2020 | št.: 63/1 Gostujoči uredniki / Guest Editors: Rok Gašparič, John W. M. Jagt, Andreja Žibrat Gašparič & Luka Gale ISSN Tiskana izdaja / Print edition: 0016-7789 Spletna izdaja / Online edition: 1854-620X GEOLOGIJA 63/1 – 2020 GEOLOGIJA 2020 63/1 1-172 Ljubljana GEOLOGIJA ISSN 0016-7789 http://www.geologija-revija.si/userfiles/image/BY.jpg Izdajatelj: Geološki zavod Slovenije, zanj direktor MILOŠ BAVEC Publisher: Geological Survey of Slovenia, represented by Director MILOŠ BAVEC Financirata Javna agencija za raziskovalno dejavnost Republike Slovenije in Geološki zavod Slovenije Financed by the Slovenian Research Agency and the Geological Survey of Slovenia Vsebina številke 63/1 je bila sprejeta na seji Uredniškega odbora, dne 21. 4. 2020. Manuscripts of the Volume 63/1 accepted by Editorial and Scientific Advisory Board on April 21, 2020. Glavna in odgovorna urednica / Editor-in-Chief: MATEJA GOSAR Tehnična urednica / Technical Editor: BERNARDA BOLE Uredniški odbor / Editorial Board DUNJA ALJINOVIć HARALD LOBITZER Rudarsko-geološki naftni fakultet, Zagreb Geologische Bundesanstalt, Wien MARIA JOAO BATISTA MILOŠ MILER National Laboratory of Energy and Geology, Lisbona Geološki zavod Slovenije, Ljubljana MILOŠ BAVEC RINALDO NICOLICH Geološki zavod Slovenije, Ljubljana Universita di Trieste, Dip. di Ingegneria Civile, MIHAEL BRENčIč SIMON PIRC Naravoslovnotehniška fakulteta, Univerza v Ljubljani Naravoslovnotehniška fakulteta, Univerza v Ljubljani GIOVANNI B. CARULLI MIHAEL RIBIčIč Dip. di Sci. Geol., Amb. e Marine, Universita di Trieste Naravoslovnotehniška fakulteta, Univerza v Ljubljani KATICA DROBNE NINA RMAN Znanstvenoraziskovalni center SAZU, Ljubljana Geološki zavod Slovenije, Ljubljana JADRAN FAGANELI MILAN SUDAR Nacionalni inštitut za biologijo, MBP, Piran Faculty of Mining and Geology, Belgrade JANOS HAAS SAŠO ŠTURM Etvös Lorand University, Budapest Institut »Jožef Stefan«, Ljubljana BOGDAN JURKOVŠEK DRAGICA TURNŠEK Geološki zavod Slovenije, Ljubljana Slovenska akademija znanosti in umetnosti, Ljubljana ROMAN KOCH MIRAN VESELIč Institut fr Paläontologie, Universität Erlangen-Nrnberg Fakulteta za gradbeništvo in geodezijo, Univerza v MARKO KOMAC Ljubljani Poslovno svetovanje s.p., Ljubljana Naslov uredništva / Editorial Office: GEOLOGIJA Geološki zavod Slovenije / Geological Survey of Slovenia Dimičeva ulica 14, SI-1000 Ljubljana, Slovenija Tel.: +386 (01) 2809-700, Fax: +386 (01) 2809-753, e-mail: urednik@geologija-revija.si URL: http://www.geologija-revija.si/ GEOLOGIJA izhaja dvakrat letno. / GEOLOGIJA is published two times a year. GEOLOGIJA je na voljo tudi preko medknjižnične izmenjave publikacij. / GEOLOGIJA is available also on exchange basis. Izjava o etičnosti Izdajatelji revije Geologija se zavedamo dejstva, da so se z naglim naraščanjem števila objav v svetovni znanstve.ni literaturi razmahnili tudi poskusi plagiatorstva, zlorab in prevar. Menimo, da je naša naloga, da se po svojih močeh borimo proti tem pojavom, zato v celoti sledimo etičnim smernicam in standardom, ki jih je razvil odbor COPE (Committee for Publication Ethics). Publication Ethics Statement As the publisher of Geologija, we are aware of the fact that with growing number of published titles also the problem of plagiarism, fraud and misconduct is becoming more severe in scientific publishing. We have, there.fore, committed to support ethical publication and have fully endorsed the guidelines and standards developed by COPE (Committee on Publication Ethics). Baze, v katerih je Geologija indeksirana / Indexation bases of Geologija: Scopus, Directory of Open Access Journals, GeoRef, Zoological Record, Geoscience e- Journals, EBSCOhost Cena / Price Posamezni izvod / Single Issue Letna naročnina / Annual Subscription Posameznik / Individual: 15 € Posameznik / Individual: 25 € Institucija / Institutional: 25 € Institucija / Institutional: 40 € Tisk / Printed by: GRAFIKA GRACER d.o.o. Slika na naslovni strani: Novo opisani zgornjejurski fosilni rak samotar Mesoparapylocheles janetjacksonae iz Štramberka (Češka). Fosil je poimenovan po pevki Janet Jackson, saj spada v isto družino rakov samotarjev kot Mesoparapylocheles michaeljacksoni, ki je bil odkrit leta 2012. Cover page: Newly described Upper Jurassic fossil hermit crab Mesoparapylocheles janetjacksonae from Štramberk (Czech Republic). The fossil is named after the singer Janet Jackson as it belongs to the same family of hermit crabs as Mesoparapylocheles michaeljacksoni, a fossil discovered in 2012. VSEBINA – CONTENTS Gašparič, R., Jagt, J.W.M., Žibrat Gašparič, A. & Gale, L. (gostujoči uredniki).................................... 5 Uvodnik / Editorial 9 Schweigert, G. & Härer, J. of southwest Germany ........................................................................................................................ 19 Novi jastogi iz družine Erymidae iz formacij Nusplingen in Usseltal (zgornja jura) iz jugozahodne Nemčije Gašparič, R., Robins, C. & Gale, L. Mesogalathea ardua sp. nov., a new species of squat lobster (Decapoda, Galatheidae) from the Upper Jurassic olistolith at Velika Strmica (Dolenjska, Slovenia) ........................................... 29 Nova vrsta raka Mesogalathea ardua sp. nov. (Decapoda, Galatheidae) iz zgornjejurskega olistolita pri Veliki Strmici (Dolenjska, Slovenija) González-León, O., Moreno-Bedmar, J.A., Barragán-Manzo, R. & Vega, F.J. Well-preserved cuticle of Atherfieldastacus magnus (M’Coy, 1849) (Decapoda, Glypheida) from the Aptian of Mexico.................................................................................................................. 