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Abstract

In this paper, we give a classification of orientably regular hypermaps with an automor-
phism group that is a minimal Frobenius group. A Frobenius group G is called minimal if
it has no nontrivial normal subgroup N such that G{N is a Frobenius group. An orientably
regular hypermap H is called a Frobenius hypermap if AutpHq acting on the hyperfaces
is a Frobenius group. A minimal Frobenius hypermap is a Frobenius hypermap whose
automorphism group is a minimal Frobenius group with cyclic point stabilizers. Every
Frobenius hypermap covers a minimal Frobenius hypermap. The main theorem of this
paper generalizes the main result of Breda D’Azevedo and Fernandes in 2011.
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1 Introduction
Let S be a compact and connected orientable surface. A topological hypermap H on S is a
triple pS;V ;Eq, where V and E denote closed subsets of S with the following properties:

(1) B “ V X E is a finite set. Its elements are called the brins of H;

(2) V Y E is connected;

(3) the components of V (called the hypervertices) and of E (called the hyperedges), are
homeomorphic to closed discs;

(4) the components of the complement SzpV YEq are homeomorphic to open discs, and
they are called the hyperfaces of H.
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The following Figure 1 shows a topological hypermap on torus with 9 brins, 3 hy-
pervertices (black components), 3 hyperedges (grey components) and 3 hyperfaces (white
components).

Figure 1: A hypermap on torus.

An important and convenient way to visualize hypermaps was introduced by Walsh in
[13]. The Walsh representation of a hypermap as a bipartite graph embedding on S can
be described as follows. At the centre of each hypervertex place a white vertex and at the
centre of each hyperedge place a black vertex. If a hypervertex intersects a hyperedge then
we join the corresponding white vertex and black vertex by an edge. In this way we obtain
a bipartite graph. This bipartite graph is said to be the underlying graph of H. Figure 2 is
the Walsh representation of the hypermap in Figure 1.

Figure 2: The Walsh representation.

An algebraic hypermap is a quadruple H “ pG,B, ρ0, ρ1q, where G is a finite group
which is generated by two elements ρ0, ρ1 and acts transitively on a finite set B. By [3],
there is a one-to-one correspondence between topological and algebraic hypermaps. The
finite group G is the monodromy group of H, denoted by MonpHq. In the Walsh repre-
sentation, G is a permutation group acting on the set of edges, ρ0, ρ1 generate the cyclic
permutations of the edges going around the white resp. black vertices in a positive sense,
and each cycle of ρ0ρ1 bounds a hyperface in a negative direction. A permutation α of B
is called an automorphism of the hypermap H “ pG,B, ρ0, ρ1q if it is G-equivariant, i.e.
if

αpgpbqq “ gpαpbqq
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for every b P B and g P G.

Since αρ0α´1 “ ρ0 and αρ1α
´1 “ ρ1, α induces a permutation on the cycles of ρ0 and

ρ1. So, in the Walsh representation, AutpHq induces a subgroup of the automorphism group
of the underlying graph of H, and AutpHq preserves the hypervertex set and hyperedge set,
respectively. A hypermap is called regular if G acts regularly on B. In this case, AutpHq

is isomorphic to G which acts regularly on B as well.

For a regular hypermap H “ pG,B, ρ0, ρ1q, the set B can be replaced by G, so that
MonpHq and AutpHq can be viewed as the right and left regular multiplications of G,
respectively. So, H can be denoted by a triple H “ pG; ρ0, ρ1q, where G “ xρ0, ρ1y. In
this way, the hypervertices (resp. hyperedges and hyperfaces ) correspond to right cosets
of G relative to xρ0y, (resp. xρ1y and xρ0ρ1y). In [4], the hypermap H “ pG; ρ0, ρ1q is
denoted by pG; a, bq where a “ ρ1

´1ρ0
´1 and b “ ρ0. From now on, we denote a regular

hypermap H by the triple H “ pG; a, bq, and then the hyperfaces (resp. hypervertices and
hyperedges) correspond to left cosets of G relative to subgroups xay (resp. xby and xaby).
Let H “ pG; a, bq and H1 “ pG1; a1, b1q be two orientably regular hypermaps. If there is an
epimorphism ρ from G to G1 such that aρ “ a1 and bρ “ b1, then H is called a covering of
H1 or H covers H1. Given a group G, pG; a1, b1q – pG; a2, b2q if and only if there exists
an automorphism σ of G such that aσ1 “ a2 and bσ1 “ b2.

