umeritvenih polj teh nabojev, izvor in lastnosti družin fermionov in izvor skalarnih
polj, ki se kažejo kot Higgsov skalar in Yukavine sklopitve. Teorija pojasni tudi druge
pojave: izvor temne snovi, izvor asimetrije snov-antisnov, “čudezno” izginotje trikotniške
anomalije v standardnem modelu. Ker teorija izhaja iz d = (13 + 1), se pojavi vprašanje, kao
in pri katerem d se je vesolje začelo in kako je prišlo so d = (13 + 1) in nato še naprej do
d = (3 + 1). Avtorica predlaga nekaj odgovorov na ta vprašanja.

Keywords:Unifying theories; Beyond the standard model; Kaluza-Klein-like the-
ories; Vector and scalar gauge fields and their origin; Fermions, their families in
their properties in the expanding universe.
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7.1 Introduction

Both standard models, the standard model of elementary fermion and boson fields
and the standard cosmological model, have quite a lot of assumptions, guessed from
the properties of observables. Although in the history physics was and still is
(in particular when many degrees of freedom are concerned) relying on small
theoretical steps, confirmed by experiments, there are also a few decisive steps,
without which no real further progress would be possible. Among such steps there
are certainly the general theory of relativity and the standard model of elementary
fermion and boson fields. Both theories enabled much better understanding of our
universe and its elementary fields — fermions and bosons.

With more and more accurate experiments is becoming increasingly clear that
a new decisive step is again needed in the theory of elementary fields as well as in
cosmology.

Both theories rely on observed facts built into innovative mathematical mod-
els. However, the assumptions remain unexplained.

Among the non understood assumptions of the standard model of the elemen-
tary fields of fermions and bosons are: i. The origin of massless family members
with their charges related to spins. ii. The origin of families of fermions. iii. The
origin of the massless vector gauge fields of the observed charges. iv. The origin
of masses of family members and heavy bosons. v. The origin of the Higgs’s scalar
and the Yukawa couplings. vi. The origin of matter-antimatter asymmetry. vii.
The origin of the dark matter. viii. The origin of the electroweak phase transition
scale. ix. The origin of the colour phase transition scale. And others.

Among the non understood assumptions of the cosmological model are: a. The
differences in the origin of the gravity, of the vector gauge fields and the (Higgs’s)
scalars. b. The origin of the dark matter, of the matter-antimatter asymmetry of
the (ordinary) matter. c. The appearance of fermions. d. The origin of the inflation
of the universe. e. While it is known how to quantize vector gauge fields, the
quantization of gravity is still an open problem.

The L(arge) H(adron) C(collider) and other accelerators and measuring appa-
ratus produce a huge amount of data, the analyzes of which should help to explain
the assumptions of both standard models. But it looks like so far that the proposed
models, relying more or less on small extensions of the standard models, can not
offer much help. The situation in elementary particle physics is reminiscent of the
situation in the nuclear physics before the standard model of the elementary fields
was proposed, opening new insight into physics of elementary fermion and boson
fields.

The deeper into the history of our universe we are succeeding to look by
the observations and experiments the more both standard models are becoming
entangled, dependent on each other, calling for the next step which would offer
the explanation for most of the above mentioned non understood assumptions of
both standard models.

The spin-charge-family theory [1,2,4,3,5–8] does answer open questions of the
standard model of the elementary fields and also several of cosmology.
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The spin-charge-family theory [1,2,4,3] is promising to be the right next step
beyond the standard model of elementary fermion and boson fields by offering the
explanation for all the assumptions of this model. By offering the explanation
also for the dark matter and matter-antimatter asymmetry the theory makes a
new step also in cosmology, in particular since it starts at d ≥ 5 with spinors
and gravitational fields only — like the Kaluza-Klein theories (but with the two
kinds of the spin connection fields, which are the gauge fields of the two kinds
of the Clifford algebra objects). Although there are still several open problems
waiting to be solved, common to most of proposed theories — like how do the
boundary conditions influence the breaking of the starting symmetry of space-time
and how to quantize gravity in any d, while we know how to quantize at least
the vector gauge fields in d = (3 + 1) — the spin-charge-family theory is making
several predictions (not just stimulated by the current experiments what most of
predictions do).

The spin-charge-family theory (Refs. [1,2,4,3,5–11,13,15,12] and the references
therein) starts in d = (13+ 1): i. with the simple action for spinors, Eq. (7.1), which
carry two kinds of spins, i.a. the Dirac one described by γa and manifesting at
low energies in d = (3+ 1) as spins and all the charges of the observed fermions
of one family, Table 7.1, i.b. the second one named [15] (by the author of this
paper) γ̃a ({γ̃a, γb}+ = 0, Eq. (7.2)), and manifesting at low energies the family
quantum numbers of the observed fermions. ii. Spinors interact in d = (13+1) with
the gravitational field only, ii.a. the vielbeins and ii.b. the two kinds of the spin
connection fields (Refs. [1,4] and the references therein). Spin connection fields —
ωstm ((s, t) ≥ 5,m = (0, 1, 2, 3, 4)), Eq. (7.1) — are the gauge fields of Sst, Eq. (7.7),
and manifest at low energies in d = (3+ 1) as the vector gauge fields (the colour,
weak and hyper vector gauge fields are directly or indirectly observed vector gauge
fields). Spin connections ωsts ′ ((s, t) ≥ 5, s ′ = (7, 8)) manifest as scalar gauge
fields, contributing to the Higgs’s scalar and the Yukawa couplings together with
the scalar spin connection gauge fields — ω̃abs ′ ((a, b) = (m, s, t), s ′ = (7, 8)),
Eq. (7.1) — which are the gauge fields of S̃ab, Eq. (7.7) [4,3,1,2]. Correspondingly
these (several) scalar gauge fields determine after the electroweak break masses of
the families of all the family members and of the heavy bosons (Refs. [2,4,3,1], and
the references therein).

Scalar fields ωsts ′ ((s, t) ≥ 5, s ′ = (9, · · · , 14)), Ref. [4] (and the references
therein), cause transitions from anti-leptons to quarks and anti-quarks into quarks
and back. In the presence of the condensate of two right handed neutrinos [2,4]
the matter-antimatter symmetry breaks.

