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Abstract

For a graph G, let f(G) denote the maximum number of edges in a bipartite subgraph
of G. For an integer m ≥ 1 and for a set H of graphs, let f(m,H) denote the minimum
possible cardinality of f(G), as G ranges over all graphs on m edges that contain no mem-
ber of H as a subgraph. In particular, for a given graph H , we simply write f(m,H) for
f(m,H) whenH = {H}. Let r > 4 be a fixed even integer. Alon et al. (2003) conjectured
that there exists a positive constant c(r) such that f(m,Cr−1) ≥ m/2 + c(r)mr/(r+1) for
all m. In the present article, we show that f(m,Cr−1) ≥ m/2 + c(r)(mr log4m)1/(r+2)

for some positive constant c(r) and all m. For any fixed integer s ≥ 2, we also study
the function f(m,H) for H = {K2,s, C5} and H = {C4, C5, . . . , Cr−1}, both of which
improve the results of Alon et al.
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1 Introduction
All graphs considered here are finite, undirected and have no loops and no parallel edges,
unless otherwise specified. All logarithms in this paper are with the natural base e. For
a graph G, let f(G) denote the maximum number of edges in a cut of G, that is, the
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maximum number of edges in a bipartite subgraph of G. For an integer m, let f(m) denote
the minimum value of f(G), as G ranges over all graphs with m edges. Thus, f(m) is the
largest integer f such that any graph with m edges contains a bipartite subgraph with at
least f edges.

It is easy to show that f(m) ≥ m/2 by considering a random bipartition of a graph
with m edges. Edwards [10, 11] proved that for every m

f(m) ≥ m

2
+

1

4

(√
2m+

1

4
− 1

2

)
, (1.1)

and noticed that this is tight when m =
(
k
2

)
for odd integers k. For more information on

f(m) and some related topics, we refer the reader to [1, 3, 5, 6, 8, 14, 15, 16, 21, 26, 27, 28].
For survey articles, see [7, 23].

Suppose that H is a set of graphs. Let f(m,H) denote the minimum possible cardi-
nality of f(G), as G ranges over all graphs on m edges that contain no member of H. In
particular, for a given graph H , we simply write f(m,H) for f(m,H) whenH = {H}. It
is noted (see, e.g., [2]) that for every fixed graph H there exist positive constants ε = ε(H)
and c = c(H) such that f(m,H) ≥ m/2 + cm1/2+ε for all m. However, the problem of
estimating the error term more precisely is not easy, even for relatively simple graphs H .
For example, let r ≥ 4 be an integer and let H be the cycle Cr−1. The case r = 4 has
been studied extensively. After a series of papers by various researchers [12, 22, 24], Alon
[1] proved that f(m,C3) = m/2 + Θ(m4/5) for all m. For general r ≥ 4, Alon et al. [4]
proposed the following conjecture.

Conjecture 1.1. For every integer r ≥ 4, there is a positive constant c(r) such that

f(m,Cr−1) ≥ m

2
+ c(r)m

r
r+1 (1.2)

for all m. This is tight, up to the value of c(r), for all r ≥ 4.

The authors confirmed (1.2) for all odd r > 4. In this paper, we consider the conjecture
for every even integer r > 4 and establish the following theorem.

Theorem 1.2. For every even integer r > 4, there is a positive constant c(r) such that

f(m,Cr−1) ≥ m

2
+ c(r)

(
mr log4m

) 1
r+2

for all m.

Alon et al. [4] also studied the function f(m,H) when H is the complete bipartite
graph K2,s. It is proved that, for every s ≥ 2, there is a positive constant c(s) such that

f(m,K2,s) ≥
m

2
+ c(s)m5/6

for all m, and this is tight up to the value of c(s). Now, we consider the function f(m,H)
forH = {K2,s, C5}, which improves the above lower bound as follows.

Theorem 1.3. For each s ≥ 2, let G be a {K2,s, C5}-free graph with m edges. Then there
exists a positive constant c(s) such that

f(G) ≥ m

2
+ c(s)m6/7

for all m.
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Moreover, Alon et al. [2] considered the function f(m,H) for H = {C3, . . . , Cr−1},
and proved that

f(m,H) ≥ m

2
+ c(r)m

r
r+1

for all m. In the following, we allow the occurence of triangles and get a stronger result.