39 Dobro ohranjena kutikula raka Atherfieldastacus magnus (M'Coy, 1849) (Decapoda, Glypheida) iz aptijskih plasti v Mehiki Jakobsen, S.L., Fraaije, R.H.B., Jagt,J.W.M. &.Van Bakel, B.W.M New early Paleocene (Danian) paguroids from deep-water coral/bryozoan mounds at Faxe, eastern Denmark ................................................................................................................................. 47 Novi zgodnjepaleocenski (danijski) raki samotarji iz globokovodnih koralno-briozojskih kop nahajališča Faxe na vzhodnem Danskem Busulini, A., Zorzin, R., Beschin, C. & Tessier, G. Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, 2004 (Decapoda, Brachyura, Raninidae) from lower Eocene laminites of the “Pesciara di Bolca” (Verona, northeast Italy) .... 57 Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, 2004 (Decapoda, Brachyura, Raninidae) iz spodnjeeocenskih laminiranih apnencev “Pesciara di Bolca” (Verona, severovzhodna Italija) De Angeli, A. & Garassino, A. A new xanthid crab, Neoliomera zovoensis sp. nov. (Decapoda, Brachyura), from the lower Eocene beds of Zovo (Vestenanova, Verona, northeast Italy).......................................................... 67 Neoliomera zovoensis sp. nov. (Decapoda, Brachyura), nova vrsta rakovice iz spodnjeeocenskih plasti nahajališča Zovo (Vestenanova, Verona, severovzhodna Italija) Marangon, S. & De Angeli, A. A new homolid crab, Cherpihomola italica gen. nov., sp. nov. (Decapoda, Brachyura), from the Rupelian of the Ligure-Piemontese Basin (Alessandria, northern Italy) ....................... 73 Nov homolidni rak Cherpihomola italica oligocenskih (rupelijskih) plasti Ligurisko – piemontskega bazena (Alessandria, severna Italija) Hyžný, M., Gašparič, R. & Dulai, A. Revision of species Plagiolophus sulcatus Beurlen, 1939 (Decapoda, Brachyura) from the Oligocene of Hungary and Slovenia................................................................................................... 83 Revizija vrste Plagiolophus sulcatus Beurlen, 1939 (Decapoda, Brachyura) iz oligocena Madžarske in Slovenije Wallaard, J.J.W., Fraaije, R.H.B., Jagt, J.W.M., Klompmaker, A.A. & Van Bakel, B.W.M. The first record of a paguroid shield (Decapoda, Anomura, Annuntidiogenidae) from the Miocene of Cyprus ................................................................................................................................. 93 Prva najdba ščitov rakov samotarjev (Decapoda, Anomura, Annuntidiogenidae) iz miocenskih plasti Cipra Ossó, A., Hyžný, M., Gómez, M., Albalat, D. &. Ferratges, F.A. On the occurrence of Iphiculus eliasi Hyžný & Gross, 2016 (Decapoda, Brachyura, Leucosioidea) from the Miocene of Catalonia (northeastern Iberian Peninsula) ........................ 101 Novi podatki o razširjenosti vrste Iphiculus eliasi Hyžný & Gross, 2016 (Decapoda, Brachyura, Leucosioidea) iz miocena Katalonije (severovzhod Iberijskega polotoka) Pasini, G. Garassino, A., De Angeli, A. & Pizzolato, F. Additional records of decapod crustaceans from the lower Pleistocene beds of Poggi Gialli (Tuscany, central Italy) .................................................................................................................... 109 Nove najdbe rakov deseteronožcev iz spodnjepleistocenskih plasti v kamnolomu Poggi Gialli (Toskana, Italija) Ossó, A. & Domínguez, J.L. On the systematic placement of Pyreneplax Oss Domínguez & Artal, 2014 (Decapoda, Brachyura, Vultocinidae) ................................................................................................................. 125 Taksonomska uvrstitev rodu Pyreneplax Oss Domínguez & Artal, 2014 (Decapoda, Brachyura, Vultocinidae) Spiridonov, V.A. An update of phylogenetic reconstructions, classification and morphological characters of extant Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata), with a discussion of their relevance to fossil material............................................................................ 133 Posodobitev filogenetske rekonstrukcije, klasifikacije in morfoloških znakov recentnih rakovic Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata) z razpravo o njihovi pomembnosti za fosilni material Poročila Gašparič, R.: 7th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, 17th–21st June 2019, Ljubljana (Slovenia) ........................................................................................ 167 GEOLOGIJA 63/1, 5-7, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.000 Editorial This issue of Geologija focuses on new discov­ eries in the field of extinct decapod crustaceans, a group that evolutionarily ranks amongst the most successful multicellular organisms. They form a diverse assemblage of arthropods that are found in different habitats: shallow areas of continental shelves to deep ocean floors, but also occurring in rivers, lakes and cave systems; several species are even adapted to life on land. Due to their great economic importance, mod­ern decapods have received more attention than other crustaceans within the biological scienc­es, while global palaeontological research into this group has never attained the high level of stratigraphical importance of other biota, such as molluscs. Fossil decapods were studied in detail during the first decades of the twentieth century, but after that the interest waned. Only from the 1970s, has there been a steady growth of scientific research in this field and there has been a remarkable increase in the activity of pa­laeontologists from the 1990s and continuing to the present day. Currently, about 40 to 50 researchers from around the world, study fossil decapods. A small team of palaeontologists is responsible for the rapid advancement of our knowledge of the evolution of decapods. In spite of the good on-line connections amongst these researchers, the regular organisation of Symposia on Mesozoic and Cenozoic Decapod Crustaceans, every three years, is also crucial for sharing experiences and comparing