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Abstract

Let m and n be two integers. In the paper we show that the orientable genus of the join
of a cycle Cm and a complete graph Kn is d (m−2)(n−2)4 e if n = 4 and m ≥ 12, or n ≥ 5
and m ≥ 6n− 13.
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1 Introduction
Let G and H be two disjoint graphs. The join of G with H , denoted by G + H , is the
graph obtained from the union of G and H by adding edges joining every vertex of G to
every vertex of H . A cycle with m vertices is denoted by Cm, and a complete graph with
n vertices denoted by Kn.

Our investigation of the orientable genus of Cm +Kn is inspired by the problem of the
critical graphs on surfaces. A graph G is k-critical if χ(G) = k but χ(G′) < k for every
proper subgraph of G, where χ(H) denotes the chromatic number of a graph H . If G1 is
k-critical and G2 is l-critical, it is known that G1 + G2 is (k + l)-critical. Since an odd
cycle is 3-critical and Kn is n-critical, the join of an odd cycle and Kn is (n+ 3)-critical.
Also, there are only finite many k-critical graphs on a surface if k ≥ 7 ([4, 6, 7, 13]). So
it is an interesting problem to explore the orientable genus of the join of an odd cycle (or a
cycle) and Kn.
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Let us look back the history of studying the orientable genus of the join of two graphs.
Let K̄t be the compliment graph ofKt. The complete bipartite graphKm,n andKn (n ≥ 2)
can be viewed as K̄m + K̄n and K1 +Kn−1, respectively. It is cheerful that the orietable
genera of Kn and Km,n have been determined ([10, 11]). Upon the orientable genus of
K̄m +Kn there are some results. Craft [3] verified that K̄m +Kn has the same orientable
genus as that of Km,n, when n is even and m ≥ 2n − 4. Ellingham and Stephens [5]
determined the orientable genus of K̄m + Kn if n is even and m ≥ n, or n = 2p + 2 for
p ≥ 3 and m ≥ n − 1, or n = 2p + 1 for p ≥ 3 and m ≥ n + 1. Korzhik [8] contributed
many results on the orientable genus of K̄m +Kn with m ≤ n− 2.

Let m ≥ 3 and n ≥ 1 be two integers. If n = 1, then Cm + Kn is a planar graph. If
n = 2, then Cm +Kn has a minor isomorphic to K5. So the orientable genus of Cm +K2

is at least one. Since Cm + K2 can be embedded on the torus, the orientable genus of
Cm + K2 is one. If n = 3, then Kn is exactly the cycle C3. Craft [2] has proved that
the orientable genus of Cm + C3 is dm−24 e. What is the orientable genus of Cm + Kn if
n ≥ 4? In the paper we shall show that the orientable genus of Cm +Kn is d (m−2)(n−2)4 e
if n = 4 and m ≥ 12, or n ≥ 5 and m ≥ 6n− 13.

Since Km,n is a spanning subgraph of Cm + Kn, a lower bound of the oreintable
genus of Cm + Kn is that of Km,n, which is d (m−2)(n−2)4 e. The key to determine the
orientable genus of Cm + Kn is the construction of an embedding of Cm + Kn on the
orientable surface of genus d (m−2)(n−2)4 e. We mainly use two methods of adding tubes to
construct an embedding of Cm + Kn. Our general strategy of constructing an embedding
is as follows. First, we construct an embedding of a spanning subgraph of Cm +Kn which
contains Cm, a spanning subgraph of Kn, and some edges between Cm and Kn on some
orientable surface. Second, we apply the first method of adding tubes described in Section 2
to attach all the rest edges inKn and some edges between Cm andKn. Third, we apply the
second method of adding tubes described in Section 2 to attach all the rest edges between
Cm and Kn.

The remainder of the section is contributed for some terms. The other undefined terms
can be found in [1, 9], or [14].

A surface is a compact connected 2-dimensional manifold without boundary. The ori-
entable surface Sg (g ≥ 0) can be obtained from a sphere with g handles attached, where g
is called the genus of Sg . A graph G is able to embed in a surface S if it can be drawn in
the surface such that any edge does not pass through any vertex and any two edges do not
cross each other. The orientable genus of a connected graph G, denoted by γ(G), is the
smallest nonnegative integer g such that G can be embedded in the orientable surface Sg .

An embedding Π of a connected graph in a surface S is called 2-cell embedding if any
connected component of S−Π, called a face, is homeomorphic to an open disc. In a 2-cell
embedding of a connected graph G, the boundary of a face in Π is a closed walk of G,
which is called the facial walk. If a facial walk is a cycle, then it is called a facial cycle.
Let v be a vertex of a graph G embedded on a surface. A local rotation πv at the vertex v
is a cyclic permutation of the edges incident with v. Suppose that v is incident with edges
vu1, vu2, . . . , vun in this order. Then πv can be written by u1, u2, . . . , un. Furthermore,
if i1, i2, . . . , ik are k continuous numbers in {1, 2, . . . , n}, where 2 ≤ k ≤ n, then we call
ui1 , ui2 , . . . , uik a segment of the local rotation at v.

A graphH is a supergraph ofG ifG is a subgraph ofH . If a cycle with n (≥ 3) vertices
v1, v2, . . . , vn in this order, then it is written by v1v2 . . . vnv1 and it is always oriented by
this order.
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2 Two methods of constructing embeddings
Let D1 and D2 be two facial cycles of a 2-cell embedding on a surface S such that the
orientation of D1 is the reverse of that of D2. By adding a tube T to the surface S between
D1 and D2, we mean that we cut two holes ∆1 and ∆2 in S such that ∆i is in the interior
of Di and orient the boundary of ∆i as that of Di, then the tube T welds ∆1 with ∆2 in
such a way that the rim of one of the ends of T coincides with the boundary of ∆1 and the
rim of the other end of T coincides with the boundary of ∆2.

Lemma 2.1. Suppose that G is a graph which has a vertex subset

{w0, z1, z2, . . . , zt} ∪ {xi | i = 1, 2, . . . , 2t} ∪ {yj | j = 1, 2, . . . , 4t},

where z1, z2, . . . , zt need not be different, and suppose that G contains no edges in the set

E′ = {w0xi | i = 1, 2, . . . , 2t} ∪ {xiyj | i = 1, 2, . . . , 2t; j = 1, 2, . . . , 4t}
∪ ({xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}).

Suppose that Π is a 2-cell embedding of G on the orientable surface Sg with the following
properties:

(i) For i = 1, 2, . . . , t, R0,i = w0y4i−3y4i−2w0 and R′0,i = w0y4i−1y4iw0 are facial
cycles of Π.

(ii) For i = 1, 2, . . . , t, Q0,i = zix2i−1x2izi is a facial cycle of Π such that Q0,i has not
any common vertex with each of R0,1, . . . , R0,t, R

′
0,1, . . . , R

′
0,t.

Then there is a supergraph H of G satisfying the following conditions:

(i) E′ is an edge subset of E(H).

(ii) H has an embedding on the orientable surface of genus g+ 2t2 such that it has a set
of t facial 3-cycles {Qt,i | Qt,i = ylix2i−1x2iyli , i = 1, 2, . . . , t}, where yli is some
vertex in {y4i−3, y4i−2, y4i−1, y4i | i = 1, 2, . . . , t}.

x1

x2

z1

x2t−1

x2t zt

y1
y2

y3

y4

y4t−1

y4t
w0

Figure 1: A local structure in Π.

Remark 2.2.
(1) A local structure of Π is shown in Figure 1.

(2) An application of Lemma 2.1 to the construction of an embedding of Cm +Kn is as
follows. After an embedding of a spanning subgraph ofCm+Kn on some orientable
surface has been constructed, all the rest edges of Kn and some edges between Cm
and Kn can be attached by applying Lemma 2.1.
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Proof. We shall construct an embedding on the surface of genus g + 2t2 from the embed-
ding Π by applying the operation of adding tubes t times. Every time 2t tubes are added to
the present surface.

For i = 1, 2, . . . , t, the tube T0,i is added between Q0,i and R0,i. Next, the five edges
w0x2i, x2i−1y4i−3, x2i−1y4i−2, x2iy4i−3 and x2iy4i−2 are drawn on T0,i in the way shown
in (1) of Figure 2. For i = 1, 2, . . . , t, let Q′0,i = y4i−2x2i−1x2iy4i−2.

w0

zi

y4i−3

x2i−1 x2i

y4i−2 w0

y4i−2 x2i−1

y4i−1

x2i

y4i

(2)(1)

Figure 2: Two drawings of five edges on a tube.

For i = 1, 2, . . . , t, the tube T ′0,i is added between Q′0,i and R′0,i. Next, the five edges
w0x2i−1, x2i−1y4i−1, x2i−1y4i, x2iy4i−1 and x2iy4i are drawn on T ′0,i in the way shown
in (2) of Figure 2.

Need to say that the rectangle represents a tube and that the two dot curves are identified
with each other in Figure 2. In the rest of the paper we always use a rectangle to represent
a tube and the two dot curves in the rectangle are always identified with each other.

For the convenience of argument, the way of drawing edges shown in (i) of Figure 2 is
called the drawing of Type-i for i = 1, 2. To help the readers to understand how those 2t
tubes are added and how five edges are drawn on each tube, we give an example that t = 5
which is shown in Figure 3. The diagrams in Figure 3 are partitioned into four columns
from left to right. The three rectangles in the first column respectively represent T0,1, T0,2
and T0,3 from top to bottom, and the two rectangles in the third column respectively repre-
sent T0,4 and T0,5 from top to bottom. Similarly, the three rectangles in the second column
respectively represent T ′0,1, T

′
0,2 and T ′0,3, and the two rectangles in the fourth column re-

spectively represent T ′0,4 and T ′0,5.
After those 2t tubes have been added, there are three sets of facial 3-cycles which are

X1 = {Q1,i | Q1,i = y4i−1x2i−1x2iy4i−1, i = 1, 2, . . . , t},
Y1 = {R1,i | R1,i = x2i−1y4i−3y4i−2x2i−1, i = 1, 2, . . . , t}, and
Y ′1 = {R′1,i | R′1,i = x2iy4i−1y4ix2i, i = 1, 2, . . . , t}.

