

ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.) ARS MATHEMATICA CONTEMPORANEA 23 (2023) #P2.03 https://doi.org/10.26493/1855-3974.2415.fd1 (Also available at http://amc-journal.eu)

Classification of minimal Frobenius hypermaps*

Kai Yuan 🕩, Yan Wang † 🕩

School of Mathematics and Information Science, Yan Tai University, Yan Tai, P.R.C.

Received 23 August 2020, accepted 24 May 2022, published online 11 November 2022

Abstract

In this paper, we give a classification of orientably regular hypermaps with an automorphism group that is a minimal Frobenius group. A Frobenius group G is called minimal if it has no nontrivial normal subgroup N such that G/N is a Frobenius group. An orientably regular hypermap \mathcal{H} is called a Frobenius hypermap if $\operatorname{Aut}(\mathcal{H})$ acting on the hyperfaces is a Frobenius group. A minimal Frobenius hypermap is a Frobenius hypermap whose automorphism group is a minimal Frobenius group with cyclic point stabilizers. Every Frobenius hypermap covers a minimal Frobenius hypermap. The main theorem of this paper generalizes the main result of Breda D'Azevedo and Fernandes in 2011.

Keywords: Frobenius hypermap, Frobenius group. Math. Subj. Class. (2020): 57M15, 05C25, 20F05

1 Introduction

Let S be a compact and connected orientable surface. A *topological hypermap* \mathcal{H} on S is a triple (S; V; E), where V and E denote closed subsets of S with the following properties:

- (1) $B = V \cap E$ is a finite set. Its elements are called the *brins* of \mathcal{H} ;
- (2) $V \cup E$ is connected;
- (3) the components of V (called the *hypervertices*) and of E (called the *hyperedges*), are homeomorphic to closed discs;
- (4) the components of the complement $S \setminus (V \cup E)$ are homeomorphic to open discs, and they are called the *hyperfaces* of H.

^{*}The Authors thank the referees for their helpful comments.

[†]Corresponding author. Supported by NSFC (No. 12101535) and NSFS (No. ZR2020MA044). *E-mail addresses:* pktide@163.com (Kai Yuan), wang_yan@pku.org.cn (Yan Wang)

The following Figure 1 shows a topological hypermap on torus with 9 brins, 3 hypervertices (black components), 3 hyperedges (grey components) and 3 hyperfaces (white components).

Figure 1: A hypermap on torus.

An important and convenient way to visualize hypermaps was introduced by Walsh in [13]. The *Walsh representation* of a hypermap as a bipartite graph embedding on S can be described as follows. At the centre of each hypervertex place a white vertex and at the centre of each hyperedge place a black vertex. If a hypervertex intersects a hyperedge then we join the corresponding white vertex and black vertex by an edge. In this way we obtain a bipartite graph. This bipartite graph is said to be the *underlying graph* of H. Figure 2 is the Walsh representation of the hypermap in Figure 1.

Figure 2: The Walsh representation.

An algebraic hypermap is a quadruple $\mathcal{H} = (G, B, \rho_0, \rho_1)$, where G is a finite group which is generated by two elements ρ_0, ρ_1 and acts transitively on a finite set B. By [3], there is a one-to-one correspondence between topological and algebraic hypermaps. The finite group G is the monodromy group of \mathcal{H} , denoted by Mon(\mathcal{H}). In the Walsh representation, G is a permutation group acting on the set of edges, ρ_0, ρ_1 generate the cyclic permutations of the edges going around the white resp. black vertices in a positive sense, and each cycle of $\rho_0\rho_1$ bounds a hyperface in a negative direction. A permutation α of B is called an *automorphism* of the hypermap $\mathcal{H} = (G, B, \rho_0, \rho_1)$ if it is G-equivariant, i.e. if

$$\alpha(g(b)) = g(\alpha(b))$$

for every $b \in B$ and $g \in G$.

