2018 letnik volume 39 39 številka number 178/179 178/179 strani pages 63–202 63–202 Oblikovanje / Design: Jasna Andrič Prelom / Typesetting: NEBIA d. o. o. Tisk / Print: Schwarz print d. o. o. Naklada / Circulation: 1500 izvodov / copies Ilustracija na naslovnici / Front page: črni škarnik / Black Kite Milvus migrans risba / drawing: Janez Plestenjak Ilustracija v uvodniku / Editorial page: repaljščica / Whinchat Saxicola rubetra risba / drawing: Jan Hošek RAPTOR INFORMATION SYSTEM, SCOPUS, ZOOLOGICAL RECORD 63 Acrocephalus 39 (178/179): 63–70, 2018 Sobivanje ptic in kmetijstva? Cohabitation between birds and agriculture? Intenzifikacija kmetijstva se je v Evropi pričela med drugo svetovno vojno iz potrebe po samooskrbi s pridelki. Kmetje so z uporabo različnih tehnologij želeli povečati učinkovitost obdelovanja zemlje in njeno produktivnost. Intenzifikacija je temeljila predvsem na uvedbi nove mehanizacije, gnojilih in pesticidih, nekoliko manj pa na izsuševanju površin ter žlahtnjenju rastlin. Spremembe v kmetijstvu so na ptice vplivale in še vedno vplivajo neposredno (izguba habitata, negativni vpliv mehanizacije, motenj in pesticidov na smrtnost ali gnezditveni uspeh) in posredno (spremembe v količini hrane, kvaliteti gnezdišč in prehranjevališč) (Fuller 2000, Newton 2004). Če so nekdaj ptice kmetijske krajine uspevale zaradi kmetovalnih praks, pa sedaj životarijo prav zaradi njih. Dokazov o negativnem vplivu intenzifikacije kmetijstva na ptice je ogromno, članki na to temo so skoraj nepreštevni. Naravovarstvena stroka se strinja o obstoju tega perečega problema, v zadnjem desetletju ali dveh pa je pričela že tudi ponujati rešitve. Te zahtevajo sodelovanje z obdelovalci in lastniki zemljišč, predvsem pa angažiranje stroke pri oblikovanju pravil skupne kmetijske politike, konkretno na primer kmetijsko-okoljsko-podnebnih ukrepov (KOPOP). Sobivanje modernega kmetijstva in ptic v primerih nekaterih vrst zahteva zgolj manjše prilagoditve kmetovanja, v drugih primerih pa so sodobne kmetijske prakse nezdružljive z dolgoročnim preživetjem vrst (npr. pri koscu Crex crex, repaljščici Saxicola rubetra) in bi za njihovo varstvo potrebovali večja sklenjena območja, kjer bi kmetijstvo narekovali varstveni režimi. Ker je nerealno pričakovati, da se bo proces intenzifikacije kmetijstva v Evropi kmalu zaustavil ali celo obrnil, ptice pa gnezdijo tudi na najbolj enoličnih in intenzivnih njivah, si pred problemom ne moremo zatiskati oči. V nadaljevanju so predstavljene nekatere možnosti varovanja gnezdilk na njivah. Poljski škrjanec Alauda arvensis, katerega evropska populacija je v obdobju 1980–2016 upadla za 53 % (EBCC 2019), slovenska pa v pičlem desetletju (2008–2018) za 59,7 % (Kmecl & Šumrada 2018), je izvorno sicer gnezdilec step, vendar je dandanes v Evropi najpogostejši na velikih njivah. V  Veliki Britaniji, Nemčiji, Švici in na Danskem so znanstveniki ugotovili, da so gnezditvena gostota, gnezditveni uspeh, telesna kondicija speljanih mladičev in/ali število poskusov gnezdenja poljskega škrjanca v sezoni večji na njivah s ploskvami golih tal kot na konvencionalno zasejanih njivah. Zaplate golih tal so ustvarili tako, da so med setvijo ugasnili sejalnico; skupna površina golih tal na hektar površine je znašala 32–144 m2, razdeljena je bila na dve do štiri ploskve (Odderskær et al. 1997, Morris et al. 2004, Fischer et al. 2009, Schmidt et al. 2017). Zgolj ohranjanje omejkov, torej travnatih robov med njivami, na primer na Nizozemskem za poljskega škrjanca ni dalo želenih rezultatov, saj je za robne habitate značilna velika stopnja plenjenja (Kuiper et al. 2015). Hribski škrjanec Lullula arborea pri nas gnezdi v dveh povsem različnih 64 Uvodnik / Editorial habitatih  – na zahodu Slovenije na suhih travnikih in pašnikih z redko lesno vegetacijo, na Goričkem pa predvsem na njivah s praho ali žitom. Te so zaradi časovnega ujemanja s kmetijskimi opravili (oranje, brananje, setev, nanos fitofarmacevtskih sredstev in umetnih gnojil) zanj lahko ekološka past (Denac 2018a). V  letošnjem letu bomo skupaj s kolegi iz Javnega zavoda Krajinski park Goričko obiskali avstrijske ornitologe, ki so razvili različne kmetijsko-okoljske ukrepe za njive, s katerimi želijo izboljšati njegov gnezditveni uspeh na Zgornjem Štajerskem. Med ukrepi so prepoved opravljanja kmetijskih del na njivah med 15. 4. in 31. 5., spodbujanje malopovršinskega (0,5–1,5 ha) ekstenzivnega kmetovanja na ovršnih delih gričev, gojenja okopavin in spomladanskih žit, ohranjanje strnišč do 15. 2., izogibanje uporabi gnojil in pesticidov pri gojenju zimskih žit, zasaditev in vzdrževanje mejic ter posameznih dreves, vzpostavljanje večletnih cvetnih pasov, zasejanih z avtohtono plevelno vegetacijo (Uhl et al. 2008, Uhl & Rubenser 2012). Poleg varstva ekstenzivnih suhih travnikov, ki smo se ga lotili v okviru projekta Gorička krajina, bo na Goričkem namreč treba najti učinkovite in dolgoročne načine varovanja na njivah gnezdečih hribskih škrjancev. V Angliji so populacijo plotnega strnada Emberiza cirlus povečali za skoraj štirikrat s finančnim spodbujanjem gojenja jarega žita, sejanega na površinah, kjer so čez zimo pustili strnišče in mu s tem zagotovili zimska prehranjevališča. Vrsti je koristila tudi uvedba obveznega puščanja prahe leta 1992 ter zasaditev mejic (Aebischer et al. 2000). Zasaditev lesne vegetacije zelo koristi tudi rjavemu srakoperju Lanius collurio, ki za gnezdenje ne potrebuje velikih in gostih sestojev grmovja, pač pa mu zadoščajo že posamezni trnasti grmi (Kuźniak 1991, Casale et al. 2013), zasajeni ob rob travnika, pašnika, kolovoza ali njive. Druga možnost je, da ob robovih obdelovalnih površin postavimo t.i. Benjeseve mejice, to so v 1 – 2 m visok kup zložene odrezane veje (trnastega) grmovja. Dostopnost plena mu lahko izboljšamo s postavitvijo lovnih prež, 1–5 m visokih lesenih kolov, s katerih poletava na tla (van Nieuwenhuyse et al. 1999). Postavitev kolov je smiselna na meji med habitati z različno visoko in strukturirano vegetacijo, npr. med travnikom in njivo ali med travnikom in kolovozom. Enak ukrep se je kot zelo uspešen izkazal tudi na Ajdovskem polju za črnočelega srakoperja Lanius minor (Denac 2015) ter na Goričkem za zlatovranko Coracias garrulus (Domanjko & Gjergjek 2014, Denac et al. 2014, 2017) in velikega skovika Otus scops (Denac 2018b). Slednja vzporedno z izboljševanjem prehranjevalnih razmer potrebujeta tudi gnezdišča, ki jih najhitreje zagotovimo s postavitvijo gnezdilnic, dolgoročno pa z zasaditvijo visokodebelnega sadovnjaka ali drevesne mejice. Prosnik Saxicola torquata je poleg poljskega škrjanca tipična gnezdilka intenzivne kmetijske krajine v Sloveniji, kar je bilo ugotovljeno na Dravskem polju (Vogrin & Vogrin 1998) in na Goričkem (DOPPS lastni podatki). Njegova populacija v slovenski kmetijski krajini je v obdobju 2008–2018 strmo upadla (Kmecl & Šumrada 2018), najverjetneje zaradi izginjanja drobnih elementov, ki mu v intenzivni krajini omogočajo preživetje. Tako je z nekaterih delov Goričkega izginil po opravljenih komasacijah, ki jim je sledila odstranitev že tako pičle lesne vegetacije in omejkov (K. Malačič osebno). Na Dravskem polju se pojavlja le na njivah, ki imajo na robu kakšen grm oz. na katerih 65 Acrocephalus 39 (178/179): 63–70, 2018 rastejo visoke steblike, npr. osati Cirsium spp. (Vogrin & Vogrin 1998). Prosniku bi torej lahko pomagali z ohranjanjem omejkov (po komasaciji bi morali ohraniti drobno strukturiranost parcel), posameznih grmov ali manjših otokov lesne vegetacije na robu njiv in s postavitvijo nizkih lovnih prež (1–2 m) v robne habitate. Tudi za pribo Vanellus vanellus so tuji strokovnjaki razvili vrsto ukrepov, ki pa za zdaj – z redkimi izjemami – še ne dajejo želenih rezultatov, saj na gnezdeče pribe poleg kmetijskih opravil na njivah vpliva tudi visoka stopnja plenjenja. Večanje deleža površin s praho in spomladi sejanimi poljščinami (jaro žito, okopavine) (Sheldon et al. 2004), ustvarjanje cvetnih pasov, kamor se lahko zatečejo mladiči po izvalitvi in zakasnitev kmetijskih del vsaj do izvalitve mladičev (Müller et al. 2009) so finančno razmeroma nepotratni ukrepi, ki jih lahko kmet uresniči sam. Pri bolj vsebinsko in časovno zahtevnih ukrepih je nujna pomoč strokovnjaka, na primer pri iskanju in diskretnem označevanju gnezd, ki se jim nato kmet ob obdelavi tal izogne ali pa se gnezdo začasno odstrani in se ga po opravljenih delih namesti nazaj (Müller et al. 2009, Beyer et al. 2015, Bergmann 2016, Skibbe 2016, Eikhorst & Eikhorst 2017), pri prekrivanju gnezd z vedri med nanašanjem pesticidov in gnojil (Müller et al. 2009), fizičnem varovanju gnezd z železno kletko, nameščeno čeznje (Beyer et al. 2015, Skibbe 2016), ki lahko zaradi svoje očitnosti povečajo stopnjo plenjenja (Beyer et al. 2015, Eikhorst & Eikhorst 2017), ali pa pri ograditvi njiv z gnezdi z 90 cm visoko električno ograjo, ki zmanjša stopnjo plenjenja (Müller et al. 2009, Rickenbach et al. 2011). V prihodnjih nekaj letih bomo tudi v Sloveniji preskusili nekatere varstvene ukrepe za ptice kmetijske krajine, predvsem v okviru različnih projektov, financiranih iz shem kohezijskega sklada in LIFE. Če bodo imeli pozitiven učinek na ciljne in druge vrste, se bomo trudili za njihovo vključitev med KOPOP za naslednje finančno obdobje (2021–2027). V veljavnih KOPOP za obdobje 2015–2020 namreč obstaja le en pticam namenjen ukrep, in sicer “Habitati ptic vlažnih ekstenzivnih travnikov” (VTR), ki je osredotočen na kosca Crex crex. Umestitev med KOPOP omogoča  – seveda ob ustrezno visoki subvenciji za kmeta in terenski podpori kmetijskih svetovalcev  – da ukrep doseže večjo površino (in s tem svoj namen) in trajnost. Zadnje, kar si namreč želimo, je, da ukrepi po izteku projekta ostanejo mrtva črka na papirju. Naša naloga je, da pri iskanju učinkovitih ukrepov sodelujemo z izkušenimi tujimi strokovnjaki, da ukrepe preskusimo v naših razmerah in da jim izbojujemo mesto v državni kmetijski politiki. Kajti slabo stanje “nekih metuljčkov in ptičkov” je tesno povezano s kvaliteto našega, človeškega bivalnega okolja in bi moralo pri ljudeh že davno prižgati vse alarme. *** In Europe, agricultural intensification began to be practised during World War II in need of food self-sufficiency. With utilization of various technologies, farmers strove to increase the efficiency of soil cultivation and its productivity. The intensification was based primarily on the introduction of new mechanization, fertilizers and pesticides and, to a 66 Uvodnik / Editorial lesser extent, on land claiming and “ennobling” of plants. The changes in agricultural practice affected (and still affect) birds directly (habitat loss, negative impacts of mechanization, disturbances and pesticides on mortality or breeding success) and indirectly (changes in food quantity and quality of breeding and feeding sites) (Fuller 2000, Newton 2004). If birds in agricultural landscape once proliferated owing to agricultural practices, they now live a miserable existence on the very account of them. There is enormous evidence of the agricultural intensification's negative impacts on birds as well as countless articles on this particular subject. Nature conservationists agree on the existence of this urgent problem, and in the last decade or two they indeed began to offer certain solutions. These demand cooperation with land tillers and owners and, above all, the experts' engagement in the making of common agricultural policy rules, concretely the agri-environment-climate measures (AECM). In cases of certain species, coexistence of modern agriculture and birds demands just some minor farming adaptions, while in other cases the modern agricultural practices are incompatible with long term survival of species (e.g. Corn Crake Crex crex, Whinchat Saxicola rubetra), which means that larger unfragmented areas would be needed for their conservation, where agriculture would be dictated by conservation regimes. But as it is totally unrealistic to expect that the process of agricultural intensification in Europe will soon stop or even reverse, we cannot turn a blind eye to the problem, given that birds breed in most monotonous and intensely farmed fields as well. Some possibilities of how to conserve field-breeders are presented in the ensuing text. The Skylark Alauda arvensis, the European population of which decreased in the 1980–2016 period by 53% (EBCC 2019), whereas its Slovenian population fell in a mere decade (2008–2018) by 59.7% (Kmecl & Šumrada 2018), is originally a steppe-breeder, but is in Europe nowadays most abundant in large fields. In Great Britain, Germany, Switzerland and Denmark, scientists assessed that the breeding density, breeding success, body condition of fledged young and/or number of attempts by Skylark to breed in the season are greater in fields with bare soil surfaces than in conventionally sawn fields. Patches of bare soil were created by simply turning off the seeder during sowing; the total area of bare soil amounted to 32–144  m2, divided in two to four planes (Odderskær et al. 1997, Morris et al. 2004, Fischer et al. 2009, Schmidt et al. 2017). In the Netherlands, for example, the pure retainment of hedgerows, i.e. grassy edges between fields, gave no desired results for the Skylark, as boundary habitats are characterized by high predation level (Kuiper et al. 2015). In our country, the Woodlark Lullula arborea breeds in two totally different habitats – in western Slovenia in dry grasslands and pastures with sparse woody vegetation, while in the Goričko region (NE Slovenia) it breeds primarily in fields with set-aside land (fallow ground) or cereals. Owing to the time coincidence with agricultural activities (ploughing, harrowing, sowing, utilization of phytopharmaceutical agents and artificial fertilizers), these can turn out to be an ecological trap for this species (Denac 2018a). This year we are planning to visit, together with our colleagues from the Public Institute of Goričko Landscape Park, our Austrian colleagues, who 67 Acrocephalus 39 (178/179): 63–70, 2018 have developed various agricultural-environmental measures for fields, with the aid of which they wish to improve the Woodlark's breeding success in the Upper Styria. Among these measures are prohibition of agricultural activities in fields between 15 April and 31 May, promotion of small-scale (0.5–1.5  ha) extensive farming on the upper parts of hillocks, growing of root crops and spring cereals, retainment of stubbles till 15 February, avoiding application of fertilizers and pesticides for winter cereals, planting and maintenance of hedgerows and individual trees, and creation of multiyear flower strips planted with indigenous weed vegetation (Uhl et al. 2008, Uhl & Rubenser 2012). Apart from conserving extensively farmed dry grasslands, which we embarked upon within the framework of the “Gorička krajina project” , some effective and long-term conservation methods will have to be found for Woodlarks breeding in the fields. In England, the population of Cirl Bunting Emberiza cirlus has been increased almost four – fold thanks to the financial stimulation for growing spring cereals, sown in places where stubbles were left over the winter to provide winter feeding sites for the species. Cirl Buntings also benefited from the introduction (1992) of compulsory letting the land lie fallow and planting of hedgerows (Aebischer et al. 2000). Planting of woody vegetation is highly beneficial also for the Red-backed Shrike Lanius collurio, which requires no large and thick shrub stands for breeding, but is satisfied merely by individual thorn bushes (Kuźniak 1991, Casale et al. 2013), planted on the edge of a meadow, pasture, cart track or field. Another possibility is to plant the Benjes (deadwood) hedges, 1–2 m high piles of stacked cut branches of (thorny) shrubs along the edges of tilled land. Prey access can be improved for the Red-backed Shrike by erecting perches, 1–5 m high wood poles from which it descends to the ground (van Nieuwenhuyse et al. 1999). The poles should be erected on the boundary between habitats with diversely structured vegetation of various heights, e.g. between grassland and field or between grassland and cart track. The same measure turned out to be very effective also at the Ajdovsko polje for the Lesser Grey Shark Lanius minor (Denac 2015), and at Goričko for the Roller Coracias garrulus (Domanjko & Gjergjek 2014, Denac et al. 2014, 2017) and the Scops Owl Otus scops (Denac 2018b). Parallel to the enhancement of feeding conditions, the last two species require breeding sites as well, which can quickly be established with nest boxes and, in the long run, with planting of either traditional orchard (with high-stemmed trees) or hedgerow trees. Stonechat Saxicola torquata is, apart from Skylark, a typical intensive agricultural landscape breeder in Slovenia, which was corroborated at Dravsko polje (Vogrin & Vogrin 1998) and Goričko (Bird Watching and Bird Study Association of Slovenia's own data). In Slovenian agricultural landscape, its population sharply declined in the 2008–2018 period (Kmecl & Šumrada 2018), most probably due to disappearance of tiny elements that enable its survival in intensive landscape. From some parts of Goričko, the species consequently disappeared after the carried out commassations, which were followed by removal of the already scanty wood vegetation and hedgerows (K. Malačič personal communication). At Dravsko polje it occurs only in fields bordered by a couple of bushes, or in which high-stemmed plants are striving, such as thistle Cirsium spp. 68 Uvodnik / Editorial (Vogrin & Vogrin 1998). Consequently, the species could be helped by preserving hedgerows (after commassation, minute structuralization of plots should be retained), individual bushes or small islands of wood vegetation on the edges of fields and by erecting low perches (1 – 2 m) in boundary habitats. For the Lapwing Vanellus vanellus, too, foreign experts developed a series of measures which have not produced, with a very few exceptions, desired results as yet, given that breeding Lapwings are affected not only by agricultural activities in the fields, but by high predation level as well. The increased share of set-aside land and cereals (spring cereals and root crops) (Sheldon et al. 2004), creation of flower strips where young can seek shelter soon after hatching, as well as postponed agricultural activities until the young are hatched (Müller et al. 2009) are, in financial terms, relatively frugal measures that can be implemented by farmers themselves. In more demanding measures with respect to contents and time, an expert's help is implicit, e.g. in the search and discrete marking of nests that can be avoided by farmers during tillage, or a nest is temporarily removed and then returned after the carried out jobs (Müller et al. 2009, Beyer et al. 2015, Bergmann 2016, Skibbe 2016, Eikhorst & Eikhorst 2017), in covering of nests with buckets during the application of pesticides and fertilizers (Müller et al. 2009), physical protection of nests with iron cages placed over them (Beyer et al. 2015, Skibbe 2016), which can due to their obviousness increase the predation level (Beyer et al. 2015, Eikhorst & Eikhorst 2017), or in fencing of fields with nests with app. 90 cm electric fences that decrease the predation level (Müller et al. 2009, Rickenbach et al. 2011). In the ensuing few years, some protection measures for the birds of agricultural landscape will be tested in Slovenia as well, particularly within the framework of various projects financed from the Cohesion Fund schemes and LIFE. If they turn out to have a positive effect on target and other species, we shall do our best to include them among AECM for the ensuing financial period (2021–2027). Specifically, only one measure intended for birds subsists for the 2015–2020 period, i.e. the “wet extensive meadow bird habitats” , which is focused on the Corn Crake Crex crex. Its placing among AECM enables – with adequately high subsidy for farmers and field support of agricultural consultants, of course – a measure to reach a larger surface area (and its purpose with it) as well as sustainability. The very last thing we would wish for is that after the project termination the measures remain a dead letter. Our task is to participate with experienced foreign experts in the search for effective measures, to test the measures in our own conditions and to win a place for them in the national agricultural policy. For the fact is that a bad condition of some “little butterflies and birds” is closely associated with the quality of our human living environment and should have turned all alarms on in people ages ago. 69 Acrocephalus 39 (178/179): 63–70, 2018 Literatura / References: Aebischer N. J., Green R. E., Evans A.D. (2000): From science to recovery: four case studies of how research has been translated into conservation action in the UK. pp. 43-54. In: Aebischer N. J., Evans A. D., Grice P. V., Vickery J. A. (eds.): Ecology and Conservation of Lowland Farmland Birds. Proceedings of the 1999 British Ornithologists' Union Spring Conference, University of Southampton, UK, 27–28 March 1999. Bergmann M. (2016): Gelege  – und Kükenschutz in der Wesermarsch. Ergebnisbericht 2016. –Büro für Ökologie und Landschaftsplanung. Beyer M., Brockmann O., Dresing N., Kempf G., Menke K., Pfützke S., Schoppenhorst A. (2015): Gelege  – und Kükenschutzprogramm Bremen. Bericht der Brutperioden 2014/2015. – Bund Friends of the Earth Germany & Landesverband Bremen e. V. Casale F., Bionda R., Falco R., Siccardi P., Toninelli V., Rubolini D., Brambilla M. (2013): Misure gestionali in campo agro-pastorale per la conservazione dell’averla piccola, Lanius collurio.  – Rivista Italana di Ornitologia 82 (1– 2): 20– 24. EBCC (2019): Trends of common birds in Europe, 2018 update.  – [https:// pecbms.info/trends-and-indicators/species-trends/species/alauda-arvensis/], 05/02/2019. Eikhorst W., Eikhorst I. (2017): Gelegeschutzmaßnahmen in der Hunteniederung und im Moorriemer Moorland im Sommer 2017. – Limosa, Bremen. Fuller R. J. (2000): Relationships between recent changes in lowland British agriculture and farmland bird populations: an overview. pp. 5-16. In: Aebischer N. J., Evans A. D., Grice P. V., Vickery J. A. (eds.): Ecology and Conservation of Lowland Farmland Birds. Proceedings of the 1999 British Ornithologists' Union Spring Conference, University of Southampton, UK, 27-28 March 1999. Denac K. (2015): Črnočeli srakoper Lanius minor. pp. 106–124. In: Denac K., Mihelič T., Kmecl P., Denac D., Bordjan D., Figelj J., Božič L., Jančar T.: Monitoring populacij izbranih vrst ptic – popisi gnezdilk 2015. Poročilo. Naročnik: Ministrstvo za kmetijstvo, gozdarstvo in prehrano.  –DOPPS, Ljubljana. Denac K. (2018a): Ugotavljanje rabe habitata hribskega škrjanca Lullula arborea za določitev varstveno prioritetnih površin na območju Natura 2000 Goričko. Poročilo. Projekt Gorička krajina (OP20.06.02.006/1). Naložbo sofinancirata Republika Slovenija in Evropska unija iz Evropskega sklada za regionalni razvoj. – DOPPS, Ljubljana. Denac K. (2018b): V  jedilnici velikega skovika.  – [http://www.park-goricko. org/sl/informacija.asp?id_meta_type=52&id_jezik=0&id_language=0&id_ informacija=897], 04/02/2019. Denac K., Basle T., Bordjan D., Mihelič T., Šalamun Ž., Remžgar T. (2014): Mladinski ornitološki raziskovalni tabor Goričko 2014. Poročilo o delu raziskovalnih skupin. – DOPPS, Ljubljana. Denac K., Kmecl P., Domanjko G., Denac D. (2017): Trendi ptic kmetijske krajine na Goričkem. – Acrocephalus 38 (174/175): 127–159. Domanjko G., Gjergjek R. (2014): Vrnitev “plavih vran” na Goričko. – Svet ptic 20 (3): 39–40. Fischer J., Jenny M., Jenni L. (2009): Suitability of patches and in-field strips for Sky Larks Alauda arvensis in a small-parcelled mixed farming area. – Bird Study 56 (1): 34–42. Kmecl P., Šumrada T. (2018): Monitoring splošno razširjenih vrst ptic za določitev slovenskega indeksa ptic kmetijske krajine – končno poročilo za leto 2018. – DOPPS, Ljubljana. 70 Uvodnik / Editorial Kuiper M. W., Ottens H. J., van Ruijven J., Koks B. J., de Snoo G. R., Berendse F. (2015): Effects of breeding habitat and field margins on the reproductive performance of Skylarks (Alauda arvensis) on intensive farmland. – Journal of Ornithology 156: 557–568. Kuźniak S. (1991): Breeding ecology of the Red-Backed Shrike Lanius collurio in the Wielkopolska region (Western Poland). – Acta Ornithologica 26: 67–84. Morris A. J., Holland J. M., Smith B., Jones N. E. (2004): Sustainable Arable Farming For an Improved Environment (SAFFIE): managing winter wheat sward structure for Skylarks Alauda arvensis. – Ibis 146 (Suppl. 2): 155–162. Müller W., Glauser C., Sattler T., Schifferli L. (2009): The effect of measures for the Northern Lapwing Vanellus vanellus in Switzerland and recommendations for its conservation. – Der Ornithologische Beobachter 106 (3): 327–350. Newton I. (2004): The recent declines of farmland bird populations in Britain: an appraisal of causal factors and conservation actions. – Ibis 146: 579–600. van Nieuwenhuyse D., Nollet F., Evans A. (1999): The ecology and conservation of Red-backed Shrike Lanius collurio breeding in Europe.  – Aves 36 (1–3): 179–192. Odderskær P., Prang A., Poulsen J. G., Andersen P. N., Elmegaard N. (1997): Skylark (Alauda arvensis) utilisation of micro-habitats in spring barley fields. – Agriculture, Ecosystems and Environment 62: 21–29. Rickenbach O., Grübler M. U., Schaub M., Koller A., Naef-Daenzer B., Schifferli L. (2011): Exclusion of ground predators improves Northern Lapwing Vanellus vanellus chick survival. –Ibis 153: 531–542. Sheldon R., Bolton M., Gillings S., Wilson A. (2004): Conservation management of Lapwing Vanellus vanellus on lowland arable farmland in the UK. – Ibis 146 (Suppl. 2): 41–49. Schmidt J.-U., Eilers A., Schimkat M., Krause-Heiber J. Timm A., Nachtigall W., Kleber A. (2017): Effect of Sky Lark plots and additional tramlines on territory densities of the Sky Lark Alauda arvensis in an intensively managed agricultural landscape. – Bird Study 64 (1): 1–11. Skibbe H. (2016): Konzeption eines Gelege  – und Kükenschutzprogramms für Wiesenlimikolen in der Gemeinde Ganderkesee in Niedersachsen. BSc thesis. – University of Applied Sciences, Hochschule Neubrandenburg, Fachbereich Landschaftswissenschaften und Geomatik. Uhl H., Frühauf J., Krieg H., Rubenser H., Schmalz A. (2008): Heidelerche im Mühlviertel. Erhebung der Brutvorkommen und Artenschutzprojekt 2007. Projektbericht zum ÖPUL-Blauflächenprojekt des Landes Oberösterreiches für die Heidelerche. – BirdLife Österreich, Wien. Uhl H., Rubenser H. (2012): Von den Reizen, die Heidelerche im Mühlviertel zu erforschen. – ÖKO·L 34 (1): 9–17. Vogrin M., Vogrin N. (1998): Bird communities of intensively cultivated fields in North-eastern Slovenia. – Acta Ornithologica 33: 173–179. Katarina Denac 71 Acrocephalus 39 (178/179): 71–83, 2018 10.1515/acro-2018-0006 Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat Črni škarnik Milvus migrans v Sloveniji – razširjenost, fenologija, gnezditev in habitat Dejan Bordjan Oddelek za gozdarstvo in obnovljive gozdne vire, Biotehniška fakulteta, Univerza v Ljubljani, Večna pot 83, SI-1000 Ljubljana, e-mail: dejan.bordjan@gmail.com Between 1984 and 2017, 1,388 Black Kites were recorded, mostly in lowlands with 70% of observations made at Dravsko polje. They were observed from sea level to around 1,600 m a.s.l. with an average elevation of 271  m a.s.l. The species was present in Slovenia from mid-March to early December with indistinct spring and autumn migrations. The highest number of observations was recorded in May. The Black Kite was observed in 71 out of 238 10x10  km grid squares in Slovenia (29.8%), with more observations around known breeding sites and at sites with higher observer effort. Both the number of observations and the number of probable and confirmed breeding pairs increased. In 2011–2018, 10 breeding pairs were found at 7 sites (3–7 per year). Additionally, 11 probable breeding pairs at 9 sites (0–6 pairs per year) were found. The breeding population in 2011–2018 is estimated at 10–21 pairs with an average breeding density of 0.3–0.9 breeding pairs per 100  km2. The highest density was recorded at Dravsko polje with 0.6–2.2 breeding pairs per 100  km2. If possible breeding (breeding attempts) were also taken into consideration, the estimate would be up to five breeding pairs higher. The species was recorded at known breeding sites in most years after the breeding was confirmed. Black Kites were observed closer to larger water bodies and to rubbish tips than expected by chance. More Black Kites were recorded in areas with a lower percentage of forest and arable land and a higher percentage of meadows, settlements and wetlands. Key words: breeding population, breeding density Ključne besede: gnezdeča populacija, gnezditvena gostota 1. Introduction The Black Kite Milvus migrans inhabits open landscapes of Europe, Asia, Africa and Australia (Del Hoyo et al. 1994). It inhabits almost all of Europe, with the exception of northern latitudes and most Mediterranean and Atlantic islands (Cramp 1998), representing around 11% of global range (BirdLife International 2018). The European population of Black Kite is estimated at 81,200–109,000 pairs (BirdLife International 2015), representing less than 24% of the global population (Birdlife international 2004). The largest European breeding populations are in Russia (30,000–50,000), France (22,500–26,300), Spain (2,500–10,000) and Germany (2,700–4,100). 72 With the exception of Italy (700–1,200 pairs), our neighbouring countries have small breeding populations in the range of 50 to 500 pairs (Birdlife international 2004). In the 19th and early 20th century, Black Kite was present in Slovenia, but was rare and with no breeding record (Freyer 1824, Schiavuzzi 1883, Schulz 1890, Reiser 1925). It had the same status in the first half of the 20th century, when the species was a non-breeding visitor in NE Slovenia (Matvejev & Vasič 1973). Until 1990, when breeding was documented for the first time at Leško polje (Kozinc 1991), its breeding status in Slovenia was uncertain (Geister 1995). In 1999, the second breeding pair was confirmed at the confluence of the Sava and Ljubljanica Rivers (hereinafter referred to as “Confluence”), central Slovenia (Košir 1997, Kozamernik 2000), with the breeding population estimated at 1–3 breeding pairs at that time (Birdlife international 2004). Between 2000 and 2011, several breeding pairs were confirmed or considered probable. Confirmations were as follows: at Medvedce water reservoir in 2004 (hereinafter referred to as “Medvedce”; Kerček 2005, Bordjan & Božič 2009), in the Vipava valley in 2008 (Figelj 2007a), second and third pairs at Dravsko polje in 2009 and 2011. Nest building was observed near Žovnek water reservoir in 2009 (J. Novak pers. comm.). In 2011, the breeding population was estimated at 10–20 breeding pairs (Denac et al. 2011). Thereupon, breeding was confirmed in the eastern part of Ljubljansko barje (Denac 2016). In Slovenia, Birds of Prey (Accipitriformes and Falconiformes) were mostly included in multiple species studies (e.g. Kmecl & Rižner 1993, Gregori & Šere 2005, Bordjan & Božič 2009, Škornik 2012, Bordjan 2012, 2015) and only rarely did they constitute a central part of study. Thus in more than 30 years of Acrocephalus magazine, there are only 19 articles with Birds of Prey as a central part of study, with most of them covering local problems of distribution (Bračko 1990, 1998, Božič 1992, Gjerkeš & Lipej 1992, Trebušak et al. 1999, Mihelič & Brajnik 2006, Figelj 2007b, Denac 2010) or nesting (Smerdu 1981, Škornik 1985, Kozinc 1991, Marenče 1998). One deals with the bird’s diet (Kozinc 1999), one with conservation (Luskovec 1990) and one with unusual influx (Hanžel 2015). Considering all our journals, papers on Griffon Vulture Gyps fulvus (Mihelič & Genero 2005), White-tailed Eagle Haliaeetus albicilla (Vrezec et al. 2009), Common Kestrel Falco tinnunculus (Šumrada & Hanžel 2012) and Red Kite Milvus milvus (Bordjan 2017) submit a more detailed review of the status of certain birds of prey in Slovenia. Moreover, in the past 50 years, out of 38 Raptor species (also including Birds of Prey) 71% were part of a monitoring scheme and only 18% of species were part of national monitoring, while others were included in more or less local studies (Vrezec 2012). The purpose of this article is to give a more detailed overview of the Black Kite’s distribution, phenology, breeding population development and habitat in Slovenia in the light of new knowledge and data. 2. Methods Data on the Black Kite in Slovenia was obtained from the ornithological literature, as well as directly from observers. All volumes of the following journals were checked: Acrocephalus, Biota, Falco and Svet ptic up to and including the last issue published in 2017. Additionally, Google Scholar was used with key words “Črni škarnik” and “Milvus migrans” or “Black Kite” for Slovenia. Data from online data base NOAGS (Atlas ptic 2018) were obtained. Observations were also collected directly and indirectly from other observers. Data till the end of 2017 were used for temporal and spatial distribution, but for breeding the 2018 breeding season was included as well. Data were drawn in map using program ArcGis 10.4.1 (ESRI 2015) and also used to calculate altitude and distance to the nearest large water body (rivers and lakes or fishponds with min. 3  ha of water surface), rubbish dump and settlements. Data on altitude were clustered in 100 meter groups to mask potential discrepancies between actual observation and point in the map. For breeding distribution coarser, 10x10  km squares were used, as well as smaller 2x2  km squares for habitat analysis. All entered points were overlaid with the 2x2 km grid (containing 5,405 squares) and percentage of land use (MKGP 2017) was calculated for squares with Black Kite observations (1,021 observations in 184 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat 73 squares). For habitat analysis, 1,100 random points were generated in Arc GIS in 2x2  km grid, and those that were outside Slovenia were later removed (amounting to 1,090 points in 1,000 2x2  km squares). Distance to large water body, rubbish dump and settlements and share of land use was calculated for random points and 2x2  km squares with random points. For labelling breeding status, confirmed and probable breeding was used. Data were labelled as confirmed breeding in proximity of known nest sites or when one or two individuals remained in the same area for longer period (two or more observations distanced at least one month) in combination with courtship display, copulation, observation of fledged young (together with parents up to first half of August) or regular (at least two observations at least one week apart in breeding period) flights to a potential nest site. Observations were labelled as probable breeding when one or two individuals remained in the same area for a longer period within main breeding period (20 May–25 July), or observation of courtship display or copulation with the absence of later observations. Exception is the area of Krška ravan where breeding status given by Denac et al. (2009) was used. Observations in the western part of the Vipava valley were separated due to distance between two clusters of observations that are located more than 10  km from known nest site. Although Black Kites may go as far as 20 km from the nest in search of food during nesting, most feeding flights are made within 10 km from nest (Meyburg & Meyburg 2009). For the purpose of seasonal dynamics, we distributed data in 37 ten-day periods that are explained in more detail by Bordjan & Božič (2009). A regular monitoring of waterbirds and birds of prey has been conducted at Medvedce since 2002 (Bordjan & Božič 2009) and Rački ribniki – Požeg Country Park since 2011. From study at Medvedce, the average temporal distribution of Black Kite presence per visit was calculated in a ten-day period. 3. Results 3.1. Temporal distribution We gathered data on 1,388 individuals between 1984 and 2017 (Figure 1). 70.7% of observations come from Dravsko polje and 61.5% from the breeding site at Medvedce. The number of observed Black Kites rose steadily with 7.6 individuals per year before 2001 and 124.4 between 2011 and 2017 (Pearson’s r: 0.84; N = 32; P < 0.001). Even without individuals from Medvedce, the number of obser- vations rose from average 7.3 to 20.1 individuals per year (Pearson’s r: 0.61; N = 32; P < 0.001). Most observations (1,021) involved single individuals (780) with more than ten individuals simultane- ously observed only three times; 12 individuals were observed at Ljubljana rubbish dump (central Slovenia), 15 near Kromberk (Gorica, SW Slovenia) and 16 around Medvedce (NE Slovenia). Black Kite was present in Slovenia between mid-March and the beginning of December (Figure 2). The earliest observation dates to 14 Mar when one individual was observed near Maribor (NE Slovenia) in 2002 (Lončar 2003) and one at Ljubljansko barje (central Slovenia) in 2009 (Rubinić pers. comm.). Spring migration in Slovenia was weak in March and the number of observations peaked in May (Figure 2). In Slovenia, the maximum of observed individuals dates to mid- May. After the spring migration peak, observations decreased steadily until the beginning of October with some observations made between the end of October and December (Figure 2). The latest observation was from 8 Dec at Lake Cerknica (A. Škoberne & M. Cvetko pers. comm.). The seasonal distribution was monitored more closely on breeding grounds at Medvedce (NE Slovenia) in 2002–2018. Black Kites were present continuously between mid-March and late September (Figure 3) with one observation in November (Bordjan 2004). The probability of observing a Black Kite at Medvedce in this particular period was on average 0.47 observations per visit and varied widely from 0.04–0.71 obs / visit (Figure 3). It was highest between late April and late July. Lowest probability was in 2002 (0.17 obs / visit) and in 2008 (0.25 obs. / visit) and highest in 2018 (0.63 obs. / visit). 3.2. Spatial distribution Black Kite was observed in 71 out of 238 10x10 km squares covering Slovenia (29.8%; Figure 4). Ob- servations were made in most flatlands of Slovenia with the exception of land around the Mura river. Acrocephalus 39 (178/179): 71–83, 2018 74 No . o f i nd iv id ua ls / Št . o se bk ov 180 160 140 120 100 80 60 40 20 0 19 84 19 85 19 86 19 87 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 20 13 20 14 20 15 20 16 20 17 Figure 1: Number of Black Kites Milvus migrans observed between 1984 and 2017 in Slovenia. Black columns refer to observations at Medvedce water reservoir (NE Slovenia) and grey to observations from the rest of Slovenia). Slika 1: Število črnih škarnikov Milvus migrans, opazovanih med letoma 1984 in 2017 v Sloveniji. Črni stolpci ponazarjajo opazovanja z zadrževalnika Medvedce (SV Slovenija), sivi pa opazovanja iz preostale Slovenije. Figure 2: Number of Black Kites Milvus migrans observed in separate 10-day periods in Slovenia Slika 2: Število črnih škarnikov Milvus migrans, opazovanih po posameznih dekadah v Sloveniji No . o f i nd iv id ua ls / št . o se bk ov 10-day period / month / Dekada / Mesec I V IXIII VII XIII VI XIV VIII XII 160 140 120 100 80 60 40 20 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat 75 Highest densities of observations were recorded in the squares with confirmed breeding sites and squares with higher observation effort (i.e. Lake Cerknica). Black Kite observations were missing from extensive forested and mountainous areas. Black Kite was recorded on the Slovenian coast in Sečovlje saltpans at sea level (Jančar 1991, Sovinc & Šere 1993). Highest altitude was recorded during bird of prey count on Breginjski stol in 2010 (Denac 2010) just below 1,600  m a.s.l. Only eight records were made above 1,000 m a.s.l. Average altitude of Black Kite observations is 271  m a.s.l. and 309  m a.s.l., if Medvedce data are excluded. Black Kites were observed more often than would be expected at random below 300  m a.s.l. (Figure 5). 3.3. Breeding of Black Kite Milvus migrans in Slovenia Between 1990 and 2018, ten confirmed breeding pairs were observed at seven sites (Figure 6). Three were observed only in a single year. The observa- tions indicate that pairs at the confirmed breeding sites bred there more or less regularly (Figure 6), with above mentioned exceptions and Leško polje where breeding data were absent for 22 years. The only pairs that were observed at breeding sites continuously were those at Medvedce and in Rački ribniki  – Požeg Country Park, both with regular monitoring. From 2005 onwards, 3–7 pairs were registered in any given year. In Slovenia, eleven pairs at nine sites meet criteria for probable breeding (Figure 7). With the exception of western part of the Vipava valley, N part of Ljubljana basin and NE part of Dravsko polje, the observations of Black Kites were more irregular then those for confirmed pairs. From 2000 onward, 0–6 probable pairs were observed in any given year. The breeding population of Black Kites (considering confirmed and probable pairs in any given year) has risen steadily from 1–4 breeding pairs between 1990 and 2000 to 2–11 pairs in 2000–2010 and 6–12 pairs in 2011–2018 (Figure 6). The 10 confirmed or probable pairs Figure 3: Seasonal dynamics of Black Kite Milvus migrans at Medvedce water reservoir (NE Slovenia) during 10-day periods between 2002 and 2010 Slika 3: Sezonska dinamika opazovanj črnega škarnika Milvus migrans na zadrževalniku Medvedce (SV Slovenija) po dekadah v obdobju 2002–2010 No . o f o bs er va tio ns p er v is it / Š t. op az ov an j n a ob is k 10-day period / month / Dekada / Mesec I V IXIII VII XIII VI XIV VIII XII 0,8 0,7 0,6 0,5 0,4 0,3 0,2 0,1 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 Acrocephalus 39 (178/179): 71–83, 2018 76 Figure 4: Distribution of Black Kite Milvus migrans in Slovenia with the number of observations in 10x10 km squares Slika 4: Razširjenost črnega škarnika Milvus migrans v Sloveniji s prikazom števila opazovanj po posameznih kvadratih 10x10 km Figure 5: Distribution of Black Kite Milvus migrans in altitude belts compared to available area per altitudinal belt including data from Medvedce water reservoir (white) and without (black) Slika 5: Razširjenost črnega škarnika Milvus migrans po nadmorskih pasovih glede na razpoložljivo površino posameznega nadmorskega pasu, vključujoč podatke z zadrževalnika Medvedce (belo) in brez (črno) Al tit ud in al b el t / V iš in sk i p as [m ] > 600 m 500 - 599 m 400 - 499 m 300 - 399 m 200 - 299 m 100 - 199 m 0- 99 m 0 1 2 3 4 5 D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat 77 Figure 6: Yearly presence of Black Kites Milvus migrans at confirmed breeding sites Slika 6: Pojavljanje črnega škarnika Milvus migrans na potrjenih gnezdiščih v posameznih letih Figure 7: Yearly presence of Black Kites Milvus migrans at probable breeding sites Slika 7: Pojavljanje črnega škarnika Milvus migrans na verjetnih gnezdiščih v posameznih letih Landscape Park Rački ribniki - Požeg 2 Water reservoir Medvedce 3 Ljubljana Marshes (E) Landscape Park Rački ribniki - Požeg 1 Water reservoir Žovnek Water reservoir Medvedce 2 Vipava valley (W) Water reservoir Medvedce 1 Confluence of Sava and Ljubljanica rivers Leško polje 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 20 13 20 14 20 15 20 16 20 17 20 18 Nanoščica valley Krška ravan 2 Bela krajina Vipava valley (W) Ljubljana valley (N) Dramlje Tolmin Dravsko polje (NE) 2 Dravsko polje (NE) 1 Krška ravan 1 Ljubljana Marshes (W) 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 20 13 20 14 20 15 20 16 20 17 20 18 Acrocephalus 39 (178/179): 71–83, 2018 78 from the past ten years can be considered regular breeders, and as there was a total of 21 confirmed or probable breeding pairs, the population was estimated at 10–21 breeding pairs in Slovenia. The breeding distribution is shown in figure 9. From the first observation of possible breeding in 1987 to the estimated breeding population in 2018, the population has been estimated to rise by 0.34 pairs/year (Figure 8). The average breeding density of Black Kites is 0.3–0.9 bp/100  km2 with the highest at Dravsko polje, i.e. 0.6–2.2 bp/100  km2 (Table 1). No semi-colonial breeding was observed. Closest nests were little less than five kilometres apart for three pairs near Medvedce in 2018. 3.4. Habitat Black Kite observations were recorded closer to larger water bodies and rubbish dumps than expected from random points, but not to settlements (Table 2). Black Kites were observed in squares with less forest cover than would be expected (Table 2). More than half (58%) of all 2x2 km squares with Black Kite observations had less than 25% of forest cover and 85% of less than 50% as opposed to squares with random points (15% and 38%). Also, Black Kites were observed more often in squares with higher share of arable land (on average arable land covered 28% 2x2 km squares), meadows (24%), urban area (11%) and wetlands (3%; Table 2). 4. Discussion The number of observed Black Kites and their breeding population in Slovenia rose during the past three decades to 10–21 breeding pairs and more than 120 observations per year on average. This trend is similar to that in Carinthia (Petutsching & Probst 2017), but could merely reflect a trend in our knowledge of breeding population in Slovenia and also the intensified observation effort with surveys for the national Breeding Bird Atlas (Mihelič 2002), Natura 2000 Monitoring Schemes (Mihelič 2005), Farmland Bird Index (Božič 2007), local monitoring schemes; i.e. Medvedce (Bordjan & Božič 2009), Lake Cerknica (Bordjan 2012), accumulations on the Drava river (L. Božič pers. comm.) and new available No . o f i nd iv id ua ls / Št . o se bk ov 14 12 10 8 6 4 2 0 19 87 19 90 19 91 19 92 19 93 19 94 19 95 19 96 19 97 19 98 19 99 20 00 20 01 20 02 20 03 20 04 20 05 20 06 20 07 20 08 20 09 20 10 20 11 20 12 20 13 20 14 20 15 20 16 20 17 20 18 Figure 8: The dynamics of Black Kite Milvus migrans breeding pair numbers in Slovenia. Data includes confirmed and probable breeding attempts as well as possible breeding at otherwise confirmed breeding sites. Slika 8: Dinamika števila gnezdečih črnih škarnikov Milvus migrans v Sloveniji. Podatki vključujejo potrjene in verjetne pare ter možne pare na sicer potrjenih gnezdiščih. Year / Leto D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat 79 Figure 9: Breeding distribution of Black Kite Milvus migrans in Slovenia of confirmed (red) and probable breeding pairs (yellow) in 10x10 km squares Slika 9: Razširjenost potrjenih (rdeče) in verjetnih (rumeno) gnezdečih parov črnega škarnika Milvus migrans v Sloveniji v kvadratih 10x10 km Table 2: T-test values between habitat variables of Black Kite Milvus migrans observations (N = 1482) and random points (N = 1090). Area represents an average share of individual land uses per 2x2 km square. Tabela 2: Rezultati T-testa med habitatnimi spremenljivkami opazovanj črnih škarnikov Milvus migrans (N = 1482) ter naključnih točk (N = 1090). Površina ponazarja delež povprečne rabe na kvadrat 2x2 km. Random Black Kite t-value PMean SD Mean SD Distance [m] Large water body 3621.7 2698.4 1176.4 1523.7 18.56 < 0.01 Rubbish dump 9981.4 5164.1 6097.4 3520.3 14.95 < 0.01 Settlement 367.8 382.9 396.6 350.3 -1.39 0.16 Area Arable land 0.10 0.18 0.28 0.24 -12.28 < 0.01 Meadows 0.19 0.14 0.24 0.18 -4.35 < 0.01 Forest 0.57 0.27 0.25 0.22 15.02 < 0.01 Urban area 0.05 0.08 0.11 0.14 -7.92 < 0.01 Wetland 0.01 0.03 0.03 0.07 -8.10 < 0.01 Other 0.08 0.10 0.08 0.09 -0.73 0.46 Acrocephalus 39 (178/179): 71–83, 2018 80 databases (Mihelič 2016). This is possible since it is in contradiction with the broader European trend, where the breeding population suffered a substantial decline in the past century (Viñuela & Sunyer 1994, Birdlife International 2004) and its current trend is uncertain (BirdLife In- ternational 2015). On the other hand at least locally, i.e. Dravsko polje, the population has risen substantially (from 1 to 7 pairs) and it may be similar to the population increase in Sicily (Sará 2003) that does not reflect national trend in Italy (Sergio & Boto 1999), where negative trends prevail (Sergio et al. 2003). Similarly, the trend differs in different parts of Austria with Carinthian population rising (Petutsching & Probst 2017) and the population in Donau-Auen National Park decreasing (Probst & Schuhbauer 2010). Overall it seems that the population trend in Slovenia is at least stable, with some local increases. The estimate of breeding population is similar to the one given by Denac et al. (2011) but includes only confirmed and probable and not possible breeding pairs. With the latter, the estimate would probably be higher by up to 5 pairs. In Slovenia, Black Kite habitat is similar to habitat requirements in other countries, i.e. low forest cover and proximity to wetlands (Cramp 1998, Probst & Schuhbauer 2010). Wetlands and large water bodies that are rich in food are essential for Black Kite (Sergio et al. 2003, 2005) with increased breeding density and success in their proximity (Sergio & Boto 1999, Salvati et al. 2001, Sergio et al. 2003). Fish are important part of the Black Kite’s diet (Probst & Schuhbauer 2010). Thus it is not surprising that most of our records were made at or near wetlands. The breeding density even rises with the size of wetland, but also with the size of open land (Sergio et al. 2005), as is the case in Slovenia. Open rubbish dumps represent important feeding areas for Black Kite (Blanco 1994) and most of our breeding pairs include one in their territory. If the Black Kite’s absence from the Alps (N and NW Slovenia) and hills of W, S and E Slovenia (hills of Zasavje, Snežnik, Kočevje, Polhograjsko, Škofjeloško and Cerkljansko) could be explained with higher altitudes and forest cover (Cramp 1998), the reason for its absence from Pomurje is more complex. Almost complete absence of observations in apparently suitable habitat (low altitude and open mosaic landscape with many water bodies) in NE Slovenia is somewhat surprising. There were only few records indicating possible breeding along the lower Mura River so far (i.e. Božič 1998). One of the reasons may lie in arable land, since Black Kites tend to avoid intensive farmland (Tanferna et al. 2013) and their breeding density decreases with the size of intensive arable land (Sergio et al. 2003). On the other hand, Dravsko polje is also known for its ample intensively farmed land, but this may be compensated with many shallow fishponds and drainage ditches. One explanation may be that colonisation has not reached Pomurje as yet. It is increasing on Dravsko polje but it is still rare in Styria, Austria (R. Probst pers. comm.). Although Black Kite can cross high mountains on its migration (R. Probst pers. comm.), it is a lowland species (Salvati et al. 2001), which is also in agreement with observations in Slovenia. In Northern Italy, Black Kite breeds between 240 and 870  m a.s.l. with average at 515  m a.s.l. (Sergio & Boto 1999), although breeding density rises with lowering altitude (Sergio et al. 2003). In Switzerland, most pairs breed below 600  m a.s.l., and individuals observed higher in the Alps are thought to be non-breeding individuals on foraging trips (Schmid et al 1998), just like those on Breginjski stol (Denac 2010). Migrating individuals in March correspond to peak migration across the Strait of Gibraltar and Suez (Panuccio et al. 2014). Similar to the central Mediterranean (Panuccio & Agostini 2010), the spring migration in Slovenia is weak in March, but unlike the Straight of Messina it does not peak in mid-April (Corso 2001), but rather in May. It is often difficult to separate breeding from migrating individuals, especially as the percentage of immature individuals is significant during the second part of migration (Panuccio & Agostini 2010). Seasonal dynamics differs from that in Algeria, where peak in the number of individuals is in August but similarly, Black Kites leave their breeding area at the end of September (Boumaaza et al. 2016). Although no Black Kites were observed in winter, such observations are expected in the future since wintering population is increasing in Europe, including all our neighbouring countries (Literák et al. 2017). D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat 81 5. Povzetek Med letoma 1984 in 2017 je bilo opazovanih 1388 osebkov črnega škarnika večinoma po nižinah z glavnino opazovanj na Dravskem polju (70,0  %). Opazovanja so razporejena od morske gladine do nekaj pod 1600  m  n.m. s povprečno nadmorsko višino 271  m. Črni škarnik se v Sloveniji pojavlja med sredino marca in začetkom decembra z neizrazito spomladansko in jesensko selitvijo. Največje število opazovanj je v maju. Črni škarnik je bil opazovan v 71 od 238 kvadratih 10 x10 km (29,8 %), z večjim deležem opazovanj na gnezdiščih in območjih z večjim številom opazovalnih dni. Tako število opazovanj v posameznem letu kot tudi število potrjenih in verjetnih gnezdečih parov je v Sloveniji naraščalo. V  obdobju 2011–2018 je bilo najdenih 10 gnezdečih parov na sedmih lokacijah (3–7 v vsakem letu). Ob teh je bilo najdenih še 11 verjetno gnezdečih parov na devetih lokacijah (0–6 v vsakem letu). Gnezdeča populacija v obdobju 2011–2018 šteje 10–21 verjetno in potrjeno gnezdečih parov s povprečno gnezditveno gostoto 0,3–0,9 gp/100  km2. Najvišja gostota parov je na Dravskem polju (0,6–2,2 gp/100km2). Ob upoštevanju možnih gnezditev bi bila ocena višja za do 5 gp. Na potrjenih gnezdiščih je gnezdil v večini let po potrditvi, najbolj konstantno na območju rednih monitoringov vodnih ptic in ujed. Črni škarnik je pogosteje opazovan ob večjih vodnih telesih in bližje smetiščem, kot bi pričakovali naključno. Hkrati so bila opazovanja razporejena na območjih z nižjim deležem gozda in njivskih površin ter z višjim deležem travnikov, naselij in mokrišč. Acknowledgments My special thanks are due to Tomaž Mihelič for exporting data on Black Kite from online data base. I am also indebted to all who unselfishly shared their observations with me to enrich knowledge on the species. List of contributors in alphabetical order: Basle T., Bernard G., Blažič B., Bombek D., Božič L., Cvetko M., Denac D., Denac K., Denac M., Domanjko G., Fekonja D., Figelj A., Figelj J., Gamser M., Gjergjek R., de Groot M., Hanžel J., Horvat E., Jančar A., Jančar T., Kerček M., Kmecl P., Koren A., Kotnik A., Kozina A., Martinc U., Mihelič B., Mihelič R., Mihelič T., Mlakar M.M., Novak J., Ploj A., Poljanec L., Poljanec N., Premzl M., Remžgar T., Rijavec A., Rubinić B., Sešlar M., Slameršek A., Šalamun Ž., Šinigoj E., Škoberne A., Tomažič A., Tome D., Vrezec A., Vukelič E. 6. References Atlas ptic (2018): Black kite Milvus migrans. – [http:// atlas.ptice.si/atlas], 01/08/2018 Birdlife international (2004): Birds in Europe: population estimates, trends and conservation status.  – BirdLife Conservation Series No. 12. BirdLife International, Cambridge. BirdLife International (2015): European Red list of Birds. – Luxembourg: Office for Official publications of the European communities. BirdLife International (2018): Species factsheet: Milvus migrans. – http://www.birdlife.org (07/02/2018). Blanco G. (1994): Seasonal Abundance of Black Kites Associated with the Rubbish Dump of Madrid, Spain. Journal of Raptor research 28 (4): 242–245. Bordjan D. (2004): Črni škarnik Milvus migrans. Acrocephalus 25 (122): 162. Bordjan D. (2012): Vodne ptice in ujede Cerkniškega polja (južna Slovenija) v letih 2007 in 2008, s pregledom zanimivejših opazovanj do konca leta 2010. – Acrocephalus 33 (152/153): 25–104. Bordjan D. (2015): Spring migration of waterbirds and raptors at Medvedce reservoir (Dravsko polje, NE Slovenia). – 36 (164/165): 21–43 Bordjan D. (2017): Occurrence of the Red Kite Milvus milvus in Slovenia.  – Acrocephalus 38 (172/173): 55–59 Bordjan D., Božič L. (2009): Pojavljanje vodnih ptic in ujed na območju vodnega zadrževalnika Medvedce (Dravsko polje, SV Slovenija) v obdobju 2002–2008. Acrocephalus 30 (141/142/143): 55–163. Boumaaza O., Bara M., Khemis M.D.E.-H., Boucherit K., Elafri A., Bouslama Z., Houhamdi M. (2016): Breeding biology of the black kite Milvus migrans (Accipitridae) at Ras El Ma ravine (Guelma, northeast Algeria).  – Journal of Entomology and Zoology studies 4 (5): 480–483. Božič L. (1992): Spomladanski prelet sršenarjev Pernis apivorus prek Maribora. Acrocephalus 13 (54): 144–145. Božič L. (1998): Črni škarnik Milvus migrans. Acrocephalus 19 (90/91): 167. Božič, L. (2007): Monitoring splošno razširjenih vrst ptic v letu 2007 za določitev slovenskega indeksa ptic kmetijske krajine. – DOPPS, Maribor. Bračko F. (1990): Prezimovanje pepelastega lunja Circus cyaneus v severovzhodni Sloveniji v obdobju 1982–90. Acrocephalus 11 (46): 95–101. Acrocephalus 39 (178/179): 71–83, 2018 82 Bračko, F. (1998): Pojavljanje planinskega orla Aquila chrysaetos na Pohorju. Acrocephalus 19 (87/88): 60–63. Corso A. (2001): Raptor migration across the strait of Messina, southern Italy. – British birds 94: 196-202. Cramp S. (ed.) (1998): The complete birds of the western Palearctic on CD–ROM. – Oxford University Press, Oxford. Del Hoyo J., Elliott A., Sargatal J. eds. (1994): Handbook of the Birds of the World. Vol. 2. New world vultures to Guineafowl, Lynx Editions, Barcelona. Denac D., Smole J., Vrezec A. (2009): Naravovarstveno vrednotenje avifavne ob Savi med Krškim in Jesenicami na Dolenjskem s predlogom novega mednarodno pomembnega območja (IBA) za ptice v Sloveniji. – Naturae Sloveniae 11 (1): 25–57 Denac K. (2010): Census of migrating raptors at Breginjski Stol (NW Slovenia) – the first confirmed bottleneck site in Slovenia. Acrocephalus 31 (145/146): 77−92. Denac K., Mihelič T., Božič L., Kmecl P., Jančar T., Figelj J., Rubinić B. (2011): Strokovni predlog za revizijo posebnih območij varstva (SPA) z uporabo najnovejših kriterijev za določitev mednarodno pomembnih območij za ptice (IBA).  – Končno poročilo (dopolnjena verzija). Naročnik: Ministrstvo za okolje in prostor. DOPPS – BirdLife, Ljubljana. Denac M. (2016): Črni škarnik Milvus migrans.  – Acrocephalus 37 (170/171): 234. ESRI (2015): ArcGIS 10.4.1 for Desktop.  – ESRI, Redlands, California Figelj J. (2007a): Črni škarnik Milvus migrans. Acrocephalus 28 (134): 129. Figelj J. (2007b): Pojavljanje sokola selca Falco peregrinus in kragulja Accipiter gentilis v Ljubljani. Acrocephalus 28 (135): 165–167. Freyer H. (1842): Fauna der in Krain bekannten Säugethiere, Vögel, Reptilien und Fische.  – Eger'schen Gubernial Buchdruckerei, Laibach. Geister I. (1995): Ornitološki atlas Slovenije. DZS, Ljubljana. Gjerkeš M., Lipej L. (1992): O pojavljanju in prehranjevanju rdečenoge postovke Falco vespertinus v Slovenski Istri. – Acrocephalus 13 (51):44–48. Gregori J., Šere D. (2005): Ptiči Šaleških jezer, Prirodoslovno Muzej Slovenije. Ljubljana. Hanžel J. (2015): The influx of Red-footed Falcons Falco vespertinus in Slovenia in spring 2015.  – Acrocephalus 36 (166/167): 179–183 Jančar T. (1991): Črni škarnik Milvus migrans. Acrocephalus 12 (48): 85–86. Kerček M. (2005): Ptice akumulacije Medvedce. Diplomsko delo, Univerza v Mariboru. Kmecl P,. Rižner, K. (1993): Pregled vodnih ptic in ujed Cerkniškega jezera; spremljanje številčnosti s poudarkom na preletu in prezimovanju.  – Acrocephalus 14 (56/57): 4–31. Košir M. (1997): Zanimivosti od koderkoli: Sava pri Ljubljani. Acrocephalus 18 (83): 121–124. Kozinc B. (1991): Gnezdenje črnega škarnika Milvus migrans pri Lescah. – Acrocephalus 12 (48): 57–70. Kozinc B. (1999): Analiza ostankov plena iz gnezda škrjančarja Falco subbuteo. Acrocephalus 20 (93): 50–52. Kozamernik J.J. (2000): Črni škarnik Milvus migrans. Acrocephalus 21 (102/103): 277. Literák I., Horal D., Alivizatos H., Matušík (2017): Common wintering of black kites (Milvus migrans migrans) in Greece, and new data on their wintering elsewhere in Europe.  – Slovak Raptor Journal 11: 1–12 Lončar T. (2003): Črni škarnik Milvus migras. Acrocephalus 24 (119): 148. Luskovec V. (1990): Predlog za popolno varstvo kragulja Accipiter gentilis in skobca Accipiter nisus. Acrocephalus 11(43/44): 1–2. Marenče M. (1998): Planinski orel Aquila chrysaetos v Triglavskem narodnem parku. Acrocephalus 19 (89): 104–108. Meyburg B.–U., Meyburg C. (2009):GPS–Satelliten– Telemetrie bei einem adulten Schwarzmilan (Milvus migrans): Aufenthaltsraum während der Brutzeit, Zug und Überwinterung. Populationsökologie Greifvogel– und Eulenarten 6: 243–284. Matvejev S.D., Vasić V.F. (1973): Catalogus faunae Jugoslaviae IV/3. Aves.  – Slovenska akademija znanosti in umetnosti, Ljubljana. Mihelič T. (2002): Novi ornitološki atlas gnezdilk Slovenije. Navodila za popisovalce, DOPPS Ljubljana. Mihelič T. (2005): Monitoring populacij izbranih vrst ptic. Končno poročilo, DOPPS Ljubljana. Mihelič T. (2016): Spletna beležka kot nov pripomoček favnistike. Acrocephalus 37 (168/169): 1–3 Mihelič T., Genero F. (2005): Occurrence of Griffon Vulture Gyps fulvus in Slovenia in the period from 1980 to 2005. Acrocephalus 26 (125): 73–79. Mihelič T., Brajnik I. (2006): Nova opazovanja selitve ujed na Volovji rebri (J Slovenija). Acrocephalus 27 (128/129): 86–87. MKGP (2018): Grafični podatki RABA za celo Slovenijo. – http://rkg.gov.si/GERK/ Panuccio M., Agostini N. (2010): Timing, Age Classes and Water–Crossing Behaviour of Black Kites (Milvus migrans) During Spring Migration Across the Central Mediterranean. The ring 32 (1–2): 55–661. Panuccio M., Agostini N., Mellone U., Bogliani G. (2014) Circannual variation in movement patterns of the Black Kite (Milvus migrans migrans): a review, Ethology Ecology & Evolution, 26:1, 1–18. D. Bordjan: Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat 83 Petutschnig von W., Probst R. (2017): Sehr seltene Brutvogelarten in Kärnten  – Bestandsentwicklung im Betrachtungszeitraum 2006 bis 2016. – Carinthia II, 207 (127): 601-630 Probst R., Schuhbauer A. (2010): Der Schwarzmilan (Milvus migrans) im Nationalpark Donau-Auen – eine Synopsis – Carinthia II – 200_120: 143 – 166. Reiser O. (1925): Die Vögel von Marburg an der Drau. Nauturwissenschaftlichen Verein in Steiermark, Graz, 143 p Schiavuzzi B. (1883): Materiali per un'avtfauna del territorio di Trieste fino a Mortfalcone e deli'Istria. Bollettino della Societa Adriatica Scienze Naturali, 8, 3–78. Schulz F. (1890): Verzeichnis der bisher in Krain beobachteten Vögel. Laibach. Salvati L., Manganaro A., Pucci L., Ranazzi L. (2001): Distribution of woodland raptors along a Mediterranean–temperate gradient in Latium (central Italy). – Ornis Hung. 11: 1–7. Sará M. (2003): The Colonization of Sicily by the Black Kite (Milvus migrans). Journal of raptor research 37 (2): 167–172. Schmid H., Luder R., Naef–Daenzer B., Graf R., Zbinden N. (1998): Schweizer Brutfogelatlas. Verbreitung der Brutvögel in der Schweiz und Fürstentum Liechtenstein 1993–1996. Schweizerische Vogelwarte. Sempach. Sergio F., Boto A. (1999): Nest dispersion, diet, and breeding success of blak kites (Milvus migrans) in the Italian Pre–Alps. Journal of Raptor Research 33 (3): 207–217. Sergio F., Pedrini P., Marchesi L. (2003): Reconciling the dichotomy between single species and ecosystem conservation: Black Kites (Milvus migrans) and eutrophication in pre–Alpine lakes. Biological Conservation 110: 101–111 Sergio F., Blas J., Forero M., Fernández N., Donázar J.A., Hiraldo F. (2005): Preservation of wide–ranging top predators by site–protection: Black and red kites in Dońana National Park. Biological Conservation 125: 11–21. Smerdu R. (1981):Ali veliki klinkač gnezdi v Sloveniji. Acrocephalus 2 (10): 56. Sovinc A., Šere D. (1993): Ornitološka kronika za leto 1991. Acrocephalus 14 (58/59): 140–144. Škornik I. (1985): Planinski orel Aquila chrysaetos gnezdi tudi v Slovenskem primorju. Acrocephalus 6 (25): 40–41. Škornik I. (2012): Favnistični in ekološki pregled ptic Sečoveljskih solin. – Soline pridelava soli, Seča. Šumrada T., Hanžel J. (2012): The Kestrel Falco tinnunculus in Slovenia – a review of its distribution, population density, movements, breeding biology, diet and interactions with other species.  – Acrocephalus 33 (152/153): 5–24. Tanferna A., Löpez–Jiménez L., Blas J., Hiraldo F., Sergio F. (2013): Habitat selection by Black kite breeders and floaters: Implications for conservation management of raptor floaters.  – Biological Conservation 160: 1–9 Trebušak M., Rubinić B., Vrezec A. (1999): Veliki klinkač Aquila clanga na Ljubljanskem barju.  – Acrocephalus 20 (97): 191–193. Viñuela J., Sunyer C. (1994): Black Kite Milvus migrans. Pp. 149. In: Tucker, M. T. & M. F. Heath (eds.): Birds in Europe: Their Conservation Status. Cambridge, U. K.: BirdLife International, BirdLife Conservation Series No. 3. Vrezec A. (2012): A preliminary overview of raptor monitoring in Slovenia  – an overview of methodologies, current monitoring status and future perspectives. – Acrocephalus 33 (154/155): 271–276. Vrezec A., Bordjan D., Perušek M., Hudoklin A. (2009): Population and ecology of the White–tailed Eagle (Haliaeetus albicilla) and its conservation status in Slovenia. – Denisia 27: 103–114. Prispelo / Arrived: 11. 9. 2018 Sprejeto / Accepted: 28. 12. 2018 Acrocephalus 39 (178/179): 71–83, 2018 85 Candling and field atlas of early egg development in Common Eiders Somateria mollissima in the central Baltic Ovoskopija in terenski atlas zgodnjega razvoja pri gagah Somateria mollissima v Osrednjem Baltiku Svend-Erik Garbus1,2, Peter Lyngs3, Anders Popp Thyme2, Jens Peter Christensen2, Christian Sonne1* 1 Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark; e–mail: cs@bios.au.dk 2 University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary and Animal Sciences, DK-1870 Frederiksberg C, Denmark 3 Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark Here we present the results of candling 258 eggs from 50 nests of Common Eiders Somateria mollissima in a colony in the central Baltic. Of these, 223 (86%) had a developing foetus. Among the 35 (14%) failed eggs, 15 were unfertilized and 20 contained a dead embryo. The prevalence of failed eggs is similar to the average proportion of failed eggs reported previously by the Christiansø Scientific Field Station during 1998–2014. The reason for the high percentage of failed eggs is unknown; however, low pre-incubation body mass and energetic stress is likely to be the main factor. In addition, we incubated 8 eggs in the laboratory from day 0 to hatch in order to follow the development and foetal morphology. This resulted in a field atlas from which it is possible to estimate date of incubation start using candling in early incubation (days 1–12). The atlas is a new possibility for field biologists to estimate the first day of incubation of breeding eiders and the prevalence of unfertilized and rotten eggs, which is important for studying their biology and population dynamics. Key words: Common Eider, Baltic, candling, fertilization, starvation, stress Ključne besede: gaga, Baltik, ovoskopija, oploditev, stradanje, stres Acrocephalus 39 (178/179): 85–90, 2018 10.1515/acro-2018-0007 1. Introduction The Christiansø archipelago in the southern part of the Baltic Proper holds the second largest Danish colony of breeding Common Eiders Somateria molissima (Christensen & Bregnballe 2011). It consists of 1,500–1,700 pairs and has been monitored since 1950 (Lyngs 1992, 2009, 2014). This long-term monitoring revealed that during 1970–1990, the population increased from approxi- mately 1,000 to approximately 3,000 breeding pairs, while from 1990 until today the population has declined by approximately 50% (Lyngs 2009, 2014). The reasons for this is unknown, however, limited access to food in wintering areas and the breeding location, infectious diseases, blooming toxic algae 86 and failed eggs have been suggested as some of the main reasons (Buchman 2010, Camphuysen et al. 2002, Christensen et al. 2008, Larsson et al. 2014, Laursen & Møller 2014). In order to understand the fluctuations in the number of breeding eiders and clutch size, we established a research programme running in 2015–18. Briefly, the study showed that incubating females underwent extreme physiological stress over the approximately 26-day incubation period. The weight loss for a certain proportion of the colony in some years is borderline to cachexia and breeding failure (Garbus 2016, Garbus et al. 2018). As part of this, the prevalence of failed eggs has been studied, since earlier indications suggest that this could be a potential problem for the colony and population dynamics (Lyngs 2009, 2014). Here, we present the results of the controlled study of candling incubating eider eggs and provide the first field atlas of developmental stages in Common Eiders. Eggs were monitored and candled, and controlled incubation in the laboratory was conducted. The present publication is of value to field studies that measure fertility ratios and estimations of date of incubation start in breeding eiders. 2. Materials and methods During April-May 2015, 258 eggs and egg membranes from 50 nests of incubating habituated eiders were monitored at Christiansø located northeast of Bornholm in the Baltic Proper (55°19’N 15°11’E, Figure 1). All 258 eggs were candled to investigate the frequency of failed eggs and the relation to the health of female eiders. An oviscope was constructed from a flashlight (Cree XPE High Power LED 3 W 150 Lumen) modified with a rubber cup on the top (Figure 2). The flashlight had a sufficient brightness to examine the eider eggs. The entire candling procedure was performed in darkness using a mackintosh covered cardboard box. Using nitrile examination gloves, the base of the egg was held between thumb and forefinger, placed directly against the light and tilted slightly to one side while rotating the egg. The candling was conducted from day 8 to 12 of the incubation stage as recommended for ducks having long incubation periods (Ernst et al. 2004). The 10-second candling is considered to pose no risk to the further egg development. Birds were kept in a cotton bag during all procedures to reduce stress. In cases where all eggs were removed from the nest due to complete failure, artificial replacement eggs were used to keep birds at their nests and thereby reduce stress levels. All nests were checked daily and visually inspected at distance. Eggs were divided into two groups: active eggs and failed eggs (Hemmings et al. 2011). Failed eggs were further divided into infertile eggs or dead embryos. Information on the methods and their interpretations is described in Ernst et al. (2004). In addition to this, newly laid eggs in 2016 (n=4) and 2017 (n=4) were brought for incubation in the laboratory. The eggs were incubated on days 1–28 and the hatched ducklings were brought back to the nest and taken over by either the mother or a nanny. The nests were visually observed, and all ducklings were successfully accepted by their mothers or nannies. An America motor incubator (America A/S, Thisted, Denmark) was used for incubation. A thermometer and hygrometer were placed inside the incubator in order to monitor and adjust temperature and humidity. The settings used were 38.5°C on the first 21 days with a humidity of 55%. In the last 4–5 days of incubation, a temperature of 38.9°C was applied. From day 8, the eggs were humidified daily with a spray containing water at 38.5 °C. The eggs were turned four times daily (8.00, 12.00, 18.00 and 22.00). All eggs were photographed daily at 13.00 and simultaneously cooled during transport (1–2  minutes). Around the time of hatching, humidity was adjusted to 70%. For photodocumentation of egg development, a Cree XPE High Power LED 3 W 150 lumen was used for early development and an EC4S NITECORE® LED Flashlight 2150 Lumen for late development. Lumen settings varied from 1000–2150. Both flashlights were modified with rubber cubs placed in a holder fitting the morphology of the eggs. Pictures were taken with a Nikon D3S using a 60 mm macro lens (f/9, 1250 ISO, 1 sec exposure) in a partly dark room. For basic training, the candling procedure was tested at the Department of Disease Biology, University of Copenhagen in March 2015 on day 10 of incubation. Candling of 200 chicken eggs showed fourteen unfertilized and seven dead embryos adding up to 10% failed eggs. No false negatives were observed. S-E. Garbus et al.: Candling and field atlas of early egg development in Common Eiders Somateria mollissima in the central Baltic 87 Christiansø Figure 1. Map of the archipelago Christiansø study area Slika 1: Zemljevid preučevanega območja v arhipelagu Christiansø Figure 2. Egg candling using a modified Cree XPE High Power LED® as oviscope inside a cardboard box Slika 2: Ovoskopija z uporabo modificiranega orodja Cree XPE High Power LED® kot oviskopa v kartonski škatli Acrocephalus 39 (178/179): 85–90, 2018 3. Results and discussion 3.1. Candling and hatching The candling and egg membrane counting showed that 223 (86%) eggs had a developing foetus. Among the 35 (14%) failed eggs, fifteen were un- fertilized (6%) and twenty contained dead embryos (8%). This percentage of failed eggs (14%) is the same as the average proportion of failed eggs found by the Christiansø Scientific Field Station during 1998-2014 (14%; range 8–23%) (Lyngs 2014). To the best of our best knowledge, no other large-scale investigations on failed eider eggs have been conducted, making it difficult to compare with the proportion of failed eggs in other colonies. However, the loss of incubated eggs from modern, high-hatching chicken strains, stored under optimal conditions, should be no more than 10%. 88 Losses in waterfowl may be slightly higher (Ernst et al. 2004). The reasons for the relatively large proportion of failed eggs in the Christiansø colony is unknown, however, low initial body weight and energetic stress is likely to be the main reason (Garbus 2016, Garbus et al. 2018, Hemmings et al. 2011). Nutritional deficiencies, early infections and contaminant exposure constitute the common cause of dead-in-shell embryos in chickens, which is a supporting weight of evidence for similar cause and effects in the present investigation of the Christiansø breeding colony (Alcorn 2008, Hoffman 1990). 3.2. Candling atlas Figure 3 shows the atlas of the day 1–12 stages of incubating Christiansø eider foetus. It is seen that the centrally located embryo takes form as a small-condensed area forming into a red / dark area. From the embryo, blood vessels radiate to the extra-embryonic membrane. The simple circulatory system evolves into a more advanced system and the embryo takes gradually more space of the egg. After day 12, the examination of the egg is complicated or no longer suitable as a measure of foetal age as the foetus gets darker and takes up more space. During the last period of the egg development, the foetus is only visible as a dark shadow with a prominent air sac. In addition, Figure 4 shows examples of dead and infertile eggs, respectively, at Christiansø. A blood ring is seen in the dead egg, and the infertile egg appears clear and transparent with no development. 3.3. Future considerations The atlas and candling method provide field biologists with a tool to estimate first day of incubation of breeding eiders and prevalence of unfertilized and rotten eggs, which is important for studying their biology and population dynamics (Robertson & Cooke 1993) including what is known about males during the winter season (Garbus et al. In press). Acknowledgements The study was approved by the Danish Nature Agency (SVANA). For Funding of the study, we acknowledge The Danish Environmental Protection Agency, 15. Juni Fonden, Jægernes Naturfond, SKOV A/S (Glyngøre 7870 Roslev, Denmark) and BONUS BALTHEALTH that has received funding from BONUS (Art. 185), funded jointly by the EU, Innovation Fund Denmark (grants 6180-00001B and 6180-00002B), Forschungszentrum Jülich GmbH, German Federal Ministry of Education and Research (grant FKZ 03F0767A), Academy of Finland (grant 311966) and Swedish Foundation for Strategic Environmental Research (MISTRA). In addition, we are grateful to the people of Christiansø for their help with reporting and collecting dead eiders in 2007 and 2015. Povzetek Avtorji članka predstavljajo rezultate ovoskopije 258 jajc iz 50 gnezd gage Somateria mollissima v koloniji na Osrednjem Baltiku. Od teh jih je 223 (86  %) vsebovalo razvijajoče se zarodke. Med 35 (14  %) propadlimi jajci je bilo 14 neoplojenih, 20 pa jih je vsebovalo mrtve zarodke. Prevladujoče število propadlih jajc je podobno povprečnem deležu propadlih jajc, o katerem so v obdobju 1998–2014 poročali z Znanstvene terenske postaje v arhipelagu Christiansø. Razlog za ta visoki odstotek propadlih jajc sicer ni znan, vendar avtorji domnevajo, da gre glavni faktor za takšno stanje po vsej verjetnosti pripisati telesni masi pred valjenjem in energetskemu stresu. Da bi sledili razvoju in zarodkovni morfologiji, so se avtorji odločili za inkubacijo osmih jajc v labo- ratoriju od dneva 0. Rezultat je bil terenski atlas, iz katerega je mogoče oceniti datum začetka inkubacije z uporabo ovoskopije med zgodnjo inkubacijo (dnevi 1–12). Atlas ponuja terenskim biologom novo možnost ocenjevanja prvega dne valjenja gnezdečih gag in prevladujoče število neoplojenih in gnilih jajc, kar je pomembno za preučevanje njihove biologije in populacijske dinamike. 4. References Alcorn MJ (2008): How to carry out a field investigation. pp. 14-38. In: Jordan F. T. W, Pattison M., Alexander D., Faragher T. (eds.): Poultry Diseases. – W.B. Saunders, London. Buchmann K. (2010): Døde edderfuglene af et parasitangreb? (Did the eiders die from parasitic infections?)  – Natur på Bornholm 8: 18–21. (in Danish) S-E. Garbus et al.: Candling and field atlas of early egg development in Common Eiders Somateria mollissima in the central Baltic 89 Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Common Eider eggs Figure 3: Stages of egg incubation on days 1–12 at Christiansø Slika 3: Faze valjenja v dnevih 1–12 v arhipelagu Christiansø Acrocephalus 39 (178/179): 85–90, 2018 90 Christensen JP, Bojesen MA, Bisgaard M. (2008): Fowl cholera. pp. 149–154. In: Jordan F. T. W, Pattison M., Alexander D., Faragher T. (eds.): Poultry Diseases. – W.B. Saunders, London. Christensen TK, Bregnballe T. (2011): Status of the Danish breeding population of Eiders Somateria mollissima 2010.  – Dan Ornol Foren Tidsskr 105: 195–205. Ernst RA, Bradley FA, Abbott UK, Craig RM (2004): Egg candling and breakout analysis. – ANR Publication 8134. Garbus SE (2016): Health, behavior, egg failure and starvation-mortality of incubating common eiders (Somateria mollissima) at Christiansø, Central Baltic Sea. MSc thesis, University of Copenhagen, Denmark. Garbus SE, Lyngs P, Christensen JP, Buchmann K, Eulaers I, Mosbech A, Dietz R, Gilchrist HG, Sonne C. (2018): Common eider (Somateria mollissima) body condition and parasitic load during a mortality event in the Baltic proper. – Avian Biol Res 11:167–172. Garbus SE, Krogh AKH, Jacobsen ML, Sonne C. (Accepted for publication – In press): Pathology and plasma biochemistry of common eider (Somateria mollissima) males wintering in the Danish part of Western Baltic. – J Avian Med Surg. Hemmings N, West M, Birkhead TR (2012): Causes of hatching failure in endangered birds. – Biol Lett 8: 964–967. Hoffman DJ (1990): Embryotoxicity and Teratogenicity of Environmental Contaminants to Bird Eggs. In: Ware G.W. (ed.): Reviews of Environmental Contamination and Toxicology. Reviews of Environmental Contamination and Toxicology, vol 115. – Springer, New York. Larsson K., Hajdu M., Kilpi R., Larsson R., Leito A., Lyngs P. (2014): Effects of an extensive Prymnesium polylepis bloom on breeding eiders in the Baltic Sea. – J Sea Res 88: 21–28. Laursen K., Møller AP (2014): Long-Term Changes in Nutrients and Mussel Stocks Are Related to Numbers of Breeding Eiders Somateria mollissima at a Large Baltic Colony. – PLoS ONE 9:e95851. Lyngs P. (1992): Ynglefuglene på Græsholm 1925–90. – Dan Orn Foren Tidsskr 94: 12–18. Lyngs P. (2009): Christiansø Fieldstation  – [http:// www.chnf.dk/aktuelt/edf09/edfugl09_2sp.php], 01/01/2016. Lyngs P. (2014): Christiansø Fieldstation.  – [http:// w w w.ch n f .d k /a kt uelt/ed f 14/ed f ug l14 .php], 01/01/2016. Robertson GJ, Cooke F. (1993): Intraclutch egg- size variation and hatching success in the common eider. – Can J Zool 71: 544–549. Prispelo / Arrived: 17. 9. 2018 Sprejeto / Accepted: 12. 12. 2018 Figure 4: From top to bottom: active egg (day 7), unfertilized egg, egg containing dead embryo at Christiansø. Note the circulatory system in the active egg and that the infertile egg appears clear and transparent with no development, while the beginning of a blood ring is seen in the dead egg (arrow). Slika 4: Od zgoraj navzdol: aktivno jajce (7. dan), neoplojeno jajce, jajce z mrtvim zarodkom. Glej obtočni sistem v aktivnem jajcu in kako je neplodno jajce videti čisto in prozorno brez znakov razvoja, medtem ko je v mrtvem jajcu opaziti začetek oblikovanja krvnega prstana (puščica). Camphuysen CJ, Berrevoets CM, Cremers HJWM, Dekinga A., Dekker R., Ens BJ, Van der Have TM, Kats RKH, Kuiken T., Leopold MF, van der Meer J., Piersma T. (2002): Mass mortality of common eiders (Somateria mollissima) in the Dutch Wadden Sea, winter 1999/2000: Starvation in a commercially exploited wetland of international importance.  – Biol Conserv 106: 303–317. The active egg (day 7) Note the circulatory system The unfertilized egg Note the clear yolk The dead embryo The blood rings observed indicates death of embryo S-E. Garbus et al.: Candling and field atlas of early egg development in Common Eiders Somateria mollissima in the central Baltic 91 Acrocephalus 39 (178/179): 91–100, 2018 10.1515/acro-2018-0008 Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass Valilno vedenje gag Somateria mollissima v Osrednjem Baltiku: prisotnost na gnezdu in izguba telesne mase Svend-Erik Garbus1,2, Peter Lyngs3, Mathias Garbus4, Pelle Garbus5, Igor Eulaers1, Anders Mosbech1, Rune Dietz1, H. Grant Gilchrist6, Rene Huusmann2, Jens Peter Christensen2, Christian Sonne1* 1 Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark (SE Garbus: se.garbus@gmail.com; C Sonne: cs@bios.au.dk; I Eulaers: ie@ bios.au.dk; A Mosbech: amo@bios.au.dk; R Dietz: rdi@bios.au.dk) 2 University of Copenhagen, Faculty of Health and Medical Sciences, Department of Veterinary Disease Biology, DK-1870 Frederiksberg, Denmark (JP Christensen: jpch@sund.ku.dk; R Huusmann: tgc720@alumni.ku.dk) 3 Christiansø Scientific Field Station, Christiansø 97, DK-3760 Gudhjem, Denmark (pl.lynx@gmail.com) 4 Daddellunden 14, DK-8960 Randers SØ, Denmark (m@garbus.dk) 5 Aarhus University, Department of Chemistry and iNANO, Center for Materials Crystallography, Langelandsgade 140, DK-8000 Aarhus C, Denmark (P Garbus: garbus@inano.au.dk) 6 National Wildlife Research Centre, Environment Canada, Raven Road, Carleton University, Ottawa, Ontario K1A 0H3, Canada (Grant.Gilchrist@ec.gc.ca) * Corresponding author: Professor Christian Sonne, DScVetMed, PhD, DVM, Dipl. ECZM (Wildlife Health), Aarhus University, Faculty of Science and Technology, Department of Bioscience, Frederiksborgvej 399, PO Box 358, DK- 4000 Roskilde, Denmark. Tel. +45-30-78-31-72; fax: +45-87-15-50-15; Email address: cs@bios.au.dk (C. Sonne). Here we present the recording of body mass change and weight loss during incubation in a Common Eider Somateria mollissima colony at Christiansø in the Central Baltic (55°19’N 15°11’E). The study was conducted during April and May 2015 and a total number of four birds were followed (two were lost due to predation and three due to power outages). Body mass and nesting behaviour was recorded electronically over a period of 26–27 days using automatic poultry scales and a surveillance video camera. During incubation, the eiders underwent a 28–37% loss in body mass and left the nest on average 13 times (range: 7–17 times) for a period of 7–70 min. In general, birds with high initial body mass left their nest for a shorter total time than birds with lower initial body mass. The recorded daily changes in body mass indicate that the eiders foraged during the incubation period, not just leaving the nest for rehydration or in response to disturbance, which improve our current understanding of eider incubation behaviour. Such information is important to fully understanding of eider breeding biology in order to better conserve and manage the species during its breeding seasons where individual birds undergo extreme stress that may affect reproductive outcome and adult survival. Keywords: camera, nest, hydrating, feeding, foraging, recess behaviour Ključne besede: kamera, gnezdo, hidracija, prehranjevanje, iskanje hrane, vedenje med odsotnostjo z gnezda 92 1. Introduction Common Eiders Somateria molissima are colonial breeders with females exhibiting a high degree of philopatry (Choate 1966, Clark 1968, Milne 1974, Wakeley & Mendall 1976). Initially, the male accompanies the female, defending its mate for fertilization assurance, but as incubation progresses the male loses interest in the female (Blumpton et al. 1988, Hario & Holmén 2004, Milne 1974). Eider clutches average 4 to 5 eggs in Danish and Finnish eider colonies and the eggs hatch after approx. 26 days of incubation (Bregnballe 2002, Goudie et al. 2000, Hario & Selin 1987). During incubation, body reserves from wintering grounds are crucial for the reproduction of eiders (Laursen et al. 2018, 2019). As the sole incubator in the nesting process, the female eider relies primarily on these accumulated reserves. Prior to incubation, the process of egg development facilitates the mobilization of minerals and nutrients (Alonso-Alvarez et al. 2002, Wilcox 1965), which affect general health, physiology and biochemistry (Garbus 2016). During incubation, the female rarely leaves the nest unless disturbed, for occasional preening or bathing or in need of rehydration (McArthur & Gorman 1978, Swennen et al. 1993, Bolduc & Guillemette 2003). The female relies on nutrient reserves and especially fat reserves and pectoral muscles are metabolised (Korschgen 1976, Milne 1976, Parker & Holm 1990). Studies have shown incubation intermissions to last for 4–17  min primarily during the night (Bolduc & Guillemette 2003, Bottitta et al. 2003, Criscuolo et al. 2000, Swennen et al. 1993). The incubation period is energy-demanding and females lose 23-46 % of their pre-laying body mass. A proportion of the incubating females may not have sufficient nutrient reserves to complete the incubation period and, consequently, clutches of eggs are occasionally abandoned (Franzmann 1980, Gabrielsen et al. 1991, Harðardóttir et al. 1997, Mawhinney 1999, Parker & Holm 1990). During incubation, typically three metabolic stages exist, each addressing different types of energy. Throughout stage I, protein catabolism decreases and fat metabolism increases. During stage II, the energy utilized is primarily fat. In stage III protein catabolism increases again. In fact, these latter biochemical changes allowed a Finnish study on incubating eiders in 1997-199 to pinpoint specific years in which stage III was reached (Hollmén et al. 2001) which was shown again in the Christiansø eider colony by Garbus (2016) in 2015. The mobilization of lipids and nutritional reserves releases persistent organic pollutants and heavy metals to the blood, which together with nutrient-deficiency lead to immune suppression and affect the breeding success (Hollmén et al. 2001, Hanssen et al. 2003, Mallory et al. 2004, Baldassarre 2014). Furthermore, body mass or body condition may also affect brood care behaviour long after hatching, affecting survival of ducklings as well (Öst et al. 2003). It is important to develop minimally invasive tools that allows us assessing the general health of eiders during the incubation period. Here we present data on body mass changes and nest attendance behaviour of the common eider using electronic scales and video surveillance. This allow us to further study behaviour and stress that incubating eiders undergo during the breeding season and determine the most important factors for breeding success. The study was conducted in a colony in the Central Baltic Sea. Here the eiders are migrants, returning to the colony in late February and conduct their main 26-day incubation from mid-April to mid-May. The very last eggs usually hatch in early June (Franzmann 1980, Lyngs 1992). 2. Materials and methods 2.1. Study design The study colony is located on Christiansø which is part of the Ertholmene archipelago northeast of Bornholm in the Central Baltic Sea (55°19’N 15°11’E, DK-3760 Gudhjem) (Figure 1). Each year, ca. 1500 eiders breed at Ertholmene (Lyngs 2014). In April 2015, a study plot of app. 900 m2 was checked daily (09.00-10.00 am) to locate potential nests for scale monitoring and camera surveillance. New nests with 1-2 pre-incubated eggs were marked with ID-number and GPS position. A thin spike was used to check if the layer of soil was sufficiently thick for placing the scale measuring S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass 93 22 cm × 7 cm (w×h). Then, eggs and nest material were temporarily removed and the soil excavated to make space for the scales. In addition, plastic saucers were used to separate the scales from the ground and the nest material. After deployment, the modified nests and their content were placed to the exact same level compared to the surrounding area as before (Figure S1). One camouflaged camera was installed within 1m of one of the nests installed with scale system (Figure S2). Recording of data started hereafter. 2.2. Automatic scale and camera surveillance We placed an automatic poultry scale system based on the scales DOL 94-10 from SKOV A/S (Glyngøre 7870 Roslev, Denmark http://skov.com) in nine eider nests. Two nests were predated by Herring Gulls Larus argentatus, and in three nests data was lost due to power outages. Consequently, datasets were obtained from four nests that all hatched successfully. Scales were connected with a cable to a panel box and the surveillance camera was connected via network cable to a router hidden in a plastic container in the nesting area. Scales were finally connected to a modified Raspberry Pie Microcomputer (RPM), which collected and stored raw signals in a database by using an Analogue to Digital Converter (ADC). The measuring error due to the resolution of the scales and 18 bit ADC was ±10.6 g. This was considered more than sufficient since other disturbances like rain, wind, temperature, unstable power, dirt and movements of the bird affect the measurements with similar or larger perturbations. The RPM was programmed to acquire raw mass data and time every 5 sec. This information was stored in a database. We mounted a Foscam FI9805 HD 4mm PoE surveillance camera near one nest site in the period April-June 2015. The Foscam Network Figure 1: Map of the study area. Slika 1: Zemljevid obravnavanega območja Acrocephalus 39 (178/179): 91–100, 2018 94 Video Recorder FN3104H camera was supplied by ShenZhen Intelligent Technology Cooperation. The camera recorded 10 frames per s and data was automatically stored on an external server. Recording during dark hours was made possible due to the cameras’ build-in infrared light technology. Microsoft Movie editor (Microsoft Inc. 2015) was used to edit the recordings. In this study, the scales and surveillance camera were placed without disturbance as the placements were carried out during the pre-incubation period. 2.3. Body mass data In order to increase the limited sample size of this present study, we also included data reported by Bolduc & Guillemette (2003) to see whether their results were different from those of this present study. The absolute recorded mass could not be used directly to determine the body mass of the bird. Instead, we used the recorded mass right before departure subtracting the mass of the nest content. This mass difference (ΔW) was extracted for all incubation intermissions for every bird (Figure 2). 2.4. Statistical analyses and graphical presentations All basic statistics were performed using R (R CORE TEAM 2018). Due to low sample size, only visual graphical interpretations were used. A moving average was applied to the graphical pre- sentation of the mass development to smooth out short-term fluctuations. 3. Results and Discussion 3.1. Incubation intermissions and nest-leave behaviour On average, the incubating eiders left their nests 13 times (range: 7–17 times; Table 1) during the 26-day incubation period. Each leave lasted for 34  min on average (range: 7–70  min; Table 1). Figure 2: Data collected from one of the automatic poultry scales and illustrated graphically providing information of the mass of the nest and the incubating female. The flat part of the curve illustrates an incubation intermission. Slika 2: Podatki ene od avtomatskih tehtnic, ki so beležile maso valeče samice. Ravni del krivulje predstavlja premor med valjenjem M as s [k g] 3,5 3,0 2,5 2,0 1,5 1,0 0,5 0,0 42 48 4, 76 63 8 42 48 4, 76 83 1 42 48 4, 77 02 7 42 48 4, 77 22 1 42 48 4, 77 41 7 42 48 4, 77 61 1 42 48 4, 77 80 6 42 48 4, 78 00 1 42 48 4, 78 2 42 48 4, 78 39 7 42 48 4, 78 59 3 42 48 4, 78 78 8 42 48 4, 78 98 1 42 48 4, 79 17 8 42 48 4, 79 37 2 42 48 4, 79 56 7 42 48 4, 79 76 3 42 48 4, 79 95 7 42 48 4, 80 15 3 42 48 4, 80 34 8 42 48 4, 80 63 42 48 4, 81 01 9 42 48 4, 81 22 2 42 48 4, 81 41 7 42 48 4, 81 61 1 42 48 4, 81 80 7 42 48 4, 82 42 48 4, 82 19 6 42 48 4, 82 39 42 48 4, 82 58 4 42 48 4, 82 77 8 42 48 4, 82 97 3 42 48 4, 83 16 7 42 48 4, 83 36 2 Time Actual Moving Average 42484,83257, 3,091854678 42484,79891, 1,082014537 42484,78931, 2,946371806 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass 95 Table 1: Basic incubation data of Christiansø Common Eiders Somateria mollissima Tabela 1: Osnovi podatki o valjenju gag Somateria mollissima v arhipelagu Christiansø ID Incubation / Valjenje Time away from nest / Čas z gnezda Time on nest / Čas na gnezdu (d) Mass loss Time / Čas (d) Intermissions / Premori Total / Skupno (min) Per trip / Posamezen odhod (min) Rate (g d-1) Absolute (g) Relative (%) #01 27 7 188 27 (7–43) 4 (2–7) 26 692 (2248–1556) 31 #02 26 17 534 31 (12–63) 2 (1–5) 20 529 (1884–1355) 28 #03 26 10 521 52 (35–70) 2 (1–5) 27 707 (1911–1204) 36 #04 26 16 442 28 (11–51) 2 (1–3) 25 655 (1761–1106) 37 Average / Povprečje 26 13 421 34 3 (1–5) 25 646 33 Table 2: Observed mass changes after incubation intermission of the Christiansø Common Eiders Somateria mollissima compared to the Saltholm study (Bolduc & Guillemette 2003). Tabela 2: Opazovane spremembe mase gag Somateria mollissima med premori v valjenju – primerjava te raziskave z raziskavo na otoku Saltholm (Bolduc & Guillemette 2003). Intermissions / Premori Mass/Masa Gain (g) Loss (g) No gain/loss Gain (g) Loss (g) n=50 18 (36 %) 25 (50%) 7 (14 %) 49 ± 21 (16–88) 44± 22 (11–89) n=76 12 (16%) 51 (67 %) 13 (17%) 117 ±75 This is slightly longer compared to previous studies from the Danish island Saltholm showing that the number of incubation intermissions was on average 12 times (range: 9–19 times; Table 2) and lasting for on average 14  min (range: 3-42  min; Table 2, see below for details) (Bolduc & Guillemette 2003). The reasons for this is unknown but could be due to differences in body condition, food access and presence of predators. The birds left on average every second day and the interval between each incubation intermissions varied 1-7 days. As suggested from Figure S3-6, the time elapse between incubation intermissions (days) did not change from the beginning to the end of incubation while the length of intermissions (min) seem to decrease slightly. This, however, based on a few individuals and a larger sample is required for statistical tests. Incubation intermissions mostly took place around the same time of the day, i.e. after sunset between 21:00–24:00 (Figure S3–6). Out of 50 incubation intermissions only 3 (6  %) were found to occur during daylight and all by the same bird (#04; Figure S6). The investigations on Saltholm by Bolduc & Guillemette (2003) showed a slightly higher daytime occurrence with eight of 61 intermissions (13  %). For every Acrocephalus 39 (178/179): 91–100, 2018 96 intermission, the birds carefully covered up their eggs with down (Figure S7). According to the webcam, this took approx. 60 s. While the female was absent, the eggs were thus protected by both dusk and down. The eiders left their nest for a total time of 421  min (range: 188-534  min; Table 1). In comparison, the Saltholm study (Bolduc & Guillemette 2003) showed that the birds left their nest for 190 min (range: 101–270 min). This suggests that the Saltholm population may have had a better body condition, better food access or was more affected by predators. The incubating eiders lost 33% (range: 28–37%) of their initial body mass on average. Other investigations have shown a mass loss of 23–46% (Bolduc & Guillemette 2003, Franzmann 1980, Gabrielsen et al. 1991, Harðardóttir et al. 1997, Korschgen 1976, Parker & Holm 1990). The incubating eiders lost on average 646 g (range: 529–707 g). The loss of body mass was 25 g d-1 (range: 20–27 g d-1) on average. In comparison, the Saltholm study showed an average body mass loss of 975 g (range: 723–1126 g), a mass loss rate of 37.5 g d-1 and a relative mass loss of 42% likely due to a higher initial body condition. Other studies of nesting eiders have shown body mass loss of 15–30 g d-1 (Bolduc & Guillemette 2003, Criscuolo et al. 2002, Erikstad & Tveraa 1995, Franzmann 1980, Gabrielsen et al. 1991, Harðardóttir et al. 1997, Korschgen 1976, Laurila & Hario 1998, Parker & Holm 1990). 3.2. Changes in body mass The distance to the sea from the study plot was 100–130  m. Due to an average incubation inter- mission of 34 min compared to the short distance to the sea it would be possible for the bird to allocate time for both rehydrating and foraging. Of 50 incubation intermissions recorded (Table S1–4), 18 were associated with mass gain, on average 48 g (range: 16–88 g), 25 with mass loss, on average 43 g (range: 11–89 g; Table 2), and seven were outside the confidence of measuring due to measuring error of ±10.6 (Materials and methods). The 18 intermis- sions associated with mass gain lasted on average 39  min (range: 11–70  min) while the average incubation intermission was at 34 min. Although there has been consensus that nesting eiders do not feed during the incubation period (Korschgen 1976, Milne 1976, Parker & Holm 1990) it has recently been suggested that they may do so nevertheless (Bolduc & Guillemette 2003, Criscuolo et al. 2002). Numerous dives (Criscuolo et al. 2002), unusually long at times, and necks distended on the way back to the nest (Bolduc & Guillemette 2003) could be signs of food ingestion. At Christiansø, similar observations were reported. At a mass mortality event in 2007 caused by starvation small piles of 5–14  mm regorged blue mussels (Mytilus edulis) were found in close vicinity of seven incubating eiders (Lyngs 2007, Garbus et al. 2018), indicating foraging. 3.3. Intermissions and body mass Blue mussels are the principal food item for eiders (Hario & Öst 2002, Hilgerloh 1999, Madsen 1954, Nehls 2002, Swennen 1976). The quality of mussels may affect both the time foraging and the amount of ingested food. If so, this may indicate that the blue mussel beds around Christiansø may be of poor condition. Earlier studies have suggested occasional poor health of blue mussels in the Baltic sea caused by Prymnesium polylepsis blooms (Larsson et al. 2014), which may be lethal to this species (John et al. 2002, Nielsen et al. 1990, Schmidt & Hansen 2001, Underdahl et al. 1989). The incubation intermissions could be to rehydrate as well as forage. However, since the daily diving time usually required to maintain energy balance in this species is 140  min, the ingestion of prey is probably lower than outside incubation (Guillemette 1998). Bolduc & Guillemette (2003) found an average mass gain of 117 g in the Saltholm colony, when mass gains were observed under the incubation intermissions, which is higher than the present study. Altogether, the present and Bolduc & Guillemette (2003) studies suggest that incubating eiders with a lower mass at the onset of the incubation period may spend in total more time away from the nest than eiders with a higher initial mass. If that is true, incubating eiders with sufficient reserves will reduce their time away from the nest to avoid nest predation or risk of poor egg development (Garbus et al. In press). Studies on other incubating waterfowl indeed support our observations on incubating behavior in relation to S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass 97 initial body mass (Afton & Paulus 1992, Alrich & Raveling 1983, Yerkes 1998) but more data is required to investigate this further. 3.4. Scale and camera Regarding the eiders nesting behaviour, only data for the eider #02 was presented for illustration of our methods (Figure 3). Figures for the remaining eiders are found in Figure S8-11. Movements of the incubating eiders on the nests were reflected as semi-long spikes (green arrows) in a diurnal pattern. The spikes were due to activities such as standing up, turning the eggs and preening in the nest. Hatching of the chicks was reflected as extra closely placed spikes (red arrows) on the graphs at the end of the incubation period. Selected points on the graph of #01 (Figure S8) were compared to the recorded video material (S12). The scale and camera instruments employed in the present study showed to be very effective in accurately measuring the timing of incubation intermissions as well as associated mass changes. As such, it can potentially elucidate how individual stress during the incubation period may ultimately result in dramatic population effects, as has been recorded for the Baltic population (Ekroos et al. 2012, Skov et al. 2011). 4. Conclusion During incubation, the Christiansø eiders underwent a 28–37% loss in body mass and left the nest on average 13 times (range: 7–17 times) for a period of 7–70  min. Birds with high initial body mass seem to leave their nest for a shorter total time than birds with lower initial body mass. Our results contribute to the further understanding of eider incubation behaviour to fully understanding their breeding biology in order to better conserve and manage the species during its breeding seasons where individual birds undergo extreme stress that may affect reproductive outcome and adult survival. Acknowledgements The study was approved by the Danish Nature Agency (SVANA). For Funding of the study, we acknowledge The Danish Environmental Protection Agency, 15. Juni Fonden, Jægernes Naturfond, SKOV A/S (Glyngøre 7870 Roslev, Denmark) and BONUS BALTHEALTH that has received funding from BONUS (Art. 185), funded jointly by the EU, Innovation Fund Denmark (grants 6180-00001B and 6180-00002B), For- schungszentrum Jülich GmbH, German Federal Ministry of Education and Research (grant FKZ Figure 3. The last part of the 26-day incubation period of female #02 constructed from the raw time-mass data. Note the spikes facing downwards, showing the bird leaving the nest (black arrows). The smaller spikes are due to activity of the bird in the nest (green arrows). Hatching of chicks are reflected as extra closely placed spikes on the graphs at the end of the nesting periods (red arrows). Slika 3: Zaključni del 26-dnevnega valjenja samice #02. Navzdol obrnjene konice (črne puščice) označujejo čas, ko je samica gnezdo zapustila, manjše konice označujejo aktivnost na gnezdu (zelene puščice), izvalitev mladičev pa rdeče puščice. Acrocephalus 39 (178/179): 91–100, 2018 Moving average 4000 g 3000 g 2000 g 1000 g 0 g 12-05-2015 23:36-23:46 13-05-2015 22:35-23:09 14-05-2015 23:38-00:08 15-05-2015 23:30-00:01 98 03F0767A), Academy of Finland (grant 311966) and Swedish Foundation for Strategic Environ- mental Research (MISTRA). In addition, we are grateful to the people of Christiansø for their help. A permission regarding potential disturbance and the handling of eggs and nests material (license J.nr. NST-304-0008) was kindly granted by the Nature Agency. Power for the technical setup as well as an online connection was kindly provided by the local school (Christiansø 4, 3760 Gudhjem, Denmark). Finally, Tatiana Kaplun is acknowl- edged for editing. Povzetek Predstavljamo spremembe telesne mase pri gagah Somateria mollissima med valjenjem na koloniji na otočju Christiansø v osrednjem Baltiku (55°19’N 15°11’E). Raziskava je potekala aprila in maja 2015, spremljali smo štiri ptice (dve sta bili uplenjeni, pri treh manjkajo podatki zaradi težav z napajanjem). Telesno maso in gnezditveno vedenje smo 26–27 dni spremljali z avtomatsko perutninsko tehtnico in nadzorno kamero. Med valjenjem so gage izgubile 28–37 % telesne mase in gnezdo zapustile v povprečju 13-krat (razpon: 7–17) za 7–70 minut. V splošnem so ptice z višjo izhodiščno maso gnezdo zapuščale za krajši čas kot ptice z nižjo maso. Meritve mase kažejo, da so se ptice med valjenjem tudi prehranjevale in gnezd niso zapuščale le zaradi pitja in motenj. Ta nova spoznanja so pomembna za razumevanje gnezditvene biologije gag in načrtovanje varstvenih ukrepov med gnezditveno sezono. References Afton A. D., Paulus S. L. (1992): Incubation and brood care. In: BATT B. D. J., AFTON A. D., ANDERSON M. G., ANKNEY C. D., JOHNSON D. H., KADLEC J. A., KRAPU G. L., eds. Ecology and management of breeding waterfowl. UMP. 30- 61. Alonso-alvarez C., Velando A., Ferrer M., VEIRA J. A. (2002): Changes in plasma biochemistry and body mass during incubation in the yellow- legged gull. – Waterbirds. 25: 253–258. Alrich T. E., Raveling D. G. (1983). Effects of experience and body weight on incubation behavior of Canada Geese. – Auk 100: 670–679. Baldassarre G. A. (2014): Ducks, Geese and Swans of North America.  – Johns Hopkins University Press, Baltimore, Maryland, USA. Blumpton A. K., Owen R. B., Krohn W. B. (1988): Habitat suitability index models: American Eider (breeding).  – U.S. Fish. Wildl. Serv. Biol. Rep. 82 (10.149). Bolduc F., Guillemette M. (2003): Incubation constancy and mass loss in the Common eider Somateria mollissima. – Ibis. 145: 329–332. Bottitta G. E., Noel E., Gilchrist H. G. (2003): Effects of experimental manipulation of incubation length on behaviour and body mass of Common eiders in the Canadian arctic.  – Waterbirds. 26: 100–107. Bregnballe T. (2002): Clutch size in six Danish sommon eider (Somateria mollissima) colonies: Variation in Egg Production. – Dan. Rev. Game Biol. 16: 7-14. Choate J. S. (1966): The breeding biology of the American Eider in Penobscot Bay, Maine.  – M.S. Thesis, Univ. of Maine, Orono. 173 pp. Criscuolo F., Gabrielsen G. W., Gender J. P., Maho Y. L. (2002): Body mass regulation during incubation in female common eiders Somateria mollissima. – J. Avian Biol 33: 83–88. Criscuolo F., Gauthier-clerc M., Gabrielsen G. W., Maho Y. L. (2000): Recess behavior of the incubating Common Eider Somateria mollissima. – Polar Biol 23: 571–574. Clark S. H. (1968): The breeding ecology and experimental management of the American Eider in Penobscot Bay, Maine.  – M.S. Thesis, Univ. of Maine, Orono. 169 pp. Ekroos J., Fox A. D., Christensen T. K, Petersen I. K., Kilpi M., Jonsson J. E., Green M.M, Laursen K., Cervencl A., DE boer P., Nilsson L., Meissner W., Garthe S., Öst M. (2012): Declines amongst breeding eider Somateria mollissima numbers in the Baltic/Wadden Sea Flyway. – Ornis Fenn 89: 81–90. Erikstad K. E., Tveraa T. (1995): Does the cost of incubation set limits to clutch size in Common Eiders  Somateria mollissima?  – Oecologia 103: 270–274. Franzmann N. E. (1980): Ederfuglens (Somateria mollissima) ynglebiologi og populationsdynamik på Christiansø 1973–1977.  – PhD dissertation, University of Copenhagen. (In Danish). Gabrielsen G. W., Mehlum F., Karlsen H. K., Andersen O., Parker H. (1991): Energy cost during incubation and thermoregulation in the female Common Eider. (Somateria mollissima).  – Norsk Polarinst. Skr. 195: 51–62. Garbus S. E. (2016): Health, behaviour, egg failure and starvation-mortality of incubating common eiders S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass 99 (Somateria mollissima) at Christiansø, Central Baltic Sea, 2015. – MSc thesis, University of Copenhagen, Denmark. 73 pp. Garbus, S.E., Lyngs, P., Christensen, J.P., Buchmann, K., Eulaers, I., Mosbech, A., Dietz, R., Gilchrist, H.G., Sonne, C. (2018): Common eider (somateria mollissima) body condition and parasitic load during a mortality event in the Baltic proper. Avian Biol Res 11:167-172. Garbus, S.E., Lyngs, P., Christensen, J.P., Sonne, C. (In press): Candling and field atlas of early egg development in common eiders (Somateria molissima). Acrocephalus 39 (178/179): 85–90. Goudie, R. I., Robertson, G. J., A. Reed. (2000): Common Eider (Somateria mollissima). In The Birds of North America, No. 546 (A. POOLE, F. GILL eds.). The Birds of North America, Inc, Philadelphia, PA. Guillemette, M. (1998): The effect of time and digestion constraints in Common Eiders while feeding and diving over Blue Mussel beds. Funct. Ecol. 12: 123–131. Hanssen, S.A., Folstad, I., Erikstad, K.E. (2003). Reduced immunocompetence and cost of reproduction in common Eiders. Oecologia. 