For the convenience of argument, we now define t permutations. For k = 0, 1, . . . , t−1,
we define the permutation τk on the set {1, 2, . . . , t} as follows. For i = 1, 2, . . . , t,

τk(i) ≡ i+ (−1)k+1k (mod t),

where 0 ≤ i+ (−1)k+1k ≤ t− 1.
Obviously, τ0 is the identity mapping on {1, 2, . . . , t}. For 0 ≤ k ≤ t− 1, we define

τ ′k(i) ≡

{
τk(i) (mod t), if k = 0,

τ0τ1 · · · τk(i) (mod t), if 1 ≤ k ≤ t− 1,
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Figure 3: The first operation of adding 2t tubes when t = 5.

where 0 ≤ τ ′k(i) ≤ t − 1 and τ0τ1 · · · τk is the product of τ0, τ1, . . . , τk in this order. For
example, τ0τ1(1) = τ1(τ0(1)) = 2.

Thus, Q1,i, R1,i and R′1,i can be alternately expressed as follows:

Q1,i = y4τ ′0(i)−1x2i−1x2iy4τ ′0(i)−1,

R1,i = x2i−1y4τ ′0(i)−3y4τ ′0(i)−2x2i−1, and

R′1,i = x2iy4τ ′0(i)−1y4τ ′0(i)x2i.

We continue to add tubes, and consider two cases.

Case 1: t ≡ 1 (mod 2). In this case we firstly add t tubes T1,1, . . . , T1,t to the present
surface such that T1,i is between Q1,i and R1,τ1(i). Note that

R1,τ1(i) = x2τ1(i)−1y4τ0τ1(i)−3y4τ0τ1(i)−2x2τ1(i)−1, i.e.,
R1,τ1(i) = x2τ1(i)−1y4τ ′1(i)−3y4τ ′1(i)−2x2τ1(i)−1.

For i = 1, 2, . . . , t, the five edges x2i−1y4τ ′1(i)−3, x2i−1y4τ ′1(i)−2, x2iy4τ ′1(i)−3, x2iy4τ ′1(i)−2
and x2ix2τ1(i)−1 are drawn on T1,i in the way of the drawing of Type-1. Thus, there is a
set X ′1 of t facial 3-cycles, where

X ′1 = {Q′1,i | Q′1,i = y4τ ′1(i)−2x2i−1x2iy4τ ′1(i)−2, i = 1, 2, . . . , t}.

Next, the t tubes T ′1,1, . . . , T
′
1,t are added to the present surface such that T ′1,i is between

Q′1,i andR′1,τ1(i). Then the five edges x2i−1y4τ ′1(i)−1, x2i−1y4τ ′1(i), x2iy4τ ′1(i)−1, x2iy4τ ′1(i)
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Figure 4: The second operation of adding 2t tubes when t = 5.

and x2ix2τ1(i) are drawn on T ′1,i in the way of the drawing of Type-2. For example, if
t = 5, the above operation of adding 2t tubes is shown in Figure 4. The order of diagrams
in Figure 4 is as that in Figure 3.

After those 2t tubes have been added, there are three sets X2, Y2, and Y ′2 of facial
3-cycles which are

X2 = {Q2,i | Q2,i = y4τ ′1(i)−1x2i−1x2iy4τ ′1(i)−1, i = 1, 2, . . . , t},
Y2 = {R2,i | R2,i = x2i−1y4τ ′1(i)−3y4τ ′1(i)−2x2i−1, i = 1, 2, . . . , t}, and

Y ′2 = {R′2,i | R′2,i = x2iy4τ ′1(i)−1y4τ ′1(i)x2i, i = 1, 2, . . . , t}.

In general, if the s-th operation (s ≥ 1) of adding 2t tubes has been applied, then there
are three sets of facial 3-cycles, i.e.,

Xs = {Qs,i | i = 1, 2, . . . , t}, Ys = {Rs,i | i = 1, 2, . . . , t}, and
Y ′s = {R′s,i | i = 1, 2, . . . , t}.

Next, we apply the (s+1)-th of adding 2t tubes Ts,1, . . . , Ts,t, T ′s,1, . . . , T
′
s,t to the present

surface satisfying the following conditions.

(1) If 1 ≤ s ≤ t−1
2 , then the tube Ts,i is added between Qs,i and Rs,τs(i), where

i = 1, 2, . . . , t. In this case Rs,τs(i) = x2τs(i)−1y4τ ′s(i)−3y4τ ′s(i)−2x2τs(i)−1. Next,
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the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)−1

are drawn on Ts,i in the way of the drawing of Type-1. After those t tubes have been
added, there is a set X ′s of t facial 3-cycles, where

X ′s = {Q′s,i | Q′s,i = y4τ ′s(i)−2x2i−1x2iy4τ ′s(i)−2, i = 1, 2, . . . , t}.

For i = 1, 2, . . . , t, the tube T ′s,i is added between Q′s,i and R′s,τs(i). Note that
R′s,τs(i) = x2τs(i)y4τ ′s(i)−1y4τ ′s(i)x2τs(i). Next, the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2i−1x2τs(i)

are drawn on T ′s,i in the way of the drawing of Type-2.

After the (s + 1)-th operation of adding 2t tubes has been applied, there are three
sets Xs+1, Ys+1, and Y ′s+1 of facial 3-cycles which are

Xs+1 = {Qs+1,i | Qs+1,i = y4τ ′s(i)−1x2i−1x2iy4τ ′s(i)−1, i = 1, 2, . . . , t},
Ys+1 = {Rs+1,i | Rs+1,i = x2i−1y4τ ′s(i)−3y4τ ′s(i)−2x2i−1, i = 1, 2, . . . , t}, and

Y ′s+1 = {R′s+1,i | R′s+1,i = x2iy4τ ′s(i)−1y4τ ′s(i)x2i, i = 1, 2, . . . , t}.

(2) If t+1
2 ≤ s ≤ t − 1, suppose that k and k′ are the maximum even and odd numbers

which are not more than t−1
2 , respectively. There are two cases to consider.

If s = t+1
2 , t+1

2 + 2, . . . , t+1
2 + k, then the tube Ts,i is added between Qs,i and

R′s,τs(i). Next, the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-1. After those t tubes have been
added, there is a set X ′s of t facial 3-cycles, where

X ′s = {Q′s,i | Q′s,i = y4τ ′s(i)x2i−1x2iy4τ ′s(i), i = 1, 2, . . . , t}.

For i = 1, 2, . . . , t, the tube T ′s,i is added between Q′s,i and Rs,τs(i). Then the five
edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2i−1x2τs(i)−1

are drawn on T ′s,i in the way of the drawing of Type-2. In this case there are three
sets Xs+1, Ys+1, and Y ′s+1 of facial 3-cycles which are

Xs+1 = {Qs+1,i | Qs+1,i = y4τ ′s(i)−3x2i−1x2iy4τ ′s(i)−3, i = 1, 2, . . . , t},
Ys+1 = {Rs+1,i | Rs+1,i = x2iy4τ ′s(i)−3y4τ ′s(i)−2x2i, i = 1, 2, . . . , t}, and

Y ′s+1 = {R′s+1,i | Rs+1,i = x2i−1y4τ ′s(i)−1y4τ ′s(i)x2i−1, i = 1, 2, . . . , t}.
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If s = t+1
2 + 1, t+1

2 + 3, . . . , t+1
2 + k′, then the tube Ts,i is added between Qs,i and

Rs,τs(i). Next, the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-1. After those t tubes have been
added, there is a set X ′s of t facial 3-cycles, where X ′s is the same as in (1). For
i = 1, 2, . . . , t, the tube T ′s,i is added between Q′s,i and R′s,τs(i). Then the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2i−1x2τs(i)−1

are drawn on T ′s,i in the way of the drawing of Type-2. In this case there are three sets
Xs+1, Ys+1, and Y ′s+1 of facial 3-cycles which are the same as in (1), respectively.

Need to say that x2i and x2i−1 are connected with x2τs(i) and x2τs(i)−1 in (2), respec-
tively. However, x2i and x2i−1 are connected with x2τs(i)−1 and x2τs(i) in (1), respectively.

The above operation of adding 2t tubes is not stopped until the t-th operation of adding
2t tubes has been applied. Let Π′ be the obtained embedding. Then Π′ has a set Xt of t
facial 3-cycles, where

Xt = {Qt,i | Qt,i = y4τ ′t(i)−3x2i−1x2iy4τ ′t(i)−3, if t = t+1
2 + k, or

Qt,i = y4τ ′t(i)−1x2i−1x2iy4τ ′t(i)−1, if t = t+1
2 + k′}.

Since there are 2t × t (= 2t2) tubes being used all together, Π′ is an embedding on the
orientable surface of genus g + 2t2.

Let H be the graph corresponding to Π′. We need to show that H satisfies the demands
of the theorem. Before the proof, we give an example that t = 5 to illustrate how all
50 tubes are added and how all desired edges are attached. The former two operations
of adding 10 tubes are shown in Figure 3 and Figure 4, respectively. The latter three
operations of adding 10 tubes are shown in Figure 5. Need to say that the five rectangles
in the first column upon (3) respectively represent T2,1, . . . , T2,5, and the five rectangles in
the second column upon (3) respectively represent T ′2,1, . . . , T

′
2,5 in Figure 5. Similarly, the

first column upon (4) respectively represent T3,1, . . . , T3,5, and the second column upon (4)
respectively represent T ′3,1, . . . , T

′
3,5 in Figure 5. The order in (5) in Figure 5 is the same

as that in Figure 3.
We now show that H satisfies all demands of the theorem.

Claim 2.3. w0 is connected with each of x1, x2, . . . , x2t.

According to the first operation of adding 2t tubes, Claim 2.3 is obvious.

Claim 2.4. For i = 1, 2, . . . , 2t and j = 1, 2, . . . , 4t, xi is connected with yj in H .

For i = 1, 2, . . . , 2t, each of x2i−1 and x2i is connected with y4τ ′s(i)−3, y4τ ′s(i)−2,
y4τ ′s(i)−1, and y4τ ′s(i) after the (s + 1)-th operation of adding 2t-tubes has been applied,
where 1 ≤ s ≤ t − 1. Considering that any two of y4τ ′s(i)−3, y4τ ′s(i)−2, y4τ ′s(i)−1, and
y4τ ′s(i) are distinct, it is sufficient to show the following proposition.
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Figure 5: The latter three operations of adding 2t tubes when t = 5.