Since $\alpha \rho_0 \alpha^{-1} = \rho_0$ and $\alpha \rho_1 \alpha^{-1} = \rho_1$, α induces a permutation on the cycles of ρ_0 and ρ_1 . So, in the Walsh representation, Aut(\mathcal{H}) induces a subgroup of the automorphism group of the underlying graph of \mathcal{H} , and Aut(\mathcal{H}) preserves the hypervertex set and hyperedge set, respectively. A hypermap is called *regular* if G acts regularly on B. In this case, Aut(\mathcal{H}) is isomorphic to G which acts regularly on B as well.

For a regular hypermap $\mathcal{H} = (G, B, \rho_0, \rho_1)$, the set *B* can be replaced by *G*, so that Mon(\mathcal{H}) and Aut(\mathcal{H}) can be viewed as the right and left regular multiplications of *G*, respectively. So, \mathcal{H} can be denoted by a triple $\mathcal{H} = (G; \rho_0, \rho_1)$, where $G = \langle \rho_0, \rho_1 \rangle$. In this way, the hypervertices (resp. hyperedges and hyperfaces) correspond to right cosets of *G* relative to $\langle \rho_0 \rangle$, (resp. $\langle \rho_1 \rangle$ and $\langle \rho_0 \rho_1 \rangle$). In [4], the hypermap $\mathcal{H} = (G; \rho_0, \rho_1)$ is denoted by (G; a, b) where $a = \rho_1^{-1}\rho_0^{-1}$ and $b = \rho_0$. From now on, we denote a regular hypermap \mathcal{H} by the triple $\mathcal{H} = (G; a, b)$, and then the hyperfaces (resp. hypervertices and hyperedges) correspond to left cosets of *G* relative to subgroups $\langle a \rangle$ (resp. $\langle b \rangle$ and $\langle ab \rangle$). Let $\mathcal{H} = (G; a, b)$ and $\mathcal{H}' = (G'; a', b')$ be two orientably regular hypermaps. If there is an epimorphism ρ from *G* to *G'* such that $a^{\rho} = a'$ and $b^{\rho} = b'$, then \mathcal{H} is called a covering of \mathcal{H}' or \mathcal{H} covers \mathcal{H}' . Given a group G, $(G; a_1, b_1) \cong (G; a_2, b_2)$ if and only if there exists an automorphism σ of *G* such that $a_1^{\sigma} = a_2$ and $b_1^{\sigma} = b_2$.

A (face-)*primer* hypermap is an orientably regular hypermap whose automorphism group induces faithful actions on its hyperfaces, see [4]. The classification of regular hypermaps with given automorphism groups isomorphic to PSL(2,q) or PGL(2,q) can be extracted from [12] by Sah. Moreover, Conder, Potočnik and Širáň extended Sah's investigation to reflexible hypermaps, on both orientable and nonorientable surfaces, and provided explicit generating sets for projective linear groups, see [1]. In [2], Conder described all regular hypermaps of genus 2 to 101, and all non-orientable regular hypermaps of genus 3 to 202.

The study of primer hypermaps was initiated by Breda d'Azevedo and Fernandes in 2011. In [4], the authors classified the primer hypermaps with p-hyperfaces for a prime number p, where their automorphism groups are Frobenius groups. Thereafter, they determined all regular hypermaps with p-hyperfaces, see [5]. In [7], Du and Hu classified primer hypermaps with a product of two primes number of hyperfaces. Recently, Du and Yuan characterized primer hypermaps with nilpotent automorphism groups and prime hypervertex valency, see [8].

A Frobenius group is a transitive permutation group G on a set Ω which is not regular on Ω , but has the property that the only element of G which fixes more than one point is the identity element. A Frobenius group G is called *minimal* if it does not have a nontrivial normal subgroup N such that G/N is a Frobenius group. A regular hypermap \mathcal{H} is called a *Frobenius hypermap* if $\operatorname{Aut}(\mathcal{H})$ acting on the hyperfaces is a Frobenius group. Clearly, \mathcal{H} is a primer hypermap. A *minimal Frobenius hypermap* is a Frobenius hypermap whose automorphism group is a minimal Frobenius group with a cyclic point stabilizer. Clearly, every Frobenius hypermap covers a minimal Frobenius hypermap.

