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Abstract

We determine the 26 families of irreducible polyhedral quadrangulations of the projec-
tive plane under three reductions called a face-contraction, a 4-cycle removal and a 23-path
shrink, which were first given by Batagelj in 1989. Every polyhedral quadrangulation of the
projective plane can be obtained from one of them by a sequence of the inverse operations
of the reductions.
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1 Introduction
A quadrangulation (resp., triangulation) of a closed surface is a simple graph cellularly
embedded on the surface so that each face is quadrilateral (resp., triangular); in particular,
a 2-path on the sphere is not a quadrangulation in this paper. It is known that every quadran-
gulation G of any closed surface is 2-connected and hence the minimum degree of G is at
least 2. For quadrangulations of closed surfaces, we introduce typical three reductional op-
erations called a face-contraction, a 4-cycle removal and a 23-path shrink, which were first
given by Batagelj [2]. (See Figure 1. For a formal definition, see the next section.) In this
paper, we call the above three operations P-reductions, while call the inverse operations
P-expansions.

A quadrangulation of a closed surface is irreducible if no face-contraction is applicable
without making a loop or multiple edges. In [20], it was proved that a 4-cycle is the unique
irreducible quadrangulation of the sphere, and that there exist precisely two irreducible
quadrangulations of the projective plane which are the unique quadrangular embeddings
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Figure 1: P-reductions.

of K4 and K3,4 on the projective plane, respectively (see Figure 2). The irreducible quad-
rangulations of the torus and the Klein bottle had also been determined in [15] and [14],
respectively.

Figure 2: Irreducible quadrangulations of the projective plane where antipodal points of
the hexagon and the octagon are identified respectively.

There are some results of quadrangulations of closed surfaces with some conditions.
Batagelj [2] proved that any 3-connected quadrangulation on the sphere can be deformed
into a cube by a sequence of P-reductions preserving 3-connectedness. However his proof
contained a small mistake, and Brinkmann et al. [3] pointed out it and gave a corrected
proof. Observe that a 3-connected quadrangulation of the sphere corresponds to a 4-regular
3-connected graph on the same surface by taking its dual. Broersma et al. [4] considered
the same problem of the dual version with weaker conditions than Brinkmann et al. [3].
Nakamoto [17] discussed quadrangulations with minimum degree 3 and proved that any
quadrangulation of the sphere (resp., the projective plane) with minimum degree 3 can be
deformed into a pseudo double wheel (resp., a Möbius wheel or the unique quadrangular
embedding of K3,4 on the projective plane) by a sequence of face-contractions and 4-cycle
removals, preserving the minimum degree at least 3. Brinkmann et al. [3] also proved the
same result only on the sphere using a restricted face-contraction. Furthermore, the results
in [13] implies that every 3-connected quadrangulation of a closed surface F 2 except the
sphere can be reduced into one of irreducible quadrangulations of F 2 by P-reductions,
preserving the 3-connectedness. In addition, the recent study [25] discussed another reduc-
tional operation defined for 3-connected quadrangulations of closed surfaces.
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Let G be a graph embedded on a non-spherical closed surface F 2. The representativity
of G, denoted by r(G), is the minimum number of intersecting points of G and γ, where γ
ranges over all essential simple closed curves on the surface. A graph G embedded on F 2

is r-representative if r(G) ≥ r (see [22] for the details). A graph G embedded on a closed
surface F 2 is polyhedral if G is 3-connected and 3-representative. For example, each of
two quadrangulations in Figure 2 is 3-connected but not polyhedral since these embeddings
have representativity 2. Observe that all facial walks in a polyhedral embedded graph G
are cycles, and any two of them are either disjoint, intersect in one vertex, or intersect in
one edge. From such a point of view, polyhedral embedded graphs are frequently regarded
as “good” embeddings in topological graph theory (see e.g., [8, 9, 10, 11]); note that ev-
ery simple triangulation of a closed surface is polyhedral, while simple quadrangulations
are not necessarily so. Furthermore, it is known that there is one to one correspondence
between the set of polyhedral quadrangulations of a nonspherical closed surface F 2 (resp.,
3-connected quadrangulations of the sphere) and the set of optimal 1-embeddings of F 2

(resp., optimal 1-planar graphs of the sphere, see [5, 6, 12, 21, 23, 24] for definitions and
some results).

A face f = v0v1v2v3 of a polyhedral quadrangulation G of F 2 is P-contractible (or
simply contractible) if a face-contraction at either {v0, v2} or {v1, v3} results in another
polyhedral quadrangulation of the same surface. Similarly, we define “P-removable (or
simply removable)” and “P-shrinkable (or simply shrinkable)” for a 4-cycle C and a 2-
path P , both of which are induced by vertices of degree 3, respectively. A polyhedral
quadrangulation G of F 2 is P-irreducible if G has none of a contractible face, a removable
4-cycle and a shrinkable 2-path. The following is our main theorem in this paper. In the
figures, to obtain the projective plane, identify antipodal pairs of points of each hexagon or
octagon.

Theorem 1.1. There are precisely 26 families of P-irreducible quadrangulations of the
projective plane presented in Figures 8, 11 and 16. Every polyhedral quadrangulation of
the projective plane can be obtained from one of them by a sequence of P-expansions.

This paper is organized as follows. In the next section, we define basic terminology and
reductional operations for quadrangulations. In Section 3, we show some lemmas to prove
Theorem 1.1. In Section 4, we determine inner structures of 2-cell regions bounded by 4,
5 or 6-cycles of P-irreducible quadrangulations. Furthermore in Section 5, we consider
ones bounded by several 6 or 8-walks. Before proving the main theorem, we classify P-
irreducible quadrangulations with attached cubes into five types in Section 6. The last
section is devoted to prove Theorem 1.1.

2 Basic definitions
We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
A k-path (resp., k-cycle) in a graph G means a path (resp., cycle) of length k. (We define
the length of a path (or cycle) by the number of its edges.) We say that S ⊂ V (G) is a cut
of a connected graph G if G− S is disconnected. In particular, S is called a k-cut if S is a
cut with |S| = k. A cycle C of G is separating if V (C) is a cut.

Let G be a graph 2-cell embedded on a closed surface F 2. That is, each connected
component of F 2−G is homeomorphic to an open 2-cell (or an open disc), which is called
a face of G. We denote the face set of G by F (G). A facial cycle C of a face f is a cycle
bounding f in G; i.e., C = ∂f . Furthermore in our argument, we often discuss the interior
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of a 2-cell regionD bounded by a closed walkW ofG, i.e.,W = ∂D, which contains some
vertices and edges. (Note that a 2-cell region implies an “open” 2-cell region in this paper.)
Then, D̄ (resp., f̄ ) denotes a closure ofD (resp., f ), i.e., D̄ = D∪∂D (resp., f̄ = f ∪∂f ).
Let f1, . . . , fk denote the faces of G incident to v ∈ V (G) where deg(v) = k. Then, the
boundary walk of f̄1 ∪ · · · ∪ f̄k is the link walk of v and denoted by lw(v). Clearly, lw(v)
bounds a 2-cell region containing a unique vertex v.

A simple closed curve γ on a closed surface F 2 is trivial if γ bounds a 2-cell on F 2, and
γ is essential otherwise. Furthermore, γ is surface separating if F 2 − γ is disconnected.
Clearly, a trivial closed curve on F 2 is always separating, whereas an essential one is either
separating or not. We apply these definitions to cycles of graphs embedded in the surface,
regarding them as simple closed curves. It is an important property of the projective plane
that any two essential simple closed curves are homotopic to each other.

Let G be a quadrangulation of a closed surface F 2 and let f be a face of G bounded
by a cycle v0v1v2v3. (For brevity, we also use the notation like f = v0v1v2v3.) The
face-contraction of f at {v0, v2} in G is to identify v0 and v2, and replace the two pairs
of multiple edges {v0v1, v2v1} and {v0v3, v2v3} with two single edges respectively. In
the resulting graph, let [v0v2] denote the vertex arisen by the identification of v0 and v2.
See the left-hand side of Figure 1. The inverse operation of a face-contraction is called a
vertex-splitting. If the graph obtained from G by a face-contraction is not simple, then we
do not apply it.

Let G be a quadrangulation of a closed surface F 2, and let f be a face of G bounded
by v0v1v2v3. A 4-cycle addition to f is to put a 4-cycle C = u0u1u2u3 inside f in G
and join vi and ui for each i ∈ {0, 1, 2, 3}. The inverse operation of a 4-cycle addition is
called a 4-cycle removal (of C), as shown in the center of Figure 1. We call the subgraph
H isomorphic to a cube with eight vertices ui, vi for i ∈ {0, 1, 2, 3} an attached cube. We
denote ∂(H) = v0v1v2v3, and we call C an attached 4-cycle of H .

As mentioned in the introduction, there exist some results of 3-connected quadrangu-
lations (or quadrangulations with minimum degree 3) of closed surfaces; see [2, 3, 13, 17]
for example. In those results, the 4-cycle removal is necessary by the following reason: Let
G̃ denote the resulting graph obtained from a 3-connected quadrangulation G of a closed
surface by applying 4-cycle additions to all faces of G. Clearly G̃ is 3-connected, however
we cannot apply any face-contraction to G̃ without making a vertex of degree 2.

In [3, 17], pseudo double wheelsW2k (k ≥ 3) and a Möbius wheels W̃2k−1 (k ≥ 2) are
treated as minimal quadrangulations of the sphere and the projective plane, respectively;
for their formal definitions, see [17]. However, the following third reduction can reduce a
pseudo double wheelW2k (k ≥ 4) intoW2(k−1). That is, W2k can be deformed into a cube
by k − 3 such reductions.

Assume that a polyhedral quadrangulation G of a closed surface F 2 has a vertex u of
degree 3. (Every 3-connected quadrangulation of either the sphere or the projective plane
has such a vertex of degree 3, by Euler’s formula.) Let v0v1 · · · v5 be a 6-cycle bounding a
2-cell region D on F 2, which contains a unique vertex u and we assume that v1, v3 and v5
are neighbors of u. The 23-vertex splitting of u is the expansion of G, defined as follows:

(i) Delete u and the three edges incident to u.