232 Ars Math. Contemp. 17 (2019) 223–253

Proposition 2.5. For i = 1, 2, . . . , t, τ ′s1(i) 6= τ ′s2(i) if 1 ≤ s1, s2 ≤ t− 1 and s1 6= s2.

Assume for the sake of contradiction that there are two distinct number s1 and s2 such
that τ ′s1(i) = τ ′s2(i) for some i. Without loss of generality, suppose that s1 > s2. Since
τ ′s(i) ≡ τ0τ1 · · · τs(i) (mod t) and τj(i) ≡ i+ (−1)j+1j (mod t), we have that

τ ′s1(i) ≡ i+
∑s1

k=0
(−1)k+1k ≡ τ ′s2(i) ≡ i+

∑s2

l=0
(−1)l+1l(mod t).

Hence ∑s1

k=0
(−1)k+1k ≡

∑s2

l=0
(−1)l+1l (mod t).

Thus, ∑s1

k=s2+1
(−1)k+1k ≡ 0 (mod t).

Since 1 ≤ s1 ≤ t− 1, we have that∑s1

k=s2+1
(−1)k+1k 6≡ 0 (mod t).

Then there is a contradiction. Thus, the proposition is verified.

Claim 2.6. H contains the edge set

{xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}.

In fact, there are 2t edges being added such that each has the form xkxj (k 6= j) except
for the form x2i−1x2i after the (s + 1)-th operation of adding 2t tubes has been applied,
where 1 ≤ s ≤ t− 1. So there are 2t(t− 1) edges of the form xixj being added after the
t-th operation of adding tubes has been applied. We now show that any two edges in those
2t(t− 1) edges are different. We need the following proposition.

Proposition 2.7. Suppose that s1 and s2 are two distinct integers such that 1 ≤ s1, s2 ≤
t− 1. If s1 + s2 ≡ 0 (mod t), then τs1(i) = τs2(i).

In fact,

τs1(i) ≡ i+ (−1)s1+1s1 ≡ i+ (−1)t−s2+1(t− s2) ≡ i+ (−1)t−s2s2 (mod t).

Since t ≡ 1 (mod 2), (−1)t−s2 = (−1)s2+1. So τs1(i) ≡ i + (−1)s2+1s2 (mod t). In
other words, τs1(i) = τs2(i).

According to the rule of the (s+ 1)-th operation of adding 2t tubes, x2i and x2i−1 are
respectively connected with x2τs(i)−1 and x2τs(i) if 1 ≤ s ≤ t−1

2 , and x2i and x2i−1 are
respectively connected with x2τs(i) and x2τs(i)−1 if t+1

2 ≤ s ≤ t− 1. By Proposition 2.7,
the pair of vertices connected with the pair of x2i−1 and x2i in the s2-th operation of
adding 2t tubes is the same as the pair connected with the pair of x2i−1 and x2i in the s1-th
operation of adding 2t tubes if s1 + s2 ≡ 0 (mod t) and 1 ≤ s1, s2 ≤ t − 1. But the
methods of two connections are different.

We now view the pair of x2i−1 and x2i as a vertex ui, where i ∈ {1, 2, . . . , t}. In
order to show Claim 2.6, it is sufficient to show that up is connected with uq , where p, q ∈
{1, 2, . . . , t} and p 6= q. For the purpose, it is sufficient to show that there exists some k
such that τk(p) = q or τk(q) = p. By Proposition 2.7, it is sufficient to show that for any
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two distinct number i, j ∈ {1, 2, . . . , t}, there exists some k ∈ {1, 2, . . . , t−12 } such that
τk(i) ≡ j (mod t) or τk(j) ≡ i (mod t).

Without loss of generality, suppose that j > i. If j − i ≡ 1 (mod 2), there are two
cases to consider. If j − i ≤ t−1

2 , let k = j − i. Then

τk(i) ≡ i+ (−1)k+1k ≡ i+ (j − i) ≡ j (mod t).

So τk(i) = j. If j − i > t+1
2 , let k = t− (j − i). Then

τk(i) ≡ i+ (−1)k+1k ≡ i− t+ j − i ≡ j (mod t).

So τk(i) = j. If j − i ≡ 0 (mod 2), there are two cases to consider. If j − i ≤ t−1
2 , let

k = j − i. Then

τk(j) ≡ j + (−1)k+1k ≡ j − (j − i) ≡ i (mod t).

Thus, τk(j) = i. If j − i > t+1
2 , let k = t− (j − i). Then

τk(j) ≡ j + (−1)k+1k ≡ j + t− j + i ≡ i (mod t).

So τk(j) = i.
Therefore, up is connected with uq , where p 6= q. Thus, Claim 2.6 has been proved.

Case 2: t ≡ 0 (mod 2). We proceed the similar argument to that in Case 1. Let Xs,
Ys, and Y ′s be the sets of facial 3-cycles defined in Case 1. When the (s + 1)-th operation
of adding 2t tubes Ts,1, . . . , Ts,t, T ′s,1, . . . , T

′
s,t will be applied, it satisfies the following

conditions.

(1) If 1 ≤ s ≤ t
2 − 1, then the ways of adding 2t tubes and drawing the five edges are

similar to that in (1) of Case 1.

(2) If s = t
2 , we consider two cases. If 1 ≤ i ≤ t

2 , then the tube T t
2 ,i

is added between
Q t

2 ,i
and R t

2 ,τ t
2
(i), and the five edges

x2i−1y4τ ′t
2

(i)−3, x2i−1y4τ ′t
2

(i)−2, x2iy4τ ′t
2

(i)−3,

x2iy4τ ′t
2

(i)−2, and x2i−1x2τ t
2
(i)−1

are drawn on T t
2 ,i

in the way of the drawing of Type-1.

If t
2 + 1 ≤ i ≤ t, then the tube T t

2 ,i
is added between Q t

2 ,i
and R′t

2 ,τ t
2
(i)

, and the

five edges

x2i−1y4τ ′t
2

(i)−1, x2i−1y4τ ′t
2

(i), x2iy4τ ′t
2

(i)−1,

x2iy4τ ′t
2

(i), and x2ix2τ t
2
(i)

are drawn on T t
2 ,i

in the way of the drawing of Type-1.

After those t tubes have been added, there is a set X ′t
2

of t facial 3-cycles, where

X ′t
2

= {Q′t
2 ,i
| Q′t

2 ,i
= y4τ ′t

2

(i)−2x2i−1x2iy4τ ′t
2

(i)−2, if i = 1, 2, . . . , t2 , or

Q′t
2 ,i

= y4τ ′t
2

(i)x2i−1x2iy4τ ′t
2

(i), if i = t
2 + 1, t2 + 2, . . . , t− 1}.



234 Ars Math. Contemp. 17 (2019) 223–253

Next, if 1 ≤ i ≤ t
2 , then the tube T ′t

2 ,i
is added between Q′t

2 ,i
and R′t

2 ,τ t
2
(i)

, and the

five edges

x2i−1y4τ ′t
2

(i)−1, x2i−1y4τ ′t
2

(i), x2iy4τ ′t
2

(i)−1,

x2iy4τ ′t
2

(i), and x2i−1x2τ t
2
(i)

are drawn on T ′t
2 ,i

in the way of the drawing of Type-2. If t
2 + 1 ≤ i ≤ t, then the

tube T ′t
2 ,i

is added between Q′t
2 ,i

and R t
2 ,τ t

2
(i), and the five edges

x2i−1y4τ ′t
2

(i)−3, x2i−1y4τ ′t
2

(i)−2, x2iy4τ ′t
2

(i)−3,

x2iy4τ ′t
2

(i)−2, and x2i−1x2τ t
2
(i)−1

are drawn on T ′t
2 ,i

in the way of the drawing of Type-2. There are three sets X t
2+1,

Y t
2+1, and Y ′t

2+1
of facial 3-cycles, where

X t
2+1 = {Q t

2+1,i | Q t
2+1,i = y4τ ′t

2

(i)−1x2i−1x2iy4τ ′t
2

(i)−1, if i = 1, . . . , t2 , or

Q t
2+1,i = y4τ ′t

2

(i)−3x2i−1x2iy4τ ′t
2

(i)−3, if i = t
2 + 1, . . . , t},

Y t
2+1 = {R t

2+1,i | R t
2+1,i = x2i−1y4τ ′t

2

(i)−3y4τ ′t
2

(i)−2x2i−1, if i = 1, . . . , t2 , or

R t
2+1,i = x2i−1y4τ ′t

2

(i)−1y4τ ′t
2

(i)x2i−1 if i = t
2 + 1, . . . , t},

Y ′t
2+1 = {R′t

2+1,i | R
′
t
2+1,i = x2iy4τ ′t

2

(i)−1y4τ ′t
2

(i)x2i, if i = 1, . . . , t2 , or

R′t
2+1,i = x2iy4τ ′t

2

(i)−3y4τ ′t
2

(i)−2x2i if i = t
2 + 1, . . . , t}.

(3) If t
2 + 1 ≤ s ≤ t − 1, then the tube Ts,i is added between Qs,i and R′s,τs(i). Since

R′s,τs(i) has two forms, we say that

• R′s,τs(i) is of Class 1 if R′s,τs(i) has the form x2iy4τ ′s(i)−1y4τ ′s(i)x2i, and
• R′s,τs(i) is of Class 2 if R′s,τs(i) has the form x2iy4τ ′s(i)−3y4τ ′s(i)−2x2i.

Similarly, we say that

• Rs,τs(i) is of Class 1 if Rs,τs(i) has the form x2i−1y4τ ′s(i)−1y4τ ′s(i)x2i−1, and
• Rs,τs(i) is of Class 2 if Rs,τs(i) has the form x2i−1y4τ ′s(i)−3y4τ ′s(i)−2x2i−1.