This paper has three sections. In the first section, a quick overview of orientably regular hypermaps is given. In Section 2, we introduce minimal Frobenius groups. In the last section, we give a classification of orientably regular minimal Frobenius hypermaps. Furthermore, the main theorem of this paper generalizes the main result of Breda D'Azevedo and Fernandes, see [4].

2 Minimal Frobenius groups

We refer the readers to [10] for standard notation and results in group theory. Set (r, s) to denote the greatest common divisor of two positive integers r and s. We denote the orders of an element x and of a subgroup H of G as |x| and |H|, respectively. A semidirect product of a group N by a group H is denoted by N : H. Let $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ and $\mathbb{Z}_m^* = \{k \mid k \in \mathbb{Z}_m \text{ and } (k, m) = 1\}$.

Let G be a Frobenius group on Ω . A subgroup K of G is called the *Frobenius kernel* if K acts regularly on Ω . Each point stabilizer is called a *Frobenius complement* of K in G. In the following, we give some interesting results about Frobenius groups and primitive groups.

Proposition 2.1 ([6, P86]). Let G be a Frobenius group on Ω and $\alpha \in \Omega$, K be the Frobenius kernel, and H be a Frobenius complement. Then:

- (i) K is a normal and regular subgroup of G.
- (ii) For each odd prime number p, the Sylow p-subgroups of H are cyclic, and the Sylow 2-subgroups are either cyclic or quaternion groups. If G is not solvable, then it has exactly one nonabelian composition factor, namely A₅.
- (iii) K is a nilpotent group.

Proposition 2.2 ([6, Corollary 1.5A.]). Let G be a group acting transitively on a set Ω with at least two points. Then G is primitive if and only if each point stabilizer G_{α} is a maximal subgroup of G.

Lemma 2.3. Assume $G \leq \text{Sym}(\Omega)$ has a regular normal subgroup R, where Ω has at least two points. Then G is primitive if and only if no nontrivial subgroup of R is normalized by G_{α} , for each α .

Proof. By Proposition 2.2, G is primitive if and only if G_{α} is a maximal subgroup of G. Because R is a regular normal subgroup of G, $G = G_{\alpha}R$ and $G_{\alpha} \cap R = \{1\}$.

We claim that G_{α} is maximal if and only if no nontrivial subgroup of R is normalized by G_{α} . Suppose G_{α} is not maximal, then there exists a proper subgroup K of G such that $G_{\alpha} < K$. It follows that $K = K \cap G = K \cap G_{\alpha}R = G_{\alpha}(K \cap R)$. In this case, $K \cap R$ is a proper subgroup of R which is normalized by G_{α} . Conversely, suppose that there exists a proper subgroup H, normalized by G_{α} , of R. Thus $G_{\alpha}H$ is a proper subgroup of G and so G_{α} is not maximal.

Corollary 2.4 follows directly from Lemma 2.3.

Corollary 2.4. Assume $G \leq \text{Sym}(\Omega)$ has a regular normal subgroup R, where Ω has at least two points. If R is abelian, then G is primitive if and only if no nontrivial normal subgroup of G is contained in R.

Lemma 2.5. Let K be the Frobenius kernel of a Frobenius group G which acts on a set Ω . If N is a normal subgroup of G, then either $N \leq K$ or K < N.