136: 457-464. Hario, M., Selin, K. (1987): The variation in clutch size and egg volume in different age classes of the Common Eider. Suomen Riista. 34: 59-65. (English summary). Hario, M., Hollmén, E.T. (2004): The role of male mate-guarding in pre-laying Common Eiders Somateria m. mollissima in the northern Baltic Sea. Ornis Fennica. 81: 119–127. Hario, M., Öst, M. (2002): Does heavy investment in foraging implicate low food acquisition for female Common Eiders Somateria mollissima? Ornis Fenn. 79: 111–120. Harðardóttir, M., Guðmundsson, J., Petersen, Æ. (1997): þyngdartap aeðarkolla Somateria mollissima á álegutíma. Bliki. 18: 59–64. (In Icelandic). Hilgerloh, G. (1999): Year to year changes in the share of cockles (Cerastoderme edule) and the blue mussels (Mytilus edulis) in the food of eiders (Somateria mollissima) on six East Frisian Islands. Senck. Marit. 29: 71-73. Hollmén, T., Franson, J.C., Hario, M., Sankari, S., Kilpi, M., Lindström, K. (2001): Use of Serum Biochemistry to Evaluate Nutritional Status and Health of Incubating Common Eiders (Somateria mollissima) in Finland. Physiol Biochem Zool. 74: 333-342. John, U., Tillmann, U., Medlin, L.K. (2002): A comparative approach to study inhibition of grazing and lipid composition of a toxic, non-toxic clone of Chrysochromulina polylepsis (Prymnesiophyceae). Harmful Algae. 1: 45-57 Korschgen, C. E. (1976): Breeding stress of female eiders. Ph.D. dissertation, University of Maine, Orono. 110 pp. Laursen, K., Møller, A.P., Haugaard, L., Öst, M., Vainio, J. (2019): Allocation of body reserves during winter in eider Somateria mollissima as preparation for spring migration and reproduction. J Sea Res. 144: 49-56. Laursen, K., Møller, A.P., Öst, M. (2018). Body condition of Eiders at Danish wintering grounds and at pre-breeding grounds in Åland. J Ornithol. 160: 239-248. Larsson, K., Hajdu, S., Kilpi, M., Larsson, R., Leito, A., Lyngs, P. (2014): Effects of an extensive Prymnesium polylepsis bloom on breeding eiders in the Baltic Sea. J. Sea. 88: 21-28 Laurila, T.,  Hario, M.  (1988):  Environmental and genetic factors influencing clutch size, egg volume, date of laying and female weight in the common eider Somateria mollissima. FGFRI. 45: 19–30. Lyngs, P. (1992): Ynglefuglene på Græsholm 1925–90. Dansk Orn. Foren. Tidsskr. 94: 12–18 (In Danish with an English summary). Lyngs, P. (2007): Christiansø Fieldstation http://chnf. dk/aktuelt/edfugl07/edfugls07_2sp.php (accessed November 2015, in Danish). Lyngs, P. (2014): Christiansø Fieldstation http:// www.chnf.dk/aktuelt/edf14/edfugl14.php (accessed November 2015, in Danish). Madsen, F.J. (1954): On the food habits of the diving ducks in Denmark. Dan. Rev. Game Biol. 2: 157-266. Mallory, M. L., Braune, B. M., Wayland, M., Gilchrist, H. G., Dickson, D. L. (2004): Contaminants in common eiders (Somateria mollissima) of the Canadian Arctic Environ Rev. 12: 197-218. Mcarthur, P. D., Gorman, M. L. (1978): The salt gland of the incubating Eider duck Somateria mollissima: the effects of natural salt deprivation. J. Zoo. 184: 83-90. Milne, H. (1974): Breeding numbers and reproductive rate of eiders in the sands of Forvie National Nature Reserve, Scotland. IBIS. 116: 135-152. Milne, H. (1976): Body weights and carcass composition of the Common Eider. Wildfowl. 27: 115-122. Nehls, G. (2002): Do common eiders Somateria mollissima exhaust their food resources? A study on natural mussel Mytilus edulis beds in the Wadden Sea. Dan. Rev. Game Biol. 16: 47-62. Nielsen, T.G., Kiørboe, T., Bjørnsen, P.K. (1990): Effects of a Chrysochromulina polylepis subsurface bloom on the planktonic community. Ear. Ecol. Prog. Ser. 62: 21-35. Acrocephalus 39 (178/179): 91–100, 2018 100 Öst, M., Ydenberg, R., Lindström, K., Kilpi, M. (2003): Body condition and the grouping behavior of brood-caring female common eiders (Somateria mollissima). Behav Ecol Sociobiol 54:451457. Parker, H., Holm, H. (1990): Patterns of nutrient and energy expenditure in female Common Eider nesting in the high arctic. Auk. 107: 660–665. R Core Team. (2015): R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R- project.org/. Schmidt, L.E., Hansen, P.J. (2001): Allelopathy in the prymnesiophyte Chrysochromulina polylepis: effect of cell concentration, growth phase and pH. Mar. Ecol. Prog. Ser. 216: 67-81. Skov, H., Heinanen, S., Žydelis, R., Bellebaum, J., Bzoma, S., Dagys, M., Durinck, J., Garthe, S., Grishanov, G., Hario, M., Kieckbusch, J.J., Kube, J., Kuresoo, A., Larsson, K., Luigujoe, L., Meissner, W., Nehls, H.W., Nilsson, L., Petersen, I.K., Roos, M.M., Pihl, S., Sonntag, N., Stock, A., Stipniece, A., Wahl, J. (2011): Waterbird populations and pressures in the Baltic Sea. TemaNord 2011: 550. Swennen, C. (1976): Populatie-structure en voedsel van de Eidereend Somateria m. mollissima in de Nederlandse Waddenzee. Ardea 64: 311-371. (In Dutch) Swennen, C., Ursem, J.C.H., Duiven, P. (1993): Determinate laying and egg attendance in common Eiders. Ornis Scand. 24: 48-52. Underdahl, B., Skulberg, O.M., Dahl, E., Aune, T. (1989): Disastrous bloom of Chrysochromulina polylepsis (Prymnesiophycceae) in Norwegian coastal waters 1988 – mortality in marine biota. Ambio. 18: 265-270. Wakeley, J. S., Mendall, H. L. (1976): Migrational homing and survival of adult female eiders nesting in Maine. J. Wildl. Manage. 40: 15-21. Wilcox, F.H., Cloud, W.S. (1965): Alkaline phosphatase in the reproductive system of the hen. J Reprod Fertil. 10: 321-328. Yerkes, T. (1998): The influence of female age, body mass, and ambient conditions on Redhead incubation constancy. Condor. 100: 62-68. Prispelo / Arrived: 7. 12. 2018 Sprejeto / Accepted: 5. 3. 2019 S-E. Garbus et al.: Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass 101 New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia Nova morska območja IBA za sredozemskega vranjeka Phalacrocorax aristotelis desmarestii v Sloveniji Urška Koce, DOPPS – BirdLife Slovenia, Tržaška cesta 2, 1000 Ljubljana, e-mail: ursa.koce@dopps.si The IBA network is being regularly updated, based on new data and their better quality. There have been three previous stages of the marine IBA identification in Slovenia and the Mediterranean Shag has been included as the qualifying species only in the most recent stage in 2011. However, the sites were limited to inshore coastal roost-sites and thus insufficient to cover the foraging areas of the species. To fill this gap in the Slovenian territorial sea, new marine IBAs have been identified for the Mediterranean Shag within the scope of the SIMARINE-NATURA (LIFE10NAT/SI/141) project in the 2011–2015 period. The new sites were identified following standardized methodology for the identification of marine IBAs from BirdLife International. The data on the Mediterranean Shag distribution and population size were collected using four field methods: (1) monthly monitoring at in-shore communal roost-sites, (2) monthly monitoring at sea following the standardized ESAS method, (3) GPS telemetry, and (4) unsystematic census of in-shore floating groups. Based on these data, one new site, the IBA Osrednji Tržaški zaliv, and one extension to the existing IBA Debeli rtič were identified, covering 8,218 ha and 155 ha, respectively. The new sites cover 39.2% of the Slovenian territorial sea. Acrocephalus 39 (178/179): 101–128, 2018 10.1515/acro-2018-0009 1. Introduction 1.1. Marine IBAs in Slovenia Conservation of marine biodiversity is widely implemented through IBA programme – Important Bird and Biodiversity Areas, established by BirdLife International. The main objectives of the programme are identification, protection and management of worldwide network of sites of crucial importance for the long-term conservation of wild bird populations (BirdLife International 2010c). In contrast to the birds of the terrestrial environment, the seabird populations were poorly assessed until recently due to difficult access to the ornithological data in the marine environment, and this was reflected in a low number of identified marine IBAs, especially in off-shore areas; however, the number of BirdLife partners (corre- sponding to number of countries) involved in marine IBA identification and protection increased to over 40 by 2010 (BirdLife International 2010a, c). The IBA network is being updated regularly based on new data and their better quality. There have been three previous stages of IBA identification in Slovenia involving seabirds, however, the resulting marine IBA and Natura 2000 network has been assessed as insufficient by BirdLife International (BirdLife International 2014). Common characteristic of previous marine IBA identification is that it was part of the pan-national IBA identification and / or revisions, focused on terrestrial sites (Božič 2003, Denac et al. 2011, Polak 2000). Within these stages, four marine IBAs covering six species of seabirds were identified in the 2000–2011 period (Ibid.) The fourth (and most recent) stage of marine IBA identification in Slovenia, presented in this work, 102 Shags in the Gulf of Trieste coincides also with the swing of shellfish farming on filamentous floating farms that enable the shags’ undisturbed roosting on otherwise highly populated coast of the Gulf. There are three such communal roost-sites along the Slovenian coast, near Debeli rtič, Strunjan and Sečoveljske soline (Bordjan et al. 2013, Koce & Lipej 2016). All sites have already been identified as marine IBAs and included in the Natura 2000 network (Denac et al. 2011, Koce & Lipej 2016). The Mediterranean Shags forage predominantly on fish (Bazin & Imbert 2012, Cosolo et al. 2011, Lipej et al. 2016). They are foot propelled pursuit-divers, usually preying near sea-bed, but occasionally also in pelagic waters, especially in shallow coastal belt (Bazin & Imbert 2012). Their foraging dives are regularly 30 m deep, often up to 60 m and in extreme cases even up to 80 m (Bazin & Imbert 2012) and can last over one minute (Sponza et al. 2010). They usually forage solitarily or in small groups independently from one another, but they also socialize in large groups of up to few hundred individuals and communally prey on schools of small pelagic fish in coastal shoals (Nelson 2005), sometimes in the company of other seabird species, e.g. the Black-headed Gulls Chroicocephalus ridibundus (pers. observation). This is a common phenomenon in the marine environment known as multi species foraging groups (Camphuysen & Garthe 2004). The Mediterranean Shag is a dietary opportunist preying on the commonest and most easily accessible prey in the benthic zone. The majority of its prey in the Adriatic sea represent economically unimportant fish species: around the Croatian breeding sites (Oruda Island), the diet consisted predominantly of big-scale sand smelt Atherina boyeri, brown comber Seranus hepatus and peacock wrasse Crenilabrus tinca, however, in the Gulf of Trieste their main food is black goby Gobius niger (Cosolo et al. 2011, Lipej et al. 2016). As a species, the European Shag (Phalacrocorax aristotelis) is not endangered by the IUCN criteria and has a favourable conservation status at the European level (non-SPEC) (BirdLife International 2004). The status assessment after SPEC classification for the Mediterranean subspecies was not made. Although historical population estimates for the Mediterranean Shag are rather poor, the experts was implemented in the years 2011–2015 as part of the project SIMARINE-NATURA (LIFE10NAT/ SI/141) (www.simarine-natura.ptice.si). Contrary to previous stages when seabird censuses were limited to coastal and inshore areas, the monitoring of target species, i.e. the Mediterranean Shag Phalacrocorax aristotelis desmarestii, was conducted systematically across the entire range of the Slovenian territorial sea. 1.2. Target species The Mediterranean Shag belongs to the cormorant family (Phalacrocoracidae). It is distributed solely in the Mediterranean and the Black Sea. Their entire breeding population is estimated at 8,700–11,130 pairs, breeding in over 400 colonies (Bazin & Imbert 2012). The largest national breeding numbers are found in Croatia, Italy, Greece and France, ranging from 1,000 to 2,000 pairs (Bazin & Imbert 2012). The total non- breeding population of the Mediterranean Shags is estimated at 30,000 individuals (Wetlands International 2004). In the post-breeding season, part of the population spreads out of their breeding area, to the non-breeding areas up to several hundred kilometres from their breeding colonies (Škornik et al. 2011). The majority of the Adriatic population, almost entirely breeding in Croatian waters, migrates to the Gulf of Venezia (Sponza et al. 2013). In summer and autumn, only the Gulf of Trieste hosts around 6,000 and exceptionally even up to 10,000 individuals (Škornik et al. 2011), representing 20–33% of the total non-breeding population (Wetlands International 2004). The roosting population along the Slovenian coast was estimated at 2,000– 3,000 individuals in the 2006–2011 period (Denac et al. 2011). Regular seasonal migration from the Croatian breeding areas to the Gulf of Trieste was established fairly recently, in the 1980s, and became massive at the end of the 1990s (Škornik et al. 2011). The onset of post-breeding migration to the north coincides with the period of extensive overfishing in the Croatian waters and could be triggered by the lack of food around the breeding colonies and facilitated by high foraging efficiency in the shallow Gulf of Trieste, abundant with easy accessible fish prey (Sponza et al. 2010). Moreover, the increase in the numbers of the Mediterranean U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 103 agree that its population has decreased (Aguilar & Fernández 2002). Due to the limited range and small population, the Mediterranean Shag is listed on the Annex I of the Bird Directive, Annex II of the Bern Convention and on the list of priority species of the Barcelona Convention. 2. Methods 2.1. Target geographic area Within the scope of the SIMARINE-NATURA project (2011–2016), the target geographic area for the identification of marine IBAs was defined as part of the then-claimed Slovenian territorial sea within the Gulf of Trieste (hereafter referred to as ‘project area’). The project area was selected based on previous data on importance of the Gulf of Trieste for the post-breeding population of the Mediterranean Shags (Vrezec 2006b). However, the Slovenian territorial sea was redefined in 2017 as a result of the arbitration between Slovenia and Croatia. As the present Slovenian territorial sea overlaps very well with the project area it represents the target geographic area in this work (Figure 1). Surface area of the target area, i.e. the Slovenian territorial sea, is 214  km2. Surface area of the project area is 211 km2. 2.2. Marine IBA identification methodology The identification of marine IBAs in the Slovenian territorial sea was conducted following the protocol proposed by BirdLife International (2010b). The protocol recommends nine analytical steps: (1) identification of target species; (2) seabird and envi- ronmental data gathering from all possible sources, including systematic surveys, existing databases, reports and published work; (3) spatial data analysis resulting in GIS layers based on different data sources, species by species and organization of data for comparison between different months/seasons/ years; (4) classification of data layers based on data quality to primary and supplementary; (5) identifi- cation of candidate sites for each seabird species; (6) application of standard IBA criteria and confirma- tion that the IBA candidates sites comply with the criteria; (7) delineation of final boundaries. Steps 5 and 7 were merged in our study because only one target species was defined. The IBA proposals with the descriptions are entered into the “World Birds and Biodiversity Database” (WBDB) managed by BirdLife International (https://www.global- conservation.info/). As the final step, the BirdLife Secretariat reviews the proposals and decides about the confirmation of proposed IBAs. 2.2.1. Identification of target species According to BirdLife International (2010b), about 340 extant species are categorized as seabirds and theoretically all of them are suitable for the analysis in the process of the marine IBA identification. However, for practical reasons it is recommended that one or some priority species are defined based on their conservation status, data availability, and expected distribution at sea, etc. (BirdLife International 2010b). In Slovenia, 42 seabirds have been recorded in coastal and marine environment since 1950 (Koce & Lipej 2016), six of which met the criteria for either identification of new IBAs or inclusion in the existing IBAs in previous stages of the IBA identification (Božič 2003, Denac et al. 2011, Koce & Lipej 2016, Polak 2000). In opposition to previous stages when the identification of marine IBAs was limited to coastal and inshore areas and was focused on breeding colonies and communal roost-sites, the focus in the present stage was an identification of offshore marine IBAs with emphasis on species’ foraging areas. Considering these recommendations from BirdLife International (2010b), the Mediterranean Shag was selected as the only target species, based on the following characteristics: (1) it is listed in the Annex I of the Birds Directive, Annex II of the Bern Convention and among priority species of the Barcelona Convention, (2) it has a negative population trend in a geographically limited range (Bazin & Imbert 2012), (3) it has a relatively large population in the target area (Vrezec 2006a), (4) it has expected concentrations rather than extremely dispersed distribution at offshore sea (Vrezec 2006b), (5) it qualifies as an umbrella species in the target marine environment (Koce & Lipej 2016). Other seabird species occurring at Slovenian sea at present failed to meet one or more of these Acrocephalus 39 (178/179): 101–128, 2018 104 criteria and were thus not selected as priority species for the identification of marine IBAs in this stage. Moreover, the Mediterranean Shag was a priority species for financing by LIFE, the EU financial instrument supporting the conservation projects for Natura 2000 qualifying species that enhanced the marine IBA identification process in the 2007–2013 programming period, including through the SIMARINE-NATURA project. 2.2.2. Data gathering The data on the Mediterranean Shag distribution and population size were collected in the years 2011–2014, using four field methods: (1) monthly monitoring at in-shore communal roost-sites, (2) monthly monitoring at sea following standardized ESAS method, (3) GPS telemetry, and (4) unsys- tematic census of in-shore foraging groups. 2.2.2.1. Monitoring at communal roost-sites Monitoring of roosting individuals was conducted to assess the size and temporal dynamics of the roosting population in the Slovenian sea. The monitoring was conducted between November 2011 and October 2013 at three inshore locations previously known as their main communal roost-sites along the Slovenian coast. They are situated on floating infrastructure (buoys) of shellfish farms, located in the Bay of St. Bar- tholomeus (Zaliv Sv. Jerneja), Strunjan Bay (Strunjanski zaliv) and Piran Bay (Piranski zaliv). The sites had been previously identified as marine IBAs Debeli rtič, Strunjan and Sečoveljske soline, respectively (Denac et al. 2011). The censuses of shags at the roost-sites were conducted once a month, synchronously at all three locations. Counts on one census occasion were done every half an Figure 1. Target geographic area (Slovenian territorial sea) for the identification of marine IBAs for the Mediterranean Shag (Phalacrocorax aristotelis desmarestii). Black dashed line on the bottom map denotes the non-overlapping part of the project area border as defined in the SIMARINE-NATURA (LIFE10NAT/SI/141) project. U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 105 hour, starting two hours before sunset and ending at the time when light conditions were too poor to continue counting. The shags were classified by age in two classes: adults and non-adults (juveniles and sub-adults). All shags within the area of a roost-site were counted, including individuals swimming in the sea among buoys, because most of them stayed within the roost-site and occupied buoys within short period of time. The roost-site in the Bay of St. Bartholomeus is divided by national border with Italy in two parts but the shags were counted on both sides of the border as the location is functionally one roost-site. Based on the results of the roost-site monitoring, the peak non-breeding season was defined as the period when the total number of individuals was higher than mid-range, calculated as 0.5 x (nmax + nmin.) (i.e. 763 individuals). 2.2.2.2. Monitoring at sea following ESAS method Monitoring at sea was done every month between July 2012 and August 2013 following the standardi- zed ESAS method (‘European Seabirds At Sea’), whereby the birds were counted along line-transect, using boat (Camphuysen & Garthe 2004). The transect line in this survey was placed on the project area in a pattern that ensured representativeness for the area (Figure 2). It covered an entire gradient of distances from the coast to the outer border of the territorial sea as well as longitude gradient. The total length of the transect line corresponded to the distance travelled by the survey boat in 4–5  hours (81.6  km), corresponding to the time available for an optimal at-sea census of the Mediterranean Shags in one day. The censuses were conducted during the diurnal period when most shags were expected to be active outside their roost-sites. The boat was travelling at constant speed of 10  knots. The birds were recorded within 5  minute intervals. Given constant speed of 10  knots, this corresponds to segments of length 1,540  m. In case the boat changed its direction or speed, an ongoing census interval was aborted and a new interval started at the location of the change. The birds were recorded on both sides of the transect line in two bands: 300 m inner band and an unlimited outer band. The instant counting area was limited to a distance of 300 m in front of the boat. The distance was estimated by the rule of thumb by each observer upon prior calibration at a measured distance 300  m from the coast. The birds which were in contact with water were counted continuously, whereas the flying birds were counted in snapshots in one minute intervals. The birds were detected with a naked eye; binoculars were used only for the identification of individual’s age class, whereby two classes were defined based on their plumage: non- adults and adults. The data were entered in a standardized ESAS monitoring form. The following types of data were recorded: (1) census metadata (date, boat name and type, names of observers, type of census, group of recorded birds), (2) data about census interval (geographic coordinates of the starting point, interval start and end time, sea state on the Beaufort scale, visibility, floating objects and matter), and (3) interval specific bird data (age class, transect band, number of individuals, movement direction, association with objects or non-avian species, behaviour, prey, multi-species group membership). 2.2.2.3. GPS telemetry The shags were being trapped in autumn 2012 and in summers 2013–2014. Self-made clap-traps with remote triggering system were used. The traps were adapted for mounting on three different floating objects: vertical cylindrical buoys (r = 1 m), cubic rafts (a = 1  m) and horizontal cylindrical buoys (r = 0.4 m). The trap was triggered remotely by the user when one or more shags sat on the buoy or raft. The traps were set at three sites along the Slovenian coast: (1) in Viližan Bay on the east side of the town of Izola and within two communal roost-sites of the Mediterranean Shags near Strunjan (2) and Sečovlje (3). At the Izola trapping site, the traps were mounted on four existing vertical cylindrical buoys, two at a time. At the Strunjan and Sečovlje trapping sites, two cubic self-made rafts were tied among the existing buoys of the shellfish farms where the shags usually rest, one at each site. In addition, three traps were set on the existing surrounding horizontal cylindrical buoys at the Strunjan trapping site. We tagged the shags with GPS-GSM loggers of Polish producer ECOTONE. Three units of DUCK-3  model and 26 units of SAKER model were used. 16 units of the SAKER model were filled with polyurethane and 10 units with resin. Acrocephalus 39 (178/179): 101–128, 2018 106 The dimensions of the DUCK-3  model were 45 × 25 × 25 mm, weight = 40 g, and those of the SAKER model were 45 × 25 × 18 mm, weight = 25 (series with polyurethane filling) or 40 g (series with resin filling). The devices were mounted on birds permanently, as backpacks with teflon ribbon straps. The devices were supplied with energy through solar panels, which provided enough energy in good light conditions to fix a GPS position every half an hour. The data were transferred to server by SMSs after every 4 GPS fixes. They were accessible to the user by the Internet through a password protected web panel. Frequency and accuracy of GPS fixes, and operating hours of the loggers could be set remotely via the web panel. We tended to set the highest frequency of fixes during the day but sometimes it needed to be lowered due to low natural light levels and consequent need for energy savings. The loggers were switched off during the mid-night hours. 2.2.2.4. Land-based census of large floating groups In the years 2011–2014, the data on large floating groups of the Mediterranean Shags (≥ 10 individuals) were collected unsystematically based on participa- tion of experienced volunteer observers. The data were reported by observers through online web form (http://simarine-natura.ptice.si/sodeluj/). To enhance the census effort, the public was also called to participate in data collection through different means of communication: DOPPS  – BirdLife Facebook page, SIMARINE-NATURA project website, leaflets and newspaper articles as well as personal communication. 2.2.3. Production of basic spatial data layers and ecological models 2.2.3.1. ESAS dataset Filtering of the ESAS data. The aim of the analysis was to identify the areas important for foraging shags, hence we omitted the following data from the original ESAS dataset: flying individuals, as the shags never predate from the air, and the individuals resting along the shore or floating objects at sea. The individuals which were not observed during their foraging activity but were swimming in the sea were retained in the dataset, assuming that they have most likely been foraging at or near the locations where observed, based on the information from the literature and results of the GPS telemetry analysis in this study. According to Nelson (2005), the breeding shags fly directly to their foraging area and return to the colony in the same manner. According to the results of the GPS telemetry survey in this study this holds also in case of non-breeding shags that take foraging trips from communal roost-sites. We refer to the resulting dataset as ‘ESAS data subset 1’. Furthermore, we omitted the individuals which were associated with large (> 12  m) fishing boats, assuming that they were momentarily foraging on the discards and were thus not associated with their usual foraging habitat, i.e. marine benthos. We refer to the resulting dataset as ‘ESAS data subset 2’. Calculation of shag densities. The densities of shags were calculated at the level of transect and at the level of transect segments (intervals) based on the number of individuals registered in the inner 300  m band. They were calculated separately for each census occasion (denoted by date) and from each of the two ESAS data subsets. Furthermore, a raster layer of mean densities in the peak non-breeding season at the transect was produced in ArcGIS 10.3 (ESRI 2014) with 'Polyline to Raster' tool, based on each of the two ESAS data subsets. Linear vector layers consisting of transect segments with shag density as an attribute were used as input data. Rasterization was conducted separately for each census conducted in peak non- breeding season. The final raster layer with mean densities was made using 'Cell Statistics' tool, using census-specific raster layers as input data. Production of ecological models of the Mediterranean Shag distribution: To explain the distribution of the foraging Mediterranean Shags in the Slovenian territorial sea in peak non-breeding season, the number of shags in transect segments was modelled as a function of several ecological variables (Table 1). Two sets of models were fit each based on one of the ESAS data subsets (1, 2), whereby only the censuses from peak non-breeding season were included. The modelling was done in R (R Development Core Team 2018) using packages ‘MASS’ and ‘mgcv’ (Venables & Ripley 2002, Wood 2004). GAMM models with negative binomial distribution of the response variable (number U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 107 of shags in transect segment) were fit, following Zuur et al. 2009. Logarithmically transformed surface area of a transect segment was included in the models as an offset variable due to differing length of the transect segments. The potential effects of pseudo-replication due to repeated censuses at the same transect were taken into account with the inclusion of ‘census date’ random variable. The ecological data represented by a set of fixed variables were obtained from GIS layers at the intersections with central points of the transect segments, or recorded at sea during census (Table 1). The variable 'sea depth' was eliminated from further analysis because it was in strong correlation with the variable 'distance from the coast' (Pearson’s correlation coefficient = 0.7). The decision to eliminate the former instead the latter was based on the facts that (1) the bathymetry of the Slovenian sea is more or less uniform and most of the sea bottom belongs to the same depth class (20‒30 m), (2) the depth of the sea in the area is not a limiting factor for the shags. The variables describing the presence of fishing boats were included only in the models which were fit based on ESAS data subset 1. The best model in each set was selected based on AIC (Akaike information criterion) (Burnham & Anderson 2002) 2.2.3.2. GPS telemetry dataset Filtering of the GPS data. The original dataset was cleared before it was used for the analysis. In this step the following GPS locations were omitted from the dataset: locations which were fixed (1) before the shag was released, (2) after the shag died, was suspected to be dead or severely injured, (3) when the shag was apparently on migration or at breeding site, and (4) locations with an obvious error (i.e. more than 100 m inland). The outcome data subset in this step is referred to as ‘clear dataset’. Moreover, the GPS locations in the ‘clear dataset’ were grouped by a date-individual grouping variable (i.e. GPS locations from one individual fixed in the same day were assigned unique and equal group number). Furthermore, the locations were classified into three daily periods according to the fixing time: (1) day, (2) twilight and (3) night, based on astronomical data about time of sunrise, sunset and beginning or end of nautical twilight in Ljubljana, Slovenia (http://www.timeanddate.com/sun/slovenia/ ljubljana). Furthermore, GPS locations of five shags which were tracked for less than three days were excluded from the analysis at this point. Identification of roost-sites along the Slovenian coast. Besides the three traditionally known main communal roost-sites on shellfish farms, the shags were suspected to regularly roost at several other locations along the Slovenian coast. These regularly used roost-sites were identified based on clusters of roosting locations of the tracked individuals. A roosting location of an individual shag was defined as the first fixed GPS location in a day (usually early in the morning before the shags leave their roost-sites). Roost-sites were then defined as clusters of at least five roosting locations not further than 500 m from one another Table 1. Independent variables used in the modelling of the Mediterranean Shag Phalacrocorax aristotelis desmarestii distribution in the Slovenian territorial sea Independent variable Variable type Level Data source census date date census ESAS dataset presence of small fishing boats (up to 12 m) binary transect segment ESAS dataset presence of large fishing boats (above 12 m) <0,5 km away binary transect segment ESAS dataset presence of large fishing boats (above 12 m) 0,5–2 km away binary transect segment ESAS dataset sea state (Beaufort scale) factorial transect segment ESAS dataset sediment type factorial transect segment GIS layer (Geodetski inštitut Slovenije) distance from the coast continuous transect segment calculated in ArcGIS Acrocephalus 39 (178/179): 101–128, 2018 108 and delineated as minimal convex polygons. Only roost-sites along the Slovenian coast were taken into account and roosting events in the Italian and Croatian territorial sea were excluded from further analysis. A centre of each roost-site was defined as the mean mid-point of the cluster, which was used in the following steps of the analysis (referred to as a roost-site centre from hereon). Further filtering of the data. In this step, only those locations were retained in the dataset that belonged to individual shags roosting at the three main communal roost-sites and roost-sites identified during the previous step. Furthermore, in order to focus on the areas where the shags have been most likely foraging and not only resting, more locations were omitted: (1) diurnal locations within roost-sites, (2) GPS locations at other daytime resting places, or (3) artificial feeding locations (i.e. locations next to the fish market where at least two tagged shags have been known to be fed by fish sellers), (4) night and twilight locations outside roost-sites (probably erroneous fixes). We refer to the resulting data subset as ‘end dataset’. It was used during the following steps as an input dataset for the delineation of the marine IBA candidates. 2.2.3.3. Large floating groups dataset The data were digitalized in ArcGIS 10.3 (ESRI 2014) and the groups distinguished according to their foraging activity at the time of observation to foraging and non-foraging. 2.2.4. Classification of spatial data layers The spatial data layers were classified as primary or supplementary based on their quality, following the recommendations by BirdLife International (2010b). 2.2.5. Identification of marine IBA candidates by spatial data layers 2.2.5.1. ESAS dataset Selection of 5% transect segments with the highest densities. Identification of the marine IBA candidate was based on the densities of shags at transect segments, calculated from both ESAS subsets. Only the peak-nonbreeding season of the Mediterranean Shags was considered, as revealed by the results of the roost-sites monitoring (Table 2). Following the recommendations by BirdLife International (2010b), 5% of transect segments with highest densities of shags were chosen for each census occasion (referred to as the best segments from hereon), separately for each ESAS subset (1, 2). Selection of grid cells intersected by best transect segments. The target area was then overlaid with a grid of cells with side size 1,540 m (corresponding to the length of one standard transect segment, rounded to 10 m). The cells which were intersected by the segments identified during the previous step were selected from the grid. The selected cells were used as a basic framework for the delineation of the marine IBA candidate. 2.2.5.2. GPS telemetry dataset The marine IBA candidates were identified following BirdLife International’s protocol for the identification of marine IBAs using seabird tracking data (BirdLife International 2013). The protocol assumes central-place foraging, whereby an individual’s roost-site was defined as the central place. The analytical method aims at the identification of core use areas (kernels) of tracked individuals on their round trips, taken from the roost-site to foraging areas and back to the roost-site (hereafter referred to as ‘round foraging trips’). A core use area identified for a round foraging trip represents a foraging site of the individual shag making that trip. The protocol consists of eight analytical steps. In step 1, the GPS data from the ‘end dataset’ were grouped by roost-sites. We thus obtained 10 subsets of ‘end dataset’, one for each roost-site, and from hereon we describe the method for analysing individual roost-site subsets. In step 2, each subset was further split to round foraging trips. A set of locations was considered to represent a trip when the shag moved at least a defined distance from the roost-site centre, stayed on its journey for at least 1 hour, and returned back to the same roost-site i.e. closer than a defined distance from the roost-site centre. The distances (referred to as inner and outer buffer) for each roost-site were defined according to the roost-site characteristics U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 109 (Table 9). Furthermore, trips with less than six locations were automatically omitted from the analysis as they were below the numerical threshold for identification of core use areas. In step 3 the scale of interaction with the environment was calculated and further used in step 4 for fitting the kernels, i.e. identification of core use areas. In step 5, a variance test was applied on the resulting set of kernels to check for significant site fidelity of any individual. In case site fidelity of one or more individuals was significant, only one randomly chosen core use area per individual was chosen for further analysis, to avoid bias due to pseudo replication. In step 6, bootstrapping was used to assess the representativeness of the dataset and to calculate the percentage of the roosting population utilizing the marine IBA candidate. If the dataset was not representative (bootstrap outcome < 70%), no IBA candidates could be identified. In step 7, the areas more intensively used by several individuals (i.e. marine IBA candidates) were identified, and in step 8 threshold values were applied to these areas, estimated as  % of roosting population that visits each area. Steps 2–8 were applied separately to each data group as defined in step 1. 2.2.5.3. Large floating groups dataset The marine IBA candidates were delineated based on a 1,000 m buffer around locations of the groups that were recorded at the time of active foraging. Additional criterion was used to include only the groups that were larger than the median group size, i.e. the threshold was set at minimum 130 individuals. 2.2.6. Delineation of final marine IBA proposals The delineation of final marine IBA proposals was done based on integration of IBA candidates identified from different source data layers. The strength of each IBA proposal was evaluated against the rules outlined in BirdLife Interna- tional (2010b). According to these rules, the most defendable cases of marine IBAs are those identified based on two primary data layers, followed by the cases identified based on one primary and one supplementary data layer, and the cases identified based on one primary data layer. The cases identified based on two supplementary data layers are defendable only exceptionally, depending on the data involved, and the cases identified based on one supplementary data layer cannot be confirmed. 2.2.7. Application of IBA criteria 2.2.7.1. Relevant IBA criteria BirdLife International lists 20 criteria for the iden- tification of IBAs (http://datazone.birdlife.org/ site/ibacriteria), nine of which apply to the IBAs in the marine environment. The marine IBA proposals for the Mediterranean Shag in the Slovenian sea have been evaluated against three relevant criteria: B1ii. Congregations: The site is known or thought to hold ≥ 1% of a distinct population of a seabird species. C2. Concentrations of a species threatened at the European Union level: The site is known to regularly hold at least 1% of a flyway population or of the EU population of a species threatened at the EU level (listed on Annex I and referred to in Article 4.1 of the EC Birds Directive). C6. Species threatened at the European Union level: The site is one of the five most important in the European region (NUTS region) in question for a species or subspecies considered threatened in the European Union (i.e. listed in Annex I of the EC Birds Directive). 2.2.7.2. Numerical thresholds Two of the relevant IBA criteria, B1ii and C2, prescribe a numerical threshold that needs to be reached in the proposed IBA, i.e. the site has to hold at least 1% of migratory or biogeographic population (http://datazone.birdlife.org/site/ ibacriteria). Based on the population estimates by Wetlands International (2004) for the non-breeding population of the Mediterranean Shag, this threshold is at 300 individuals. To check whether the numerical threshold has been reached in the marine IBA proposals, the number of individuals using the sites has been assessed for each proposal, using the data from different sources that were used for their delineation. IBA Osrednji Tržaški zaliv. The number of individuals using the site was estimated based on Acrocephalus 39 (178/179): 101–128, 2018 110 (1) the extrapolation from transect densities and (2) model predictions. In case of the extrapolation, the ESAS dataset 1 was used as input data, i.e. the number of all floating shags in the area was estimated. The number of individuals was calculated within the target area and within the marine IBA proposal, for each census occasion separately, by multiplying density of shags at the transect with the surface area of either site. In case of the IBA estimates, only the part of the transect overlapping the IBA was considered for the calculation of shags’ density. To check whether the number of shags reached the numerical threshold required in IBA criteria C2 and B1ii over two different years in at least one season, we tested whether the mean population estimates in the IBA proposal in meteorological summer (June to August) of both census years exceeded the threshold of 300 individuals, using one tailed Student t-test. The assumption of the test that the sample population size estimates need to be normally distributed was checked and confirmed with Shapiro-Wilcoxon test of normality (W = 0.98, p = 0.93). The model predictions were done based on a new dataset, represented by a grid of cells that was used for the delineation of the marine IBA candidate. The grid was clipped to exactly match the target area or the area of the IBA proposal, resulting in several partial grid cells at the edges. To account for the different cell surface areas, logarithmically transformed surface area of cells was calculated (i.e. representing the offset variable as used in the models). The values of the variable ‘distance from the coast’ were obtained in ArcGIS 10.3 (ESRI 2014) as the distance of the cell central point from the coastal line. To simulate the effect of fishing boats variable ‘presence of large fishing boats <0.5  km away’ was set to “yes” in one randomly chosen cell, and variable ‘presence of large fishing boats 0.5–2  km away’ in two randomly chosen cells. The sea state was set to level zero to account for the optimal monitoring conditions. Any non- significant estimates were interpreted as not different from zero (i.e. the predictor has no effect). The mean predicted values and standard errors (SE) were calculated using ‘predict.gam’ function in R package ‘mgcv’ (Wood 2004), and 90% confidence intervals were calculated by the equation: mean ± 1,645 x SE. All values were calculated on the scale of the linear predictor and then transformed to the scale of the response variable, i.e. the number of individuals present in a grid cell. The total number of individuals in the IBA proposal was calculated as a sum of individuals across the cells which intersect the area of the site. Extension to IBA Debeli rtič. The number of birds visiting the area was assessed based on the census of large foraging groups and on the estimated number of individuals using the IBA candidate 1A, identified in the analysis of GPS telemetry data (Table 10). 2.2.7.3. Regularity of use of the area Besides the fact that the numerical thresholds have been reached it needs to be demonstrated that the site is being regularly used by the target species. According to the BirdLife International protocol for the identification of marine IBAs this means that the birds are visiting the area in different periods (seasons or years) or that the area is visited by the birds from different sites (i.e. breeding colonies or roost-sites) (BirdLife International 2010b). 3. Results 3.1. Monitoring at communal roost-sites Altogether, 24 monthly censuses were conducted at three communal roost-sites of the Mediterranean Shags between November 2011 and the end of October 2012 (Table 2). Their number peaked in August 2013 when 1,494 individuals were counted. The minimum was observed in March 2012 when only 32 individuals were counted. 3.2. Monitoring at sea following the ESAS method Altogether, 16 censuses were conducted between July 2012 and August 2013 (Table 3). The length of a standard transect was 81.58 km and the width was 600 m. The mean census time was 4:31. Two censuses (22.6.2012 and 21.5.2013) were not conducted entirely due to bad weather conditions and hence omitted from further analysis. Densities of the Mediterranean Shags at the transect. The density of shags at the transect varied greatly between censuses (Table 14). The highest density at the transect was observed in July 2013 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 111 when it reached 4.4 ind./km2 (all floating shags) or 3.4 ind./km2 (floating shags without those associated with fishing boats) (Table 14). The lowest densities were observed in January, February and March 2013 when less than 10 floating individuals were observed at the transect (Table 14). The mean density of shags in peak non-breeding season (data pooled for years 2012 and 2013) was generally higher off-shore than in-shore whether the shags associated with fishing boats were considered or not (Figure 2). Ecological models of the Mediterranean Shag distribution. Altogether, seven (set 1) and five (set 2) models were fit to describe the distribution of the Mediterranean Shags in the Slovenian sea (Table 4). The selected, most parsimonious model in set 1 (M1.5) contained five fixed variables. Four of these variables had significant coefficients: the ‘distance from the coast’, ‘presence of large fishing boats <0.5 km away’, ‘presence of large fishing boats 0.5–2 km away’ and the ‘sea state’. All but the latter had positive effects on the number of shags in the transect segments (Table 5). The selected, most parsimonious model in set 2 (M2.5) contained two fixed variables, the ‘distance from the coast’ and Table 2. The number of roosting Mediterranean Shags Phalacrocorax aristotelis desmarestii at three main communal roost-sites on shellfish farms along the Slovenian coast in 2011–2013; the difference between the total number of individuals (Total ind.) and the sum of adults (Ad.) and non-adults (Non-ad.) equals the number of individuals of unknown age. The shadowed censuses define the peak non-breeding season. Date All roost- sites Debeli rtič Strunjan Sečovlje Total ind. Ad. Non- ad. Total ind. Ad. Non- ad. Total ind. Ad. Non- ad. Total ind. 22.11.2011 725 344 53 328 21.12.2011 485 141 32 173 10 34 44 268 14.1.2012 172 3 27 32 18 122 16.2.2012 90 6 14 22 0 46 46 7 15 22 15.3.2012 32 3 7 10 12 0 10 10 18.4.2012 89 33 2 12 14 1 41 42 16.5.2012 170 75 3 39 42 2 51 53 20.6.2012 1047 373 191 483 16.7.2012 1485 330 174 169 380 775 13.8.2012 1406 371 309 726 17.9.2012 1241 531 276 434 13.10.2012 1261 532 209 520 15.11.2012 691 357 108 226 19.12.2012 148 68 20 88 31 29 13.1.2013 56 29 8 19 19.2.2013 39 2 14 20 0 2 2 0 17 17 22.3.2013 114 0 17 17 0 18 18 79 17.4.2013 82 28 0 6 6 48 21.5.2013 395 128 37 165 83 147 17.6.2013 905 337 18 355 195 355 17.7.2013 1357 450 255 652 23.8.2013 1494 577 33 610 269 615 17.9.2013 1424 529 267 628 24.10.2013 1215 538 38 576 120 519 Acrocephalus 39 (178/179): 101–128, 2018 112 ‘sea state’, both having significant coefficients with similar effects as in case of M1.5. Identification of marine IBA candidates. The density of shags in top 5% transect segments (i.e. two segments per census occasion) spanned between 4.3 and 72.2 ind./km2 in case of all floating shags were considered (ESAS data subset 1), and between 4.3 and 28.7 ind./km2 in case of floating shags without those associated with fishing boats (ESAS data subset 2) (Table 6). The spatial distribution of the selected segments was very similar for both ESAS data subsets, resulting in equal distribution of the intersecting grid cells that represent the spatial framework for the delineation of the marine IBA candidate (Figure 3). 3.3. GPS telemetry A total of 29 shags were tagged with GPS loggers between 3.10.2012 and 27.8.2014: 27 at the Izola trapping site and two at the Strunjan trapping site. There was no trapping success at the Sečovlje site. Two, 15, and 12 Shags were tagged in 2012, 2013 and 2014, respectively. In 2013, several devices stopped working soon after they were mounted on birds due to technical faultiness. The data from the devices that stopped working less than three days after they were mounted on birds (five devices) were excluded from further analysis. Data from 24 birds were thus analysed for the purpose of marine IBA identification. The tracking data used in the analysis were obtained between 3.10.2012 and 30.9.2014. The number of tracking days in ‘clear dataset’ differed highly among shags (n = 24): from minimum of five to maximum of 445 days (mean: 78) and so did the number of fixed GPS locations: from minimum of 168 to maximum of 8,380 (mean: 1,653). The number of tracking days in ‘end dataset’ ranged from minimum of 5 to maximum of 437 days (mean: 70) and so did the number of fixed GPS locations: from minimum of 67 to maximum of 3,449 (mean: 608). The core use areas (kernels) were fit for 21 of 24 individuals. The number of GPS locations in each round foraging trip of three individuals (Andro, Table 3. Summary of ESAS censuses conducted in the Slovenian sea in 2012 and 2013. Censuses marked with asterisk were conducted within the peak non-breeding season. Duration of census: total census duration including short pauses. Census date Length of censused transect[km] % of censused transect Census start time (h:mm) Census end time (h:mm) Duration of census (h:mm) No. of transect segments No. of transect segments < 1000 m 22.6.2012* 74.73 91.6 7:03 11:30 4:27 54 6 17.7.2012* 81.58 100 7:15 11:41 4:26 62 12 7.8.2012* 81.58 100 7:53 12:29 4:36 60 11 23.8.2012* 81.58 100 8:47 13:43 4:56 60 12 7.9.2012* 81.58 100 9:00 13:54 4:54 62 12 18.10.2012* 81.58 100 11:09 15:56 4:47 59 11 16.11.2012 81.58 100 10:30 14:52 4:22 61 12 19.12.2012 81.58 100 10:18 15:05 4:47 60 12 23.1.2013 81.58 100 9:58 14:06 4:08 58 10 19.2.2013 81.58 100 11:05 15:36 4:31 62 13 22.3.2013 81.58 100 11:00 15:32 4:32 60 12 19.4.2013 81.58 100 11:10 15:31 4:21 60 12 21.5.2013 41.55 50.9 11:30 14:22 2:52 33 9 19.6.2013* 81.58 100 11:14 15:53 4:39 57 9 26.7.2013* 81.58 100 10:55 16:35 5:40 59 11 23.8.2013* 81.58 100 10:47 15:08 4:21 60 12 Total 1.258,4 72:19 927 176 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 113 Roko and Dino) was below the required threshold (i.e. six locations) to fit the kernels. The number of fit core use areas varied greatly between the individuals (1–112) (Table 7), as well as between roost-sites (1–160) (Table 8). Mean surface area of core use areas was 383.79 ± 222.56 ha. Mean distance from the coast, calculated as aerial distance of core use area central point from the corresponding roost- Figure 2. Mean densities of the Mediterranean Shags Phalacrocorax aristotelis desmarestii (ind./km2) at the ESAS transect in peak non-breeding season; the data were pooled for the years 2012 and 2013. Left: density of all floating shags; right: density of floating shags without those associated with fishing boats. Table 4. Models of the Mediterranean Shag Phalacrocorax aristotelis desmarestii distribution in the Slovenian territorial sea in peak non-breeding season; the data were pooled for the years 2012 and 2013. Set 1: the response variable was defined as the number of all floating individuals in a transect segment (ESAS data subset 1). Set 2: the response variable was defined as the number of floating individuals not associated with fishing boats in a transect segment (ESAS data subset 2). The selected models in each set are printed in bold. Fixed variables included in a given model are denoted with 'Y'. Distance: distance from the coast; Sfishb: presence of small (<12 m) fishing boats; Lfishb <0.5 km: presence of large (>12 m) fishing boats <0.5 km away; Lfishb 0.5–2 km: presence of large fishing boats 0.5–2 km away; Sediment: sediment type; Sea state: sea state on the Beaufort scale; *GAM was fit. **Model did not converge. Set of models Model Degrees of freedom AIC Δ AIC Random variable Date Fixed variables D at e D is ta nc e Sfi sh b Lfi sh b <0 .5 k m Lfi sh b 0. 5– 2  km Se di m en t Se a s ta te Set 1 M1.5 11 1439.4 0 census date Y Y Y Y Y M1.6 8 1449.6 10.2 census date Y Y Y Y M1.2 13 1451.6 12.2 census date Y Y Y Y Y Y M1.1 17 1467.8 28.4 none* Y Y Y Y Y Y Y M1.7 8 1536.9 97.5 census date Y Y M1.3 5 1539.6 100.2 census date Y Y M1.4** 7 1540.9 101.5 census date Y Y Set 2 M2.5 8 1437.54 0 census date Y Y M2.2 10 1449.35 11.81 census date Y Y Y M2.3 5 1452.98 15.44 census date Y M2.1 14 1457.27 19.73 none* Y Y Y Y M2.4 7 1468.32 30.78 census date Y Y Acrocephalus 39 (178/179): 101–128, 2018 114 site was 3.61 ± 2.3 km. Nine of 21 individuals were using more than one roost-site (Table 7). Using the GPS telemetry data, eight marine IBA candidates were identified in total, based on the individuals making round foraging trips from roost-sites 1, 3 and 5 (Figure 6). No sites were identified based on foraging trips from other roost sites (Table 9). It was estimated that the maximum numbers of shags visiting individual areas ranged between 7 and 220 individuals (Table 10). 