Theorem 1.4. Let r > 4 be a fixed even integer and Hr = {C4, . . . , Cr−1}. Then there
exists a positive constant c(r) such that

f(m,Hr) ≥
m

2
+ c(r)m

r
r+1

for all m.

2 Maximum cuts of C2k+1-free graphs
In this section, we give a proof of Theorem 1.2. The goal is to prove that the chromatic
number of a C2k+1-free graph is relatively small, since graphs with small chromatic num-
ber must have large bipartite subgraphs.

For a graph G, let χ(G) and α(G) denote the chromatic number and independence
number of G, respectively. We need the following lemma, whose easy proof can be found
in [1] (see also [2, 12, 21]).

Lemma 2.1. Let G be a graph with m edges and chromatic number at most χ. Then

f(G) ≥ χ+ 1

2χ
m.

To find an upper bound on the chromatic number of a C2k+1-free graph, we require
a lemma of Jensen and Toft [17] (see also [18]), which is a general lemma on monotone
properties. Note that a graph property is called monotone if it holds for all subgraphs of a
graph which has this property, i.e., is preserved under deletion of edges and vertices.

Lemma 2.2 (Jensen and Toft [17, §7.3]). For s ≥ 1, let ψ : [s,∞)→ (0,∞) be a positive
continuous non-decreasing function. Suppose that P is a family of graphs with monotone
properties such that α(G) ≥ ψ(|V (G)|) for every G ∈ P with |V (G)| ≥ s. Then for every
such G with |V (G)| ≥ s,

χ(G) ≤ s+

∫ |V (G)|

s

1

ψ(x)
dx.

In order to bound χ(G) by Lemma 2.2, we need bound α(G) of a C2k+1-free graph G
in terms of |V (G)|. The following well-known Turán’s lower bound (see, e.g., [25]) and
another two lemmas from [19] and [20] will be used to bound α(G).

Lemma 2.3 (Turán’s Lower Bound). Let G be a graph on n vertices with average degree
at most d. Then

α(G) ≥ n

1 + d
.

Lemma 2.4 (Li et al. [19]). Let G be a graph on n vertices with average degree at most d.
If the average degree of the subgraph induced by the neighborhood of any vertex is at most
a, then

α(G) ≥ nFa+1(d),
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where

Fa(x) =

∫ 1

0

(1− t)1/a

a+ (x− a)t
dt >

log(x/a)− 1

x
, (x > 0).

Lemma 2.5 (Li and Zang [20]). For a fixed integer k ≥ 2, let G be a C2k+1-free graph
with degree sequence d1, d2, . . . , dn. Then

α(G) ≥ 1

4k

( n∑
i=1

d
1

k−1

i

) k−1
k

.

Next, we shall also use the following upper bound, proved by Erdős and Gallai [13], on
the maximum number of edges in Pt-free graphs, where Pt stands for a simple path with t
vertices.

Lemma 2.6 (Erdős and Gallai [13]). Let G be a Pt+1-free graph with n vertices. Then G
contains at most (t− 1)n/2 edges.

Finally, we give a simple inequality, which is used frequently in our proofs of the fol-
lowing several theorems. We omit the proof details.

Lemma 2.7. For any real number x > 0, we have

x ≥ max
{

log(x+ 3)− 3

2
, e log x

}
(2.1)

and that the function g(x) = log x/x is monotonically increasing over the interval (0, e]
and decreasing over the interval (e,∞).

Having finished all the necessary preparations, we are ready to give lower bounds of
the independence number of a C2k+1-free graph.

Theorem 2.8. For any fixed integer k ≥ 2, let G = (V,E) be a C2k+1-free graph on n
vertices with average degree at most d. Then

α(G) ≥ max
{n log d

2kd
,

1

5k2
(nk log n)

1
k+1

}
.

Proof. First, we prove that

α(G) ≥ n log d

2kd
.

Case 1. d ≤ e2(2k − 1). By inequality (2.1), we have

2k ≥ log(2k − 1) +
5

2
> log d+

1

e
≥ log d+

log d

d
=

(1 + d) log d

d
.

This together with Lemma 2.3 implies that

α(G) ≥ n

1 + d
≥ n log d

2kd
.