7.2 Short presentation of the spin-charge-family theory

The spin-charge-family theory [3,2,4,7–10] assumes a simple action, Eq. (7.1), in an
even dimensional space (d = 2n, d > 5). d is chosen to be (13 + 1), what makes
the simple starting action in d to manifest in d = (3+ 1) in the low energy regime
all the observed degrees of freedom, explaining all the assumptions of the standard
model as well as other observed phenomena. Fermions interact with the vielbeins
fαa and the two kinds of the spin-connection fields — ωabα and ω̃abα — the
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gauge fields of Sab = i
4
(γa γb−γb γa) and S̃ab = i

4
(γ̃a γ̃b− γ̃b γ̃a), respectively,

where:

A =
∫
ddx E 1

2
(ψ̄ γap0aψ) + h.c.+∫

ddx E (αR+ α̃ R̃) , (7.1)

here p0a = fαa p0α + 1
2E

{pα, Ef
α
a}−, p0α = pα − 1

2
Sabωabα − 1

2
S̃ab ω̃abα

1,

R =
1

2
{fα[afβb] (ωabα,β −ωcaαω

c
bβ)}+ h.c.,

R̃ =
1

2
{fα[afβb] (ω̃abα,β − ω̃caα ω̃

c
bβ)}+ h.c..

The action introduces two kinds of the Clifford algebra objects, γa and γ̃a,

{γa, γb}+ = 2ηab = {γ̃a, γ̃b}+ . (7.2)

fαa are vielbeins inverted to eaα, Latin letters (a, b, ..) denote flat indices, Greek
letters (α,β, ..) are Einstein indices, (m,n, ..) and (µ, ν, ..) denote the correspond-
ing indices in (0, 1, 2, 3), (s, t, ..) and (σ, τ, ..) denote the corresponding indices in
d ≥ 5:

eaαf
β
a = δβα , eaαf

α
b = δab , (7.3)

E = det(eaα) 2.
The action A offers the explanation for the origin and all the properties of the

observed fermions (of the family members and families), of the observed vector
gauge fields, of the Higgs’s scalar and of the Yukawa couplings, explaining the
origin of the matter-antimatter asymmetry, the appearance of the dark matter and
predicts the new scalars and the new (fourth) family coupled to the observed three
to be measured at the LHC ([2,4] and the references therein).

The standard model groups of spins and charges are the subgroups of the
SO(13, 1) group with the generator of the infinitesimal transformations expressible
with Sab — for spins

~N±(= ~N(L,R)) : =
1
2
(S23 ± iS01, S31 ± iS02, S12 ± iS03) , (7.4)

— for the weak charge, SU(2)I, and the second SU(2)II, these two groups are the
invariant subgroups of SO(4)

~τ1 : = 1
2
(S58 − S67, S57 + S68, S56 − S78) ,

~τ2 : = 1
2
(S58 + S67, S57 − S68, S56 + S78) , (7.5)

1 Whenever two indexes are equal the summation over these two is meant.
2 This definition of the vielbein and the inverted vielbein is general, no specification about

the curled space is assumed yet, but is valid also in the low energies regions, when the
starting symmetry is broken [1].
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— for the colour charge SU(3) and for the ”fermion charge” U(1)II, these two
groups are subgroups of SO(6)

~τ3 : =
1

2
{S9 12 − S10 11 , S9 11 + S10 12, S9 10 − S11 12,

S9 14 − S10 13, S9 13 + S10 14 , S11 14 − S12 13 ,

S11 13 + S12 14,
1√
3
(S9 10 + S11 12 − 2S13 14)} ,

τ4 : = −
1

3
(S9 10 + S11 12 + S13 14) , (7.6)

— while the hyper charge Y is Y = τ23 + τ4. The breaks of the symmetries, man-
ifesting in Eqs. (7.4, 7.5, 7.6), are in the spin-charge-family theory caused by the
condensate and the constant values of the scalar fields carrying the space index
(7, 8) (Refs. [3,4] and the references therein). The space breaks first to SO(7, 1)
×SU(3) × U(1)II and then further to SO(3, 1) × SU(2)I × U(1)I ×SU(3), what
explains the connections between the weak and the hyper charges and the hand-
edness of spinors.

The equivalent expressions for the family charges, expressed by S̃ab, follow if
in Eqs. (7.4 - 7.6) Sab are replaced by S̃ab.

7.2.1 A short inside into the spinor states of the spin-charge-family theory

I demonstrate in this subsection on two examples how transparently can properties
of spinor and anti-spinor states be read from these states [13,15,3], when the states
are expressed with d

2
nilpotents and projectors, formed as odd and even objects

of γa’s (Eq. (7.10)) and chosen to be the eigenstates of the Cartan subalgebra
(Eq. (7.8)) of the algebra of the two groups, as in Table 7.1.

Recognizing that the two Clifford algebra objects (Sab, Scd), or (S̃ab, S̃cd),
fulfilling the algebra,

{Sab, Scd}− = i(ηadSbc + ηbcSad − ηacSbd − ηbdSac) ,

{S̃ab, S̃cd}− = i(ηadS̃bc + ηbcS̃ad − ηacS̃bd − ηbdS̃ac) ,

{Sab, S̃cd}− = 0 , (7.7)

commute, if all the indexes (a, b, c, d) are different, the Cartan subalgebra is in
d = 2n selected as follows

S03, S12, S56, · · · , Sd−1 d, if d = 2n ≥ 4 ,
S̃03, S̃12, S̃56, · · · , S̃d−1 d , if d = 2n ≥ 4 . (7.8)

Let us define as well one of the Casimirs of the Lorentz group — the handedness
Γ ({Γ, Sab}− = 0) in d = 2n 3

Γ (d) : = (i)d/2
∏
a(
√
ηaaγa), if d = 2n , (7.9)

3 The reader can find the definition of handedness for d odd in Refs. [13,4] and the refer-
ences therein.
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which can be written also as Γ (d) = id−1 · 2d2 S03 · S12 · · ·S(d−1)d. The product of
γa’s must be taken in the ascending order with respect to the index a: γ0γ1 · · ·γd.
It follows from the Hermiticity properties of γa for any choice of the signature ηaa

that Γ (d)† = Γ (d), (Γ (d))2 = I. One proceeds equivalently for Γ̃ (d), substituting
γa’s by γ̃a’s. We also find that for d even the handedness anticommutes with the
Clifford algebra objects γa ({γa, Γ }+ = 0).