3.4. Census of large floating groups A total of 40 cases of large floating groups (≥10 individuals) of the Mediterranean Shags were reported between October 2011 and November 2014 (Table 11, Figure 7). All reports coincide with the autumn season, the earliest being from 21th September and the latest from 6th December. 13 (32.5%) groups consisted of 130 or more individuals, the largest two groups holding 300 and 310 individuals. 69.2 % of groups with 130 or more individuals and 40.7 % of groups with less than 130 individuals were observed during active foraging, in several cases in the company of Black-headed Gulls (Chroicocephalus ridibundus). Most groups were foraging in the intertidal zone preying on schools of small pelagic fish. 3.5. Data layer classification The spatial data layers produced based on the ESAS dataset were classified as primary and the spatial data layers produced based on the GPS telemetry data and census of large floating groups as supple- mentary (Table 12). An additional environmental layer, i.e. the bathymetry layer, was used for a detailed delineation of final marine IBA borders. Table 5. Regression coefficients of the selected GAMM models describing distribution of the Mediterranean Shags Phalacrocorax aristotelis desmarestii at the Slovenian sea in peak non-breeding season; M1.5: the response variable was defined as the number of all floating individuals in a transect segment (ESAS data subset 1). M2.5: the response variable was defined as the number of floating individuals not associated with fishing boats in a transect segment (ESAS data subset 2). te: denoting the smoothing function used in the additive modelling. Sea state referential level: Beaufort level 0. Model Predictor Description ß p M1.5 Intercept Model intercept -12.9 <0.001 te(Distance) Distance from the coast 1.22 <0.001 Sfishb Presence of small (<12 m) fishing boats 0.20 non-sig. Lfishb <0.5 km Presence of large (>12 m) fishing boats 0.5 km away 2.74 <0.001 Lfishb 0.5‒2 km Presence of large (>12 m) fishing boats 0.5‒2 km away 0.87 <0.05 Sea state level = 1 Sea state on the Beaufort scale -0.53 <0.05 level = 2 -0.89 <0.01 level = 3 -1.33 <0.01 level = 5 -0.77 non-sig. M2.5 Intercept Model intercept -12.8 <0.001 te(Distance) Distance from the coast 1.33 <0.001 Sea state level = 1 Sea state on Beaufort scale -0.59 <0.01 level = 2 -1.06 <0.001 level = 3 -1.50 <0.01 level = 5 -0.84 non-sig. U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 115 3.6. New marine IBA proposals and their compliance with the IBA criteria 3.6.1. Marine IBA proposals The final marine IBA proposals for the Mediter- ranean Shags were delineated based on the IBA candidates that were identified as part of the analysis of the three data sources: ESAS dataset (Figure 3), GPS telemetry dataset (Figure 6), and land-based observations of large foraging groups (Figure 7). One new marine IBA and one extension to an existing marine IBA were delineated (Figure 8). The IBA Osrednji Tržaški zaliv was delineated based on one primary data layer (Table 13). The extension to IBA Debeli rtič was delineated based on two overlapping supple- mentary data layers and the bathymetry layer as an additional environmental data layer to limit the area to 0–10  m depth zone, as social foraging of shags on schools of small pelagic fish occurred most intensively in the shallow in-shore waters and the intertidal zone (Table 13). The new proposed areas and the previously identified IBAs represent four distinct IBAs for the Mediterranean Shag in the Slovenian territorial sea (Figure 8). Note that the marine IBA Škocjanski zatok does not include the Mediterranean Shag as a qualifying species. Figure 3. Marine IBA candidate as identified based on the locations of the top 5% transect segments with the highest densities of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in peak non-breeding season in 2012 and 2013; light grey segments: year 2012; dark grey segments: year 2013; black segments: both years. Left: density of all floating shags; right: density of floating shags without those associated with fishing boats. The segments are overlaid with intersecting grid cells (a = 1,540 m), representing the spatial framework for the delineation of the marine IBA candidate. Table 6. Densities of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in the top 5% transect segments in peak non-breeding season by census occasion. The densities were calculated based on the number of all floating shags (ESAS data subset 1) or the number of floating shags without those associated with fishing boats (ESAS data subset 2). *Transect segments differ between data subsets. Census date Mediterranean Shag density [ind./km2] ESAS data subset 1 ESAS data subset 2 17.7.2012 21.6 21.6 19.3 19.3 7.8.2012 56.3* 4.3* 13.0 13.0 23.8.2012 72.2* 7.9* 10.8 10.8 7.9.2012 5.4 5.4 4.3 4.3 18.10.2012 10.0 10.0 5.4 5.4 19.6.2013 26.0 24.9 15.2 15.2 26.7.2013 28.7 28.7 21.6 21.6 23.8.2013 19.5 19.5 11.9 11.9 Acrocephalus 39 (178/179): 101–128, 2018 116 Figure 4. GPS locations of 24 Mediterranean Shags Phalacrocorax aristotelis desmarestii within the Gulf of Trieste, tagged along the Slovenian coast and tracked between 3.10.2012–30.9.2014; grey dots: clear dataset (n=39,670); black dots: end dataset (n=14,595) U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 117 Figure 5. Core use areas of 21 of 24 tracked Mediterranean Shags Phalacrocorax aristotelis desmarestii making round foraging trips from roost-sites 1–10. Note that no core use areas were identified for three individuals (Andro, Dino and Roko). Numbers 1, 8 and 9 represent the main communal roost-sites along the Slovenian coast, Debeli rtič, Strunjan and Sečovlje, respectively. Acrocephalus 39 (178/179): 101–128, 2018 118 Table 7. Core use area (CUA) statistics by individuals for 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii. Note that no core use areas were identified for three individuals, Andro, Dino and Roko. Individual No. of CUA Mean surface area (ha) SD (ha) Mean coast distance (km) SD (km) No. of roost- sites Ante 1 147.24 NA 1.90 NA 1 Ari 3 457.79 77.48 1.34 1.36 1 Bepo 29 630.59 203.39 5.50 5.68 1 Dado 6 220.65 27.12 0.71 0.69 2 Ilija 4 871.15 392.35 11.62 8.65 1 Ivek 8 238.30 33.89 1.55 1.50 1 Jakomo 112 240.37 101.77 2.89 3.61 4 Karlo 44 595.18 164.78 6.59 6.74 2 Mihi 69 395.54 144.60 3.78 3.94 4 Momo 4 389.72 71.13 2.47 1.47 1 Nace 38 254.11 83.20 2.59 3.21 1 Nikola 63 587.95 209.13 4.50 4.38 3 Ogi 10 678.16 235.74 5.79 5.81 1 Oto 2 861.29 94.64 3.33 3.33 1 Pino 15 246.68 93.74 2.77 2.00 3 Srečko 26 332.43 77.60 1.75 1.56 4 Šime 5 329.61 169.54 2.67 2.87 1 Štelio 10 459.52 312.37 3.38 3.15 1 Tartini 10 527.98 179.13 2.93 2.62 1 Tonin 3 264.21 17.46 1.23 1.41 2 Ugo 55 183.21 68.87 2.58 1.69 3 Table 8. Core use area (CUA) statistics by roost-sites for 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii. Note that no core use areas were identified for three individuals, Andro, Dino and Roko. Roost-site No. of CUA Mean area (ha) SD (ha) Mean coast distance (km) SD(km) No. of individuals 1 119 426.76 223.89 4.70 2.38 9 2 1 169.12 NA 2.76 NA 1 3 160 420.45 220.79 3.82 1.81 7 4 8 246.32 36.12 1.31 0.45 2 5 93 243.58 122.23 1.33 1.21 7 6 8 335.92 30.25 1.69 0.58 1 7 10 385.34 79.38 2.13 0.54 1 8 103 412.11 246.93 4.10 1.51 8 9 8 584.18 406.85 9.20 5.04 2 10 7 272.95 128.14 4.29 1.78 1 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 119 Figure 6. Marine IBA candidates as identified in the analysis of the GPS telemetry data of 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii tagged along the Slovenian coast and tracked between 3.10.2012–30.9.2014. Note that no candidates were identified for shags roosting at roost-sites 2, 4, 6–7 and 9–10. Letters A to D denote individual IBA candidates. Table 9. Parameters and outcomes of the identification of marine IBA candidates based on the GPS telemetry data of 21 Mediterranean Shags Phalacrocorax aristotelis desmarestii tagged along the Slovenian coast and tracked between 3.10.2012–30.9.2014. Roost-site Inner buffer [km] Outer buffer [km] Ars scale Site fidelity Sample representa- tiveness Resulting marine IBA candidates 1 (Debeli rtič) 0.7 0.7 0.732 non-significant 97.42 1A–B 2 0.3 0.3 / sample too small 3 0.35 0.35 0.675 significant 79.8 3A–D 4 0.4 0.4 0.7 / sample too small 5 0.3 0.5 0.545 non-significant 99.31 5A–B 6 0.2 0.2 0.600 / sample too small 7 0.2 0.2 0.629 / sample too small 8 (Strunjan) 0.4 0.4 0.829 significant 56.07 sample not representative 9 (Sečovlje) 0.6 0.6 1.471 / sample too small 10 0.3 0.3 1.067 / sample too small Acrocephalus 39 (178/179): 101–128, 2018 120 3.6.2. Estimated numbers of the Mediterranean Shags in proposed IBAs Estimates based on extrapolation: Estimated number of shags in the target area was the highest in July 2013 and the lowest in March 2013 (Table 14). The estimated number of shags in the proposed IBA Osrednji Tržaški zaliv (OTZ) exceeded 300 individuals (1% of biogeographic population) in 5 out of 8 censuses within the peak non-breeding season, i.e. in July 2012, twice in August 2012, in June 2013 and July 2013 (Table 14). The mean number in summer months, pooled for both monitoring years, was 374 individuals (321–427, 90% CI). The probability that the mean was lower than 300 individuals was below 5% (Student t = 2.8, df = 5, p = 0.02). Estimates based on the models: The estimated mean number of all f loating shags within the Slovenian territorial sea was 866 (471–1,705, 90% CI), and 495 (265–988, 90  % CI) within the IBA Osrednji Tržaški zaliv (predictions from the model M1.5). The estimated mean number of f loating shags without individuals associated with fishing boats was 745 (472–1,187, 90% CI) within the Slovenian territorial sea and 415 (263–658, 90% CI) within the IBA Osrednji Tržaški zaliv (predictions from the model M2.5). Note that the predictions of the models account for the number of shags averaged over the entire peak non-breeding season and are thus not directly comparable with the estimates based on extrapolation (expressed as mean number of shags in summer months). Table 10. Marine IBA candidates identified based on the GPS telemetry data of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in the Slovenian sea, and estimates of the number of individuals utilizing each area. Roost-sites represent the central place of round foraging trips of the shags. Roost-site Area ID Surface area [ha] Roosting population max. % of roosting population max. mIBA site population 1 A 573 530—610 1 24.37 129‒149 B 888 36.13 191‒220 3 A 168 ~100 2 14.29 14 B 1407 57.14 57 C 147 14.29 14 D 239 14.29 14 5 A 14 ~50 2 12.9 7 B 291 78.49 39 1 Roost-site monitoring yearly maxima in 2012 and 2013; 2 numbers assessed based on land observations (best expert opinion). Table 11. The number of groups of the Mediterranean Shags Phalacrocorax aristotelis desmarestii along the Slovenian coast from October 2011 to December 2014 by months and years; the data were reported by random observers; Total foraging: number of groups observed during active foraging. The number in brackets denotes the number of groups with ≥ 300 individuals. Month < 130 ind. ≥ 130 ind. September 1 4 October 11 7(2) November 14 2 December 1 0 Year < 130 ind. ≥ 130 ind. 2011 0 2(1) 2012 9 5 2013 10 3 2014 8 3(1) Total 27 13(2) Total foraging 11 9(2) U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 121 Figure 7. Large groups (≥ 10 individuals) of the Mediterranean Shags Phalacrocorax aristotelis desmarestii randomly registered between October 2011 and November 2014 along the Slovenian coast; black circles: the group was observed during active foraging; grey circles: the group was not actively foraging; the groups selected for delineation of marine IBA candidates are marked with asterisk. Table 12. Classification of the spatial data layers used for delineation of marine IBA candidates for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in the Slovenian sea. Data layer Data source Data layer class 1 local densities of shags in the peak non- breeding season, i.e. top 5% transect segments with highest densities (the best segments) ESAS monitoring primary 2 grid cells (1,540 m) intersecting with the best transect segments 3 core use areas of individual tracked shags GPS telemetry supplementary 4 large foraging groups of shags unsystematic land-based census supplementary 5 bathymetry layer Geodetic Administration of the Republic of Slovenia (GURS) environmental Acrocephalus 39 (178/179): 101–128, 2018 122 4. Discussion The Slovenian territorial sea has been previously recognized as an area of international importance for the Mediterranean Shag in the non-breed- ing season (Denac et al. 2011, Koce & Lipej 2016), however, this work delivers important new knowledge about the spatio-temporal distribution of this seabird within the area. Two new marine IBAs for the Mediterranean Shag were identified based on the results of this study, which essentially complement the previously existing marine IBAs covering three main communal roost-sites on the shellfish farms located along the Slovenian coast (Denac et al. 2011). The main added value of the new sites to the conservation of the global non-breeding population of the Mediterranean Shag is that they encompass two areas regularly used for foraging by at least 1% of the population. The two new areas, IBA Osrednji Tržaški zaliv and the extension to the existing IBA Debeli rtič, differ in their ecological characteristics reflected in different ways the shags are using them. The IBA Osrednji Tržaški zaliv covers an off-shore area, spanning between approximately 3.5 and 10  km from the coast and lying within the 20–25 m depth zone, dominated by muddy and sandy benthic substrate and corresponding benthic community that is poorly investigated (Peterlin et al. 2013). We suggest that its importance for the foraging Figure 8. Marine IBAs in Slovenia; dashed line: new marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii identified within the scope of the SIMARINE-NATURA project (this work); dark grey polygons: marine IBAs identified during previous stages in 2000–2011 (denac et. al 2011). 1: IBA Osrednji Tržaški zaliv; 2: IBA Debeli rtič; 3: extension to IBA Debeli rtič; 4: IBA Strunjan; 5: IBA Sečoveljske soline; 6: IBA Škocjanski zatok. IBAs 2, 4 and 5 cover the three main roost-sites of the Mediterranean Shags along the Slovenian coast. The IBA Sečoveljske soline crosses the national border since it was identified before the marine border between Slovenia and Croatia was defined in the arbitration. Note that the IBA Škocjanski zatok does not include the Mediterranean Shag as a qualifying species. U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 123 Table 13. Marine IBAs proposed based on the data on the Mediterranean Shag Phalacrocorax aristotelis desmarestii distribution and numbers, gathered within the project SIMARINE-NATURA (LIFE10NAT/SI/141) in 2011‒2014. Marine IBA proposal Underlying data sources Surface area (ha) Estimated population size Regularity of use Complies with IBA criteria IBA Osrednji Tržaški zaliv – ESAS dataset 8.218 ha 374 (321‒427, 90% CI) 1 495 (265‒988, 90% CI) 2 1% population threshold exceeded in two years (2012 and 2013) B1ii, C2, C6 Extension to IBA Debeli rtič – GPS telemetry dataset – large floating groups dataset – bathymetry layer 155 ha up to 310 3 129‒149 4 1% population threshold exceeded in two years (2011 and 2014) B1ii, C2, C6 1 Mean number of shags using the area in summer months over two years, estimated based on the extrapolation; 2 mean number of shags using the area in peak non-breeding season, estimated based on the model M1.5; 3 maximum number of shags observed within the same foraging group; 4 estimated number of shags using the marine IBA candidate 1A, identified based on the GPS telemetry data. Table 14. Estimated numbers of the Mediterranean Shags Phalacrocorax aristotelis desmarestii in the Slovenian territorial sea and in the IBA Osrednji Tržaški zaliv (OTZ), based on the extrapolation from the ESAS dataset. (1): Number of all floating shags, (2): number of floating shags without individuals associated with fishing boats. Results of the censuses from 22.6.2012 and 17.5.2013 were omitted due to unrepresentativeness of the sample. Censuses marked with asterisk were conducted within the peak non-breeding season. M et eo ro lo gi ca l se as on C en su s d at e N o. o f S ha gs at th e t ra ns ec t ( 1) N o. o f S ha gs at th e t ra ns ec t ( 2) D en si ty o f S ha gs at th e t ra ns ec t ( 1) [n o. /k m 2 ] D en si ty o f S ha gs at th e t ra ns ec t ( 2) [n o. /k m 2 ] Es ti m at ed n o. o f Sh ag s a t S LO (1 ) Es ti m at ed n o. o f Sh ag s i n O T Z (1 ) Es ti m at ed n o. o f Sh ag s a t S LO (2 ) Es ti m at ed n o. o f Sh ag s i n O T Z (2 ) Summer 17.7.2012* 131 131 2.7 2.7 572 349 572 349 7.8.2012* 112 60 2.3 1.2 489 392 262 184 23.8.2012* 145 95 3.0 1.9 633 425 415 225 Autumn 7.9.2012* 50 50 1.0 1.0 218 110 218 110 18.10.2012* 36 36 0.7 0.7 157 124 157 124 16.11.2012 21 13 0.4 0.3 92 26 57 26 Winter 19.12.2012 11 9 0.2 0.2 48 20 39 20 23.1.2013 7 7 0.1 0.1 31 4 31 4 19.2.2013 2 2 0.0 0.0 9 0 9 0 Spring 22.3.2013 1 1 0.0 0.0 4 0 4 0 19.4.2013 19 19 0.4 0.4 83 44 83 44 Summer 19.6.2013* 142 127 2.9 2.6 620 344 555 337 26.7.2013* 215 167 4.4 3.4 939 458 729 458 23.8.2013* 101 101 2.1 2.1 441 277 441 277 All year 71 58 1.4 1.2 310 184 255 154 Summer 141 114 2.9 2.3 616 374 496 305 Peak non-breeding season 117 96 2.4 2.0 509 310 419 258 Acrocephalus 39 (178/179): 101–128, 2018 124 shags is established on high abundance and easy access of suitable prey species, especially the black goby Gobius niger. The species has been identified as the dominant prey of the Mediterranean Shags in the Gulf of Trieste in two recent studies (Cosolo et al. 2011, Lipej et al. 2016). The black goby is a common benthic fish species throughout the Gulf of Trieste (Lipej et al. 2016), however, its spatio- temporal dynamics within the Slovenian sea is not well known. Based on the existing data, it is not possible to conclude that the peak densities of the Mediterranean Shags, consistently found in off-shore areas within the scope of the systematic ESAS monitoring, reflect higher densities of prey in these areas, although this is a plausible hypothesis. Moreover, the distribution of shags at sea could also be affected by the level of disturbance but the effect of this factor was not considered in our study. The IBA Osrednji Tržaški zaliv overlaps with the national B fishing zone (Klanjšček et al.), regularly exploited by bottom and midwater otter trawlers, purse seiners and pelagic pair trawlers (MKGP 2011). All these fishing techniques use vessels defined in this study as large fishing boats. Groups of shags have been occasionally observed to follow the boats and forage on the discards (own unpublished data and B. Marčeta, personal communication). This suggests that higher abundances of shags in the off-shore areas could be the consequence of fishing activities in these areas. In fact, the presence of large fishing boats in a transect segment or in its close vicinity (i.e. < 500 m from the instant observation point) had a strong positive effect on the number of shags, as revealed by one of the selected models fit for the ESAS dataset in this study. Nevertheless, a comparison of both selected models revealed that the number of shags within the transect segment increases with increasing distance from the coast independently of the presence of fishing boats. Moreover, the occasional discards probably do not represent an essential source of food for the Mediterranean Shag, as they are relatively scarce in this area (MKGP 2011). We thus suggest that fishing activity is not an ultimate factor influencing the distribution of shags in the Slovenian sea, but it can cause temporary aggregations of the individuals that primarily visit the overlapping area to prey on the bottom dwelling prey species, predominantly the black goby. The IBA Osrednji Tržaški zaliv was identified based on one primary data source, the spatial distribution of shags, as revealed by the ESAS monitoring. However, the results of GPS telemetry do not comply with these findings as they suggest that the shags’ most important foraging areas are located along the coast. According to the recommendations by the marine IBA identification protocol (BirdLife International 2010b), the GPS telemetry data, retrieved from more than 10 individuals, classifies as the primary data source, but we classified it as supplementary despite adequate number of tracked individuals. The reason for this lies in the fact that the sample of tracked shags was biased due to non-randomized catching. The majority of individuals were caught at one near-coast location, characterized as a resting spot used by the shags during their diurnal activities (i.e. between foraging episodes). As revealed by the results of this telemetry study, many shags tend to be faithful to their foraging areas, meaning that our sample was at least to some degree biased towards the locally-foraging population and thus not representative for the entire roosting population. To ensure random sampling, the majority of shags should be caught at their communal roost- sites. However, these individuals were extremely hard to catch as they tended to avoid the floating rafts and buoys with mounted traps, placed in the environment with abundant alternative traditional roosting structures, i.e. the shellfish farm buoys. Another possible source of bias could be the difference in total diving time when shags are foraging in shallow coastal waters or foraging in deep off-shore waters, which would affect the frequency of successfully fixed GPS locations. However, the total diving time of individuals was not assessed in this study. Nevertherless, the GPS telemetry and land- based census of large floating groups importantly supplement the ESAS censuses that tend to overlook the shags closely associated with the sea-shore. As part of the maritime traffic rules, the ESAS census boat was not allowed to travel with required speed closer than 400 m from the shoreline, missing out at least the innermost 100  m coastal belt where most communal foraging occurs. Although the supplementary datasets do not provide adequate data to evaluate the entire Slovenian coastal belt, U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 125 they do provide adequate information to identify an important foraging area extending from the existing marine IBA Debeli rtič along several kilometres of the coast. The importance of the site for the socially foraging shags is supported also with the findings of their diet analysis that revealed disproportionally high frequencies of sand-smelts in the diet of individuals roosting at the Debeli rtič roost-site (Lipej & Mavrič 2013, Lipej et al. 2016). However, the rest of the innermost coastal belt should be further evaluated in terms of its importance for foraging shags through systematic land-based monitoring from several spots at the coast and through systematic monitoring of innermost coastal belt by slow-speed travelling boat. The standard IBA criteria used for site justification require two conditions to be met: (1) regular use, and (2) threshold number of individuals utilizing the site. For the purpose of marine IBA justification, the regularly used areas were defined as areas visited by birds from more than one site or during different periods (i.e. seasons or years) (BirdLife International 2010b). Regular use of the IBA Osrednji Tržaški zaliv was demonstrated by repeated systematic censuses over the period of 13 months and two non-breeding seasons in 2012 and 2013. It was demonstrated that in both years the number of shags using the area exceeded 300 individuals in several months and that the average summer number over both years was above 300 individuals. It is of utmost importance to stress that these calculations do not take into account the turnover, i.e. the phenomenon that more birds are actually using the site over a period of time than the number of individuals recorded at any given moment during the census. The turnover rates for the foraging Mediterranean Shags in this study were not assessed and thus the true number of individuals using the IBA within one season cannot be estimated, but it could be considerably higher than the estimated numbers. This is very important to consider in the attempts to compare these estimated numbers against the size of the roosting population, acquired by total counts of static individuals within the roost-site monitoring. Moreover, the first few censuses implemented in 2012 (from July to September) were not conducted in the optimal time of the day, as their starting time was too early. Based on the data from a few all-day monitorings of the communal roots-sites, conducted after the onset of ESAS monitoring (Bordjan et al. 2013, Pavletič 2013, Rozman 2012), the optimal time for at-sea census in the peak non-breeding season is between 10 a.m. and 4 p.m. It was estimated that 48–70% shags were staying at the roost-sites during the first hour of the censuses that started around 8 a.m., 31–43% in the first hour of censuses starting around 9 a.m. and only 13–28% in the first hour of censuses started between 10–11 a.m. (own unpublished data). Based on these data we conclude that the estimated number of shags censuses between July and September 2012 does not reflect the peak diurnal numbers of shags in the IBA Osrednji Tržaški zaliv. The estimated number of shags in the IBA Osrednji Tržaški zaliv and even in the entire target area was well below 300 individuals in two of the eight censuses during peak non-breeding season (September and October 2012), although the number of roosting population was at its highest level. These low estimated numbers of shags at sea coincide with the autumn period when the shags frequently formed large groups and foraged on schools of small pelagic fish in the shallow coastal waters. These groups were often formed of 100 or more individuals, and nine such cases were reported in September and October 2012 (max. 230 individuals in one group) only in random observations. Since the large groups foraging in the innermost coastal belt might have been overlooked from the ESAS census boat, this seasonal phenomenon could explain the lower numbers of shags in the autumn peak non-breeding season months, estimated based on the ESAS dataset. The IBA Debeli rtič has been estimated to hold about 800 roosting individuals in the 2006–2011 period (Denac et al. 2011). In this study, however, a maximum of 532 and 610 individuals were registered during the peak non-breeding seasons in 2012 and 2013, respectively. The roost-site itself meets IBA criteria, but the extension can also be justified as an important foraging area. The shags tend to form large foraging groups around this roost-site, diving after schools of small pelagic fish along the coast outside the original IBA borders. Two groups of 300 and 310 individuals were observed in the area in two different years, proving that the numerical threshold has been met without Acrocephalus 39 (178/179): 101–128, 2018 126 even considering the turnover rates. Regular use of the extension to the existing IBA was demonstrated by both types of data used for its delineation. The large groups of 130 or more individuals were observed in the area in four different years and the area was visited by shags from two different roost- sites as revealed by the GPS telemetry data. Least but not last, the results of this study should be viewed on the spatial scale of the entire Gulf of Trieste. The non-breeding population of the Mediterranean Shags within this region cannot be partitioned to national fragments. Although the identification of marine IBAs for the Mediterranean Shag was limited to the Slovenian territorial sea within the scope of the SIMARINE-NATURA (LIFE10NAT/SI/141) project, the data collected in this study as well as previous knowledge about the distribution of Mediterranean Shags in the region call for the identification of complementary sites within the Italian waters or transboundary sites spanning across the political borders. Povzetek Omrežje IBA redno posodabljamo na osnovi novih podatkov in njihove boljše kakovosti. V Sloveniji smo morska območja IBA v preteklosti opredelili v treh fazah, vendar je bil sredozemski vranjek vključen kot kvalifikacijska vrsta le v zadnji fazi leta 2011. Toda ker so bila območja omejena na njegova obalna prenočišča, niso zadostovala za pokrivanje prehranjevalnih območij te vrste. Da bi zapolnili to vrzel v slovenskem teritorialnem morju, smo v okviru projekta SIMARINE- NATURA (LIFE10NAT/SI/141) v obdobju 2011–2015 opredelili nova morska območja IBA za sredozemskega vranjeka, in sicer po standardizirani metodologiji naravovarstvene organizacije BirdLife International za opredelitev morskih območij IBA. Podatki o razširjenosti in velikosti populacij sredozemskega vranjeka so bili zbrani z naslednjimi terenskimi metodami: (1) mesečnim monitoringom na skupnih obalnih prenočiščih, (2) mesečnim monitoringom na morju po standardizirani metodi ESAS, (3) z GPS-telemetrijo, in (4) nesistematičnim štetjem obalnih skupin plavajočih osebkov. Na osnovi teh podatkov smo opredelili eno novo območje, IBA Osrednji Tržaški zaliv, in razširitev že obstoječega IBA Debeli rtič, ki pokrivata 8218 oziroma 155 ha. Novi območji tako pokrivata 39,2 % slovenskega teritorialnega morja. Acknowledgements This research was done as part of the project SIMARINE-NATURA (LIFE10NAT/SI/141) project co-financed by LIFE, the EU’s financial instrument for the Environment. Other co-financ- ers were: Ministry of the Environment and Spatial Planning, City Municipality of Koper, Municipali- ty of Izola and Municipality of Piran. I am especially grateful to many who took part or otherwise helped in this study either as professionals or volunteers. This research could not be accomplished without their participation. These were (in alphabetical order): Andrej Bibič, Dr Dejan Bordjan, Igor Brajnik, Bruna Campos, Dr Damijan Denac, Katarina Denac, Dr Maria Dias, Ana Dolenc, Dare Fekonja, Jernej Figelj, Dr Irena Fonda, Jakob Fric, Tilen Genov, MSc, Pedro Geraldes, Dr Jonathan Green, Dr Mateja Grego, Eva Horvat, Lech Iliszko, Kaja Jensterle, Martina Kačičnik Jančar, MSc, Luka Kastelic, Mirko Kastelic, Dr Primož Kmecl, Brina Knez, Neža Kocjan, Dr Ben Lascelles, Julijana Lebez-Lozej, MSc, Bojana Lipej, Dr Lovrenc Lipej, Metka Lotrič, Bojan Marčeta, Dr Borut Mavrič, Andrej Medved, MSc, Ana Meirinho, Nace Mihelič, Tomaž Mihelič, Dr Roberto Odorico, Polona Pagon, Miša Pavletič, Dr Polona Pengal, Nevenka Pfajfar, Patrik Pucer, Anja Pitamic, Dejan Putrle, Bia Rakar, Rok Rozman, Borut Rubinić, Dr Stefano Sponza, Domen Stanič, Dr Boštjan Surina, Nataša Šalaja, MSc, Bojan Škerjanc, Iztok Škornik, Tanja Šumrada, Marguerite Tarzia, Dr Davorin Tome, Robert Turk, MSc, Paolo Utmar, Duša Vadnjal, Barbara Vidmar, Dr Al Vrezec, Eva Vukelič. A big thank you also to anonymous referees and the editor for their valuable comments to the manuscript. Last but not least, I am sincerely grateful also to many unnamed for their kind support during the course of the project. U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 127 5. References Bazin N., Imbert M. (2012): Mediterranean Shag Phalacrocorax aristotelis desmarestii. Updated state of knowledge and conservation of the nesting populations of the Mediterranean Small Islands.  - Initiative PIM. Aguilar, J. S., Fernández, G. (2002): Species Action Plan for the Mediterranean Shag (Phalacrocorax aristotelis desmarestii). Final draft. – BirdLife International, Strasbourg. BirdLife International (2004): Birds in Europe: population estimates, trends and conservation status. BirdLife Conservation Series No. 12. – BirdLife International, Cambridge. BirdLife International (2010a): Marine IBAs in the European Union. Version 1.1. – BirdLife International, Brussels. BirdLife International (2010b): Marine Important Bird Areas toolkit: standardised techniques for identifying priority sites for the conservation of seabirds at sea. – BirdLife International, Cambridge. BirdLife International (2010c): Marine Important Bird Areas: priority sites for the conservation of biodiversity. – BirdLife International, Cambridge. BirdLife International (2013): Methods for identifying marine IBAs using seabird tracking data. Preliminary version – 23rd Dec 2013. BirdLife International (2014): Marine Natura 2000 Progress Assessment. – BirdLife International, Cambridge. Bordjan D., Gamser M., Kozina A., Novak J., Denac M. (2013): Roost-site characteristics of the Mediterranean Shag Phalacrocorax aristotelis desmarestii along the Slovenian coast. – Acrocephalus 34 (156/157): 5–11. Božič L. (2003): Mednarodno pomembna območja za ptice v Sloveniji 2. Predlogi posebnih zaščitenih območij (SPA) v Sloveniji. Monografija DOPPS št. 2. – DOPPS, Ljubljana. Burnham K. P., Anderson D. R. (2002): Model Selection and Multimodel Inference. A Practical Information-Theoretic Approach.  – Springer, New York. Camphuysen K. C. J., Garthe S. (2004): Recording foraging seabirds at sea. Standardised recording and coding of foraging behaviour and multi-species foraging associations. – Atlantic Seabirds 6 (1): 1–32. Cosolo M., Privileggi N., Cimador B., Sponza S. (2011): Dietary changes of Mediterranean Shags Phalacrocorax aristotelis desmarestii between the breeding and post-breeding seasons in the upper Adriatic Sea. – Bird Study 58 (4): 461–472. Denac K., Mihelič T., Božič L., Kmecl P., Jančar T., Figelj J., Rubinić B. (2011): Strokovni predlog za revizijo posebnih območij varstva (SPA) z uporabo najnovejših kriterijev za določitev mednarodno pomembnih območij za ptice. Končno poročilo (dopolnjena verzija). – DOPPS, Ljubljana. Klanjšček, M., Zdešar Kadunc, Š., Karničnik, I., Radovan, D. (2015): Ažuriranje kart rab na morju. Kartografska in geoinformacijska podpora za prikaz stanja prostora za območje slovenskega dela Jadranskega morja. Končno poročilo - IZVLEČEK. - Geodetski inštitut Slovenije, Ljubljana. Koce U., Lipej B. (2016): Varstvo sredozemskega vranjeka in drugih morskih ptic v slovenskem morju. Priročnik za uporabnike in upravljavce morskega prostora.– DOPPS, Ljubljana. Lipej L., Mavrič B. (2013): Prehranjevalna ekologija sredozemskega vranjeka (Phalacrocorax aristotelis desmarestii) v slovenskem delu Jadranskega morja. Poročilo za projekt: SIMARINE-NATURA (LIFE10NAT/SI/141) – Preparatory inventory and activities for the designation of marine IBAs and SPAs for Phalacrocorax aristotelis desmarestii in Slovenia. – Shoreline, Trieste. Lipej L., Mavrič B., Odorico R., Koce U. (2016): The diet of the Mediterranean Shag Phalacrocorax aristotelis desmarestii roosting along the Slovenian coast. – Acrocephalus 37: 151–158. MKGP (2011): Program upravljanja z morskim ribištvom v vodah pod suverenostjo ali jurisdikcijo Republike Slovenije. Nelson J. B. (2005): Pelicans, Cormorants and their relatives, The Pelecaniformes. Bird Families of the World. – Oxford University Press, New York. Pavletič M. (2013): Monitoring sredozemskih vranjekov (Phalacrocorax aristotelis desmarestii). Poročilo terenskega dela pri predmetu Ornitologija. – Univerza v Ljubljani, Biotehniška fakulteta, Ljubljana. Peterlin M., Gabrijelčič E., Orlando Bonaca M., Lipej L., Malej A., Francé J., Čermelj B., Bajt O., Kovač N., Mavrič B., Turk V., Mozetič P., Ramšak A., Kogovšek T., Šiško M., Flander Putrle V., Grego M., Tinta T., Petelin B., Vodopivec M., Jeromel M., Martinčič U., Malačič V., Marčeta B., Pengal P., Strojan, I. (2013): Začetna presoja morskih voda v pristojnosti Republike Slovenije. Bistvene lastnosti in značilnosti morskih voda.  – Inštitut za vode Republike Slovenije, Ljubljana. Polak S. (2000): Mednarodno pomembna območja za ptice v Sloveniji. Monografija DOPPS št. 1.  – DOPPS, Ljubljana. R Development Core Team (2018): R: A language and environment for statistical computing.  – R Foundation for Statistical Computing, Wien. Rozman R. (2012): Dnevna dinamika številčnosti sredozemskih vranjekov (Phalacrocorax aristotelis desmarestii) na prenočiščih Debeli rtič in Strunjan. Individualna naloga pri predmetu Terensko delo Acrocephalus 39 (178/179): 101–128, 2018 128 iz botanike in zoologije.  – Univerza v Ljubljani, Oddelek za biologijo BF, Ljubljana. Sponza S., Cimador B., Cosolo M., Ferrero E. (2010): Diving costs and benefits during post- breeding movements of the Mediterranean shag in the North Adriatic Sea.  – Marine Biology 157 (6): 1203–1213. Sponza S., Cosolo M., Kralj, J. (2013): Migration patterns of the Mediterranean Shag Phalacrocorax aristotelis desmarestii (Aves: Pelecaniformes) within the northern Adriatic Sea.  – Italian Journal of Zoology 2013: 1–12. Škornik I., Utmar P., Kravos K., Candotto S., Crnković, R. (2011): Important post-breeding roosting area of Mediterranean Shag Phalacorax aristotelis desmarestii in Gulf of Trieste (N Adriatic). – Medmaravis, Alghero. Venables W. N., Ripley B. D. (2002): Modern Applied Statistics with S. – Springer, New York. Vrezec A. (2006a): Marine and coastal birds of Slovenia: status, population size and conservation of Mediterranean action plan species.  – RAC/SPA, Tunis Vilanova i la Geltrú. Vrezec A. (2006b): Tržaški zaliv  – mednarodno morsko območje IBA / SPA?  – Acrocephalus 27 (130/131): 117–129. Wetlands International (2004): Waterbird Population Estimates, 4th edition.  – Wetlands International, Wageningen. Wood S. N. (2004): Stable and efficient multiple smoothing parameter estimation for generalized additive models. – Journal of the American Statistical Association 99: 673–686. Zuur A. F., Ieno E. N., Walker N. J., Saveliev A. A., Smith G. M. (2009): Mixed Effects Models and Extensions in Ecology with R. Statistics for Biology and Health. – Springer, New York. Prispelo / Arrived: 12. 12. 2018 Sprejeto / Accepted: 27. 2. 2019 U. Koce: New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia 129 Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 Bird ringing report for Slovenia in 2017 and short overview of colour ringing in the period of 2012–2017 Al Vrezec, Dare Fekonja Prirodoslovni muzej Slovenije, Prešernova c. 20, p.p. 290, SI–1001 Ljubljana, Slovenija, e–mail: avrezec@pms-lj.si, dfekonja@pms-lj.si In 2017, the Slovenian bird ringing scheme concluded 90 years of continuous ringing in the country. In 2017, we collected data on 176 bird species. We ringed 79,886 birds of 164 species, recorded 177 recoveries of birds ringed in Slovenia and found abroad, 295 foreign recoveries in Slovenia and 2,209 local recoveries. The most ringed species were the Blackcap Sylvia atricapilla and Great Tit Parus major and, among pulli in the nest, the Great Tit, White Stork Ciconia ciconia and Barn Swallow Hirundo rustica. In 2017, 12 colour ringing schemes were active in Slovenia. In the 2012-2017 period, the number of recoveries of birds ringed in Slovenia and found abroad increased significantly due to colour ringing, especially regarding the waterbirds. With colour ringing, the likelihood of recoveries is considerably greater (75.20 ± 91.36 recoveries per 100 ringed birds) than with metal ringing only (0.11 ± 0.08 recoveries per 100 ringed birds). Among local recoveries, the most frequent were the Mute Swans Cygnus olor and Common Terns Sterna hirundo, and among foreign recoveries the Black-headed Gulls Chroicocephalus ridibundus predominated. In 2017, the first Broad-billed Sandpiper Calidris falcinellus was ringed in Slovenia (Sečovlje salinas), and additional three rare species were ringed as well: the Yellow-browed Warbler Phylloscopus inornatus (Ljubljansko barje), Paddyfield Warbler Acrocephalus agricola (Ljubljansko barje) and Little Bunting Emberiza pusilla (Šentrupert). Key words: bird ringing, recoveries, Slovenia, 2017, colour ringing Ključne besede: obročkanje, najdbe, Slovenija, 2017, barvno obročkanje Acrocephalus 39 (178/179): 129–163, 2018 10.1515/acro-2018-0010 1. Uvod Leto 2017 je bilo za slovensko obročkovalno dejavnost jubilejno, saj smo sklenili 90. sezono neprekinjene obročkovalne dejavnosti v Sloveniji (Gregori 2017), ki smo jo v okviru Slovenskega centra za obročkanje ptičev (SCOP) pri Kustodiatu za vretenčarje Prirodoslovnega muzeja Slovenije (PMS) tudi posebej obeležili z dogodki (Vrezec & Fekonja 2017a, Petras & Vrh Vrezec 2018) in s prevodom EURINGove knjižice (Baillie & Kestenholz 2017). Leta 1926 je bil namreč v Ljubljani ustanovljen Ornitološki observatorij, ki je že v drugem letu svojega delovanja, torej leta 1927, začel z organizirano dejavnostjo obročkanja ptic v raziskovalne namene pod vodstvom takratne 130 gonilne sile obročkovalske in ornitološke dejavnosti na Slovenskem, dr. Jankom Ponebškom (Gregori 2017). Pred 90 leti pa ptic niso začeli le obročkati, pač pa beležiti podatke o njihovih opazovanjih tako, da so k delu poleg profesionalnih ornitologov pritegnili tudi ljubitelje ptic, ki so danes organi- zirani v okviru leta 1979 nastalega Društva za opazovanje in proučevanje ptic Slovenije (DOPPS- BirdLife Slovenia). Pričujoče poročilo za leto 2017 je tako še en prispevek k dolgi tradiciji obročkanja prosto živečih ptic pri nas v raziskovalne namene in dopolnjuje predhodna obročkovalska poročila (Ponebšek 1934, Božič 1980a, b, c, 1981, 1982, 1985, Šere 2009, Vrezec et al. 2013, 2014, 2015, Vrezec & Fekonja 2016, 2017b). V  prispevku podajamo pregled števila obročkanih ptic v Sloveniji po vrstah v letu 2017, pregled redkih vrst, ugotovl- jenih v okviru slovenske obročkovalske sheme, ter pregled razrešenih domačih ter tujih najdb za leto 2017 ter dopolnila za leti 2015 in 2016 (dopolnilo poročil Vrezec & Fekonja 2016, 2017b). 2. Metode Leta 2017 je bilo v okviru obročkovalne sheme SCOP dejavnih 93 obročkovalcev. Ti so imeli na podlagi dovoljenja za obročkanje ptic št. 35601- 10/2010-6, ki ga je PMS-u izdala Agencija RS za okolje (ARSO), s PMS sklenjene letne pogodbe o sodelovanju. Obročkovalci so na terenu uporabljali različne pristope lova in obročkanja ptic glede na obstoječe obročkovalne sheme (Vrezec & Fekonja 2017b). Večji del obročkovalne dejavnosti so opravili prostovoljni zunanji sodelavci Prirodoslovnega muzeja Slovenija, manjši del pa je bil opravljen v okviru raziskovalnih projektov in monitoringa na različnih slovenskih inštitucijah, ki se ukvarjajo z ornitološkimi raziskavami: Društvo za opazovanje in proučevanje ptic Slovenije (DOPPS), Krajinski park Sečoveljske soline (KPSS), Nacionalni inštitut za biologijo (NIB) in Prirodoslovni muzej Slovenije (PMS). V  letu 2017 je bilo dejavnih tudi 12 shem za barvno obročkanje (tabela 1). S  sledilnimi Tabela 1: Pregled barvnih obročkovalnih shem, ki so potekale v Sloveniji v letu 2017 v okviru različnih inštitucij: Društvo za opazovanje in proučevanje ptic Slovenije (DOPPS), Krajinski park Sečoveljske soline (KPSS) in Prirodoslovni muzej Slovenije (PMS) Table 1: An overview of active colour ringing schemes in Slovenia in 2017 conducted by different organizations: DOPPS–BirdLife Slovenia (DOPPS), Sečovlje Salina Nature Park (KPSS), and Slovenian Museum of Natural History (PMS) Slovensko ime/ Slovene name Latinsko ime/ Scientific name Barvni obroček/ Colour ring Kraj obročkanja/ Ringing site Vodja sheme/ Coordinator Inštitucija/ Institution Labod grbec Cygnus olor rdeč nožni obroček s kodo / red coded legring Maribor, Zbilje Dare Fekonja PMS Bela štorklja Ciconia ciconia ELSA Slovenija Damijan Denac DOPPS Sabljarka Recurvirostra avosetta beli nožni obroček s kodo / white coded legring Sečoveljske soline Iztok Škornik KPSS Mali deževnik Charadrius dubius kombinacija nožnih barvnih obročkov/ combination of uncoded legrings Drava Luka Božič DOPPS Beločeli deževnik Charadrius alexandrinus bel nožni obroček s kodo / white coded legring Sečoveljske soline Iztok Škornik KPSS Rečni galeb Chroicocephalus ridibundus beli nožni obroček s kodo / white coded legring Ptujsko jezero Borut Štumberger PMS Mala čigra Sternula albifrons bel nožni obroček s kodo / white coded legring Sečoveljske soline Iztok Škornik KPSS Navadna čigra Sterna hirundo bel in moder nožni obroček s kodo / white and blue coded legring Sečoveljske soline, Škocjanski zatok Iztok Škornik KPSS A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 131 napravami smo v letu 2017 sledili premikom kozač Strix uralensis z napravo GPS-GSM (NIB). 3. Rezultati in diskusija 3.1. Pregled obročkovalne dejavnosti Leta 2017 je bilo obročkanih 79.886 ptic 164 vrst (tabela 2), od tega je bilo v gnezdih obročkanih 1.400 mladičev 43 vrst. Leta 2017 smo v gnezdih obročkali največ mladičev velikih sinic Parus major (18,2 %), belih štorkelj Ciconia ciconia (14,4 %) in kmečkih lastovk Hirundo rustica (12,3 %), nad 100 pa smo obročkali še mladiče poljskih vrabcev Passer montanus (tabela 3). Pri obročkanju odraslih oziroma doraslih ptic smo v večji meri obročkali črnoglavke Sylvia atricapilla (18,6  %) in velike sinice (10,0  %), nad 1000 obročkanih osebkov pa je bilo še čižkov Spinus spinus, bičjih trstnic Acrocephalus schoenobaenus, Tabela 2: Pregled števila obročkanih ptic (mladičev v gnezdu in doraslih ptic zunaj gnezda) in števila najdenih obročkanih ptic v Sloveniji v letu 2017. Tuje najdbe so na tujem obročkane ptice, zabeležene v Sloveniji, domače najdbe so v Sloveniji obročkane ptice, ponovno ujete v tujini, in lokalne najdbe so v Sloveniji obročkane in ponovno v Sloveniji zabeležene ptice. Table 2: Birds ringed in Slovenia (nestlings and full-grown birds outside nest) and recoveries of ringed birds in 2017. Foreign recoveries in SLO are birds ringed abroad and later recorded in Slovenia, SLO recoveries abroad are birds ringed in Slovenia and later recorded abroad. Local recoveries are birds ringed in Slovenia and recaptured or resighted in Slovenia. Obročkanje / Ringing Najdbe / Finds Slovensko ime/ Slovene name Latinsko ime/ Scientific name mladiči/ nestlings ostalo/ other skupaj/ total Tuje v SLO/ Foreign in SLO Domače na tujem/ SLO abroad Lokalne/ Local Labod grbec Cygnus olor 92 92 20 76 190 Siva gos Anser anser 1 Kreheljc Anas crecca 2 2 Mlakarica Anas platyrhynchos 25 25 1 Čopasta črnica Aythya fuligula 1 Veliki žagar Mergus merganser 4 4 Prepelica Coturnix coturnix 54 54 2 Fazan Phasianus colchicus 1 1 Slovensko ime/ Slovene name Latinsko ime/ Scientific name Barvni obroček/ Colour ring Kraj obročkanja/ Ringing site Vodja sheme/ Coordinator Inštitucija/ Institution Postovka Falco tinnunculus črn nožni obroček s kodo / black coded legring Ljubljana z okolico Dare Fekonja PMS Veliki srakoper Lanius excubitor kombinacija nožnih barvnih obročkov / combination of uncoded legrings Ljubljansko barje Dare Fekonja PMS Kavka Coloeus monedula bel nožni obroček s kodo / white coded legring Vrhnika Dare Fekonja PMS Planinska kavka Pyrrhocorax graculus moder nožni obroček s kodo / blue coded legring Gorenjska Dare Fekonja PMS Acrocephalus 39 (178/179): 129–163, 2018 132 Obročkanje / Ringing Najdbe / Finds Slovensko ime/ Slovene name Latinsko ime/ Scientific name mladiči/ nestlings ostalo/ other skupaj/ total Tuje v SLO/ Foreign in SLO Domače na tujem/ SLO abroad Lokalne/ Local Črna štorklja Ciconia nigra 1 Bela štorklja Ciconia ciconia 202 202 5 5 5 Čapljica Ixobrychus minutus 11 11 1 Velika bela čaplja Ardea alba 5 Žličarka Platalea leucorodia 1 Kormoran Phalacrocorax carbo 4 Vranjek Phalacrocorax aristotelis 3 Rjavi škarnik Milvus milvus 1 Skobec Accipiter nisus 16 16 Kanja Buteo buteo 2 2 Mokož Rallus aquaticus 23 23 1 Kosec Crex crex 15 15 2 Grahasta tukalica Porzana porzana 15 15 Mala tukalica Porzana parva 10 10 Zelenonoga tukalica Gallinula chloropus 3 3 Žerjav Grus grus 1 Sabljarka Recurvirostra avosetta 1 1 1 Priba Vanellus vanellus 3 3 Mali deževnik Charadrius dubius 44 8 52 76 Beločeli deževnik Charadrius alexandrinus 3 3 1 14 Komatni deževnik Charadrius hiaticula 4 4 Mali prodnik Calidris minuta 5 5 Temminckov prodnik Calidris temminckii 2 2 Spremenljivi prodnik Calidris alpina 5 5 Ploskokljunec Calidris falcinellus 1 1 Puklež Lymnocryptes minimus 1 1 Kozica Gallingo gallinago 9 9 Sloka Scolopax rusticola 1 1 Rdečenogi martinec Tringa totanus 1 1 Zelenonogi martinec Tringa nebularia 9 9 2 Pikasti martinec Tringa ochropus 12 12 Močvirski martinec Tringa glareola 17 17 1 Mali martinec Actitis hypoleucos 80 80 1 Rečni galeb Chroicocephalus ridibundus 40 7 47 163 8 56 Sivi galeb Larus canus 2 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 133 Obročkanje / Ringing Najdbe / Finds Slovensko ime/ Slovene name Latinsko ime/ Scientific name mladiči/ nestlings ostalo/ other skupaj/ total Tuje v SLO/ Foreign in SLO Domače na tujem/ SLO abroad Lokalne/ Local Rumenonogi galeb Larus michahellis 4 4 8 8 Črnomorski galeb Larus cachinnans 21 Navadna čigra Sterna hirundo 49 1 50 6 29 2 Mala čigra Sternula albifrons 12 12 Domači golob Columba livia domestica 3 3 Divja grlica Streptopelia turtur 5 5 1 Turška grlica Streptopelia decaocto 4 43 47 Kukavica Cuculus canorus 4 4 Mali skovik Glaucidium passerinum 3 3 Veliki skovik Otus scops 63 106 169 5 Lesna sova Strix aluco 52 12 64 6 Kozača Strix uralensis 31 4 35 5 Čuk Athene noctua 3 3 1 Koconogi čuk Aegolius funereus 7 11 18 Mala uharica Asio otus 5 5 Podhujka Caprimulgus europaeus 29 29 Hudournik Apus apus 14 6 20 1 Vodomec Alcedo atthis 174 174 43 Čebelar Merops apiaster 100 100 2 15 Smrdokavra Upupa epops 9 7 16 Vijeglavka Jynx torquilla 258 258 10 Mali detel Dryobates minor 26 26 Srednji detel Dendrocoptes medius 5 5 Veliki detel Dendrocopos major 131 131 9 Črna žolna Dryocopus martius 4 4 Zelena žolna Picus viridis 12 12 Pivka Picus canus 15 15 1 Postovka Falco tinnunculus 11 7 18 1 1 3 Rdečenoga postovka Falco vespertinus 4 4 Rjavi srakoper Lanius collurio 201 201 1 Veliki srakoper Lanius excubitor 15 15 25 Črnočeli srakoper Lanius minor 2 2 Kobilar Oriolus oriolus 11 11 Šoja Garrulus glandarius 32 32 4 Sraka Pica pica 15 15 Acrocephalus 39 (178/179): 129–163, 2018 134 Obročkanje / Ringing Najdbe / Finds Slovensko ime/ Slovene name Latinsko ime/ Scientific name mladiči/ nestlings ostalo/ other skupaj/ total Tuje v SLO/ Foreign in SLO Domače na tujem/ SLO abroad Lokalne/ Local Planinska kavka Pyrrhocorax graculus 14 14 35 Kavka Coloeus monedula 2 2 Siva vrana Corvus cornix 4 4 8 1 Krokar Corvus corax 1 Menišček Periparus ater 6 2161 2167 59 Čopasta sinica Lophophanes cristatus 6 164 170 7 Močvirska sinica Poecile palustris 459 459 56 Gorska sinica Poecile montanus 73 73 4 Plavček Cyanistes caeruleus 86 3175 3261 2 3 157 Velika sinica Parus major 255 7875 8130 2 2 456 Plašica Remiz pendulinus 233 233 1 2 4 Brkata sinica Panurus biarmicus 2 2 2 Breguljka Riparia riparia 1644 1644 4 180 Kmečka lastovka Hirundo rustica 172 837 1009 2 Skalna lastovka Ptyonoprogne rupestris 4 4 Mestna lastovka Delichon urbicum 38 38 Svilnica Cettia cetti 15 15 1 Brškinka Cisticola juncidis 4 4 Dolgorepka Aegithalos caudatus 684 684 46 Mušja listnica Phylloscopus inornatus 1 1 Hribska listnica Phylloscopus bonelli 5 5 Severni kovaček Phylloscopus trochilus 331 331 1 Vrbji kovaček Phylloscopus collybita 2233 2233 1 2 7 Grmovščica Phylloscopus sibilatrix 431 431 Rakar Acrocephalus arundinaceus 34 459 493 2 1 14 Tamariskovka Acrocephalus melanopogon 39 39 1 2 Bičja trstnica Acrocephalus schoenobaenus 4869 4869 16 4 21 Srpična trstnica Acrocephalus scirpaceus 4515 4515 5 13 11 Močvirska trstnica Acrocephalus palustris 994 994 1 1 16 Plevelna trstnica Acrocephalus agricola 1 1 Kratkoperuti vrtnik Hippolais polyglotta 3 3 Rumeni vrtnik Hippolais icterina 169 169 Kobiličar Locustella naevia 119 119 Rečni cvrčalec Locustella fluviatilis 19 19 2 Trstni cvrčalec Locustella luscinioides 94 94 3 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 135 Obročkanje / Ringing Najdbe / Finds Slovensko ime/ Slovene name Latinsko ime/ Scientific name mladiči/ nestlings ostalo/ other skupaj/ total Tuje v SLO/ Foreign in SLO Domače na tujem/ SLO abroad Lokalne/ Local Črnoglavka Sylvia atricapilla 5 14.585 14.590 4 8 161 Vrtna penica Sylvia borin 3519 3519 1 10 Pisana penica Sylvia nisoria 9 9 Mlinarček Sylvia curruca 165 165 1 1 Rjava penica Sylvia communis 331 331 8 Taščična penica Sylvia cantillans 1 1 Žametna penica Sylvia melanocephala 1 1 Rdečeglavi kraljiček Regulus ignicapilla 155 155 5 Rumenoglavi kraljiček Regulus regulus 1631 1631 21 Stržek Troglodytes troglodytes 125 125 1 Brglez Sitta europaea 22 212 234 32 Dolgoprsti plezalček Certhia familiaris 45 45 3 Kratkoprsti plezalček Certhia brachydactyla 28 28 1 Škorec Sturnus vulgaris 38 502 540 3 Kos Turdus merula 15 868 883 3 48 Komatar Turdus torquatus 10 1 11 Brinovka Turdus pilaris 6 6 Vinski drozg Turdus iliacus 32 32 1 Cikovt Turdus philomelos 2 319 321 1 Carar Turdus viscivorus 1 3 4 Sivi muhar Muscicapa striata 9 67 76 2 Taščica Erithacus rubecula 3750 3750 2 4 54 Modra taščica Luscinia svecica 41 41 Veliki slavec Luscinia luscinia 12 12 Slavec Luscinia megarhynchos 228 228 6 Črnoglavi muhar Ficedula hypoleuca 375 375 5 Belovrati muhar Ficedula albicollis 6 3 9 1 2 Šmarnica Phoenicurus ochruros 14 73 87 Pogorelček Phoenicurus phoenicurus 3 76 79 Repaljščica Saxicola rubetra 48 48 Prosnik Saxicola rubicola 7 88 95 9 Kupčar Oenanthe oenanthe 9 5 14 Povodni kos Cinclus cinclus 5 5 10 1 Domači vrabec Passer domesticus 582 582 14 Italijanski vrabec Passer italiae 1 1 1 Poljski vrabec Passer montanus 122 1232 1354 21 Acrocephalus 39 (178/179): 129–163, 2018 136 Obročkanje / Ringing Najdbe / Finds Slovensko ime/ Slovene name Latinsko ime/ Scientific name mladiči/ nestlings ostalo/ other skupaj/ total Tuje v SLO/ Foreign in SLO Domače na tujem/ SLO abroad Lokalne/ Local Domači vrabec x poljski vrabec Passer domesticus x Passer montanus 1 1 Siva pevka Prunella modularis 4293 4293 2 11 Rumena pastirica Motacilla flava 17 17 2 Siva pastirica Motacilla cinerea 16 16 Bela pastirica Motacilla alba 9 17 26 Drevesna cipa Anthus trivialis 113 113 1 Mala cipa Anthus pratensis 6 6 Vriskarica Anthus spinoletta 5 4 9 Planinski vrabec Montifringilla nivalis 1 1 Ščinkavec Fringilla coelebs 642 642 1 7 Pinoža Fringilla montifringilla 217 217 Dlesk Coccothraustes coccothraustes 182 182 5 Kalin Pyrrhula pyrrhula 290 290 9 Škrlatec Carpodacus erythrinus 10 10 Zelenec Chloris chloris 3 1684 1687 1 2 20 Repnik Linaria cannabina 152 152 Brezovček Acanthis flammea 26 26 Krivokljun Loxia curvirostra 42 42 1 Lišček Carduelis carduelis 1425 1425 1 35 Grilček Serinus serinus 307 307 1 17 Čižek Spinus spinus 5705 5705 1 1 105 Veliki strnad Emberiza calandra 5 5 Rumeni strnad Emberiza citrinella 177 177 16 Skalni strnad Emberiza cia 21 21 Mali strnad Emberiza pusilla 1 1 Plotni strnad Emberiza cirlus 30 30 2 Trstni strnad Emberiza schoeniclus 618 618 3 1 Skupaj/Total 1400 78.486 79.886 296 177 2209 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 137 srpičnih trstnic A. scirpaceus, sivih pevk Prunella modularis, taščic Erithacus rubecula, vrtnih penic Sylvia borin, plavčkov Cyanistes caeruleus, vrbjih kovačkov Phylloscopus collybita, meniščkov Periparus ater, zelencev Chloris chloris, breguljk Riparia riparia, rumenoglavih kraljičkov Regulus regulus, liščkov Carduelis carduelis in poljskih vrabcev (tabela 3). 