If R′s,τs(i) is of Class 1, then the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-1. If R′s,τs(i) is of Class 2, then
the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)
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are drawn on Ts,i in the way of the drawing of Type-1. Then there is a set X ′s of t
facial cycles, where

X ′s = {Q′s,i | Qs,i = y4τ ′s(i)−2x2i−1x2iy4τ ′s(i)−2, if R′s,τs(i) is of Class 1, or

Q′s,i = y4τ ′s(i)x2i−1x2iy4τ ′s(i), if R′s,τs(i) is of Class 2}.

Next, the tube T ′s,i is added between Q′s,i and Rs,τs(i). If Rs,τs(i) is of Class 1, then
the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2ix2τs(i)

are drawn on T ′s,i in the way of the drawing of Type-2. If Rs,τs(i) is of Class 2, then
the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-2. Then there are three sets
Xs+1, Ys+1 and Y ′s+1 of t facial cycles, where

Xs+1 = {Qs+1,i | Qs+1,i = y4τ ′s(i)−2x2i−1x2iy4τ ′s(i)−2, if R′s,τs(i) is of Class 1,

or Qs+1,i = y4τ ′s(i)x2i−1x2iy4τ ′s(i), if R′s,τs(i) is of Class 2},
Ys+1 = {Rs+1,i | Rs+1,i = x2i−1y4τ ′s(i)−3y4τ ′s(i)−2x2i−1, if Rs,τs(i) is of Class 1,

or Rs+1,i = x2i−1y4τ ′s(i)−1y4τ ′s(i)x2i−1, if Rs,τs(i) is of Class 2},
Y ′s+1 = {R′s+1,i | R′s+1,i = x2iy4τ ′s(i)−3y4τ ′s(i)−2x2i, if R′s,τs(i) is of Class 1,

or R′s+1,i = x2iy4τ ′s(i)−1y4τ ′s(i)x2i, if R′s,τs(i) is of Class 2}.

The above operation of adding 2t tubes is not stopped until the t-th operation of adding
2t tubes has been applied. Let Π′ be the obtained embedding and let H the graph corre-
sponding to Π′. Clearly, Π′ is an embedding on the orientable surface of genus g + 2t2,
and Π′ has a set Xt of t facial 3-cycles in which each has the form Qt,i = ylix2i−1x2iyli ,
where yli ∈ {y4j−3, y4j−2, y4j−1, y4j | j = 1, 2, . . . , t}.

In order to help readers to understand the procedure of adding tubes in this case, we give
an example that t = 4 which is shown in Figure 6. For i = 1, 2, 3, 4, the four rectangles
in the first column of (i) respectively represent Ti,1, . . . , Ti,4 from top to bottom, and the
four rectangles the second column of (i) respectively represent T ′i,1, . . . , T

′
i,4 from top to

bottom.
We need to show that H satisfies the demands of the theorem. Obviously, w0 is con-

nected with each of x1, x2, . . . , x2t in H . By the similar argument as in Case 1, one can
show that for i = 1, 2, . . . , 2t and j = 1, 2, . . . , 4t, xi is connected with yj in H .

Claim 2.8. H contains the edge set

{xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}.
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Figure 6: The operations of adding 2t tubes when t = 4.
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We proceed the similar argument to that in Claim 2.6. Obviously, there are 2t(t − 1)
edges of the form xkxj (k 6= j) except for the form x2i−1x2i after the t-th operation of
adding 2t tubes has been applied. According to the rule of the (s + 1)-th operation of
adding 2t tubes, x2i and x2i−1 are connected with x2τs(i)−1 and x2τs(i), respectively, if
1 ≤ s ≤ t

2 − 1 or s = t
2 and i = 1, 2, . . . , t2 , and x2i and x2i−1 are connected with x2τs(i)

and x2τs(i)−1, respectively, if t
2 + 1 ≤ s ≤ t − 1 or s = t

2 and i = t
2 + 1, t2 + 2, . . . , t.

We now consider the relation between τs1(i) and τs2(i), where 1 ≤ s1, s2 ≤ t − 1 and
s1 + s2 ≡ 0 (mod t). We have the following proposition.

Proposition 2.9. Suppose that s1 and s2 are two integers such that 1 ≤ s1, s2 ≤ t− 1. If
s1 + s2 ≡ 0 (mod t), then τs1(t− i) = t− τs2(i) or τs2(i) = t− τs1(t− i).

In fact,

τs1(t− i) ≡ t− i+ (−1)s1+1s1 ≡ t− i+ (−1)t−s2+1(t− s2)

≡ t− i+ (−1)t−s2s2 (mod t).

Since t ≡ 0 (mod 2), (−1)t−s2 = (−1)s2 . So

τs1(t− i) ≡ t− i+ (−1)s2s2 ≡ t− (i+ (−1)s2+1s2) ≡ t− τs2(i) (mod t).

In other words, τs1(t− i) = t− τs2(i), or τs2(i) = t− τs1(t− i).
Thus, the pair of vertices of the form x2τs2 (i)−1 and x2τs2 (i) connected with the pair

of x2i−1 and x2i in the (s2 + 1)-th operation of adding 2t tubes is the same as the pair of
vertices of the form x2(t−τs1 (t−i))−1 and x2(t−τs1 (t−i)) connected with the pair of x2i−1
and x2i in the (s1+1)-th operation of adding 2t tubes if 0 ≤ s1, s2 ≤ t−1 and s1+s2 ≡ 0
(mod t). But the methods of two connections are different. We now view the pair of
x2i−1 and x2i as a vertex ui, where i ∈ {1, 2, . . . , t}. In order to show Claim 2.8, it is
sufficient to show that up is connected with uq , where p, q ∈ {1, 2, . . . , t} and p 6= q.
For the purpose, it is sufficient to show that there exists some k such that τk(p) = q or
τk(q) = p. By Proposition 2.9, it is sufficient to show that for any two distinct numbers
i, j ∈ {1, 2, . . . , t2}, there exists some k ∈ {1, 2, . . . , t} such that τk(i) = j or τk(j) = i.

Without loss of generality, suppose that j > i. If j − i ≡ 1 (mod 2), let k = j − i.
Then

τk(i) ≡ i+ (−1)k+1k ≡ i+ (j − i) ≡ j (mod t).

So τk(i) = j. If j − i ≡ 0 (mod 2), let k = j − i. Then

τk(j) ≡ j + (−1)k+1k ≡ j − (j − i) ≡ i (mod t).

So τk(j) = i. Hence up is connected with uq for p 6= q. Thus, Claim 2.8 has been proved.
Therefore, the obtained embedding is as required.

In the proof of Lemma 2.1, we apply the operation of adding 2t tubes t times starting
from X0, Y0 and Y ′0 to construct an embedding of H , where X0 = {Q0,i | i = 1, 2, . . . , t},
Y0 = {R0,i | i = 1, 2, . . . , t}, Y ′0 = {R′0,i | i = 1, 2, . . . , t}. We call the above procedure
the operation of adding 2t2 tubes starting from X0, Y0 and Y ′0. Lemma 2.10 below is an
analogue of Lemma 2.1. The vertex w0 in Lemma 2.1 is replaced with two vertices w′0, w′′0
in Lemma 2.10, and the others are not changed. The proof is similar to that in the proof of
Lemma 2.1, which is omitted here.
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Lemma 2.10. Suppose that G is a graph which has a vertex subset

{w′0, w′′0 , z1, z2, . . . , zt} ∪ {xi | i = 1, 2, . . . , 2t} ∪ {yj | j = 1, 2, . . . , 4t},

where z1, z2, . . . , zt need not be different, and suppose that G contains no edges in the set

E′ = {w′0x2i−1, w′′0x2i | i = 1, 2, . . . , t} ∪ {xiyj | i = 1, 2, . . . , 2t; j = 1, 2, . . . , 4t}
∪ ({xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}).

Suppose that Π is a 2-cell embedding of G on the orientable surface Sg with the following
properties:

(i) For i = 1, 2, . . . , t, R0,i = w′0y4i−3y4i−2w0 and R′0,i = w′′0y4i−1y4iw0 are facial
cycles of Π.

(ii) For i = 1, 2, . . . , t, Q0,i = zix2i−1x2izi is a facial cycle of Π such that Q0,i has not
any common vertex with each of R0,1, . . . , R0,t, R

′
0,1, . . . , R

′
0,t.

Then there is a supergraph H of G satisfying the following conditions:

(i) E′ is an edge subset of E(H).

(ii) H has an embedding on the orientable surface of genus g+ 2t2 such that it has a set
of t facial 3-cycles {Qt,i | Qt,i = ylix2i−1x2iyli , i = 1, 2, . . . , t}, where yli is some
vertex in {y4i−3, y4i−2, y4i−1, y4i | i = 1, 2, . . . , t}.

We now introduce another method of constructing an embedding, which is used in the
proof of Lemma 2.11.

Lemma 2.11. Let k and l be two positive integers. Suppose that G has a vertex subset

{w, z} ∪ {xi, yj | i = 1, 2, . . . , 2l, j = 1, 2, . . . , 2k},

and suppose that G contains no edges in

E′ = {xiyj | i = 1, 2, . . . , 2l, j = 1, 2, . . . , 2k}.

If G has a 2-cell embedding Π on the orientable surface Sg such that Fi = wx2i−1x2iw
and F ′j = zy2j−1y2jz are facial cycles in Π for i = 1, 2, . . . , l and j = 1, 2, . . . , k, then
there is a supergraph H of G with the following properties:

(i) E′ is an edge subset of H .

(ii) H has an embedding on the orientable surface of genus g + kl such that it has a
set of l facial 3-cycles in which each has the form yhi

x2i−1x2iyhi
, where yhi

∈
{y1, y2, . . . , y2k}.

Proof. We construct an embedding from Π as follows.

(1) Let D1,1 = F1. Then the tube T1,1 is added between D1,1 and F ′1. Next, the four
edges x1y1, x1y2, x2y1 and x2y2 are drawn on T1,1 in the way shown in Figure 7.
Let D1,2 = y1x1x2y1, and let Q1,1 = x2y1y2x2. The tube T1,2 is now added
between D1,2 and F ′2, and the four edges x1y3, x1y4, x2y3 and x2y4 are drawn on
it in the similar way as in Figure 7. Let D1,3 = y3x1x2y3 and Q1,2 = x2y3y4x2.
Then D1,3 and F ′3 are dealt with as D1,2 and F ′2, and so on. The procedure is not
stopped until F ′k has been dealt with. Thus, we obtain k facial cyclesQ1,1, . . . , Q1,k,
where Q1,i = x2y2i−1y2ix2. Moreover, both x1 and x2 are connected with each of
y1, y2, . . . , y2k.
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x1

y2
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z

w

Figure 7: The drawing of the four edges in T1,1.