(ii) Put a 2-path u0u1u2 into the interior of D and add edges u0v1, u0v3, u1v0, u2v3 and
u2v5.
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Note that each of u0, u1 and u2 has degree 3 in the resulting graph. The inverse operation of
a 23-vertex splitting is called a 23-path shrink, as shown in the right-hand side of Figure 1.

Similarly to the case of 4-cycle removals, it is not difficult to see that 23-path shrinks
are necessary, when considering P-irreducible quadrangulations; replace an attached cube
with a graph having a long path consisting of vertices of degree 3 under some conditions.
Now, we have defined all the operations in the paper. Note that all of them preserve the
bipartiteness of quadrangulations of closed surfaces.

3 Lemmas
To prove our main theorem, we show some lemmas which state properties of polyhedral
(P-irreducible) quadrangulations of closed surfaces. We first give the following proposition
which is however clear by the definition of polyhedral quadrangulations.

Proposition 3.1. A polyhedral quadrangulation has no vertex of degree 2.

The following holds not only for quadrangulations but also for even embeddings of
closed surfaces F 2, that is, a graph on F 2 with each face bounded by a cycle of even
length. Taking a dual of an even embedding and using the odd point theorem, it is easy to
show the following.

Lemma 3.2. An even embedding of a closed surface has no separating closed walk of odd
length.

The length of two cycles in an even embedding of a closed surface F 2 have the same
parity if they are homotopic to each other on F 2 (see [1, 7, 16]). Furthermore, it is well-
known that any two essential closed curves on the projective plane are homotopic to each
other, and hence the following holds.

Lemma 3.3. The length of two essential cycles in an even embedding of the projective
plane have the same parity.

When classifying P-irreducible quadrangulations in the latter half of the paper, we
focus on whether such a quadrangulation is bipartite or non-bipartite.

Lemma 3.4. If a quadrangulation G of the projective plane admits an essential cycle of
even (resp., odd) length, then G is bipartite (resp., non-bipartite).

Proof. If G admits an essential cycle of even length, then every essential cycle of G has
even length by the previous lemma. Of course, all trivial cycles of G is separating and
hence have even length by Lemma 3.2. Therefore, G is bipartite.

We denote the set of vertices of a graph G with degree i by Vi(G) (or simply Vi). In
this paper, we often focus on the subgraph of G induced by V3, and denote it by 〈V3〉G. In
[17], the following lemma was proved.

Lemma 3.5. Let G be a quadrangulation of a closed surface F 2 with minimum degree at
least 3 and assume that 〈V3〉G contains a cycle C of length k. Then k ≥ 3 and one of the
followings holds;

(i) if k = 4, then G is a cube on the sphere or C is an attached 4-cycle of an attached
cube in G,
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(ii) if k is odd, then G is a Möbius wheel W̃k on the projective plane,

(iii) if k is even and at least 6, then G is a pseudo double wheel Wk on the sphere.

Let G be a quadrangulation of a closed surface F 2 and let f = v0v1v2v3 be a face
of G. Then a pair {vi, vi+2} is called a diagonal pair of f in G for each i ∈ {0, 1}.
A closed curve γ on F 2 is a diagonal k-curve for G if γ passes only through distinct k
faces f0, . . . , fk−1 and distinct k vertices x0, . . . , xk−1 of G such that for each i, fi and
fi+1 share xi, and that for each i, {xi−1, xi} forms a diagonal pair of fi of G, where the
subscripts are taken modulo k. Furthermore, we call a simple closed curve γ on F 2 a semi-
diagonal k-curve if in the above definition {xi−1, xi} is not a diagonal pair for exactly one
i; note that xi−1xi is an edge of ∂fi in this case.

Lemma 3.6. Let G be a quadrangulation of a closed surface F 2 with a 2-cut {x, y}. Then
there exists a surface separating diagonal 2-curve for G only through x and y.

Proof. Observe that every quadrangulation of any closed surface F 2 is 2-connected and
admits no such closed curve on F 2 crossing G at most once. Thus there exists a surface
separating simple closed curve γ on F 2 crossing only x and y, since {x, y} is a cut of G.

We shall show that γ is a diagonal 2-curve. Suppose that γ passes through two faces
f1 and f2 meeting at two vertices x and y. If γ is not a diagonal 2-curve, then x and y are
adjacent on ∂f1 or ∂f2. Since G has no multiple edges between x and y, and since {x, y}
is a 2-cut of G, we may suppose that x and y are adjacent in ∂f1, but not in ∂f2. Here we
can take a separating 3-cycle of G along γ. This contradicts Lemma 3.2.

Lemma 3.7. Let G be a 3-connected quadrangulation of a closed surface F 2, and let
f = v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2} violates the 3-
connectedness of the graph but preserves the simplicity, then G has a separating diagonal
3-curve passing through v0, v2 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. Let G′ be the quadrangulation of F 2 obtained from G by the face-contraction of
f at {v0, v2}. Since G′ has connectivity 2, G′ has a 2-cut. By Lemma 3.6, G′ has a
separating diagonal 2-curve γ′ passing through two vertices of the 2-cut. Clearly, one of
the two vertices must be [v0v2] of G′, which is the image of v0 and v2 by the contraction
of f ; otherwise, G would not be 3-connected, a contradiction. Let x be another vertex of
G′ on γ′ other than [v0v2]. Note that x is not a neighbor of [v0v2] in G′.

Now apply the vertex-splitting of [v0v2] to G′ to recover G. Then a diagonal 3-curve
for G passing through only v0, v2 and x arises from γ′ for G′.

Lemma 3.8. Let G be a 3-representative quadrangulation of a non-spherical closed sur-
face F 2 and let f = v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2} yields
another quadrangulation with representativity at most 2 but preserves the simplicity, then
G has either an essential diagonal 3-curve or an essential semi-diagonal 3-curve, which
passes through v0, v2 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. LetG′ be the quadrangulation of the non-spherical closed surface F 2 obtained from
G by a face-contraction of f at {v0, v2}. If the representativity of G′ is at most 1, then G
would have an essential simple closed curve crossing with G at most twice, contrary to
G being 3-representative. Thus G′ has representativity 2 and hence G′ admits either an
essential diagonal 2-curve or an essential semi-diagonal 2-curve. Similarly to Lemma 3.7,
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one of the two vertices passed by the curve must be [v0v2] of G′ and G has an essential
diagonal (resp., semi-diagonal) 3-curve when the former (resp., the latter) case happens.

The following lemmas show properties of P-irreducible quadrangulations of non-sphe-
rical closed surfaces. To simplify our statements, we suppose that G represents a P-
irreducible quadrangulation of a non-spherical closed surface F 2 hereafter in this section.

Lemma 3.9. If G has a 4-cycle C = v0v1v2v3 bounding a 2-cell region D, then there is
no face f of G in D such that one of the diagonal pairs of f is {v0, v2} or {v1, v3}.

Proof. Suppose, for a contradiction, that G has a 4-cycle C = v0v1v2v3 bounding a 2-cell
regionD and a face f bounded by av1cv3 inD. We assume thatD contains as few vertices
of G as possible. We denote the subgraph of G in D̄ by H; note that H can be regarded as
a quadrangulation of the sphere.

Since C is separating, we have ∂f 6= C. Furthermore, G is P-irreducible and hence f
is not P-contractible at {a, c}. If the face-contraction at {a, c} breaks the simplicity of the
graph, then G has edges {ax, cx} for x ∈ V (G) − {v1, v3}. (Clearly, it does not have a
loop.) If x ∈ V (G) − V (H), we would have ∂f = C, contrary to our assumption. Thus,
we may assume that x is either v0 or v2, now say v0; observe that v0 6= a, c in this case.
Now G would have an edge av0 (or cv0) and it contradicts Lemma 3.2.

By the above argument, the face-contraction at {a, c} does not break the simplicity,
hence it breaks the 3-connectedness or the property of representativity at least 3. That is,
we find either a surface separating diagonal 3-curve or an essential diagonal 3-curve (or an
essential semi-diagonal 3-curve) passing through f and {a, c} by Lemmas 3.7 and 3.8. In
each case, if {a, c} ∩ {v0, v2} = ∅, then f could not be passed by such a diagonal curve.
Therefore we may suppose that a = v0 and c 6= v2.

By Lemma 3.2 again, there is not an edge joining c and v2. Thus, we can find a face
f ′ of H one of whose diagonal pairs is {c, v2}. Let C ′ be the 4-cycle v1v2v3c of G. Since
deg(c) ≥ 3, we have ∂f ′ 6= C ′. Therefore, C ′ and f ′ are a 4-cycle and a face which satisfy
the assumption of the lemma, and moreover, C ′ can cut a strictly smaller graph than H
from G. Thus, this contradicts the choice of C.

Lemma 3.10. Let f = v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2}
breaks the simplicity of the graph, then there is a vertex x ∈ V (G)− {v1, v3} adjacent to
both of v0 and v2 such that v0v1v2x is an essential 4-cycle in G. In particular, if F 2 is the
projective plane, then G is bipartite.

Proof. First, assume that the face-contraction yields a loop. Then, we have v0v2 ∈ E(G).
By Lemma 3.2, v0v1v2 should be an essential 3-cycle. However, we would find an essential
simple closed curve intersecting G at only v0 and v2, contrary to G being 3-representative.

Therefore, we may assume that the face-contraction yields multiple edges. Under the
conditions, there should be a vertex x ∈ V (G)− {v0, v1, v2, v3} which is adjacent to both
of v0 and v2. If a 4-cycle v0v1v2x is trivial and bounds a 2-cell region D, then D and f
would satisfy the conditions of Lemma 3.9, a contradiction. Therefore v0v1v2x should be
essential. If F 2 is the projective plane, then G is bipartite by Lemma 3.4.

Lemma 3.11. If G has a trivial diagonal 3-curve γ, then the disc bounded by γ contains
the unique vertex, which has degree 3.
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Proof. Suppose that γ passes through three vertices {v0, v1, v2} and three faces {f0, f1, f2}
where each fi is bounded by viaivi+1bi so that the 6-cycle v0b0v1b1v2b2 bounds a 2-cell
region D including fi and ai for i ∈ {0, 1, 2} (v3 = v0). Suppose, for a contradiction, that
D contains at least two vertices. That is, this implies that a0, a1 and a2 could not be iden-
tified to one vertex. Thus, we can find a vertex ai 6= ai+1, ai+2, now say a0 (a0 6= a1, a2).