3.2 Pregled najdb Leta 2017 smo zabeležili 2682 najdb, od tega je bilo 82 % najdb lokalnih. Najdbe obročkanih ptic v povezavi s tujino smo zbrali iz 20 držav (tabela 4), pri čemer smo jih največ zabeležili iz Hrvaške. Med tujimi najdbami so prevladovali rečni galebi Chroicocephalus ridibundus (55,2 %), nad 10 najdb Tabela 3: Pregled najpogostejših vrst obročkanih in ponovno zabeleženih ptic v Sloveniji leta 2017. Prikazane so vrste z več kot 1 % obročkanih osebkov v posamezni kategoriji po padajočem številu osebkov. N – število vrst. Table 3: An overview of the most numerous species among ringed birds and recoveries in Slovenia in 2017. Species with more than 1% of individuals in a given category are shown in decreasing order of abundance. N – number of species. V gnezdu / In nest (N=43) Zunaj gnezda/ Outside nest (N=158) Tuje v SLO/ Foreign in SLO (N=38) Domače na tujem/ SLO abroad (N=28) Lokalne/Local (N=85) Parus major Sylvia atricapilla Chroicocephalus ridibundus Cygnus olor Parus major Ciconia ciconia Parus major Larus cachinnans Sterna hirundo Cygnus olor Hirundo rustica Spinus spinus Cygnus olor Acrocephalus scirpaceus Riparia riparia Passer montanus Acrocephalus schoenobaenus Acrocephalus schoenobaenus Chroicocephalus ridibundus Sylvia atricapilla Cyanistes caeruleus Acrocephalus scirpaceus Larus michahellis Sylvia atricapilla Cyanistes caeruleus Otus scops Prunella modularis Sterna hirundo Ciconia ciconia Spinus spinus Strix aluco Erithacus rubecula Ardea alba Acrocephalus schoenobaenus Charadrius dubius Sterna hirundo Sylvia borin Ciconia ciconia Erithacus rubecula Periparus ater Charadrius dubius Cyanistes caeruleus Acrocephalus scirpaceus Cyanistes caeruleus Chroicocephalus ridibundus Chroicocephalus ridibundus Phylloscopus collybita Phalacrocorax carbo Turdus merula Poecile palustris Sturnus vulgaris Periparus ater Riparia riparia Parus major Erithacus rubecula Acrocephalus arundinaceus Chloris chloris Sylvia atricapilla Remiz pendulinus Turdus merula Strix uralensis Riparia riparia Emberiza schoeniclus Phylloscopus collybita Aegithalos caudatus Sitta europaea Regulus regulus Chloris chloris Alcedo atthis Turdus merula Carduelis carduelis Merops apiaster Pyrrhocorax graculus Passer montanus Hirundo rustica Carduelis carduelis Acrocephalus palustris Sitta europaea Turdus merula Lanius excubitor Hirundo rustica Acrocephalus 39 (178/179): 129–163, 2018 138 pa smo zabeležili še pri črnomorskem galebu Larus cachinnans, labodu grbcu Cygnus olor in bičji trstnici (tabela 3). Opazujemo že več let trajajoči trend, pri katerem se znatno povečujejo tuje najdbe pri vrstah, obročkanih z barvnimi obročki, ki jih je mogoče prebrati na daljavo. Tako je vključenih več sodelavcev, tudi neobročkovalcev, predvsem pa pridobivamo podatke o vrstah, ki so bile pri nas malo znane oziroma jih še nikoli pri nas nismo obročkali, kakršen je črnomorski galeb, ki je bil pri nas prvič ugotovljen šele leta 1994 (Rubinič 1997). Med domačimi najdbami so prevladovale najdbe barvno obročkanih labodov grbcev (42,9 %) in navadnih čiger (16,4  %), čez deset najdb pa je bilo še bičjih trstnic (tabela 3). Med najdbami so v letu 2017 po razdaljah zbujali pozornost severni kovaček Phylloscopus trochilus iz 2540  km oddaljenega okrožja Murmansk v Rusiji (najditelj Dejan Grohar), črnoglavka, ki so jo ponovno na spomladanski selitvi ujeli 2386  km daleč v Izraelu (obročkovalec Peter Grošelj) in mlinarček Sylvia curruca iz 1582  km oddaljenega kraja na Švedskem (obročkovalec Franc Bračko). Zanimiva je tudi najdba prvoletnega belovratega muharja Ficedula albicollis na jesenski selitvi (najditelj Brane Lapanja), ki izvira iz najsevernejše gnezdeče evropske populacije s švedskega otoka Gotland v Baltiškem morju (Lundberg 1997). Med najdbami stopa v ospredje tudi precej najdb srpičnih trstnic iz Španije, saj je bila med 17 razrešenimi domačimi/ Tabela 4: Pregled držav glede na domače in tuje najdbe obročkanih ptic v letu 2017 Table 4: An overview of countries by the number of birds ringed or recovered in and outside Slovenia in 2017 Država / Country Domače najdbe na tujem/ SLO recoveries abroad Tuje najdbe v SLO/ Foreign recoveries in SLO Skupaj / Total Hrvaška 15 149 164 Madžarska 28 47 75 Poljska 30 31 61 Italija 44 14 58 Češka 13 17 30 Španija 15 4 19 Avstrija 15 3 18 Nemčija 2 7 9 Francija 5 1 6 Švedska 2 4 6 Slovaška 4 1 5 Litva 1 4 5 Belorusija 4 4 Finska 3 3 Rusija 3 3 Švica 2 2 Belgija 1 1 2 Ukrajina 1 1 Turčija 1 1 Izrael 1 1 Skupaj 177 296 473 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 139 tujimi najdbami večina (71 %) v povezavi s Španijo. V  Španiji pa očitno prezimujejo tudi pri nas gnezdeči rečni galebi, kakršen je primer letošnjega mladiča s Ptujskega jezera, ki so ga pozimi (november, december) opazovali 1440  km daleč v Zaragozi (obročkovalec Borut Štumberger). V letu 2017 smo zabeležili dve starostno zanimivi najdbi, in sicer vsaj 10 let starega močvirskega martinca Tringa glareola, obročkanega leta 2007 v Italiji in ponovno ujetega v Hrašah (najditelj Žan Pečar), ter vsaj 7 let staro bičjo trstnico, obročkano leta 2010 na Švedskem in ponovno ujeto na Vrhniki (najditelj Brane Lapanja). V  Evropi do sedaj najstarejši močvirski martinec je dočakal 11 let in 8 mesecev na Švedskem, najstarejša bičja trstnica pa je bila 11 let in 10 mesecev iz Danske (Fransson et al. 2017). Kot posebnost je tudi najdba kadavra prvoletnega rjavega škarnika Milvus milvus pri Logi pri Vipavi (najditelj Peter Krečič) s satelitskim oddajnikom, ki je bil del češkega programa daljinskega spremljanja rjavih škarnikov in je bil kot mladič v gnezdu obročkan istega leta na Češkem. Ptica je poginila zaradi trka z vozilom in je sedaj shranjena v Prirodoslovnem muzeju Slovenije (akcesijska št. 2017/460). Celoten pregled razrešenih domačih in tujih najdb je podan v Dodatku 1. Pri domačih najdbah se podobno kot pri tujih najdbah kaže visok trend povečevanja števila najdb na račun vzpostavljenih barvnih obročkovalskih shem. Med letoma 2012 in 2017 so v Sloveniji delovale barvne obročkovalske sheme za skupno 19 vrst, med njimi v vseh šestih letih za tri vrste, beločelega deževnika Charadrius alexandrinus, navadno čigro in postovko Falco tinnunculus. Glede na število domačih najdb so bile v letu 2017  med barvno obročkanimi pticami najmočnejše vodne vrste, labod grbec, rečni galeb in navadna čigra s skupno 268 domačimi najdbami v letu 2017. Med vrstami, ki jih obročkamo zgolj s kovinskimi obročki, so bile glede na domače najdbe najmočnejše vrste srpična trstnica, bičja trstnica in črnoglavka s skupno 25 domačimi najdbami v letu 2017. Glede omenjenih šest vrst se število obročkanih ptic ni bistveno spremenilo med letoma 2012 in 2017 s sicer bistveno večjim letnim odstopanjem pri pticah, vključenih v barvno obročkanje (slika 1), bistvena razlika pa je pri število domačih najdb, ki pri barvno obročkanih vrstah strmo narašča (slika 2). Z barvnim obročkanjem se namreč število najdb skokovito poveča s povprečno učinkovitostjo 75,20±91,36 najdb/100 obročkanih ptic, medtem ko je zgolj pri obročkanju s kovinskim obročkom učinkovitost precej nižja z 0,11±0,08 najdb/100 obročkanih ptic. Uvajanje barvnih obročkovalnih shem je zato izredno smiselno, žal pa ni uporabno za vse vrste zaradi njihove velikosti in načina življenja ter možnosti branja barvnih obročkov na daljavo. Zaradi tega bo pri večini manjših ptic Slika 1: Medletne spremembe števila obročkanih ptic (prikazan je indeks števila, standardiziran glede na leto 2012) v obdobju 2012–2017 glede vrste, vključene v barvne obročkovalske sheme (črni stolpci; vključene vrste: labod grbec Cygnus olor, rečni galeb Chroicocephalus ridibundus, navadna čigra Sterna hirundo; N=1.506 obročkanih ptic), in vrste, obročkane zgolj s kovinskimi obročki (beli stolpci; vključene vrste: srpična trstnica Acrocephalus scirpaceus, bičja trstnica A. schoenobaenus, črnoglavka Sylvia atricapilla; N=132.444 obročkanih ptic). Figure 1: Changes in the number of ringed birds between years (the standardized index according to the year 2012 is shown) in the period 2012-2017, taking into account species included in colour ringing schemes (black columns; included species: Mute Swan Cygnus olor, Black-headed Gull Chroicocephalus ridibundus, Common Tern Sterna hirundo; N=1.506 ringed birds) and species ringed only with metal rings (white columns; included species: Reed Warbler Acrocephalus scirpaceus, Sedge Warbler A. schoenobaenus, Blackcap Sylvia atricapilla; N=132.444 ringed birds) Leta / Years In de ks š te vi la n aj db /In de x of n o. re co ve rie s 20 12 20 13 20 14 20 15 20 16 20 17 25 20 15 10 5 0 Acrocephalus 39 (178/179): 129–163, 2018 140 pevk, ki jih označujemo s kovinskimi obročki, to do nadaljnjega še vedno edini način označevanja. Med lokalnimi najdbami so v letu 2017 prevladovale najdbe velikih sinic (20,6 %), več kot 100 najdb pa smo zabeležili še pri labodu grbcu, breguljki, črnoglavki, plavčku in čižku Spinus spinus (tabela 3). 3.3. Redke vrste Leta 2017 so obročkovalci poročali o obročkanju štirih redkih vrst (tabela 5), ki so bile obročkane in izpuščene. Prvič je bil v Sloveniji obročkan ploskokljunec Calidris falcinellus (slika 3), ki je bil ujet v Sečoveljskih solinah med jesensko selitvijo (obročkal Tomaž Mihelič). Med drugimi obročkanimi redkostmi pa sta bili na Ljubljanskem barju ponovno ujeti mušja listnica Phylloscopus inornatus (obročkal Bogdan Vidic) in plevelna trstnica Acrocephalus agricola (tabela 5; obročkal Brane Lapanja). Obe vrsti sta bili na Ljubljanskem barju ujeti že v predhodnem letu 2016 (Vrezec & Fekonja 2016). Prav tako smo v letu 2017 ponovno obročkali malega strnada Emberiza pusilla (slika 4), ki ga je obročkal Jože Gračner. Zahvala: Obročkovalno dejavnost, ki poteka v okviru Slovenskega centra za obročkanje ptic pod okriljem Prirodoslovnega muzeja Slovenije (PMS), in dogodke ob 90. obletnici obročkanja ptic v raziskovalne namene v Sloveniji je v letu 2017 podprlo Ministrstvo RS za kulturo. Dejavnost pa ne bi bila mogoča brez prostovoljnih in profesionalnih zunanjih sodelavcev PMS, ki so v letu 2017 obročkali ptice: Dušan Belingar, Dejan Bordjan, Ivo Božič, Luka Božič, Franc Bračko, Igor Brajnik, Jože Bricelj, Alfonz Colnar, Marjan Debelič, Dušan Dimnik, Jernej Figelj, Marjan Gobec, Jože Gračner, Dejan Grohar, Peter Grošelj, Vojko Havliček, Ludvik Jakopin, Marko Jankovič, Tone Jankovič, Milovan Keber, Branko Koren, Stane Kos, Brane Lapanja, Ivan Lipar, Anton Lisec, Tomaž Mihelič, Jože Nered, Žan Pečar, Miro Perušek, Dušan Petkovšek, Zdravko Podhraški, Mojca Podletnik, Dušan Pogačar, Milan Pustoslemšek, Aljaž Rijavec, Andrej Sovinc, Željko Šalamun, Dare Šere, Iztok Škornik, Polde Štricelj, Borut Štumberger, Rudolf Tekavčič, Tomi Trilar, Andrej Trontelj, Miro Vamberger, Bogdan Vidic, Jani Vidmar, Iztok Vreš, Davorin Vrhovnik in Ivan Zlobko. Poleg naštetih obročkovalcev so na center najdbe in opazovanja obročkanih ptic sporočili neobročkovalski sodelavci: Aleš Alijeski, Gregor Bernard, Vanesa Bezlaj, Blaž Blažič, Bojan Bratoz, Peter Černe, Damijan Denac, Gregor Domanjko, Matjaž Faris, Matej Gamser, Iztok Geister, Marijan Govedič, Juri Hanžel, Stanko Jamnikar, Vinka Kastelic, Katarina Kesič Dimic, Barbara Kink, Dušan Slika 2: Medletne spremembe števila domačih najdb (prikazan je indeks števila, standardiziran glede na leto 2012) v obdobju 2012-2017 glede vrste, vključene v barvne obročkovalske sheme (črni stolpci; vključene vrste: labod grbec Cygnus olor, rečni galeb Chroicocephalus ridibundus, navadna čigra Sterna hirundo; N=507 najdb) in vrste, obročkane zgolj s kovinskimi obročki (beli stolpci; vključene vrste: srpična trstnica Acrocephalus scirpaceus, bičja trstnica A. schoenobaenus, črnoglavka Sylvia atricapilla; N=101 najdba) Figure 2: Between-years changes in the number of birds ringed in Slovenia and later recorded abroad (the standardized index according to the year 2012 is shown) in the period 2012-2017, taking into account species included in colour ringing schemes (black columns; included species: Mute Swan Cygnus olor, Black-headed Gull Chroicocephalus ridibundus, Common Tern Sterna hirundo; N=507 recoveries) and species ringed only with metal rings (white columns; included species: Reed Warbler Acrocephalus scirpaceus, Sedge Warbler A. schoenobaenus, Blackcap Sylvia atricapilla; N=101 recoveries) In de ks š te vi la o br oč ka ni h pt ic / In de x of no . r in ge d bi rd s 20 12 20 13 20 14 20 15 20 16 20 17 1,6 1,4 1,2 1 0,8 0,6 0,4 0,2 0 Leta / Years A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 141 Klenovšek, Stane Kljun, Danilo Kotnik, Simon Kovačič, Peter Krečič, Tomaž Kristofič, Branko Kromar, Mirko Kunšič, Bojana Lipej, Valibald Marič, Peter Maričič, Aleš Marsič, Matija Medved Mlakar, Aljaž Mulej, Franc Nagode, Jure Novak, Štefan Orban, Mirko Primorac, Tosja Pušenjak, Jože Rak, Bia Rakar, Franc Robič, S. Rudolf, Maks Sešlar, Laura Sgambita, Nataša Sivec, Vida Slavič, Robi Šiško, Danila Šraml, Zoran Vidrih, Tjaša Zagoršek, Anton Zalar in Miha Žvan. Povzetek V okviru obročkovalne dejavnosti v Sloveniji smo v jubilejnem 90. letu 2017 zbrali podatke o 176 vrstah ptic. Obročkali smo 79.886 ptic 164 vrst, zabeležili 177 domačih, 296 tujih in 2209 lokalnih najdb. Največ je bilo obročkanih črnoglavk Sylvia atricapilla in velikih sinic Parus major, med mladiči v gnezdu pa so prevladovale velike sinice, bele štorklje Ciconia ciconia in kmečke Tabela 5: Pregled obročkanih redkih vrst v Sloveniji v letu 2017 Table 5: Rare bird species ringed in Slovenia in 2017 Vrsta/ Species Obroček/ Ring Spol / Sex Starost/ Age Datum/ Date Kraj/ Location Obročkovalec/ Ringer Foto/ Photo Calidris falcinellus VC 410 29.8.2017 Sečoveljske soline, Portorož Tomaž Mihelič Slika 3 Phylloscopus inornatus KV 6355 1Y 27.10.2017 Črna vas, Ljubljana Bogdan Vidic da Acrocephalus agricola KT 90966 1Y 31.7.2017 Verd, Vrhnika Brane Lapanja ne Emberiza pusilla KV 33445 F 1Y 13.10.2017 Bistrica, Šentrupert Jože Gračner Slika 4 Slika 3: Ploskokljunec Calidris falcinellus, Sečoveljske soline, Portorož, Slovenija, 29. 8. 2017, obroček VC 410 (foto: Tomaž Mihelič) Figure 3: Broad-billed Sandpiper Calidris falcinellus, Sečoveljske soline, Portorož, Slovenia, 29 Aug 2017, ring VC 410 (photo: Tomaž Mihelič) Slika 4: Mali strnad Emberiza pusilla, Bistrica, Šentrupert, Slovenija, 13. 10. 2017, obroček KV 33445 (foto: Jože Gračner) Figure 4: Little Bunting Emberiza pusilla, Medvedce, Pragersko, Slovenia, 13 Oct 2017, ring KV 33445 (photo: Jože Gračner) Acrocephalus 39 (178/179): 129–163, 2018 142 lastovke Hirundo rustica. V  letu 2017 je bilo v Sloveniji dejavnih 12 barvnih obročkovalnih shem. V  obdobju 2012-2017 se je število domačih najdb bistveno povečalo na račun barvnega obročkanja, zlasti pri vodnih vrstah. Verjetnost najdbe pri barvnem obročkanju je namreč bistveno večja (75,20±91,36 najdb/100 obročkanih ptic) kot zgolj pri obročkanju s kovinskim obročkom (0,11±0,08 najdb/100 obročkanih ptic). Med domačimi najdbami so prevladovale najdbe labodov grbcev Cygnus olor in navadnih čiger Sterna hirundo, med tujimi pa rečnih galebov Chroicocephalus ridibundus. Med redkimi vrstami smo v letu 2017 prvič obročkali ploskokljunca Calidris falcinellus (Sečoveljske soline), sicer pa so bile obročkane še tri redke vrste, in sicer mušja listnica Phylloscopus inornatus (Ljubljansko barje), plevelna trstnica Acrocephalus agricola (Ljubljansko barje) in mali strnad Emberiza pusilla (Šentrupert). 4. Literatura Baillie S., Kestenholz M. (2017): Obročkanje ptic v raziskovalne namene in za varstvo narave.  – Prirodoslovni muzej Slovenije, Ljubljana. Božič I. A. (1980a): Poročilo o ulovu in obročkanju ptičev v SRS v letu 1976 in v letih 1927–1976.  – Acrocephalus 1 (2): 29–32. Božič I. A. (1980b): Poročilo o ulovu in obročkanju ptičev v SRS v letu 1978 in v letih 1927–1976.  – Acrocephalus 1 (5): 74–78. Božič I. A. (1980c): Poročilo o ulovu in obročkanju ptičev v SRS v letu 1979 in v letih 1927–1979.  – Acrocephalus 1 (6): 93–96. Božič I. A. (1981): Poročilo o ulovu in obročkanju ptičev v Sloveniji v letu 1980 in v letih 1927–80.  – Acrocephalus 2 (10): 49–52. Božič I. A. (1982): Poročilo o ulovu in obročkanju ptičev v Sloveniji v letu 1981.  – Acrocephalus 3 (11/12): 9–12. Božič I. A. (1985): Poročilo o obročkanju ptičev v Sloveniji v letu 1982. – Acrocephalus 6 (24): 23–25. Fransson T., Jansson L., Kolehmainen T., Kroon C., Wenninger T. (2017): EURING list of longevity records for European birds.  –[https:// euring.org/files/documents/EURING_longevity_ list_20170405.pdf], 01/12/2018. Gregori J. (2017): Obročkovalna dejavnost v Sloveniji poteka že 90. leto. – Svet ptic 23 (1): 6–9. Lundberg A. (1997): Collared Flycatcher. 618-619 In: Hagemeijer, E.J.M. & Blair M.J. (eds.): The EBCC Atlas of European Breeding Birds: Their Distribution and Abundance. – T & AD Poyser, London. Petras T., Vrh Vrezec P. (2018): Ob 90. obletnici obročkanja ptic v Sloveniji. – Svet ptic 24 (1): 42–44. Ponebšek J. (1934): Dosedanji uspehi zavoda.  – I. Izvestje Ornitološkega observatorija v Ljubljani, 1926–1933. Kuratorij Ornit. Observatorija v Ljubljani: 26–36. Rubinič B. (1997): Najdba soimenske podvrste rumenonogega galeba Larus cachinnans cachinnans v Sloveniji. – Acrocephalus 18 (85): 167–171. Šere D. (2009): Kratko poročilo o obročkanih ptičih v Sloveniji, 1983–2008. – Scopolia Suppl. 4: 111–174. Vrezec A., Fekonja D., Šere D. (2013): Obročkanje ptic v Sloveniji s pregledom domačih in tujih najdb v letu 2012. – Acrocephalus 34 (156/157): 49–69. Vrezec A., Fekonja D., Šere D. (2014): Obročkovalna dejavnost in pregled najdb obročkanih ptic v Sloveniji v letu 2013. – Acrocephalus 35 (160/161): 25–58. Vrezec A., Fekonja D., Denac K. (2015): Obročkanje ptic v Sloveniji leta 2014 in rezultati prvega telemetrijskega spremljanja selitvene poti afriške selivke. – Acrocephalus 36 (166/167): 145–172. Vrezec A., Fekonja D. (2016): Obročkanje ptic v Sloveniji leta 2015 in pojav velikih krivokljunov Loxia pytyopsittacus.  – Acrocephalus 37(170/171): 177–208. Vrezec A., Fekonja D. (2017a): 90 let organiziranega obročkanja ptic v raziskovalne namene v Sloveniji: koledar dogodkov.  – Prirodoslovni muzej Slovenije, Ljubljana. Vrezec A., Fekonja D. (2017b): Poročilo o obročkanju ptic v Sloveniji v letu 2016 in pojavljanje mušje listnice Phylloscopus inornatus v 25 letih v Sloveniji. – Acrocephalus 38 (174/175): 171–202. Prispelo / Arrived: 7. 12. 2018 Sprejeto / Accepted: 12. 1. 2019 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 143 DODATEK 1 / APPENDIX 1 Pregled tujih in domačih najdb obročkanih in ponovno registriranih ptic izven meja Slovenije za leto 2017 Supplementation of an overview of recoveries of birds ringed or found outside Slovenia in 2017 Dopolnilo za leto 2015 Rečni galeb Chroicocephalus ridibundus FINLAND PULL 9.6.2015 Hyvinkaa, Uusumaa, FINSKA 60°39'N/24°59'E M. Kallela ST 309201 o 23.12.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (197dni/1679km) Rumenonogi galeb Larus michahellis ZAGREB +3Y 15.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 00339 o 9.4.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Basrek (480dni/75km) ZAGREB 4Y 22.3.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 00802 o 6.8.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E RC Slovenija (137dni/75km) Dopolnilo za leto 2016 Labod grbec Cygnus olor LJUBLJANA ♂ AD 4.1.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LG 375 o 2.3.2016 Murstau Gralla, Steiermark, AVSTRIJA 46°49'N/15°34'E D. Nayer (1153dni/115km) LJUBLJANA ♂ AD 28.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 877 o 29.10.2015 Gbely, Skalica, SLOVAŠKA 48°43'N/17°02'E J. Zanat (274dni/262km) o 29.4.2016 Zahlinice, Pisečny pond, Hodoni, ČEŠKA 48°51'N/17°04'E K. Šimeček (457dni/276km) o 19.9.2016 Hlohovec, Jihomoravsky kraj, ČEŠKA 48°46'N/16°45'E V. Sajfrt (600dni/259km) Lišček Carduelis carduelis LJUBLJANA ♀ AD 5.1.2013 Ravnica, Nova Gorica, SLOVENIJA 45°59'N/13°42'E D. Belingar AZ 80220 v 28.10.2016 Grunauberg, Almtal, Oberosterreich, AVSTRIJA 47°52'N/03°58'E A. Riezinger (1392dni/210km) Krivokljun Loxia curvirostra LJUBLJANA ♀ AD 6.4.2012 Resa, Kočevje, SLOVENIJA 45°39'N/15°02'E V. Štolfa E 35548 v 5.10.2016 Saiherbachalm Bad Ischl, AVSTRIJA 47°44'N/13°36'E A. Riezinger (1643dni/256km) Legenda / Legend: AD odrasla ptica / adult JUV mlada ptica / juvenile PULL ptica obročkana v gnezdu ali begavec ali nedorasel mladič izven gnezda / nestling (pullus) 1Y prvoletna ptica / first year 2Y drugoletna ptica / second year v kontrolna najdba / control recovery o obroček prebran z daljnogledom ali teleskopom / read by binoculars or telescope + ustreljen ali ubit / shot or killed x ptica najdena mrtva / found dead Acrocephalus 39 (178/179): 129–163, 2018 144 Bela štorklja Ciconia ciconia RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0047 o 17.8.2016 Podova, Rače, Maribor, SLOVENIJA 46°25'N/15°41'E M. Gamser (52dni/46km) RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0051 o 17.8.2016 Spodnja Gorica, Rače, Maribor, SLOVENIJA 46°25'N/15°42'E M. Gamser (52dni/47km) RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0052 o 17.8.2016 Podova, Rače, Maribor, SLOVENIJA 46°25'N/15°41'E M. Gamser (52dni/46km) RADOLFZELL PULL 26.6.2016 Tillmitsch, Steiermark, AVSTRIJA 46°49'N/15°31'E H. Rosenthaler E0055 o 17.8.2016 Spodnja Gorica, Rače, Maribor, SLOVENIJA 46°25'N/15°42'E M. Gamser (52dni/47km) LETO 2017 Labod grbec Cygnus olor BUDAPEST ♀ 2Y 4.9.2009 Balatonfured, Veszprem, MADŽARSKA 46°58'N/17°53'E P. Szinai HN 919 o 27.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (1210dni/175km) o 28.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Sešlar (2703dni/175km) o 31.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (2706dni/175km) BUDAPEST PULL 12.8.2016 Balatonszarszo, Somogy, MADŽARSKA 46°50'N/17°49'E P. Szinai HK 686 o 16.2.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°10'E L. Božič (188dni/136km) BUDAPEST PULL 24.9.2016 Balatonfured, Veszprem, MADŽARSKA 46°57'N/17°53'E P. Szinai HK 867 o 6.6.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E A. Alijeski (265dni/296km) o 2.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E P. Dolta (312dni/296km) o 7.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E M. Žvan (317dni/296km) o 17.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E M. Žvan (327dni/296km) o 29.8.2017 Blejsko jezero, Bled, SLOVENIJA 46°22’N/14°06’E G. Csontos (339dni/296km) BUDAPEST ♀ 2Y 22.7.2010 Revfulop, Veszprem, MADŽARSKA 46°49'N/17°37'E P. Szinai HW 157 o 17.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (2552dni/140km) BUDAPEST ♀ +3Y 7.7.2015 Osli, Gyor Moson Sopron, MADŽARSKA 47°40'N/17°06'E S. Tatai HT 267 o 7.8.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°10'E L. Božič (762dni/159km) ZAGREB +1Y 17.12.2009 Soderica, Koprivnica, HRVAŠKA 46°14'N/16°55'E L. Jurinović UA 2103 v 16.8.2013 Balatonlelle, MADŽARSKA 46°47'N/17°40'E P. Szinai (1338dni/84km) BUDAPEST 16.8.2013 Balatonlelle, MADŽARSKA 46°47'N/17°40'E P. Szinai HT 532 o 5.6.2014 Muriša, Benica, Petišovci, SLOVENIJA 46°29'N/16°33'E D. Bordjan (1631dni/40km) o 15.11.2015 Muriša, Benica, Petišovci, SLOVENIJA 46°29'N/16°33'E G. Domanjko (2159dni/40km) o 26.5.2017 Muriša, Benica, Petišovci, SLOVENIJA 46°29'N/16°33'E Š. Orban (2717dni/40km) GDANSK ♀ +2Y 29.1.2013 Rz. Wisla, Krakow, POLJSKA 50°03'N/19°55'E A. Budyta AH 3016 o 26.1.2017 Šoštanjsko jezero, Šoštanj, SLOVENIJA 46°22'N/15°03'E A. Mulej (1458dni/545km) PRAHA ♂ 2Y 21.7.2012 Hodonin, Jihomoravsky kraj, ČEŠKA 48°52'N/17°08'E K. Makon LB 7628 o 6.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E Z. Karcza (1630dni/280km) ZAGREB AD 8.3.2010 Rijeka, HRVAŠKA 45°20'N/14°27'E A. Radalj UA 2367 o 2.4.2010 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E I. Škornik (25dni/69km) o 7.4.2010 Portorož, SLOVENIJA 45°31'N/13°35'E Slovenija (30dni/71km) o 12.12.2010 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E L. Bembich (279dni/59km) o 18.10.2011 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E W. Stani (589dni/69km) o 24.5.2012 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E I. Škornik (808dni/69km) o 24.2.2013 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E B. Rakar (1084dni/69km) o 15.3.2013 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E B. Rakar (1103dni/69km) o 12.8.2013 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E T. Pršin (1253dni/69km) o 17.2.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E D. Fekonja (1807dni/69km) o 25.2.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E T. Zagoršek (1815dni/69km) o 1.4.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°35'E T. Zagoršek (2581dni/69km) ZAGREB ♂ +2Y 9.2.2010 Varaždin, HRVAŠKA 46°18'N/16°20'E L. Jurinović UA 2471 o 13.2.2011 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°38'E RC Slovenija (369dni/60km) o 6.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E Z. Karcza (2523dni/58km) BOLOGNA ♂ 1Y 11.9.2007 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E K. Kravos M 5667 o 11.3.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (2008dni/26km) o 30.7.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2149dni/26km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 145 o 6.8.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2156dni/26km) o 6.10.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2217dni/26km) o 7.3..2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2369dni/26km) o 13.3.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2375dni/26km) o 1.10.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (2577dni/26km) o 15.4.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (2773dni/26km) o 5.3.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E M. Gamser (3098dni/26km) o 24.5.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3178dni/26km) o 25.7.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3240dni/26km) o 5.8.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3251dni/26km) o 4.10.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E B. Rakar (3311dni/26km) o 4.11.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3342dni/26km) o 6.4.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3495dni/26km) o 13.4.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E B. Bratoz (3502dni/26km) o 8.5.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (3527dni/26km) o 9.6.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3559dni/26km) o 21.6.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E D. Bosch (3571dni/26km) LJUBLJANA ♂ AD 26.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj LA 105 o 16.1.2016 Bundek, Zagreb, HRVAŠKA 45°50'N/16°00'E S. Hodić (21dni/64km) o 6.12.2017 Jarun, Zagreb, HRVAŠKA 45°47'N/15°56'E L. Taylor (711dni/69km) LJUBLJANA ♀ AD 26.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj LA 107 o 29.12.2017 Adamov, Gbely, SLOVAŠKA 48°44'N/17°02'E P. Stepanek (734dni/273km) LJUBLJANA ♂ AD 29.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E P. Grošelj LA 111 o 23.12.2016 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°14'E A. Pito (360dni/199km) o 19.1.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°13'E T. Hadarics (387dni/198km) o 20.1.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°13'E P. Spakovszky (388dni/198km) o 25.1.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°58'N/17°13'E A. Pellinge (393dni/200km) o 9.2.2017 Bezenye, Gyor, Moson, Sopron, MADŽARSKA 47°57'N/17°13'E P. Spakovszky (408dni/198km) LJUBLJANA ♂ AD 29.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj LA 115 o 21.1.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E F. Bračko (23dni/24km) o 22.2.2017 Obere Alte Donau, Wien, AVSTRIJA 48°14'N/16°26'E E. Fritze (421dni/208km) LJUBLJANA ♀ 2Y 8.2.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 121 o 28.3.2016 Pilica Stawy, Slaskie, POLJSKA 50°28'N/19°39'E A. Oruba (49dni/616km) o 1.1.2017 Pilica Stawy, Slaskie, POLJSKA 50°28'N/19°39'E A. Oruba (328dni/616km) o 3.12.2017 Puhulanka, Stawy, Žarnowiec, POLJSKA 50°28'N/19°48'E A. Oruba (664dni/623km) LJUBLJANA 2Y 23.3.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LA 137 o 9.5.2017 Szigetszentmiklos, Pest, MADŽARSKA 47°23'N/19°03'E M. Batari (412dni/273km) LJUBLJANA ♀ 2Y 16.5.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 140 o 28.6.2017 Balatonlelle, Somogy, MADŽARSKA 46°47'N/17°40'E Z. Kerenyi (408dni/259km) o 9.7.2017 Balatonoszod, Somogy, MADŽARSKA 46°49'N/17°47'E L. Katalin (419dni/268km) LJUBLJANA ♀ 2Y 9.10.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 148 o 30.1.2017 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E D. Bordjan (113dni/0km) o 29.3.2017 Zalew Rawski, Rawa Mazowiecka, POLJSKA 51°45'N/20°13'E P. Boguszewski (171dni/752km) o 1.5.2017 Regnow, Lodzkie, POLJSKA 51°44'N/20°23'E P. Boguszewski (204dni/758km) o 24.5.2017 Regnow, Lodzkie, POLJSKA 51°44'N/20°22'E P. Boguszewski (227dni/757km) LJUBLJANA ♀ 2Y 9.10.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Grošelj LA 149 o 30.1.2017 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E D. Bordjan (113dni/0km) x 6.7.2017 Szigetszentmiklos, Pest, MADŽARSKA 47°23'N/19°03'E M. Batari (270dni/378km) LJUBLJANA ♂ AD 9.3.2011 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 135 o 28.1.2017 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Darazsi (2152dni/94km) LJUBLJANA ♂ AD 9.3.2011 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 153 o 13.1.2012 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E G. Szabolcs (310dni/93km) o 30.8.2012 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (540dni/93km) o 16.9.2012 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (557dni/93km) o 8.7.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E K. Toth (852dni/93km) o 23.9.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (929dni/93km) o 23.10.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E Z. Oszkocsil (959dni/93km) o 25.12.2013 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E C. Szilard (1022dni/93km) o 12.2.2017 Zalaegerszeg, Zala, MADŽARSKA 46°51'N/16°49'E J. Varga (2167dni/93km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 146 LJUBLJANA ♀ 2Y 9.3.2011 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E D. Grohar LG 184 v 11.8.2015 Stawy Walewice, Lodzkie, POLJSKA 52°05'N/19°42'E R.Wlodarczyk (1616dni/763km) o 13.9.2015 Pokrzywnica, Mlynow, Lodzkie, POLJSKA 52°03'N/19°27'E T. Musial (1649dni/751km) o 24.9.2015 Pokrzywnica, Mlynow, Lodzkie, POLJSKA 52°03'N/19°27'E R. Wlodarczyk (1660dni/751km) o 21.11.2015 Czchow, Malopolskie, POLJSKA 49°48'N/20°39'E S. Mazgaj (1718dni/616km) o 14.1.2017 Šmartinsko jezero, Celje, SLOVENIJA 46°16'N/15°16'E M. Gamser (2138dni/67km) o 18.2.2017 Šmartinsko jezero, Celje, SLOVENIJA 46°16'N/15°16'E T. Romih (2173dni/67km) o 7.6.2017 Moszna, Mazowieckie, POLJSKA 52°10'N/20°45'E P. Strojek (2282dni/811km) LJUBLJANA ♂ AD 6.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 331 o 6.1.2017 Varaždin, HRVAŠKA 46°18'N/16°20'E Z. Karcza (1492dni/58km) LJUBLJANA ♂ AD 6.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 332 o 20.5.2017 Studenka, Moravskoslezsky kraj, ČEŠKA 49°43'N/18°06'E J. Hedrich (1626dni/395km) LJUBLJANA ♂ AD 20.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 352 o 30.12.2014 Klosterneuburg, Niederosterreich, AVSTRIJA 48°17'N/16°20'E C. Roland (740dni/199km) o 7.7.2017 Okarec, Vysočina, ČEŠKA 49°12'N/16°05'E O. Kauzal (1660dni/296km) o 22.7.2017 Okarec, Vysočina, ČEŠKA 49°12'N/16°05'E O. Kauzal (1675dni/296km) LJUBLJANA ♀ AD 29.12.2012 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 370 o 13.1.2015 Hradec Kralove, ČEŠKA 50°13'N/15°50'E J. Vrana (745dni/408km) o 7.2.2017 Pardubice, Pardubicky kraj, ČEŠKA 50°02'N/15°45'E I. Mikšik (1501dni/387km) LJUBLJANA 1Y 6.12.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E Ž. Pečar LG 379 o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (760dni/33km) LJUBLJANA 1Y 15.11.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E Ž. Pečar LG 389 o 30.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (257dni/83km) LJUBLJANA ♂ AD 26.11.2012 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 421 o 14.12.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E J. Hanžel (383dni/22km) o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (1500dni/136km) LJUBLJANA 1Y 28.12.2012 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 437 o 12.2.2015 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn (776dni/0km) o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (1468dni/115km) LJUBLJANA 2Y 2.1.2013 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 442 o 4.1.2017 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (1463dni/33km) LJUBLJANA 2Y 2.1.2013 Šmartinsko jezero, Celje, SLOVENIJA 46°16'N/15°16'E P. Štirn LG 445 o 27.1.2017 Wellersdorfer Bucht, Drau, AVSTRIJA 46°32'N/14°11'E H. Pirker (1486dni/88km) o 4.2.2017 Draustau Feistritz, Karnten, AVSTRIJA 46°32'N/14°05'E J. Bartas (1494dni/95km) LJUBLJANA 2Y 22.1.2013 Koseze, Ljubljana, SLOVENIJA 46°04'N/14°28'E P. Štirn LG 463 o 27.8.2016 Zwirownia W Wolicy, Krakow, POLJSKA 50°03'N/20°12'E K. Czajowski (1313dni/614km) o 30.9.2016 Zwirownia W Wolicy, Krakow, POLJSKA 50°03'N/20°11'E K. Czajowski (1347dni/613km) o 17.3.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1515dni/613km) o 5.5.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°03'N/20°12'E K. Czajowski (1564dni/614km) o 24.5.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1583dni/613km) o 1.6.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1591dni/613km) o 1.7.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1621dni/613km) o 24.7.2017 Zwirownia W Wolicy, Krakow, POLJSKA 50°02'N/20°12'E K. Czajowski (1644dni/613km) o 12.11.2017 Zalew Bagry, Krakow, POLJSKA 50°02'N/19°59'E A. Lobodzinska (1755dni/602km) LJUBLJANA 2Y 25.1.2013 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 467 o 15.1.2017 Draustau Feistritz, Karnten, AVSTRIJA 46°32'N/14°05'E J. Bartas (1451dni/65km) LJUBLJANA ♂ AD 1.2.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 486 o 18.12.2016 Dabrowa Gornicza, Staw Pogoria 3, POLJSKA 50°21'N/19°12'E A. Oruba (1416dni/586km) o 18.12.2017 Dabrowa Gornicza, Staw Pogoria 3, POLJSKA 50°21'N/19°12'E A. Oruba (1781dni/586km) LJUBLJANA ♀ 2Y 28.2.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E J. Bricelj LG 508 o 27.12.2016 Drau, Rakollach, AVSTRIJA 46°38'N/14°34'E J. Feldner (303dni/55km) o 27.1.2017 Draustau Feistritz, Karnten, AVSTRIJA 46°32'N/14°05'E J. Bartas (334dni/50km) LJUBLJANA ♀ AD 25.1.2013 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 554 o 3.12.2017 Stekiny, Warminsko, Mazurskie, POLJSKA 53°48'N/20°11'E G. Pilat (1773dni/867km) LJUBLJANA 2Y 7.5.2013 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 648 o 10.11.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E W. Michalik (552dni/562km) o 12.11.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E L. Berlik (554dni/562km) o 17.12.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E L. Berlik (589dni/562km) o 18.12.2014 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E W. Michalik (590dni/562km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 147 o 3.2.2015 Januskowice, Krapkowice, POLJSKA 50°23'N/18°08'E J. Nogacki (637dni/545km) o 2.11.2015 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E L. Berlik (909dni/562km) o 15.11.2015 stav Malina, Opolskie, POLJSKA 50°37'N/17°59'E W. Michalik (922dni/562km) o 17.8.2017 Chrzowice, Opolskie, POLJSKA 50°36'N/17°56'E L. Berlik (1563dni/558km) LJUBLJANA ♀ AD 3.10.2013 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 675 o 2.4.2015 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E J. Čejka (546dni/336km) o 2.4.2016 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E P. Zbynek (912dni/336km) o 25.2.2017 Ždar nad Sazavou, Vysočina, ČEŠKA 49°33'N/15°56'E V. Mikule (1241dni/334km) LJUBLJANA 2Y 6.12.2013 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 704 o 29.3.2017 Sosnowiec, Zb. Stawiki, Slaskie, POLJSKA 50°16'N/19°06'E E. Paprzycka (1209dni/596km) LJUBLJANA ♀ AD 3.9.2014 Blejsko jezero, Bled, SLOVENIJA 46°21'N/14°06'E P. Štirn LG 772 o 22.9.2015 Draustausee Feistritz, Selkach, AVSTRIJA 46°32'N/14°05'E J. Bartosch (384dni/20km) o 30.4.2017 Boleraz, Trnava, SLOVAŠKA 48°28'N/17°29'E I. Moncmanova (970dni/347km) LJUBLJANA ♂ AD 26.10.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 790 o 12.11.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (17dni/0km) o 5.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (71dni/0km) o 8.4.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E R. Wlodarczyk (530dni/640km) o 24.4.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E M. Kubicki (546dni/640km) o 26.4.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E T. Janiszewski (548dni/640km) o 9.7.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E S. Wasiak (622dni/640km) o 21.9.2016 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°06'E R. Wlodarczyk (696dni/639km) o 11.6.2017 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°07'E M. Kubicki (959dni/640km) o 25.9.2017 Stawy Sarnow, Dalikow, Lodzkie, POLJSKA 51°51'N/19°06'E R. Wlodarczyk (1065dni/639km) LJUBLJANA ♀ AD 12.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 844 o 28.2.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E D. Fekonja (47dni/0km) o 22.2.2017 Milleniumstover, Donau, Wien, AVSTRIJA 4814'N/1626'E E. Fritze (772dni/196km) LJUBLJANA ♀ AD 15.1.2015 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E P. Štirn LG 848 o 22.2.2017 Obere Alte Donau, Wien, AVSTRIJA 48°14'N/16°26'E E. Fritze (769dni/299km) LJUBLJANA ♂ AD 16.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 867 o 28.2.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E D. Fekonja (43dni/0km) o 22.3.2015 Zb. Pokrzywnica, Opatowek, POLJSKA 51°43'N/18°10'E Z. Hudzia (65dni/602km) o 25.3.2015 Zb. Pokrzywnica, Cofka, POLJSKA 51°43'N/18°10'E Z. Jedrysiak (68dni/602km) o 26.3.2015 Zb. Pokrzywnica, Cofka, POLJSKA 51°43'N/18°10'E Z. Jedrysiak (69dni/602km) o 28.3.2015 Zb. Pokrzywnica, Opatowek, POLJSKA 51°43'N/18°10'E Z. Hudzia (71dni/602km) o 18.9.2015 Zb. Murowaniec, Kozminek, POLJSKA 51°48'N/18°17'E H. Zbigniew (245dni/614km) o 4.10.2015 Zb. Murowaniec, Kozminek, POLJSKA 51°48'N/18°17'E Z. Hudzia (261dni/614km) o 20.1.2016 Kerkaszentkiraly, Zala, MADŽARSKA 46°30'N/16°36'E A. Lelkes (369dni/72km) o 8.1.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E J. Zbigniew (723dni/604km) o 15.1.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E J. Zbigniew (730dni/604km) o 21.1.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E J. Zbigniew (736dni/604km) o 4.2.2017 Rz. Prosna, Kalisz:Mcdonald's, POLJSKA 51°45'N/18°04'E A. Maly (750dni/604km) LJUBLJANA ♂ AD 28.1.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 873 o 2.2.2016 Koronco, Gyor, Moson, Sopron, MADŽARSKA 47°36'N/17°29'E A. Pito (370dni/180km) o 3.2.2016 Koronco, Gyor, Moson, Sopron, MADŽARSKA 47°36'N/17°29'E A. Pito (371dni/180km) o 19.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E A. Pito (722dni/194km) o 20.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E T. Vizslan (723dni/194km) o 21.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E M. Falaki (724dni/194km) o 23.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E T. Vizslan (726dni/194km) o 27.1.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°40'N/17°37'E T. Vizslan (730dni/193km) o 11.2.2017 Gyor, Gyor, Moson, Sopron, MADŽARSKA 47°41'N/17°37'E K. Lippai (730dni/194km) LJUBLJANA ♀ AD 26.12.2014 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 918 o 2.4.2015 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E J. Čejka (97dni/336km) o 2.4.2016 Ždar nad Sazavou, ČEŠKA 49°34'N/15°56'E P. Zbynek (463dni/336km) o 25.2.2017 Ždar nad Sazavou, Vysočina, ČEŠKA 49°33'N/15°56'E V. Mikule (792dni/334km) LJUBLJANA ♂ AD 29.11.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj LG 946 o 11.6.2016 Tovačov, Olomoucky kraj, ČEŠKA 49°26'N/17°17'E I. Urinovsky (195dni/342km) o 26.10.2016 Murstausee, Gralla, Leibnitz, AVSTRIJA 46°50'N/15°33'E W. Stani (332dni/33km) o 16.1.2017 Mellach, AVSTRIJA 46°55'N/15°31'E D. Nayer (414dni/42km) o 4.2.2017 Mellach, AVSTRIJA 46°55'N/15°31'E D. Nayer (433dni/42km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 148 LJUBLJANA 1Y 21.12.2015 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 953 o 4.7.2017 Zaborze stawy, Malopolskie, POLJSKA 49°52'N/18°48E J. Dadela (561dni/526km) LJUBLJANA ♀ AD 21.12.2015 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 955 o 10.11.2017 Rzeka Odra, Krapkowic, POLJSKA 50°28'N/17°59'E M. Kubata (690dni/547km) LJUBLJANA 1Y 28.12.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 958 o 27.10.2017 Brenndorf, Volkermarkter Stausee, AVSTRIJA 46°38'N/14°35'E W. Petutschnig (669dni/83km) LJUBLJANA ♂ AD 28.12.2015 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 961 o 22.7.2017 Okarec, Vysočina, ČEŠKA 49°12'N/16°05'E O. Kauzal (572dni/296km) LJUBLJANA 2Y 13.1.2016 Zbiljsko jezero, Zbilje, Medvode, SLOVENIJA 46°09'N/14°25'E P. Štirn LG 966 o 17.8.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (582dni/83km) LJUBLJANA 2Y 28.1.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 975 o 9.7.2016 Balatonlelle, Somogy, MADŽARSKA 46°47'N/17°40'E E. Vincze (163dni/155km) o 11.8.2016 Revfulop, Veszprem, MADŽARSKA 46°49'N/17°37'E R. S. Hattyu (196dni/152km) o 17.11.2016 Balatonmariafurdo, Somogy, MADŽARSKA 46°42'N/17°22'E P. Szinai (294dni/131km) o 7.1.2017 Šoderica, Koprivnica, HRVAŠKA 46°14'N/16°55'E Z. Karcza (345dni/102km) o 5.2.2017 Šoderica, Koprivnica, HRVAŠKA 46°14'N/16°55'E P. Szinai (345dni/102km) o 27.5.2017 Balatonfured, Veszprem, MADŽARSKA 46°57'N/17°53'E S. Papp (485dni/175km) o 8.6.2017 Zamardi, Somogy, MADŽARSKA 46°53'N/17°56'E A. Bodor (497dni/177km) o 11.11.2017 Balatonboglar, Somogy, MADŽARSKA 46°46'N/17°38'E G. Szabolcs (653dni/152km) o 31.12.2017 Siofok, Somogy, MADŽARSKA 46°54'N/18°02'E S. Borza (703dni/184km) LJUBLJANA ♂ AD 28.1.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 986 o 17.11.2017 Jastrzab, zbiornik Poraj, POLJSKA 50°39'N/19°12'E J. Cabak (659dni/524km) LJUBLJANA 2Y 28.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Štirn LG 998 o 12.11.2017 Hulin, Zlinsky kraj, ČEŠKA 49°16'N/17°27'E Š. Jiri (654dni/330km) Bela štorklja Ciconia ciconia RADOLFZELL PULL 23.6.2013 Gleisdorf, Weiz, Steiermark, AVSTRIJA 47°06'N/15°42'E H. Haar AP821 o 14.7.2017 Berkovci, Ljutomer, SLOVENIJA 46°33'N/16°04'E G. Domanjko (1482dni/67km) BOLOGNA PULL 30.6.2008 Fagagna, Udine, ITALIJA 46°06'N/13°05'E B. Dentesani PA078 o 9.3.2011 Šikole, Pragersko, SLOVENIJA 46°24'N/15°42'E P. Štirn (982dni/204km) o 30.1.2013 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Vogrin (1675dni/203km) o 27.12.2013 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E D. Bordjan (2006dni/203km) o 16.12.2016 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (3091dni/203km) o 4.2.2017 Pragersko, SLOVENIJA 46°23'N/15°40'E D. Bordjan (3141dni/201km) o 8.3.2017 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E F. Bračko (3173dni/203km) SEMPACH PULL 11.6.2003 Altreu, ŠVICA 47°11'N/07°27'E C. Kanzig SA306 o 27.3.2017 Zbure, Šmarješke Toplice, SLOVENIJA 45°54'N/15°16'E J. Vidmar (5038dni/614km) HIDDENSEE PULL 25.6.2016 Spaatz, Havelland, Brandenburg, NEMČIJA 52°42’N/12°17’E RC Nemčija AP90 o 25.5.2017 Pragersko, Maribor, SLOVENIJA 46°24'N/15°43'E D. Bordjan (334dni/742km) LJUBLJANA PULL 7.7.2012 Cirkovce, Maribor, SLOVENIJA 46°23'N/15°43'E F. Bračko H 1906 x 13.5.2017 Mecser, Gyor Moson Sopron, MADŽARSKA 47°47'N/17°28'E P. Kovacs (1771dni/204km) LJUBLJANA PULL 23.6.2016 Mostje, Lendava, SLOVENIJA 46°36'N/16°25'E F. Bračko W217 o 30.5.2017 Odayeri landfill, Istambul, TURČIJA 41°13'N/28°50'E Sebnem (341dni/1158km) LJUBLJANA PULL 26.6.2015 Pernica, Maribor, SLOVENIJA 46°34’N/15°43’E F. Bračko W126 o 19.6.2017 Szecsisziget, Zala, MADŽARSKA 46°34'N/16°36'E G. Szabolcs (724dni/67km) LJUBLJANA PULL 24.6.2017 Tešanovci, Murska Sobota, SLOVENIJA 46°41'N/16°15'E F. Bračko W687 x 7.8.2017 Berzence, Somogy, MADŽARSKA 46°12'N/17°09'E E. Mezei (44dni/87km) LJUBLJANA PULL 23.6.2015 Črešnjice pri Cerkljah, Brežice, SLOVENIJA 45°53'N/15°30'E R. Tekavčič W510 v 8.8.2017 Stara Lubovna, SLOVAŠKA 49°18'N/20°38'E V. Klč (777dni/540km) Črna štorklja Ciconia nigra PRAHA PULL 13.6.2015 Hlasivo, Tabor, ČEŠKA 49°29'N/14°45'E J. Jahelka BX 20748 o 23.7.2017 Žepovci, Gornja Radgona, SLOVENIJA 46°42'N/15°52'E V. Marič (771dni/320km) Žličarka Platalea leucorodia PRAHA 1.6.2017 Česke Budejovice, ČEŠKA 49°00'N/14°26'E J. Šimek BX 17533 o 8.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger (37dni/309km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 149 Velika bela čaplja Ardea alba BUDAPEST PULL 5.6.2013 Cegled, Pest, MADŽARSKA 47°13'N/19°52'E V. Szenasi 536597 x 3.2.2017 Soteljska cesta, Rogaška Slatina, SLOVENIJA 46°13'N/15°38'E RC Slovenija (1339dni/341km) BUDAPEST PULL 20.5.2017 Lipot, Gyor Moson Sopron, MADŽARSKA 47°51'N/17°27'E S. Tatai 539918 o 5.12.2017 jezero Komarnik, Lenart, SLOVENIJA 46°34'N/15°48'E R. Šiško (199dni/189km) BUDAPEST PULL 23.5.2017 Barbacs, Gyor Moson Sopron, MADŽARSKA 47°38'N/17°19'E E. Gyorig 539966 o 16.7.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°40'E D. Bordjan (54dni/188km) BUDAPEST PULL 18.5.2017 Balatonszarszo, Somogy, MADŽARSKA 46°49'N/17°49'E P. Szinai 541252 o 16.7.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°40'E D. Bordjan (59dni/172km) MINSK PULL 22.5.2017 Krasnoslobodskoe, Kopy, Minsk, BELORUSIJA 52°50'N/26°58'E I. Bogdanovich C 00315 o 4.11.2017 Rački ribniki, Rače, Maribor, SLOVENIJA 46°26'N/15°40'E D. Bordjan (166dni/1078km) Kormoran Phalacrocorax carbo BUDAPEST PULL 21.4.2016 Zalaszabar, Zala, MADŽARSKA 46°39'N/17°08'E P. Szinai SP 01121 o 25.2.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E D. Bordjan (310dni/118km) o 9.6.2017 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (414dni/113km) o 6.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (441dni/100km) x 10.8.2017 Cirkovci, Pragersko, SLOVENIJA 46°24'N/15°44'E T. Kristofič (476dni/111km) Rečni galeb Chroicocephalus ridibundus ZAGREB +2Y 5.2.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 00137 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1859dni/73km) ZAGREB AD 30.12.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 0475 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1522dni/73km) ZAGREB 2Y 30.12.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 0487 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1522dni/73km) ZAGREB 2Y 3.3.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Basrek LA 0814 o 26.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1090dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1459dni/73km) ZAGREB +2Y 3.3.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 0911 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1467dni/73km) o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1473dni/73km) ZAGREB 1Y 5.12.2010 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 7445 o 26.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2244dni/73km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2248dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2256dni/73km) ZAGREB 1Y 12.12.2010 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 7689 o 17.2.2017 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (2259dni/82km) ZAGREB 2Y 6.2.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8373 o 24.1.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E J. Figelj (2179dni/178km) ZAGREB +2Y 26.2.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8464 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2192dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2195dni/73km) ZAGREB 2Y 6.3.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8504 o 10.3.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1465dni/73km) o 27.10.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1696dni/73km) o 4.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E T. Basle (2100dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2187dni/73km) ZAGREB +2Y 6.3.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8511 o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (2177dni/94km) ZAGREB AD 19.11.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8540 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1872dni/73km) ZAGREB 1Y 19.11.2011 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8557 o 1.9.2016 Strunjan, Koper, SLOVENIJA 45°31'N/13°36'E M. Gamser (1748dni/190km) o 2.1.2017 Strunjan, Koper, SLOVENIJA 45°32'N/13°36'E M. Sešlar (1871dni/189km) ZAGREB 2Y 29.1.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 8877 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1866dni/73km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 150 ZAGREB +2Y 5.2.2012 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 8996 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1848dni/73km) ZAGREB 3Y 17.3.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 9027 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1453dni/73km) ZAGREB 2Y 26.1.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09374 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1127dni/73km) ZAGREB 2Y 26.1.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09578 o 20.1.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (359dni/73km) o 10.3.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (408dni/73km) o 27.12.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (700dni/73km) o 27.1.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (731dni/73km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (741dni/73km) o 17.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (752dni/73km) o 19.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (754dni/73km) o 29.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1068dni/73km) o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1073dni/73km) o 17.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1087dni/94km) o 18.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1088dni/94km) o 20.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1090dni/94km) ZAGREB 2Y 16.2.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09603 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1117dni/73km) ZAGREB +2Y 9.3.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09680 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1096dni/73km) ZAGREB +2Y 9.3.2014 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LA 09724 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1031dni/73km) ZAGREB 2Y 31.1.2010 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LA 20042 o 29.11.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E P. Grošelj (1055dni/73km) o 8.3.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2228dni/73km) o 12.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2507dni/73km) o 13.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2508dni/73km) o 29.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2524dni/73km) o 30.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (2525dni/73km) o 7.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Novak (2533dni/73km) o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (2583dni/73km) ZAGREB 1Y 1.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E M. Martinović LS 00218 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1130dni/94km) ZAGREB 1Y 1.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E M. Martinović LS 00224 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1129dni/73km) ZAGREB AD 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E L. Jurinović LS 00399 o 24.1.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E J. Figelj (1143dni/178km) ZAGREB 1Y 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E S. Kapelj LS 00426 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1179dni/73km) ZAGREB 1Y 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E S. Kapelj LS 00483 o 31.12.2014 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (388dni/73km) o 21.3.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (468dni/73km) o 27.1.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (780dni/73km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (790dni/73km) o 1.3.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (814dni/73km) o 9.3.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (822dni/73km) o 26.11.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1084dni/73km) o 13.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1101dni/73km) o 17.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1105dni/73km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1149dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1157dni/73km) o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1166dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1179dni/73km) o 17.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1195dni/73km) o 15.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1438dni/73km) ZAGREB 1Y 8.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E S. Kapelj Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 151 LS 00489 o 5.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (789dni/73km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (790dni/73km) o 19.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (803dni/73km) o 24.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (808dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1157dni/73km) ZAGREB 1Y 15.12.2013 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00673 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (1116dni/94km) ZAGREB 2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00855 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (352dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (409dni/73km) ZAGREB +2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00897 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (353dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (385dni/94km) ZAGREB +2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00900 o 8.12.