Spinor states can be, as in Table 7.1, represented as products of nilpotents and
projectors defined by γa’s

ab

(k): = 1
2
(γa + ηaa

ik
γb) ,

ab

[k]:= 1
2
(1+ i

k
γaγb) , (7.10)

where k2 = ηaaηbb.

It is easy to check that the nilpotent
ab

(k) and the projector
ab

[k] are ”eigenstates”
of Sab and S̃ab

Sab
ab

(k)= 1
2
k
ab

(k) , Sab
ab

[k]= 1
2
k
ab

[k] ,

S̃ab
ab

(k)= 1
2
k
ab

(k) , S̃ab
ab

[k]= −1
2
k
ab

[k] , (7.11)

where in Eq. (7.11) the vacuum state |ψ0〉 is meant to stay on the right hand sides
of projectors and nilpotents. This means that one gets when multiplying nilpotents
ab

(k) and projectors
ab

[k] by Sab the same objects back multiplied by the constant 1
2
k,

while S̃ab multiply
ab

(k) by k and
ab

[k] by (−k) rather than k.
One can namely see, taking into account Eq. (7.2), that

γa
ab

(k)= ηaa
ab

[−k], γb
ab

(k)= −ik
ab

[−k], γa
ab

[k]=
ab

(−k), γb
ab

[k]= −ikηaa
ab

(−k) ,

γ̃a
ab

(k)= −iηaa
ab

[k], γ̃b
ab

(k)= −k
ab

[k], γ̃a
ab

[k]= i
ab

(k), γ̃b
ab

[k]= −kηaa
ab

(k) .(7.12)

One recognizes also that γa transform
ab

(k) into
ab

[−k], never to
ab

[k], while γ̃a trans-

form
ab

(k) into
ab

[k], never to
ab

[−k].
In Table 7.1 [2,5,3] the left handed (Γ (13,1) = −1, Eq. (7.9)) massless multiplet

of one family (Table 7.3) of spinors — the members of the fundamental representa-
tion of the SO(13, 1) group — is presented as products of nilpotents and projectors,
Eq. (7.10). All these states are eigenstates of the Cartan sub-algebra (Eq. (7.8)).
Table 7.1 manifests the subgroup SO(7, 1) of the colour charged quarks and anti-
quarks and the colourless leptons and anti-leptons [13,15]. The multiplet contains
the left handed (Γ (3,1) = −1) weak (SU(2)I) charged (τ13 = ±1

2
, Eq. (7.5)), and

SU(2)II chargeless (τ23 = 0, Eq. (7.5)) quarks and leptons and the right handed
(Γ (3,1) = 1) weak (SU(2)I) chargeless and SU(2)II charged (τ23 = ±1

2
) quarks

and leptons, both with the spin S12 up and down (±1
2

, respectively). Quarks and
leptons (and separately anti-quarks and anti-leptons) have the same SO(7, 1) part.
They distinguish only in the SU(3)×U(1) part: Quarks are triplets of three colours
(ci = (τ33, τ38) = [(1

2
, 1

2
√
3
), (−1

2
, 1

2
√
3
), (0,− 1√

3
)], Eq. (7.6)) carrying the ”fermion
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charge” (τ4 = 1
6

, Eq. (7.6)). The colourless leptons carry the ”fermion charge”
(τ4 = −1

2
).

The same multiplet contains also the left handed weak (SU(2)I) chargeless and
SU(2)II charged anti-quarks and anti-leptons and the right handed weak (SU(2)I)
charged and SU(2)II chargeless anti-quarks and anti-leptons. Anti-quarks are
anti-triplets, carrying the ”fermion charge” (τ4 = −1

6
). The anti-colourless anti-

leptons carry the ”fermion charge” (τ4 = 1
2

). S12 defines the ordinary spin ±1
2

.
Y = (τ23 + τ4) is the hyper charge, the electromagnetic charge is Q = (τ13 + Y).
The vacuum state, on which the nilpotents and projectors operate, is not shown.

All these properties of states can be read directly from the table. Example 1.
and 2. demonstrate how this can be done.

The states of opposite charges (anti-particle states) are reachable from the
particle states (besides by Sab) also by the application of the discrete symmetry
operator CN PN , presented in Refs. [12] and in the footnote of this subsection.

In Table 7.1 the starting state is chosen to be
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) . We could make any other choice of products of nilpotents and projectors, let

say the state
03

[−i]
12

(+) |
56

(+)
78

[−] ||
9 10

(+)
11 12

(−)
13 14

(−) , which is the state in the seventh
line of Table 7.1. All the states of one representation can be obtained from the
starting state by applying on the starting state the generators Sab. From the first
state, for example, we obtain the seventh one by the application of S0 7 (or of S0 8,
S3 7, S3 8).

Let us make a few examples to get inside how can one read the quantum
numbers of states from 7 products of nilpotents and projectors. All nilpotents and
projectors are eigen states, Eq. (7.11), of Cartan sub-algebra, Eq. (7.8).

Example 1.: Let us calculate properties of the two states: The first state —
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉— and the seventh state —
03

[−i]
12

(+) |
56

(+)
78

[−]

||
9 10

(+)
11 12

(−)
13 14

(−) |ψ0〉— of Table 7.1.
The handedness of the whole one Weyl representation (64 states) follows from

Eqs. (7.9,7.8): Γ (14) = i1327S03S12 · · ·S13 14. This operator gives, when applied
on the first state of Table 7.1, the eigenvalue = i1327 i

2
(1
2
)4(−1

2
)2 = −1 (since the

operator S03 applied on the nilpotent
03

(+i) gives the eigenvalue k
2
= i
2

, the rest
four operators have the eigenvalues 1

2
, and the last two −1

2
, Eq. (7.11)).

In an equivalent way we calculate the handedness Γ (3,1) of these two states
in d = (3 + 1): The operator Γ (3,1) = i322S03S12, applied on the first state, gives
1 — the right handedness, while Γ (3,1) is for the seventh state −1 — the left
handedness.