If there is an edge joining a0 and v2, then we can find a 2-cell region D′ bounded by
a0v2b2v0. Since a0 6= a2, D′ is not a face of G. Furthermore we have deg(a2) ≥ 3 and
hence the region bounded by a0v2a2v0 is not a face of G and includes at least one vertex.
This means that D′ satisfies the conditions of Lemma 3.9, a contradiction. Therefore, we
conclude that a0v2 /∈ E(G).

Now consider the face-contraction of f0 at {a0, b0}. Since G is P-irreducible, G
should have a diagonal 3-curve or a semi-diagonal 3-curve passing through three vertices
{a0, b0, x} for x ∈ V (G)− {a0, b0}. (Note that the face-contraction clearly preserves the
simplicity of the graph by the above argument, i.e., a0v2 /∈ E(G).) Since a0 is an inner
vertex of D, x must be a vertex of ∂D.

However, since a0 6= a1, a2, x must coincide with v2. Since a0v2 /∈ E(G) again, there
should be a face whose diagonal pair is {a0, v2}, but it contradicts Lemma 3.2. Hence, we
can conclude that D contains exactly one vertex a0 (= a1 = a2) and the lemma follows.

Lemma 3.12. Let f = v0v1v2v3 be a face of G with deg(v0),deg(v2) ≥ 4.

(i) If F 2 is the projective plane, then a face-contraction of f at {v1, v3} preserves the
3-connectedness.

(ii) If F 2 is not the projective plane and if a face-contraction of f at {v1, v3} breaks
the 3-connectedness, then G has an essential separating diagonal 3-curve γ passing
through v1, v3 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. The statement (ii) immediately follows from Lemmas 3.7 and 3.11. In the projective-
planar case, we cannot take such an essential separating diagonal 3-curve γ.

Lemma 3.13. The induced subgraph 〈V3〉G has no vertex of degree 3.

Proof. Suppose, for a contradiction, that G has a vertex v with deg(v) = 3 and each of
its three neighbors also has degree 3 (see the left-hand side of Figure 3). Note that the
boundary of the hexagon is a cycle of G; otherwise, it would disturb the simplicity of G,
Lemma 3.2, Lemma 3.9 or the property of representativity at least 3. We can easily find a
trivial separating diagonal 3-curve passing through {v0, v1, v2} and that the 3-cut cuts off
the four vertices, contrary to Lemma 3.11.

Suppose that the induced subgraph 〈V3〉G of a P-irreducible quadrangulation G has a
path P = u0u1u2 of length 2. Then the configuration around P becomes the center of
Figure 3. The following lemma refers to the non-shrinkability of P .

Lemma 3.14. Let P = u0u1u2 be a 2-path in G induced by vertices of degree 3 (as shown
in the center of Figure 3) and assume that deg(v4) ≥ 4. Then, there is an essential diagonal
3-curve or an essential semi-diagonal 3-curve passing through {v0, u1, v2}.
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Figure 3: Partial structures of P-irreducible quadrangulations.

Proof. Apply the 23-path shrink to P and denote G′ be the resulting graph. Let u be a
vertex of G′ which is the shrunk image of P ; note that u is adjacent to v0, v2 and v4. Since
G is P-irreducible, G′ is not a polyhedral quadrangulation. If G′ is not simple, uv0 and
uv2 must be multiple edges. This implies that v0 = v2, however this also implies that G is
not simple or v1 has degree 2 in G, a contradiction.

Next, we assume that G′ has a 2-cut. By Lemma 3.6, G′ has a separating diagonal
2-curve γ′ passing through {v0, v2}; otherwise, G would have a 2-cut. Now we can find
a separating diagonal 3-curve γ in G corresponding to γ′ naturally. Note that γ is not a
semi-diagonal 3-curve by Lemma 3.2. Let f = v0xv2y be the third face passed by γ,
which lies outside of the hexagon bounded by v0v1v2v3v4v5. If γ is essential, then we are
done. Therefore, we assume that γ is trivial. If neither of x and y corresponds to v1, then
we have got a contradiction by Lemma 3.9. Thus, one of x and y, say x, corresponds to v1.
This means that deg(v1) = 3, however, it contradicts Lemma 3.13.

Finally, assume that G′ has representativity at most 2. Similarly, G′ has an essential
diagonal 2-curve or an essential semi-diagonal 2-curve passing through {v0, v2}. We can
easily find our required essential curve passing through {v0, u1, v2} of G.

Lemma 3.15. The induced subgraph 〈V3〉G has no path of length at least 3.

Proof. Suppose to the contrary that G has such a path P = u0u1u2v2 (see the right-hand
side of Figure 3). By the above lemma, z should coincide with v0. However, v1z would
become multiple edges, a contradiction.

Lemma 3.16. Assume thatG has an attached cubeH with ∂(H) = v0v1v2v3, an attached
4-cycle C = u0u1u2u3 and uivi ∈ E(G) for each i ∈ {0, 1, 2, 3}. Then there is an essen-
tial diagonal (or semi-diagonal) 3-curve γ passing through {v0, u1, v2} or {v1, u2, v3}.
Proof. Apply the 4-cycle removal ofC toG and letG′ denote the resulting graph. It is clear
that the 4-cycle removal clearly preserves the simplicity of the graph. Thus, first suppose
that G′ is not 3-connected. By Lemma 3.6, we can find a separating diagonal 2-curve γ′ in
G′ passing through {v0, v2} or {v1, v3}. If γ′ is trivial, then it contradicts Lemma 3.9. If
γ′ is essential, we can find our requied diagonal 3-curve γ in G.

Therefore, we may assume that G′ has representativity at most 2 and has an essential
diagonal (or semi-diagonal) k-curve γ′ where k is at most 2. If γ′ does not pass through a
face f = v0v1v2v3, then G also has representativity at most 2, contrary to our assumption.
Thus, γ′ passes through f and two vertices {v0, v2} or {v1, v3} and we got our conclusion.
(Note that γ′ does not pass through two neighboring vertices of v0v1v2v3. Otherwise, γ′

would be an essential semi-diagonal 2-curve also in G.)
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For an attached cubeH with ∂(H) = v0v1v2v3, we call a pair of two vertices {vi, vi+2}
a cube diagonal pair of H for each i ∈ {0, 1}. In particular, a cube diagonal pair is facing
if they are on a boundary cycle of a face f ofG outside the 2-cell region bounded by ∂(H).
According to the above argument, an essential diagonal (or semi-diagonal) 3-curve passes
through f .

4 Regions bounded by 4-, 6- or 8-cycles
Consider a disk D bounded by a cycle C = v0v1 · · · v2m−1 of length 2m. Put a vertex x
into the center of D and join it to v2i for each i ∈ {0, . . . ,m− 1}. Then, the resulting disk
quadrangulation is a pseudo wheel and denoted by W−2m.

Lemma 4.1. Let G be a quadrangulation of a closed surface F 2 and let D be a 2-cell
region bounded by a closed walk C of length 4, 6 or 8 such that

(i) there is at least one vertex inside D,

(ii) all vertices inside D have degree at least 3 and

(iii) D does not have a unique vertex x of degree 4 such that lw(x) = C (when |C| = 8).

Then, there exists a vertex of degree 3 inside D.

Proof. Let H be a graph contained in D̄. It suffices to prove the case when C is a cycle.
(Even if C is not a cycle, i.e., there exists a vertex appearing twice on C, the analogous
proof works.) We use induction on |V (H)|. Let v0, . . . , vm−1 be vertices lying onC in this
order for some m ∈ {4, 6, 8}. The initial step of the induction is the case that |V (H)| = 7.
In this case, H must be isomorphic to W−6 and its center vertex has degree 3. (When the
length of C equals 4, it is not difficult to list up all the (disc) quadrangulations with at
most 7 vertices, e.g., see [19]. Every such graph has a vertex of degree 2 not lying on any
specified outer cycle.) Thus, we suppose that |V (H)| ≥ 8 in the following argument.

First, assume that there is a diagonal of C. Since at least one of the two regions sepa-
rated by the diagonal satisfies Conditions (i) – (iii), there is a vertex of degree 3 inside the
region by the induction hypothesis. Thus, we suppose that there is no diagonal in D.

Furthermore, suppose that there is a vertex x joining two vertices vi and vi+2. Then, the
2-path vixvi+2 separates D into a quadrilateral region D′ and the other region D′′. If D′

contains a vertex, then the induction hypothesis works immediately. Thus, we may assume
that D′ contains no vertex. Further, if D′′ contains at least one vertex and G ∩ D̄′′ is not
isomorphic to W−8 , then we can also apply the induction hypothesis. When the case that
G∩ D̄′′ is isomorphic to W−8 , the unique inner vertex y of D′′ should be adjacent to x, and
hence x has degree 3; otherwise, the degree of x would become 2.

Therefore, we suppose that D′′ contains no vertex. Under the condition, there should
be edges joining x and alternate vertices on C so that H becomes disc quadrangulation
since C has no diagonal. Then, H is isomorphic to W−8 since |V (H)| ≥ 8. However, it
contradicts (iii).

By the above arguments, we may assume that D contains no diagonal and no 2-path
joining vi and vi+2. This implies that all vertices vi of C have degree at least 3. When |C|
is equal to 6 or 8, add an extra vertex x̂ outsideD and join it to alternate vertices to obtain a
quadrangulation Ĥ of the sphere; if |C| = 4, then we do nothing and let Ĥ = H . Observe
that Ĥ has minimum degree at least 3.
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By Euler’s formula, we have |V3(Ĥ)| ≥ 8. Even if |C| = 8, the number of vertices of
degree 3 on C is at most 4 by our construction of Ĥ . Therefore, the lemma follows.

The following lemma is important to determine the inner structures of 2-cell regions of
P-irreducible quadrangulations bounded by closed walks of length 4, 6 or 8.