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (326dni/94km) o 12.12.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (330dni/94km) o 15.12.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (333dni/94km) o 17.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (366dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (384dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (385dni/94km) ZAGREB 2Y 17.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 00967 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (353dni/94km) ZAGREB 1Y 8.2.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01009 o 3.11.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (634dni/73km) o 3.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Novak (664dni/73km) o 4.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Novak (665dni/73km) o 17.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (678dni/73km) o 27.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E P. Grošelj (688dni/73km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (722dni/73km) o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (730dni/73km) o 12.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E D. Bordjan (735dni/73km) o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (739dni/73km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (752dni/73km) o 15.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1011dni/73km) ZAGREB +2Y 8.2.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01039 o 3.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (664dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (760dni/73km) ZAGREB +2Y 8.2.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01117 o 23.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1019dni/73km) ZAGREB +2Y 8.3.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01509 o 9.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (854dni/73km) ZAGREB AD 29.11.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01719 o 13.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (45dni/93km) o 15.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (47dni/93km) o 6.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (69dni/73km) o 11.2.2016 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (74dni/94km) o 5.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (403dni/94km) o 31.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (429dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (433dni/94km) ZAGREB 1Y 29.11.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01745 o 4.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (36dni/93km) o 19.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (51dni/93km) o 21.1.2016 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E F. Bračko (53dni/93km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (433dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (434dni/94km) o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (448dni/94km) ZAGREB 1Y 20.12.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01796 o 5.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (382dni/94km) o 17.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (394dni/94km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 152 o 18.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (395dni/94km) o 20.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (397dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (412dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (413dni/94km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01812 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (428dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01821 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (399dni/73km) ZAGREB 3Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01828 o 3.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (649dni/73km) ZAGREB 1Y 20.12.2015 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01835 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (380dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01893 o 27.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (369dni/94km) o 29.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E F. Bračko (371dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (377dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (378dni/94km) o 8.12.2017 Maribor, SLOVENIJA 46°33'N/15°38'E P. Grošelj (684dni/94km) ZAGREB 2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 01918 o 4.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (346dni/94km) o 5.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (347dni/94km) o 9.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (351dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (378dni/94km) o 14.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (387dni/94km) ZAGREB 2Y 5.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02044 o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (14dni/94km) ZAGREB 2Y 5.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02067 o 18.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (41dni/73km) ZAGREB 2Y 5.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02299 o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (32dni/73km) ZAGREB 2Y 22.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02364 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (35dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (46dni/73km) o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (64dni/73km) o 9.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (77dni/73km) ZAGREB 2Y 22.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02385 o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (13dni/94km) o 18.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (27dni/94km) o 19.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (28dni/94km) ZAGREB +2Y 26.2.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 02952 o 17.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (19dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03055 o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (377dni/94km) o 5.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (378dni/94km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (402dni/73km) ZAGREB +2Y 24.1.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03067 o 6.5.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (103dni/73km) o 15.5.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (112dni/73km) o 16.5.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (113dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (410dni/73km) ZAGREB +2Y 21.2.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03311 o 26.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (521dni/73km) ZAGREB 1Y 4.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03650 o 22.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (80dni/94km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03697 o 8.12.2017 Maribor, SLOVENIJA 46°33'N/15°38'E P. Grošelj (355dni/94km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03699 o 26.1.2017 Stjaža, Strunjan, Koper, SLOVENIJA 45°32'N/13°36'E V. Kastelic (39dni/189km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 153 LS 03711 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (73dni/73km) o 18.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (90dni/73km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03726 o 25.10.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (311dni/73km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03776 o 11.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (83dni/73km) o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (99dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03835 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (52dni/73km) o 3.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (299dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03848 o 18.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (10dni/94km) o 20.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E J. Novak (12dni/94km) o 31.1.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (23dni/94km) o 4.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (27dni/94km) o 22.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (45dni/94km) ZAGREB 2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03931 o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (66dni/73km) o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (78dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03957 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (78dni/73km) ZAGREB 2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03959 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (78dni/73km) ZAGREB 2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03963 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (49dni/73km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (60dni/73km) o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E J. Hanžel (77dni/73km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03973 o 22.2.2017 Maribor, SLOVENIJA 46°33'N/15°38'E M. Gamser (45dni/94km) ZAGREB +2Y 8.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška LS 03975 o 7.11.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (303dni/73km) MADRID +3Y 5.3.2010 ZOO Barcelona, ŠPANIJA 41°23'N/02°11'E RC Španija NC14 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2553dni/1227km) BUDAPEST PULL 10.6.2012 Balatonlelle, Somogy, MADŽARSKA 46°45'N/17°44'E G. Kovacs 387269 o 18.4.2014 reka Drava, Ormož, SLOVENIJA 46°24'N/16°08'E L. Božič (677dni/128km) o 8.6.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (1459dni/147km) o 15.6.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E M. Gamser (1831dni/147km) o 26.6.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1842dni/147km) BUDAPEST PULL 13.6.2015 Balatonlelle, Somogy, MADŽARSKA 46°45'N/17°44'E G. Kovacs SH 01226 o 19.2.2017 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (617dni/160km) BUDAPEST +1Y 27.9.2015 Szeged, Csongrad, MADŽARSKA 46°18'N/20°08'E A. Domjan SH 01972 o 26.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (518dni/327km) BUDAPEST PULL 31.5.2014 Retszilas, Fejer, MADŽARSKA 46°50'N/18°34'E P. Szinai SH 02434 o 5.1.2015 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (219dni/225km) o 6.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (220dni/223km) o 25.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (239dni/223km) o 27.2.2015 reka Drava, Ptuj, SLOVENIJA 46°25'N/15°52'E P. Grošelj (272dni/211km) o 18.3.2016 Rače, Maribor, SLOVENIJA 46°27'N/15°41'E M. Gamser (657dni/224km) o 23.10.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik (1241dni/411km) o 31.10.2017 Lucija, Portorož, SLOVENIJA 45°30'N/13°36'E V. Bezlaj (1249dni/410km) BUDAPEST +2Y 2.1.2016 Budapest Xlll., Pest, MADŽARSKA 47°30'N/19°02'E L. Katalin SH 02954 o 25.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (420dni/270km) o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (424dni/270km) BUDAPEST PULL 28.5.2015 Nagyrada, Zala, MADŽARSKA 46°37'N/17°08'E M. Csaba SH 04107 x 25.5.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (728dni/99km) BUDAPEST PULL 19.6.2016 Mocsa, Komarom, Esztergom, MADŽARSKA 47°41'N/18°10'E G. Batky SH 05267 o 15.5.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°36'E I. Škornik (330dni/427km) o 1.10.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik (469dni/426km) BUDAPEST PULL 15.6.2017 Balatonlelle, Somogy, MADŽARSKA 46°45'N/17°44'E P. Szinai Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 154 SH 05475 x 13.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (28dni/147km) BUDAPEST PULL 14.6.2015 Mocsa, Komarom, Esztergom, MADŽARSKA 47°41'N/18°10'E G. Batky HA 14274 o 1.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (626dni/225km) BUDAPEST +2Y 9.3.2014 Sopron, Gyor Moson Sopron, MADŽARSKA 47°39'N/16°36'E T. Hadarics HA 15013 o 12.12.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1009dni/150km) o 5.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (1064dni/150km) o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (1075dni/150km) o 19.2.2017 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (1078dni/142km) o 8.12.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°52'E P. Grošelj (1370dni/148km) o 30.12.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (1392dni/147km) BUDAPEST +2Y 7.4.2013 Sopron, Gyor Moson Sopron, MADŽARSKA 47°39'N/16°36'E T. Hadarics HA 15315 o 7.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1461dni/149km) PRAHA PULL 25.5.2012 Mušov, Breclav, ČEŠKA 48°54'N/16°36'E F. Zicha ES 31029 o 3.2.2014 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (619dni/270km) o 12.1.2015 Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (962dni/270km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (1711dni/281km) PRAHA ♀ 2Y 6.1.2015 Vinohrady, Stredočasky kraj a Praha, ČEŠKA 50°04’N/14°25’E I. Mikšik ET 08153 o 8.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (702dni/402km) o 12.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (706dni/402km) o 16.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (710dni/402km) o 21.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (715dni/402km) o 23.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (717dni/402km) o 27.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (721dni/402km) o 5.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (730dni/402km) PRAHA 1Y 11.9.2012 Litomyšl, Pardubicky kraj, ČEŠKA 49°52’N/16°17’E U. Lubor EX 95423 o 4.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33’N/15°40’E M. Gamser (1576dni/371km) GDANSK +3Y 3.1.2016 Zglowiaczka, Wloclawek, Kujawsko, PLJSKA 52°39’N/19°03’E J. Pietrasik FN 36424 o 21.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (353dni/720km) o 23.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (355dni/720km) o 27.12.2016 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (359dni/720km) o 6.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (369dni/720km) o 30.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (393dni/729km) GDANSK 1Y 17.11.2016 Staw Rubinowy, Szczecin, POLJSKA 53°22’N/14°39’E L. Borek FS 24247 o 26.12.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (404dni/761km) o 31.12.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E P. Grošelj (409dni/761km) GDANSK PULL 28.5.2017 Poraj, Slaskie, POLJSKA 50°38’N/19°14’E J. Betleja THE7 o 4.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24’N/15°53’E B. Štumberger (37dni/531km) GDANSK +2Y 15.12.2013 Warszawa, Mokotow, Mazowieckie, POLJSKA 52°10’N/21°03’E M. Sidelnik T3A2 o 14.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1126dni/743km) GDANSK +1Y 28.10.2016 ul. Dworcowa, Stargard, POLJSKA 53°20’N/15°01’E L. Borek T4T5 o 27.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (150dni/773km) GDANSK +1Y 9.11.2016 ul. Dworcowa, Stargard, POLJSKA 53°20’N/15°01’E L. Borek T6T2 o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (99dni/773km) o 22.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (105dni/755km) GERMANY 18.10.2015 Binnenalster, Hamburg, NEMČIJA 53°33’N/10°00’E RC Nemčija 5419548 o 31.10.2017 Lucija, Portorož, SLOVENIJA 45°30’N/13°36’E V. Bezlaj (744dni/931km) KIEV PULL 6.6.2017 Zdolbuniv, Rivne, UKRAJINA 50°31’N/26°17’E RC Ukrajina J 006836 o 1.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B.Štumberger (25dni/892km) LITHUANIA PULL 20.6.2012 Striunos tvenk., Kauno r., LITVA 55°07’N/23°45’E D. Musteikis HA 16909 o 4.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33’N/15°40’E M. Gamser (1690dni/1107km) o 5.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33’N/15°40’E M. Gamser (1691dni/1107km) LITHUANIA PULL 16.6.2012 Kretuono ež. Didžioji sala, Švenčioniu, LITVA 55°14'N/26°04'E G. Varnas HA 19801 o 20.1.2015 reka Drava, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (948dni/1208km) o 18.1.2016 reka Drava, Maribor, SLOVENIJA 46°33'N/15°38'E F. Bračko (1311dni/1208km) o 4.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (1694dni/1207km) o 5.2.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°39'E M. Gamser (1695dni/1207km) LJUBLJANA PULL 24.6.2015 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger 8528 o 3.1.2017 Port de Vilanova, Geltru, Barcelona, ŠPANIJA 41°12'N/01°43'E M. Olive (559dni/1272km) LJUBLJANA PULL 24.6.2015 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 155 8532 o 14.1.2017 Fare les Oliviers, FRANCIJA 43°34'N/05°12'E E. Durand (570dni/896km) LJUBLJANA PULL 24.6.2015 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger 8539 o 26.11.2016 C. na Ambrosiana, Milano, ITALIJA 45°25'N/09°12'E A. Nicoli (521dni/528km) o 23.3.2017 Zalaegerszeg, Zala, MADŽARSKA 46°47'N/16°49'E G. Szabolcs (638dni/83km) LJUBLJANA PULL 12.6.2017 novi otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E B. Štumberger VT 3 o 16.11.2017 Ejea de los Caballeros, Zaragoza, ŠPANIJA 42°05'N/01°08'W L. Garcia (157dni/1434km) o 14.12.2017 Zaragoza, ŠPANIJA 41°38'N/00°55'W L. Garcia (185dni/1440km) LJUBLJANA PULL 23.6.2017 mali otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E B. Štumberger VT 17 o 7.10.2017 C.Na Ambrosiana, Milano, ITALIJA 45°25'N/09°12'E L. Bonomelli (106dni/528km) LJUBLJANA PULL 13.7.2017 prodnati otok, Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E B. Štumberger VT 24 o 18.10.2017 Foce Del Tronto, Martinsicuro, ITALIJA 42°54'N/13°55'E D. Marrone (97dni/421km) o 25.11.2017 Porto Di Pescara, Abruzzo, ITALIJA 42°28'N/14°14'E A. Antonucci (135dni/458km) Sivi galeb Larus canus BUDAPEST 2Y 16.3.2013 Gyal, Pest, MADŽARSKA 47°21'N/19°14'E D. Hegedus VR 02470 o 14.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1400dni/277km) o 18.1.2017 reka Drava, Lent, Maribor, SLOVENIJA 46°33'N/15°40'E M. Gamser (1404dni/285km) Rumenonogi galeb Larus michahellis ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 01232 o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E J. Hanžel (98dni/75km) ZAGREB 1Y 18.12.2016 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 01272 o 17.5.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (150dni/75km) ZAGREB 2Y 12.3.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 01932 o 9.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (28dni/75km) o 13.5.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (62dni/75km) ZAGREB 22.1.2017 Jakuševac, Zagreb, HRVAŠKA 45°45'N/16°01'E RC Hrvaška PS 02699 o 26.7.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (185dni/75km) o 8.9.2017 Dragonja vas, Pragersko, SLOVENIJA 46°22'N/15°42'E D. Bordjan (229dni/73km) ZAGREB PULL 28.5.2006 o. Zečevo, o. Krk, HRVAŠKA 45°00'N/14°50'E K. Mikulić PA 19948 o 15.11.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (3824dni/177km) o 1.8.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (4083dni/177km) Črnomorski galeb Larus cachinnans BRATISLAVA PULL 17.6.2014 Slanica, Namestovo, SLOVAŠKA 49°25'N/19°30'E S. Oldrich E 4591 o 7.4.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (1025dni/429km) GDANSK PULL 15.5.2014 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja 03P2 o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°23'N/15°54'E L. Božič (964dni/461km) GDANSK PULL 26.5.2016 Rz. Wisla, Zastow Karczmiski, POLJSKA 51°15'N/21°51'E L. Bednarz 242P o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (266dni/694km) o 25.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (275dni/694km) GDANSK PULL 12.5.2011 Zb.Kužnica, Dabrowa Gornicza, POLJSKA 50°22'N/19°11'E P. Kmiecik 71P6 o 14.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2074dni/504km) GDANSK PULL 25.5.2016 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°59'E J. Batleja 821P o 30.12.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (584dni/457km) GDANSK PULL 25.5.2016 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja 921P o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (288dni/459km) o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (288dni/459km) o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°50'E J. Hanžel (305dni/458km) o 29.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (308dni/459km) GDANSK PULL 25.5.2016 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja 971P o 26.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°50'E J. Hanžel (305dni/458km) GDANSK PULL 21.5.2009 Žwirownia Zakole, Babice, POLJSKA 50°02'N/19°28'E J. Betleja PANB o 3.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°23'N/15°54'E L. Božič (2784dni/484km) GDANSK PULL 21.5.2009 Žwirownia Zakole, Babice, POLJSKA 50°02'N/19°28'E J. Betleja PAOO o 14.1.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°09'E L. Božič (2795dni/474km) GDANSK PULL 27.5.2010 Zb. Kozielno, Paczkow, POLJSKA 50°29'N/16°58'E J. Betleja Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 156 PDTX o 26.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2436dni/461km) GDANSK PULL 27.5.2010 Zb. Kozielno, Paczkow, POLJSKA 50°29'N/16°58'E J. Betleja PDZH o 26.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (2436dni/461km) o 2.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (2443dni/459km) GDANSK +3Y 19.4.2011 Žwirownia Zakole, Babice, POLJSKA 50°02'N/19°28'E J. Betleja PEAK o 14.1.2017 Ormoško jezero, Ormož, SLOVENIJA 46°23'N/16°09'E L. Božič (2097dni/474km) GDANSK PULL 25.5.2012 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja PKTN o 8.1.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°53'E L. Božič (1689dni/459km) GDANSK PULL 25.5.2012 Zb. Kozielno, Paczkow, POLJSKA 50°28'N/16°58'E J. Betleja PLDL o 16.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E L. Božič (1728dni/459km) MINSK 17.6.2016 Roof Selitskogo, Minsk, BELORUSIJA 53°49'N/27°41'E RC Belorusija DA 00712 o 25.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (253dni/1173km) MINSK 17.6.2016 Roof Selitskogo, Minsk, BELORUSIJA 53°49'N/27°41'E RC Belorusija DA 00788 o 15.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (271dni/1173km) MINSK PULL 3.7.2014 Gatovo, Minsk, BELORUSIJA 53°47'N/27°40'E RC Belorusija D 00764 o 28.2.2015 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E L. Božič (240dni/1170km) o 5.2.2016 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (582dni/1170km) o 9.3.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°25'N/15°53'E M. Gamser (980dni/1170km) Navadna čigra Sterna hirundo ZAGREB PULL 26.7.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40346 o 1.8.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (36dni/33km) ZAGREB PULL 27.6.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40835 o 14.7.2017 Stari Grad, Brežice, SLOVENIJA 45°55'N/15°32'E D. Klenovšek (17dni/27km) ZAGREB PULL 12.7.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40852 o 31.7.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (34dni/33km) ZAGREB PULL 27.6.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40854 o 14.7.2017 Stari Grad, Brežice, SLOVENIJA 45°55'N/15°32'E D. Klenovšek (17dni/27km) ZAGREB PULL 27.6.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40858 o 30.7.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (33dni/33km) ZAGREB PULL 12.7.2017 Raktije, Zagreb, HRVAŠKA 45°48'N/15°50'E B. Jačmenica HA 40858 o 30.7.2017 Krško, SLOVENIJA 45°58'N/15°29'E D. Klenovšek (18dni/33km) LJUBLJANA PULL 31.5.2011 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 32303 o 7.7.2011 Staranzano, Goricia, ITALIJA 45°49’N/13°31’E S. Candotto (37dni/36km) o 27.8.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43’N/13°33’E S. Candotto (2280dni/26km) LJUBLJANA PULL 31.5.2011 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 32310 o 3.7.2011 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°49’N/13°31’E S. Candotto (33dni/36km) o 7.5.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43’N/13°33’E S. Candotto (2168dni/26km) LJUBLJANA PULL 10.6.2011 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°35'E I. Brajnik E 32351 o 28.7.2011 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°49’N/13°31’E S. Candotto (48dni/26km) o 6.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (2249dni/46km) o 14.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (2257dni/46km) LJUBLJANA PULL 23.5.2012 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 32396 o 23.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1887dni/26km) LJUBLJANA PULL 28.5.2012 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 36105 o 13.10.2014 Camargue, Bouches du Rhone, FRANCIJA 43°22'N/04°48'E M. Thibault (868dni/749km) o 30.8.2015 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1189dni/26km) o 15.8.2016 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1540dni/26km) o 21.5.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1819dni/26km) LJUBLJANA PULL 29.5.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 36182 o 31.8.2016 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1190dni/26km) o 7.5.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1439dni/26km) LJUBLJANA PULL 29.5.2013 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 36188 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1502dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E J. Figelj E 36212 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (767dni/26km) LJUBLJANA PULL 25.5.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39761 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (776dni/26km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 157 LJUBLJANA PULL 25.5.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39762 o 6.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (804dni/53km) LJUBLJANA PULL 25.5.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39766 o 26.6.2015 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (32dni/26km) o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (776dni/26km) LJUBLJANA PULL 4.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39783 o 26.7.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (783dni/53km) o 28.7.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (785dni/53km) o 19.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (807dni/53km) LJUBLJANA PULL 4.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39785 o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (766dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39823 o 25.6.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (753dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39836 o 5.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (763dni/26km) LJUBLJANA PULL 3.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39837 o 26.7.2015 Le Salin des Pesquiers, Hyeres, FRANCIJA 43°04'N/06°08'E A. Audevard (53dni/665km) o 9.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (767dni/26km) LJUBLJANA PULL 12.6.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 39844 o 25.6.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (744dni/26km) LJUBLJANA PULL 18.6.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E T. Mihelič E 40240 o 21.8.2014 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (64dni/26km) o 24.8.2014 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (67dni/26km) o 6.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (1145dni/53km) o 7.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (1146dni/53km) o 27.8.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1166dni/26km) LJUBLJANA PULL 16.6.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik SH 111 o 21.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (35dni/29km) LJUBLJANA PULL 4.7.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik SH 118 o 27.7.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (23dni/46km) LJUBLJANA PULL 4.6.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik SH 122 o 14.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (71dni/46km) o 19.8.2017 Rovinj, Istra, HRVAŠKA 45°04'N/13°38'E L. Taylor (76dni/46km) LJUBLJANA PULL 18.6.2014 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik X 3761 o 28.6.2016 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (741dni/26km) o 27.6.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (1105dni/26km) LJUBLJANA PULL 6.7.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik VX 113 o 23.7.2017 Foce Dell'Isonzo, Staranzano, Goricia, ITALIJA 45°43'N/13°33'E S. Candotto (17dni/26km) Močvirski martinec Tringa glareola OZZANO 2Y 26.7.2007 C. Rossi, Rimini, ITALIJA 44°06'N/12°29'E R. De Carli ZN 39379 v 23.7.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E Ž. Pečar (3650dni/277km) Beločeli deževnik Charadrius alexandrinus LJUBLJANA ♀ AD 16.5.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°29'N/13°36'E I. Škornik CA 38 o 7.7.2017 Porto Di Lido, Venezia, ITALIJA 45°26'N/12°24'E M. Picone (52dni/94km) Žerjav Grus grus HIDDENSEE 25.1.2016 Garlitz, Brandenburg, NEMČIJA 52°33'N/12°33'E B. Block BA 033004 o 15.4.2017 Medvedce, Pragersko, SLOVENIJA 46°21'N/15°39'E D. Bordjan (446dni/724km) Siva gos Anser anser BUDAPEST PULL 8.6.2016 Fertoujlak, Gyor Moson Sopron, MADŽARSKA 47°41'N/16°51'E G. Kovacs SP 00116 o 5.2.2017 Renče, Ajdovščina, SLOVENIJA 45°53'N/13°39'E S. Kovačič (242dni/315km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 158 Čopasta črnica Aythyla fuligula PRAHA ♀ AD 9.7.2016 Frahelž, Jihočesky kraj, ČEŠKA 49°07'N/14°44'E P. Musil CX 3242 o 7.2.2017 Ptujsko jezero, Ptuj, SLOVENIJA 46°24'N/15°52'E M. Gamser (213dni/314km) Rjavi škarnik Milvus milvus PRAHA PULL 8.6.2017 Mikulov, ČEŠKA 48°47'N/16°40'E M. Hynek CT 793 x 30.10.2017 Log pri Vipavi, Vipava, SLOVENIJA 45°52'N/13°56'E P. Krečič (144dni/384km) Divja grlica Streptopelia turtur LJUBLJANA AD 14.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28’N/13°37’E R. Tekavčič T 29705 + 2.9.2017 La Magione, Chiusdino, Siena, ITALIJA 43°12’N/11°08’E A. Bortone (384dni/320km) Čebelar Merops apiaster LJUBLJANA 1Y 12.9.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E Ž. Pečar X 3807 v 19.7.2016 Salzlandkreis, Sachsen, Anhalt, NEMČIJA 51°42'N/11°49'E M. Harz (311dni/705km) v 18.7.2017 Salzlandkreis, Sachsen, Anhalt, NEMČIJA 51°42'N/11°49'E M. Harz (675dni/705km) LJUBLJANA 1Y 14.9.2015 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E J. Bricelj X 3834 v 14.7.2017 Anhalt-Bitterfeld, Sachsen-Anhalt, NEMČIJA 51°41'N/11°51'E M. Harz (669dni/703km) Postovka Falco tinunculus BUDAPEST PULL 20.5.2017 Pomaz, Pest, MADŽARSKA 47°39'N/19°02'E C. Spilak HA 29185 x 2.10.2017 Pirmane 4, Cerknica, SLOVENIJA 45°50'N/14°28'E A. Zalar (135dni/402km) LJUBLJANA ♂ 2Y 6.5.2015 Kleče, Ljubljana, SLOVENIJA 46°05'N/14°29'E D. Fekonja K 1021 o 15.6.2015 Žale, Ljubljana, SLOVENIJA 46°04'N/14°31'E D. Fekonja (40dni/3km) o 14.4.2017 Csanyoszro, Baranja, MADŽARSKA 45°53'N/17°54'E A. Meiszterics (709dni/265km) Plavček Cyanistes caeruleus SEMPACH ♂ 1Y 27.10.2016 Lauwil, Baselland, ŠVICA 47°22'N/07°39'E S. Hohl B 543477 v 8.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (346dni/530km) GDANSK ♂ 1Y 28.9.2017 Kaliszany Kolonia, POLJSKA 51°04'N/21°47'E A. Aftyka K6T 6971 v 21.10.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš (23dni/689km) LJUBLJANA ♂ AD 2.12.2015 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš AC 89434 x 1.3.2017 Zduny, Kujawsko Pomorskie, POLJSKA 53°08'N/19°32'E W. Grochowalski (455dni/802km) LJUBLJANA AD 13.10.2014 Prelesje, Mirna, SLOVENIJA 45°57’N/15°06’E J. Gračner AC 56717 v 15.10.2017 Ventes ragas, Šilutes, LITVA 55°20'N/21°11'E V. Eigirdas (1098dni/1127km) LJUBLJANA 1Y 26.10.2015 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik AH 7129 v 12.11.2017 Plesivec, Rožnava, SLOVAŠKA 48°33’N/20°24’E M. Olekšak (748dni/605km) Velika sinica Parus major PRAHA ♂ AD 25.9.2016 Horni Nemči, Zlinsky kraj, ČEŠKA 48°56'N/17°38'E P. Kunčik N 774019 v 24.10.2017 Langusova 20, Ljubljana, SLOVENIJA 46°02'N/14°30'E S. Kos (394dni/399km) GDANSK ♂ AD 29.9.2016 Siemianowka, Narewka, POLJSKA 52°54'N/23°51'E P. Kokocinski K7K 7100 v 30.10.2017 Preradovićeva 6, Ljubljana, SLOVENIJA 46°04'N/14°31'E T. Trilar (396dni/1014km) LJUBLJANA ♂ AD 5.2.2016 Spodnje Radvanje, Maribor, SLOVENIJA 46°32'N/15°37'E F. Bračko AC 80212 v 8.1.2017 Glogow Malopolski, Podkarpackie, POLJSKA 50°09'N/21°57'E J. Wozniak (338dni/616km) LJUBLJANA ♀ 1Y 1.10.2017 Ig, Ljubljana, SLOVENIJA 45°58'N/14°33'E B. Vidic AH 71329 v 22.11.2017 Bertiolo, Codroipo, ITALIJA 45°56'N/13°01'E M. Giordano (52dni/119km) Plašica Remiz pendulinus PRAHA 1Y 27.7.2017 Pohorelice, Jihomoravsky kraj, ČEŠKA 48°57'N/16°32'E I. Frohlich J 99999 v 9.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (74dni/372km) LJUBLJANA 1Y 22.9.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E I. Vreš Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 159 AH 67435 v 18.11.2017 Codevigo, Padova, ITALIJA 45°17'N/12°08'E L. Sattin (57dni/337km) LJUBLJANA 1Y 4.11.2017 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič AH 81841 v 18.11.2017 Codevigo, Padova, ITALIJA 45°17'N/12°08'E L. Sattin (14dni/194km) Brkata sinica Panurus biarmicus BUDAPEST ♀ 1Y 4.7.2017 Fertoujlak, Gyor Moson Sopron, MADŽARSKA 47°40'N/16°49'E S. Mogyorosi K 819632 v 2.11.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E T. Mihelič (121dni/333km) BUDAPEST ♂ 1Y 4.7.2017 Fertoujlak, Gyor Moson Sopron, MADŽARSKA 47°40'N/16°49'E S. Mogyorosi K 819633 v 2.11.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E T. Mihelič (121dni/333km) Kmečka lastovka Hirundo rustica LJUBLJANA JUV 10.7.2017 Požeg, Pragersko, SLOVENIJA 46°25'N/15°39'E I. Vreš KV 26534 v 6.8.2017 Keszthely, Zala, MADŽARSKA 46°42'N/17°14'E J. Varga (27dni/125km) LJUBLJANA 1Y 13.9.2016 Sečovelske soline, Portorož, SLOVENIJA 45°28'N/13°37'E P. Grošelj KT 34025 x 26.6.2017 Carbonaia, Viscone, Udine, ITALIJA 45°56'N/13°22'E F. Barbarino (286dni/55km) Breguljka Riparia riparia ZAGREB 1Y 31.8.2014 Vransko jezero, Pakoštane, HRVAŠKA 43°53'N/15°33'E T. Blažev BJ 50110 v 14.6.2016 Brinje, Ljubljana, reka Sava, SLOVENIJA 46°06'N/14°36'E R. Tekavčič (653dni/257km) v 22.6.2016 Brinje, Ljubljana, reka Sava, SLOVENIJA 46°06'N/14°36'E Ž. Pečar (661dni/257km) v 20.6.2017 Brinje, Ljubljana, reka Sava, SLOVENIJA 46°06'N/14°36'E Ž. Pečar (1024dni/257km) ZAGREB 1Y 19.6.2016 Samoborski Otok, Samobor, HRVAŠKA 45°50'N/15°43'E T. Blažev BJ 77316 v 3.7.2017 Ravno, Smednik, SLOVENIJA 45°54'N/15°22'E Ž. Pečar (379dni/28km) ZAGREB AD 19.6.2016 Samoborski Otok, Samobor, HRVAŠKA 45°50'N/15°43'E T. Blažev BJ 77256 v 3.7.2017 Ravno, Smednik, SLOVENIJA 45°54'N/15°22'E Ž. Pečar (379dni/28km) ZAGREB AD 25.6.2013 Samoborski Otok, Samobor, HRVAŠKA 45°50'N/15°43'E D. Leiner BH 13876 v 9.7.2017 Ravno, Smednik, SLOVENIJA 45°54'N/15°22'E Ž. Pečar (1475dni/28km) Belovrati muhar Ficedula albicollis STOCKHOLM PULL 17.6.2017 Pankar, Grotlingbo, Gotlands Lan, ŠVEDSKA 57°08'N/18°22'E RC Švedska DA 77268 v 26.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (101dni/1272km) Severni kovaček Phylloscopus trochilus MOSKVA 1Y 24.8.2017 Kandalakshskiy, Luvenga, Murmansk, RUSIJA 67°06'N/32°46'E RC Rusija VF 75768 v 22.9.2017 Zeleni rob, Velika planina, SLOVENIJA 46°18'N/14°38'E D. Grohar (29dni/2540km) Vrbji kovaček Phylloscopus collybita MOSKVA 14.10.2017 Zelenogradskiy, Rybachiy, Kaliningrad, RUSIJA 55°05'N/20°44'E RC Rusija VP 11466 v 28.10.2017 Kozlarjeva gošča, Ljubljana, SLOVENIJA 46°00'N/14°30'E D. Šere (14dni/1100km) LJUBLJANA 1Y 16.10.2016 Parte, Ig, Ljubljana, SLOVENIJA 45°58'N/14°33'E S. Kos KV 9882 v 25.12.2016 Ribera, Agrigento, ITALIJA 37°29'N/13°17'E A. Di Lucia (70dni/949km) v 8.1.2017 Ribera, Agrigento, ITALIJA 37°29'N/13°17'E A. Di Lucia (84dni/949km) v 15.1.2017 Ribera, Agrigento, ITALIJA 37°29'N/13°17'E A. Di Lucia (91dni/949km) Svilnica Cettia cetti LJUBLJANA 1Y 18.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E T. Mihelič AH 1844 x 7.1.2017 San Dona' Di Piave, Venezia, ITALIJA 45°39'N/12°36'E F. Panzarin (142dni/82km) Rakar Acrocephalus arundinaceus HIDDENSEE 1Y 31.7.2016 Sawall, Oder, Spree, Brandenburg, NEMČIJA 52°04'N/14°12'E RC Nemčija OB 91562 v 8.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (404dni/678km) ZAGREB AD 5.8.2017 Vransko jezero, Pakoštane, HRVAŠKA 43°56'N/15°30'E B. Ende CA 121591 v 6.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar (1dan/245km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 160 LJUBLJANA 1Y 27.7.2016 Ormož, SLOVENIJA 46°25'N/16°10'E I. Vreš CL 24554 v 30.4.2017 Biskupice, Zlinsky kraj, ČEŠKA 49°05'N/17°43'E J. Sviečka (277dni/318km) Srpična trstnica Acrocephalus scirpaceus ARANZADI AD 1.5.2017 Castello d'Empuries, Barracot, Girona, ŠPANIJA 42°12'N/03°06'E S. Will 2Y 50130 v 11.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar (102dni/986km) MADRID AD 14.5.2017 Tancat De L'illa, Sueca, Valencia, ŠPANIJA 39°16'N/00°17'W RC Španija 5L 27157 v 2.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (80dni/1403km) MADRID 1Y 16.9.2016 Tancat De la Pipa, Valencia, ŠPANIJA 39°21'N/00°21'W RC Španija 4L 09974 v 15.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E Ž. Pečar (333dni/1402km) PARIS 1Y 9.9.2015 Rousty, Arles, Bouches du Rhone, FRANCIJA 43°40'N/04°38'E RC Francija 7312155 v 16.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E D. Pogačar (707dni/803km) PRAHA 1Y 29.6.2017 Mutenice, Jihomoravsky kraj, ČEŠKA 48°54'N/17°03'E K. Jaroslav TU 17254 v 22.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E D. Grohar (54dni/361km) LJUBLJANA 1Y 14.8.2011 Sečoveljke soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič KS 29996 v 11.4.2017 Barracot, Girona, ŠPANIJA 42°12'N/03°06'E F. Broto (2067dni/917km) LJUBLJANA 1Y 6.8.2015 Sečoveljke soline, Portorož, SLOVENIJA 45°28'N/13°37'E I. Škornik KT 88117 v 29.4.2017 Gabbinello Di Sopra, Firenze, ITALIJA 43°59'N/11°17'E G. Battaglia (632dni/247km) LJUBLJANA 1Y 23.9.2015 Št. Jurij, Grosuplje, SLOVENIJA 45°55'N/14°37'E T. Mihelič KV 5116 v 29.4.2017 Barranco Carraixet, Valencia, ŠPANIJA 39°30'N/00°20'W R. Vera (584dni/1411km) LJUBLJANA 1Y 8.8.2015 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič KT 15612 x 5.5.2017 Sant Quirze de Bosora, Barcelona, ŠPANIJA 46°06’N/02°13’E O. Car (636dni/940km) LJUBLJANA AD 6.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar KV 10392 v 21.8.2017 El Coronil, Sevilla, ŠPANIJA 37°01’N/05°42’W F. Lopez (15dni/1931km) LJUBLJANA AD 8.8.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E I. Vreš KV 26933 v 25.8.2017 Canal Vell, Deltebre, Tarragona, ŠPANIJA 40°44'N/00°47'E C. Abella (17dni/1387km) v 26.8.2017 Canal Vell, Deltebre, Tarragona, ŠPANIJA 40°44'N/00°47'E C. Abella (18dni/1387km) LJUBLJANA 1Y 21.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E V. Havliček KS 95393 v 1.9.2017 Biskupice, Zlinsky kraj, ČEŠKA 49°05'N/17°43'E J. Sviečka (376dni/507km) LJUBLJANA 1Y 12.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E Ž. Pečar KV 4750 v 3.9.2017 Canal Vell, Deltebre, Tarragona, ŠPANIJA 40°44'N/00°47'E P. Pares (22dni/1255km) LJUBLJANA 1Y 8.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar KV 10470 v 7.9.2017 Barriada Hipolito, Pizarra, Malaga, ŠPANIJA 36°45'N/04°42'W RC Španija (30dni/1880km) LJUBLJANA 1Y 18.8.2016 Sečovlje, Portorož, SLOVENIJA 45°28'N/13°37'E T. Mihelič KV 5334 v 9.9.2017 Castello d'Empuries, Girona, ŠPANIJA 42°12'N/03°06'E R. Calderon (387dni/917km) LJUBLJANA 1Y 18.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar KV 10939 v 1.10.2017 Illa de Buda, Sant Jaume d'Enveja, ŠPANIJA 40°42'N/00°49'E D. Bigas (13dni/1235km) LJUBLJANA 1Y 3.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja KT 93800 v 19.10.2017 Mas Thibert, Marais du Vigueirat, FRANCIJA 43°29'N/04°47'E M. Gregoire (16dni/800km) Močvirska trstnica Acrocephalus palustris BRUSSELS 1Y 1.8.2017 Waremme, Liege, BELGIJA 50°42'N/05°16'E RC Belgija 14893798 v 14.8.2017 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič (13dni/853km) LJUBLJANA 1Y 13.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič KT 17515 v 28.7.2017 Solre Sur Sambre, Hainaut, BELGIJA 50°19'N/04°10'E RC Belgija (349dni/886km) Bičja trstnica Acrocephalus schoenobaenus STOCKHOLM 1Y 28.7.2010 Varmlands Lan, Skare, Hynboholm, ŠVEDSKA 59°28'N/13°23'E RC Švedska CG 81782 v 26.7.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (2555dni/1502km) STOCKHOLM 1Y 8.8.2017 Ukno, Lofta, Kalmar Lan, ŠVEDSKA 57°55'N/16°33'E RC Švedska DA 42631 v 19.8.2017 Brest, Ig, Ljubljana, SLOVENIJA 45°59'N/14°29'E J. Bricelj (11dni/1334km) STOCKHOLM 1Y 15.9.2017 Kalmar lan, Lofta, Ukno, ŠVEDSKA 57°55'N/16°33'E RC Švedska DB 19983 v 24.9.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E Ž. Pečar (9dni/1398km) FINLAND 1Y 18.8.2017 Espoo, Uusimaa, FINSKA 60°12'N/24°49'E H. Ekblom 804787 H v 30.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E D. Grohar (12dni/1701km) FINLAND 1Y 14.8.2017 Tuulos, Kanta Hame, Hame, FINSKA 61°10'N/24°47'E H. Kolunen 885727 H v 9.9.2017 Cerkniško jezero, Cerknica, SLOVENIJA 45°47'N/14°22'E R. Tekavčič (26dni/1838km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 161 HIDDENSEE 1Y 13.8.2017 Sawal, Oder Spree, Brandenburg, NEMČIJA 52°04'N/14°12'E RC Nemčija ZH 11285 v 29.8.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E I. Vreš (16dni/648km) HIDDENSSE AD 8.7.2017 Rietzer See, Potsdam Mittelmark, NEMČIJA 52°22'N/12°39'E RC Nemčija ZH 11995 v 27.7.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E F. Bračko (19dni/712km) MOSKVA 1Y 4.9.2015 Zelenogradskiy distr., Rybachiy, RUSIJA 55°09'N/20°51'E RC Rusija XR 75237 v 29.7.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš (694dni/1042km) PRAHA 1Y 31.7.2017 Bartošovice, Moravskoslezsky kraj, ČEŠKA 49°40'N/18°01'E L. Harmačkova TP 65342 v 10.8.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič (10dni/571km) PRAHA 1Y 6.8.2017 Stredočesky kraj, Praha, ČEŠKA 50°04'N/14°34'E M. Brožova TT 67350 v 14.8.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (8dni/508km) PRAHA 1Y 2.8.2017 Ražice, Jihočesky kraj, ČEŠKA 49°15'N/14°06'E J. Šebestian TU 56776 v 9.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E T. Trilar (7dni/365km) PRAHA 1Y 12.8.2017 Loučna nad Desnou, Olomoucky kraj, ČEŠKA 50°07'N/17°09'E J. Rezniček TU 62639 v 14.8.2017 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00'N/14°25'E R. Tekavčič (2dni/500km) BUDAPEST 1Y 14.7.2017 Keszthely, Zala, MADŽARSKA 46°42'N/17°14'E L. Katalin K 753573 v 10.8.2017 Ormoške lagune, Ormož, SLOVENIJA 46°23'N/16°11'E F. Bračko (27dni/88km) BUDAPEST 1Y 9.8.2017 Tass, Bacs, Kiskun, MADŽARSKA 47°02’N/18°59’E D. Sarlos K 800742 v 13.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E D. Pogačar (4dni/377km) GDANSK 1Y 26.7.2017 Jezero Druzno, Žolwiniec, Markusy, POLJSKA 54°03'N/19°26'E C. Nitecki K7X 2353 v 17.8.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E Ž. Pečar (22dni/970km) BOLOGNA 1Y 12.9.2015 Mortizzuolo, Mirandola, Modena, ITALIJA 44°52’N/11°07’E R. Gemmato 31A 4377 v 23.8.2017 Hraše, Medvode, SLOVENIJA 46°10'N/14°27'E D. Grohar (711dni/297km) LJUBLJANA 1Y 23.7.2016 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš KV 13514 v 4.6.2017 Kremže, Jihočesky kraj, ČEŠKA 48°54'N/14°20'E P. Vesely (316dni/298km) LJUBLJANA AD 28.4.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapajna KT 90267 x 4.7.2017 Hofors, Bergviksvagen, ŠVEDSKA 60°34'N/16°25'E RC Švedska (67dni/1629km) LJUBLJANA AD 14.8.2016 Sečoveljske soline, Portorož, SLOVENIJA 45°28'N/13°37'E R. Tekavčič KT 17639 v 30.7.2017 Bartošovice, Moravskoslezsky kraj, ČEŠKA 49°40'N/18°02'E L. Harmažkova (350dni/572km) LJUBLJANA 1Y 13.8.2017 Medvedce, Pragersko, SLOVENIJA 46°22'N/15°39'E I. Vreš KV 29040 v 15.8.2017 Naszaly, Komarom Esztergom, MADŽARSKA 47°41'N/18°16'E A. Lengyel (2dni/246km) Tamariskovka Acrocephalus melanopogon OZZANO 1Y 26.10.2013 Mortizzzuolo, Mirandola, Modena, ITALIJA 44°52'N/11°07'E R. Gemmato 11A 4035 v 12.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (1447dni/277km) Črnoglavka Sylvia atricapilla ZAGREB ♂ 1Y 18.9.2015 lokva Rovozna, Učka, HRVAŠKA 45°12'N/14°13'E B. Ječmenica BA 434227 v 11.9.2017 Slovenja vas, Ptuj, SLOVENIJA 46°27'N/15°49'E I. Vreš (350dni/186km) KLIVV.AT 1Y 22.7.2017 Murinsel Tamsweg, Salzburg, AVSTRIJA 47°07'N/13°48'E H. Gressel TO 25024 v 14.9.2017 Jeprca, Medvode, SLOVENIJA 46°09'N/14°24'E M. Pustoslemšek (54dni/117km) OZZANO 2Y 17.4.2016 Casale, Vicenza, ITALIJA 45°32'N/11°33'E L. Piva LS 11378 v 6.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (537dni/219km) OZZANO 1Y 25.8.2017 Lago Di Caldaro, Bolzano, ITALIJA 46°22’N/11°15’E D. Vassallo LW 36817 v 27.9.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28’N/13°37’E D. Pogačar (33dni/209km) LJUBLJANA ♂ 1Y 21.9.2014 Hauptmance, Škofljica, Ljubljana, SLOVENIJA 46°00’N/14°33’E J. Bricelj AC 22135 x 12.2.2017 Florinas, Sassari, Sardegna, ITALIJA 40°42’N/08°33’E A. Lentini (875dni/763km) LJUBLJANA ♀ 1Y 28.8.2016 Vnanje Gorice, Ljubljana, SLOVENIJA 46°00’N/14°25’E R. Tekavčič AC 43651 x 7.3.2017 Montee de la Paveigne, Toulon, FRANCIJA 43°08’N/05°53’E C. Bersan (191dni/747km) LJUBLJANA ♂ 1Y 4.8.2016 Bevke, Vrhnika, SLOVENIJA 45°57’N/14°37’E P. Grošelj AH 4758 v 18.3.2017 Katef Wadi, Beer Sheva Valley, IZRAEL 31°15’N/34°50’E E. Shochat (226dni/2386km) LJUBLJANA ♂ 1Y 27.9.2015 Medvedce, Pragersko, SLOVENIJA 46°22’N/15°39’E I. Vreš AC 86581 x 17.6.2017 Mosonmagyarovar, Csaba u. 5, MADŽARSKA 47°52’N/17°16’E P. Fazekas (629dni/207km) LJUBLJANA JUV 3.8.2017 Kozlarjeva gošča, Ljubljana, SLOVENIJA 46°01’N/14°29’E D. Šere AC 94976 v 17.9.2017 T. Roial, Cordenons, Pordenone, ITALIJA 45°58’N/12°44’E P. Taiariol (45dni/135km) LJUBLJANA ♂ 1Y 26.8.2017 Ig, Ljubljana, SLOVENIJA 45°58’N/14°33’E B. Vidic AH 3940 v 15.10.2017 Marais des Estagnetes, Hyeres, FRANCIJA 43°02’N/06°08’E A. Aurelien (50dni/742km) LJUBLJANA ♀ 1Y 6.9.2017 Sečoveljske soline, Portorož, SLOVENIJA 45°28’N/13°37’E J. Bricelj Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 162 AH 49210 v 17.10.2017 El Vendrell, Tarragona, ŠPANIJA 41°11’N/01°33’E M. Bonilla (41dni/1084km) LJUBLJANA ♂ 1Y 27.9.2017 Sečoveljska soline, Portorož, SLOVENIJA 45°28’N/13°37’E D. Pogačar AC 64900 v 10.12.2017 Pineta D'Ischitella, Caserta, ITALIJA 40°57’N/14°00’E D. Mastronardi (74dni/503km) Vrtna penica Sylvia borin OZZANO 1Y 19.8.2017 Valle Da Pesca Cavanata, Grado, ITALIJA 45°43’N/13°27’E T. Zorzenon LV 73154 v 28.8.2017 Sečoveljska soline, Portorož, SLOVENIJA 45°28’N/13°37’E T. Mihelič (9dni/31km) Mlinarček Sylvia curruca LJUBLJANA 1Y 18.9.2016 Sestrže, Pragersko, SLOVENIJA 46°22'N/15°42'E F. Bračko AH 21649 v 17.5.2017 Uppsala Lan, Graso, Orskar, ŠVEDSKA 60°31'N/18°24'E RC Švedska (241dni/1582km) Kos Turdus merula LJUBLJANA ♀ 1Y 13.10.2016 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik E 44822 + 6.11.2017 Curcio, Colico, Lecco, ITALIJA 46°07'N/09°23'E M. Morganti (389dni/344km) LJUBLJANA ♀ AD 20.6.2017 Šikole, Pragersko, Maribor, SLOVENIJA 46°24'N/15°52'E I. Vreš E 48648 + 7.12.2017 Cagliari, ITALIJA 39°13'N/09°07'E RC Italy (170dni/969km) LJUBLJANA ♀ JUV 3.9.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja E 49317 + 14.10.2017 Colto Alle Bolle, Siena, ITALIJA 43°27'N/11°24'E F. Merli (41dni/361km) Vinski drozg Turdus iliacus LJUBLJANA AD 28.10.2017 Kozlarjeva gošča, Ljubljana, SLOVENIJA 46°00'N/14°30'E D. Šere E 50123 + 9.11.2017 Marchino, Pisa, ITALIJA 43°47'N/10°41'E P. Lippi (12dni/389km) Taščica Erithacus rubecula PRAHA 1Y 5.9.2017 Lužnice, Jihočesky kraj, ČEŠKA 49°04'N/14°45'E J. Vlček TU 36779 v 29.9.2017 Jeprca, Medvode, SLOVENIJA 46°09'N/14°24'E M. Pustoslemšek (24dni/325km) ZAGREB 1Y 4.9.2016 lokva Rovozna, Učka, HRVAŠKA 45°12'N/14°13'E I. Šoštarić BJ 55276 x 15.5.2017 Mali kraj Višnje, Ajdovščina, SLOVENIJA 45°53'N/14°03'E S. Rudolf (253dni/77km) LJUBLJANA 2Y 9.3.2014 Požeg, Pragersko, SLOVENIJA 46°25'N/15°39'E I. Vreš AZ 99888 x 17.2.2017 Via Curta 8, Pieris, Friuli, ITALIJA 45°48'N/13°26'E S. Cosolo (1076dni/184km) LJUBLJANA 1Y 14.10.2016 Bilje, Nova Gorica, SLOVENIJA 45°56'N/13°39'E M. Keber AH 10478 v 10.4.2017 Tancat De Milia, Sollana Valencia, ŠPANIJA 39°18'N/00°21'W RC Španija (178dni/1359km) LJUBLJANA 1Y 12.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapajna AH 42970 x 23.10.2017 C. Colombarine, Casalgrande, ITALIJA 44°36'N/10°45'E M. Gustin (11dni/316km) LJUBLJANA 1Y 31.10.2017 Babna gorica, Ljubljana, SLOVENIJA 45°58'N/14°32'E Ž. Pečar AH 79895 x 19.11.2017 Marchon, Arbent, FRANCIJA 46°16'N/05°40'E D. Mme/Mr (19dni/684km) Siva pevka Prunella modularis PRAHA PULL 9.6.2017 Nova Paka, Kralovehradecky kraj, ČEŠKA 50°30'N/15°32'E M. Brandejsky TP 66691 v 5.10.2017 Verd, Vrhnika, SLOVENIJA 45°58'N/14°18'E B. Lapanja (118dni/512km) GDANSK 1Y 8.9.2017 Miszkowice, Lubawka, POLJSKA 50°42'N/15°55'E F. Hayatli K4X 7864 v 9.10.2017 Tezno, Maribor, SLOVENIJA 46°35'N/15°40'E M. Vamberger (31dni/458km) Grilček Serinus serinus LJUBLJANA ♂ 2Y 2.4.2015 Puhtejeva ulica, Vič, Ljubljana, SLOVENIJA 46°02'N/14°28'E J. Nered KP 53441 v 9.4.2017 Pruhonice, Stredočesky kraj a Praha, ČEŠKA 49°59'N/14°33'E F. Zicha (738dni/439km) Zelenec Chloris chloris ZAGREB ♀ 1Y 31.7.2016 Kukuljanovo, Rijeka, HRVAŠKA 45°20'N/14°30'E P. Corva CA 160573 v 19.3.2017 Goriča vas, Ribnica, SLOVENIJA 45°43'N/16°44'E S. Kljun (231dni/179km) LJUBLJANA ♀ AD 16.3.2016 Gore 13 A, Idrija, SLOVENIJA 45°59'N/14°03'E P. Grošelj Nadaljevanje dodatka 1 / Continuation of Appendix 1 A. Vrezec, D. Fekonja: Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 163 AH 4527 v 14.3.2017 Zywocice, Krapkowice, POLJSKA 50°27'N/17°57'E J. Siekiera (363dni/574km) LJUBLJANA ♂ AD 7.11.2017 Šebrelje, Cerkno, SLOVENIJA 46°06'N/13°55'E B. Lapajna AH 43821 o 11.11.2017 Sestola, Maranello, Modena, ITALIJA 44°30'N/10°50'E G. Rossi (4dni/300km) Ščinkavec Fringilla coelebs LJUBLJANA ♀ 1Y 30.9.2015 Bilje, Nova Gorica, SLOVENIJA 45°56'N/13°39'E M. Keber AZ 86735 v 8.12.2017 Palude Del Brusa, Carea, Verona, ITALIJA 45°10'N/11°13'E R. Pollo (800dni/208km) Lišček Carduelis carduelis OZZANO 10.5.2017 San Canzian D'Isonzo, Gorizia, ITALIJA 45°48'N/13°27'E M. Benfatto 2A 47923 v 6.8.2017 Bilje, Nova Gorica, SLOVENIJA 45°56'N/13°39'E M. Keber (88dni/21km) Čižek Spinus spinus KLIVV.AT ♂ 1Y 17.10.2016 Rudmannser Teich, Niederosterreich, AVSTRIJA 48°35'N/15°13'E B. Watzl V 001431 v 20.2.2017 Verje, Medvode, SLOVENIJA 46°09'N/14°25'E M. Pustoslemšek (126dni/277km) LJUBLJANA ♂ 2Y 9.3.2017 Verje, Medvode, SLOVENIJA 46°09'N/14°25'E M. Pustoslemšek KV 32268 v 19.3.2017 Posilek, Rogow Opolski, POLJSKA 50°31'N/17°54'E W. Michalik (10dni/549km) Krivokljun Loxia curvirostra LJUBLJANA ♀ 1Y 12.11.2015 Resa, Kočevje, SLOVENIJA 45°39'N/15°02'E J. Gračner E 44469 v 15.11.2017 Gmundnerberg, Altmunster, AVSTRIJA 47°54'N/13°43'E M. Kreuzer (734dni/269km) Trstni strnad Emberiza schoeniclus BUDAPEST ♀ 1Y 28.9.2016 Davod, Bacs Kiskun, MADŽARSKA 45°59'N/18°51'E A. Morocz K 697865 v 20.2.2017 Škocjanski zatok, Koper, SLOVENIJA 45°32'N/13°45'E I. Brajnik (145dni/399km) FINLAND ♀ 1Y 13.9.2016 Oulu, Pohjois Pohjanmaa, FINSKA 64°57'N/25°29'E S. Timonen 667573 V v 15.3.2017 Pragersko, SLOVENIJA 46°23'N/15°40'E I. Vreš (183dni/2147km) HIDDENSEE ♂ 1Y 21.8.2017 Mennewitz, Anhalt, Bitterfeld, NEMČIJA 51°51'N/11°58'E RC Nemčija VG 81364 v 8.10.2017 Zbure, Škocjan, SLOVENIJA 45°54'N/15°15'E J. Gračner (48dni/703km) Nadaljevanje dodatka 1 / Continuation of Appendix 1 Acrocephalus 39 (178/179): 129–163, 2018 165 Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015 Popis čuka Athene noctua na območju Ulcinja ( J. Črna gora) leta 2015 Acrocephalus 39 (178/179): 165–170, 2018 10.1515/acro-2018-0011 (Van Nieuwenhuyse et al. 2008). Perching spots for hunting and a spot for roosting during the day are also important. The availability of grassland and arable land is beneficial but not obligatory for its occurrence (Żmihorski et al. 2009). Generally, the population of Little Owl is non- threatened (BirdLife International 2017), but some local European populations suffered great declines in the last 60 years (Cramp 1985; Van Nieuwenhuyse et al. 2008) and in some areas populations decreased substantially, with populations in Denmark, for example, on the brink of disappearance (Sunde et al. 2009). The species is a resident in Europe (BirdLife International 2017) and considered a regular breeder in Montenegro (Stumberger et al. 2008, Saveljić & Jovićević 2015). While ample data are at hand on the breeding, migrating and wintering waterbirds and raptors in the wider Bojana River delta area, including salt pans at Ulcinj Solana (Stumberger et al. 2008, Sackl et al. 2016), several other species of birds have not been included in systematic surveys of the area. There are 1-2 breeding pairs of Little Owls nesting in buildings at Solana (Stumberger et al. 2008), while the estimate for the wider Bojana delta is >18 breeding pairs (Schneider-Jacoby et al. 2006). The data leading to this first estimate was collected in the Bojana delta during systematic surveys of other species and area surveys of rare species, especially during the surveys within the Rapid Assessment of Birds in the Bojana-Buna Area in 2004 (Schneider-Jacoby et al. 2006). The majority of data were collected during daytime surveys of different species and sites within the Bojana delta, but some were also collected during night surveys of other species, specifically Scops Owl Otus scops, European Nightjar Caprimulgus europaeus and Baillon’s Crake Zapornia pussila. No systematic survey of Little Owls was carried out in this area. Our aim was to survey the population of Little Owl between the town of Ulcinj and the mouth of the Bojana River (S Montenegro). 2. Study area and methods 2.1. Study area The study was conducted in the southern part of Montenegro, between the town of Ulcinj and the Ivan Kljun1, Dejan Bordjan2 1 DOPPS  – Društvo za opazovanje in proučevanje ptic Slovenije, Tržaška cesta 2, SI-1000 Ljubljana, Slovenija, e-mail: ivan.kljun@dopps.si 2 Oddelek za gozdarstvo in obnovljive gozdne vire, Biotehniška fakulteta, Univerza v Ljubljani, Večna pot 83, SI-1000 Ljubljana, e-mail: dejan.bordjan@ gmail.com Abstract Between 29 Mar and 10 Apr, 2015, a Little Owl Athene noctua survey was carried out using the playback method in the southern part of Montenegro. The study area was situated between the town of Ulcinj and the Bojana River delta. A  total of 55 calling males were registered at 26 survey points with a maximum of 4 calling males per survey point. Considering the low response rate of the Little Owl, its local population was estimated at be 55–110 calling males. This study presents the first systematic survey of the Little Owl in Montenegro. 