Case 2. d > e2(2k − 1). It follows from inequality (2.1) that 2k − 1 ≥ 1 + log(2k − 1).
This together with d > e2(2k − 1) yields that

log d ≥ 2 + log(2k − 1) ≥ 2k

2k − 1

(
1 + log(2k − 1)

)
,
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which gives that

log d−
(
1 + log(2k − 1)

)
≥ log d

2k
. (2.2)

Since G is C2k+1-free, the subgraph induced by the neighborhood of any vertex of G
is P2k-free. By Lemma 2.6, the average degree of any P2k-free graph is at most 2(k − 1).
It follows from Lemma 2.4 and inequality (2.2) that

α(G) ≥ nF2k−1(d) >
n log d

e(2k−1)

d
≥ n log d

2kd
,

as desired.
Now, we show that

α(G) ≥ 1

5k2
(nk log n)

1
k+1 .

Let v1, . . . , vn be the vertices of G such that d(vi) = di for 1 ≤ i ≤ n. Set

S =
{
vi ∈ V : di > (n logk n)

1
k+1

}
.

If |S| ≥ 2n/5, then, by Lemma 2.5, we have

α(G) ≥ 1

4k

( n∑
i=1

d
1

k−1

i

) k−1
k ≥ 1

4k

(2n

5
· (n logk n)

1
k2−1

) k−1
k ≥ 1

5k2
(nk log n)

1
k+1 .

Suppose that |S| < 2n/5. Consider the graph H induced by V \S. Clearly, the number
of vertices contained in H is at least 3n/5, and the average degree d(H) of H is at most
(n logk n)1/(k+1). If d(H) ≤ e, then the desired result follows immediately from Lemma
2.3. Otherwise, by the preceding result, we obtain

α(G) ≥ α(H) ≥ 3n

5
· log d(H)

2kd(H)
≥ 1

5k2
(nk log n)

1
k+1 ,

where the last inequality holds because the function g(x) = log x/x is monotonically
decreasing over the interval [e, (n logk n)1/(k+1)] by Lemma 2.7. This completes the proof
of Theorem 2.8.

With the help of Lemma 2.2 and Theorem 2.8, we establish the following theorem,
which plays a key role in our proof of Theorem 1.2. The approach we take is an extension
of that by Poljak and Tuza [22].

Theorem 2.9. For any fixed integer k ≥ 2, letG be a C2k+1-free graph withm > 1 edges.
Then

χ(G) ≤ 32(k + 1)3
( m

log2m

) 1
k+2

.

Proof. Let G be a C2k+1-free graph on n vertices with m > 1 edges. If G is bipartite,
then χ(G) = 2 and the claim follows. Suppose that χ(G) ≥ 3. Without loss of generality,
we may assume that G is vertex-critical. Note that each vertex-critical graph has minimal
degree at least χ(G) − 1. It follows that the minimal degree of G is at least 2. Thus, we
have m ≥ n. Now, we end the proof by showing the following series of claims.
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Claim 1.
χ(G) ≤ 15k3

( n

log n

) 1
k+1

.

This is trivial for n < e2 as χ(G) ≤ n < e2, hence we may assume that n ≥ e2. For
x ≥ e2, define the functions

γ(x) = 1− log−1 x and ψ(x) =
1

5k2
(xk log x)

1
k+1 .

Clearly, γ(x) ≥ 1/2 for x ≥ e2, and γ(x), ψ(x) are positive continuous and non-
decreasing. By Theorem 2.8, we have α(G) ≥ ψ(n). Thus, Lemma 2.2 gives that

χ(G) ≤ e2 +

∫ n

e2

1

ψ(x)
dx ≤ e2 +

5k2

γ(e2)

∫ n

e2

γ(x)

(xk log x)
1

k+1

dx

= e2 + 10k2(k + 1)
( x

log x

) 1
k+1
∣∣∣n
e2
≤ 15k3

( n

log n

) 1
k+1

.

This completes the proof of Claim 1.

For convenience, we define

n∗ =
( mk+1

logkm

) 1
k+2

.

Claim 2. n > n∗.

Otherwise, assume that n ≤ n∗. By Lemma 2.7, we know the function g(x) = x/ log x
is monotonically increasing over the interval (e,∞) and log x ≥ e log log x for each x > 1.
Note that m > 1 (which implies n ≥ 3 > e). It follows from Claim 1 that

χ(G) ≤ 15k3
( n

log n

) 1
k+1 ≤ 15k3

( n∗

log n∗

) 1
k+1 ≤ 32k3

( m

log2m

) 1
k+2

.