A (face-)primer hypermap is an orientably regular hypermap whose automorphism
group induces faithful actions on its hyperfaces, see [4]. The classification of regular hy-
permaps with given automorphism groups isomorphic to PSLp2, qq or PGLp2, qq can be
extracted from [12] by Sah. Moreover, Conder, Potočnik and Širáň extended Sah’s investi-
gation to reflexible hypermaps, on both orientable and nonorientable surfaces, and provided
explicit generating sets for projective linear groups, see [1]. In [2], Conder described all
regular hypermaps of genus 2 to 101, and all non-orientable regular hypermaps of genus 3
to 202.

The study of primer hypermaps was initiated by Breda d’Azevedo and Fernandes in
2011. In [4], the authors classified the primer hypermaps with p-hyperfaces for a prime
number p, where their automorphism groups are Frobenius groups. Thereafter, they de-
termined all regular hypermaps with p-hyperfaces, see [5]. In [7], Du and Hu classified
primer hypermaps with a product of two primes number of hyperfaces. Recently, Du and
Yuan characterized primer hypermaps with nilpotent automorphism groups and prime hy-
pervertex valency, see [8].

A Frobenius group is a transitive permutation group G on a set Ω which is not regular
on Ω , but has the property that the only element of G which fixes more than one point is
the identity element. A Frobenius group G is called minimal if it does not have a nontrivial
normal subgroup N such that G{N is a Frobenius group. A regular hypermap H is called
a Frobenius hypermap if AutpHq acting on the hyperfaces is a Frobenius group. Clearly,
H is a primer hypermap. A minimal Frobenius hypermap is a Frobenius hypermap whose
automorphism group is a minimal Frobenius group with a cyclic point stabilizer. Clearly,
every Frobenius hypermap covers a minimal Frobenius hypermap.

This paper has three sections. In the first section, a quick overview of orientably regu-
lar hypermaps is given. In Section 2, we introduce minimal Frobenius groups. In the last
section, we give a classification of orientably regular minimal Frobenius hypermaps. Fur-
thermore, the main theorem of this paper generalizes the main result of Breda D’Azevedo
and Fernandes, see [4].
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2 Minimal Frobenius groups
We refer the readers to [10] for standard notation and results in group theory. Set pr, sq

to denote the greatest common divisor of two positive integers r and s. We denote the
orders of an element x and of a subgroup H of G as |x| and |H|, respectively. A semidirect
product of a group N by a group H is denoted by N : H . Let Zm “ t0, 1, ¨ ¨ ¨ ,m ´ 1u

and Z˚
m “ tk

ˇ

ˇ k P Zm and pk,mq “ 1u.
Let G be a Frobenius group on Ω. A subgroup K of G is called the Frobenius kernel

if K acts regularly on Ω. Each point stabilizer is called a Frobenius complement of K in
G. In the following, we give some interesting results about Frobenius groups and primitive
groups.

Proposition 2.1 ([6, P86]). Let G be a Frobenius group on Ω and α P Ω, K be the
Frobenius kernel, and H be a Frobenius complement. Then:

(i) K is a normal and regular subgroup of G.

(ii) For each odd prime number p, the Sylow p-subgroups of H are cyclic, and the Sylow
2-subgroups are either cyclic or quaternion groups. If G is not solvable, then it has
exactly one nonabelian composition factor, namely A5.

(iii) K is a nilpotent group.

Proposition 2.2 ([6, Corollary 1.5A.]). Let G be a group acting transitively on a set Ω
with at least two points. Then G is primitive if and only if each point stabilizer Gα is a
maximal subgroup of G.