research outcomes. The first meeting of the Working Group on Fossil Decapods was thus held at Montecchio Maggiore (Vicenza, Ita­ly) in 2000 (First Workshop on Mesozoic and Ter­tiary Decapod Crustaceans, October 6-8, 2000). Subsequent symposia were then staged at Box-tel, the Netherlands (2003), Milan, Italy (2007), Eichstätt, Germany (2010), Krakw, Poland (2013) and Villers sur Mer, France (2016). From the 17th to 21st of June 2019 we organ-ised the 7th Symposium on Mesozoic and Ceno­zoic Decapod Crustaceans in Ljubljana, with the assistance of the Geological Survey of Slovenia, the Museum of Natural History of Slovenia and the Department of Geology at the Faculty of Uvodnik Tokratna številka Geologije je posvečena novim dognanjem v raziskavah izumrlih fosil­ nih rakov deseteronožcev, ki so evolucijsko ena od najbolj uspešnih skupin večceličnih organiz­mov. Tvorijo zelo raznoliko skupino členonožcev, ki naseljujejo različna bivalna okolja: plitva ob-močja kontinentalnih polic in globoka morska dna oceanov, najti jih je moč v rekah, jezerih in jamskih sistemih, več vrst pa je prilagojenih tudi življenju na kopnem. Zaradi njihove velike ekon­omske pomembnosti so sodobni deseteronožci znotraj bioloških znanosti deležni več pozornos-ti kot ostali raki. Kljub temu paleontološke ra­ ziskave deseteronožcev v svetovnem merilu nikoli niso dosegle pozornosti stratigrafsko pomembnih skupin kot so mehkužci. Fosilni deseteronožci so bili sicer deležni večje pozornosti raziskovalcev v prvih desetletjih dvajsetega stoletja, kasneje pa le redko. Od sedemdesetih let dalje lahko opazi-mo povečanje zanimanja znanosti na tem področ­ju, izjemen porast aktivnosti paleontologov pri preučevanju fosilov deseteronožcev pa se je zgodil šele v devetdesetih letih prejšnjega stoletja in tra­ja še danes. Trenutno se s preučevanjem fosilnih deset­eronožcev ukvarja okoli 40 do 50 raziskovalcev z vsega sveta. Majhna skupina paleontologov in dobra komunikacija je zaslužna za hiter napre­dek znanja o evoluciji deseteronožcev. Kljub do-bri povezanosti teh raziskovalcev preko spleta, pa je za izmenjavo izkušenj in primerjavo zad­njih izsledkov ključna tudi redna organizacija tematskih simpozijev o fosilnih deseteronožcih (Symposium on Mesozoic and Cenozoic Decapod Crustaceans / simpozij o mezozojskih in kenozo­jskih rakih deseteronožcih), ki jih organiziramo vsaka tri leta. Prvo srečanje delovne skupine o fosilnih deseteronožcih je tako potekalo leta 2000 v Montecchio Maggiore – Vicenza v Italiji (Prva delavnica o mezozojskih in terciarnih rakih dese­teronožcih, 6. - 8. oktober 2000). Ostali simpoziji so bili nato organizirani še v Boxtelu na Nizozem­skem (2003), Milanu v Italiji (2007), Eichstättu v Nemčiji (2010), Krakowu na Poljskem (2013) ter v Villers sur Mer v Franciji (2016). Med 17. in 21. junijem 2019 smo v Ljubljani or-ganizirali že sedmi simpozij o mezozojskih in ke­Natural Sciences and Engineering, University of Ljubljana. At the symposium, 44 researchers from as many as 17 countries presented scientific discoveries in the form of lectures and posters, and the meeting was held in a relaxed infor­mal atmosphere. The participants left Slovenia armed with new ideas and new ties and great­ ly impressed, after having done fieldwork, with the geological diversity available in such a small area as Slovenia. After the presentation of pre­liminary data on the palaeobiological diversity of Slovenia’s fossil decapods, it would appear al­most unlikely that in Slovenia one can study fos­sil decapods from Late Triassic lagoons, across Jurassic coral reefs and into coastal environ­ments of the Miocene Paratethys, and all of this within a distance of merely 100 km. Sometimes even Slovenian palaeontologists do not grasp the whole fossil diversity that lies within the coun­try’s sedimentary rocks. In the present issue of Geologija, we are excit­ed to present some of the research discussed at the symposium. Fraaije et al. record remains of hermit crabs of Tithonian to early Berriasian age from Štramberk, Czech Republic, which is one of the more diverse fossil paguroid faunas. New representatives of five families and five genera of hermit crabs are represented, including a species named after the singer/songwriter Janet Jackson and featured on the cover of this issue. Late Jurassic decapods are also described in contributions by Schweigert et al. and Gašparič et al. The first focuses on two new types of ery-mid lobster from lagoonal limestone in Bavaria, Germany, and the second paper discusses a new type of squat lobster from reef olistolith in Slo­venia. Mesozoic contributions are completed by González-León et al., who, based on the cuticle structure of the Early Cretaceous lobster Ath­erfieldastacus magnus from Mexico, have rec-ognised differences between fossil corpses and moults of these. In the following, Jakobsen et al. describe two new types of hermit crabs from Lower Paleocene levels at Faxe, Denmark. The only known exam­ple of a raninid crab from the renowned Eocene site ‘Pesciara di Bolca’ (Verona, Italy) is present­ed by Busulini et al., and De Angeli and Garass­ino describe a new species of Neoliomera from the Lower Eocene of northeastern Italy. Ossand Domínguez, based on a new specimen of the spe­cies Pyreneplax basaensis from the Upper Eo­cene of Spain, revise its description and confirm placement in the family Vultocinidae. Decapods of Oligocene age are described by Marangon and nozojskih rakih deseteronožcih (7th Symposium on Mesozoic and Cenozoic Decapod Crustaceans). Srečanje je potekalo s pomočjo Geološkega zavo­da Slovenije, Prirodoslovnega muzeja Slovenije in Oddelka za Geologijo, Naravoslovnotehniške fakultete Univerze v Ljubljani. Na simpoziju je znanstvene izsledke v obliki predavanj in plaka­ tov predstavilo 44 raziskovalcev iz kar 17 