Thus, we get the desired result and complete the proof of Claim 2.

Now, we construct a graph sequence G = {Gi}i≥0 according to the following proce-
dure, which we will call the G algorithm. Set i = 0, G0 = G and n0 = |V (G0)|. Repeat
the following steps until ni ≤ n∗.

• Choose Si to be a maximum independent set of Gi.

• Set Gi+1 = Gi\Si and ni = |V (Gi)|. Increment i.

Let `+1 be the length of the resulting sequence G. By the G algorithm, we immediately
have n` ≤ n∗ and that G can be colored by at most χ(G`) + ` colors. Clearly, we may
assume that G` is vertex-critical. Thus, by Claim 1, for n` ≥ 3, we have

χ(G`) ≤ 15k3
( n`

log n`

) 1
k+1 ≤ 15k3

( n∗

log n∗

) 1
k+1 ≤ 32k3

( m

log2m

) 1
k+2

. (2.3)

Note that χ(G`) clearly satisfies the above inequality for n` ≤ 2. In the following, we aim
to bound the value of `.
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Firstly, we give a lower bound of |Si|. Let t = d n
n∗ e. It follows from Claim 2 that

t ≥ 2. Let I = {0, 1, . . . , ` − 1} and J = {2, 3, . . . , t}. Note that ni > n∗ ≥ n/t for
each i ∈ I by the G algorithm and the definition of t. Let v1, . . . , vn0

be a labelling of the
vertices of G0 such that Si = {vp : ni+1 < p ≤ ni} for each i ∈ I . Denote S the union of
Si for all i ∈ I . Thus, for each j ∈ J , we can define

Vj =
{
vp ∈ S :

n

j
< p ≤ n

j − 1

}
and Ij =

{
i ∈ I : ni >

n

j

}
.

Note that S\S`−1 ⊆ ∪j∈JVj ⊆ S and I2 ⊆ I3 ⊆ . . . ⊆ It. Therefore, for each x ∈ Vj ,
there exists an i ∈ Ij such that x ∈ Si. In addition, we have

|Vj | ≤
⌈ n

j − 1
− n

j

⌉
. (2.4)

Claim 3. For each i ∈ Ij 6= ∅,

|Si| ≥
n2 log 2jm

n

4kj2m
.

Let di denote the average degree of Gi for each i ∈ I . Clearly, for each i ∈ Ij , we
have di ≤ 2m

ni
≤ 2jm

n . Suppose that di > e. Recall that the function g(x) = log x/x is
decreasing over the interval (e,∞). By Theorem 2.8, we have

|Si| ≥
ni log di

2kdi
≥
n2 log 2jm

n

4kj2m
.

Otherwise, di ≤ e. It follows from Lemma 2.3 that |Si| ≥ ni

2k ≥
n

2kj , which together with
the fact that x ≥ log x implies the required result as well. This completes the proof of
Claim 3.

Then, for each x ∈ Si and i ∈ I , define w(x) = |Si|−1. Therefore, for each x ∈ Si
and i ∈ Ij , it follows from Claim 3 that

w(x) = |Si|−1 ≤
4kj2m

n2 log 2jm
n

≤ 4kj2mn−2

log j + log m
n

.

By the definition of w(x) and the above inequality, we immediately have

`− 1 =
∑

i∈I\{`−1}

∑
x∈Si

w(x)

≤
∑
j∈J

∑
x∈Vj

w(x) ≤
t∑

j=2

4kj2|Vj |mn−2

log j + log m
n

≤
t∑

j=2

16kmn−1

log j + log m
n

. (2.5)

The last inequality follows from (2.4) and the fact j ≥ 2.

Finally, we give the following upper bound of `.