The weak charge operator τ13(= 1
2
(S56 − S78)), Eq. (7.5), applied on the first

state, gives the eigenvalue 0: 1
2
(1
2
− 1
2
), The eigenvalue of τ13 is for the seventh

state 1
2

: 1
2
(1
2
− (−1

2
)), τ23 (= 1

2
(S56 + S78)), applied on the first state, gives as its

eigenvalue 1
2

, while when τ23 applies on the seventh state gives 0. The ”fermion
charge” operator τ4 (= −1

3
(S9 10 + S11 12 + S13 14), Eq. (7.6)), gives when applied

on any of these two states, the eigenvalues −1
3
(1
2
− 1
2
− 1
2
) = 1

6
. Correspondingly is
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i |aψi >, Γ(7,1) = (−1) 1 , Γ(6) = (1) − 1 Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet
of (anti)quarks and (anti)leptons

1 uc1
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

2 uc1
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
0 1

2
1
2

1
2
√
3

1
6

2
3

2
3

3 dc1
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

4 dc1
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) 1 − 1

2
0 − 1

2
1
2

1
2
√
3

1
6

− 1
3

− 1
3

5 dc1
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

6 dc1
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
− 1
2

0 1
2

1
2
√
3

1
6

1
6

− 1
3

7 uc1
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

8 uc1
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
(−) -1 − 1

2
1
2

0 1
2

1
2
√
3

1
6

1
6

2
3

9 uc2
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

10 uc2
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
0 1

2
− 1
2

1
2
√
3

1
6

2
3

2
3

11 dc2
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) 1 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

12 dc2
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) 1 − 1

2
0 − 1

2
− 1
2

1
2
√
3

1
6

− 1
3

− 1
3

13 dc2
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) -1 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

14 dc2
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
(−) -1 − 1

2
− 1
2

0 − 1
2

1
2
√
3

1
6

1
6

− 1
3

15 uc2
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) -1 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

16 uc2
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
(−) -1 − 1

2
1
2

0 − 1
2

1
2
√
3

1
6

1
6

2
3

17 uc3
R

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

18 uc3
R

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
0 1

2
0 − 1√

3
1
6

2
3

2
3

19 dc3
R

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] 1 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

20 dc3
R

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] 1 − 1

2
0 − 1

2
0 − 1√

3
1
6

− 1
3

− 1
3

21 dc3
L

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] -1 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

22 dc3
L

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
[+] -1 − 1

2
− 1
2

0 0 − 1√
3

1
6

1
6

− 1
3

23 uc3
L

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] -1 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

24 uc3
L

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
[+] -1 − 1

2
1
2

0 0 − 1√
3

1
6

1
6

2
3

25 νR

03
(+i)

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
0 1

2
0 0 − 1

2
0 0

26 νR

03
[−i]

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
0 1

2
0 0 − 1

2
0 0

27 eR

03
(+i)

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 1

2
0 − 1

2
0 0 − 1

2
−1 −1

28 eR

03
[−i]

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] 1 − 1

2
0 − 1

2
0 0 − 1

2
−1 −1

29 eL

03
[−i]

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

30 eL

03
(+i)

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
− 1
2

0 0 0 − 1
2

− 1
2

−1

31 νL

03
[−i]

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 1

2
1
2

0 0 0 − 1
2

− 1
2

0

32 νL

03
(+i)

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
[+] -1 − 1

2
1
2

0 0 0 − 1
2

− 1
2

0

Table 7.1. The left handed (Γ (13,1) = −1, Eq. (7.9)) multiplet of spinors — the members of
(one family of) the fundamental representation of the SO(13, 1) group of the colour charged
quarks and anti-quarks and the colourless leptons and anti-leptons, with the charges, spin
and handedness manifesting in the low energy regime — is presented in the massless basis
using the technique [2,5,3], explained in the text and in Examples 1.,2..
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i |aψi >, Γ
(7,1) = (−1) 1 , Γ(6) = (1) − 1 Γ(3,1) S12 τ13 τ23 τ33 τ38 τ4 Y Q

(Anti)octet
of (anti)quarks and (anti)leptons

33 d̄c̄1
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

34 d̄c̄1
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
0 1

2
− 1
2

− 1
2
√
3

− 1
6

1
3

1
3

35 ūc̄1
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

36 ūc̄1
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] -1 − 1

2
0 − 1

2
− 1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

37 d̄c̄1
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

38 d̄c̄1
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

39 ūc̄1
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

40 ūc̄1
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
[+]

13 14
[+] 1 − 1

2
− 1
2

0 − 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

41 d̄c̄2
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

42 d̄c̄2
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] -1 − 1

2
0 1

2
1
2

− 1
2
√
3

− 1
6

1
3

1
3

43 ūc̄2
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] -1 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

44 ūc̄2
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] -1 − 1

2
0 − 1

2
1
2

− 1
2
√
3

− 1
6

− 2
3

− 2
3

45 d̄c̄2
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] 1 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

46 d̄c̄2
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
(−)

13 14
[+] 1 − 1

2
1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

1
3

47 ūc̄2
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] 1 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

48 ūc̄2
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
(−)

13 14
[+] 1 − 1

2
− 1
2

0 1
2

− 1
2
√
3

− 1
6

− 1
6

− 2
3

49 d̄c̄3
L

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

50 d̄c̄3
L

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) -1 − 1

2
0 1

2
0 1√

3
− 1
6

1
3

1
3

51 ūc̄3
L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) -1 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

52 ūc̄3
L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) -1 − 1

2
0 − 1

2
0 1√

3
− 1
6

− 2
3

− 2
3

53 d̄c̄3
R

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) 1 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

54 d̄c̄3
R

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
(+)

11 12
[+]

13 14
(−) 1 − 1

2
1
2

0 0 1√
3

− 1
6

− 1
6

1
3

55 ūc̄3
R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) 1 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

56 ūc̄3
R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
(+)

11 12
[+]

13 14
(−) 1 − 1

2
− 1
2

0 0 1√
3

− 1
6

− 1
6

− 2
3

57 ēL

03
[−i]

12
(+) |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
0 1

2
0 0 1

2
1 1

58 ēL

03
(+i)

12
[−] |

56
(+)

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
0 1

2
0 0 1

2
1 1

59 ν̄L

03
[−i]

12
(+) |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 1

2
0 − 1

2
0 0 1

2
0 0

60 ν̄L

03
(+i)

12
[−] |

56
[−]

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) -1 − 1

2
0 − 1

2
0 0 1

2
0 0

61 ν̄R

03
(+i)

12
(+) |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
− 1
2

0 0 0 1
2

1
2

0

62 ν̄R

03
[−i]

12
[−] |

56
[−]

78
(+) ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
− 1
2

0 0 0 1
2

1
2

0

63 ēR

03
(+i)

12
(+) |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 1

2
1
2

0 0 0 1
2

1
2

1

64 ēR

03
[−i]

12
[−] |

56
(+)

78
[−] ||

9 10
[−]

11 12
(−)

13 14
(−) 1 − 1

2
1
2

0 0 0 1
2

1
2

1

Table 7.2. Table 7.1 continued.

the hyper charge Y (= τ23 + τ4) of these two states Y = (2
3
, 1
6
), respectively, what

the standard model assumes for uR and uL, respectively.
One finds for the colour charge of these two states, (τ33, τ38) (= (1

2
(S9 10 −

S11 12), 1√
3
(S9 10 + S11 12 − 2S13 14)) the eigenvalues (1/2, 1/(2

√
3)).