(2) Let Q1 = {Q1,1, Q1,2, . . . , Q1,k}. Then the tube T2,1 is added between F2 and
Q1,1, and the four edges x3y1, x3y2, x4y1 and x4y2 are drawn on it in the similar
way as in Figure 7, and so on. The procedure is stopped tillQ1,k has been dealt with.
Then we obtain a set of facial walks Q2 = {Q2,1, Q2,2, . . . , Q2,k} such that Q2,i =
x4y2i−1y2ix4. Moreover, both x3 and x4 are connected with each of y1, y2, . . . , y2k.

(3) Q2 and F3 are dealt with in the similar way to that of Q1 and F2, and so on. The
procedure is stopped till Fl has been dealt with. Then xi is connected with each of
y1, y2, . . . , y2k for i = 1, 2, . . . , 2l, and there is a set of l facial 3-cycles in which
each has the form yhi

x2i−1x2iyhi
. Moreover, there are kl tubes to be added to the

primitive surface all together. So the obtained embedding Π′ is one on the orientable
surface of genus g + kl. Let H be the graph corresponding to Π′. It is easy to find
that E′ is an edge set of H .

Let F1 = {F1, F2, . . . , Fl}, and let F2 = {F ′1, F ′2, . . . , F ′k}. We call the procedure of
constructing an embedding in the proof of Lemma 2.11 the operation of adding tubes with
respect to F1 and F2.

3 An upper bound for γ(Cm +Kn) ifm is odd
From now on we always suppose that m ≥ 3 and n ≥ 4, that Cm = u1u2 . . . umu1, and
that the vertex set of Kn is {v1, v2, . . . , vn}. If no confusion occur, a face and its boundary
in an embedding are not distinguished in the rest of the paper.

Lemma 3.1. Suppose that m ≡ 1 (mod 2) and n ≡ 0 (mod 4). If m ≥ 4n− 5, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We shall construct an embedding of Cm + Kn on the oreintable surface of genus
d (m−2)(n−2)4 e in the following steps.

(1) In the step we shall construct an embedding on a sphere in which each of v1 and v2
is connected with each of u1, u2, . . . , um, and each of u1 and u2 is connected with
each of v1, v2, . . . , vn.

First, Cm is placed in the equator of the sphere, and both v1 and v2 are situated at the
northern pole and the southern pole, respectively. Second, each of v1 and v2 joins to
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each of u1, u2, . . . , um, and the path P = v3v4 . . . vn is placed in the interior of the
face v1u1u2v1 such that v3 is near to v1. Third, v3 joins to v1, and each of u1 and
u2 joins to each of v3, v4, . . . , vn. Thus, we obtain an embedding Π1 on the sphere,
which is shown in Figure 8.

um u3

v2

v4

v3

v1

vnu1 u2

Figure 8: The embedding Π1.

(2) In the step we shall add n
4 tubes to the sphere such that u3 is connected with each of

v3, v4, . . . , vn, and v1 joins to v2.

The tube T1 is now added between the facial cycles u2v3v4u2 and v2u2u3v2. Next,
the edge u2v3 is redrawn such that it is on T1 and a segment of local rotation at u2 in
clockwise is that v4, v1, u3, v3. Then there is a facial walk W1 = u3v2u2v3v1u2v4
v3u2u3. Let Z1 = u3v2u2v3v1u2v4v3. Then W1 = Z1u2u3.

The tube T2 is added between the facial cycle u2v8v7u2 andW1. Then the two edges
u2v7 and u2v6 are redrawn on T2 such that a segment of local rotation at u2 in clock-
wise is that u3, v7, v6, v3. Thus, there is a facial walk W2 = Z1u2v6v5u2v8v7u2u3.
Let Z2 = u2v6v5u2v8v7. Thus, W2 = Z1Z2u2u3.

For i = 3, 4, . . . , n4 , the tube Ti is added between the facial cycle u2v4iv4i−1u2
and Wi−1. Next, both edges u2v4i−1 and u2v4i−2 are redrawn on Ti such that a
segment of local rotation at u2 in clockwise is that u3, v4i−1, v4i−2 and v4i−5. Then
there is a facial walk Wi = Z1Z2 . . . Zi−1u2v4i−2v4i−3u2v4iv4i−1u2u3. Let Zi =
u2v4i−2v4i−3u2v4iv4i−1. Thus, Wi = Z1Z2 . . . Ziu2u3.

After the tube Tn
4

has been added, there is a facial walkWn
4

= Z1Z2 . . . Zn
4−1u2u3.

For i = 2, 3, . . . , n4 , each of v4i−3, v4i−2, v4i−1 and v4i appears in Zi once, but it
does not appear in Zj if i 6= j. Also, v4 appears in Z1 once, but it does not appear
in Zj if j 6= 1. In the interior of the face Wn

4
, u3 joins to each of v4, v5, . . . , vn,

and v1 joins to v2. For example, if n = 8, W2 and all added edges in the interior of
W2 are shown in Figure 9. Let Π2 be the embedding obtained from Π1 by the above
operation of adding tubes. Then Π2 is an embedding on the surface of genus n

4 .

(3) In the step we shall add 2(n2−1)2 tubes to the present surface satisfying the following
conditions:

(i) v1 is connected with each of v3, v4, . . . , vn,
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Figure 9: W2 and all edges added in the interior of W2.

(ii) for i = 3, 4, . . . , n and j = 4, 5, . . . , 2n− 1, vi is connected with uj , and
(iii) all edges in the set

{vivi+1, . . . , vivn | i = 3, . . . , n− 1} \ {v2i+1v2i+2 | i = 1, . . . , n−22 }

are added.

For the above purpose, let

X0 = {Q0,i | Q0,i = u1v2i+1v2i+2u1, i = 1, 2, . . . , n2 − 1},
Y0 = {R0,i | R0,i = v1u4iu4i+1v1, i = 1, 2, . . . , n2 − 1}, and
Y ′0 = {R′0,i | R′0,i = v1u4i+2u4i+3v1, i = 1, 2, . . . , n2 − 1}.

Then we apply the operation of adding 2(n2 − 1)2 tubes starting from X0, Y0, and
Y ′0. By Lemma 2.1, an embedding Π3 is obtained which satisfies all the requirements
and contains a set A0 = {A0,1, A0,2, . . . , A0,n2−1} of facial 3-cycles such that A0,i

has the form ukiv2i+1v2iuki , where uki ∈ {uj | j = 4, 5, . . . , 2n− 1}.
(4) In the step we shall add 2(n2 − 1)2 tubes to present surface satisfying the following

conditions:

(i) v2 is connected with v3, v4, . . . , vn,
(ii) for i = 3, 4, . . . , n and j = 2n, 2n+ 1, . . . , 4n− 5, vi is connected with uj .

For the above purpose, let

B0 = {B0,i | B0,i = v2u2n+4i−4u2n+4i−3v2, i = 1, 2, . . . , n2 − 1}, and
B′0 = {B′0,i | B′0,i = v2u2n+4i−2u2n+4i−1v2, i = 1, 2, . . . , n2 − 1}.

We now apply the operation of adding 2(n2 −1)2 tubes starting fromA0, B0, and B′0.
By Lemma 2.1, an embedding Π4 is obtained which satisfies all the requirements
and contains a set F = {F1, F2, . . . , Fn

2−1} of facial 3-cycles such that Fi has the
form uliv2i+1v2i+2uli , where uli ∈ {uj | j = 2n, 2n+ 1, . . . , 4n− 5}. At last, all
edges of the form vivj added in the above operations are deleted, since these edges
have been existed. Note that the deletion of these edges does not affect each cycle
in F .
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(5) If m = 4n − 5, then there is nothing to do. If m > 4n − 5, then we shall add
tubes to the present surface such that vi is connected with each of u4n−4, . . . , um for
i = 3, 4, . . . , n.

Let
D = {Di | Di = v1u4n+2i−6u4n+2i−5v1, i = 1, 2, . . . , m−4n+5

2 }.

We now use the operation of adding tubes respect to F and D. By Lemma 2.11,
there are (n−2)(m−4n+5)

4 tubes being used, and vi is connected with uj , where
i ∈ {3, 4, . . . , n} and j ∈ {4n− 4, 4n− 3, . . . ,m}. Let Π5 be the obtained embed-
ding. Then it is an embedding of Cm +Kn on the surface of genus

n

4
+

(n− 2)2

2
+

(n− 2)2

2
+

(n− 2)(m− 4n+ 5)

4
.

By simple counting, we have that

n

4
+

(n− 2)2

2
+

(n− 2)2

2
+

(n− 2)(m− 4n+ 5)

4
=
n

4
+

(n− 2)(m− 3)

4
.

Since n ≡ 0 (mod 4),⌈
(m− 2)(n− 2)

4

⌉
=

⌈
n− 2

4

⌉
+

(n− 2)(m− 3)

4
=
n

4
+

(n− 2)(m− 3)

4
.

So

n

4
+

(n− 2)2

2
+

(n− 2)2

2
+

(n− 2)(m− 4n+ 5)

4
=

⌈
(m− 2)(n− 2)

4

⌉
.

Hence, γ(Cm +Kn) ≤ d (m−2)(n−2)4 e.

Lemma 3.2. Suppose that m ≡ 1 (mod 2) and n ≡ 2 (mod 4). If m ≥ 4n− 3, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We construct an embedding of Cm + Kn in the similar way to that in the proof of
Lemma 3.1.