Proof. Assume that N is not a subgroup of K. Set $\alpha \in \Omega$. Since N is a normal subgroup of G, we have $N = (\bigcup_{g \in K} N_{\alpha}^g) \cup (N \cap K)$ and so N is a subgroup of $N_{\alpha}K$. Let $|N_{\alpha}| =$

 $m, |K| = n \text{ and } |N \cap K| = t$. Then, |N| = n(m-1) + t. Since $N \leq N_{\alpha}K$ and $N_{\alpha} \leq N$, we get $N = N \cap N_{\alpha}K = N_{\alpha}(N \cap K)$. So, |N| = mt which implies n(m-1) + t = mt. Note that m > 1, then n = t. Therefore, $N \cap K = K$ and K is a proper subgroup of N.

Proposition 2.6 ([11, Lemma 2.3]). Let K be the Frobenius kernel of a Frobenius group G. If N is a normal subgroup of G and N < K, then G/N is a Frobenius group.

Proposition 2.7 ([11, Corollary 2.6]). Let G = KH be a Frobenius group, where K is the Frobenius kernel and H is a Frobenius complement. For each $h \in H$, $h \neq 1$, and for each $k \in K$, the orders of h, kh and hk are equal, that is |h| = |kh| = |hk|.

Based on Lemma 2.5 and Proposition 2.6, we give the following definition of *minimal Frobenius groups*.

Definition 2.8. A Frobenius group G is called *minimal* if it does not have a nontrivial normal subgroup N such that G/N is a Frobenius group.

Lemma 2.9. If G is a minimal Frobenius group acting on a set Ω with the Frobenius kernel K, then K is an elementary abelian p-group and G is primitive.

Proof. If G is minimal, then by Proposition 2.6 no nontrivial normal subgroup of G exists in K. Note that K is a nilpotent group. Let P be a Sylow p-group of K, $\Phi(P)$ be the Frattini subgroup of P and L be the p'-Hall group of K. Both $\Phi(P)$ and L are characteristic subgroups of K. So, $L = \Phi(P) = 1$ which implies that K is an elementary abelian pgroup.

Because no nontrivial normal subgroup of G is contained in K and K is abelian, it follows that G is primitive by Corollary 2.4.

Lemma 2.10. If G is a primitive group acting on a set Ω with non-trivial abelian point stabilizers, then G is a Frobenius group and its Frobenius kernel K is an elementary abelian p-group.

Proof. It suffices to show that for any two distinct points $\alpha, \beta \in \Omega, G_{\alpha} \cap G_{\beta} = 1$. Let $J = G_{\alpha} \cap G_{\beta}$. Since G is primitive, $G = \langle G_{\alpha}, G_{\beta} \rangle$. Note that G_{α} and G_{β} are abelian, so J is a normal subgroup of G. Because $\alpha^{J} = \{\alpha\}$, for any $g \in G$, we have $\alpha^{gJ} = \alpha^{Jg} = \{\alpha^{g}\}$. That is to say J fixes every point of Ω , so J = 1 and G is a Frobenius group. Furthermore, as point stabilizers are maximal, the Frobenius kernel K must be an elementary abelian p-group.

Corollary 2.11 follows from Lemma 2.9 and 2.10 directly.

Corollary 2.11. Let G be a permutation group with cyclic point stabilizers. Then, G is a minimal Frobenius group if and only if G is a primitive group.

For a prime number p and an integer n, an integer m (m > 1) is called a *primitive* divisor of $p^n - 1$ if m divides $p^n - 1$, but it does not divide $p^s - 1$ for any s < n.

The following Proposition 2.12 can be obtained from some results in [10, Kapitel II: 3.10, 3.11, 7.3].

Proposition 2.12. For a prime number p and a positive integer n, set G = GL(n, p).

- (i) The group G contains a cyclic Singer-Zyklus group S = ⟨x⟩ of order pⁿ − 1, and C_G(S) = S. Moreover, N_G(S) = S : ⟨y⟩ = ⟨x, y | x^{pⁿ-1} = yⁿ = 1, x^y = x^p⟩, and |N_G(S)| = n(pⁿ − 1). Take an element g ∈ S, if |g| is a primitive divisor of pⁿ − 1, then N_G(⟨g⟩) = N_G(S), C_G(⟨g⟩) = S and ⟨g⟩ is an irreducible subgroup.
- (ii) Let L be a cyclic irreducible subgroup of G. Then L is conjugate to a subgroup of S, and |L| is a primitive divisor of pⁿ − 1.