Lemma 2.3. Assume G ď SympΩq has a regular normal subgroup R, where Ω has at least
two points. Then G is primitive if and only if no nontrivial subgroup of R is normalized by
Gα, for each α.

Proof. By Proposition 2.2, G is primitive if and only if Gα is a maximal subgroup of G.
Because R is a regular normal subgroup of G, G “ GαR and Gα X R “ t1u.

We claim that Gα is maximal if and only if no nontrivial subgroup of R is normalized
by Gα. Suppose Gα is not maximal, then there exists a proper subgroup K of G such that
Gα ă K. It follows that K “ K XG “ K XGαR “ GαpK XRq. In this case, K XR is
a proper subgroup of R which is normalized by Gα. Conversely, suppose that there exists
a proper subgroup H , normalized by Gα, of R. Thus GαH is a proper subgroup of G and
so Gα is not maximal. l

Corollary 2.4 follows directly from Lemma 2.3.

Corollary 2.4. Assume G ď SympΩq has a regular normal subgroup R, where Ω has at
least two points. If R is abelian, then G is primitive if and only if no nontrivial normal
subgroup of G is contained in R.

Lemma 2.5. Let K be the Frobenius kernel of a Frobenius group G which acts on a set Ω.
If N is a normal subgroup of G, then either N ď K or K ă N .

Proof. Assume that N is not a subgroup of K. Set α P Ω. Since N is a normal subgroup
of G, we have N “ p

Ť

gPK

Ng
αq Y pN X Kq and so N is a subgroup of NαK. Let |Nα| “
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m, |K| “ n and |N XK| “ t. Then, |N | “ npm´1q ` t. Since N ď NαK and Nα ď N ,
we get N “ N X NαK “ NαpN X Kq. So, |N | “ mt which implies npm ´ 1q ` t “

mt. Note that m ą 1, then n “ t. Therefore, N X K “ K and K is a proper subgroup of
N . l

Proposition 2.6 ([11, Lemma 2.3]). Let K be the Frobenius kernel of a Frobenius group
G. If N is a normal subgroup of G and N ă K, then G{N is a Frobenius group.

Proposition 2.7 ([11, Corollary 2.6]). Let G “ KH be a Frobenius group, where K is the
Frobenius kernel and H is a Frobenius complement. For each h P H,h ‰ 1, and for each
k P K, the orders of h, kh and hk are equal, that is |h| “ |kh| “ |hk|.

Based on Lemma 2.5 and Proposition 2.6, we give the following definition of minimal
Frobenius groups.

Definition 2.8. A Frobenius group G is called minimal if it does not have a nontrivial
normal subgroup N such that G{N is a Frobenius group.

Lemma 2.9. If G is a minimal Frobenius group acting on a set Ω with the Frobenius kernel
K, then K is an elementary abelian p-group and G is primitive.

Proof. If G is minimal, then by Proposition 2.6 no nontrivial normal subgroup of G exists
in K. Note that K is a nilpotent group. Let P be a Sylow p-group of K, ΦpP q be the
Frattini subgroup of P and L be the p1-Hall group of K. Both ΦpP q and L are characteristic
subgroups of K. So, L “ ΦpP q “ 1 which implies that K is an elementary abelian p-
group.

Because no nontrivial normal subgroup of G is contained in K and K is abelian, it
follows that G is primitive by Corollary 2.4. l

Lemma 2.10. If G is a primitive group acting on a set Ω with non-trivial abelian point sta-
bilizers, then G is a Frobenius group and its Frobenius kernel K is an elementary abelian
p-group.

Proof. It suffices to show that for any two distinct points α, β P Ω, Gα XGβ “ 1. Let J “

Gα X Gβ . Since G is primitive, G “ xGα, Gβy. Note that Gα and Gβ are abelian, so J is
a normal subgroup of G. Because αJ “ tαu, for any g P G, we have αgJ “ αJg “ tαgu.
That is to say J fixes every point of Ω, so J “ 1 and G is a Frobenius group. Furthermore,
as point stabilizers are maximal, the Frobenius kernel K must be an elementary abelian
p-group . l

Corollary 2.11 follows from Lemma 2.9 and 2.10 directly.