Lemma 4.2. Let G be a P-irreducible quadrangulation of a non-spherical closed surface
and let D be a 2-cell region bounded by a closed walk W = w0w1 · · ·wk−1 for some
k ∈ {4, 6, 8}. Suppose thatW does not bound a face ofG and thatG∩D̄ is not isomorphic
to an attached cube. Then G ∩ D̄ includes;

(i) a diagonal edge (when k ∈ {6, 8}),

(ii) a 2-path wixwi+2,

(iii) a 2-path wixwi+4 (when k = 8 and wi 6= wi+4),

(iv) a 3-path (or a 3-cycle if wi = wi+3) wixywi+3 (when k ∈ {6, 8}) or

(v) a 4-cycle wixyzwi+4 (when k = 8 and wi = wi+4),

where x, y and z are distinct inner vertices of D and the indices are taken modulo k.

Proof. In this proof, we call a path (or a cycle) in the statement a short path ofD. Suppose,
for a contradiction, that D includes no short path. By Lemma 4.1, D contains a vertex of
degree 3 as an inner vertex; since if D has a unique vertex, then it clearly includes a short
path of type (ii). First, assume that D contains a vertex ui of degree 3 of an attached
cube Q; where Q consists of a 4-cycle C = u0u1u2u3 induced by vertices of degree 3
and ∂(Q) = v0v1v2v3 with an edge uivi for each i ∈ {0, 1, 2, 3}. We consider the cases
depending on the order of V (C) ∩ V (W ).

Case I. |V (C) ∩ V (W )| = 1 (assume w0 = u0): Then u0 would have a vertex of degree
at least 4, contrary to the assumption.

Case II. |V (C) ∩ V (W )| = 2: If such vertices are diagonal vertices of C, say u0 and
u2, then we have deg(u0) ≥ 4, as well as the above case. Thus, we suppose that such
two vertices are adjacent on both of C and W , say w0 = u0 and w1 = u1. Note that
u2 and u3 are inner vertices in this case. Since deg(w0) = deg(w1) = 3, v0 (resp., v1)
should coincide with wk−1 (resp., w2). In this case, v2 and v3 are inner vertices of D;
otherwise D would contain a short path (ii) or (iii). However, w2v2v3wk−1 would become
(iv) if k ∈ {6, 8}; note that if k = 4, then wk−1w2 would form multiple edges since
deg(w0) = deg(w1) = 3.

Case III. |V (C) ∩ V (W )| = 3: We can easily exclude this case, since the unique inner
vertex of C is adjacent to two vertices of W and it would form either (ii) or (iii).

Case IV. V (C) ∩ V (W ) = ∅: By Lemma 3.16, at least one of cube diagonal pairs, say
{v0, v2}, should be facing. We further divide this case into the following subcases.

Case IV-a. W is a cycle of G: Then both of v0 and v2 should be vertices of W . Note that
by Lemma 3.2, {v0, v2} coincides with {wi, wi+2} or {wi, wi+4}. If one of v1 and v3 is
an inner vertex of D, then D clearly would contain a 2-path of (ii) or (iii) in the lemma.
Therefore, they also should be vertices of W . However, if k equals 6 or 8, then D would
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have a diagonal edge (i), on the other hand, if k = 4, then it corresponds to an attached
cube, contrary to our assumption.

Case IV-b. W is not a cycle: Note that we only have to consider the case of k ∈ {6, 8}.
This case is further divided into the following subcases.

Case IV-b-1. wi = wi+3 (say w0 = w3): Note that G is nonbipartite since it includes an
essential cycle of odd length. Now we may suppose that an essential simple closed curve
of Lemma 3.16 passes through such a vertex w0 = w3. We may suppose that v0 = w0

in this case and there should be the edge v2w3 (see (a) in Figure 4). In the figure, we find
a hexagonal region bounded by W ′ = w0w1w2w3v2v1. If there is no identification of
vertices of W ′, then we would have a short path w0v1v2w3 of type (iv). Even if there is
such an identification, we find either a short path (i) or (ii), a contradiction.

Case IV-b-2. wi = wi+4 (assumew0 = w4): Similarly to the above arguments, we assume
that v0 = w0 and there is a face bounded by v2sw4t in G where s, t ∈ V (G). If there is no
identification of vertices of closed walkW ′′ = w0w1w2w3w4sv2v1 bounding an octagonal
region, there would be a short path of type (v). When there is identification of vertices of
W ′′, we pay attention to the simplicity and the representativity of the whole graph; e.g., if
v1 = s, we would have multiple edges w0v1. In any case, we find our required short path.

w0

w1

w2

w3

v1

v2

v3

(a)

w1

w2

w3

w4

v5

v2

v4

(b)

v0
x

w1

w2

w3

w4

v5
v4

(c)

v0 x

w5

yz

w1

w2

w3

w4

v5 v4

(d)

v0 x

w5

p

q

Figure 4: Inside of a region bounded by closed walks of length 4, 6 or 8.

Therefore after this, we may assume that D does not contain a vertex of a 4-cycle
induced by vertices of degree 3, that is, each inner vertex of degree 3 is on the path of
〈V3〉G with length at most 2, by Lemmas 3.5, 3.13 and 3.15; note that a Möbius wheel in
Lemma 3.5 is not polyhedral. We can take an inner vertex x of degree 3 so as to be an
endpoint of a path of 〈V3〉G; otherwise, each path of 〈V3〉G would join two vertices of W ,
contrary to our assumption and Lemmas 3.2 and 3.15.

Let lw(x) = v0v1v2v3v4v5 be the link walk of x and assume that v0, v2 and v4 are ad-
jacent to x and that deg(v0),deg(v2) ≥ 4. Now we apply the face-contraction of xv0v1v2
at {x, v1}, and denote the resulting graph by G′.

We first assume that G′ is not simple. By Lemma 3.10, there is an edge joining v1
and v4 in G such that a cycle v1v2xv4 of G is essential. Suppose that the edge v1v4 is in
D. Clearly, W is not a cycle, and we may assume that k = 8 and that w0 = w4 = v4.
However, it easily follows that there exists a short path passing through x. Also in the case
that v1v4 runs outside of D, v1 and v4 should be vertices of W and hence we can find a
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short path. Then, assume that G′ is simple in the following argument.
Next, we assume that either the representativity or connectivity of G′ is at most 2. In

each case, G has an essential diagonal (or semi-diagonal) 3-curve γ passing through x and
v1 by Lemmas 3.8 and 3.12. In fact, there are some cases depending on the positions and
identifications of vertices in D. However, in each case, the similar argument holds and
hence we prove only one substantial case below, for the sake of brevity.

Here, we consider the case that γ passes through {v1, x, v3} and that v1 = w1 and
v3 = w3 (see (b) in Figure 4). In this case, if v2 6= w2, D would contain a 2-path w1v2w3

of type (ii) in the lemma. Therefore we suppose v2 = w2. Note that each of v0, v4 and
v5 is an inner vertex of D and that there is no edge vlw for l ∈ {0, 4, 5} and w ∈ V (W );
otherwise, there would be a short path.

Next, we assume deg(v4) ≥ 4 and consider the face-contraction of v0xv4v5 at {v5, x}.
By the above argument, v5 has no adjacent vertex of W and hence we do not have to care
about the simplicity of the resulting graph. Thus, similarly to the above argument, we can
find a face v5yw5z in D by Lemmas 3.8 and 3.12, where either w1 = w5 or w2 = w5, i.e.,
W is not a cycle of G. We assume w1 = w5 here. (The case when w2 = w5 can be shown
in a similar way.) See (c) in Figure 4. Actually, k 6= 4 in this case. Note that y and z are
inner vertices of D and further note that {y, z} ∩ {v0, v4} = ∅ by the above argument. It
also implies that deg(v5) ≥ 4 and deg(w5) ≥ 4.

By Lemmas 3.8 and 3.12 again and by Lemma 3.2, there should be diagonal 3-curve γ′′

passing z, y and w ∈ V (W ); note that semi-diagonal 3-curve is not suitable since each of
y and z is not adjacent to a vertex of V (W ). In this case, we have k = 8 and w = w0 = w4

since if w = w4 = w6, w4w5 and w5w6 become multiple edges. However in this case, we
find a short path (iv) of length 3 linking w0 and w5 (or a short path (iii) of length 2 linking
w5 and w7).

Therefore, suppose that deg(v4) = 3 and there is a face w3v4v5p where p is an inner
vertex of D; otherwise we would find a short path. Observe that deg(w3) ≥ 4 in this case.
Furthermore, if deg(v5) ≥ 4, then we consider the face-contraction of w3v4v5p at {p, v4}.
Similarly to the above argument, there must be a face psw6t where w2 = w6 since x and
v0 are inner vertices of D and hence there is an essential diagonal 3-curve passing through
{w2, v4, p}. However, we find a short 3-path w3psw6 in this case.

Hence, we may assume that deg(v5) = 3 and there is a face v0v5pq (see (d) in Figure 4).
Then there is a 2-path xv4v5 induced by vertices of degree 3. By Lemma 3.14, there should
be an essential diagonal (or semi-diagonal) 3-curve passing through {w2, v4, p}. Similarly,
we can find a short path around it. (For example, if w2 = w5 and the edge pw5 ∈ E(G)
exists, then we find a short path w3pw5 of type (ii).) Thus, the lemma follows.

Figure 5 shows some partial structures of polyhedral quadrangulations of closed sur-
faces, each of which is bounded by a trivial 4-cycle v0v1v2v3. The center graph in the
figure has a 4-cycle u0u1u2u3 induced by vertices of degree 3 and hence this partial struc-
ture is an attached cube. Recall that if a polyhedral quadrangulation is P-irreducible and
has an attached cube, then one of two cube diagonal pairs is facing by Lemma 3.16. Next,
see the right-hand side of Figure 5. For a natural number n, Q(n)

2 represents the graph
having the following structure: There are n+ 1 internally vertex-disjoint paths of length 2
between v0 and v2, including v0v1v2 and v0v3v2, so that they divide the region bounded by
v0v1v2v3 into n quadrilateral regions each of which has the structure Q2 having a facing
cube diagonal pair {v0, v2}. Note that Q(1)

2 corresponds to Q2.
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Q1 Q2 Q
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v1

v2v3
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v0

v2

v1v0

v3

Figure 5: Inside a quadrilateral region.

Lemma 4.3. Let C = v0v1v2v3 be a cycle of length 4 bounding a 2-cell region D in a
P-irreducible quadrangulation G of a non-spherical closed surface. Then, the interior of
D has one of the structures Q1 and Q(n)

2 (n ≥ 1), as shown in Figure 5.