The following lemma generalizes Lemma 3.3 in [9]. The proof is similar to that of Lemma 3.3, so we omit it.

Lemma 2.13. Let $X = T : \langle x \rangle$ and $Y = T : \langle y \rangle$ be two subgroups of A = AGL(n, p) = T : G, where G = GL(n, p), T is the translation subgroup, and x, y are nontrivial elements in G. If σ is an isomorphism from X to Y mapping $\langle x \rangle$ to $\langle y \rangle$, then, there exists an element $u \in G$ such that $\sigma = I(u)|_X$, where I(u) is the inner automorphism of A induced by u. In particular, $u \in N_G(\langle x \rangle)$ if $\langle x \rangle = \langle y \rangle$.

3 Classification of minimal Frobenius hypermaps

For a prime number p, an integer $n \ge 1$ ($n \ge 2$ if p = 2) and a primitive divisor m of $p^n - 1$, let S be the cyclic Singer-Zyklus group of GL(n, p), $\langle a \rangle$ be a subgroup of S with order m and T be the translation subgroup of AGL(n, p). Define a group M of order mp^n as

$$M = T : \langle a \rangle \leq T : S \leq AGL(n, p) = T : GL(n, p).$$

By Proposition 2.12, $\langle a \rangle$ is an irreducible subgroup. Hence M is a primitive group, and consequently M is a Frobenius group by Lemma 2.10.

Let F be a minimal Frobenius group acting on a set $\Omega(|\Omega| > 2)$ with cyclic point stabilizers, and K be its Frobenius kernel. By Lemma 2.9, K is an elementary abelian p-group and F is a primitive group. Set $|K| = p^n$, and then $|\Omega| = p^n$. Take an element $\alpha \in \Omega$ and assume $|F_{\alpha}| = k$. By Proposition 2.12, k is a primitive divisor of $p^n - 1$, and GL(n, p) has only one conjugacy class of irreducible cyclic subgroups of order k. Hence AGL(n, p) has only one conjugacy class of subgroups isomorphic to F which implies $F \cong M = T : \langle \alpha \rangle$ when k = m. These discussions give the following Theorem 3.1.

Theorem 3.1. Let F be a minimal Frobenius group with cyclic point stabilizers of order m. Then, $F \cong T : \langle a \rangle$, where T is elementary abelian of order p^n for some prime number p and an integer $n \ge 1$, m is a primitive divisor of $p^n - 1$ and $|\langle a \rangle| = m$. Clearly, $|F| = mp^n$.

Lemma 3.2. Let $M = T : \langle a \rangle$ be the group defined as in the first paragraph of this section. If $\mathcal{H} = (M; R, L)$ is a Frobenius hypermap, then \mathcal{H} is isomorphic to

$$\mathcal{H}(p, n, m, i, j) = (M; a^i, a^j b),$$

where $1 \neq b \in T$, *m* is a primitive divisor of $p^n - 1$, $j \in \mathbb{Z}_m$, $i \in \mathbb{Z}_m^*$ and (i, p) = 1. Moreover, different parameter pairs (i, j) give non-isomorphic hypermaps with p^n hyperfaces, each of valency *m*. Furthermore, there are $\frac{m\phi(m)}{n}$ non-isomorphic hypermaps, where ϕ is the Euler's totient function. *Proof.* Let G = GL(n, p) and then $M \leq AGL(n, p) = T : G$. Since M is a Frobenius group, M has only one conjugacy class of subgroups of order m. So we can assume $R = a^i$ for some $i \in \mathbb{Z}_m^*$. Remember that S is the cyclic Singer-Zyklus group of GL(n, p) and $\langle a \rangle$ is a subgroup of S. So, M is a normal subgroup of T : S. Since S fixes a and acts transitively on $T \setminus \{1\}$ by conjugation, we may fix $L = a^j b$, where j is calculated modular m.