Corollary 2.11. Let G be a permutation group with cyclic point stabilizers. Then, G is a
minimal Frobenius group if and only if G is a primitive group.

For a prime number p and an integer n, an integer m pm ą 1q is called a primitive
divisor of pn ´ 1 if m divides pn ´ 1, but it does not divide ps ´ 1 for any s ă n.

The following Proposition 2.12 can be obtained from some results in
[10, Kapitel II: 3.10, 3.11, 7.3].

Proposition 2.12. For a prime number p and a positive integer n, set G “ GLpn, pq.
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(i) The group G contains a cyclic Singer-Zyklus group S “ xxy of order pn ´ 1, and
CGpSq “ S. Moreover, NGpSq “ S : xyy “ xx, y

ˇ

ˇ xpn
´1 “ yn “ 1, xy “ xpy,

and |NGpSq| “ nppn ´ 1q. Take an element g P S, if |g| is a primitive divisor of
pn ´ 1, then NGpxgyq “ NGpSq, CGpxgyq “ S and xgy is an irreducible subgroup.

(ii) Let L be a cyclic irreducible subgroup of G. Then L is conjugate to a subgroup of
S, and |L| is a primitive divisor of pn ´ 1.

The following lemma generalizes Lemma 3.3 in [9]. The proof is similar to that of
Lemma 3.3, so we omit it.

Lemma 2.13. Let X “ T : xxy and Y “ T : xyy be two subgroups of A “ AGLpn, pq “

T : G, where G “ GLpn, pq, T is the translation subgroup, and x, y are nontrivial ele-
ments in G. If σ is an isomorphism from X to Y mapping xxy to xyy, then, there exists an
element u P G such that σ “ Ipuq|X , where Ipuq is the inner automorphism of A induced
by u. In particular, u P NGpxxyq if xxy “ xyy.

3 Classification of minimal Frobenius hypermaps
For a prime number p, an integer n ě 1 (n ě 2 if p “ 2) and a primitive divisor m of
pn ´ 1, let S be the cyclic Singer-Zyklus group of GLpn, pq, xay be a subgroup of S with
order m and T be the translation subgroup of AGLpn, pq. Define a group M of order mpn

as
M “ T : xay ď T : S ď AGLpn, pq “ T : GLpn, pq.

By Proposition 2.12, xay is an irreducible subgroup. Hence M is a primitive group, and
consequently M is a Frobenius group by Lemma 2.10.

Let F be a minimal Frobenius group acting on a set Ω (|Ω| ą 2) with cyclic point
stabilizers, and K be its Frobenius kernel. By Lemma 2.9, K is an elementary abelian
p-group and F is a primitive group. Set |K| “ pn, and then |Ω| “ pn. Take an element
α P Ω and assume |Fα| “ k. By Proposition 2.12, k is a primitive divisor of pn ´ 1, and
GLpn, pq has only one conjugacy class of irreducible cyclic subgroups of order k. Hence
AGLpn, pq has only one conjugacy class of subgroups isomorphic to F which implies
F – M “ T : xay when k “ m. These discussions give the following Theorem 3.1.

Theorem 3.1. Let F be a minimal Frobenius group with cyclic point stabilizers of order
m. Then, F – T : xay, where T is elementary abelian of order pn for some prime number
p and an integer n ě 1, m is a primitive divisor of pn ´ 1 and |xay| “ m. Clearly,
|F | “ mpn.