Proof. Use induction on the number of faces in D, say F ≥ 1. If F = 1, then it is clear
thatD corresponds to a face ofG and it has the structureQ1. Hence we suppose that F ≥ 2
below.

If G ∩ D̄ is not an attached cube Q2, then there is a vertex x which is adjacent to both
v0 and v2 (or v1 and v3) by Lemma 4.2. By the inductive hypothesis and Lemma 3.9, two
quadrilateral regions bounded by v0v1v2x and v2v3v0x are filled with Q(l)

2 and Q(m)
2 for

n,m ≥ 1. As a result, we obtain Q(n)
2 with n = l+m and the induction is completed.

Note that replacing Q2 with Q(n)
2 having the same facing cube diagonal pair preserves

the property being a P-irreducible quadrangulation for any n ≥ 2. Hence, there exist
infinitely many P-irreducible quadrangulations of a non-spherical closed surface F 2 if F 2

admits one with an attached cube. To avoid the complexity in figures, we use simply Q2 to
represent any Q(n)

2 after this.
In the following lemmas, we discuss inside structures of regions bounded by 6- and

8-cycles. For brevity, we shall omit routines in the proofs.

Lemma 4.4. Let C = v0v1v2v3v4v5 be a trivial cycle of length 6 bounding a 2-cell region
D in a P-irreducible quadrangulation G of a non-spherical closed surface. Then, the
interior of D has one of the structures H1, H2, . . . ,H17, as shown in Figure 6.

Proof. As well as the previous lemma, we use induction on the number of faces in D, say
F ≥ 2. If F = 2, then D has the structure H1. Hence we suppose that F ≥ 3. Observe
that the existence of a short path of (i), (ii) or (iv) is guaranteed by Lemma 4.2. We fill the
divided regions with pieces as follows.

If C has a diagonal, then we apply Lemma 4.3 and obtain H1, H6 and H10 in Figure 6.
Further, if there is an inner vertex x which is adjacent to both v0 and v2, then the quadri-
lateral region bounded by xv0v1v2 is filled with Q1 or Q(n)

2 (n ≥ 1), and the hexagonal
region bounded by v0xv2v3v4v5 is filled withHi for some i ∈ {1, . . . , 17} by the inductive
hypothesis. Checking the whole cases is a routine, so we omit it, however, most cases are
excluded by lemmas in Section 3.

Furthermore, assume thatD contains two inner vertices x and y such that 3-path v0xyv3
runs acrossD. Also in this case, we apply the inductive hypothesis to two separated hexag-
onal regions and obtain Hi’s in Figure 6.
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H8 H9 H10 H11 H12H7

H1 H2 H3 H4 H6H5

H14 H15 H17H16H13

Figure 6: Inside a hexagonal region.

Lemma 4.5. Let C = v0v1v2v3v4v5v6v7 be a trivial cycle of length 8 bounding a 2-cell
region D in a P-irreducible quadrangulation G of a non-spherical closed surface. If D
has no diagonal edge and no attached cube, then the interior ofD has one of the structures
O1, O2, . . . , O8, as shown in Figure 7.

O1 O2 O3 O4

O5 O6 O7 O8

Figure 7: Inside an octagonal region.

Proof. In this proof, all subscripts of vertices are taken modulo 8. We also use induction on
the number of faces in D, say F . If F is at most 3, then D has a diagonal, contrary to the
assumption of the lemma. If F = 4, thenD includes a single vertex by Euler’s formula and
it should be adjacent to vi, vi+2, vi+4 and vi+6; for otherwise, D would contain a diagonal.
This is clearly O1 in Figure 7. Therefore, we assume F ≥ 5 hereafter. Observe that D
contains a short path of type (ii), (iii) or (iv) by Lemma 4.2.
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First, we assume that D includes an inner vertex x which is adjacent to both v0 and
v4. Then there are two hexagonal regions D′ and D′′ bounded by xv0v1v2v3v4 and
xv4v5v6v7v0 respectively. Note that each of D′ and D′′ contains no attached cube. Then
by the previous lemma, we fill them with H1, H2, H3, H4 and H5 in Figure 6 so that the
whole configuration satisfies the condition of this lemma. By considering lemmas in Sec-
tion 3, most cases are excluded and we obtain O1, O2, O3, O4, O5, O6 and O8 in Figure 7.
Therefore, after this, we suppose that D contains no such vertex.

Secondly we assume that there is an inner vertex x in D which is adjacent to both
v0 and v2. Then, there are a quadrilateral region D′ and an octagonal region D′′ divided
by the 2-path v0xv2. By the assumption and Lemma 4.3, D′ bounds a face of G. If D′′

contains a diagonal edge, then it should be xv4 or xv6 by Lemma 3.2. However, in each
case, there would be a forbidden 2-path; e.g., v0xv4 if the diagonal xv4 exists. Hence, we
may assume that D′′ contains no diagonal. Now we apply the inductive hypothesis and fill
D′′ with O1, . . . , O8 in Figure 7; note that most cases would contain a contractible face or
a shrinkable 2-path by lemmas in Section 3. As a result, we obtain O1, . . . , O8. Then we
also assume that D does not include such a 2-path.

Finally, we assume that D has a short path of type (iv) in Lemma 4.2. Actually, this
3-path divides D into a hexagonal region and an octagonal one. As well as the above case,
we use the inductive hypothesis and Lemma 4.4, and obtain our conclusion.

Lemma 4.6. Let G be a P-irreducible quadrangulation of the projective plane. If G
has a hexagonal 2-cell region D such that G ∩ D̄ is isomorphic to either H13 or H15

in Lemma 4.4, then G is one of I1, I2 and I3 shown in Figure 8.

Proof. LetC = v0v1v2v3v4v5 be a 6-cycle bounding a hexagonal regionD such thatG∩D̄
is isomorphic to either H13 or H15. We may assume that each of v0v1v2x and v3v4v5y
bounds Q2 where x and y are distinct inner vertices of D. Now, cube diagonal pairs
{v0, v2} and {v3, v5} are facing and there are such faces f1 = v0pv2q and f2 = v3sv5t
outside of D by Lemma 3.16, where p, q, s, t ∈ V (G).

However, if f1 6= f2, the two essential diagonal (or semi-diagonal) curves in Lem-
ma 3.16 do not exist together on the projective plane. Therefore, we have f1 = f2, that
is, v0v3, v2v5 ∈ E(G) and f1 = f2 is bounded by v0v3v2v5. Under the conditions, the
6-cycle v0xv2v5yv3 bounds a 2-cell region and it should be filled with either H13 or H15

by Lemma 4.4. Actually we have three ways to take a pair {Hi, Hj} for i, j ∈ {13, 15}
and the lemma follows; for example, if we fill those hexagonal regions with twoH13’s then
we obtain I1.

5 Regions bounded by 6- or 8-walks
A boundary walk of a hexagonal region of a P-irreducible quadrangulation is not always
a cycle, and the same vertex often appears twice along it. Such a hexagonal region can
contain the following structure that generates an infinite series of P-irreducible quadran-
gulations of a non-spherical closed surface.

Let h1, h2 and h3 be three pieces with two terminals x1 and x2 shown in the first three
configurations of Figure 9, and let [s1, . . . , sm] be a given sequence of 1, 2 and 3 of any
length such that each of 2 and 3 does not continue; i.e., we do not permit a sequence
like [. . . , 2, 2, . . .]. Put hs1 to hsm in a hexagon a1b1ca2b2d so that each xi coincides
with ai for i ∈ {1, 2}, and identify paths between x1 and x2 in each neighboring pair
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I16 I17I15

I12 I14I13

I11I10I9

I8I7I6I5

I4I2 I3I1

Figure 8: The 17 families of bipartite P-irreducible quadrangulations with attached cubes.
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of pieces. (See the rightmost configuration of Figure 9.) We denote the resulting graph
by H18[s1, . . . , sm]; note that we implicitly exclude H18[2] and H18[3] since they can-
not fill the hexagonal region solely. If H18[s1, . . . , sm] is contained in a P-irreducible
quadrangulation G so that a1 = a2, then each attached cube is not removable and each
face is not contractible in this configuration; note that G is nonbipartite. We often denote
H18[s1, . . . , sm] simply by H18.

h1 h2 h3

a1

a2

b1

cb2

d

H18[1, 2, 3]

x1

x2

x1

x2

x1

x2

Figure 9: Inside a hexagonal region including an infinite series H18.

H−1

a1

a2

H19

a1

a2

b

cd

eb

cd

e

a1

a2

b

cd

e

dc

Figure 10: Inside a hexagonal region bounded by a closed walk (1).

See H19 in Figure 10. Note that the hexagonal region is bounded by a closed walk
W = a1bca2de where a1 = a2 (= a) and the other four vertices b, c, d and e are distinct.
Actually, H19 is appeared as a partial structure in P-irreducible quadrangulations of the
projective plane. (In Lemma 5.3, it will be mentioned.) However, the following lemma can
exclude H19 from the later arguments.

In the following three lemmas (Lemmas 5.1, 5.2 and 5.3), we let D be a hexagonal
region bounded by a closed walk W = a1bca2de in a P-irreducible quadrangulation G
of the projective plane where a1 = a2 (= a) and the other four vertices b, c, d and e are
distinct.

Lemma 5.1. If G ∩ D̄ ∼= H19, then G is isomorphic to I20 in Figure 11.

Proof. Note that G is nonbipartite since G contains an essential cycle of length 3. There-
fore, G has an edge be outside of D by Lemma 3.16. Then there are two quadrilateral
regions bounded by abed and aebc. By Lemma 4.3, each of these regions is filled with
either Q1 or Q2. However, if Q1 is used, that is, it corresponds to a face of G, then we can
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I19I18[s0; s1, . . . , sn] (s0 = 1, 2) I20

Figure 11: The 3 families of nonbipartite P-irreducible quadrangulations.

easily find an essential simple closed curve intersecting G at only two vertices, a contra-
diction. Hence, we fill each of those regions with Q2 and obtain I20 in Figure 11.

Lemma 5.2. G ∩ D̄ cannot be isomorphic to H−1 in Figure 10.

Proof. Similarly to Lemma 5.1, G has an edge cd in this case by Lemma 3.14, and both
of two quadrilateral regions outside of D are filled with Q2 (see the right-hand side of
Figure 10). However in this case, we would find a contractible face at {e, b} by Lemmas 3.8
and 3.12. Therefore the lemma follows.