Claim 4.
`− 1 ≤ 64(k + 1)2

( m

log2m

) 1
k+2

.
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By the definition of n∗, we have

n

n∗
· m
n

=
m

n∗
= (m logkm)

1
k+2 . (2.6)

It follows that max{m/n, n/n∗} > m
1

2(k+2) , and then

max
{

log
m

n
, log

n

n∗

}
>

1

2(k + 2)
logm. (2.7)

Suppose that n/n∗ < m/n. Note that t − 1 < n/n∗ by the definition of t. Then, we
delete the first term of the denominator of (2.5) and obtain

`− 1 ≤
t∑

j=2

16kmn−1

log m
n

≤ 16k(t− 1)m

n log m
n

<
16km

n∗ log m
n

≤ 64k2
( m

log2m

) 1
k+2

,

where the last inequality follows from (2.6) and (2.7); as desired. Otherwise, n/n∗ ≥ m/n.
Recall that t− 1 < n/n∗ ≤ t. It follows that∫ t

2

1

log x
dx ≤ 2(t− 1)

log t
≤ 2n

n∗ log n
n∗
.

Deleting the second term of the denominator in (2.5), we have

`−1 ≤ 16km

n

t∑
j=2

1

log j
≤ 16km

n

∫ t

2

1

log x
dx ≤ 32km

n∗ log n
n∗
≤ 64(k+1)2

( m

log2m

) 1
k+2

.

Again, the last inequality follows from (2.6) and (2.7). This completes the proof of Claim 4.

Now, it follows from (2.3) and Claim 4 that

χ(G) ≤ χ(G`) + ` ≤
(
32k3 + 64(k + 1)2

)( m

log2m

) 1
k+2

+ 1

≤ 32(k + 1)3
( m

log2m

) 1
k+2

.

Thus, we get the desired result and complete the proof of Theorem 2.9.

We are now in a position to establish Theorem 1.2.

Proof of Theorem 1.2. Let r > 4 be a fixed integer and let G be a Cr−1-free graph with
m edges. The desired result follows immediately for m = 1. Suppose that m > 1. Set
r − 1 = 2k + 1 and c(r) = 1/(8r3). By Theorem 2.9, we have

2χ(G) ≤ 8r3
( m

log2m

) 2
r+2

.

This together with Lemma 2.1 yields that

f(G) ≥ m

2
+ c(r)

(
mr log4m

) 1
r+2 .

Thus, we complete the proof of Theorem 1.2.



Q. Zeng and J. Hou: Maximum cuts of graphs with forbidden cycles 155

3 Maximum cuts of H-free graphs
In this section, we obtain lower bounds on the size of the maximum cuts ofH-free graphs.
Let G = (V,E) be a graph. For a subset U ⊂ V , denote E(U) the set of edges of G
spanned by U . We need the following simple lemma from [1, 4, 8].

Lemma 3.1. Let G = (V,E) be a graph with m edges. Suppose that U ⊂ V and let G′ be
the induced subgraph of G on U . If G′ has m′ edges, then

f(G) ≥ f(G′) +
m−m′

2
.

Next, we need another result from [4], which provides a very useful lower bound on the
size of a maximum cut in an H-free graph for a certain class of graphs H .

Lemma 3.2 (Alon et al. [4]). There exists an absolute positive constant ε such that for
every positive constant C there is a δ = δ(C) > 0 with the following property. Let G be a
graph with n vertices (with positive degrees),m edges, and degree sequence d1, d2, . . . , dn.
Suppose, further, that the induced subgraph on any set of d ≥ C vertices, all of which have
a common neighbour, contains at most εd3/2 edges. Then

f(G) ≥ m

2
+ δ

n∑
i=1

√
di.

A graph is r-degenerate if every one of its subgraphs contains a vertex of degree at
most r. We need the following easy and well-known fact. See, e.g., [1, 2, 4] for a proof.

Lemma 3.3. Let H be an r-degenerate graph on h vertices. Then there is an ordering
v1, . . . , vh of the vertices of H such that for every 1 ≤ i ≤ h the vertex vi has at most r
neighbours vj with j < i.

Finally, we shall also use the following lower bound in extremal set theory, proved by
Corrádi [9], on the size of a setQ from which we can drawN subsets of size at least q such
that any two of them share at most λ elements.

Lemma 3.4 (Corrádi [9]). LetQ1, . . . , QN beN sets with |Qi| ≥ q for each i = 1, . . . , N ,
and let Q be their union. If |Qi ∩Qj | ≤ λ for all i 6= j, then

|Q| ≥ q2N

q + (N − 1)λ
.

Having finished all the necessary preparations, we are ready to give proofs of Theo-
rems 1.3 and 1.4. Our proofs combine combinatorial and probabilistic techniques, includ-
ing extensions of ideas that appear in [1, 2, 4].