Lemma 3.2. Let M “ T : xay be the group defined as in the first paragraph of this section.
If H “ pM ;R,Lq is a Frobenius hypermap, then H is isomorphic to

Hpp, n,m, i, jq “ pM ; ai, ajbq,

where 1 ‰ b P T , m is a primitive divisor of pn ´ 1, j P Zm, i P Z˚
m and pi, pq “ 1. More-

over, different parameter pairs pi, jq give non-isomorphic hypermaps with pn hyperfaces,
each of valency m. Furthermore, there are mϕpmq

n non-isomorphic hypermaps, where ϕ is
the Euler’s totient function.
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Proof. Let G “ GLpn, pq and then M ď AGLpn, pq “ T : G. Since M is a Frobenius
group, M has only one conjugacy class of subgroups of order m. So we can assume R “ ai

for some i P Z˚
m. Remember that S is the cyclic Singer-Zyklus group of GLpn, pq and xay

is a subgroup of S. So, M is a normal subgroup of T : S. Since S fixes a and acts
transitively on T zt1u by conjugation, we may fix L “ ajb, where j is calculated modular
m.

If there exists an automorphism σ of M such that paiqσ “ ai
1

and pajbqσ “ aj
1

b, then
bσ “ aϵb for some ϵ P Zm. Clearly, the orders of b and aϵb are equal. While according to
Proposition 2.7, the two elements aϵb and aϵ have the same order which is coprime with
that of b if ϵ ‰ 0 modulo m. So, bσ “ b. By Lemma 2.13, there exists an element u P G
such that σ “ Ipuq|F , where u P NGpxayq. According to Proposition 2.12,

NGpxayq “ S : xyy “ xx, y
ˇ

ˇ xpn
´1 “ yn “ 1, xy “ xpy,

where S “ xxy. Because bσ “ b, it follows that u “ yt, where t is calculated modular n.
So, aσ “ ay

t

“ ap
t

. As a result, we may assume pi, pq “ 1 in R “ ai. As a result, we get
mϕpmq

n non-isomorphic hypermaps pM ; ai, ajbq, where ϕ is the Euler’s totient function.
Clearly, pM ; ai, ajbq has pn hyperfaces, each of valency m. l

By Theorem 3.1, the automorphism group of a minimal Frobenius hypermap is isomor-
phic to M “ T : xay, where |T | “ pn and |xay| “ m. Consequently, we give the following
classification theorem of minimal Frobenius hypermaps.

Theorem 3.3. H is a minimal Frobenius hypermap if and only if H is isomorphic to

Hpp, n,m, i, jq “ pM ; ai, ajbq,

where M is a group defined as in the first paragraph of this section, m is a primitive divisor
of pn ´ 1, j P Zm, i P Z˚

m and pi, pq “ 1. Moreover, different parameter pairs pi, jq give
non-isomorphic hypermaps with pn hyperfaces, each of valency m. And, there are mϕpmq

n
non-isomorphic minimal Frobenius hypermaps, where ϕ is the Euler’s totient function.

According to Corollary 2.11, we have the following Proposition 3.4.

Proposition 3.4. If H is a regular hypermap, then H is a minimal Frobenius hypermap if
and only if AutpHq acts primitively on the hyperfaces.

The next Proposition 3.5 follows from Lemma 2.5.

Proposition 3.5. Every Frobenius hypermap covers a minimal Frobenius hypermap.

The H-sequence of a hypermap H is a sequence r|v|, |e|, |f |;V,E, F ; |AutpHq|s, where
|v|, |e|, |f |, V, E and F stand for the hypervertex valency, hyperedge valency, hyperface
valency, number of hypervertices, number of hyperedges and number of hyperfaces of H,
respectively.

Corollary 3.6. The H-sequence of the minimal Frobenius hypermap Hpp, n,m, i, jq “

pM ; ai, ajbq is

(i) rp,m,m;mpn´1, pn, pn;mpns for j “ 0;

(ii) rm, p,m; pn,mpn´1, pn;mpns for j “ m ´ i;
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(iii) r m
pm,jq

, m
pm,i`jq

,m; pm, jqpn, pm, i ` jqpn, pn;mpns for j ‰ 0 and j ‰ m ´ i.

Proof. The sequence is determined by the first three entries, namely |ajb|, |ai`jb| and |ai|.
These entries can be easily calculated according to Proposition 2.7. l
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