Lemma 5.3. G ∩ D̄ is isomorphic to either H18 or H19.

Proof. We use induction on the number of faces in D, say F . If F is at most 3, then D
includes at most one inner vertex by Euler’s formula. In this case, although ∂(D) is not a
cycle, G ∩ D̄ forms a structure like either H1 or H2 in Figure 6; we have to identify the
top and the bottom vertices of Hi for i ∈ {1, 2}. However, G would have representativity
at most 2, a contradiction. (Such an essential simple closed curve passes through a.) If
F = 4, D includes exactly two vertices and we have G ∩ D̄ ∼= H18[1]. Therefore, we
assume that F ≥ 5 after this. Similarly to the former lemmas, we discuss inner structures
of divided regions by a short path; we have to consider (i), (ii) and (iv) in Lemma 4.2.

First, we assume that D contains a diagonal edge. By Lemma 3.2 and the simplicity
of G, it should be ce or bd, now say ce, up to symmetry. Then each of two quadrilateral
regions bounded by a1bce and da2ce should be filled with Q2; otherwise at least one of
those regions forms a face of G, but we can easily find an essential simple closed curve
passing through only two vertices of G. Therefore, we obtain H18[3, 2] from this case.
Then, we assume that D contains no diagonal hereafter.

Secondly, we assume that D includes an inner vertex x which is adjacent to a1 and
c. Then the quadrilateral region D′ bounded by a1bcx is filled with either Q1 or Q2. If
we have the former, that is, a1bcx bounds a face of G, then we would find an essential
simple closed curve intersecting G only at a and c, contrary to the assumption. Therefore,
we assume the latter case. In this case, the hexagonal region D′′ bounded by a 6-walk
a1xca2de satisfies the assumption of this lemma. Thus, we use the inductive hypothesis
and fill the region with either H18 or H19. If we use H19, then the configuration becomes a
part of I20 by Lemma 5.1. However, this is not the case since b corresponds to d. Hence we
fill D′′ with H18 and obtain our desired conclusion. Then after this, we assume that there
is no such inner vertex like x. (We also exclude similar paths a1xd, a2xb and a2xe.)
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Thirdly, we assume that there is an inner vertex x which is adjacent to b and e (or c
and d). Then, there are a quadrilateral region bounded by a1bxe and a hexagonal region
bounded by a 6-cycle bca2dex. We fill these regions by using the results of Lemmas 4.3
and 4.4 respectively. Most cases are excluded by lemmas in Section 3, but we obtain
H18[1], H18[3, 2, 3] and H19 by filling them with {Q1, H2}, {Q2, H10} and {Q2, H2},
respectively. (For reference, when we use {Q1, H4}, we obtain H−1 in Figure 10, but it
had already been excluded by Lemma 5.2.)

Next, we consider the existence of an essential 3-cycle a1xya2 where x and y are inner
vertices of D. In this case, we can apply the inductive hypothesis and fill two hexag-
onal regions with H18’s and obtain our conclusion; we do not have to consider H19 by
Lemma 5.1.

Finally we assume that there is a 3-path bxyd (or cxye) where both x and y are inner
vertices ofD. Then the boundary of each hexagonal region divided by the 3-path is a cycle,
and we fill them by using Lemma 4.4. We only have to check Hi for i ∈ {3, 4, 5}, since
the existence of an attached cube, a diagonal edge and a single vertex of degree 3 clearly
yields a short path discussed above. However, there is no pair to satisfy the conditions from
this case. Hence, the induction is completed.

In the following lemma, we discuss a hexagonal region bounded by a 6-walk in which
two vertices each appear twice.

Lemma 5.4. Let D be a hexagonal region bounded by a closed walk W = a1b1ca2b2d in
a P-irreducible quadrangulationG of the projective plane with a1 = a2 (= a) and b1 = b2
(= b). Then G ∩ D̄ is isomorphic to one of H18, H20 and H21.

Proof. Since almost the same argument of the previous proof holds, we omit the proof of
this lemma. However, we should pay attention to the following points:

(1) When assuming that there is a 3-path cxyd where x and y are inner vertices of D,
we obtain H20 in Figure 12; note that such a configuration was excluded in the
previous lemma, since at least one of shaded faces in the right-hand side of Figure 12
is contractible by Lemma 3.8.

(2) If there is an essential 3-cycle a1xya2 (or b1xyb2), then we apply Lemma 5.3 to each
of two hexagonal regions divided by the cycle.

(3) Using Q2 and H19, we can construct H21 in Figure 12.

H20

a

a

b

b

a1

a2

H21

a

a

b

b

b

cd

e

c

d d

c

Figure 12: Inside a hexagonal region bounded by a closed walk (2).
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Figure 13: Octagonal structure generating infinite series.

See the graph denoted by O9(2) shown in the left-hand side of Figure 13. Observe
that the octagonal region D is bounded by a closed walk W = a1bcda2p1q2p2 where
a1 = a2 (= a) and the other vertices are distinct. Now add two vertices p3 and q3 so
that q2p1a2p3 and p2q2p3q3 are quadrilateral faces. The resulting graph is denoted by
O9(3). We inductively define the general form O9(m) from O9(m − 1) by adding two
vertices pm and qm so that qm−1pm−2a2pm and pm−1qm−1pmqm (resp., a1pm−2qm−1pm
and pmqm−1pm−1qm) are quadrilateral faces if m is odd (resp., even); note that we define
O9(m) for m ≥ 2. This O9(m) satisfies the followings:

(a) deg(qi) = 3 for each i ∈ {0, . . . ,m − 1}, while deg(pi) = 4 for each i ∈
{1, . . . ,m− 2} if m ≥ 3.

(b) If m is odd, then degD(b) = 2, degD(c) = 0, degD(d) = 1, degD(pm) = 1,
degD(qm) = 0 and degD(pm−1) = 2.

(c) If m is even, then degD(b) = 2, degD(c) = 0, degD(d) = 1, degD(pm−1) = 2,
degD(qm) = 0 and degD(pm) = 1.

Lemma 5.5. Let D be an octagonal region bounded by a closed walk W = a1bcda2efg
in a P-irreducible quadrangulation G of the projective plane such that a1 = a2 (= a) and
the other vertices are distinct. Suppose the following conditions hold:

(α) Each of degD(b),degD(d),degD(e) and degD(g) is at least 1.

(β) No two vertices of degree 3 in D are adjacent.

Then G ∩ D̄ is isomorphic to either O9(m) or O10 in Figure 13.

Proof. First of all, we show that D contains no diagonal edge. Suppose to the contrary that
there is a diagonal edge in D, say bf ; note that a diagonal edge like a1d is immediately
excluded since it yields multiple edges. Then, there is a quadrilateral region D′ bounded
by a 4-cycle a1bfg. By Lemma 4.3 and the condition (β) in the lemma, D′ should be filled
with Q1, that is D′ corresponds to a face of G. However, it contradicts (α) in the lemma.
Therefore, we conclude that D has no diagonal.

Now, we use induction on the number of faces in D, say F as well as previous lemmas.
If F is at most 4, then D includes at most one inner vertex x by Euler’s formula. Since D
has no diagonal, G ∩ D̄ is a graph obtained from O1 in Figure 7 by identifying a pair of
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antipodal vertices. However in this case, we would find an essential simple closed curve
intersecting G at only {a, x}, a contradiction. By careful observation, we have the unique
configuration O9(2) with F = 5 faces in D; D includes exactly two inner vertices of
degree 3. Therefore, the first step of the induction holds.

Similarly to the former lemmas, we divide the following argument along Lemma 4.2;
other than (i) which is already excluded. Note that we shall implicitly exclude a short path
already discussed in the former arguments.

Case I. There exists a short 2-path (ii) or (iii): First, such a vertex x adjacent to a1 and
c violates condition (α) in the lemma, since D does not contain an attached cube by (β).
(We also exclude such 2-paths a1xf, a2xc and a2xf .) Therefore, we assume that there
is such a vertex x adjacent to b and d. Then the 2-path bxd divides D into an octagonal
region D′ and a quadrilateral region D′′; note that D′′ corresponds to a face of G. If
degD′(b),degD′(d) ≥ 1, then we can apply the inductive hypothesis. However, if we use
O9(m), then x would become degree 2. On the other hand, if we fill D′ with O10, then
the face-contraction of bcdx at {c, x} can be applied by Lemma 3.8. If degD′(b) = 0 and
degD′(d) = 0, then we can easily find an essential simple closed curve intersecting G at
only a and x; we can take such a curve along a1bxda2.

Therefore, we assume that one of degD′(b) and degD′(d) is equal to 0 and the other is
at least 1. We may assume that degD′(b) = 0 and degD′(d) ≥ 1 without loss of generality.
Under the condition, there is a face of G in D′ bounded by a1bxy for y ∈ V (G). If y
is a vertex of W , then we have either y = e or y = g by Lemma 3.2. If we assume the
former, then there would be multiple edges ae, contrary to our assumption. On the other
hand, if the latter holds, there is a hexagonal region D′′′ bounded by a cycle da2efgx of
G. By Lemma 4.4 and the condition (β), D′′′ is filled only with H2 and we obtain O9(2);
the unique inner vertex of degree 3 in D′′′ must have neighbors {d, e, g}, otherwise, (α)
cannot be held.

Therefore we may suppose that y is an inner vertex of D′. In this case, the octagonal
region D∗ bounded by a1yxda2efg satisfies the conditions of this lemma and hence we
can apply the inductive hypothesis to D∗; observe that degD∗(y) ≥ 1. Under our assump-
tions, we fill D∗ with O9(m) so as not to have adjacent vertices of degree 3, and obtain
O9(m+ 1); O10 is inappropriate since it yields two adjacent vertices of degree 3 in D.

Next, we assume that there is an inner vertex x of D adjacent to both of b and g. Let
D′ be an octagonal region bounded by bcda2efgx; note that the 4-cycle a1bxg bounds a
face of G. If D′ has a diagonal edge, then the one end should be x since D admits no
diagonal. However, if there is such a diagonal, say xd, then there would be a forbidden
2-path bxd, which was already discussed above. Thus D′ has no diagonal edge and we can
apply Lemma 4.5 to the region. In fact, most cases are excluded by some conditions but
we obtain O9(3) and O10 by using O4 and O2, respectively. By the similar argument as
above, we obtain O9(2) (resp., O10) if we assume that there is a 2-path bxe (resp., cxf ) for
an inner vertex x of D.