držav, srečanje pa je potekalo v sproščenem neformal­nem vzdušju. Udeleženci so Slovenijo zapustili oboroženi z novimi idejami in stkanimi novimi vezmi ter navdušeni nad geološko pestrostjo, ki se skriva na tako majhni površini. Po predstav­ljenih predhodnih izsledkih o biološki pestrosti in raznolikosti fosilnih deseteronožcev Sloveni­je, se marsikomu zdi skoraj neverjetno, da lahko v Sloveniji na razdalji le nekaj 100 km razisku­jemo fosilne deseteronožce od zgornjetriasnih la-gun, preko jurskih koralnih grebenov pa vse do priobalnih okolij miocenskega morja Paratetide. Marsikje še ne poznamo fosilne pestrosti, ki se skriva v sedimentnih kamninah Slovenije. V tokratni številki Geologije vam navdušeno predstavljamo nekatere izsledke raziskav, ki so bile predstavljene na simpoziju. Fraaije s sod. predstavlja ostanke rakov samotarjev tithonijske do spodnjeberriasijske starosti iz Štramberka na Češkem, ki se uvršča med najbolj raznolike fosilne paguroidne faune. Predstavljeni so novi predstavniki petih družin in petih rodov rakov samotarjev. Med njimi je tudi vrsta, ki so jo avtor­ji poimenovali po pevki Janet Jackson in krasi tudi naslovnico tokratne številke. Zgornjejurske deseteronožce v svojih prispe­vkih predstavljata tudi Schweigert s sod. in Gašparič s sod. Prvi opisujejo dve novi vrsti erymidnih jastogov iz lagunskih ploščastih ap­nencev z Bavarske v Nemčiji, drugi prispevek pa obravnava novo vrsto raka skakača iz grebens­kega olistolita v Sloveniji. Mezozojske prispevke zaključuje González-León s sod., ki so na podla­gi strukture kutikule spodnjekrednega jastoga Atherfieldastacus magnus iz Mehike, prepoznali razlike med trupli in levi fosilnih deseteronožcev. V nadaljevanju Jakobsen s sod. opiše dve novi vrsti rakov samotarjev iz spodnjepaleocenskih plasti v Faksu na Danskem. Edini do sedaj znani primerek raninidne rakovice iz znanega eocen­skega nahajališča ‚Pesciara di Bolca‘ (Verona, Italija) predstavlja Busulini s sod., De Angeli in Garassino pa v prispevku opišeta novo vrsto Neoliomere iz spodnjega eocena severovzhodne Italije. Ossin Domínguez na podlagi novega primerka vrste Pyreneplax basaensis iz zgorn­jega eocena Španije dopolnjujeta opis vrste in De Angeli, who introduce a new genus and a new species of homolid crustacean from Lower Oli­ gocene strata in the Ligurian-Piedmont Basin in northern Italy, while Hyžný et al. revise the crab Plagiolophus sulcatus and record a new speci­men of this taxon from the Upper Oligocene of Trbovlje in Slovenia. The paper by Wallaard et al. presents the first find of a Miocene age hermit crab shield from the Upper Miocene reefal limestones in Cyprus, on the basis of which they erect a new species that they name after Joe Collins, a prolific decapod crustacean workers from London, who passed away in 2019. Osset al. present new specimens of the Middle Miocene leucosioid crab Iphiculus eliasi from Catalonia, while the paper by Pasini et al. records new decapods from Lower Pleisto­cene levels at Poggi Gialli in Tuscany: two new species and a new genus are described, and an updated list of all fossil decapods from the site is added as well. This issue on fossil and recent decapod crus­taceans is completed by Spiridonov with a ne-ontological contribution to an update of the phylogenetic reconstruction, classification and morphological characters of extant crabs of the superfamily Portunoidea. The paper combines the classification of extant and extinct material and introduces new subfamilies within the Car-cinidae and Portunidae. With the present issue of Geologija, the guest editors hope to bring as many readers as pos­sible closer to the wonderful world of decapod crustaceans. There are still many challenges out there and ample room for passionate research by an increasing number of researchers around the world. A final word of thanks to all colleagues who assisted with the peer reviews of the various submissions. Rok Gašparič, John W. M. Jagt, Andreja Žibrat Gašparič & Luka Gale (guest editors) uvrstitev v družino Vultocinidae. Med fosilnimi deseteronožci oligocenske starosti Marangon in De Angeli predstavita nov rod in novo vrsto ho-molidnih rakov iz spodnjeoligocenskih plasti v Ligursko-piemontskem bazenu na severnu Itali­ je, Hyžný s sod. pa revizijo rakovice Plagiolophus sulcatus in novi primerek iz zgornjega oligocena iz Trbovelj. Wallaard s sod. v prispevku predstavlja prvo najdbo ščita raka samotarja miocenske starosti iz zgornjemiocenskih grebenskih apnencev na Cip­ru, na podlagi katere je opisana nova vrsta, poi-menovana po leta 2019 preminulem raziskovalcu fosilnih rakov Joe Collinsu. Osss sod. predstav­lja nove primerke leukosioidnih rakov Iphiculus eliasi srednjemiocenske starosti iz Katalonije. V prispevku Pasini s sod. pa beremo o novih dese­teronožcih iz spodnjepleistocenskih plasti naha­jališča Poggi Gialli v Toskani. Med najdbami sta opisani dve novi vrsti in nov rod, prispevku pa je dodan tudi posodobljen seznam vseh fosilnih deseteronožcev iz nahajališča. Prvo letošnjo številko, posvečeno fosilnim in recentnim rakom deseteronožcem, zaključuje Spiridonov z neontološkim prispevkom o posodo­bitvi filogenetske rekonstrukcije, klasifikacije in morfoloških znakov recentnih rakovic iz družine Portunoidea. Prispevek združuje klasifikaci­jo neontološkega in paleontološkega materiala in predstavi novo poddružino Parathranitiinae znotraj družine Carcinidae in novo poddružino Achelouinae znotraj Portunidae. Gostujoči uredniki upamo, da bomo s pred­stavljenimi prispevki v tej številki Geologije čim večjemu številu bralcev približali čudovit svet rakov deseteronožcev. Pri raziskavah le-teh nas še vedno čakajo številni izzivi in dovolj priložnos-ti za raziskovalno strast vedno večjega števila ra­ziskovalcev po svetu. Na koncu bi se želeli zahval­iti vsem kolegom, ki so pomagali pri recenzijskih postopkih posameznih člankov. Rok Gašparič, John W. M. Jagt, Andreja Žibrat Gašparič & Luka Gale (gostujoči uredniki) GEOLOGIJA 63/1, 9-18, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.001 Paguroid anomurans from the upper Tithonian–lower Berriasian of Štramberk, Moravia (Czech Republic) Zgornjethitonijski–spodnjeberiasijski raki samotarji iz Štramberka, Moravska (Češka) René H.B. FRAAIJE1, Barry W.M.VAN BAKEL1, John W.M. JAGT2 & Petr SKUPIEN3 1Oertijdmuseum, Bosscheweg 80, 5283 WB Boxtel, the Netherlands; e-mail: info@oertijdmuseum.nl 2Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands; e-mail: john.jagt@maastricht.nl 3Department of Geological Engineering,VŠB-Technical University of Ostrava, 17. listopadu 15, Poruba, 708 33 Ostrava, Czech Republic; e-mail: petr.skupien@vsb.cz Prejeto / Received 10. 