Proof of Theorem 1.3. For each s ≥ 2, let G = (V,E) be a {K2,s, C5}-free graph on n
vertices with m edges. Define ` = b4sm2/7c. The proof proceeds by considering two
possible cases depending on the existence of dense subgraphs in G.

Case 1. G is (` − 1)-degenerate, that is, it contains no subgraph with minimum degree
at least `. In this case, we use Lemma 3.2 to bound f(G). By Lemma 3.3, we can get a
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labelling v1, v2, . . . , vn of the vertices of G such that d+i < ` for every i, where d+i denotes
the number of neighbors vj of vi with j < i. Note that

∑n
i=1 d

+
i = m. Let di be the degree

of vi for each 1 ≤ i ≤ n. Then

n∑
i=1

√
di ≥

n∑
i=1

√
d+i >

∑n
i=1 d

+
i√

`
≥ 1

2
√
s
m6/7.

Now, we check the condition of Lemma 3.2. For each v ∈ V , letN(v) be the neighbor-
hood of v in G and Nd(v) be any subset of cardinality d of N(v). Denote Gvd the subgraph
induced by Nd(v). Since G is C5-free, we know that Gvd contains no path of length 3. It
follows from Lemma 2.6 that Gvd contains at most d edges, which is smaller than εd3/2 for
all d > ε−2. Thus, by Lemma 3.2, we have

f(G) ≥ m

2
+ δ

n∑
i=1

√
di ≥

m

2
+

δ

2
√
s
m6/7,

where δ = δ(ε) is a constant, as required.

Case 2. There exists a subset Q of q vertices of G such that the induced subgraph G[Q]
has minimum degree at least `. Now, we prove that Q contains a subset Q′ such that the
induced subgraph G[Q′] spans at least q`/4 edges and is 3t-colorable for t = d4sq/`2e.

For fixed x ∈ Q, denote by S(x) the set of vertices in Q which are at distance exactly
2 from x and denote by sx the size of S(x). We bound sx by Lemma 3.4.

Claim 5. sx ≥ `2/(2s) for each x ∈ Q.

For each x ∈ Q, letNQ(x) be the neighborhood of x inG[Q]. For each v ∈ NQ(x), let
Qv = NQ(v)∩ S(x) . Since G is K2,s-free, we conclude that |Qu ∩Qv| ≤ s− 1 for each
pair of vertices u, v ∈ NQ(x) and that v is adjacent to at most s− 1 vertices in NQ(x). It
follows that |Qv| ≥ `− (s− 1)− 1 = `− s. Note that

S(x) =
⋃

v∈NQ(x)

Qv and |NQ(x)| ≥ ` ≥ 4s.

By Lemma 3.4, we obtain

sx =
∣∣∣ ⋃
v∈NQ(x)

Qv

∣∣∣ ≥ (`− s)2|NQ(x)|
(`− s) + (|NQ(x)| − 1)(s− 1)

≥ `2

2s
.

This completes the proof of Claim 5.

Let T be a random subset of Q obtained by picking uniformly at random, with repeti-
tions, t vertices of Q. Let Q′ be the set of all vertices x in Q such that S(x) ∩ T 6= ∅ and
let G[Q′] be the induced subgraph of G on Q′.

Claim 6. There exists a set T such that G[Q′] spans at least q`/4 edges.

By the definition of Q′, for each x ∈ Q, we have

P(x /∈ Q′) =
(

1− sx
q

)t
≤
(

1− `2

2sq

)t
≤ exp

{
− `2t

2sq

}
<

1

4
,
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where the second inequality follows from Claim 5, and the last inequality holds by noting
that t ≥ 4sq/`2. Thus, for each edge xy ∈ E(Q), we obtain

P(xy ∈ E(Q′)) = P(x ∈ Q′) · P(y ∈ Q′) >
(

1− 1

4

)
·
(

1− 1

4

)
>

1

2
.

By linearity of expectation, and noting that |E(Q)| ≥ q`/2, we have

E(|E(Q′)|) =
∑

xy∈E(Q)

P(xy ∈ E(Q′)) ≥ 1

2
|E(Q)| ≥ 1

4
q`.

Hence, there exists a set T of at most t vertices so that the corresponding graph G[Q′] has
at least q`/4 edges. Thus, we complete the proof of Claim 6.