Case II. There exists a short 3-path (iii): First, assume that such a short 3-path is a1xyd
where x and y are inner vertices ofD. In this case, the hexagonal 2-cell regionD′ bounded
by a1xydcb should be filled with either H1 or H2 by Lemma 4.4 and the condition (β)
in this lemma. However in each case, D would contain a diagonal or a forbidden 2-path
excluded by the above arguments. By the same reason, we do not have to consider a 3-path
like bxyf . (Of course, we exclude the paths of the same type, considering the symmetry;
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e.g., a2xyg.)

Case III. There exists a short 4-cycle (iv): We assume that there exists an essential 4-cycle
a1xyza2 for inner vertices x, y and z of D. Then, D is divided into two octagonal regions
D′ and D′′ and they are bounded by a1xyza2dcb and a1xyza2efg, respectively. Here, we
consider degrees of x and z and first, suppose that degD′(x) = 0. In this case, D′ contains
a face bounded by a1xyw for w ∈ V (G). (Note that degD′(z) ≥ 1 and degD′′(z) ≥ 1;
otherwise there would be an essential simple closed curve passing through only a and y.
Also, degD′′(x) is clearly at least 1.) The vertex w is an inner vertex of D′ since if not,
D would have a diagonal or a forbidden 3-path by the above argument. Let D′′′ be the
octagonal region bounded by a1wyza2dcb; note that degD′′′(w) ≥ 1. Then both of D′′

and D′′′ satisfy the inductive hypothesis and we fill them with O9(m) or O10 so as not to
make two adjacent vertices of degree 3 in D. Under the conditions, we only obtain O9(l)
if D′′ and D′′′ are filled with O9(l′′) and O9(l′′′) respectively, where l = l′′ + l′′′ + 1.

Therefore, we may assume that each of degD′(x), degD′′(x), degD′(z) and degD′′(z)
is at least 1. Then we also use the inductive hypothesis into D′ and D′′. However, every
case is inappropriate, since using O10 yields contractible face by Lemmas 3.8 and 3.12 and
using two O9(m)’s makes y to have degree 2. Thus, the lemma follows.

6 Classification by attached cubes
Let G be a P-irreducible quadrangulation of the projective plane. Assume that G has an
attached cube H with ∂(H) = v0v1v2v3 and an attached 4-cycle C = u0u1u2u3 such
that uivi ∈ E(G) for each i ∈ {0, 1, 2, 3}. Now, observe that any essential cycle of
bipartite quadrangulations of the projective plane has even length while that of nonbipartite
quadrangulations has odd length. This means that

(I) G has an essential diagonal 3-curve γ if G is bipartite or

(II) G has an essential semi-diagonal 3-curve γ if G is nonbipartite, such that γ passes
through {v0, u1, v2} by Lemma 3.16.

First, we consider the case (I). In this case, γ is passing through three faces f1 =
v0u0u1v1, f2 = v1u1u2v2 and f = v0av2b for a, b ∈ V (G). Since G is P-irreducible,
applying the face-contraction of f at {a, b} breaks the property. However, each of deg(v0)
and deg(v2) is clearly at least four and hence we do not have to consider the 3-connectedness
of the graph by Lemma 3.12. Thus, we further divide it into the following two cases:

(I-a) The face-contraction of f disturbs the simplicity of the graph.

(I-b) The face-contraction of f yields a quadrangulation with representativity at most 2.

In (I-a), there exists a vertex x adjacent to both a and b such that the 4-cycleC ′ = v0axb
is essential on the projective plane by Lemma 3.10. In this case, we cut the projective plane
along C ′ and obtain (A) in Figure 14. In (I-b), G has a diagonal 3-curve passing through
{a, b, x} and three faces f, f ′ = acxd and f ′′ = bc′xd′ by Lemma 3.8. Considering
the identification of vertices except ui for i ∈ {1, . . . , 4}, we obtain (B), (C) and (D) in
Figure 14 up to symmetry; we have to pay attention to the simplicity, the degree conditions
of the graph and Lemma 4.3, further and that it does not have the structure of (I-a). (For
example, if d′ = v2 in (B), then we have (C). Furthermore, if x = v3 in (B), then d′ (resp.,
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Figure 14: Around an attached cube.

d) must also coincide with v2 (resp., c) by Lemma 4.3 and hence we obtain (D) in the
figure. It is not so difficult to confirm that they are all.)

Secondly, we assume the case (II). In this case, G has an essential semi-diagonal 3-
curve passing through {v0, u1, v2}, that is, there is an edge joining v0 and v2. We cut open
the projective plane along the essential 3-cycle v0v1v2 and obtain (E) in the figure.

In the first half of the next section, we determine P-irreducible quadrangulations of the
projective plane with attached cubes by filling each blank non-quadrilateral region of (A)
to (E) with results in Sections 4 and 5.

7 Proof of the main theorem
We shall classify P-irreducible quadrangulations of the projective plane in this section to
prove Theorem 1.1, using the lemmas proved in the former sections. For our purpose, we
divide our main result into the following four theorems, depending on the existence of an
attached cube and bipartiteness.

Theorem 7.1. Let G be a bipartite P-irreducible quadrangulation of the projective plane.
If G has an attached cube, then G is one of the graphs shown in Figure 8.

Proof. By the argument in the previous section, we first fill the two non-quadrilateral re-
gions of (A) shown in Figure 14 with H1, . . . ,H17 so as to form a P-irreducible quad-
rangulation. (However, we implicitly exclude H13 and H15 by Lemma 4.6.) In fact, we
consider the hexagonal regions bounded by v0v1v2axb and v0v3v2bxa and fill them with
H7, H8, H9, H11, H12, H14, H16 and H17 since we have {v1, v3} ∩ {a, b} = ∅; otherwise,
G would have multiple edges. When putting a pair of such pieces, we have to check the
polyhedrality of G, and the absence of contractible face, removable 4-cycle and shrinkable
2-path, by using Proposition 3.1 and Lemmas 3.8, 3.9, 3.12 – 3.16.

Checking all the cases is a routine, and hence we present two bad examples below.
First, see (i) of Figure 15, which is filled with a pair (H7, H9). However, it is easy to see
that this graph has representativity 2. Secondly, see (ii) in the figure with a pair (H11, H12).
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In this case, we can easily find a removable 4-cycle by Lemma 3.16, which is presented
as the shaded region in the figure. Similarly to the above two bad cases, we can exclude
almost pairs.

(i) (ii) (iii)

x x

c

c

a

a

d

p r
sv2

b

v1

v0

v1

b

v2

c′

x

c
a

v′3

(iv)

Figure 15: Configurations in the proof of Theorem 7.1.

As a result, 8 pairs (H7, H11), (H7, H14), (H7, H16), (H7, H17), (H9, H9), (H9, H12),
(H9, H14) and (H12, H12) are available and we obtain I4, I5, I6, I7, I8, I9, I10 and I11 in
Figure 8, respectively.

Next, we consider (B) in Figure 14. Consider the face-contraction of the face bounded
by xdac at {c, d}. Observe that we have no identification of vertices c, d, c′ and d′ to
other white vertices. (It was already done in the previous section.) Thus, we have that
deg(x),deg(a) ≥ 4. By Lemma 3.12, the face-contraction breaks the simplicity or the
property of representativity at least 3. It is easy to see that the former does not happen
and hence we suppose the latter. That is, there is a diagonal 3-curve passing through either
{c, d, v2} or {c, d, v0}.

Assume that the curve passes the {c, d, v2} and other two faces f1 and f2 are bounded
by dpv2q and v2rcs respectively, for p, q, r, s ∈ V (G). (Actually, by Lemma 4.3, one of p
and q, say q, coincides with a. See (iii) in Figure 15.) If s = x in the figure, then it would
yield the configuration (C) in the Figure 14; we discuss (C) next. Further, if s = b, then
the vertex c is adjacent to both of a and b and hence it would become (A); it was already
discussed. Moreover, if r = a, we would have multiple edges v2a. Therefore, we can
conclude that the unique possibility of the identification of such vertices is that r = v1;
note that we have considered all the possibility around f2, since G is bipartite and both of
r and s should be black vertices. However, regardless of the unique identification, we can
apply the face-contraction of f2 at {r, s} since there is no diagonal 3-curve passing through
r and s. This is contrary to G being P-irreducible. By the similar argument, we can find a
contractible face when assuming that the diagonal 3-curve passes through {c, d, v0}. As a
result, (B) cannot be extended to any P-irreducible quadrangulation.

As the third case, we consider (C) in Figure 14. By Lemma 3.16, there is no at-
tached cube in the hexagonal region D bounded by v0acxv2v1. Therefore, we try to put
H1, . . . ,H5 into D. However, by Proposition 3.1 and Lemmas 3.9, 3.15 and 4.3, it is easy
to confirm (but routine) that only H1 is available and we have edge v1c in D.

Next, we consider the octagonal region D′ bounded by v0v3v2adxc′b. Assume that D′

contains another attached cube A such that ∂(A) = v′0v
′
1v
′
2v
′
3. Then its one cube diagonal

pair, now say {v′0, v′2}, coincides with either {a, b} or {c′, v2} since it should be facing by
Lemma 3.16. If the former occurs, then it clearly causes I1, I2 or I3 by Lemmas 4.4 and 4.6.
Thus, we suppose the latter (see (iv) of Figure 15). Now we fill the two hexagonal regions
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H and H ′ bounded by v0v1v2v′3c
′b and v2acxc′v′1, respectively. However, H admits only

H12 and H14, and H ′ does only H8 by considering their partial structures. Therefore, we
obtain I12 and I13 in Figure 8 in this case.

Then, we consider the possibility of existence of diagonal edges in the octagonal region
D′ and conclude that either v3c′ or v3d is available by some lemmas and P-irreducibility.
If both of diagonals are taken as edges of G, then G becomes I14. If one of two diagonals,
say v3c′, is used, then we find the hexagonal region H bounded by c′v3v2acx; note that
H does not contain its diagonal. We put H2, H3, H4 and H5 into H , however each of the
resulting graphs has a contractible face; it is actually reducible into I14. Furthermore, the
same argument works when we use the diagonal v3d.