The first and the seventh states differ in the handedness Γ (3,1) = (1,−1), in
the weak charge τ13 =(0, 1

2
) and the hyper charge Y = (2

3
, 1
6

), respectively. All
the states of this octet — SO(7, 1) — have the same colour charge and the same
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”fermion charge” (the difference in the hyper charge Y is caused by the difference
in τ23 = (1

2
, 0)).

The states for the dR-quark and dL-quark of the same octet follow from the
state uR and uL, respectively, by the application of S57 (or S58, S67, S68).

All the SO(7, 1) (Γ (7,1) = 1) part of the SO(13, 1) spinor representation are the
same for either quarks of all the three colours (quarks states appear in Table 7.1
from the first to the 24th line) or for the colourless leptons (leptons appear in
Table 7.1 from the 25th line to the 32nd line).

Leptons distinguish from quarks in the part represented by nilpotents and
projectors, which is determined by the eigenstates of the Cartan subalgebra of
(S9 10, S11 12, S13 14). Taking into account Eq. (7.11) one calculates that (τ33, τ38) is

for the colourless part of the lepton states (νR,L, eR,L) — (· · · ||
9 10

(+)
11 12

[+]
13 14

[+] ) —
equal to = (0, 0), while the ”fermion charge” τ4 is for these states equal to −1

2
(just

as assumed by the standard model).
Let us point out that the octet SO(7, 1) manifests how the spin and the weak

and hyper charges are related.

Example 2.: Let us look at the properties of the anti-quark and anti-lepton
states of one fundamental representation of the SO(13, 1) group. These states are
presented in Table 7.1 from the 33rd line to the 64th line, representing anti-quarks
(the first three octets) and anti-leptons (the last octet).

Again, all the anti-octets, the SO(7, 1) (Γ (7,1) = −1) part of the SO(13, 1)
representation, are the same either for anti-quarks or for anti-leptons. The last
three products of nilpotents and projectors (the part appearing in Table 7.1 after
”||”) determine anti-colours for the anti-quarks states and the anti-colourless state
for anti-leptons.

Let us add that all the anti-spinor states are reachable from the spinor states
(and opposite) by the application of the operator [12] CNPN 4. The part of this
operator, which operates on only the spinor part of the state (presented in Table 7.1),
is CNPN |spinor = γ0

∏d
=γs,s=5 γ

s. Taking into account Eq. (7.12) and this operator
one finds that CNPN |spinor transforms uc1R from the first line of Table 7.1 into
ūc̄1L from the 35th line of the same table. When the operator CNPN |spinor applies
on νR (the 25th line of the same table, with the colour chargeless part equal to

· · · ||
9 10

(+)
11 12

[+]
13 14

[+] ), transforms νR into ν̄L (the 59th line of the table, with the

colour anti-chargeless part equal to (· · · ||
9 10

[−]
11 12

(−)
13 14

(−) ).

4 Discrete symmetries in d = (3 + 1) follow from the corresponding defini-
tion of these symmetries in d- dimensional space [12]. This operator is de-
fined as: CNPN = γ0

∏d
=γs,s=5 γ

s I~x3 Ix6,x8,...,xd , where γ0 and γ1 are real,
γ2 imaginary, γ3 real, γ5 imaginary, γ6 real, alternating imaginary and real
up to γd, which is in even dimensional spaces real. γa’s appear in the as-
cending order. Operators I operate as follows: Ix0x

0 = −x0 ; Ixxa = −xa ;
Ix0x

a = (−x0,~x) ; I~x~x = −~x ; I~x3x
a = (x0,−x1,−x2,−x3, x5, x6, . . . , xd) ;

Ix5,x7,...,xd−1 (x0, x1, x2, x3, x5, x6, x7, x8, . . . , xd−1, xd) =

(x0, x1, x2, x3,−x5, x6,−x7, . . . ,−xd−1, xd); Ix6,x8,...,xd (x0, x1, x2, x3, x5, x6, x7, x8, . . . ,

xd−1, xd) = (x0, x1, x2, x3, x5,−x6, x7,−x8, . . . , xd−1,−xd), d = 2n.
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7.2.2 A short inside into families in the spin-charge-family theory

The operators S̃ab, commuting with Sab (Eq. (7.7)), transform any spinor state,
presented in Table 7.1, to the same state of another family, orthogonal to the
starting state and correspondingly to all the states of the starting family.

Applying the opeartor S̃03 (= i
2
γ0γ3), for example, on νR (the 25th line of

Table 7.1 and the last line on Table 7.3), one obtains, taking into account Eq. (7.12),
the νR7 state belonging to another family, presented in the seventh line of Table 7.3.

Operators Sab transform νR (the 25th line of Table 7.1, presented in Table 7.3
in the eighth line, carrying the name νR8) into all the rest of the 64 states of this
eighth family, presented in Table 7.1. The operator S11 13, for example, transforms
νR8 into uR8 (presented in the first line of Table 7.1), while it transforms νR7 into
uR7.

Table 7.3 represents eight families of neutrinos, which distinguish among
themselves in the family quantum numbers: (τ̃13, ÑL, τ̃23, ÑR, τ̃4). These family
quantum numbers can be expressed by S̃ab as presented in Eqs. (7.4, 7.5, 7.6), if
Sab are replaced by S̃ab.

Eight families decouples into two groups of four families, one (II) is a doublet
with respect to ( ~̃NL and ~̃τ1) and a singlet with respect to ( ~̃NR and ~̃τ2), the other (I)
is a singlet with respect to ( ~̃NL and ~̃τ1) and a doublet with with respect to ( ~̃NR and
~̃τ2).