8. 2019; Sprejeto / Accepted 26. 11. 2019; Objavljeno na spletu / Published online 30. 1. 2020 Key words: Paguroidea, upper Tithonian - lower Berriasian, Štramberk Limestone, Moravia, Czech Republic Ključne besede: Paguroidea, zgornjethitonijski–spodnjeberiasijski, Štramberk, Moravska, Češka republika Abstract Subsequent to a preliminary report on a handful of paguroid remains from the Tithonian (uppermost Jurassic) to lower Berriasian (Lower Cretaceous) Štramberk Limestone in Moravia (eastern Czech Republic), published in 2013, several field campaigns were organised by our research team during the summers of 2012–2015 and 2018. These resulted in the recovery of additional paguroid shields (or, anterior carapaces) that form the basis of the present study. The currently available material documents a diverse paguroid fauna. In fact, it ranks amongst the most diverse fossil paguroid assemblages known, following faunas from the upper Kimmeridgian of Nusplingen (southern Germany) and the Tithonian of Ernstbrunn (northeast Austria). New representatives of five families and five genera are described, named and illustrated, as follows: Annuntidiogenes sagittula sp. nov. (Diogenidae), Protopagurus cerebellum sp. nov. and Protopagurus duopupae sp. nov. (Paguridae), Mesoparapylocheles janetjacksonae sp. nov. (Parapylochelidae), Masticacheles septemgradu sp. nov. (Pilgrimchelidae) and Ammopylocheles romankijoki sp. nov. (Pylochelidae). Izvleček Po prvih poročilih o ostankih rakov samotarjev (Paguroidea) titonijske (zgornje jurske) do spodnje beriasijske (spodnje kredne) starosti iz apnencev v kamnolomu Štramberk na Moravskem (vzhodna Češka), ki so bila objavljena leta 2013, smo med leti 2012-2015 in poleti 2018 opravili več dodatnih terenskih raziskav. Pri raziskavah smo odkrili številne nove ščite (sprednje dele oklepa) rakov samotarjev, ki so predstavljeni v pričujočem članku. Opisan fosilni material predstavlja raznovrstno favno rakov samotarjev, ki se uvršča med najbolj raznolike znane fosilne paguroidne združbe, primerljive z zgornjo kimeridžijsko združbo regije Nusplingen (južna Nemčija) in titonijsko paguroidno združbo nahajališča Ernstbrunn (severovzhodna Avstrija). Opisani in predstavljeni so novi predstavniki petih družin in petih rodov rakov samotarjev: Annuntidiogenes sagittula sp. nov. (Diogenidae), Protopagurus cerebellum sp. nov. in Protopagurus duopupae sp. nov. (Paguridae), Mesoparapylocheles janetjacksonae sp. nov. (Parapylochelidae), Masticacheles septemgradu sp. nov. (Pilgrimchelidae) in Ammopylocheles romankijoki sp. nov. (Pylochelidae). Introduction The Štramberk Limestone, exposed along sev­ eral exploitation levels at Kotouč quarry in the immediate vicinity of the town of Štramberk (Moravia, Czech Republic), comprises variably sized carbonate megablocks, breccias and con­glomerates that represent deposition on a car­bonate platform along the northern Tethyan mar­ gin in the area of the present-day Outer Western Carpathians during the latest Jurassic and ear­ liest Cretaceous (Vašíček et al., 2018; Vaňková et al., 2019). In recent years, numerous macrofossils have been collected from this quarry thanks to an agreement between the VSB-Technical Uni­versity of Ostrava and the management of Kotouč quarry. From about 1910 onwards, the quarry at Kotouč Hill has been the main source of mac­ro- and microfossils that have been described in numerous palaeontological studies (see Vašíček & Skupien, 2004, 2005, 2019 for references). The reefal limestone facies at the quarry varies wide­ly, ranging from very coarse-grained to gravelly layers or lenses, formed by e.g. molluscan shells and corals, to very fine-grained micritic lime­stones and (most commonly) fine-grained biode­trital limestones (e.g., Houša & Vašíček, 2005). Fieldwork carried out by our research team in the Upper Jurassic–Lower Cretaceous reefal limestones at Kotouč quarry during the summers of 2012–2015 and 2018, has provided a highly di­verse decapod crustacean fauna comprising re­mains of isopods, macrurans, anomurans, and brachyurans. Paguroid material collected during the first campaign was recorded in a preliminary paper; this included a handful of shields (or, por­tions of anterior carapaces) and a single sixth abdominal tergite (Fraaije et al., 2013). In 2015, Gašparič et al. described the galatheoid Gala-theites zitteli (Moericke, 1889) from the infill of a test of a nucleolitid echinoid, collected in June 2014. With at least 18 species, in eight families, the Tithonian (Late Jurassic) paguroid fauna from Ernstbrunn (Austria) is by far the most diverse fossil assemblage recorded to date. In second place, with 13 species in six families, follows that from Nusplingen (upper Kimmeridgian, southern Germany), just ahead of the assemblage described below, which comprises 11 species in seven fam­ilies. Herein, we follow Vašíček & Skupien (2019) and Vaňková et al. (2019) for the stratigraphical placement