If there exists an automorphism σ of M such that $(a^i)^{\sigma} = a^{i'}$ and $(a^j b)^{\sigma} = a^{j'} b$, then $b^{\sigma} = a^{\epsilon} b$ for some $\epsilon \in \mathbb{Z}_m$. Clearly, the orders of b and $a^{\epsilon} b$ are equal. While according to Proposition 2.7, the two elements $a^{\epsilon} b$ and a^{ϵ} have the same order which is coprime with that of b if $\epsilon \neq 0$ modulo m. So, $b^{\sigma} = b$. By Lemma 2.13, there exists an element $u \in G$ such that $\sigma = I(u)|_F$, where $u \in N_G(\langle a \rangle)$. According to Proposition 2.12,

$$N_G(\langle a \rangle) = S : \langle y \rangle = \langle x, y \mid x^{p^n - 1} = y^n = 1, x^y = x^p \rangle,$$

where $S = \langle x \rangle$. Because $b^{\sigma} = b$, it follows that $u = y^t$, where t is calculated modular n. So, $a^{\sigma} = a^{y^t} = a^{p^t}$. As a result, we may assume (i, p) = 1 in $R = a^i$. As a result, we get $\frac{m\phi(m)}{n}$ non-isomorphic hypermaps $(M; a^i, a^j b)$, where ϕ is the Euler's totient function. Clearly, $(M; a^i, a^j b)$ has p^n hyperfaces, each of valency m.

By Theorem 3.1, the automorphism group of a minimal Frobenius hypermap is isomorphic to $M = T : \langle a \rangle$, where $|T| = p^n$ and $|\langle a \rangle| = m$. Consequently, we give the following classification theorem of minimal Frobenius hypermaps.

Theorem 3.3. \mathcal{H} is a minimal Frobenius hypermap if and only if \mathcal{H} is isomorphic to

$$\mathcal{H}(p, n, m, i, j) = (M; a^i, a^j b),$$

where M is a group defined as in the first paragraph of this section, m is a primitive divisor of $p^n - 1$, $j \in \mathbb{Z}_m$, $i \in \mathbb{Z}_m^*$ and (i, p) = 1. Moreover, different parameter pairs (i, j) give non-isomorphic hypermaps with p^n hyperfaces, each of valency m. And, there are $\frac{m\phi(m)}{n}$ non-isomorphic minimal Frobenius hypermaps, where ϕ is the Euler's totient function.

According to Corollary 2.11, we have the following Proposition 3.4.

Proposition 3.4. If \mathcal{H} is a regular hypermap, then \mathcal{H} is a minimal Frobenius hypermap if and only if Aut(\mathcal{H}) acts primitively on the hyperfaces.

The next Proposition 3.5 follows from Lemma 2.5.

Proposition 3.5. Every Frobenius hypermap covers a minimal Frobenius hypermap.

The *H*-sequence of a hypermap \mathcal{H} is a sequence $[|v|, |e|, |f|; V, E, F; |\operatorname{Aut}(\mathcal{H})|]$, where |v|, |e|, |f|, V, E and *F* stand for the hypervertex valency, hyperedge valency, hyperface valency, number of hypervertices, number of hyperedges and number of hyperfaces of \mathcal{H} , respectively.

Corollary 3.6. The *H*-sequence of the minimal Frobenius hypermap $\mathcal{H}(p, n, m, i, j) = (M; a^i, a^j b)$ is

- (i) $[p, m, m; mp^{n-1}, p^n, p^n; mp^n]$ for j = 0;
- (ii) $[m, p, m; p^n, mp^{n-1}, p^n; mp^n]$ for j = m i;

(iii) $\left[\frac{m}{(m,j)}, \frac{m}{(m,i+j)}, m; (m,j)p^n, (m,i+j)p^n, p^n; mp^n\right]$ for $j \neq 0$ and $j \neq m-i$.