All the families follow from the starting one by the application of the operators
(Ñ±R,L, τ̃(2,1)±), Eq. (7.18). The generators (N±R,L, τ(2,1)±), Eq. (7.18), transform νR1
to all the members belonging to the SO(7, 1) group of one family, Ss,t, (s, t) =

(9 · · · , 14) transform quarks of one colour to quarks of other colours or to leptons.

τ̃13 τ̃23 Ñ3L Ñ
3
R τ̃4

I νR 1
03

(+i)
12

[+] |
56

[+]
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] − 1
2

0 − 1
2

0 − 1
2

I νR 2
03

[+i]
12

(+) |
56

[+]
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] − 1
2

0 1
2

0 − 1
2

I νR 3
03

(+i)
12

[+] |
56

(+)
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 1
2

0 − 1
2

0 − 1
2

I νR 4
03

[+i]
12

(+) |
56

(+)
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 1
2

0 1
2

0 − 1
2

II νR 5
03

[+i]
12

[+] |
56

[+]
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 0 − 1
2

0 − 1
2
− 1
2

II νR 6
03

(+i)
12

(+) |
56

[+]
78

[+] ||
9 10

(+)
11 12

[+]
13 14

[+] 0 − 1
2

0 1
2
− 1
2

II νR 7
03

[+i]
12

[+] |
56

(+)
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] 0 1
2

0 − 1
2
− 1
2

II νR 8
03

(+i)
12

(+) |
56

(+)
78

(+) ||
9 10

(+)
11 12

[+]
13 14

[+] 0 1
2

0 1
2
− 1
3

Table 7.3. Eight families of the right handed neutrino νR (appearing in the 25th line of
Table 7.1), with spin 1

2
. νRi, i = (1, · · · , 8), carries the family quantum numbers τ̃13, Ñ3L,

τ̃23, Ñ3R and τ̃4. Eight families decouple into two groups of four families.

All the families of Table 7.3 and the family members of the eighth family in
Table 7.1 are in the massless basis.
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The scalar fields, which are the gauge scalar fields of ~̃NR and ~̃τ2, couple only
to the four families which are doublets with respect to these two groups. The scalar
fields which are the gauge scalars of ~̃NL and ~̃τ1 couple only to the four families
which are doublets with respect to these last two groups.

After the electroweak phase transition, caused by the scalar fields with the
space index (7, 8) [5,11,3,4], the two groups of four families become massive. The
lowest of the two groups of four families contains the observed three, while the
fourth family remains to be measured. The lowest of the upper four families is the
candidate to form the dark matter [4,10].

7.2.3 Vector gauge fields and scalar gauge fields in the spin-charge-family
theory

In the spin-charge-family theory [4,2,3], like in all the Kaluza-Klein like theories,
either vielbeins or spin connections can be used to represent the vector gauge
fields in d = (3 + 1) space, when space with d ≥ 5 has large enough symmetry
and no strong spinor source is present. This is proven in Ref. [1] and the references
therein. There are the superposition ofωstm,m = (0, 1, 2, 3), (s, t) ≥ 5, which are
used in the spin-charge-family theory to represent vector gauge fields — AAim (=∑
s,t c

Ai
stω

st
m) — in d = (3+1) in the low energy regime. HereAi represent the

quantum numbers of the corresponding subgroups, expressed by the operators
Sst in Eqs. (7.5, 7.6). Coefficients cAist can be read from Eqs. (7.5,7.6). These vector
gauge fields manifest the properties of all the directly and indirectly observed
gauge fields 5.

In the spin-charge-family theory also the scalar fields [2,4,3,9,11,1] have the
origin in the spin connection field, in ωsts ′ and ω̃sts ′ , (s, t, s ′) ≥ 5. These scalar
fields offer the explanation for the Higgs’s scalar and the Yukawa couplings of the
standard model [9,4].

Both, scalar and vector gauge fields, follow from the simple starting action of
the spin-charge-family presented in Eq. (7.1).

The Lagrange function for the vector gauge fields follows from the action for
the curvature R in Eq. (7.1) and manifests in the case of the flat d = (3+ 1) space
as assumed by the standard model: Lv = −1

4

∑
A,i,m,n

FAimnF
Aimn, FAimn =

∂mA
Ai
n − ∂nA

Ai
m − ifAijkAAjm AAkn , with

AAim =
∑
s,t

cAistω
st
m ,

τAi =
∑
s,t

cAistMst , Mst = Sst + Lst . (7.13)

5 In the spin-charge-family theory there are, besides the vector gauge fields of (~τ1, ~τ3),
Eqs. (7.5,7.6), also the vector gauge fields of ~τ2, Eq. (7.5), and τ4, Eq. (7.6). The vector
gauge fields of τ21, τ22 and Y ′ = τ23 − tan θ2 gain masses when interacting with the
condensate [4] (and the references therein) at around 1016 GeV, while the vector gauge
field of the hyper charge Y = τ23 + τ4 remains massless, together with the gauge fields of
~τ1 and ~τ3, manifesting at low energies properties, postulated by the standard model.
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In the low energy regime only Sst manifest. These expressions can be found in
Ref. [1], Eq. (25), for example, and the references therein.

From Eq. (7.1) we read the interaction between fermions, presented in Ta-
ble 7.1, and the corresponding vector gauge fields in flat d = (3+ 1) space.

Lfv = ψ̄γm(pm −
∑
A,i

τAiAAim )ψ . (7.14)

Particular superposition of spin connection fields, either ωsts ′ or ω̃abs ′ ,
(s, t, s ′) ≥ 5, (a, b) = (0, · · · , 8), with the scalar space index s ′ = (7, 8), mani-
fest at low energies as the scalar fields, which contribute to the masses of the
family members. The superposition of the scalar fieldsωstt" with the space index
t ′′ = (9, · · · , 14) contribute to the transformation of matter into antimatter and
back, causing in the presence of the condensate [2,4] the matter-antimatter asym-
metry of our universe. The interactions of all these scalar fields with fermions
follow from Eq. (7.1)

Lfs = {
∑
s=7,8

ψ̄γsp0s ψ}+

{
∑

t=5,6,9,...,14

ψ̄γtp0t ψ} , (7.15)

where p0s = ps − 1
2
Ss
′s"ωs ′s"s −

1
2
S̃abω̃abs, p0t = pt − 1

2
St
′t"ωt ′t"t −

1
2
S̃abω̃abt,

with m ∈ (0, 1, 2, 3), s ∈ (7, 8), (s ′, s") ∈ (5, 6, 7, 8), (a, b) (appearing in S̃ab)
run within either (0, 1, 2, 3) or (5, 6, 7, 8), t runs ∈ (5, . . . , 14), (t ′, t") run either
∈ (5, 6, 7, 8) or ∈ (9, 10, . . . , 14). The spinor function ψ represents all family mem-
bers of all the 2