(1) First, place Cm, v1, and v2 on a sphere and add edges as (1) in the proof of Lem-
ma 3.1. Let F1 = v1u1u2v1, F2 = v1u2u3v1, and F3 = v1u4u5v1. The path
P = v7v8 . . . vn is now placed in the interior of F1, and each of u1 and u2 joins
to each of v7, v8, . . . , vn. Next, both v3 and v5 are placed in the interior of F2, and
they join to each of u2 and u3, respectively. Similarly, both v4 and v6 are placed in
the interior of F3, and they join to each of u4 and u5, respectively. Let Π1 be the
obtained embedding on the sphere, which is shown in Figure 10.

The edge u3u4 is now deleted from Π1. Then the face v1u3u4v1 and the face
v2u3u4v2 are merged into a face F4 = v1u3v2u4v1. Next, the edge v1v2 is drawn
in the interior of F4. Let F5 = u2v3u3v5u2 and F6 = u4v4u5v6u4. The tube T1 is
added between F5 and F6. Then the five edges are drawn on T1 in the way shown in
(1) in Figure 11. Let F7 = u2v3u4v6u2 and F8 = u3v4u5v5u3. Next, the tube T2 is
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Figure 10: The embedding Π1.
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Figure 11: The drawing of edges on T1 or T2.

added between F7 and F8. Then the five edges are drawn on T2 in the way shown in
(2) in Figure 11.

We observe that the local rotation at u2 in clockwise is that u1, vn, . . . , v1, v3, v4, v6,
v5, u3, v2. Let F9 = u2v6u3v4u2, which is a facial cycle (refer to (2) in Fig-
ure 11). Let F10 = u1vnu2u1 (refer to Figure 10) if n > 6, or F10 = u1v1u2u1
if n = 6. The tube T3 is now added between F9 and F10. Then the edges u2v5
and u2v4 are redrawn on T3 such that a segment of the local rotation at u2 is that
u1, v6, v4, vn, v3, v5. Thus, there is a facial walk W ′1 = u1u2v4v3u2v5u5v6u2vnu1.
Next, u1 joins to each of v3, v4, v5, v6, and v5 joins to v6. Then there are two facial
cycles Q0,1 = u1v4v3u1 and Q0,2 = u1v5v6u1.

(2) If n = 6, there is nothing to do. If n > 6, then we shall add 3(n−2)
4 tubes to the

present surface such that ui is connected with each of v3, v4, . . . , vn for i = 3, 4, 5.

Let F11 = v1u3v3u2v1 (refer to Figure 10). For i = 1, 2, . . . , n−64 , let F ′i =
u2v4i+4v4i+5u2. The tube T ′1 is added between F ′1 and F11. Then two edges u2v4i+4

and u2v4i+5 are redrawn on T ′1. There is a facial walk W1 = u2v3u3v1u2v9v10u2
v7v8u2. For i = 2, . . . , n−64 , the tube T ′i is added between F ′i and Wi−1, where
Wi−1 is a facial walk which contains v7, . . . , v4i+2 after T ′i−1 has added. Next,
both u2v4i+4 and u2v4i+5 are redrawn on T ′i and a segment in the local rotation
at u2 in clockwise is that u4(i−1)+5, u4i+4, u4i+5, and u3. After the tube T ′n−6

4

has been added, there is a facial walk Wn−6
4

which contains u3, v7, v8, . . . , vn.
Moreover, each of v7, v8, . . . , vn appears in Wn−6

4
once. Next, u3 joins to each
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of v7, v8, . . . , vn. There are n−6
2 facial 3-cycles D1, D2, . . . , Dn−6

2
, where Di =

u3v2i+5v2i+6u3.

LetF12 = u4v4u5u4 (refer to Figure 10). LetF = {F12}, and letD = {D1, D2, . . . ,
Dn−6

2
}. Using the operation of adding tubes with respect toD and F , each of u4 and

u5 is connected with each of v7, v8, . . . , vn. By Lemma 2.11, there are n−6
2 tubes

being used. Also, there are n−6
2 facial cyclesQ0,3, . . . , Q0,n−2

2
in whichQ0,i has the

form uliv2i+1v2i+2uli , where uli ∈ {u4, u5}. Let Π2 be the embedding obtained
from Π1 by the above procedures. Then Π2 is an embedding on the surface of genus
3 + n−6

4 + n−6
2 (= 3(n−2)

4 ). Moreover, ui is connected with each of v1, v2, . . . , vn
for i = 1, 2, . . . , 5.

(3) For i = 1, 2, . . . , n−62 , let R0,i = v1u4i+2u4i+3v1, and let R′0,i = v1u4i+4u4i+5v1.
Let X0 = {Q0,i+2 | i = 1, 2, . . . , n−62 }, Y0 = {R0,i | i = 1, 2, . . . , n−62 }, and
Y ′0 = {R′0,i | i = 1, 2, . . . , n−62 }. Next procedures are similar to that in (4) and

(5) in the proof of Lemma 3.1. Note that (m−5)(n−2)
4 tubes are added to the present

surface such that vi is connected with uj for i = 3, 4, . . . , n and j = 6, 7, . . . ,m.
Thus, an embedding Π3 of Cm+Kn on the surface of genus 3(n−2)

4 + (m−5)(n−2)
4 is

obtained. Since n ≡ 2 (mod 4), d (m−2)(n−2)4 e = 3(n−2)
4 + (m−5)(n−2)

4 . Thus, Π3

is the desired embedding. Since the operation of adding n− 2 tubes is used twice, m
is at least 5 + 4(n− 2) (= 4n− 3).

Lemma 3.3. Suppose that m ≡ 1 (mod 2) and n ≡ 1 (mod 2). If m ≥ 6n− 13, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We consider two cases.

Case 1: m ≡ 1 (mod 4). In this case we construct an embedding of Cm + Kn in the
following steps.

(1) The path Pm = u1u2 . . . um is placed in the equator of a sphere. The edge v1v2
is situated in the northern pole and the vertex v3 placed at the southern pole. Next,
each of v1 and v3 joins to each of u1, u2, . . . , um+1

2
, and each of v1 and v2 joins to

each of um+3
2
, um+5

2
, . . . , um. Also, v1 joins to v3, and v2 joins to um+1

2
. Thus, an

embedding Π1 on the sphere is obtained. For example, the embedding Π1 is shown
in Figure 12 if m = 17.

(2) In this step we shall construct an embedding on the surface of genus m−1
4 such that

v2 is connected with u1, u2, . . . , um−1
2

, v3 connected with um+3
2
, um+5

2
, . . . , um, and

u1 connected with um.

For i = 1, 2, . . . , m−14 , let Fi = v3u2i−1u2iv3 and F ′i = v2um+1−2ium+2−2iv2.
The tube T1 is added between F1 and F ′1, and the five edges are drawn on T1 in the
way shown in (1) in Figure 13. The tube T2 is added between F2 and F ′2, and the five
edges are drawn on T1 in the way shown in (2) of Figure 13.

For i = 3, 4, . . . , m−14 , the tube Ti is added between Fi and F ′i . Then the four
edges v3um+2−2i,v3um+1−2i, v2u2i−1, and v2u2i are drawn on Ti in the way shown
in (2) of Figure 13, but v2v3 is not added. Thus, v3 is connected with each of
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Figure 12: The embedding Π1.
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Figure 13: The drawing of edges on T1 or T2.

um+3
2
, um+5

2
, . . . , um, v2. Next, v2 connected with each of u1, u2, . . . , um−1

2
. Let

Π2 be the obtained embedding. Note that there are two sets Z0 and Z ′0 in Π2, where

Z0 = {Z0,i | Z0,i = v2u2i−1u2iv2, i = 1, 2, . . . , m−14 } and

Z ′0 = {Z ′0,i | Z ′0,i = v3um+1−2ium+2−2iv3, i = 1, 2, . . . , m−14 }.

(3) In this step dn−24 e tubes will be added to the present surface such that vi is connected
with um+1

2
, um+3

2
, um+5

2
for i = 4, 5, . . . , n.

The path P = v4v5 . . . vn is now placed in the interior of Z ′
0,m−1

4

such that v4
is near to v3. Then each of um+3

2
and um+5

2
joins to each of v4, v5, . . . , vn. For

i = 1, 2, . . . , dn−14 e, let Di = um+3
2
v4iv4i+1um+3

2
.

If n ≡ 1 (mod 4), then dn−44 e = n−1
4 . The tube T ′1 is now added between D′ =

v2um+1
2
um+3

2
v2 and D1. Next, the edge um+3

2
v4 is redrawn on T ′1. Then we obtain

a facial walk W1 which contains um+1
2

and v4. For i = 2, 3, . . . , n−14 , the tube T ′i is
added between Di and Wi−1, where Wi−1 is a facial walk which contains um+1

2
and

um+3
2

obtained by adding the tube Ti−1. Then two edges um+3
2
v4i−1 and um+3

2
v4i

are redrawn on T ′i . After the tube T ′n−1
4

has been added, there is a facial walk Wn−1
4

which contains um+1
2
, v4, . . . , vn. Next, um+1

2
joins to vi if vi appears once inWn−1

4

or a copy of vi if it appears more than once in Wn−1
4

.

If n ≡ 3 (mod 4), then dn−44 e = n−3
4 . We add n−3

4 tubes in the similar way to that
in the above paragraph. The difference is that two edge um+3

2
v4i+1 and um+3

2
v4i+2
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are redrawn on T ′i for i = 1, 2, . . . , n−34 .

Let Π3 be the embedding obtained from Π2 by the above operation of adding tubes.
Clearly, um+1

2
, um+3

2
, and um+5

2
are connected with each of v1, v2, . . . , vn.

(4) In the step we proceed the similar argument as in (3) and (4) of the proof of Lem-
ma 3.1. Let

X0 = {Q0,i | Q0,i = um+5
2
v2i+2v2i+3um+5

2
, i = 1, 2, . . . , n−32 },

Y0 = {Z0,i | i = 1, 2, . . . , n−32 }, and

Y ′0 = {Z ′0,i | i = 1, 2, . . . , n−32 }.

Then we apply the operation of adding 2(n−32 )2 tubes starting from X0, Y0, and Y ′0.
By Lemma 2.10, we have the following results:

(i) v2 is connected with each of v4, v6, . . . , vn−1, and v3 connected with each of
v5, v7, . . . , vn.

(ii) For i = 4, 5, . . . , n and j = 1, 2, . . . , n−32 , vi is connected with u2j−1, u2j ,
um+1−2j , um+2−2j .