Proof. The sequence is determined by the first three entries, namely $|a^{j}b|$, $|a^{i+j}b|$ and $|a^{i}|$. These entries can be easily calculated according to Proposition 2.7.

ORCID iDs

Kai Yuan ^(b) https://orcid.org/0000-0003-1858-3083 Yan Wang ^(b) https://orcid.org/0000-0002-0148-2932

References

- M. Conder, P. Potočnik and J. Širáň, Regular hypermaps over projective linear groups, J. Aust. Math. Soc. 85 (2008), 155–175, doi:10.1017/s1446788708000827, https://doi.org/ 10.1017/s1446788708000827.
- [2] M. D. E. Conder, Regular maps and hypermaps of Euler characteristic -1 to -200, J. Comb. Theory, Ser. B 99 (2009), 455-459, doi:10.1016/j.jctb.2008.09.003, https://doi.org/ 10.1016/j.jctb.2008.09.003.
- [3] D. Corn and D. Singerman, Regular hypermaps, *Eur. J. Comb.* 9 (1988), 337–351, doi:10.1016/s0195-6698(88)80064-7, https://doi.org/10.1016/s0195-6698(88)80064-7.
- [4] A. B. D'Azevedo and M. E. Fernandes, Classification of primer hypermaps with a prime number of hyperfaces, *Eur. J. Comb.* **32** (2011), 233-242, doi:10.1016/j.ejc.2010.09.003, https://doi.org/10.1016/j.ejc.2010.09.003.
- [5] A. B. D'Azevedo and M. E. Fernandes, Classification of the regular oriented hypermaps with prime number of hyperfaces, Ars Math. Contemp. 10 (2016), 193–209, doi:10.26493/ 1855-3974.657.77e, https://doi.org/10.26493/1855-3974.657.77e.
- [6] J. Dixon and B. Mortimer, *Permutation Groups*, Springer, NewYork, 1996, doi:10.1007/ 978-1-4612-0731-3, https://doi.org/10.1007/978-1-4612-0731-3.
- [7] S. Du and X. Hu, A classification of primer hypermaps with a product of two primes number of hyperfaces, *Eur. J. Comb.* 62 (2017), 245–262, doi:10.1016/j.ejc.2017.01.005, https:// doi.org/10.1016/j.ejc.2017.01.005.
- [8] S. Du and K. Yuan, Nilpotent primer hypermaps with hypervertices of valency a prime, J. Algebr. Comb. 52 (2020), 299–316, doi:10.1007/s10801-019-00903-9, https://doi.org/ 10.1007/s10801-019-00903-9.
- [9] S.-F. Du, J. H. Kwak and R. Nedela, A classification of regular embeddings of graphs of order a product of two primes, *J. Algebr. Comb.* **19** (2004), 123–141, doi:10.1023/b:jaco.0000023003. 69690.18, https://doi.org/10.1023/b:jaco.0000023003.69690.18.
- B. Huppert, Endliche Gruppen I, Springer-Verlag, Berlin, 1967, doi:10.1007/ 978-3-642-64981-3, https://doi.org/10.1007/978-3-642-64981-3.
- H.-P. Qu, Y. Wang and K. Yuan, Frobenius groups which are the automorphism groups of orientably-regular maps, Ars Math. Contemp. 19 (2020), 363–374, doi:10.26493/1855-3974.
 1851.b44, https://doi.org/10.26493/1855-3974.1851.b44.
- [12] C. H. Sah, Groups related to compact Riemann surfaces, *Acta Math.* 123 (1969), 13–42, doi: 10.1007/bf02392383, https://doi.org/10.1007/bf02392383.
- T. R. S. Walsh, Hypermaps versus bipartite maps, J. Comb. Theory, Ser. B 18 (1975), 155–163, doi:10.1016/0095-8956(75)90042-8, https://doi.org/10.1016/0095-8956(75) 90042-8.