7+1
2

−1 = 8 families presented in Table 7.3.
There are the superposition of the scalar fieldsωs ′s"s — (AQ± , AQ

′

± , AY
′

± ) 6 —

and the superposition of ω̃s ′s ′′s — (~̃AÑL± , ~̃A1̃±, ~̃AÑR± , ~̃A2̃±) 7 — which determine mass
terms of family members of spinors after the electroweak break. I shall use AAi±
to represent all the scalar fields, which determine masses of family members, the
Yukawa couplings and the weak boson vector fields,AAi± = (

∑
A,i,a,b c

Aist(ωst7±
iωst8) as well as =

∑
A,i,a,b c

Aist(ω̃ab7 ± iωab8).
The part of the second term of Eq. (7.15), in which summation runs over the

space index s = (7,8) —
∑
s=7,8 ψ̄γ

sp0sψ — determines after the electroweak
break masses of the two groups of four families. The highest of the lower four
families is predicted to be observed at the L(arge)H(adron)C(ollider) [11], the
lowest of the higher four families is explaining the origin of the dark matter [10].

The scalar fields in the part of the second term of Eq. (7.15), in which sum-
mation runs over the space index t = (9, · · · , 14) —

∑
t=9,··· ,14 ψ̄γ

tp0tψ— cause

6 Q := τ13 + Y, Q ′ := −Y tan2 ϑ1 + τ13, Q ′ := − tan2 ϑ1Y + τ13, Y := τ4 + τ23, Y ′ :=
− tan2 ϑ2τ4+τ23,Q := τ13+Y, and correspondinglyAQs = sin ϑ1A13s +cos ϑ1AYs ,AQ

′
s =

cos ϑ1A13s − sin ϑ1AYs ,AY
′
s = cos ϑ2A23s − sin ϑ2A4s ,A4s = −(ω9 10 s+ω11 12 s+ω13 14 s),

A13s = (ω56s −ω78s), A23s = (ω56s +ω78s), with (s ∈ (7, 8)) (Re. [3], Eq. (A9)).
7 ~̃A1̃s = (ω̃5̃8̃s − ω̃6̃7̃s, ω̃5̃7̃s + ω̃6̃8̃s, ω̃5̃6̃s − ω̃7̃8̃s),

~̃A
ÑL̃
s = (ω̃2̃3̃s + i ω̃0̃1̃s, ω̃3̃1̃s +

i ω̃0̃2̃s, ω̃1̃2̃s + i ω̃0̃3̃s),
~̃A2̃s = (ω̃5̃8̃s + ω̃6̃7̃s, ω̃5̃7̃s − ω̃6̃8̃s, ω̃5̃6̃s + ω̃7̃8̃s) and ~̃A

ÑR̃
s =

(ω̃2̃3̃s − i ω̃0̃1̃s, ω̃3̃1̃s − i ω̃0̃2̃s, ω̃1̃2̃s − i ω̃0̃3̃s) , where (s ∈ (7, 8)) (Ref. [3], Eq. (A8)).
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transitions from anti-leptons into quarks and anti-quarks into quarks and back,
transforming antimatter into matter and back. In the expanding universe the con-
densate of two right handed neutrinos breaks this matter-antimatter symmetry,
explaining the matter-antimatter asymmetry of our universe [2].

Spin connection fieldsωsts ′ and ω̃sts ′ interact also with vector gauge fields
and among themselves [1]. These interactions can be red from Eq. (7.1).

7.3 Discussions and open problems

The spin-charge-family theory is offering the next step beyond both standard models,
by explaining:
i. The origin of charges of the (massless) family members and the relation between
their charges and spins. The theory, namely, starts in d = (13 + 1) with the sim-
ple action for spinors, which interact with the gravity only (Eq.7.1) (through the
vielbeins and the two kinds of the spin connection fields), while one fundamental
representation of SO(13, 1) contains, if analyzed with respect to the subgroups
SO(3, 1), SU(3), SU(2)I, SU(2)II and U(1)II of the group SO(13, 1), all the quarks
and anti-quarks and all the leptons and anti-leptons with the properties assumed
by the standard model, relating handedness and charges of spinors as well as of
anti-spinors (Table 7.1).
ii. The origin of families of fermions, since spinors carry two kinds of spins
(Eq. (7.2)) — the Dirac γa and γ̃a. In d = (3+ 1) γa take care of the observed spins
and charges, γ̃a take care of families (Table 7.3).
iii. The origin of the massless vector gauge fields of the observed charges, repre-
sented by the superposition of the spin connection fields ωstm, (s, t) ≥ 5,m ≤
3 [1,4,3].
iv. The origin of masses of family members and of heavy bosons. The superpo-
sition of ωsts ′ , (s, t) ≥ 5, s ′ = (7, 8) and the superposition of ω̃abs ′ , (a, b) =

(0, · · · , 8), s ′ = (7, 8) namely gain at the electroweak break constant values, deter-
mining correspondingly masses of the spinors (fermions) and of the heavy bosons,
explaining [4,3,11] the origin of the Higgs’s scalar and the Yukawa couplings of
the standard model.
v. The origin of the matter-antimatter asymmetry [2], since the superposition of
ωsts ′ , s

′ ≥ 9, cause transitions from anti-leptons into quarks and anti-quarks into
quarks and back, while the appearance of the scalar condensate in the expanding
universe breaks the CP symmetry, enabling the existence of matter-antimatter
asymmetry.
vi. The origin of the dark matter, since there are two groups of decoupled four
families in the low energy regime. The neutron made of quarks of the stable of the
upper four families explains the appearance of the dark matter [10] 8.
vii. The origin of the triangle anomaly cancellation in the standard model. All
the quarks and anti-quarks and leptons and anti-leptons, left and right handed,

8 We followed in Ref. [10] freezing out of the fifth family quarks and anti-quarks in the
expanding universe to see whether baryons of the fifth family quarks are the candidates
for the dark matter.
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appear within one fundamental representation of SO(13, 1) [4,3].
viii. The origin of all the gauge fields. The spin-charge-family theory unifies the
gravity with all the vector and scalar gauge fields, since in the starting action there
is only gravity (Eq. (7.1)), represented by the vielbeins and the two kinds of the
spin connection fields, which in the low energy regime manifests in d = (3 + 1)

as the ordinary gravity and all the directly and indirectly observed vector and
scalar gauge fields [1]. If there is no spinor condensate present, only one of the
three fields is the propagating field (both spin connections are expressible with the
vielbeins). In the presence of the spinor fields the two spin connection fields differ
among themselves (Ref. [1], Eq. (4), and the references therein).