(iii) There is a set

{vivi+1, . . . , vivn | i = 1, 2, . . . , n− 1} \ {v4v5, v6v7, . . . , vn−1vn}.

(iv) There is a set
A0 = {A0,1, A0,2, . . . , A0,n−3

2
}

of facial cycles such that A0,i has the form uliv2i+1v2iuli , where uli ∈
{u1, . . . , un−3} ∪ {um−n+4, . . . , um}.

Unfortunately, v2 is not connected with each of v5, v7, . . . , vn and v3 is not con-
nected with each of v4, v6, . . . , vn−1. In order to attach the edges v2v5, . . . , v2vn,
v3v4, . . . , v3vn−1, we apply the operation of adding 2(n−32 )2 tubes again. Let

B0 = {B0,i | B0,i = v3um−n+4−2ium−n+5−2iv3, i = 1, 2, . . . , n−32 } and

B′0 = {B′0,i | B′0,i = v2un−4+2iun−3+2iv2, i = 1, 2, . . . , n−32 }.

We now apply the operation of adding 2(n−32 )2 tubes starting from A0, B0 and B′0.
By Lemma 2.10, we have the following results:

(i) v2 is connected with each of v5, v7, . . . , vn, and v3 connected with each of
v4, v6, . . . , vn−1.

(ii) For i = 4, 5, . . . , n and j = 1, 2, . . . , n−32 , vi is connected with un−4+2j ,
un−3+2j , um−n+4−2j , um−n+5−2j .

(iii) There is a set
L0 = {L0,1, L0,2, . . . , L0,n−3

2
}

of n−3
2 facial cycles such that L0,i has the form uhi

v2i+1v2iuhi
, where uhi

∈
{un−4+2j , un−3+2j , um−n+6−2j , um−n+5−2j | j = 1, . . . , n−32 }.
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Need to say that all edges of the form vkvl added in the above operations are deleted,
since they have been existed.

For i = 1, 2, . . . , n−32 , letF0,i = v1u2n−7+2iu2n−6+2iv1 andF ′0,i = v1um−2n+7−2i
um−2n+8−2iv1. Let F0 = {F0,i | i = 1, 2, . . . , n−32 }, and let F ′0 = {F ′0,i |
i = 1, 2, . . . , n−32 }. We apply the operation of adding 2(n−32 )2 tubes starting from
L0, F0, and F ′0. By Lemma 2.1, v1 is connected with each of v4, v5, . . . , vn, and
there is a setN0 = {N0,1, N0,2, . . . , N0,n−3

2
} of n−32 facial cycles such thatN0,i has

the form ukiv2i+1v2iuki , where uki ∈ {u2n−7+2j , u2n−6+2jum−2n+7−2j ,
um−2n+8−2j | j = 1, . . . , n−32 }. Next, all added edges of the form vivj (i, j 6= 1)
are deleted, since they have been existed.

(5) In this step we proceed the similar argument to (5) in the proof of Lemma 3.1.
For i = 1, . . . , 12 (m−12 − 3n + 9), let Mi = v1u3n−10+2iu3n−9+2iv1, and M ′i =
v1um−3n+10−2ium−3n+11+2iv1. Clearly, M ′1

2 (
m−1

2 −3n+9)
is exactly the cycle

v1um+3
2
um+5

2
v1. Since um+3

2
and um+5

2
are connected with each of v1, . . . , vn,

M ′1
2 (

m−1
2 −3n+9)

should be neglected. Let

M = {Mi,M
′
i | i = 1, . . . , 12 (m−12 − 3n+ 9)} \ {M ′1

2 (
m−1

2 −3n+9)
}.

Next, we apply the operation of adding tubes with respect toM and N0. There are
[m−6(n−3)−3](n−3)

4 tubes being added to the present surface. Since m ≡ 1 (mod 2)
and n ≡ 1 (mod 4), we have that⌈

(m− 2)(n− 2)

4

⌉
=

(m− 3)(n− 3)

4
+
m− 1

4
+

⌈
n− 4

4

⌉
and

[m− 6(n− 3)− 3](n− 3)

4
+
m− 1

4
+

⌈
n− 4

4

⌉
+ 6

(
n− 3

2

)2
=

(m− 3)(n− 3)

4
+
m− 1

4
+

⌈
n− 4

4

⌉
.

Hence an embedding of Cm+Kn on the surface of genus d (m−2)(n−2)4 e is obtained.

Need to say that the operations of adding 2(n−32 )2 tubes are used three times, m
is at least 6(n − 3) (= 6n − 18). If um+1

2
, um+3

2
, um+5

2
and M 1

2 (
m−1

2 −3n+9) are
considered, m is at least 6n− 18 + 5 (= 6n− 13).

Case 2: m ≡ 3 (mod 4). In this case we shall construct an embedding of Cm +Kn in
the similar way to that in Case 1.

(1) Pm, v1, v2, and v3 are placed in a sphere as in Case 1. Next, each of v1 and v3 is
connected with each of u1, u2, . . . , um+1

2
, and each of v1 and v2 is connected with

each of um+3
2
, um+5

2
, . . . , um. Also, v2 is connected with um+1

2
, and v3 is connected

with um+3
2

. Then we obtain an embedding Π1 on the sphere. For example, Π1 is
shown in Figure 14 if m = 15.
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v1 v2

u1

v3

u8 u15

Figure 14: The embedding Π1.

(2) As in (2) in Case 1, m−3
4 tubes are added to the sphere satisfying the following

conditions:

(i) u1 is connected with um,

(ii) v2 is connected with each of u1, u2, . . . , um−3
2

,

(iii) v3 is connected with each of um+5
2
, um+7

2
, . . . , um.

Let Π2 be the obtained embedding. Then it is an embedding on the surface of the
genus m−3

4 .

(3) The path P = v4v5 . . . vn is now placed in the interior of v2um+1
2
um+3

2
v2. Then

each of um+1
2

and um+3
2

joins to each of v4, v5, . . . , vn. For j = 1, 2, . . . , dn−24 e,
let Dj = um+1

2
v4iv4i+1um+1

2
. If n ≡ 1 (mod 4), then n−1

4 (= dn−24 e) tubes
T ′1, T

′
2, . . . , T

′
n−1
4

are added to the present surface one by one such that um+1
2
v5 is re-

drawn on T ′1, and um+1
2
v4i and um+1

2
v4i+1 are redrawn on T ′i for i = 2, 3, . . . , n−14 .

If n ≡ 3 (mod 4), then n+1
4 (= dn−24 e) tubes T ′1, T

′
2, . . . , T

′
n+1
4

are added to the

present surface one by one such that um+1
2
v4 is drawn on T ′1, and um+1

2
v4i+3 and

um+1
2
v4i are redrawn on T ′i for i = 2, 3, . . . , n+1

4 . As in Case 1, there is a facial
walk Wdn−2

4 e
which contains um−1

2
, v4, . . . , vn and v2. Next, um−1

2
joins to vj if

it appears once in Wdn−2
4 e

or a copy of vj if it appears more than once in Wdn−2
4 e

,
where vj is a vertex in v4, v5, . . . , vn and v2. Let Π3 be the obtained embedding.
Then it is an embedding on the surface of the genus m−3

4 + dn−24 e.

(4) In this step we proceed the similar argument as in (4) and (5) in Case 1. There are
(m−3)(n−3)

4 tubes being added to the present surface. The detail is omitted here. Let
Π4 be the obtained embedding. Then it is an embedding of Cm +Kn on the surface
of genus m−3

4 + dn−24 e + (m−3)(n−3)
4 . Need to say that for the purpose that each

of v1, v2 and v3 is connected with v4, . . . , vn, we need add at least 6(n−32 )2 tubes.
Since each of um−1

2
, um+1

2
and um+3

2
has been connected with each of v4, . . . , vn,

m is at least 3 + 6(n− 3) (= 6n− 15).
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Since m ≡ 3 (mod 4) and n ≡ 1 (mod 2), we have that d (m−2)(n−2)4 e = m−3
4 +

dn−24 e+ (m−3)(n−3)
4 . So Π4 is an embedding of Cm +Kn on the surface of genus

d (m−2)(n−2)4 e.

4 An upper bound for γ(Cm +Kn) ifm is even
In the section we shall study the orientable genus of Cm +Kn if m is even.

Lemma 4.1. Suppose that m ≡ 0 (mod 2). If m ≥ 8, then

γ(Cm +K4) ≤
⌈
m− 2

2

⌉
.

Proof. We firstly construct an embedding on a sphere. Cm, v1, and v2 are placed in the
sphere as in the proof of Lemma 3.1, and each of v1 and v2 joins to u1, u2, . . . , un. Let
F1 = v1u1u2v1 and F2 = v2u3u4v2. Next, the vertex v3 is placed in the interior of F1

and is connected with to u1, u2, and v1, and the vertex v4 is placed in the interior of F2

and is connected with u3, u4, and v2. At last, the tube T1 is added between the facial cycle
v3u1u2v3 and the facial cycle v4u3u4v4. Then six edges are drawn on T1 in the way shown
in (1) of Figure 15.

v4

v3

u3

u1 u2

u4 v1

u1 v3

u6

v4

u5

(1) (2)

Figure 15: Two drawings of edges on T1 or T2.

Note that there are two edges connecting u2 and u3. Let F3 = v1u2u3v1 and F4 =
v2u2u3v2. We now delete the edge u2u3 which is a common edge of F3 and F4. Then F3

and F4 are merged into a facial cycle F5 = v1u2v2u3v1. Next, the edge v1v2 is drawn in
the interior of F5.

Let F6 = u1v3v4u1 (refer to (1) of Figure 15), and let F7 = v1u5u6v1. The tube T2 is
now added between F6 and F7. Then the five edges are drawn on T2 in the way shown in
(2) in Figure 15. Let F8 = u5v3v4u5 (refer to (2) of Figure 15), and let F9 = v2u8u7v2.
Then the tube T3 is added between F8 and F9. Next, the five edges v3u8, v3u7, v4u7,
v4u8 and v4v2 are drawn on T3 in the similar way to that in (2) in Figure 15. Thus, vi is
connected with vj if i 6= j. If m = 8, there is nothing to do. If m > 8, let F = {F ′ |
F ′ = u7v3v4u7}, and let Q = {Qi | Qi = v1u7+2iu8+2iv1, i = 1, 2, . . . , m−82 }. We
apply the operation of adding m−8

2 tubes with respect to F and Q to realize an embedding
of Cm +K4. Thus, there are m−8

2 + 3 (= m−2
2 ) tubes being used. Hence, γ(Cm +K4) ≤

dm−22 e.