1. Introduction Little Owl Athene noctua is a transpalearctic species covering Central Europe, the Mediterranean, the Middle East and through Central Asia reaching China. A part of the species’ range is located in Ethiopia and in the southern part of the Arabian Peninsula (BirdLife International 2017). In Central Europe, the species mainly occurs at low altitudes (up to 600 m a.s.l.). It is a species of open-country and avoids dense forests and other types of dense vegetation (Cramp 1985). It nests in tree cavities, rock crevices and buildings. One of the limiting factors for the expansion of Little Owls is the limited number of suitable nesting sites 166 Bojana River delta (UTM CM53, CM54, CM63 and CM64; 41°54.5'N 19°17'E). The survey points were located in the area of Štoj and suburbs of Ulcinj. Štoj is approximately 10-km long stretch of hinterland beyond the Velika plaža (Long Beach), a 12 km long stretch of sandy beach. It also includes a 7 km long tourist village Donji Štoj and a smaller Gornji Štoj. The beach of Velika plaža is heavily visited in the summer months. The size of the surveyed area was 15.4  km2 and calculated as the surface covered by the 500 m detection radius around the survey points (Johnson et al. 2007). The surveyed area is a mosaic of settlements, wet and moist meadows, salina, swamps, small-scale agriculture, scattered orchard and vineyard plantations and mostly fragmented stands of Willow Salix sp., Poplar Populus sp. and Alder Alnus sp. forests (Schwartz 2010). 2.2. Methods We used the playback method as described by Johnson et al. (2007). Initially, we determined 26 survey points which were more than 500  m apart, with two exceptions that were 400 and 491 m apart. The Little Owl in the Mediterranean region has its peak in vocal activity at the end of March and the beginning of April (Johnson et al. 2007). Therefore, we decided to conduct the fieldwork in the nights of 29th March, 2nd and 10th April 2015. We chose calm and clear nights with no or little wind, as weather conditions could affect the vocal activity of the owls (Zubergoitia & Campos 1998). The surveys started at sunset and finished around 23:00. For every Little Owl we recorded the approximate direction in order to minimize count replications. Figure 1: Map of the study area between Ulcinj and the Bojana River delta. The survey points are presented as black spots, while the surveyed area is marked as a hatched polygon. Slika 1: Karta raziskovanega območja med Ulcinjem in delto reke Bojane. Popisne točke so označene s črnimi pikami, popisano območje je označeno kot šrafiran poligon. I. Kljun, D. Bordjan: Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015 167 The method by Johnson et al. (2007) suggests at least 3 visits to every survey point to be made to determine non-occupancy owing to the low response rate of the species. Nonetheless, due to time limitations and high response by the owls we visited every survey point only once. In the areas of high density, however, the owls responded more readily (Zubergoitia & Campos 1998), so we concluded that repeating surveys would not increase our results substantially. Maps were created using ArcGIS software by Esri. 3. Results and discussion We recorded 55 calling males at the 26 survey points. The density of calling males in the surveyed area was 3.57 per km2. Only one survey point was without a response. On average, we registered 2 calling males per survey point, with the highest number of 4, which occurred three times. Centini (2001) concluded that the response rate by the Little Owl to playback was 49.6  %. Considering this and the fact that the response rate is higher in the areas more densely populated by Little Owls (Zubergoitia & Campos 1998), we assume that we registered considerably more than half of the local population. We estimate the local population to be 55-110 calling males. A comparison of breeding densities from around Europe shows that the Ulcinj area has high local density of breeding Little Owls. Furthermore, it is mostly higher than those in Central and Western Europe (Exo 1992, Vogrin 1997, Ille et al. 2001, Berce & Kmecl 2008) and comparable to other studies from the Mediterranean (Hof 2007, Tomé et al. 2008). Figure 2: Map of the study area with symbols indicating the number of calling males of Little Owl Athene noctua per survey point Slika 2: Karta raziskanega območja z označenim številom pojočih samcev čuka Athene noctua na popisnih točkah Acrocephalus 39 (178/179): 165–170, 2018 168 Little Owls prefer habitats with more build- up areas and less forested areas (Żmihorski et al. 2009). The high density of Little Owls in the surveyed area seems supportive of this finding. Also, many buildings at Donji Štoj are empty during most of the year, since they are occupied only during the summer holidays, meaning lower human disturbance. Additionally, the abundance of meadows and pastures with very low vegetation height in the survey area offer suitable feeding Country Area Singing males/ km2 Pairs/ km2 Reference Italy Tolfa Mountains, Lazio 0.55 Centili 1995 1Italy Pavi 1.1 Cesaris 1988 2Slovak republic Michalovce district 1 Danko et al. 1994 1,2Poland Mazowsze lowland 1.4 Dobrowski et al. 1991 2Austria Burgenland 1.5 Dvorak et al. 1993 1Italy Po plain 9,3–11 Estoppey 1992 1Germany 1,2–1,7 Exo 1983 2Poland South Podlasie 0.4 Fronczak et al. 1991 1The Netherlands Betuwe 2.1 Fuchs 1986 3France 10 areas 0.21 Génot 1996 3Austria 5 areas 0.08 Ille et al. 2001 1Germany Up to 5,6 Illner et al. 1989 1,2Poland Kampinos National Park 0.6 Kowalski et al. 1991 Italy Plain of Bergamo, Lombardia 0.69 Mastrorilli 1997 Italy Plain of Pavia, Lombardia 0.4 Pirovano & Galeotti 1999 Czech Republic Southern Bohemia 0.024 Pykal et al. 1994 1Germany East-Germany 0.1 Schönn 1986 3Czech Republic 27 areas 0.12 Schröpfer 2000 Denmark Jutland 0,04–0,06 Sunde et al. 2009 Hungary Hortobagy 0.501 Šalek et al. 2013 Italy Castel Porziano, Lazio 3.14–4.62 Tomassi et al. 1999 Portugal Cabeça da Serra 7 Tomé et al. 2008 Portugal S. Marcos da Atabueir 2.5 Tomé et al. 2008 Portugal Quinta da Rocha 6.44 Hof 2007 Slovenia Dravsko polje Up to 0,48 Vogrin 1997 Montenegro Ulcinj 3.57 This research Table 1: Published average Little Owl densities with data on the country, area, unit and reference for the research Tabela 1: Objavljene povprečne gostote čuka s podatki o državi, območju, enoti in referencah za raziskovanje vrste 1 summary and references by Génot (1996) 2 summary and references by Vogrin (1997) 3 summary and references by Hof (2007) I. Kljun, D. Bordjan: Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015 169 places for Little Owls which require areas of low vegetation height or bare ground to spot the prey (Grzywaczewski 2009, Framis 2011). Surveys in the floodplain of the Bojana River delta (250 km2), which includes the towns of Ulcinj and Štoj, revealed high numbers of other conservationally important insectivorous species such as Scops Owl (Otus scops) >89 bp (breeding pairs), Nightjar (Caprimulgus europaeus) 111-500 bp, Roller (Coracias garrulus) 9-15 bp, Hoopoe (Upupa epops) >51 bp and Bee- eater (Merops apiaster) >261 bp (Schneider- Jacoby et al. 2006). The relatively high density of Little Owls in the study area corroborates the high biodiversity and conservation value of the Bojana River delta. Povzetek Med 29. 3. in 10. 4. 2015 smo opravili popis čuka Athene noctua z metodo predvajanja posnetka v južni Črni gori. Preučevano območje je bilo med mestom Ulcinj in delto reke Bojane. Skupno smo zabeležili 55 kličočih samcev na 26 točkah, maksimum za eno točko so bili štirje samci. Upoštevajoč slabo odzivnost vrste na posnetek lokalno populacijo ocenjujemo na 55–110 kličočih samcev. Raziskava je prvi sistematični popis čuka v Črni gori. Key words: Little Owl, Athene noctua, playback survey method, S Montenegro Ključne besede: čuk, Athene noctua, metoda predvajanja posnetka, J Črna gora 4. References Berce T., Kmecl P. (2008): Popis čuka Athene noctua na Krasu v letu 2007  – zaključno poročilo.  – [http:// ptice.si/2014/wp-content/uploads/2014/04/2008_ berce_kmecl_popis_cuka_na_krasu_v_letu_2007. pdf], 08/12/2017 BirdLife International (2017) Species factsheet: Athene noctua.  – [http://www.birdlife.org], 04/12/2017. Centili D. (1995): Dati preliminari sulla Civetta Athene noctua in un'area dei Monti della Tolfa (Roma).  – Avocetta 19: 113. Centili D. (2001): Broadcast and Little Owls Athene noctua: preliminary results and considerations.  – Oriolus 67 (2-3): 84-88. Cesaris C. (1988): Popolazioni di Allocco Strix aluco e di Civetta Athene noctua in un'area del Parco Lombardo della Valle del Ticino. – Avocetta 12: 115- 118. Cramp S. (1985): The Birds of the Western Palearctic. Vol 4. – Oxford University Press, Oxford. Danko Š. (1994): Správa o činnosti skupiny pre výskum a ochranu dravcov a sov v ČSFR za rok 1992. – Buteo 6: 121–151. Dombrowski A., Fronczak J., Kowalski M., Lippoman T. (1991): [Population density and habitat preferences of owls (Strigiformes) on agricultural areas of the Mazowsze Lowland (central Poland)]. – Acta ornithologica 26: 39–54. (In Polish with English abstract). Dvorak M., Ranner A., Berg H. M., (1993): Atlas der Brutvögel Österreichs. – Umweltbundesamt, Wien. Estoppey F. (1992): Une densité elevée de Chouettes cheveches, Athene noctua, dans la plaine du Po en Italie. – Nos Oiseaux 41:315–319. Exo K. M. (1983): Habitat, Siedlungsdichte und Brutbiologie einer niederrheinischen Steinkauzpopulation (Athene noctua).  – Ökologie der Vögel 5: 1–40. (In German). Exo K. M. (1992): Population ecology of Little Owls Athene noctua in Central Europe: a review. pp. 64– 75. In: Galbraith C. A., Taylor I. R., Percival S. (eds.): The conservation and ecology of European owls: Joint Nature Conservation Committee, Peterborough. Framis H., Holroyd G. L., Mañosa S. (2011): Home range and habitat use of little owl (Athene noctua) in an agricultural landscape in coastal Catalonia, Spain.  – Animal Biodiversity and Conservation, 34.2: 369–378. Fronczak J. , Dombrowski A. (1991): Owls Strigiformes in an agricultural and forest landscape of South Podlasie Lowland (eastern Poland). – Acta Ornithologica 26 (1): 55–61. Fuchs P. (1986): Structure and functioning of a little owl Athene noctua population.  – Annual Reports of the Research Institute of Nature Management (1985): 113–126. Génot J. C. (1996): Monitoring studies of the Little Owl in France. – The Raptor 24: 24–28. Grzywaczewski G. (2009): Home Range Size and Habitat use of the Little Owl Athene noctuain East Poland. – Ardea 97(4): 541–545. Hof (2007): Monitoring the Little Owl Athena noctua on Quinta da Rocha. pp. 3–9. In: Simonson W. (ed.), A Rocha Portugal Observatory Report, 2005-06.  – Associação A Rocha, Portimão. Ille R., Grinschgl F. (2001): Little Owl (Athene noctua) in Austria. Habitat characteristics and population density. – Ciconia 25: 129–140. Acrocephalus 39 (178/179): 165–170, 2018 170 Illner H. (1988): Long-term decrease of the owls Tyto alba, Asio otus, Athene noctua and Strix aluco in an agricultural area in central Westfalia (West Germany) 1974–1986. – Vogelwelt 109: 145–151. Johnson D. H., Van Nieuwenhuyse D., Génot J. C. (2007): Survey Protocol for the Little Owl (Athene noctua), October 2007 version.  – [http://www. globalowlproject.com/protocols/Survey_Protocol_ for_the_Little_Owl.pdf], 06/12/2017. Kowalski M., Lippoman T., Oglechi P. (1991):  – Census of owls Strigiformes in the eastern part of Kampinos National Park (Central Poland).  – Acta Ornithologica (Warsaw), 26: 23-29. Mastrorilli M. (1997): Popolazioni di Civetta (Athene noctua) e selezioni dell'habitat in un'area di pianura della provincia di Bergamo. – Riv. Mus. Civ. St. Nat. "E. Caffi" Bergamo 19:15-19. Pirovano A., Galeotti P. (1999): Territorialismo intra – e interspecifico della Civetta Athene noctua in provincia di Pavia. – Avocetta 23:139. Pykal J., Krafka Z., Klimeš Z. (1994): [Population density of the little owl (Athene noctua) in selected regions of the southern Bohemia (Czech Republic)]. – Sylvia 30: 59–63. (in Czech) Sackl P., Bordjan D., Basle T., Božič L., Smole J., Denac D., Štumberger B. (2016): Spring migration of ducks in the Bojana-Buna Delta – a comparison of migration volumes and conventional count information for a key wetland site within the Adriatic Flyway. In: Sackl P., Ferger. W. (eds.): Adriatic Flyway – Bird Conservafion on the Balkans. Euronatur, Radolfzell. Saveljić D., Jovićević M. (2015): Popis ptica Crne Gore sa bibliografijom.  – Centar za zaštitu i proučavanje ptica, Podgorica. Schneider-Jacoby M., Schwarz U., Sackl P., Dhora D., Saveljic D., and Stumberger B. (2006): Rapid assessment of the Ecological value of the Bojana-Buna Delta (Albania/Montenegro). Euronatur, Radolfzell. Schönn, S. (1986): Zur Status, Biologie, Ökologie und Schutz des Steinkauzes (Athene noctua) in der D.D.R. – Acta Ornithoecologia 1: 103–133. Schröpfer L. (2000): Sýček obecný (Athene noctua) v České republice  – početnost a rozšíření v letech 1998 – 1999. – Buteo 11: 161–174. Schwartz U. (2010): Habitat Mapping of the Livanjsko Polje (BA), the Neretva Delta (HR, BA), and Lake Skadar-Shkoder (ME, AL). In: Denac, D., Schneider-Jacoby, M. Stumberger, B. (Eds.): Adriatic Flyway  – closing the gap in bird conservation. Euronatur, Radolfzell. Stumberger B., Sackl P., Saveljić D., Schneider- Jacoby M. (2008): Management Plan for the Conservation and Sustainable Use of the Natural Values of the Privately Owned Nature Park “Solana Ulcinj” Montenegro. – Joannea Zoologie 10: 5-84. Sunde P., Thorup K., Jacobsen L. B., Holsegård- Rasmussen M. H., Ottessen N., Svenné S., Rahbek C. (2009): Spatial behaviour of little owls (Athene noctua) in a declining low-density population in Denmark. – Journal of Ornithology 150: 537-548. Šálek M., Chrenkova M., Kipson M. (2013): High population density of Little Owl (Athene noctua) in Hortobagy National Park, Hungary, Central Europe. – Polish Journal of Ecology. 61: 1-165. Tomassi R., Piattella E., Manganaro A., Pucci L., Ranazzi L., Fanfani A. (1999): Primi dati su dieta e densità della Civetta Athene noctua nella Tenuta Presidenziale di Castelporziano (Roma). – Avocetta 23:159. Tomé R., Cantry P., Bloise C., Korpimäkki, E. (2008): Breeding density and success, and diet compisotion of Little Owls Athene noctua in steppe-like habitats in Portugal. – Ornis Fennica 85: 22-32. Van Nieuwenhuyse D., Génot J. C., Johnson D. H. (2008): The Little Owl  – conservation, ecology and behavior of Athene noctua. – Cambridge University Press, New York. Zubergoitia I., Campos L. F. (1998): Censusing owls in large areas: a comparison between methods.  – Ardeola 47-53. Żmihorski M., Romanowski J., Osojca G. (2009): Habitat preferences of a declining population of the little owl, Athene noctua in Central Poland. – Folia Zoologica 58(2): 207–215. Vogrin M. (1997): Little Owl (Athene noctua): a highly endangered species in NE Slovenia. – Buteo 9: 99– 102. Prispelo / Arrived: 22. 1. 2018 Sprejeto / Accepted: 4. 1. 2019 I. Kljun, D. Bordjan: Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015 171 Acrocephalus 39 (178/179): 171–176, 2018 10.1515/acro-2018-0012 A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy) Prispevek k poznavanju prehrane pegaste sove Tyto alba na območju pise (Italija) (Birdlife International 2004). Its diet has been studied more extensively than that of any other bird of prey (Mikkola 1983, Everett et al. 1992, Taylor 1994, 2009, Bontzorlos et al. 2005, Leonardi & Dell'arte 2006). It mostly hunts small terrestrial mammals, mainly rodents (Mikkola 1983, Taylor 1994), members of the three mammal families Soricidae (shrews), Cricetidae (voles) and Muridae (mice and rats) (Mikkola 1983, Brichetti & Fracasso 2006). Occasionally it preys on insects, amphibians, reptiles, birds (Mikkola 1983, Taylor 1994, Bontzorlos et al. 2005, Leonardi & Dell'arte 2006), fish and arthropods (Bontzorlos et al. 2005). Its pellets are easy to find and small mammal bone parts are well preserved and easy to identify (Paspali et al. 2013). However, its hunting tactics remain controversial (Tores et al. 2005). Most researchers claim that the Barn Owl shows no food preferences and that the abundance of each species in the diet is a true reflection of prey abundance or accessibility in the field (Bunn et al. 1982, Tores et al. 2005, Yom-Tov & Wool 1997). On the other hand, some researchers suggest that it shows preference for small-sized prey and that its diet does not reflect the abundance of prey species in the field (Mikkola 1983, Tores et al. 2005, Yom-Tov & Wool 1997). These contrasting assumptions supposedly originate from different length of the studies (Tores et al. 2005). In his study, Contoli (1981) asserts that analysis of Barn Owl diet can provide information on the availability of small mammal prey species in a particular area, even when only few pellets are available (Bose & Guidali 2001). Mikkola (1983) suggests that the study of the Barn Owl's diet is suitable for determining the presence of nocturnal small mammal species within its hunting territory. On the other hand, some researchers have claimed that the Barn Owl is a selective predator, hunting its prey by preference (Yom-Tov & Wool 1997, Tores et al. 2005) and that its diet would not represent the true abundance of prey species in the field (Tores et al. 2005). Nevertheless, studies that compared pellet analyses with data from field trapping have also shown that prey size is an obvious limiting factor Tjaša Zagoršek1 1 Cankarjeva ulica 11, SI-3240 Šmarje pri Jelšah, e-mail: tzagorsek@gmail.com Abstract We examined the pellets of the Barn Owl Tyto alba, collected in Pisa, Italy, in 2012. Altogether, 219 specimens of small mammals were found in 85 pellets. The Barn Owl diet was composed of ten species of small mammals, representing three different families (Muridae, Cricetidae, Soricidae). The main prey species was the Wood Mouse Apodemus sylvaticus, followed by the House Mouse Mus musculus and the Savi’s Pine Vole Microtus savii. While the smallest of the small mammals from the area, the Etruscan Shrew Suncus etruscus, was well represented in the pellets, some larger species of small mammals were not represented at all. The reason for such result may lie in the upper limit for our Barn Owl’s prey size. Results suggest that optimal prey weight for our Barn Owl may be between 26–75 g of body mass, however, the prey can be occasionally as heavy as almost 100 g, represented by adult Rat Rattus spp. Nevertheless, our results may not reflect the true hunting strategy of the Barn Owl, but the availability of a certain food item at one point in time. 1. Introduction Barn Owl Tyto alba (Scopoli, 1769) is a widespread resident across much of Europe, which accounts for less than a quarter of its global range 172 (Tores et al. 2005, Yom-Tov & Wool 1997). And for that, its diet may reflect not the true hunting strategy of a predator, but the availability of a certain food item at one point in time (Tores et al. 2005, Yom-Tov & Wool 1997). A selective predator is expected to consume a narrow range of prey species regardless of their abundance, while an opportunistic predator will take its prey in proportion to its abundance at any point in time (Tores et al. 2005, Yom-Tov & Wool 1997). The Italian population of the Barn Owl is poorly known (Galeotti 2003). It appears to be declining in almost the entire Po Valley and in some central Italian areas of Mugello and province of Florence (0,03 pairs/km2) (Galeotti 2003). In Tuscany, its population is estimated at 500-1,500 pairs, which are locally in decline (Brichetti & Fracasso 2006). The aim of our study was to: (1) present the diet of a local Barn Owl in Pisa (Italy); (2) examine whether its diet reflects species assemblage of the local fauna of small mammals in the community the owl preyed upon, and (3) to check if there is an upper limit in prey size. This paper should be considered to contribute to the knowledge of the Tyto alba 's diet in Italy. 2. Materials and methods 2.1. Study area Pellets were collected in an abandoned house (43°39'38.2"N 10°17'55.9"E) near Marina di Pisa in Italy. Marina di Pisa lies on the left bank of the Arno River and is located directly north of Tirrenia and about 10  kilometres west from Pisa. The area is mostly cultivated with fields of corn and cereals, with coniferous woods nearby. The climate in this region is warm and temperate (Merkel 2018). Precipitation occurs mostly in winter, with relatively little rain in the summer. The average annual temperature is 14.8°C and the average annual rainfall is 877 mm (Merkel 2018). 2.2. Methods Pellets (n=85) were collected in July 2012 during a single visit of the nest site. We only collected pellets that were 4 – 5 days old (still damp and soft), 1 – 2 months old (dried out, black and shiny) or 2 – 4 months old (black colour slowly wears off, and they turn progressively grey). We determined the age of the pellets collected by following Chandler (2011). Their content was examined in the laboratory. Pellets were examined individually. To identify the skulls, teeth and other remains found in pellets, a stereo microscope with 20x magnification was used. We identified the remains to the species level by following Kryštufek (1985) and Aulagnier et al. (2009). The mean body mass of prey was taken from literature Aulagnier et al. (2009). Statistical analysis was conducted in the programme Past version 3.16 (Hammer et al. 2001). 3. Results We identified 219 individual mammal species from 85 pellets. The owl's diet was composed of ten species of small mammals representing three different families, Muridae, Cricetidae and Soricidae (Table 1). The main prey species of the Barn Owl was Wood Mouse (Apodemus sylvaticus) (34.7%). The second most important prey species in its diet was House Mouse (Mus musculus) (16.9%), followed by Figure 1: Study area near Marina di Pisa in Italy where the Barn Owl pellets were collected Slika 1: Obravnavano območje blizu kraja Marina di Pisa (Italija), kjer so bili nabrani izbljuvki pegaste sove T. Zagoršek: A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy) 173 the Savi's Pine Vole (Microtus savii) (14.9%). The presence of Black Rat (Rattus rattus) and Brown Rat (Rattus norvegicus) was low (0.45 %). The commonest prey weight in the investigated area was 11 – 30 g (Figure 2). Only in two cases was the prey heavier than 70 g, reaching a maximum of almost 100 g. In both cases, the prey species was an adult Rat (Rattus rattus and Rattus norvegicus, respectively). We tested if there were statistically significant differences between the proportions of prey species in different samples (Table 2). Only a single prey item in the pellet was present in 18.8% of all pellets collected. The observed proportion of all species found in the pellets contained a single prey item, and the proportion expected from the content of all pellets showed statistical differences between Table 1: Proportion of species identified from pellets of the Barn Owl (Tyto alba) found in an abandoned house near Marina di Pisa, Italy, in July 2012 (N=219) Tabela 1: Delež vrst, ki so bile identificirane iz izbljuvkov pegaste sove (Tyto alba), najdenih v zapuščeni hiši blizu Marina di Pisa (Italija) julija 2012 (N=219) Family Species Proportion (%) Number of prey (N) Muridae Wood Mouse (Apodemus sylvaticus) 34,7 76 House Mouse (Mus musculus) 16,9 37 Yellow-Necked Mouse (Apodemus flavicollis) 2,7 6 Black Rat (Rattus rattus) 0,45 1 Brown Rat (Rattus norvegicus) 0,45 1 Cricetidae Savi's Pine Vole (Microtus savii) 14,9 33 European Water Vole (Arvicola terrestris) 9,6 21 Soricidae Lesser White-Toothed Shrew (Crocidura suaveolens) 13,2 29 Etruscan Shrew (Suncus etruscus) 3,6 8 Bicolored Shrew (Crocidura leucodon) 3,2 7 Figure 2: The percentage of individual mass classes of prey in the diet of Barn Owl (Tyto alba) from the pellets found in an abandoned house near Marina di Pisa, Italy, in July 2012 (N=219) Slika 2: Odstotek posameznih masnih razredov plena v prehrani pegaste sove (Tyto alba), ki so bili najdeni v izbljuvkih, nabranih v zapuščeni hiši blizu kraja Marina di Pisa (Italija) julija 2012 (N=219) Acrocephalus 39 (178/179): 171–176, 2018 174 samples. The comparison of two samples, first representing the whole sample and other containing only one item, showed statistically significant differences indicating that the hunting strategy of our Barn Owl is not opportunistic. 4. Discussion Small mammals were the most important prey in the Barn Owl's diet in the area of Marina di Pisa, Italy. The most preyed species was the Wood Mouse, which is consistent with the articles of other authors (Lovari et al. 1976, Lovari 1974, Mikkola 1983, Obuch & Benda 2009, Chandler 2011). Small presence (2.7%) of the Yellow-necked Mouse in the diet may be due to the fact that habitat suitable for this species is very rare within the hunting area of the Barn Owl. The important species in the diet was also Lesser White-toothed Shrew with the frequency of 13.2%, while its congeneric species, the Bicoloured White- toothed Shrew, was four times less common. The Etruscan Shrew is making a very small contribution to our Barn Owl diet. This may be due to the fact that species is very small in size and has a low biomass. The presence of Black Rat and Brown Rat was low, and its presence can be explained by a farm and farmland in the study area. In his study of the Barn Owl diet, Taylor (1994) analyzed pellets from the different European countries. He assumed that one pellet per day is produced by an owl, and came up with a figure of about 75g of food per day needed for the adult Barn Owl. This indicates that prey body mass is a limiting factor. This may be due to the fact that for any predator, and particularly a flying one, there may be an upper limit for prey size which can be captured and carried away (Taylor 1994). The results from our analysis of the pellets indicate that our Barn Owl does not prey opportunistically. The Table 2: Chi-square test of expected and observed percentage of small mammals where one prey item was present in a pellet (N=16) Tabela 2: Hi-kvadrat test med pričakovanimi in opazovanimi odstotki malih sesalcev, kjer je bil v izbljuvku najdena vsaj ena enota plena (N=16) Species Expected Observed P Apodemus sylvaticus 34.7 43.8 N.S. Mus musculus 16.9 0 < 0.001 Microtus savii 15.1 12.5 N.S. Crocidura suaveolens 13.2 6.3 N.S. Arvicola terrestris 9.6 37.5 < 0.001 Suncus etruscus 3.7 0 N.S. Crocidura leucodon 3.2 0 N.S. Apodemus flavicollis 2.7 0 N.S. Rattus rattus 0.5 0 N.S. Rattus norvegicus 0.5 0 N.S. χ² – test = 47.7 < 0.001 T. Zagoršek: A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy) 175 commonest prey weight in the investigated area was 11 – 30 g. Only in two cases was the prey heavier than 70 g, reaching a maximum of almost 100 g. In both cases, the prey species was an adult Rat (Rattus rattus and Rattus norvegicus, respectively). Numbers of prey individuals of small mammals in our pellets are showing that by increasing the number of prey items within a single pellet the relative abundance of large species  – in this case, the heaviest of the five most commonly preyed species is Arvicola terrestris – decreases, whereas on the other hand the smallest species Suncus etruscus was only detected in pellets with four and five prey items and never less. Our results suggest that pellet contents do not reflect the relative abundance of small mammals in the area, but it can be used as a complementary tool to supplement the faunal lists of small mammals in a given area. This study also indicates that Barn Owl may not be an opportunistic predator as the proportion of small mammals in different samples of pellets greatly differs and an obvious upper limit in prey body size exists for our Barn Owl. Acknowledgements I am grateful to Katarina Denac and Urša Koce for their valuable comments and suggestions on the draft. A very special thank you goes to Dr Gianluca Bedini from  Centro Recupero Uccelli Marini e Acquatici di  Livorno with his help during the fieldwork. Povzetek Preučili smo izbljuvke pegaste sove Tyto alba, zbrane v okolici Pise (Italija) leta 2012. Skupno smo našli 219 osebkov malih sesalcev v 85 izbljuvkih. Prehrano pegaste sove je sestavljalo 10 vrst malih sesalcev iz treh družin (Muridae, Cricetidae, Soricidae). Glavna vrsta v prehrani je bila gozdna miš Apodemus sylvaticus, sledita ji hišna miš Mus musculus in Savijeva kratkouha voluharica Microtus savii. Najmanjša vrsta z območja, etruščanska rovka Suncus etruscus, je bila dobro zastopana v izbljuvkih, medtem ko nekaterih večjih vrst nismo ugotovili, kar morda odseva zgornjo mejo velikosti za plen pegaste sove. Zdi se, da je optimalna teža plena med 26 in 75 g, občasno pa upleni tudi osebke, ki tehtajo do 100 g, npr. odrasle podgane Rattus spp. Kljub vsemu se moramo zavedati, da naši rezultati kažejo na razpoložljivost plena v določenem časovnem obdobju, ne pa nujno prehranske strategije pegaste sove. Key words: Barn Owl, Tyto alba, diet, small mammals, Pisa, Italy Ključne besede: Pegasta sova, Tyto alba, prehrana, mali sesalci, Pisa, Italija 5. References Aulagnier S., Haffner P., Mitchell-Jones, A. J., Moutou F., Zima J. (2009): Mammals of Europe North Africa and the Middle East.  –A&B Black London. Birdlife International (2004): Birds in Europe: population estimates trends and conservation status. – BirdLife International Cambridge. Brichetti P. Fracasso G. (2006): Ornitologia Italiana Vol.3 Stercorariidae-Caprimulgidae.  – Alberto Perdisa Editore Bologna. Bontzorlos V. Peris S. Vlachos G. C. Bakaloudis D. (2005): The diet of Barn Owl in the agricultural landscapes of central Greece. – Folia Zoologica. 54 (1/2): 99–110. Bose M. Guidali F. (2001): Seasonal and geographic differences in the diet of the Barn Owl in an agro- ecosystem in northern Italy.  – Journal of Raptor Research 35 (3): 240–246. Bunn D.S. Warburton A.B. Wilson R.D.S. (1982): The Barn Owl. – Poyser Calton. Chandler D. (2011): Barn Owl. Firefly Books. – New Holland Publishers (UK) Ltd. Contoli L. (1981): Ruolo dei Micromammiferi nella nicchia trofica del barbagianni (Tyto alba) nell'Italia Gentro Meridionale. – Avocetta 5: 49–64. Everett M. Prestt I. Wgagestaffe R. (1992): Barn and bay owls. Owls of the World: Their Evolution Structure and Ecology – Peter Lowe London. Galeotti P. (2003): Barbagianni. In: Uccelli d'Italia. (a cura di: Spagnesi M. Serra L.). Quad. Cons. Natura 16 Min. Ambiente – Ist. Naz. Fauna Selvatica: 202– 204. Hammer O. Harper D.A.T. Ryan P.D. (2001): Past: Paleontological Statistics software package for education and data analysis.  – Palaeontologia Electronica 4(1). Kryštufek B. (1985): Naša rodna zemlja. 4 Mali sesalci (Mladinska raziskovalna akcija "Okolje v Sloveniji" III Raziskovanje tal).  – Prirodoslovno društvo Slovenije Ljubljana. Acrocephalus 39 (178/179): 171–176, 2018 176 Leonardi G. Dell’arte G. (2006): Food habits of the Barn Owl ( Tyto alba) in a steppe area of Tunisia. – Journal of Arid Environments 65: 677–681. Lovari S. (1974): The feeding habits of four raptors in central Italy. – Raptor Research 8: 61–63. Lovari S., Renzoni A., Fondi R. (1976): The Predatory Habits of the Barn Owl (Tyto Alba Scopoli) in Relation to the Vegetation Cover.  – Italian Journal of Zoology 43: 173–191. Merkel A. (2018): Climate data – climate: Marina di Pisa. Accessible online: https://en.climate-data.org/ location/710944/ Mikkola H. (1983): Owls of Europe.  – T. & AD Poyser, London. Obuch J., Benda P. (2009): Food of the Barn Owl (Tyto alba) in the Eastern Mediterranean.  – Slovak Raptor Journal 3: 41–50. Paspali G., Oruci S., Koni M., Wilson I. F., Krystufek B., Bego F. (2013): Seasonal variation of small mammals in the diet of the barn owl (Tyto alba) in the Drinos River valley southern Albania. – Turkish Journal of Zoology 37: 97–105. Taylor I. (1994): Barn owls: Predator-prey relationship and conservation.  – Cambridge University press, Cambridge. Taylor I. R. (2009): How owls select their prey: a study of Barn Owls Tyto alba and their small mammal prey. – Ardea: 97(4): 635–644. Tores M., Motro Y., Motro U., Yoram Y.T. (2005): The Barn Owl – a selective opportunist predator. – Israel Journal of Zoology 51: 349–360. Yom-Tov Y., Wool D. (1997): Do the contents of Barn Owl (Tyto alba) pellets accurately represent the proportion of prey species in the field? – Condor 99: 972–976. Prispelo / Arrived: 12. 11. 2018 Sprejeto / Accepted: 29. 12. 2018 T. Zagoršek: A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy) 177 Acrocephalus 39 (178/179): 177–182, 2018 10.1515/acro-2018-0013 Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti Rare birds in Slovenia in 2017 – Slovenian Rarities Committee's Report Jurij Hanžel1, Mitja Denac2 1 Židovska ulica 1, SI–1000 Ljubljana, Slovenija, e–mail: jurij.hanzel@gmail.com 2 Mala Slevica 2, SI – 1315 Velike Lašče, Slovenija, e-mail: mitja.denac@gmail.com Poročilo Nacionalne komisije za redkosti (KRED) obravnava opazovanja redkih vrst med 1. 1. in 31. 12. 2017 z dodanimi datumi iz leta 2018, če je bil osebek, prvič zabeležen v letu 2017, opazovan tudi v tem letu. Pri nekaterih vrstah so dodane dopolnitve za prejšnja leta. Komisija je delovala v naslednji sestavi (po abecednem vrstnem redu): Dejan Bordjan, Luka Božič, Jurij Hanžel (predsednik), Kajetan Kravos, Milan Vogrin. Kot redke so obravnavane vrste, ki so bile kot take označene v Seznamu ugotovljenih ptic Slovenije s pregledom redkih vrst ter v zadnjem poročilu komisije (Hanžel & Šere 2011, Hanžel 2016, Hanžel 2017a), ne glede na poprej veljavni kriterij, da je vrsta redka, če zanjo obstaja manj kot 10 podatkov, znanih po 1. 1. 1950. Seznam obravnavanih vrst in podvrst je dostopen na [http://cdn.ptice.si/ptice/2014/wp-content/ uploads/2015/10/2015_redke_vrste_si.xlsx]. Razvrstitev v kategorije, način navajanja kraja opazovanja in način navajanja virov sledijo smer- nicam v Seznamu. Upoštevane so sprotne spre- membe iz poročil Taksonomske podkomisije komisije za redkosti pri Britanski zvezi ornitologov (British Ornithologists' Union Rarities Commit- tee Taxonomic Subcommittee) (BOURC TSC). Taksonom ska podkomisija je avgusta 2016 prene- hala z delovanjem, zato je to poročilo prvo, kjer sledimo priporočilom Mednarodnega ornitološke- ga kongresa (International Ornithological Con- gress) (Gill & Donsker 2018). Številki v oklepaju ob imenu posamezne vrste pomenita število opa- zovanj med 1. 1. 1950 in 31. 12. 2016 ter število opazovanih osebkov v istem časovnem obdobju. Takšno podajanje opazovanj je standardizirano po priporočilih Združenja evropskih komisij za red- kosti (AERC  – Association of European Rarities Committees) (AERC 2007). Za redke vrste, ki jih KRED obravnava od 1. 1. 2013 (37 dodatnih vrst, od tega 17 regionalnih redkosti), podatki o opazo- vanjih pred tem datumom niso sistematično zbrani, zato tudi niso predstavljeni. Iz istega razloga ta opa- zovanja niso oštevilčena. Opazovanja nacionalnih in regionalnih redkosti so predstavljena ločeno. Od 1. 1. 2017 zaradi rednega pojavljanja ne obravnava- mo več opazovanj srebrnega galeba Larus argenta- tus iz porečja Drave. V letu 2017 smo zabeležili prve podatke iz kategorije A za belolično gos Branta leucopsis. Pozornost zbujajo tudi tretje opazovanje rdečevrate gosi Branta ruficollis, peto opazovanje za brkatega sera Gypaetus barbatus, lopatasto govnačko Stercorarius pomarinus in prekomorskega prodnika Calidris melanotos ter sedmo opazovanje za ploskokljunega liskonožca Phalaropus fulicarius in velikega galeba Larus marinus. Zaradi prilagoditve taksonomije smo seznamu dodali eno vrsto: njivska gos Anser fabalis je sedaj ločena na vrsti Anser fabalis in Anser serrirostris (vsebuje podvrsto rossicus, ki je bila opazovana v Sloveniji). Do vključno 31. 12. 2017 je bilo v Sloveniji ugotovljenih 390 vrst (375 v kategoriji A, 6 v kategoriji B, 9 samo v kategoriji C; štiri vrste so uvrščene v kategoriji A in C hkrati). V  kategoriji D je sedem vrst, v kategoriji E pa 39, med katerimi sta dve v podkategoriji E*. Vrste teh dveh kategorij niso del seznama. V Dodatku 1 so dokumentarne fotografije opazovanj, ki doslej še niso bile objavljene v slovenskih tiskanih virih z navedenim krajem, datumom in številom osebkov. Potrjena opazovanja iz kategorije A / Accepted Category A records Rdečevrata gos Branta ruficollis (2, 2) − 14. 1. 2017, Gajševsko jezero, 2 os. (Božič 2017) 178 Belolična gos Branta leucopsis (0, 0) − 12. 1. 2017, Babinci, 1 os. (R. Šiško pisno) − 14. 1. 2017, Amerika, Ormoško jezero, 1 os. (L. Božič pisno) − 28. 10. 2017, zadrževalnik Medvedce, 1 os. (E. Horvat pisno) Labod pevec Cygnus cygnus (13, 27) − 1.–14. 2. 2017, HE Brežice, reka Sava, 2 os. (D. Klenovšek pisno) Beloliska Melanitta fusca − 11. 3. 2017, Fontanigge, Sečoveljske soline, 15 os. (B. Blažič pisno) Črna raca Melanitta nigra − 22. 2.–29. 3. 2017, Žovneško jezero, 1 ♀ (M. Gamser, J. Novak pisno) Zimska raca Clangula hyemalis − 7. 2.–29. 4. 2017, Šturmovci, Ptujsko jezero, 1–3 os. (1 ♂, 2 ♀) (L. Božič pisno) − 8. 1.–7. 2. 2017, Ormoško jezero, 2 os. (1 ♂, 1 2cy ♀) (L. Božič pisno) − 17. 2. 2017, zadrževalnik Medvedce, 1 ♂ (M. Gamser pisno) − 9.–17. 3. 2017, Amerika, Ormoško jezero, 1 ♀ (L. Božič pisno) Ledni slapnik Gavia immer (7, 16) − 24. 11.–17. 12. 2017, Prule, Ljubljana, reka Ljubljanica, 1 ad. (Poljanec 2017) Sredozemski viharnik Puffinus yelkouan − 17.–18. 6. 2017, morje pred Piranom, do 75 os. (Hanžel 2017b) Zlatouhi ponirek Podiceps auritus − 1. 1. 2017, Fontanigge, Sečoveljske soline, 3 os. (M. Sešlar pisno) − 11. 2.–11. 3. 2017, Fontanigge, Sečoveljske soline, 1–11 os. (B. Blažič pisno) − 9. 4. 2017, Piran, 1 os. (J. Hanžel pisno) − 20. 9. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) − 25. 10. 2017, Šturmovci, Ptujsko jezero, 1 1cy (L. Božič pisno) − 3. 11. 2017, Turnišče, Ptujsko jezero, 2 ad. (L. Božič, A., E., G. Vrezec, P. Vrh Vrezec pisno) − 10. 11. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) − 10. 11. 2017, Ptuj, Ptujsko jezero, 2 ad. (L. Božič pisno) − 13. 12. 2017, Turnišče, Ptujsko jezero, 2 ad. (L. Božič pisno) − 30. 12. 2017, Šturmovci, Ptujsko jezero, 2 ad. (L. Božič pisno) Plamenec Phoenicopterus roseus (17, 69) − 6. 10. 2017, Fontanigge, Sečoveljske soline, 1 os. (A. Božič pisno) Plevica Plegadis falcinellus − 1. 1. 2017, Fontanigge, Sečoveljske soline, 1 os. (M. Sešlar pisno) − 28. 9. 2017, Amerika, Ormoško jezero, 8 os. (L. Božič, M. Gamser pisno) − 5.–10. 10. 2017, Amerika, Ormoško jezero, 2 ad. (L. Božič pisno) Kravja čaplja Bubulcus ibis (34, 97)1 − 17. 5. 2017, zadrževalnik Medvedce, 1 os. v svatovskem perju (D. Bordjan pisno) − 18. 9. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) − 20. 12. 2017–25. 1. 2018, Cerkno, 1 os. (D. Vidmar pisno) Mali klinkač Clanga pomarina (8, 8) − 21. 5. 2017, Kozlarjeva gošča, Ljubljansko barje, 1 os. (Šere 2017) Veliki klinkač Clanga clanga (25, 27) − 15. 11. 2017, zadrževalnik Medvedce, 1 1cy (Bordjan 2017) Kraljevi orel Aquila heliaca (9, 9) − 12. 3. 2017, Griško polje, Senožeče, 1 imm. (I. Kljun pisno) 1 Od 1. 1. 2015 ne obravnavamo več opazovanj iz Naravnega rezervata Škocjanski zatok, saj se vrsta tam redno pojavlja vse leto. / From 1 Jan 2015, the Committee no longer assesses records from Škocjanski Zatok Nature Reserve, where the species is regularly present throughout the year. J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti 179 Stepski lunj (50, 52) − 15. 4. 2017, zadrževalnik Medvedce, 1 ♀ (D. Bordjan pisno) − 25. 4. 2017, Mengeš, 1 2cy (D. Bordjan pisno) − 10. 9.–15. 9. 2017, Šikole, 1 ad. ♂ (M. Gamser pisno) − 8. 11. 2017, Dolenje Jezero, Cerkniško jezero, 1 2cy ♀ (M. Gamser pisno) Koconoga kanja Buteo lagopus − 5. 2. 2017, Velike Bloke, 1 os. (A. Kotnik pisno) − 4–17. 2. 2017, zadrževalnik Medvedce, do 3 os. (D. Bordjan, M. Gamser pisno) − 8. 11. 2017, letališče Lesce, 1 os. (B. Blažič, B. Kozinc, A. Mulej pisno) − 8. 11. 2017, Bloke, 1 os. (P. Veenvliet pisno) − 23. 11. 2017, Divača, 1 os. (M. Hario pisno) − 2. 12. 2017, zadrževalnik Medvedce, 1 1cy (D. Bordjan pisno) Rjasta kanja Buteo rufinus (7, 7) − 29. 8. 2017, Kalič, 1 os. (M. Gamser pisno) Dular Charadrius morinellus (19, 42) − 22.–23. 9. 2017, planina Klek, Pokljuka, 1 os. (R. Iskra pisno) Kamenjar Arenaria interpres − 11. 9. 2016, Amerika, Ormoško jezero, 3 os. (L. Božič pisno) Veliki prodnik Calidris canutus − 7. 8. 2017, Fontanigge, Sečoveljske soline, 1 os. (A. Božič, M. Sešlar pisno) − 2. 9. 2017, Turnišče, Ptujsko jezero, 1 juv. (L. Božič pisno) − 3. 9. 2017, Fontanigge, Sečoveljske soline, 1 os. (M. Denac, A, Kotnik, M. Mlakar Medved, M. Sešlar pisno) − 18. 9. 2017, Turnišče, Ptujsko jezero, 1 juv. (L. Božič, M. Gamser pisno) − 5.–6. 10. 2017, Ormoško jezero, 1 juv. (L. Božič pisno) Ploskokljunec Calidris falcinellus (12, 29) − 29. 8.–3. 9. 2017, Fontanigge, Sečoveljske soline, 1 obr. (Vrezec & Fekonja 2018) Peščenec Calidris alba − 18. 8. 2017, Turnišče, Ptujsko jezero, 1 juv. (L. Božič pisno) − 18. 9. 2017, zadrževalnik Medvedce, 1 juv. (M. Gamser pisno) − 25. 9. 2017, Pobrežje, Ptujsko jezero, 1 juv. (L. Božič pisno) Prekomorski prodnik Calidris melanotos (4, 4) − 6. 7. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) Čoketa Gallinago media (15, 15) − 13. 9. 2017, Ig, Ljubljansko barje, 1 os. (M. Denac pisno) Ploskokljuni liskonožec Phalaropus fulicarius (6, 6) − 3. 11. 2017, Turnišče, Ptujsko jezero, 1 ad. ♂ (kadaver; zbirka Prirodoslovnega muzeja Slovenije 2017/378) (A., E., G. Vrezec, P. Vrh Vrezec pisno) Triprsti galeb Rissa tridactyla − 10. 11. 2017, zadrževalnik Medvedce, 1 1cy (M. Gamser pisno) Veliki galeb Larus marinus (6, 8) − 8. 9. 2017, Podova, 1 2cy (M. Gamser pisno) Lopatasta govnačka Stercorarius pomarinus (4, 5) − 18. 9. 2017, zadrževalnik Medvedce, 1 ad. (M. Gamser pisno) Bodičasta govnačka Stercorarius parasiticus (11, 11) − 23. 5. 2017, Ptujsko jezero, 1 ad. (temna oblika) (M. Gamser pisno) − 26. 7. 2017, zadrževalnik Medvedce, 1 3cy (M. Gamser pisno) Močvirska uharica Asio flammeus (33, 49) − 28. 11. 2016–6. 3. 2017, Kozlarjeva gošča, Ljubljansko barje, do 14 os. (Denac 2017c, Hanžel 2017) − 11. 2.–18. 4. 2017, zadrževalnik Medvedce, do 2 os. (T. Basle, D. Bordjan, M. Gamser pisno) − 20. 9. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) − 10. 11. 2017, zadrževalnik Medvedce, 1 os. (M. Gamser pisno) Acrocephalus 39 (178/179): 177–182, 2018 180 Zlatovranka Coracias garrulus − 16. 5. 2017, Brestovica pri Povirju, 1 ad. (Denac 2017b) − 26. 7. 2017, Vodice, 1 ad. (Blažič 2017a) Rjavoglavi srakoper Lanius senator − 13. 5. 2017, Lesce, 1 ♂ (A. Mulej pisno) 19. 5. 2017, Prhajevo, Velike Lašče, 1 ♂ (Denac K. 2017) − Kratkoprsti škrjanček Calandrella brachydactyla (14, 45) − 13.–14. 5. 2017, Ig, Ljubljansko barje, 2 os. (A. Kotnik pisno) Mušja listnica Phylloscopus inornatus (19, 19) − 27. 10. 2017, Lipe, Ljubljansko barje, 1 1cy obr. (Vidic 2017) Plevelna trstnica Acrocephalus agricola (8, 8) − 16. 9. 2016, Verd, Vrhnika, 1 1cy obr. (Vrezec & Fekonja 2017) − 31. 7. 2017, Verd, Vrhnika, 1 1cy obr. (Vrezec & Fekonja 2018) Svetlooka penica Sylvia crassirostris (3, 3) − 8. 4. 2017, Hrastovlje, 1 ♂ (Šere 2017b) Rožnati škorec Pastor roseus (16, 150) − 23. 5. 2017, Naravni rezervat Škocjanski zatok, 1 os. (I. Brajnik pisno) Snežni strnad Plectrophenax nivalis − 13. 2. 2017, HE Brežice, 1 os. (D. Klenovšek pisno) Beloglavi strnad Emberiza leucocephalos (18, 19) − 23. 10. 2017, letališče Lesce, 1 ad. ♂ (Blažič 2017b) Mali strnad Emberiza pusilla (22, 22) − 13. 10. 2017, Bistrica, Šentrupert, 1 1cy (Vrezec & Fekonja 2018) Potrjena opazovanja iz kategorije D / Accepted Category D records Mala gos Anser erythropus (0, 0) − 17. 2.–18. 4. 2017, Družmirsko jezero, 1 os. (A. Bolčina, M. Gabor, J. Gojznikar, R. Kraševec pisno) Regionalne redkosti / Regional rarities Pritlikavi kormoran Microcarbo pygmeus − 4. 7. 2017, Teharsko jezero, 1 os. (A. Božič, M. Gamser pisno) Školjkarica Haematopus ostralegus − 3. 5. 2017, Pobrežje, Ptujsko jezero, 1 ad. (L. Božič pisno) Srebrni galeb Larus argentatus − 19. 2. 2017, Zbiljsko jezero, 1 2cy (M. Sešlar pisno) Črnomorski galeb Larus cachinnans − 27. 1. 2017, HE Moste, reka Sava, 1 2cy (Rutnik 2017) − 11. 3. 2017, Fontanigge, Sečoveljske soline, 1 2cy (A. Božič pisno) Kaspijska čigra Hydroprogne caspia − 6. 4. 2017, zadrževalnik Medvedce, 3 os. (B. Blažič pisno) − 7. 4. 2017, Žovneško jezero, 2 os. (J. Gojznikar pisno) Mala čigra Sternula albifrons − 17. 5. 2017, Turnišče, Ptujsko jezero, 2 ad. (D. Bordjan, L. Božič pisno) − 23. 5. 2017, Turnišče, Ptujsko jezero, 1 ad. (M. Gamser pisno) − 10. 9. 2017, Amerika, Ormoško jezero, 3 ad. w./1cy (L. Božič pisno) Taščična penica Sylvia cantillans − 19. 5. 2017, Žovneško jezero, 1 ♂ (J. Leskošek pisno) Rjava cipa Anthus campestris J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti 181 − 6. 5. 2017, Ptujsko jezero, 2 os. (B. Blažič, A. Božič, M. Denac, R. Lobnik, M. Mlakar Medved, M. Sešlar pisno) Potrjena opazovanja iz kategorije C / Accepted Category C records Brkati ser Gypaetus barbatus (4, 4) − 17. 6. 2017, Velika Zelnarica, 1 1cy (Denac 2017a) Potrjena opazovanja iz kategorije E / Accepted Category E records Tibetanska gos Anser indicus (4, 5) − 12. 4. 2009, Hraške mlake, Smlednik, 1 os. (M. Cerar pisno) Moškatna bleščavka Cairina moschata (76, 194) − 28. 12. 2017, zadrževalnik Medvedce, 1 os. (A., E., G. Vrezec, P. Vrh Vrezec pisno) Nevestica Aix sponsa (22, 24) − 14. 1. 2017, Gazice, Cerklje ob Krki, 3 os. (1 ♂, 2 ♀) (G. Bernard, A. Božič, J. Vidmar pisno) − 16. 2. 2017, Ptujsko jezero, 1 ♀ (M. Gamser pisno) − 18. 2. 2017, Nova Gorica, 1 ♂ (S. Tzar pisno) Mandarinka Aix galericulata − 14. 1. 2017, Gazice, Cerklje ob Krki, 1 ♂ (G. Bernard, A. Božič, J. Vidmar pisno) − 27. 1. 2017, Trnovo, reka Ljubljanica, Ljubljana 1 ♀ (M. Gaberšek pisno) − 29. 1. 2017, Lent, Maribor, reka Drava, 1 ♂ (M. Sešlar pisno) Virginijski kolin Colinus virginianus (8, 18) − 5. 6. 2017, Sečovlje, 1 os. (A. Božič pisno) Klavžar Geronticus eremita (12, 21) − 5. 6. 2017, Groblje pri Prekopi, Šentjernejsko polje, 1 os. (E. Šinkec pisno) − 6. 6. 2017, Vopovlje, Cerklje na Gorenjskem, 1 os. (B. Blažič, M. Sešlar pisno) − 1. 7.–8. 7. 2017, Kranj, 1 os. (M. Bežek, G. Ceferin pisno) − 22. 8. 2017, letališče Lesce, 1 os. (G. Kobler pisno) Aleksander Psittacula krameri (6, 12) − 28. 1. 2017, Fužine, Ljubljana, 1 os. (I. A. Božič pisno) Zebrica Taeniopygia guttata (0, 0) − 6. 7. 2017, Ig, Ljubljansko barje, 1 os. (E. Gašparič pisno) Zavrnjena opazovanja / Rejected records Leta 2017 ni bilo zavrnjenih opazovanj. / There were no rejected records in 2017. Summary This report by the Slovenian Rarities Committee presents records of rare bird species in Slovenia in 2017, with some addenda for previous years. The numbers in brackets refer to the number of records (first number) and individuals (second number) recorded between 1 Jan 1950 and 31 Dec 2016. Since 1 Jan 2013, submission to the Committee has been required for 37 additional species, 17 of which are regional rarities. Records of these species are not numbered, since records from previous years were not collected by the Committee. The Barnacle Goose Branta leucopsis was first recorded in Category A, in addition to previous Category D and E records. Other notable observations were the third record of Red-breasted Goose Branta ruficollis, fifth records of Lammergeier Gypaetus barbatus and Pomarine Skua Stercorarius pomarinus, and seventh records of Greater Black- backed Gull Larus marinus and Red Phalarope Phalaropus fulicarius. The list of birds recorded in Slovenia (as of 31 Dec 2017) contains 390 species (375 in Category A, 6 in Category B, 9 exclusively in Category C; 4 species are both in Categories A and C). Category D contains 7 species, while Category E contains 39, two of which are classified into Subcategory E*. These two categories are not part of the list. Literatura Blažič B. (2017a): Zlatovranka Coracias garrulus.  – Acrocephalus 38 (174/175): 220–221. Acrocephalus 39 (178/179): 177–182, 2018 182 Blažič B. (2017b): Beloglavi strnad Emberiza leucocephala. – Acrocephalus 38 (174/175): 226. Bordjan D. (2017): Veliki klinkač Aquila clanga.  – Acrocephalus 38 (174/175): 218. Božič L. (2017): Rezultati januarskega štetja vodnih ptic leta 2017 v Sloveniji.  – Acrocephalus 38 (174/175): 203–215. Denac K. (2017): Rjavoglavi srakoper Lanius senator. – Acrocephalus 38 (172/173): 71. Denac M. (2017a): Brkati ser Gypaetus barbatus.  – Acrocephalus 38 (172/173): 63–64. Denac M. (2017b): Zlatovranka Coracias garrulus.  – Acrocephalus 38 (172/173): 65. Denac M. (2017c): Močvirska uharica Asio flammeus. – Acrocephalus 38 (172/173): 66–67. Gill F., Donsker D. (eds.) (2018): IOC World Bird List (v 8.2). DOI: 10.14344/IOC.ML.8.2. – [www. worldbirdnames.org], 10/12/2018. Hanžel J. (2016): Redke vrste ptic v Sloveniji v letu 2015  – Poročilo Nacionalne komisije za redkosti.  – Acrocephalus 37 (168/169): 69–78. Hanžel J. (2017a): Redke vrste ptic v Sloveniji v letu 2016  – Poročilo Nacionalne komisije za redkosti.  – Acrocephalus 38 (172/173): 21–30. Hanžel J. (2017b): Sredozemski viharnik Puffinus yelkouan. – Acrocephalus 38 (174/175): 218. Hanžel J., Šere D. (2011): Seznam ugotovljenih ptic Slovenije s pregledom redkih vrst. – Acrocephalus 32 (150/151): 143–203. Poljanec L. (2017): Ledni slapnik Gavia immer.  – Acrocephalus 38 (174/175): 217–218. Rutnik K. (2017): Črnomorski galeb Larus cachinnans. – Acrocephalus 38 (174/175): 220. Šere D. (2017a): Mali klinkač Aquila pomarina.  – Acrocephalus 38 (172/173): 65. Šere D. (2017b): Svetlooka penica Sylvia crassirostris. – Acrocephalus 38 (172/173): 69. Vidic B. (2017): Mušja listnica Phylloscopus inornatus. – Acrocephalus 38 (172/173): 70. Vrezec A., Fekonja D. (2017): Poročilo o obročkanju ptic v Sloveniji v letu 2016 in pojavljanje mušje listnice Phylloscopus inornatus v zadnjih 25 letih v Sloveniji. – Acrocephalus (174/175): 171–202. Vrezec A., Fekonja D. (2018): Poročilo o obročkanju ptic v Sloveniji leta 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017. – Acrocephalus 39 (178/179): 129–163. Prispelo / Arrived: 5. 2. 2019 Sprejeto / Accepted: 3. 3. 2019 J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti 183 Dokumentarne fotografije izbranih opazovanj iz leta 2017, ki doslej še niso bile objavljene v slovenskih tiskanih virih z navedenim krajem, datumom in številom osebkov. Documentary photos from 2017, so far unpublished in Slovenian printed sources with site name, date and number of individuals given. DODATEK 1 / APPENDIX 1 Slike 1–6 / Figures 1–6: (1) belolična gos Branta leucopsis, 12. 1. 2017, Babinci (foto: R. Šiško); (2) belolična gos Branta leucopsis, 14. 1. 2017, Ormoško jezero (foto: L. Božič); (3) belolična gos Branta leucopsis, 28. 10. 2017, zadrževalnik Medvedce (foto: E. Horvat); (4) črna raca Melanitta nigra, Žovneško jezero, 22. 2. 2017 (foto: J. Novak); (5) veliki klinkač Clanga clanga, 15. 11. 2017, zadrževalnik Medvedce (foto: D. Bordjan); (6) kraljevi orel Aquila heliaca, 12. 3. 2017, Griško polje, Senožeče (foto: I. Kljun). (1) (3) (5) (2) (4) (6) Acrocephalus 39 (178/179): 177–182, 2018 184 Slike 7–10 / Figures 7–10: (7) ploskokljuni liskonožec Phalaropus fulicarius, 3. 11. 2017, Ptujsko jezero (foto: A. Vrezec); (8) rjavoglavi srakoper Lanius senator, 13. 5. 2017, Lesce (foto: A. Mulej); (10–11) mala gos Anser erythropus, 17. 2. 