Fix such sets T and Q′, let G′ = G[Q′] and T = {u1, . . . , ut′}, where 1 ≤ t′ ≤ t.
Now we show G′ is 3t-colorable. Define a coloring c of G′ in t′ colors by coloring each
vertex x ∈ Q′ with the smallest index of a vertex from T which belongs to S(x). For each
1 ≤ i ≤ t′, let Hi be the subgraph of G′ induced by the vertices of Q′ with color i.

Claim 7. For each 1 ≤ i ≤ t′, Hi is 3-colorable.

For each ui ∈ T and v ∈ N(ui), let Hv
i be the subgraph induced by the neighbors of

v with color i in G′. By the above definition and the fact that G is C5-free, we have the
following properties:

• For each v ∈ N(ui), Hv
i is P4-free;

• For each v1, v2 ∈ N(ui) and u ∈ V (Hv1
i ) ∩ V (Hv2

i ), u is an isolated vertex in both
Hv1
i and Hv2

i ;

• For each x ∈ V (Hv1
i ) and y ∈ V (Hv2

i ), x and y are nonadjacent in Hi.

Note that Hi is induced by the union of V (Hv
i ) over all v ∈ N(ui). This together with the

above three properties implies that Hi is P4-free, i.e., 3-colorable. Thus, we complete the
proof of Claim 7.

By the definition of c and Claim 7, we conclude that G′ is 3t-colorable. According to
Lemma 2.1, it follows that

f(G′) ≥ |E(Q′)|
2

+
|E(Q′)|

6t
≥ |E(Q′)|

2
+
q`

24

⌈4sq

`2

⌉−1
≥ |E(Q′)|

2
+

`3

144s
≥ |E(Q′)|

2
+

4s2

9
m6/7.

The second inequality follows from Claim 6, and the third inequality holds because q ≥
sx ≥ `2/(2s) by Claim 5. The above inequality together with Lemma 3.1 gives that

f(G) ≥ m− |E(Q′)|
2

+
|E(Q′)|

2
+

4s2

9
m6/7 =

m

2
+

4s2

9
m6/7.

Therefore, the desired result follows immediately from Cases 1 and 2 by setting c(s) =

min{ δ
2
√
s
, 4s

2

9 }, completing the proof of Theorem 1.3.
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The proof of Theorem 1.4 is similar to that of Theorem 1.3.

Proof of Theorem 1.4. Let G be an Hr-free graph on n vertices with m edges. Define
` = b2m2/(r+1)c and proceed as before, by considering two possible cases.

Case 1. G contains no subgraph with minimum degree at least 2`. In this case, we proceed
as in the previous proof. Similarly, the induced subgraph of G on any set of common
neighbors of a vertex can span only a linear number of edges, as it contains no copy of C4.
Thus, we can apply, again, Lemma 3.2 and conclude, as in the proof of Theorem 1.3, that

f(G) ≥ m

2
+ δ

m√
2`
≥ m

2
+
δ

2
m

r
r+1 ,

where δ = δ(ε) is also a constant, as needed.

Case 2. There exists a subset Q of q vertices of G such that the induced subgraph G[Q]
has minimum degree at least 2`. Here, too, we prove that there exists Q′ ⊂ Q such that the
induced subgraph G[Q′] spans at least q`/2 edges and is 2t-colorable for t = dq/`ke.

Let r = 2k + 2. Denote by Sk(x) the set of vertices in Q which are at distance exactly
k from x and denote by sx the size of Sk(x). Since the minimal degree of G[Q] is at
least 2` and G[Q] contains no cycle of length from 4 to 2k + 1, it can easily be seen that
sx ≥ 2`(2`− 2)k−1 ≥ 2`k for each x ∈ Q.

Let T be a random subset of Q obtained by picking, with repetitions, t vertices of Q,
each chosen randomly with uniform probability. This together with the fact sx ≥ 2`k

yields that the probability that Sk(x) ∩ T is empty is at most(
1− sx

q

)t
≤
(

1− 2`k

q

)t
≤ exp

{
− 2`kt

q

}
<

1

4
.

An argument similar to the one used in the proof of Claim 6, the details of which we omit,
shows that there exists a set T of at most t vertices so that the corresponding graph G[Q′]
has at least q`/2 edges.