Lemma 4.2. Suppose that m ≡ 0 (mod 2) and n ≡ 0 (mod 2). If n ≥ 6 and
m ≥ 4n− 4, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.
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Proof. We construct an embedding of Cm +Kn in the following steps.

(1) The cycle Cm and vertices v1,v2 are placed in a sphere as in the proof of Lemma 3.1.
Next, each of v1 and v2 joins to u1, u2, . . . , um. Let F1 = v1u1u2v1 and F2 =
v1u3u4v1. The two vertices v4 and v6 are placed in the interior of F1, and each of
u1 and u2 joins to each of v4 and v6 such that there are two facial 4-cycles F ′1 =
u1v4u2v6u1 and F ′2 = v1u1v6u2v1. The two vertices v3 and v5 are placed in the
interior of F2, and each of u3 and u4 joins to each of v3 and v5 such that there are two
facial 4-cycle F ′3 = u3v3u4v5u3 and D′1 = u3u4v5u3. The path P = v7v8 . . . vn is
placed in the interior of F ′2 such that v7 is near to v6. Next, each of u1 and u2 joins
to each of v7, v8, . . . , vn. The obtained embedding is denoted by Π1.

(2) In the step each of u1, u2, u3 and u4 will be connected with each of v3, v4, . . . , vn,
and v1 is connected with v2. For the above purpose, the tube T1 is firstly added
between F ′1 and F ′3, and the five edges u1v5, u2v3, u3v4, u4v6 and u2u3 are drawn
on T1 in the way shown in (1) of Figure 16. Thus, there are two edges connecting
u2 and u3. The edge u2u3 which is the common edge of facial cycles v1u2u3v1
and v2u2u3v2 is deleted. Then there is a facial cycle F3 = v1u2v2u3v1. Next,
v1 joins to v2 in the interior of F3. The tube T2 is now added between the facial
cycles u1v4u3v5u1 and u2v3u4v6u2 (refer to (1) in Figure 16), and the six edges
u1v3, u2v5, u3v6, u4v4, v3v4 and v5v6 are drawn on T2 in the way shown in (2) of
Figure 16.

u3

u1

v3

v4

u4

u2 v6

v5

(1) (2)

u2

u1 v4

v3

u3

u4

v5

v6

Figure 16: Two drawings of edges on T1 or T2.

For i = 1, 2, . . . , n−62 , letDi = u2v2i+5v2i+6u2. LetD = {Di | i = 1, 2, . . . , n−62 }
and D′ = {D′1}. We apply the operation of adding tubes with respect to D and D′
such that both u3 and u4 are connected with each of v7, v8, . . . , vn. By Lemma 2.11,
there are n−6

2 tubes being used. Let Π2 be the obtained embedding.

(3) We proceed a similar argument to that in (3) in the proof of Lemma 3.2. We shall add
(m−4)(n−2)

4 tubes to the present surface to realize an embedding Π3 of Cm + Kn.
The detail is omitted here. For the purpose that each of v1 and v2 joins to each of
v3, . . . , vn, 2(n−22 )2 tubes will be used by Lemma 2.1. So m is at least 4 + 4× n−2

2
(= 4n− 4).

Obviously, Π3 is an embedding of Cm + Kn on the surface of genus 2 + n−6
2 +

(m−4)(n−2)
4 . Since m ≡ 0 (mod 2) and n ≡ 0 (mod 2), we have that⌈

(m− 2)(n− 2)

4

⌉
= 2 +

n− 6

2
+

(m− 4)(n− 2)

4
.

So γ(Cm +Kn) ≤ d (m−2)(n−2)4 e.
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Lemma 4.3. Suppose that m ≡ 0 (mod 2) and n ≡ 1 (mod 2). If m ≥ 6n − 14 and
n ≥ 5, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We proceed a similar argument to that in the proof of Lemma 3.3.

(1) Let Pm = u1u2 . . . um. Then Pm, v1, v2, and v3 are placed in a sphere as in (1) in
the proof of Lemma 3.3. If m ≡ 0 (mod 4), then each of v1 and v3 joins to each of
u1, u2, . . . , um

2
such that v1ui and v3ui are in the upper side and lower side of Pm,

respectively. Next, each of v2 and v1 joins to each of um+2
2
, um+4

2
, . . . , um such that

v2ui and v1ui are in the upper side and lower side of Pm, respectively. Also, v1 joins
to v3. If m ≡ 2 (mod 4), then each of v1 and v3 joins to each of u1, u2, . . . , um

2

such that v1ui and v3ui are in the upper side and lower side of Pm, respectively.
Next, each of v2 and v1 joins to each of um+2

2
, um+4

2
, . . . , um such that v2ui and

v1ui are in the upper side and lower side of Pm, respectively. Also, v1 joins to v3, v2
joins to um

2
, and v3 joins to um+2

2
. Let Π1 be the obtained embedding on the sphere.

(2) As in (2) in the proof of Lemma 3.3, there are m
4 tubes being added to the sphere

if m ≡ 0 (mod 4), or there are m−2
4 tubes being added to the sphere if m ≡ 2

(mod 4), such that each of v2 and v3 is connected with all rest vertices in u1, u2, . . . ,
um. Also, u1 is connected with um, and v2 is connected with v3. Need to say that
dm−24 e = m

4 if m ≡ 0 (mod 4), or dm−24 e = m−2
4 if m ≡ 2 (mod 4). Thus, there

are dm−24 e tubes being used in the above procedure.

(3) Let P ′ = v4v5 . . . vn. If m ≡ 0 (mod 4), then P ′ is placed in the facial cy-
cle v1u1u2v1, and each of u1 and u2 is connected with v4, v5, . . . , vn. If m ≡ 2
(mod 4), then P ′ is placed in the facial cycle v1um

2
um

2 +1v1, and each of um
2

and
um

2 +1 is connected with v4, v5, . . . , vn.

Let

X0 = {Q0,i | Q0,i = u2v2i+2v2i+3u2, i = 1, 2, . . . , n−32 } if m ≡ 0 (mod 4), or

X0 = {Q0,i | Q0,i = um
2
v2i+2v2i+3um

2
, i = 1, 2, . . . , n−32 } if m ≡ 2 (mod 4).

Let

Y0 = {R0,i | R0,i = v2u2i+1u2iv2, i = 1, 2, . . . , n−32 }, and

Y ′0 = {R′0,i | R′0,i = v3um+1−2ium+2−2iv3, i = 1, 2, . . . , n−32 }.

We apply the operation of adding 2(n−32 )2 tubes starting from X0, Y0 and Y ′0. Next
procedures are similar to that in (4) in the proof of Lemma 3.3. Eventually, we obtain
an embedding of Cm + Kn by adding (m−2)(n−3)

4 tubes. Note that for the purpose
that each of v1, v2 and v3 is connected with each of v4, v5, . . . , vn, we need to add at
least 3× 2× n−3

2 tubes by Lemma 2.10. Thus, m ≥ 6(n− 3) + 2 + 2 = 6n− 14 if
m ≡ 0 (mod 4), or m ≥ 6(n− 3) + 2 = 6n− 16 if m ≡ 2 (mod 4).

Sincem ≡ 0 (mod 2) and n ≡ 1 (mod 2), d (m−2)(n−2)4 e = (m−2)(n−3)
4 +dm−24 e.

Since m
4 = dm−24 e if m ≡ 0 (mod 4), or m−2

4 = dm−24 e if m ≡ 2 (mod 4),
the obtained embedding is an embedding of Cm + Kn on the surface of genus
d (m−2)(n−2)4 e.
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5 Conclusions
Lemma 5.1 ([10]). If m ≥ 2 and n ≥ 2, then

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.

Considering that Km,n is a subgraph of Cm + Kn, Theorem 5.2 follows from Lem-
mas 3.1, 3.2, and 3.3, Lemmas 4.1, 4.2, and 4.3, and Lemma 5.1.

Theorem 5.2. Suppose that m and n are two integers. Then

γ(Cm +Kn) =

⌈
(m− 2)(n− 2)

4

⌉
if n ≥ 4 and m,n satisfy one of the following conditions:

(1) m ≡ 1 (mod 2), n ≡ 0 (mod 2), and m ≥ 4n− 5,

(2) m ≡ 1 (mod 2), n ≡ 1 (mod 2), and m ≥ 6n− 13,

(3) m ≡ 0 (mod 2), n ≡ 0 (mod 2), and m ≥ 4n− 4,

(4) m ≡ 0 (mod 2), n ≡ 1 (mod 2), and m ≥ 6n− 14.

Obviously, the maximal value in 4n − 5, 4n − 4, 6n − 13 and 6n − 14 is 12 if n = 4,
or 6n− 13 if n ≥ 5. The result below follows from Lemma 5.1 and Theorem 5.2 directly.

Corollary 5.3. Suppose that m and n are two integers. Let G1 be a spanning subgraph
of Cm, and let G2 be a spanning subgraph of Kn. If n = 4 and m ≥ 12, or n ≥ 5 and
m ≥ 6n− 13, then

γ(G1 +G2) =

⌈
(m− 2)(n− 2)

4

⌉
.

Since Kr,s,t (r ≥ s ≥ t ≥ 3) is a spanning subgraph of Cr + Ks+t, we have the
following result by Theorem 5.2.

Corollary 5.4. If r ≥ s ≥ t ≥ 3 and r ≥ 6(s+ t)− 13, then

γ(Kr,s,t) =

⌈
(r − 2)(s+ t− 2)

4

⌉
.

Therefore, Stahl and White’s conjecture ([12]) on the orientable genus of the complete
tripartite graph Kr,s,t holds if r ≥ s ≥ t ≥ 3 and r ≥ 6(s+ t)− 13.
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