The more work is done on the spin-charge-family theory, the more answers to
the open questions of both standard models is the theory offering.

There are, of course, still open questions (mostly common to all the models)
like:

a. How has our universe really started? The spin-charge-family theory assumes
d = (13 + 1), but how ”has the universe decided” to start with d = (13 + 1)?
If starting at d = ∞, how can it come to (13 + 1) with the massless Weyl repre-
sentation of only one handedness? We have studied in a toy model the break of
symmetry from d = (5 + 1) into (3 + 1) [14], finding that there is the possibility
that spinors of one handedness remain massless after this break. This study gives
a hope that breaking the symmetry from (d− 1)+ 1, where d is even and∞, could
go, if the jump of (d− 1) + 1 to ((d− 4) − 1) + 1would be repeated as twice the
break suggested in Ref. [14]. These jumps should then be repeated all the way
from d =∞ to d = (13+ 1).
b. What did ”force” the expanding universe to break the symmetry of SO(13, 1)
to SO(7, 1) ×SU(3)×U(1)II and then further to SO(3, 1) ×SU(2)× SU(3)×U(1)I
and finally to SO(3, 1)× SU(3)×U(1)?
From phase transitions of ordinary matter we know that changes of temperature
and pressure lead a particular matter into a phase transition, causing that con-
stituents of the matter (nuclei and electrons) rearrange, changing the symmetry of
space.
In expanding universe the temperature and pressure change, forcing spinors
to make condensates (like it is the condensate of the two right handed neutri-
nos in the spin-charge-family theory [3,2,4], which gives masses to vector gauge
fields of SU(2)II, breaking SU(2)II × U(1)II into U(1)I). There might be also
vector gauge fields causing a change of the symmetry (like does the colour
vector gauge fields, which ”dress” quarks and anti-quarks and bind them to
massive colourless baryons and mesons of the ordinary, mostly the first fam-
ily, matter). Also scalar gauge fields might cause the break of the symmetry of
the space (as this do the superposition of ωs ′t ′s and the superposition of ω̃abs,
s = (7, 8), (s ′, t") ≥ 5, (a, b) = (0, · · · , 8) in the spin-charge-family theory [4,3] by
gaining constant values in d = (3 + 1) and breaking correspondingly also the
symmetry of the coordinate space in d ≥ 5).
All these remain to be studied.
c. What is the scale of the electroweak phase transition? How higher is this scale in
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comparison with the colour phase transition scale? If the colour phase transition
scale is at around 1 GeV (since the first family quarks contribute to baryons masses
around 1 GeV), is the electroweak scale at around 1 TeV (of the order of the mass
of Higgs’s scalar) or this scale is much higher, possibly at the unification scale
(since the spin-charge-family theory predicts two decoupled groups of four families
and several scalar fields — twice two triplets and three singlets [3,11,4])?

d. There are several more open questions. Among them are the origin of the
dark energy, the appearance of fermions, the origin of inflation of the universe,
quantization of gravity, and several others. Can the spin-charge-family theory be
— while predicting the fourth family to the observed three, several scalar fields,
the fifth family as the origin of the dark matter, the scalar fields transforming
anti-leptons into quarks and anti-quarks into quarks and back and the condensate
which break this symmetry — the first step, which can hopefully show the way to
next steps?

7.4 APPENDIX: Some useful formulas and relations are
presented [4,5]

Sac
ab

(k)
cd

(k) = − i
2
ηaaηcc

ab

[−k]
cd

[−k] , S̃ac
ab

(k)
cd

(k)= i
2
ηaaηcc

ab

[k]
cd

[k] ,

Sac
ab

[k]
cd

[k] = i
2

ab

(−k)
cd

(−k) , S̃ac
ab

[k]
cd

[k]= − i
2

ab

(k)
cd

(k) ,

Sac
ab

(k)
cd

[k] = − i
2
ηaa

ab

[−k]
cd

(−k) , S̃ac
ab

(k)
cd

[k]= − i
2
ηaa

ab

[k]
cd

(k) ,

Sac
ab

[k]
cd

(k) = i
2
ηcc

ab

(−k)
cd

[−k] , S̃ac
ab

[k]
cd

(k)= i
2
ηcc

ab

(k)
cd

[k] . (7.16)

ab

(k)
ab

(k) = 0 ,
ab

(k)
ab

(−k)= ηaa
ab

[k] ,
ab

(−k)
ab

(k)= ηaa
ab

[−k] ,
ab

(−k)
ab

(−k)= 0 ,
ab

[k]
ab

[k] =
ab

[k] ,
ab

[k]
ab

[−k]= 0 ,
ab

[−k]
ab

[k]= 0 ,
ab

[−k]
ab

[−k]=
ab

[−k] ,
ab

(k)
ab

[k] = 0 ,
ab

[k]
ab

(k)=
ab

(k) ,
ab

(−k)
ab

[k]=
ab

(−k) ,
ab

(−k)
ab

[−k]= 0 ,
ab

(k)
ab

[−k] =
ab

(k) ,
ab

[k]
ab

(−k)= 0,
ab

[−k]
ab

(k)= 0 ,
ab

[−k]
ab

(−k)=
ab

(−k) .(7.17)

N±+ = N1+ ± iN2+ = −
03

(∓i)
12

(±) , N±− = N1− ± iN2− =
03

(±i)
12

(±) ,

Ñ±+ = −
03
˜(∓i)

12
˜(±) , Ñ±− =

03
˜(±i)

12
˜(±) ,

τ1± = (∓)
56

(±)
78

(∓) , τ2∓ = (∓)
56

(∓)
78

(∓) ,

τ̃1± = (∓)
56
˜(±)

78
˜(∓) , τ̃2∓ = (∓)

56
˜(∓)

78
˜(∓) . (7.18)
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