of the material studied. Seven species are here recorded from the upper Tithonian, and four from the lower Berriasian part of the section exposed at Kotouč. Material and methods Specimens, usually only partially exposed, were mechanically prepared under a LOMO MBS-10 stereomicroscope, using needles and pneumatic airscribes of the types Hardy Winkler HW-1 and HW-70/3. Accidentally chipped pieces were glued back by Starbond super fast thin CA glue. For photography, specimens were first dyed with black water colour, and when dry, coated with ammonium chloride, in order to gain max­imum contrast of fine details. Specimens were photographed using a Canon digital SLR in aper­ture priority, Zeiss Luminar 100 mm and 63 mm macrolenses on a Nikon PB-4 bellows unit. A copy stand was used, and a Euromex coldlight source for illumination. Post-processing was done in GIMP 10.0; levels and curves were ad­justed for white balance and contrast, the sharp­ness slightly enhanced with an ‘unsharp mask’. Systematic palaeontology We here adopt the carapace-based classifica­tion and descriptive terminology of extinct pa-guroids proposed by Fraaije (2014) and Fraaije et al. (2019). All material is contained in the collec­tions of the Oertijdmuseum, Boxtel (the Nether­lands; abbreviation: MAB). Order Decapoda Latreille, 1802 Infraorder Anomura H. Milne Edwards, 1832 Superfamily Paguroidea Latreille, 1802 Family Annuntidiogenidae Fraaije, 2014 Genus Annuntidiogenes Fraaije, Van Bakel, Jagt & Artal, 2008 Type species: Annuntidiogenes ruizdegaonai Fraaije, Van Bakel, Jagt & Artal, 2008, by origi­nal designation. Included species: Annuntidiogenes sagittula sp. nov., An. elongatus Fraaije, Robins, Van Ba-kel, Jagt & Bachmayer, 2019, An. hoelderi Fraa­ije, Robins, Van Bakel, Jagt & Bachmayer, 2019, An. jurassicus Fraaije, 2014, An. massetispino­sus Fraaije, Van Bakel & Jagt, 2017, An. sunucio-rum Fraaije, Van Bakel, Jagt & Artal, 2008, An. ruizdegaonai and An. worfi Fraaije, Van Bakel, Jagt, Klompmaker & Artal, 2009. Annuntidiogenes sagittula sp. nov. (Pl. 1.1) Diagnosis: Shield longer than wide, divided into distinct regions by grooves; long triangu­lar rostrum extending beyond postocular and postantennal spines; convex postrostral ridge; scabrous ornament on anterior gastric region; long and wide central gastric groove forming ar­ row-shaped figure in conjunction with rostrum; elongated, bipartite massetic region; pronounced triangular anterior branchial area; posterior in-tragastric grooves parallel to cervical groove. Derivation of name: Latin sagittula, meaning small arrow, in reference to the typical arrow­head shape of the central anterior groove in con­junction with the triangular rostrum. Type material: The holotype, and sole speci­men known to date (MAB k.3631), is a near-com­plete shield; as preserved, maximum carapace length measures 4.0 mm, maximum shield width is 3.0 mm. Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 5; lower Berriasian (see Vašíček & Skupien, 2019, p. 39, fig. 3, locality 10; Vaňková et al., 2019, section B, layer B22). Description: Shield longer than wide (L/W ra­tio 1.14), divided into distinct regions by grooves; long, spinose and ridged triangular rostrum extending beyond postocular and postanten­nal spines; very shallow convex orbital and an-tennal cavities; convex postrostral ridge; long and wide central gastric groove, forming ar-rowhead-shaped configuration in conjunction with triangular rostrum; scabrous ornament on anterior gastric region, central gastric groove not extending posteriorly; elongated, bipartite massetic region; small, elongated keraial region; pronounced triangular anterior branchial area; posterior intragastric grooves parallel to cervi­cal groove. Remarks: Intragastric grooves (also known as Y-linea in extant paguroids) are parallel to the cervical groove; this is a unique feature shared by representatives of the family Annuntidioge­nidae. Annuntidiogenes sagittula sp. nov. can be distinguished from all congeners known to date by the unique combination of a very wide central anterior gastric groove, a bipartite mas-setic region and a triangular, ridged rostrum; in conjunction with the gastric groove, this forms a typical arrowhead shape. Family Diogenidae Ortmann, 1892 Genus Bachmayerus Fraaije, Van Bakel, Jagt & Skupien, 2013 Type species: Bachmayerus cavus Fraaije, Van Bakel, Jagt & Skupien, 2008, by original designation. Bachmayerus cavus Fraaije, Van Bakel, Jagt & Skupien, 2013 (Pl. 1.2) Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 7; upper Tithonian (see Vašíček & Skupien, 2019, p. 39, fig. 3). Type material: The holotype, and sole speci­men known to date (MAB k.3631), is a near-com­plete shield; as preserved, maximum carapace length measures 4.0 mm, maximum shield width is 3.0 mm. Remarks: For a detailed description, reference is made to Fraaije et al. (2013). Genus Eopaguropsis Van Bakel, Fraaije, Jagt & Artal, 2008 Type species: Eopaguropsis loercheri Van Ba-kel, Fraaije, Jagt & Artal, 2008, by original de­signation. Eopaguropsis cf. nidiaquilae Fraaije, Krzemiński, Van Bakel, Krzemińska and Jagt, 2012 (Pl. 1.3) Locality and level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 6; upper Titho­nian (see Vašíček & Skupien, 2019, p. 39, fig. 3, locality 3). Material: The specimen (MAB k.3759), is an incomplete shield; as preserved, maximum car­apace length measures 7.0 mm, maximum shield width is 5.0 mm. Remarks: For a detailed description, reference is made to Fraaije et al. (2012c). Family Gastrodoridae Van Bakel, Fraaije, Jagt & Artal, 2008 Genus Gastrodorus von Meyer, 1864 Type species: Gastrodorus neuhausensis von Meyer, 1864, by monotypy. Included species: Gastrodorus bzo­wiensis Krzemińska, Krzemiński, Fraaije, Van Bakel & Jagt, 2015, G. cretahispani­cus