Therefore we may assume that D′ in (C) contains no attached cube and no diagonal,
that is, it satisfies the condition of Lemma 4.5. Now, we try to put Oj for j ∈ {1, . . . , 8}
into D′. Considering some lemmas in Section 3, we have only I15 from this case by filling
it with O2 in Figure 7.

Similarly to (C), we consider the inside of octagonal region O bounded by cycle
v0v3v2adv1c

′b in the case (D). However, the argument is almost the same as the previ-
ous one and just a routine and hence we omit it here. (We first discuss the existence of an
attached cube and diagonals inO. Next, we put the configurations of Figure 7.) As a result,
we obtain I16 I17 from (D). Therefore, the theorem follows.

We define I18[2; s1, . . . , sn] as a graph obtained from (E) in Figure 14 by putting
H18[s1, . . . , sn] inside the hexagonal region. Recall that we forbid I18[2; . . . , 2, 2, . . .],
I18[2; . . . , 3, 3, . . .], I18[2; 2, . . .] and I18[2; . . . , 3], since we make it a rule to unify consec-
utive Q2’s to one.

Theorem 7.2. Let G be a nonbipartite P-irreducible quadrangulation of the projective
plane. If G has an attached cube, then G is one of I18[2; s1, . . . , sn], I19 and I20 shown in
Figure 11.

Proof. By the argument in the previous section, we have (E) in Figure 14 in this case.
There is the unique blank hexagonal regionD which satisfies the conditions of Lemma 5.4.
Hence, we fill D with H18[s1, . . . , sn] (resp., H20) and obtain I18[2; s1, . . . , sn] (resp.,
I19); note that H21 was already discussed in Lemma 5.1 and we obtained I20.

In fact, some of I18[2; s1, . . . , sn] with short sequences cannot satisfy the polyhedrality,
hence we should exclude such “bad” sequences, which are listed in Table 1. It is not
difficult to confirm that if n ≥ 4, then any I18[2; s1, . . . , sn] satisfying the above rule
is acceptable. (Observe that there are different sequences [s1, . . . , sn] 6= [s′1, . . . , s

′
n] such

that I18[2; s1, . . . , sn] ∼= I18[2; s′1, . . . , s
′
n]; e.g., I18[2; 1, 1, 2] ∼= I18[2; 3, 1, 1] in the table.)

Figure 16 presents six bipartite P-irreducible quadrangulations of the projective plane
without attached cubes. In the figure, I26(2n + 1) (n ≥ 2) represents an infinite series of
such graphs. The center white vertex of I26(2n+ 1) has degree 2n+ 1 and each its black
neighbors has degree 4. Furthermore, it has 2n + 1 vertices of degree 3 on the essential
simple closed curve drawn by dotted circle. (We obtain the projective plane by identifying
all pairs of antipodal points of the dotted circle.) In fact, the figure represents I26(7) with
15 vertices.

Theorem 7.3. Let G be a bipartite P-irreducible quadrangulation of the projective plane.
If G has no attached cube, then G is one of the graphs shown in Figure 16.
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Table 1: Good and bad sequences for [s1, . . . , sn] (n ≤ 3).

[s1, . . . , sn] (n ≤ 3)

[1] bad (rep. 2)
[1, 1], [3, 2] good
[1, 2], [3, 1] bad (rep. 2)
[1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3, 1], [1, 3, 2], [3, 1, 1], [3, 1, 2], [3, 2, 1] good

Proof. For brevity, we write only the outline of the proof. We divide the proof into the
following three cases by Lemmas 3.5, 3.13 and 3.15. Note that we prove those cases in this
order, that is, we implicitly exclude a graph already appeared in the former cases.

Case I.G has a 2-path u0u1u2 induced by three vertices of degree 3: See (i) in Figure 17. In
the figure, each antipodal pair of points of the dotted circle should be identified to obtain the
projective plane. Note that v0v1v2v3v4v5 is a cycle ofG since if v3 = v5, then deg(v4) = 3
and G would contain an attached cube.

The 2-path u0u1u2 is not shrinkable and hence we have a face v0bv2b′ by Lemma 3.14.
Furthermore, we consider the face-contraction of the face v2v3v4u2 at {v3, u2}. Since
deg(v2),deg(v4) ≥ 4, we do not have to pay attention to the connectivity of the resulting
graph by Lemma 3.12. Also, since u1 is an inner vertex of the hexagon, the face-contraction
preserves the simplicity of the graph. Hence, by Lemma 3.8, we have a face v3cv1c′. By
the same way, we find a face v5av1a′ (see the figure again).

Similarly to the argument in Section 6 and the previous theorem, we consider the possi-
bility of identification of vertices and fill blank non-quadrilateral regions with H1, . . . ,H5

in Lemma 4.4. As a result, we obtain I21, I22 and I23 from this case.

I26(2n+ 1) (n ≥ 2)I24 I25

I21 I22 I23

Figure 16: The 6 families of bipartite P-irreducible quadrangulations without an attached
cube.
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Figure 17: Structures of bipartite P-irreducible quadrangulations with no attached cube.

Case II. G has two adjacent vertices x and y of degree 3: See the inside of the hexagon
in (ii) of Figure 17. Note that each of deg(v0),deg(v2),deg(v3) and deg(v5) is at least 4
since there is no 2-path induced by vertices of degree 3 by the previous argument. As well
as Case I, we consider face-contractions of v1v2xv0 at {v1, x} and v3v4v5y at {v4, y}. By
Lemma 3.8, we have two diagonal 3-curves γ and γ′ passing through {v1, x} and {v4, y},
respectively. We may assume that γ passes v3 as the third vertex, up to symmetry.

If γ′ passes v2, then it (resp., γ) goes through v2av4a′ (resp., v1bv3b′) in (ii) of Fig-
ure 17. We consider the identification of vertices and further fill the blank non-quadrilateral
regions, and obtain I24 and I25. On the other hand, if γ′ passes v0 as the third vertex, then
both of γ and γ′ pass a common face v0v1v4v3 (see (iii) in the figure). However, we can
fill the unique hexagonal region with neither H1, H2 nor H3 in Figure 6.

Case III. All vertices of degree 3 are independent: Let x be a vertex of degree 3 having
neighbors {v0, v2, v4} and v0v1v2v3v4v5 as its link walk. By the assumption, each of
deg(v0),deg(v2) and deg(v4) is at least 4. We consider face-contractions of three faces
incident to x and have some cases depending on the forbidden structure of the resulting
graph. (For example, if each operation yields multiple edges, we have (iv) in Figure 17, but
it is immediately excluded since we can find a simple closed curve intersecting G at only
{v0, v2}.) Further, we try to identify vertices as well as the previous cases but most cases
are not suited other than the following one case.

See (v) in Figure 17 that has the unique blank octagonal region D bounded by a closed
walk v1v2v3av5v4v3b. Note that each of degD(v2),degD(v4),degD(a) and degD(b) is
at least 1, since G has no vertex of degree 2 and no two adjacent vertices of degree 3.
Therefore, D satisfies the conditions of Lemma 5.5. However, putting either O9(2l + 1)
(l ≥ 1) or O10 in Figure 13 into D would yield two adjacent vertices of degree 3. Actually,
when filling D with O9(2l) (l ≥ 1), we obtain I26(2l + 3) = I26(2(l + 1) + 1). Then, we
got the conclusion of the theorem.
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As well as I18[2; s1, . . . , sn], we can naturally define I18[1; s1, . . . , sn] by using (iii) of
Figure 18 which also has the unique hexagonal region.

v1
v0 v2

v3

v4

v5
u0 u1 u2

v1

v0 v2

v3

v4

v1

v0 v2

v3

v4

v5 v5

(i) (ii) (iii)

x

y

x

y

Figure 18: Structures of nonbipartite P-irreducible quadrangulations with no attached
cube.

Theorem 7.4. Let G be a nonbipartite P-irreducible quadrangulation of the projective
plane. If G has no attached cube, then G is isomorphic to I18[1; 1, . . . , 1].

Proof. As well as the proof of Theorem 7.3, we divide our argument into the following
three cases.

Case I. G has a 2-path u0u1u2 induced by three vertices of degree 3: See (i) in Fig-
ure 18. Since G is nonbipartite, we have three semi-diagonal 3-curves passing through
{v0, u1, v2}, {v1, u2, u3} and {v1, u0, v5}, respectively. (Consider the 23-path shrink
u0u1u2 and face-contractions of v2v3v4u2 and v4v5v0u0.) Under the conditions, there
should be three edges v0v2, v1v3 and v1v5 since v0v1v2v3v4v5 forms a cycle of G. By
Lemma 4.3, the quadrilateral region v1v2v0v5 corresponds to a face of G. However, there
is an essential simple closed curve passing through only v0 and v1, a contradiction.

Case II. G has two adjacent vertices x and y of degree 3: See (ii) in Figure 18. Note that
each of deg(v0), deg(v2), deg(v3) and deg(v5) is at least 4. Suppose that v0v1v2v3v4v5 is a
cycle of G. We consider the face-contraction of v0v1v2x (resp., v3v4v5y) at {v1, x} (resp.,
{v4, y}). Then, there are two semi-diagonal 3-curves and hence we have v1v3, v2v4 ∈
E(G), up to symmetry. Clearly, we find an essential simple closed curve intersecting G at
only {v2, v3}, a contradiction.

Therefore, we assume that v0v1v2v3v4v5 is not a cycle of G. Under the conditions,
v1 and v4 must coincide and the other vertices of the closed walk are distinct (see (iii) in
Figure 18). Then the configuration contains a blank hexagonal region v1v2v3v4(= v1)v0v5
and it satisfies the conditions of Lemma 5.3. Now, we apply the result of the lemma. But,
H19 is excluded immediately since it contains an attached cube. In this case, H18[1, . . . , 1]
only fits the region. The resulting graph is clearly I18[1; 1, . . . , 1].

Case III. All vertices of degree 3 are independent: Do the same procedure as in the previous
theorem. (Begin with considering face-contractions of three faces incident to a vertex of
degree 3.) However, we obtain no P-irreducible quadrangulation from this case; since two
adjacent vertices of degree 3 often appear. Therefore, the theorem follows.
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