2017, Družmirsko jezero (foto: J. Gojznikar (7) (9) (8) (10) Nadaljevanje dodatka 1 / Continuation of Appendix 1 J. Hanžel, M. Denac: Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti 185 Acrocephalus 39 (178/179): 185–195, 2018 10.1515/acro-2018-0014 Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji Results of the January 2018 waterbird census in Slovenia Luka Božič DOPPS  – Društvo za opazovanje in proučevanje ptic Slovenije, Kamenškova 18, SI–2000 Maribor, Slovenija, e–mail: luka.bozic@dopps.si Januarsko štetje vodnih ptic (IWC) poteka v Sloveniji od leta 1988, leta 1997 pa je bilo prvič zastavljeno kot celosten, koordiniran in stan- dardiziran popis vodnih ptic na ozemlju celotne Slovenije (Štumberger 1997). Od takrat naprej štetje pokriva vse večje reke, Obalo in večino pomembnejših stoječih vodnih teles v državi (Štumberger 1997, 1998, 1999, 2000, 2001, 2002, 2005, Božič 2005, 2006, 2007, 2008a, 2008b, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017). K temu sta pripomogla predvsem dobra organizacija in veliko število sodelujočih prostovoljnih popisovalcev. V  poročilu so predstavljeni rezultati januarskega štetja vodnih ptic leta 2018, ki je v podobnem obsegu potekalo že dvaindvajsetič zapored. Leta 2018 smo vodne ptice šteli 13. in 14. januarja. Organizacija, potek, uporabljena metoda štetja in popisni obrazci so bili takšni kot leta 1997 (Štumberger 1997). Pri obdelavi in predstavitvi rezultatov smo upoštevali tudi nekatere podatke, zbrane zunaj organiziranega štetja, nekaj dni pred ali po koncu tedna, predvidenega za štetje. Kormorane Phalacrocorax carbo smo na števnih območjih Mure, Drave in Savinje sistematično posebej šteli na znanih in domnevnih skupinskih prenočiščih. Na skupinskih prenočiščih smo šteli tudi pritlikave kormorane P. pygmeus, velike bele čaplje Ardea alba, zvonce Bucephala clangula, male žagarje Mergellus albellus, velike žagarje Mergus merganser in galebe Laridae na števnem območju Drave ter velike žagarje na števnem območju Savinje. Mokože Rallus aquaticus smo na ptujskih studenčnicah in potoku Črnec (Murska ravan) sočasno s štetjem drugih vodnih ptic popisali s pomočjo predvajanja posnetka oglašanja. Metoda je podrobneje opisana v Božič (2002). V štetje so bile tako kot vsako leto vključene vrste iz naslednjih skupin ptic: plovci Anatidae, slapniki Gaviidae, kormorani Phalacrocoracidae, čaplje Ardeidae, štorklje Ciconiidae, plamenci Phoenicopteridae, ponirki Podicipedidae, tukalice Rallidae, pobrežniki Charadriiformes ter belorepec Haliaeetus albicilla, rjavi lunj Circus aeruginosus, močvirska uharica Asio flammeus, vodomec Alcedo atthis in povodni kos Cinclus cinclus. Januar 2018 je bil občutno toplejši od dolgoletnega povprečja, saj je bila povprečna mesečna temperatura v pretežnem delu Slovenije višja za 3 do 5 °C; nekoliko manjši je bil le odklon na Goriškem. Najvišja izmerjena temperatura v januarju je v kar nekaj krajih presegla 15  °C, odkloni povprečne dnevne temperature pa so bili marsikje največji ravno v tednu pred štetjem. Dolgoletno povprečje padavin je bilo preseženo v več kot polovici Slovenije, največ v delu Dolenjske in Zasavja. Manj od povprečja je bilo padavin na Obali, delu Gorenjske, na Koroškem in v severovzhodni Slovenije, najbolj izrazito na vzhodu Pomurja. December 2017 je bil v večjem delu države toplejši kot običajno, vendar pa temperaturni odkloni, z izjemo skrajnega severovzhoda in jugovzhoda, niso presegli 2  °C. V  delu Gorenjske in na Goriškem je povprečna mesečna temperatura nekoliko zaostajala za dolgoletnim povprečjem. Padavine so decembra povsod v Sloveniji presegle dolgoletno povprečje, bolj v zahodni polovici države, kjer so na Obali zabeležili do 272  % dolgoletnega povprečja (Cegnar 2017, 2018). Prva polovica januarja bila izredno vodnata, s pretoki rek približno 50 % nad povprečjem, reke so se ponekod razlile na območjih pogostih poplav, ojezerjena so bila kraška polja. Podobne razmere so bile tudi decembra, ko je bila vodnatost rek v povprečju enkrat večja kot v dolgoletnem primerjalnem obdobju. Ob poplavah v zahodni in osrednji Sloveniji so bile ponekod dosežene 20–30-letne povratne dobe velikih pretokov (Strojan 2017, 2018). V  času štetja je nad severovzhodno Evropo prevladovalo območje visokega zračnega tlaka, nad južnim Balkanom pa ciklonsko območje. Z  vetrovi vzhodnih smeri je nad naše kraje pritekal postopno hladnejši in vlažen zrak. Na Primorskem je bilo zmerno oblačno, pihala 186 Slika 2: Lokalitete, popisane med januarskim štetjem vodnih ptic (IWC) v Sloveniji leta 2018; beli krogi označujejo stoječe vode, temni krogi pa potoke in manjše reke. Figure 2: Localities surveyed during the January 2018 waterbird census (IWC) in Slovenia, with white circles denoting standing waters, and dark circles designating smaller rivers and streams Slika 1: Popisni odseki januarskega štetja vodnih ptic (IWC) na rekah in obalnem morju v Sloveniji leta 2018; črne črte označujejo popisane, bele pa nepopisane odseke. Figure 1: Survey sections of the January 2018 waterbird census (IWC) on the rivers and coastal sea in Slovenia, with black lines denoting examined and white lines unexamined sections L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji 187 je šibka do zmerna burja, ki pa je drugi dan oslabela. Drugod je bilo oblačno, občasno so bile ponekod rahle padavine, vendar je bila količina padavin večinoma majhna. Najvišje dnevne temperature so bile od −1 do nekaj stopinj nad 0, na Primorskem do 11 °C (Markošek 2018). V času štetja 2017 so bila vsa popisana vodna telesa nezaledenela. Sodelovalo je 246 popisovalcev. Pregledali smo 415 popisnih odsekov na rekah in obalnem morju v skupni dolžini 1415,6 km (tabela 1), kar je 77,4 % celotne dolžine odsekov, vključenih v popis. Poleg tega smo pregledali tudi 211 lokalitet (168 stoječih in 43 tekočih voda) od skupno 331 (tabela 2), kar je 63,7  % vseh lokalitet, evidentiranih v bazi Tabela 2: Število vseh in pregledanih lokalitet (stoječih voda, potokov in manjših rek) na posameznem števnem območju in v celotni državi med januarskim štetjem vodnih ptic (IWC) leta 2018 v Sloveniji Table 2: Number of all and surveyed localities (standing waters, streams and smaller rivers) in separate count areas and in the entire country during the January 2018 waterbird census (IWC) in Slovenia Števno območje/ Count area Št. vseh lokalitet – stoječe vode/ Total no. of localities (standing waters) Št. vseh lokalitet – tekoče vode/ Total no. of localities (streams) Št. pregledanih lokalitet - stoječe vode/ No. of surveyed localities (standing waters) Št. pregledanih lokalitet - tekoče vode/ No. of surveyed localities (streams) Mura 81 10 67 7 Drava 56 23 38 7 Savinja 19 6 14 5 Zgornja Sava/ Upper Sava 24 15 18 5 Spodnja Sava/ Lower Sava 11 10 4 4 Kolpa 1 4 1 3 Notranjska in Primorska 21 33 16 12 Obala / Coastland 14 3 10 0 Skupaj / Total 227 104 168 43 Tabela 1: Število vseh in pregledanih popisnih odsekov na rekah in obalnem morju ter njihova skupna dolžina na posameznem števnem območju in v celotni državi med januarskim štetjem vodnih ptic (IWC) leta 2018 v Sloveniji Table 1: Number of all and surveyed sections on the rivers and coastal sea, as well as their total length in separate count areas and in the entire country during the January 2018 waterbird census (IWC) in Slovenia Števno območje/ Count area Št. vseh popisnih odsekov / Total no. of survey sections Dolžina/ Length (km) Št. pregledanih odsekov/ No. of sections surveyed Dolžina/ Length (km) Mura 61 220,2 56 198,0 Drava 138 374,4 127 333,5 Savinja 38 141,5 36 130,5 Zgornja Sava / Upper Sava 113 387,1 101 324,3 Spodnja Sava / Lower Sava 71 272,7 50 181,1 Kolpa 14 118,0 5 38,6 Notranjska in Primorska 44 272,9 28 167,0 Obala / Coastland 12 42,6 12 42,6 Skupaj / Total 491 1829,4 415 1415,6 Acrocephalus 39 (178/179): 185–195, 2018 188 januarskega štetja vodnih ptic do vključno leta 2018. Popisne odseke, pregledane v štetju leta 2018, prikazuje slika 1, razširjenost pregledanih lokalitet pa slika 2. Skupaj smo prešteli 45.194 vodnih ptic, pripadajočih 58 vrstam. Poleg tega smo zabeležili še tri druge taksone (domačo gos, domačo raca in en vrstno nedoločen takson). Tako skupno število vodnih ptic kot število zabeleženih vrst sta bila podpovprečna (51.162 / 60) in manjša kot v prejšnjem štetju. Skupno število vodnih ptic je bilo v zadnjih 22 letih manjše le v štetjih leta 1997 in 1998. Tako kot v vseh štetjih doslej smo tudi leta 2018 največ vodnih ptic prešteli na števnem območju reke Drave, in sicer 20.103. To je 44,5 % vseh vodnih ptic, preštetih v Sloveniji. S tem je bil odstotek vodnih ptic na tem števnem območju blizu povprečnemu (43,3  %), samo število pa občutno manjše od povprečnega (22.165). Tako kot v večini štetij doslej števila 10.000 preštetih vodnih ptic nismo presegli na nobenem drugem števnem območju. Leta 2018 na nobenem števnem območju nismo prešteli največjega ali najmanjšega števila vodnih ptic v dosedanjih januarskih štetjih. Med najmanjšimi doslej so bila števila vodnih ptic na območjih Mure in Zgornje Save (najmanjše po letu 2004) in Obale (drugo najmanjše število doslej). Na območjih Kolpe ter Notranjske in Primorske sta bili števili vodnih ptic večji od povprečja in največji po letu 2012 oz. 2013. Na območju Savinje je bilo število vodnih ptic večje od povprečja, vendar najmanjše po letu 2012. Majhna števila vodnih ptic so vsaj ponekod posledica velike vodnatosti rek v času popisa  – popisovalci so poročali o kalni in deroči vodi s srednje Save, Ljubljanice in Krke. Poplavljena kraška polja na Notranjskem so privabila številne vodne ptice (največ po letu 2013), med katerimi so bile tudi nekatere za ta del Slovenije neobičajne vrste. Mlakarica Anas platyrhynchos je bila leta 2018, tako kot med vsemi štetji doslej, daleč najštevilnejša vrsta (18.415 os., 40,7 % vseh vodnih ptic). Po številu preštetih osebkov sledijo kormoran (3112 os., 6,9  % vseh vodnih ptic), čopasta črnica Aythya fuligula (2878, 6,4  % vseh vodnih ptic), rečni galeb Chroicocephalus ridibundus (2721 os., 6,0 % vseh vodnih ptic) in liska Fulica atra (2492 os., 5,5  % vseh vodnih ptic). S  tem je bil vrstni red najštevilnejših vrst, z izjemo mlakarice, precej drugačen od običajnega. Kormoran in čopasta črnica še nikoli nista bila tako visoko na seznamu najštevilnejših vrst, liska pa še nikoli doslej tako nizko. Še bolj izrazito to velja za sivo gos Anser anser (6. najštevilnejša vrsta), ki v nobenem izmed predhodnih štetij ni bila med 15 najštevilnejšimi vrstami. Število 1000 preštetih osebkov so leta 2018 presegli še sivka Aythya ferina, labod grbec Cygnus olor, rumenonogi galeb Larus michahellis, zvonec Bucephala clangula in kreheljc Anas crecca. Sivka in zvonec sta omenjeno mejo tokrat presegla sedmič, nazadnje leta 2014 oz. 2011, ko sta bila tudi zadnjič pred letom 2018  med 10 najštevilnejšimi zabeleženimi vrstami. Rezultati januarskega štetja vodnih ptic leta 2018 po shemi razdelitve na osem števnih območij (Božič 2007, 2008a, 2008b, 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017) so predstavljeni v tabeli 3. V  dodatku 1 so števna območja podrobneje razčlenjena na posamezne reke in manjša območja z večjim številom lokalitet, kot so poplavne ravnice, doline, ravnine ipd. Leta 2018 smo prvič med januarskim štetjem vodnih ptic zabeležili plevico Plegadis falcinellus (Škocjanski zatok), kar je verjetno prvi podatek o zimskem pojavljanju te vrste v Sloveniji (npr. Sovinc 1994), objavljenih podatkov pa ni tudi za druga severnojadranska mokrišča (Guzzon et al. 2005, Kravos et al. 2014). Vrsta v manjšem številu prezimuje v Sredozemlju, večinoma pa v podsaharski Afriki (Bauer et al. 2005). Od redkejših vrst smo popisali nilsko gos Alopochen aegyptiacus (drugič zapored v glinokopu Volčja Draga, Primorska; tretje opazovanje v januarskem štetju vodnih ptic), zlatouhega ponirka Podiceps auritus (Strunjanski zaliv in Planinsko polje; devetič v januarskem štetju vodnih ptic), pukleža Lymnocryptes minimus (Radensko polje; tretje zaporedno in skupaj peto opazovanje v januarskem štetju vodnih ptic), sloko Scolopax rusticola (zadrževalnik Medvedce; deveto opazovanje v januarskem štetju vodnih ptic, prvo po 2010) in rjavega galeba Larus fuscus (Ptujsko jezero, peto opazovanje v januarskem štetju vodnih ptic). Leta 2018 smo prešteli največ sivih gosi, duplinskih kozark Tadorna tadorna (skupaj z letom 2014), dolgorepih rac Anas acuta, tatarskih žvižgavk Netta rufina in čopastih črnic v okviru januarskih štetij vodnih ptic doslej. Razen tega je bilo izmed vrst, ki se pojavljajo redno, konopnic Anas strepera več le med štetjem leta 2008, rac L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji 189 žličaric A. clypeata leta 2015, zelenonogih martincev Tringa nebularia pa leta 2008. Med največjimi doslej so bila tudi števila preštetih beločelih gosi (večje le 2013 in 2017), moškatnih bleščavk (večje le trikrat pred tem), sivk (večje le 1998 in 2003), zvoncev (večje le trikrat pred tem), velikih žagarjev (večje le v predhodnih treh štetjih), kozic Gallinago gallinago (večje le 2006 in 2010) in pritlikavih kormoranov. Najmanjše število v dvaindvajsetih letih januarskih štetij vodnih ptic smo leta 2018 zabeležili pri žvižgavki Anas penelope, liski in kričavi čigri Sterna sandvicensis. Števila naslednjih vrst so bila med najmanjšimi doslej: kreheljcu (manjše le 2004 in 2016), mlakarici (manjše le 1997 in 1998), malem žagarju Mergellus albellus (manjše le v obdobju 2012–2014), srednjem žagarju Mergus serrator (manjše le 2015), malem ponirku Tachybaptus ruficollis (manjše le 2014), čopastem ponirku Podiceps cristatus (manjše le 2004 in 2012), zelenonogi tukalici Gallinula chloropus (manjše le trikrat pred tem), rečnem galebu (manjše le 2005) in rumenonogem galebu (manjše le trikrat pred tem). Od redno pojavljajočih se vrst smo rdečegrlega slapnika Gavia stellata in spremenljivega prodnika Calidris alpina prešteli prvič po dveh letih brez podatka, slednjega šele drugič v zadnjih petih letih. Drugič doslej v štetju nismo zabeležili črnoglavega galeba Larus melanocephalus. Pri večini vrst z največjimi (siva gos, duplinska kozarka, dolgorepa raca) in velikimi zabeleženimi števili (veliki žagar, pritlikavi kormoran, konopnica, raca žličarica, zelenonogi martinec), kot tudi nekaterih vrstah z najmanjšimi (žvižgavka, liska) oz. majhnimi zabeleženimi števili (mlakarica, mali in srednji žagar, oba omenjena ponirka, zelenonoga tukalica, rečni galeb), so rezultati štetja leta 2018 nadaljevanje dolgoročnih populacijskih trendov njihovih januarskih populacij v Sloveniji (Božič 2014, 2015, 2016, 2017). Ti trendi zlasti pri vrstah z naraščajočimi populacijami večinoma ustrezajo recentnim trendom širših regionalnih biogeografskih populacij (Wetlands International 2018). V štetju leta 2018 so na posameznih območjih tri vrste dosegle mejno vrednost 1 % za opredeljevanje mokrišč mednarodnega pomena (Wetlands International 2018). Pritlikavi kormoran (c. 1  % črnomorsko-mediteranske populacije na IBA Drava) in veliki žagar (mejna vrednost iz Denac et al. 2011 presežena na IBA Drava, Savinji med Mozirjem in sotočjem s Savo ter zgornji Savi s pritoki) sta to vrednost na navedenih delih rek že dosegla v preteklih štetjih, siva gos pa tokrat prvič v Sloveniji. Preštetih 1534 sivih gosi na zadrževalniku Medvedce sestavlja po najnovejših podatkih c. 2 % regionalne populacije podvrste anser v Srednji Evropi/Severni Afriki (1 % mejna vrednost je 770 os.). Na tej lokaliteti je bilo prešteto tudi večje število beločelih gosi, ki pa nove, povečane mejne vrednosti za populacijo zahodne Sibirije/srednje Evrope (1600 os.), v nasprotju s štetjem leta 2017 tokrat ni doseglo. Streljanje vodnih ptic v času štetja je bilo zabeleženo na nekaterih odsekih Drave, Voglajne, Krke in Kolpe ter tudi na slovenski strani Ormoškega jezera, ki je zavarovano kot Rezervat Ormoško jezero (Uradni vestnik občin Ptuj in Ormož 1992). Plašenje kormoranov s strani ribičev je potekalo na nekaterih odsekih Save Bohinjke. Zahvala: Vsem popisovalcem, ki so šteli vodne ptice, in lokalnim koordinatorjem gre zasluga, da smo ponovno in sistematično hkrati popisali vse pomembnejše vodne površine v Sloveniji. Brez nesebičnega truda to ne bi bilo mogoče. Vsem najlepša hvala. Summary In 2018, the International Waterbird Census (IWC) was carried out in Slovenia on 13 and 14 Jan. Waterbirds were counted on all larger rivers, along the entire Slovenian Coastland and on most of the major standing waters in the country. During the census, in which 246 observers took part, 415 sections of the rivers and coastal sea with a total length of 1,415.6  km and 211 other localities (168 standing waters and 43 streams) were surveyed. The census was characterized by mild winter conditions and unfrozen water bodies. Altogether, 45,194 waterbirds of 58 species were counted. Thus, the number of waterbirds and the number of species recorded were below the 22-year average, the former was lower only during the 1997 and 1998 censuses. The highest numbers of waterbirds were counted in the Drava count area, i.e. 20,103 individuals (44.5% of all waterbirds in Slovenia). By far the most numerous species was Mallard Anas platyrhynchos (40.7% of all Acrocephalus 39 (178/179): 185–195, 2018 190 Tabela 3: Števila preštetih vodnih ptic na posameznem števnem območju in v celotni Sloveniji med januarskim štetjem vodnih ptic (IWC) leta 2018 (1 – Mura, 2 – Drava, 3 – Savinja, 4 – Zgornja Sava, 5 – Spodnja Sava, 6 – Kolpa, 7 – Notranjska in Primorska, 8 – Obala) Table 3: Numbers of waterbirds counted in separate count areas and in the entire Slovenia during the January 2018 waterbird census (IWC) (1 – Mura, 2 – Drava, 3 – Savinja, 4 – Upper Sava, 5 – Lower Sava, 6 – Kolpa, 7 – Notranjska & Primorska, 8 – Coastland) Vrsta / Species 1 2 3 4 5 6 7 8 Skupaj / Total Cygnus olor 368 585 100 196 115 3 14 120 1501 Anser albifrons 574 3 577 Anser anser 1534 3 220 4 1761 Alopochen aegyptiaca 1 1 domača gos / domestic goose 1 1 Tadorna tadorna 1 2 54 103 160 Aix galericulata 3 3 Cairina moschata 9 7 1 17 Anas penelope 6 106 2 20 46 180 Anas strepera 116 1 4 6 2 23 152 Anas crecca 128 458 80 28 28 27 113 270 1132 Anas platyrhynchos 2331 6421 1715 2355 2098 723 2108 664 18415 Anas acuta 18 2 1 8 1 30 Anas clypeata 1 1 145 147 Netta rufina 14 1 1 1 17 Aythya ferina 206 1230 55 41 3 8 6 1549 Aythya nyroca 1 1 Aythya fuligula 42 2419 75 322 11 9 2878 Bucephala clangula 1 1093 3 15 1 45 1158 Mergellus albellus 44 44 Mergus serrator 24 24 Mergus merganser 52 151 133 228 40 13 47 664 domača raca / domestic duck 1 1 Gavia stellata 1 1 2 Gavia arctica 2 1 19 22 Phalacrocorax carbo 496 694 349 451 739 34 68 281 3112 Phalacrocorax aristotelis 52 52 Phalacrocorax pygmeus 912 2 914 Botaurus stellaris 1 1 Egretta garzetta 1 125 126 Ardea alba 79 307 11 68 59 1 36 19 580 Ardea cinerea 79 272 132 163 199 14 59 56 974 Plegadis falcinellus 3 3 Tachybaptus ruficollis 7 173 9 131 98 17 19 42 496 Podiceps cristatus 8 42 20 17 43 2 5 60 197 Podiceps grisegena 2 2 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji 191 Vrsta / Species 1 2 3 4 5 6 7 8 Skupaj / Total Podiceps auritus 1 2 3 Podiceps nigricollis 1 7 2 35 43 88 Haliaeetus albicilla 6 2 1 9 Rallus aquaticus 10 32 2 3 2 4 53 Gallinula chloropus 22 19 18 18 17 4 2 13 113 Fulica atra 210 1291 151 265 39 7 529 2492 Vanellus vanellus 2 2 Calidris alpina 6 6 Lymnocryptes minimus 1 1 Gallinago gallinago 17 1 20 2 27 12 79 Scolopax rusticola 1 1 Numenius arquata 10 10 Actitis hypoleucos 1 5 6 Tringa ochropus 17 9 1 1 28 Tringa nebularia 22 22 Chroicocephalus ridibundus 2 877 5 10 2 1825 2721 Larus canus 30 366 2 1 32 4 435 Larus fuscus 2 2 Larus argentatus 4 4 Larus michahellis 178 3 2 174 1064 1421 Larus cachinnans 98 98 Larus michahellis / cachinnans 8 2 53 63 Sterna sandvicensis 7 7 Alcedo atthis 6 13 15 17 22 1 9 10 93 Cinclus cinclus 8 21 57 293 15 149 543 Skupaj / Total 4131 20103 2945 4660 3606 839 3282 5628 45194 Nadaljevanje tabele 3 / Continuation of Table 3 Acrocephalus 39 (178/179): 185–195, 2018 waterbirds), followed by Cormorant Phalacrocorax carbo (6.9% of all waterbirds), Tufted Duck Aythya fuligula (6.4% of all waterbirds), Black-headed Gull Chroicocephalus ridibundus (6.0% of all waterbirds) and Coot Fulica atra (5.5% of all waterbirds). The number of 1,000 counted individuals was also surpassed by Pochard Aythya ferina, Mute Swan Cygnus olor, Yellow-legged Gull Larus michahellis, Goldeneye Bucephala clangula and Teal An. crecca. Among the rarer recorded species, the Glossy Ibis Plegadis falcinellus (registered for the first time during the January Waterbird Censuses) deserves special mention. Numbers of the following species were the highest so far recorded during the IWC: Greylag Goose Anser anser, Shelduck Tadorna tadorna (together with 2014), Pintail Anas acuta, Red-crested Pochard Netta rufina and Tufted Duck. Number of Wigeons Anas penelope, Coots and Sandwich Terns Sterna sandvicensis were the lowest so far recorded during the IWC. 192 Literatura Bauer H.-G., Bezzel E., Fiedler W. (eds.) (2005): Das Kompendium der Vögel Mitteleuropas.  – AULA Verlag, Wiebelsheim. Božič L. (2002): Zimsko štetje mokožev Rallus aquaticus v Sloveniji.  – Acrocephalus 23 (110/111): 27–33. Božič L. (2005): Rezultati januarskega štetja vodnih ptic leta 2004 in 2005 v Sloveniji. – Acrocephalus 26 (126): 123–137. Božič L. (2006): Rezultati januarskega štetja vodnih ptic leta 2006 v Sloveniji.  – Acrocephalus 27 (130/131): 159–169. Božič L. (2007): Rezultati januarskega štetja vodnih ptic leta 2007 v Sloveniji. – Acrocephalus 28 (132): 23–31. Božič L. (2008a): Rezultati januarskega štetja vodnih ptic leta 2008 v Sloveniji. – Acrocephalus 29 (136): 39–49. Božič L. (2008b): Rezultati januarskega štetja vodnih ptic leta 2009 v Sloveniji.  – Acrocephalus 29 (138/139): 169–179. Božič L. (2010): Rezultati januarskega štetja vodnih ptic leta 2010 v Sloveniji.  – Acrocephalus 31 (145/146): 131–141. Božič L. (2011): Rezultati januarskega štetja vodnih ptic leta 2011 v Sloveniji.  – Acrocephalus 32 (148/149): 67–77. Božič L. (2012): Rezultati januarskega štetja vodnih ptic leta 2012 v Sloveniji.  – Acrocephalus 33 (152/153): 109–119. Božič L. (2013): Rezultati januarskega štetja vodnih ptic leta 2013 v Sloveniji.  – Acrocephalus 34 (156/157): 93–103. Božič L. (2014): Rezultati januarskega štetja vodnih ptic leta 2014 v Sloveniji.  – Acrocephalus 35 (160/161): 73–83. Božič L. (2015): Rezultati januarskega štetja vodnih ptic leta 2015 v Sloveniji.  – Acrocephalus 36 (164/165): 57–67. Božič L. (2016): Rezultati januarskega štetja vodnih ptic leta 2016 v Sloveniji.  – Acrocephalus 37 (170/171): 209–219. Božič L. (2017): Rezultati januarskega štetja vodnih ptic leta 2017 v Sloveniji.  – Acrocephalus 38 (174/175): 203–215. Cegnar T. (2017): Podnebne razmere v decembru 2017. – Naše okolje. Bilten Agencije RS za okolje 24 (12): 3–27. Cegnar T. (2018): Podnebne razmere v januarju 2018. – Naše okolje. Bilten Agencije RS za okolje 25 (1): 3–24. Denac K., Mihelič T., Božič L., Kmecl P., Jančar T., Figelj J., Rubinić B. (2011): Strokovni predlog za revizijo posebnih območij varstva (SPA) z uporabo najnovejših kriterijev za določitev mednarodno pomembnih območij za ptice (IBA). Končno poročilo (dopolnjena verzija). – DOPPS, Ljubljana. Guzzon C., Tout P., Utmar P. (2005): I censimenti degli uccelli acquatici svernanti nelle zone umidae del Friuli Venezia Giulia, anni 1997-2004. – Associazione Studi Ornitologici e Ricerche Ecologiche del Friuli-Venezia Giulia (A.S.T.O.R.E.-FVG). “Centro Stampa" di A. Candito & F. Spanghero Snc, Monfalcone. Kravos K., Candotto S., Perco F. (2014): Compendio Avifaunistico (1990-2013). – Riserva Naturale Foce Isonzo. Markošek J. (2018): Razvoj vremena v januarju 2018. – Naše okolje. Bilten Agencije RS za okolje 25 (1): 25–31. Sovinc, A. (1994): Zimski ornitološki atlas Slovenije. – Tehniška založba Slovenije, Ljubljana. Strojan I. (2017): Pretoki rek v decembru 2017. – Naše okolje. Bilten Agencije RS za okolje 24 (12): 77–80. Strojan I. (2018): Pretoki rek v januarju 2018.  – Naše okolje. Bilten Agencije RS za okolje 25 (1): 43–46. Štumberger B. (1997): Rezultati štetja vodnih ptic v januarju 1997 v Sloveniji. – Acrocephalus 18 (80/81): 29–39. Štumberger B. (1998): Rezultati štetja vodnih ptic v januarju 1998 v Sloveniji. – Acrocephalus 19 (87/88): 36–48. Štumberger B. (1999): Rezultati štetja vodnih ptic v januarju 1999 v Sloveniji.  – Acrocephalus 20 (92): 6–22. Štumberger B. (2000): Rezultati štetja vodnih ptic v januarju 2000 v Sloveniji.  – Acrocephalus 21 (102/103): 271–274. Štumberger B. (2001): Rezultati štetja vodnih ptic v januarju 2001 v Sloveniji. – Acrocephalus 22 (108): 171–174. Štumberger B. (2002): Rezultati štetja vodnih ptic v januarju 2002 v Sloveniji.  – Acrocephalus 23 (110/111): 43–47. Štumberger B. (2005): Rezultati štetja vodnih ptic v januarju 2003 v Sloveniji. – Acrocephalus 26 (125): 99–103. Uradni vestnik občin Ptuj in Ormož (1992): Odlok o razglasitvi naravnih znamenitosti v občini Ormož (št. 37/92). Wetlands International (2018): Waterbird Population Estimates.  – [http://wpe.wetlands.org], 24/12/2018. Prispelo / Arrived: 18. 1. 2019 Sprejeto / Accepted: 31. 1. 2019 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji 193 Acrocephalus 39 (178/179): 185–195, 2018 DODATEK / APPENDIX 1 Število preštetih vodnih ptic v januarskem štetju leta 2018 v Sloveniji (M – Mura, ŠČ – Ščavnica, LD – Ledava, MR – Mura razno: jezera, ribniki, gramoznice, mrtvice in potoki v Pomurju ter bližnji okolici, DA – Drava Alpe: meja z Avstrijo pri Libeličah–Selnica ob Dravi, MM – Meža in Mislinja, D – Drava: Selnica ob Dravi–meja s Hrvaško pri Središču ob Dravi, DV – Dravinja, P – Pesnica, DPP – Dravsko in Ptujsko polje: ribniki, gramoznice, kanali, potoki in polja na Dravskem in Ptujskem polju ter bližnji okolici, S – Savinja (vključuje Pako in Voglajno), ŠAL – Šaleška jezera: Škalsko, Velenjsko, Šoštanjsko in Gabrško jezero, SR – Savinja razno: jezera, ribniki, manjše reke in potoki na Savinjski ravni ter v bližnji okolici, ZGS – zgornja Sava: Sava Bohinjka, Sava Dolinka, Sava do Gornje Save (Kranj), vključuje Radovno, Tržiško Bistrico in Kokro, SOR – Selška Sora, Poljanska Sora in Sora, SRS – srednja Sava: Gornja Sava (Kranj)–Breg pri Litiji, KBI – Kamniška Bistrica, LB – Ljubljanica, SAR – Savska ravan: jezera, gramoznice, manjše reke in potoki na Savski ravni, LBA – Ljubljansko barje: jezera, ribniki, kanali in potoki na Ljubljanskem barju, SSO – Sava soteska: Breg pri Litiji–Zidani Most, SS – spodnja Sava: Zidani Most–meja s Hrvaško, K – Krka, ST – Sotla, SSR – spodnja Sava razno: jezera, ribniki, gramoznice in potoki na Krški ravni ter bližnji okolici, KO – Kolpa, KOR – Kolpa razno: vodna telesa v Beli krajini in Ribniško-Kočevskem podolju, SO – Soča, I – Idrijca, VI – Vipava, VID – Vipavska dolina: jezera, glinokopi in potoki v Vipavski dolini, NOT – Notranjska: notranjska kraška polja in ponikalnice, Cerkniško jezero, O – Obala: slovensko obalno morje, OS – Obala soline: Sečoveljske in Strunjanske soline, OZ – Obala zatok: Škocjanski zatok, OR – Obala razno: stoječe vode in smetišča v Koprskih brdih. Število vodnih ptic, ki so bile v celoti preštete na prenočiščih, je označeno s krepkim tiskom. The number of waterbirds counted during the January 2018 waterbird census (IWC) in Slovenia (M – Mura, ŠČ – Ščavnica, LD – Ledava, MR – Mura other: lakes, fishponds, gravel pits, oxbows and streams in Pomurje and its immediate vicinity, DA – Drava Alps: from the border with Austria at Libeliče to Selnica ob Dravi, MM – Meža and Mislinja, D – Drava: from Selnica ob Dravi to the border with Croatia at Središče ob Dravi, DV – Dravinja, P – Pesnica, DPP – Dravsko polje and Ptujsko polje: fishponds, gravel pits, channels, streams and fields on Dravsko and Ptujsko poljes and in their immediate vicinity, S – Savinja (including Paka and Voglajna), ŠAL – Šalek Lakes: Škalsko, Velenjsko, Šoštanjsko and Gabrško Lakes, SR – Savinja other: lakes, fishponds, small rivers and streams on Savinja plain and along it, ZGS – Upper Sava: Sava Bohinjka, Sava Dolinka, Sava to Gornja Sava (Kranj); including Radovna, Tržiška Bistrica and Kokra, SOR – Selška Sora, Poljanska Sora and Sora, SRS – Middle Sava: from Gornja Sava (Kranj) to Breg pri Litiji, KBI – Kamniška Bistrica, LB – Ljubljanica, SAR – lakes, gravel pits, small rivers and streams on the Sava plain, LBA – lakes, fishponds, channels and streams on Ljubljansko barje, SSO – Sava gorge: from Breg pri Litiji to Zidani Most, SS – Lower Sava: from Zidani Most to the border with Croatia, K – Krka, ST – Sotla, SSR – Lower Sava other: lakes, fishponds, gravel pits and streams on Krško plain and nearby, KO – Kolpa, KOR – Kolpa other: water bodies in Bela krajina and Ribnica-Kočevje valley, SO – Soča, I – Idrijca, VI – Vipava, VID – lakes, gravel pits and streams in Vipava Valley, NOT – Notranjska: karst fields and disappearing streams, Cerkniško jezero (Lake Cerknica), O – Slovene coastal sea, OS – Coastal saltpans: Sečovlje and Strunjan saltpans, OZ –Škocjanski zatok, OR – other localities on the coastland: standing waters and rubbish tips in Koprska brda. The number of waterbirds counted entirely at their roosting places is denoted in bold. 194 Vrsta / Species Mura Drava Savinja Zgornja Sava / Upper Sava Spodnja Sava / Lower Sava Kolpa Notranjska & Primorska Obala / Coastland Slovenija M ŠČ LD MR Skupaj/ Total DA MM D DV P DPP Skupaj/ Total S ŠAL SR Skupaj/ Total ZGS SOR SRS KBI LB SAR LBA Skupaj/ Total SSO SS K ST SSR Skupaj/ Total KO KOR Skupaj/ Total SO I VI VID NOT Skupaj/ Total O OS OZ OR Skupaj/ Total Skupaj vse/ Total overall Cygnus olor 86 87 76 119 368 60 356 5 67 97 585 53 47 100 8 1 116 4 26 41 196 C. olo. 22 93 115 3 3 1 13 14 90 30 120 1501 Anser albifrons 2 572 574 A. alb. 3 3 577 Anser anser 1534 1534 3 3 A. ans. 186 34 220 4 4 1761 Alopochen aegyptiaca A. aeg. 1 1 1 domača gos / domestic goose 1 1 1 Tadorna tadorna 1 1 2 2 T. tad. 54 54 102 1 103 160 Aix galericulata A. gal 1 2 3 3 Cairina moschata 4 5 9 7 7 1 1 C. mos. 17 Anas penelope 4 2 6 1 58 47 106 1 1 2 A. pen. 20 20 21 25 46 180 Anas strepera 115 1 116 1 1 4 4 A. str. 5 1 6 2 2 7 16 23 152 Anas crecca 2 2 47 77 128 30 316 112 458 29 51 80 5 21 2 28 A. cre. 22 2 4 28 4 23 27 113 113 122 148 270 1132 Anas platyrhynchos 215 438 464 1214 2331 307 163 2822 217 225 2687 6421 1088 58 569 1715 532 152 472 300 427 293 179 2355 A. pla. 11 816 552 712 7 2098 648 75 723 240 102 52 309 1405 2108 49 403 187 25 664 18415 Anas acuta 12 6 18 2 2 1 1 A. acu. 8 8 1 1 30 Anas clypeata 1 1 A. cly. 1 1 72 73 145 147 Netta rufina 14 14 1 1 1 1 N. ruf. 1 1 17 Aythya ferina 1 205 206 4 1194 1 31 1230 26 29 55 26 15 41 A. fer. 1 2 3 8 8 6 6 1549 Aythya nyroca A. nyr. 1 1 1 Aythya fuligula 5 37 42 5 2404 8 2 2419 65 10 75 2 318 2 322 A. ful. 11 11 9 9 2878 Bucephala clangula 1 1 1093 1093 2 1 3 15 15 B. cla. 1 1 45 45 1158 Mergellus albellus 44 44 M. alb. 44 Mergus serrator M. ser. 18 6 24 24 Mergus merganser 51 1 52 45 63 27 16 151 2 131 133 21 23 109 10 26 39 228 M. mer. 9 31 40 13 13 22 12 6 7 47 664 domača raca / domestic duck 1 1 1 Gavia stellata 1 1 G. ste. 1 1 2 Gavia arctica 2 2 1 1 G. arc. 19 19 22 Phalacrocorax carbo 220 43 233 496 38 464 192 694 304 45 349 211 4 176 58 2 451 P. car. 40 434 176 89 739 33 1 34 13 4 12 10 29 68 165 85 31 281 3112 Phalacrocorax aristotelis P. ari. 52 52 52 Phalacrocorax pygmeus 912 912 P. pyg. 2 2 914 Botaurus stellaris B. ste. 1 1 1 Egretta garzetta 1 1 E. gar. 5 109 11 125 126 Ardea alba 4 32 21 22 79 129 27 151 307 11 11 6 6 4 52 68 A. alb. 26 16 15 2 59 1 1 1 7 5 23 36 16 3 19 580 Ardea cinerea 11 23 21 24 79 15 20 133 34 35 35 272 85 3 44 132 53 32 31 10 23 9 5 163 A. cin. 4 69 82 38 6 199 13 1 14 9 6 13 16 15 59 5 35 16 56 974 Plegadis falcinellus P. fal. 3 3 3 Tachybaptus ruficollis 1 1 5 7 14 159 173 1 5 3 9 18 87 14 8 4 131 T. ruf. 31 67 98 9 8 17 2 2 3 12 19 15 6 20 1 42 496 Podiceps cristatus 1 7 8 40 2 42 20 20 10 7 17 P. cri. 43 43 2 2 5 5 51 1 8 60 197 Podiceps grisegena P. gri. 2 2 2 Podiceps auritus P. aur. 1 1 2 2 3 Podiceps nigricollis 1 1 3 4 7 P. nig. 2 2 35 35 37 6 43 88 Haliaeetus albicilla 3 3 6 2 2 H. alb. 1 1 9 Rallus aquaticus 1 9 10 32 32 1 1 2 1 2 3 R. aqu. 2 2 1 3 4 53 Gallinula chloropus 4 12 6 22 19 19 18 18 11 7 18 G. chl. 17 17 2 2 4 1 1 2 2 6 5 13 113 Fulica atra 27 183 210 22 1176 8 85 1291 115 36 151 38 214 11 2 265 F. atr. 10 26 3 39 5 2 7 11 513 5 529 2492 Vanellus vanellus V. van. 2 2 2 Calidris alpina C. alp. 6 6 6 Lymnocryptes minimus 1 1 L. min. 1 Gallinago gallinago 15 2 17 1 1 20 20 G. gal. 2 2 27 27 7 5 12 79 Scolopax rusticola 1 1 S. rus. 1 Numenius arquata N. arq. 5 1 4 10 10 Actitis hypoleucos 1 1 A. hyp. 5 5 6 Tringa ochropus 17 17 9 9 1 1 T. och. 1 1 28 Tringa nebularia T. neb. 5 2 15 22 22 Chroicocephalus ridibundus 2 2 7 870 877 5 5 C. rid. 10 10 2 2 1046 583 191 5 1825 2721 Larus canus 30 30 363 1 2 366 1 1 2 L. can. 1 1 32 32 2 1 1 4 435 Larus fuscus 2 2 L. fus. 2 Larus argentatus 4 4 L. arg. 4 Larus michahellis 177 1 178 3 3 1 1 2 L. mic. 3 2 46 123 174 594 431 37 2 1064 1421 Larus cachinnans 97 1 98 L. cac. 98 Larus michahellis / cachinnans 6 2 8 2 2 L. mic. / cac. 53 53 63 Sterna sandvicensis S. san. 7 7 7 Alcedo atthis 3 1 2 6 10 2 1 13 11 3 1 15 3 2 5 6 1 17 A. att. 6 7 9 22 1 1 3 2 1 1 2 9 1 4 3 2 10 93 Cinclus cinclus 8 8 1 19 1 21 57 57 195 61 17 19 1 293 C. cin. 2 13 15 83 44 4 16 2 149 543 Skupaj / Total 625 669 878 1959 4131 527 232 13098 257 597 5392 20103 1589 417 939 2945 1128 276 1617 339 582 398 320 4660 66 1597 1056 870 17 3606 723 116 839 378 173 144 715 1872 3282 2103 2108 1372 45 5628 45194 L. Božič: Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji 195 Vrsta / Species Mura Drava Savinja Zgornja Sava / Upper Sava Spodnja Sava / Lower Sava Kolpa Notranjska & Primorska Obala / Coastland Slovenija M ŠČ LD MR Skupaj/ Total DA MM D DV P DPP Skupaj/ Total S ŠAL SR Skupaj/ Total ZGS SOR SRS KBI LB SAR LBA Skupaj/ Total SSO SS K ST SSR Skupaj/ Total KO KOR Skupaj/ Total SO I VI VID NOT Skupaj/ Total O OS OZ OR Skupaj/ Total Skupaj vse/ Total overall Cygnus olor 86 87 76 119 368 60 356 5 67 97 585 53 47 100 8 1 116 4 26 41 196 C. olo. 22 93 115 3 3 1 13 14 90 30 120 1501 Anser albifrons 2 572 574 A. alb. 3 3 577 Anser anser 1534 1534 3 3 A. ans. 186 34 220 4 4 1761 Alopochen aegyptiaca A. aeg. 1 1 1 domača gos / domestic goose 1 1 1 Tadorna tadorna 1 1 2 2 T. tad. 54 54 102 1 103 160 Aix galericulata A. gal 1 2 3 3 Cairina moschata 4 5 9 7 7 1 1 C. mos. 17 Anas penelope 4 2 6 1 58 47 106 1 1 2 A. pen. 20 20 21 25 46 180 Anas strepera 115 1 116 1 1 4 4 A. str. 5 1 6 2 2 7 16 23 152 Anas crecca 2 2 47 77 128 30 316 112 458 29 51 80 5 21 2 28 A. cre. 22 2 4 28 4 23 27 113 113 122 148 270 1132 Anas platyrhynchos 215 438 464 1214 2331 307 163 2822 217 225 2687 6421 1088 58 569 1715 532 152 472 300 427 293 179 2355 A. pla. 11 816 552 712 7 2098 648 75 723 240 102 52 309 1405 2108 49 403 187 25 664 18415 Anas acuta 12 6 18 2 2 1 1 A. acu. 8 8 1 1 30 Anas clypeata 1 1 A. cly. 1 1 72 73 145 147 Netta rufina 14 14 1 1 1 1 N. ruf. 1 1 17 Aythya ferina 1 205 206 4 1194 1 31 1230 26 29 55 26 15 41 A. fer. 1 2 3 8 8 6 6 1549 Aythya nyroca A. nyr. 1 1 1 Aythya fuligula 5 37 42 5 2404 8 2 2419 65 10 75 2 318 2 322 A. ful. 11 11 9 9 2878 Bucephala clangula 1 1 1093 1093 2 1 3 15 15 B. cla. 1 1 45 45 1158 Mergellus albellus 44 44 M. alb. 44 Mergus serrator M. ser. 18 6 24 24 Mergus merganser 51 1 52 45 63 27 16 151 2 131 133 21 23 109 10 26 39 228 M. mer. 9 31 40 13 13 22 12 6 7 47 664 domača raca / domestic duck 1 1 1 Gavia stellata 1 1 G. ste. 1 1 2 Gavia arctica 2 2 1 1 G. arc. 19 19 22 Phalacrocorax carbo 220 43 233 496 38 464 192 694 304 45 349 211 4 176 58 2 451 P. car. 40 434 176 89 739 33 1 34 13 4 12 10 29 68 165 85 31 281 3112 Phalacrocorax aristotelis P. ari. 52 52 52 Phalacrocorax pygmeus 912 912 P. pyg. 2 2 914 Botaurus stellaris B. ste. 1 1 1 Egretta garzetta 1 1 E. gar. 5 109 11 125 126 Ardea alba 4 32 21 22 79 129 27 151 307 11 11 6 6 4 52 68 A. alb. 26 16 15 2 59 1 1 1 7 5 23 36 16 3 19 580 Ardea cinerea 11 23 21 24 79 15 20 133 34 35 35 272 85 3 44 132 53 32 31 10 23 9 5 163 A. cin. 4 69 82 38 6 199 13 1 14 9 6 13 16 15 59 5 35 16 56 974 Plegadis falcinellus P. fal. 3 3 3 Tachybaptus ruficollis 1 1 5 7 14 159 173 1 5 3 9 18 87 14 8 4 131 T. ruf. 31 67 98 9 8 17 2 2 3 12 19 15 6 20 1 42 496 Podiceps cristatus 1 7 8 40 2 42 20 20 10 7 17 P. cri. 43 43 2 2 5 5 51 1 8 60 197 Podiceps grisegena P. gri. 2 2 2 Podiceps auritus P. aur. 1 1 2 2 3 Podiceps nigricollis 1 1 3 4 7 P. nig. 2 2 35 35 37 6 43 88 Haliaeetus albicilla 3 3 6 2 2 H. alb. 1 1 9 Rallus aquaticus 1 9 10 32 32 1 1 2 1 2 3 R. aqu. 2 2 1 3 4 53 Gallinula chloropus 4 12 6 22 19 19 18 18 11 7 18 G. chl. 17 17 2 2 4 1 1 2 2 6 5 13 113 Fulica atra 27 183 210 22 1176 8 85 1291 115 36 151 38 214 11 2 265 F. atr. 10 26 3 39 5 2 7 11 513 5 529 2492 Vanellus vanellus V. van. 2 2 2 Calidris alpina C. alp. 6 6 6 Lymnocryptes minimus 1 1 L. min. 1 Gallinago gallinago 15 2 17 1 1 20 20 G. gal. 2 2 27 27 7 5 12 79 Scolopax rusticola 1 1 S. rus. 1 Numenius arquata N. arq. 5 1 4 10 10 Actitis hypoleucos 1 1 A. hyp. 5 5 6 Tringa ochropus 17 17 9 9 1 1 T. och. 1 1 28 Tringa nebularia T. neb. 5 2 15 22 22 Chroicocephalus ridibundus 2 2 7 870 877 5 5 C. rid. 10 10 2 2 1046 583 191 5 1825 2721 Larus canus 30 30 363 1 2 366 1 1 2 L. can. 1 1 32 32 2 1 1 4 435 Larus fuscus 2 2 L. fus. 2 Larus argentatus 4 4 L. arg. 4 Larus michahellis 177 1 178 3 3 1 1 2 L. mic. 3 2 46 123 174 594 431 37 2 1064 1421 Larus cachinnans 97 1 98 L. cac. 98 Larus michahellis / cachinnans 6 2 8 2 2 L. mic. / cac. 53 53 63 Sterna sandvicensis S. san. 7 7 7 Alcedo atthis 3 1 2 6 10 2 1 13 11 3 1 15 3 2 5 6 1 17 A. att. 6 7 9 22 1 1 3 2 1 1 2 9 1 4 3 2 10 93 Cinclus cinclus 8 8 1 19 1 21 57 57 195 61 17 19 1 293 C. cin. 2 13 15 83 44 4 16 2 149 543 Skupaj / Total 625 669 878 1959 4131 527 232 13098 257 597 5392 20103 1589 417 939 2945 1128 276 1617 339 582 398 320 4660 66 1597 1056 870 17 3606 723 116 839 378 173 144 715 1872 3282 2103 2108 1372 45 5628 45194 Acrocephalus 39 (178/179): 185–195, 2018 197 Iz ornitološke beležnice From the ornithological notebook Slovenija / Slovenia Rjavi lunj Circus aeruginosus Marsh Harrier – a dark-morph individual observed on 25 Apr 2016 at Medvedce Reservoir (NE Slovenia); first Slovenian record of this rare morph Dne 25. 4. 2016 sem opazoval ptice na zadrževalniku Medvedce. Ker nisem imel daljnogleda, sem oddaljene ptice določal s pomočjo teleobjektiva in fotoaparata. Šele doma sem med pregledovanjem fotografij na računalniku opazil, da sem med drugim fotografiral tudi temno obliko rjavega lunja (slika 1). Po mojem vedenju in pregledu literature ta oblika v Sloveniji doslej še ni bila dokumentirana. Temna oblika je redka in se pojavlja predvsem v vzhodni polovici območja razširjenosti vrste (Clark 1987). Alen Ploj, Rošpoh 10 e, SI–2000 Maribor, Slovenija, e–mail: ploj.alen@gmail.com Prejšnji dan je zapadlo 3–5 cm snega. Domneval sem, da je sneg, ki je zapadel na kopno površino, zmedel nekatere vrste ptičev. Na tem polju je ogromna površina sončnic (osem njiv), ki jih kmetje očitno ne nameravajo pospraviti, in računal sem, da bi lahko opazil tudi katero od redkejših vrst. Še preden sem prišel od omenjenih njiv s sončnicami, sem opazil na koruzišču veliko jato ptic, ki so iskale hrano okoli koruznih stebel. Okoli teh stebel so srne razbrskale sneg, verjetno je bilo tam najti ostanke koruznih zrn. Ko sem se približal omenjenemu mestu, se je jata spreletela in že po oglašanju sem ugotovil, da gre za poljske škrjance, naštel sem jih 48 (slika 2). Naslednji dan sem ponovno obiskal to mesto, vendar škrjancev ni bilo več. Tako velike jate so pozimi redke, najpogosteje opazimo posameznike ali jate do deset osebkov (Sovinc 1994), na Barju pa jih pozimi opazimo le izjemoma (Tome et al. 2005). Največja pozimi zabeležena jata pri nas pa je štela 300 osebkov, in sicer 2. 1. 1995 v Škocjanskem zatoku (Senegačnik et al. 1998). Dare Šere, Langusova 10, SI-1000 Ljubljana, Slovenija, e-mail: dare.sere@guest.arnes.si Slika 1 / Figure 1: Rjavi lunj / Marsh Harrier Circus aeruginosus, zadrževalnik Medvedce, 25. 4. 2016 (Foto: A. Ploj) Slika 2 / Figure 2: Poljski škrjanec / Skylark Alauda arvensis, Lavrica, Ljubljansko barje, 19. 1. 2019 (Foto: D. Šere) Poljski škrjanec Alauda arvensis Skylark – 48 individuals recorded on 19 Jan 2019 near Lavrica (Ljubljansko barje, C Slovenia); an unusually large winter flock Dne 19. 1. 2019 sem se namenil pogledat na Ljubljansko barje, in sicer na polje z imenom V  Doleh pri Lavrici. Črnoglavi muhar Ficedula hypoleuca Pied Flycatcher – unusually high numbers of the species observed in September 2017; eventually, 370 individuals were ringed, as opposed to the Acrocephalus 39 (178/179): 199–204, 2018 198 average annual numbers between 50 and 90; no recoveries were made September leta 2017 je bil po številu opazovanih črnoglavih muharjev v Sloveniji nekaj posebnega, če ne enkratnega. Številni so bili opazovani praktično povsod, od parkov v mestih in naseljih, do sadovnjakov in gozdnih obronkov. Posedali so tudi po živih mejah, grmih in različnih rastlinah pri tleh – povsod tam, kjer so lahko z malo višjega mesta oprezali za hrano in se spuščali na tla. Dne 21. 9. 2017 sem se s kolesom peljal iz Ljubljane proti Lavrici in na manjšem avtobusnem postajališču Debeli hrib na Lavrici opazil črnoglavega muharja, ki se je v letu zaletaval v prozorno steklo omenjenega postajališča (slika 3). Ker mu nikakor ni uspelo najti poti iz te avtobusne postaje, sem odložil kolo in ga z roko ujel. Odnesel sem ga do svojega avtomobila v bližini, kjer sem ga obročkal, zapisal vse biometrične podatke, fotografiral (slika 4) in izpustil. Vreme v septembru 2017 je bilo zelo nestabilno, občasno je deževalo, potem se je zjasnilo in sledilo je zopet oblačno in deževno vreme. Ljubljansko barje je bilo tudi poplavljeno, vendar v okviru običajnih vsakoletnih poplav. Temu vremenu pa je verjetno pripisati neobičajno število opazovanih črnoglavih muharjev, ki so bili v tem času na selitvi prek Slovenije. Tudi obročkovalci smo se srečali s to vrsto na terenu in v mreže so se radi lovili. V Sloveniji v jesenskem času navadno obročkamo okoli 50 do 90 črnoglavih muharjev, v jeseni 2017 pa kar 370. Po podatkih Slovenskega centra za obročkanje ptičev (SCOP) ni bila zabeležena nobena najdba te vrste od drugod, da bi lahko ugibali o njihovem izvoru. Na osnovi podatkov z geolokatorji iz skandinavskih držav (Ouwehand et al. 2016) lahko domnevam, da so bili v tem času na selitvi črnoglavi muharji iz Finske, Rusije ali držav vzhodno od naštetih. Prezimujejo na območju zahodne Afrike, severno od ekvatorja, in to od Senegala prek Liberije do Nigerije (Ouwehand et al. 2016). Številčno pojavljanje te vrste jeseni 2017 je zanimivo tudi zato, ker od leta 1974 dalje nisem imel priložnosti videti toliko osebkov v mesecu septembru. Prav je, da takšno pojavljanje ne gre v pozabo, saj sem v naslednjem letu ob istem času (jesen 2018) videl samo enega črnoglavega muharja na Ljubljanskem barju, ujel pa nobenega. Dare Šere, Langusova 10, SI-1000 Ljubljana, Slovenija, e–mail: dare. sere@guest.arnes.si Slika 3 / Figure 3: Avtobusno postajališče / Bus stop, Lavrica, Ljubljansko barje (Foto: D. Šere) Slika 4 / Figure 4: Črnoglavi muhar Ficedula hypoleuca, Lavrica, Ljubljansko barje, 21. 9. 2017 (foto: D. Šere) Močvirska Sinica Poecile palustris Marsh Tit – two individuals in their 10th calendar year caught  – in Sp. Radvanje, Maribor (NE Slovenia) and at Tomačevski prod, Ljubljana (C Slovenia) Pri lovu in obročkanju močvirsko sinico ujamemo v mreže v manjšem številu. Na primer: v obdobju 1926–1982 je bilo v Sloveniji obročkanih 3532 osebkov (BOŽIČ 2009). V letih 1983–2008 pa 3781 močvirskih sinic (ŠERE 2009). Tako je bilo v tem zadnjem obdobju v posameznem letu, obročkanih najmanj 112 in največ 459 osebkov (povprečno 145,4). Od gozdnih sinic v manjšem številu obročkamo le še čopasto sinico Lophophanes cristatus in gorsko sinico Poecile montanus. Leta 1998 je bila v vrbovju na vznožju Pohorja v Sp. Radvanju v Mariboru obročkana močvirska sinica in znova ujeta ob krmilnici na istem mestu leta 2007, v 10  koledarskem letu starosti. Prav toliko star je bil tudi osebek ujet Iz ornitološke beležnice / From the ornithological notebook 199 ob krmilnici na Tomačevskem produ v Ljubljani leta 2005, obročkan na istem mestu leta 1996. Oba podatka predstavljata pomembni starostni najdbi za to vrsto. Euring na svoji spletni strani (https://euring.org/files/ documents /EURING longevity_list_20170405. pdf), objavlja dve najstarejši najdbi močvirske sinice iz Švedske, prva je bila stara 13 let in 2 meseca, druga pa 11 let in 11 mesecev. Franc Bračko, Gregorčičeva 27, SI–2000 Maribor, Slovenija, e–mail: franci.bracko@hotmail.com Dare Fekonja, Prirodoslovni muzej Slovenije, Prešernova c. 20, p.p. 290, SI–1001 Ljubljana, Slovenija, e–mail: dfekonja@pms-lj.si Kratkoprsti škrjanček Calandrella brachydactyla Short-toed Lark – two individuals observed on 13 and 14 May 2017 near Ig (C Slovenia); fifth record for Ljubljansko barje, 15th for Slovenia Dne 13. 5. 2017 sem se odpravil na Ljubljansko barje, da bi pregledal območje in naštel pojoče kobiličarje. Na Barje sem prispel že zelo zgodaj, zato je bilo Barje še ovito v meglo in mrak. Sprehajal sem se po makadamski potki v okolici Iga, ko mi je izpod nog zletel škrjanec in pristal 50 metrov stran od mene. Že v letu mi je deloval nekoliko manjši, in ko sem ga videl še na tleh, sem takoj vedel, da gre za opazovanje kratkoprstega škrjančka. V istem trenutku pa je za škrjancem stal Mitja Denac, s katerim sva škrjanca kasneje še fotografirala. Megla se je kasneje že razpršila in vidljivost je bila odlična. Izkazalo se je, da škrjanec ni sam, saj sva prav kmalu opazovala še enega. Kasneje sta se nam pri opazovanju pridružila še Dare Fekonja in Aleksander Božič. Škrjanca sta se na Barju zadržala še do naslednjega dne, pozneje pa ju nisem več opazil. Kratkoprsti škrjanček je na Barju naključen preletni gost (Tome et al. 2005). Vsa opazovanja prejšnjega stoletja na Barju so bila zabeležena v aprilu. Zanimivo pa je, da je bil škrjanček 15. 5. 2016 opazovan ob podobnem datumu in skorajda na istem kraju (Denac 2016, Hanžel 2017). Res zanimiv pojav, ki morda ni posledica naključja, a bi lahko bil znak večjega pojavljanja v prihodnosti, morda pa celo gnezditve. Opazovanje je potrdila Komisija za redkosti kot 15. za Slovenijo. Alex Kotnik, Abramova 12, SI–1000 Ljubljana, Slovenija, e–mail: ribnica2001@gmail.com Dolgoprsti plezalček Certhia familiaris Treecreeper  – nest found behind a sign nailed onto a Spruce Picea abies at Krvavec (C Slovenia) on 2 Jun 2018 Dne 2. 6. 2018 sem s prijateljem Dušanom Dimnikom obročkal ptice na Krvavcu. Ko sva se vračala proti Kriški planini (1450 mnv), sem iz avtomobila zagledal letečega plezalčka, ki je imel nekaj v kljunu. Ustavila sva se in iz Slika 5 / Figure 5: Gnezdo dolgoprstega plezalčka Certhia familiaris za opozorilno tablo / Treecreeper's Certhia familiaris nest behind a signpost, Kriška planina, Krvavec, 1,450 m n.v. / a.s.l., 2. 6 .2018 (Foto: D. Šere) Tabela 1: Podatki o obročkanju in ponovno ujetih močvirskih sinic Poecile palustris v 10 koledarskem letu starosti. Številka obročka Starost Dol. peruti Teža Datum Kraj A938058 1y 66 - 16.09.1998 Sp. Radvanje, Maribor AD 68 11,2 10.02.2007 Sp. Radvanje, Maribor A827830 1y 63 10,1 04.12.1996 Tomačevski prod, LJ AD 63 10,3 01.01.2005 Tomačevski prod, LJ Acrocephalus 39 (178/179): 199–204, 2018 200 avtomobila opazovala osamljene smreke v bližini. Ni bilo treba dolgo čakati, ko je ponovno mimo naju priletel dolgoprsti plezalček s hrano za mladiče v kljunu. Začel je plezati po deblu nama najbližje smreke in ob pribiti kovinski tabli na deblu smreke smuknil za njo (slika 5). Oba sva bila presenečena, saj nisva pričakovala, da bo gnezdo prav za to opozorilno tablo. Običajno ima dolgoprsti plezalček gnezdo za starim lubjem ali v špranji med dvema skupaj zraščenima smrekama. Pred leti sva ravno tako našla gnezdo te vrste v špranji na lesenem opazovalnem stolpu na barju Šijec na Pokljuki. Dne 7.6.2018 je Dušan v tem gnezdu obročkal šest mladičev, ki so bili tik pred tem, da zapustijo gnezdo. Znano je, da je možno ob deblo pribiti ostanke lubja od sečnje in tako ponuditi tej vrsti primerno gnezdišče. Dare Šere, Langusova 10, SI–1000 Ljubljana, Slovenija, e–mail: dare. sere@guest.arnes.si Brkata sinica Panurus biarmicus Bearded Tit – 5 individuals caught and ringed on 4 Dec 2018 at Lake Pernica in the Pesnica Valley (NE Slovenia); first record for the site Torek, 4. 12. 2018, je bil nenavadno topel, bolj spomladanski kakor pa zimski dan, z dnevno temp. do 12 ˚C. Zjutraj sem se odpravil lovit in obročkat ptiče v trstišče zgornjega dela Perniškega jezera. Že v mraku so se pričeli loviti stržki Troglodytes troglodytes, kar 15 jih je bilo na koncu. Pri jemanju stržkov iz mrež v bližini zaslišim oglašanje brkate sinice in brž pričnem predvajati njeno oglašanje. Kmalu se ujameta samec in samica, čez kakšno uro še dva samca in nato še eden (slika 6). To je moj prvi (zimski) podatek o brkati sinici za Perniško jezero. Tudi v raziskavi o ptičih Pesniške doline (GREGORI 1989) brkata sinica ni bila ugotovljena. Dne 9. 12. sem ponovno obiskal omenjeno trstišče. V  celotnem dopoldnevu o brkatih ni bilo več sledu. Me je pa dogodek spomnil na konec osemdesetih let, ko sva z Iztokom Vrešem v oktobru in novembru v trstišču Ormoškega jezera ujela prek 120 teh zanimivih dolgorepih sinic (BRAČKO 1990, MLAKAR 1990). Pojavljale so se v skupinah od 10–80 osebkov, posebno leta 1990. V  Ormožu obročkane štiri brkate sinice so bile kasneje znova ujete v tujini, ena leta 1990 v kraju Gbelce na Češkem (239 km, 295 dni), kar je prva slovenska najdba za to vrsto (ŠERE 2009). Naslednje leto pa so bile tri ujete 89 km proč, in sicer ob Balatonu na Madžarskem (podatkovna baza SCOP). Franc Bračko, Gregorčičeva 27, SI – 2000 Maribor, Slovenija, e–mail: franci.bracko2@gmail.com Hrvaška / Croatia Ploskokljunec Calidris falcinellus Broad-billed Sandpiper – two observations on 10 and 19 Aug 2018 at Nin Saltworks (N Dalmatia); a rare species in Croatia with only seven records in 2005–2016 from Dalmatian coast and north Kvarner islands Naključen obisk solin pri Ninu je bila dobra priložnost tudi za opazovanje in fotografiranje nekaterih tamkajšnjih ptic. Med primerki malih belih čapelj, pritlikavih kormoranov ter gracioznih polojnikov se je 10. 8. 2018 v eni izmed plitvin Ninskih solin med rastlinjem sprehajal tudi ploskokljunec (slika 7, spodaj). Teden kasneje, 18. 8. 2018, sem obisk ponovil v zgodnjih jutranjih urah in v enem izmed skoraj praznih bazenov, vzhodno od solin, v plitvini ponovno opazil ploskokljunca. Opazovani osebek se je neboječe prehranjeval in ponudila se je priložnost tudi za bližnje fotografiranje (slika 8, zgoraj). Na osnovi dosedanjih podatkov so ploskokljunci redko zabeleženi na Hrvaškem, kjer so omejeni na dalmatinsko obalo in južne otoke Kvarnerja (Tome 2011, Kralj & Barišić 2013, Barišić et al. 2016). Skupno je bilo v letih med 2005 in 2016 dokumentiranih le sedem opazovanj. Pri Ninu oziroma bližnjih Ninskih solinah je bil opazovan en primerek avgusta leta 2016 (Barišić et al. 2016). Matija Križnar, Vojkova cesta 73, SI–1000 Ljubljana, Slovenija, e– mail: mkriznar@pms-lj.si Slika 6 / Figure 6: Brkata sinica / Bearded Tit Panurus biarmicus, Perniško jezero, 4. 12. 2018 (foto: F. Bračko) Iz ornitološke beležnice / From the ornithological notebook 201 Mali galeb Hydrocoloeus minutus Little Gull – three individuals observed on 22 Aug 2015 at Kolansko blato (Pag Island, N Dalmatia); a rare record for the island Dne 22. 8. 2015 sem bil na Kolanskem blatu. Na območju, kjer se občasno izteka voda iz Kolanskega blata v morje (Rogoza), sem okoli poldneva iz tamkajšnjega kampa opazil tri male galebe (slika 8). To je moje prvo opazovanje vrste na otoku Pagu. Verjetno je na Pagu mali galeb v času preleta ali prezimovanja bolj pogost, kot priča moj podatek. Rucner (1998) poroča, da vrsta prileti na jadransko obalo na prezimovanje, ravno tako ga je možno videti v toplih obdobjih leta. Dare Šere, Langusova 10, SI-1000 Ljubljana, Slovenija, e–mail: dare.sere@guest.arnes.si Grčija / Greece Pochard x Ferruginous Duck Aythya ferina x Aythya nyroca Sivka x kostanjevka – križanec opazovan na jezeru Kerkini (SZ Grčija) dne 4. 2. 2019 On 4 Feb 2019 at 16.00hrs along the Eastern dike of lake Kerkini I photographed a male hybrid looking duck, which was later identified as a hybrid between Ferruginous Duck and Common Pochard (Figure 9). The bird was beside male Common Pochards which allowed easily spotting the difference between the birds. The bird stayed in the area for several days at least and was repeatedly spotted. Nicky Petkov, BSPB, Sofia, Bulgaria, e–mail: nicky.petkov@bspb.org Slika 7 / Figure 7: Ploskokljunec / Broad-billed Sandpiper Calidris falcinellus, Nin Saltworks, Nin, 19. 8. in / and 10. 8. 2018 (določitev na osnovi fotografij / determination from photo by Al Vrezec) (foto: M. Križnar) Slika 8 / Figure 8: Mali galeb / Little Gull Hydrocoloeus minutus, Rogoza, Kolansko blato, otok Pag, 22. 8. 2015 (foto: D. Šere) Slika 9 / Figure 9: Sivka x kostanjevka / Pochard x Ferruginous Duck Aythya ferina x Aythya nyroca, Kerkini, 4. 2. 2019 (foto: N. Petkov) Acrocephalus 39 (178/179): 199–204, 2018 202 Literatura / References Barišić S., Kralj J., Jurinović L. (2016): Rare birds in Croatia. The Fourth report of the Croatian birds Rarities Committee (Rijetke ptice u Hrvatskoj Četvrti izvještaj komisije za rijetke vrste ptica).  – Larus 51: 38–65. Božič I. A. (2009): Rezultati obročkanja ptičev v Sloveniji: 1926 – 1982. – Scopolia, Suppl. 4-2009. Bračko F. (1990): Brkata sinica Panurus biarmicus.  – Acrocephalus 11(43/44): 32–33. Clark W. S. (1987): The dark morph of the Marsh Harrier. – British Birds 80: 61–72. Denac M. (2016): Kratkoprsti škrjanček Calandrella brachydactyla. – Acrocephalus 37 (168/169): 101. Gregori J. (1989): Favna in ekologija ptičev Pesniške doline (SV Slovenija, Jugoslavija).  – Scopolia 19: 1–59. Hanžel J. (2017): Redke vrste ptic v Sloveniji v letu 2016  – Poročilo Nacionalne komisije za redkosti.  – Acrocephalus 37 (172/173): 21–30. Kralj J., Barišić S. (2013): Rare birds in Croatia. Third report of the Croatian Rarities Committe (Rijetke ptice u Hrvatskoj. Treći izvještaj Hrvatske komisije za rijetke vrste). – Natura Croatica 22 (2): 375–396. Mlakar G. (1990): Brkata sinica Panurus biarmicus. – Acrocephalus 11 (43/44): 32. Ouwehand J., Ahola M. P., Ausems A. N. M. A., Bridge E. S., Burgess M., Hahn S., Hewson C. M., Klaassen R. H. G., Laaksonen T., Lampe H. M., Velmala W., Both C. (2016): Light-level geolocators reveal migratory connectivity in European populations of pied flycatchers Ficedula hypoleuca.  – Journal of Avian Biology 47: 69–83. Rucner D. (1998): Ptice Hrvatske obale Jadrana.  – Hrvatski prirodoslovni muzej, Zagreb. Senegačnik K., Sovinc A., Šere D. (1998): Ornitološka kronika 1994, 1995. – Acrocephalus 19 (87/88): 77–91. Sovinc A. (1994): Zimski ornitološki atlas Slovenije.  – Tehniška založba Slovenije, Ljubljana. Šere D. (2009): Kratko poročilo o obročkanih ptičih v Sloveniji, 1983–2008. – Scopolia Suppl. 4. Tome D. (2011): Ploskokljunec Limicola falcinellus.  – Acrocephalus 32 (148/149): 105. Tome D., Sovinc A., Trontelj P. (2005): Ptice Ljubljanskega barja. Monografija DOPPS št. 3.  – Društvo za opazovanje in proučevanje ptic Slovenije, Ljubljana. Iz ornitološke beležnice / From the ornithological notebook 203 *Tiskano na NEO STARR 204 205 206 207 208 letnik volume številka number strani pages 39 39 178/179 178/179 63–202 63–202 Uvodnik / Editorial 63 Sobivanje ptic in kmetijstva? (K. Denac) Cohabitation between birds and agriculture? (K. Denac) Originalni članki / Original articles 71 Black Kite Milvus migrans in Slovenia – its distribution, phenology, breeding and habitat (D. Bordjan) 85 Candling and field atlas of early egg development in Common Eiders Somateria mollissima in the central Baltic (S-E. Garbus, P. Lyngs, A. P. Thyme, J. P. Christensen, C. Sonne) Ovoskopija in terenski atlas zgodnjega razvoja pri gagah Somateria mollissima v Osrednjem Baltiku (S-E. Garbus, P. Lyngs, A. P. Thyme, J. P. Christensen, C. Sonne) 91 Incubation behaviour of Common Eiders Somateria mollissima in the Central Baltic: Nest attendance and loss in body mass (S-E. Garbus, P. Lyngs, M. Garbus, P. Garbus, I. Eulaers, A. Mosbech, R. Dietz, H. Grant Gilchrist, R. Huusmann, J. P. Christensen, C. Sonne) Valilno vedenje gag Somateria mollissima v Osrednjem Baltiku: prisotnost na gnezdu in izguba telesne mase (S-E. Garbus, P. Lyngs, M. Garbus, P. Garbus, I. Eulaers, A. Mosbech, R. Dietz, H. Grant Gilchrist, R. Huusmann, J. P. Christensen, C. Sonne) 101 New marine IBAs for the Mediterranean Shag Phalacrocorax aristotelis desmarestii in Slovenia (U. Koce) Nova območja IBA za sredozemskega vranjeka Phalacrocorax aristotelis desmarestii v Sloveniji (U. Koce) 129 Poročilo o obročkanju ptic v Sloveniji v letu 2017 in kratek pregled barvnega obročkanja v obdobju 2012–2017 (A. Vrezec, D. Fekonja) Bird ringing report for Slovenia in 2017 and short overview of colour ringing in the period of 2012–2017 (A. Vrezec, D. Fekonja) 165 Little Owl Athene noctua survey in the area of Ulcinj (S Montenegro) in 2015 (I. Kljun, D. Bordjan) Popis čuka Athene noctua na območju Ulcinja ( J. Črna gora) leta 2015 (I. Kljun, D. Bordjan) Kratki prispevki / Short communications 171 A contribution to the knowledge of diet composition of the Barn Owl Tyto alba in the area of Pisa (Italy) (T. Zagoršek) Prispevek k poznavanju prehrane pegaste sove Tyto alba na območju pise (Italija) (T. Zagoršek) 177 Redke vrste ptic v Sloveniji v letu 2017 – Poročilo Nacionalne komisije za redkosti (J. Hanžel, M. Denac) Rare birds in Slovenia in 2017 – Slovenian Rarities Committee's Report (J. Hanžel, M. Denac) 185 Rezultati januarskega štetja vodnih ptic leta 2018 v Sloveniji (L. Božič) Results of the January 2018 waterbird census in Slovenia (L. Božič) 201 Iz ornitološke beležnice / From the ornithological notebook Slovenija / Slovenia: Circus aeruginosus Alauda arvensis, Ficedula hypoleuca, Poecile palustris, Calandrella brachydactyla, Certhia familiaris, Panurus biarmicus Hrvaška / Croatia: Calidris falcinellus, Hydrocoloeus minutus Grčija / Greece: Aythya ferina x Aythya nyroca