Fix such sets T and Q′. Now, we define a coloring c of G′ and the induced subgraphs
Hi of G′ for 1 ≤ i ≤ |T | as in the proof of Theorem 1.3.

Claim 8. For each 1 ≤ i ≤ |T |, Hi is the disjoint union of edges modulo isolated vertices.

For fixed ui ∈ T and for each v ∈ Sk−1(ui), let Hv
i be the subgraph induced by

the neighbors of v with color i in G′. By the above definition, and recalling that G con-
tains no cycle of length from 4 to 2k + 1, we have the following properties: (i) for each
v ∈ Sk−1(ui), Hv

i is P3-free; (ii) for each v1, v2 ∈ Sk−1(ui), V (Hv1
i ) ∩ V (Hv2

i ) = ∅;
(iii) for each x ∈ V (Hv1

i ) and y ∈ V (Hv2
i ), x and y are nonadjacent inHi. It follows from

(ii) and (iii) that Hi is the disjoint union of Hv
i over all v ∈ Sk−1(ui). Thus, by (i), Hi

is the disjoint union of edges modulo isolated vertices. This completes the proof of Claim 8.

By the definition of c and Claim 8, we know that G′ is 2t-colorable. Using Lemma 2.1,
we conclude that

f(G′) ≥ |E(Q′)|
2

+
|E(Q′)|

4t
≥ |E(Q′)|

2
+
q`

8

⌈ q
`k

⌉−1
≥ |E(Q′)|

2
+
`k+1

12
=
|E(Q′)|

2
+

(
√

2)r

12
m

r
r+1 .



Q. Zeng and J. Hou: Maximum cuts of graphs with forbidden cycles 159

The second inequality follows from the fact |E(Q′)| ≥ q`/2, and the third inequality holds
because q ≥ sx ≥ 2`k. Taking Lemma 3.1 into consideration, we obtain

f(G) ≥ m− |E(Q′)|
2

+
|E(Q′)|

2
+

(
√

2)r

12
m

r
r+1 =

m

2
+

(
√

2)r

12
m

r
r+1 .

Again, we get the required result from Cases 1 and 2 by choosing c(s) = min{ δ2 ,
(
√
2)r

12 },
which completes the proof of Theorem 1.4.

References
[1] N. Alon, Bipartite subgraphs, Combinatorica 16 (1996), 301–311, doi:10.1007/bf01261315.

[2] N. Alon, B. Bollobás, M. Krivelevich and B. Sudakov, Maximum cuts and judicious par-
titions in graphs without short cycles, J. Comb. Theory Ser. B 88 (2003), 329–346, doi:
10.1016/s0095-8956(03)00036-4.

[3] N. Alon and E. Halperin, Bipartite subgraphs of integer weighted graphs, Discrete Math. 181
(1998), 19–29, doi:10.1016/s0012-365x(97)00041-1.

[4] N. Alon, M. Krivelevich and B. Sudakov, MaxCut in H-free graphs, Combin. Probab. Comput.
14 (2005), 629–647, doi:10.1017/s0963548305007017.

[5] B. Bollobás and A. D. Scott, Exact bounds for judicious partitions of graphs, Combinatorica
19 (1999), 473–486, doi:10.1007/s004939970002.

[6] B. Bollobás and A. D. Scott, Better bounds for Max Cut, in: B. Bollobás (ed.), Contemporary
Combinatorics, János Bolyai Mathematical Society, Budapest, volume 10 of Bolyai Society
Mathematical Studies, pp. 185–246, 2002.

[7] B. Bollobás and A. D. Scott, Problems and results on judicious partitions, Random Struct.
Algor. 21 (2002), 414–430, doi:10.1002/rsa.10062.

[8] B. Bollobás and A. D. Scott, Max k-cut and judicious k-partitions, Discrete Math. 310 (2010),
2126–2139, doi:10.1016/j.disc.2010.04.004.
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[12] P. Erdős, Problems and results in graph theory and combinatorial analysis, in: J. A. Bondy and
U. S. R. Murty (eds.), Graph Theory and Related Topics, Academic Press, New York, pp. 153–
163, 1979, proceedings of the Conference in honour of Professor W. T. Tutte on the occasion
of his sixtieth birthday, held at the University of Waterloo, Waterloo, Ontario, July 5 – 9, 1977.
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