Klompmaker, Artal, Fraaije & Jagt, 2011, G. kotoucensis Fraaije, Van Bakel, Jagt & Skupien, 2013 and G. neuhausensis von Meyer, 1864. Gastrodorus kotoucensis Fraaije, Van Bakel, Jagt & Skupien, 2013 (Pl. 1.4) Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 7; upper Tithonian (see Vašíček & Skupien, 2019, p. 39, fig. 3). Remarks: For a detailed description, reference is made to Fraaije et al. (2013). Family Paguridae Latreille, 1802 Genus Protopagurus Fraaije, Robins, Van Bakel, Jagt & Bachmayer, 2019 Type species: Protopagurus janoscheki Fraa­ije, Robins, Van Bakel, Jagt & Bachmayer, 2019, by original designation. Included species: Protopagurus janoscheki, Protopagurus cerebellum sp. nov. and Protopa-gurus duopupae sp. nov. Remarks: To date, we are unaware of any rep­resentative of the family Paguridae from Oxford-ian and Kimmeridgian strata, in spite of intensive fieldwork in southern Germany and southern Po­land over several years. The oldest known pagu-rid has recently been described from the middle to lower upper Tithonian of Ernstbrunn (Austria; see Fraaije et al., 2019). The new taxa from the lower Berriasian of Moravia appear to substanti­ate the notion that this group rose to dominance during the latest Jurassic (and up to the present day) and ousted the more ancient groups of sym­metrical hermit crabs. Protopagurus duopupae sp. nov. (Pl. 1.5) Diagnosis: Well-areolated shield, slightly longer than wide; large, elongated massetic re­gion, anteriorly covered with scale-like ornamen­tation; shallow central gastric groove centrally indenting convex postfrontal ridge; anterior part of gastric region covered with scale-like orna­mentation; thin, elongated anterior branchial area; well-delineated, reniform keraial region; shield irregularly covered with (setal) pores. Derivation of name: Latin duo and pupa (-e), a noun in apposition, or two puppets, in allusion to the morphology of the gastric region. Type material: The holotype, and sole speci­men known to date (MAB k.3626), is an incom­plete shield of a maximum carapace length, as preserved, of 12.0 mm; the maximum shield width is 13.0 mm. Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 5; lower Berriasian (see Vašíček & Skupien, 2019, p. 39, fig. 3, locality 10; Vaňková et al., 2019, section B, layer B22). Description: Well-areolated shield, slightly longer than wide; large, elongated massetic re­gion, anteriorly covered with scale-like ornamen­tation, posteriorly covered with broad, shallow, pitted furrow slightly curving from anteriormost keraial region to mid-massetic edge; shallow central gastric groove centrally indenting convex postfrontal ridge; anterior part of gastric region covered with scale-like ornamentation; posteri­orly a row of large pits is forming subtransverse furrow; thin, elongated anterior branchial area; well-delineated, reniform keraial region; shield irregularly covered with (setal) pores. Frontal area and posteriormost part of shield not pre­served. Protopagurus cerebellum sp. nov. (Pl. 2.1) Diagnosis: Well-areolated shield, slightly longer than wide; convex orbital cavity, ending in triangular postocular projection; large, elon­gated massetic region, with large pores; central gastric groove centrally indenting convex post-frontal ridge; anterior part of gastric region cov­ered with brain-like ornamentation; thin, elon­gated anterior branchial area; small, reniform keraial region; shield irregularly covered with (setal) pores. Derivation of name: Latin cerebellum, or brains (noun used in apposition), referring to the brain-like ornament of the anterior gastric re­gion. Type material: The holotype, and sole speci­men known to date (MAB k.3628), is a near-com­plete shield of a maximum carapace length, as preserved, of 3.0 mm; the maximum shield width is 3.0 mm. Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 5; lower Berriasian (see Vašíček & Skupien, 2019, p. 39, fig. 3, locality 10; Vaňková et al., 2019, section B, layer B22). Description: Well-areolated shield, longer than wide; rostrum not preserved; convex orbit­al cavity with smooth rim, ending in triangular postocular projection; large, elongated massetic region, irregularly covered with large pores, also on anterior lateral edge; central gastric groove centrally indenting convex postfrontal ridge; an­ PLATE 1 1 - Annuntidiogenes sagittula sp. nov.; 2 - Bachmayerus cavus Fraaije, Van Bakel, Jagt & Skupien, 2013; 3 - Eopaguropsis cf. nidiaquilae Fraaije, Krzemiński, Van Bakel, Krzemińska and Jagt, 2012, original (left), composite (right); 4 - Gastrodorus kotoucensis Fraaije, Van Bakel, Jagt & Skupien, 2013; 5 - Protopagurus duopupae sp. nov., original (left), composite (right); all scale bars 2 mm. terior part of gastric region covered with brain-like ornamentation, posteriorly ending convexly; thin, elongated anterior branchial area; small, reniform keraial region; shield irregularly cov­ered with (setal) pores. Family Parapylochelidae Fraaije, Klompmaker & Artal, 2012a Genus Housacheles Fraaije, Van Bakel, Jagt & Skupien, 2013 Type species: Housacheles timidus Fraai­je, Van Bakel, Jagt & Skupien, 2013, by original designation. Housacheles timidus Fraaije, Van Bakel, Jagt & Skupien, 2013 (Pl. 2.2) Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 5 (see Vašíček & Skupien, 2019, p. 39, fig. 3). Remarks: For a detailed description, reference is made to Fraaije et al. (2013). Genus Mesoparapylocheles Fraaije, Klompmaker & Artal, 2012a Type species: Mesoparapylocheles michael­jacksoni Fraaije, Klompmaker & Artal, 2012a, by original diagnosis. Included species: Mesoparapylocheles jaegeri Fraaije, 2014, M. michaeljacksoni, M. schweigerti Fraaije, 2014, M. strouhali Fraaije, Robins, Van Bakel, Jagt & Bachmayer, 2019 and M. zapfei Fraaije, Robins, Van Bakel, Jagt & Bachmayer, 2019. Mesoparapylocheles janetjacksonae sp. nov. (Pl. 2.3) Diagnosis: Shield well calcified, longer than wide, well areolated; globose massetic region; prominent triangular rostrum; triangular posto­cular spines. Gastric region of arrowhead shape, pointing posteriorly. Distinct and complete U-shaped branchiocardiac groove, parallel to V-shaped cervical groove. Derivation of name: Named after Janet (Dami­ta Jo) Jackson, well-known American singer, songwriter, actress, dancer and sister of the late Michael Jackson after whom the first member of this genus was named. Type material: The holotype, and sole spec­ imen known to date (MAB k.3623a, b), is a near-complete carapace of a maximum carapace length, as preserved, of 5.0 mm; the maximum shield width is 3.5 mm. Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 7; upper Tithonian (see Vašíček & Skupien, 2019, p. 39, fig. 3). Description: Well-calcified, smooth, areolat-ed shield, subcylindrical transversely, slight­ly convex longitudinally; pronounced, slightly downarched triangular rostrum, base wider than long, slender spinose tip; ocular-frontal area ex­ceeding half of total maximum width; orbital cavity subcircular, bounded by distinct triangu­lar postocular spines; thin, central gastric groove centrally indenting convex postfrontal ridge; gastric region of arrowhead shape, pointing pos­teriorly with a pair of gastric pits close to keraial region; elongated keraial region with straight lateral margin; prominent, reniform, globose massetic region; cardiac region anteriorly not delineated; elongated mesobranchial region with deep incision centrally running parallel to cer­vical groove; distinct U-shaped branchiocardi-ac groove, parallel to deep, V-shaped cervical groove. Remarks: Mesoparapylocheles janetjacksonae sp. nov. differs from all other Jurassic paguroids in the combination of an elongated keraial region with a straight, rather than convex, lateral mar­gin; a narrower reniform, rather than broader, trapezoidal, massetic region, as well as a very convex postfrontal ridge. The new species dif­fers from the mid-Cretaceous M. michaeljack­soni in having elongated keraial and massetic regions (rather than globose ones) and a cardiac region that is not posteriorly delineated as in M. michaeljacksoni. Family Pilgrimchelidae Fraaije, 2014 Genus Masticacheles Fraaije, Krzemiński, Van Bakel, Krzemińska & Jagt, 2014 Type species: Masticacheles longirostris Fraaije, Krzemiński, Van Bakel, Krzemińska & Jagt, 2014, by original diagnosis. Included species: Masticacheles longirostris and Masticacheles minimus Fraaije, 2014 and Masticacheles septemgradu sp. nov. Masticacheles septemgradu sp. nov. (Pl. 2.4) Diagnosis: Shield well calcified, well areo-lated, with distinct regions; convex orbital cav­ PLATE 2 1 - Protopagurus cerebellum sp. nov., original (right), composite (left); 2 - Housacheles timidus Fraaije, Van Bakel, Jagt & Skupien, 2013; 3 - Mesoparapylocheles janetjacksonae sp. nov.; 4 - Masticacheles septemgradu sp. nov.; 5 - Ammopylocheles mclaughlinae Van Bakel, Fraaije, Jagt & Artal, 2008, original (left), composite (right); 6 - Ammopylocheles romankijoki n. sp.; all scale bars 2 mm. ity with sharp postocular projection, convex post-rostral ridge centrally indented by long cen­tral groove; anterior part of gastric region cren­ulated; large, elongated massetic region; crescent keraial region; narrow anterior branchial area. Derivation of name: Named after ‘Level 7’ at Kotouč quarry (see e.g., Vašíček & Skupien, 2019, fig. 3); Latin septem and gradu, noun used in ap­position. Type material: The holotype, and sole speci­men known to date (MAB k.3757), is an incom­plete shield of a maximum carapace length, as preserved, of 2.5 mm; the maximum shield width is 2.5 mm. Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 7; upper Tithonian (see Vašíček & Skupien, 2019, p. 39, fig. 3). Description: Well-calcified and clearly areo-lated shield, convex transversely, slightly convex longitudinally; convex orbital cavity bordered with sharp postocular projection; ocular-frontal area equalling about 60 per cent of total maxi­mum width; convex post-rostral ridge centrally indented by long central groove; anterior part of gastric region crenulated; prominent, globose and elongated massetic region; crescent keraial region laterally convex with its anterior tip cen­trally/forwardly directed; relatively narrow an­terior branchial area; rostrum and posterior part of carapace not preserved. Remarks: Until now, the family Pilgrimchel­ idae appeared to be confined to the Jurassic, to be replaced subsequently by, for instance, annun­tidiogenids. Masticacheles septemgradu sp. nov. can be differentiated from congeners by the typ­ical crescentic morphology of the keraial region, with its anterior tip directed centrally/forwardly rather than laterally/forwardly, as well as a nar­rower anterior branchial area. Family Pylochelidae Bate, 1888 Subfamily Trizochelinae Forest, 1987 Genus Ammopylocheles Van Bakel, Fraaije, Jagt & Artal, 2008 Type species: Ammopylocheles mclaughlinae Van Bakel, Fraaije, Jagt & Artal, 2008, by origi­nal designation. Included species: Ammopylocheles mclaugh­linae, Am. petersi Fraaije, 2014, Am. robertbore­ki Fraaije, Krzemiński, Van Bakel, Krzemińska & Jagt, 2012b and Am. romankijoki sp. nov. Ammopylocheles mclaughlinae Van Bakel, Fraaije, Jagt & Artal, 2008 (Pl. 2.5) Locality and level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 8; upper Tithoni-an (see Vašíček & Skupien, 2019, p. 39, fig. 3). Material: The specimen (MAB k.3760) is an incomplete shield with part of the posterior car­apace; as preserved, maximum carapace length measures 7.0 mm, maximum shield width is 5.5 mm. Remarks: For a detailed description, reference is made to Van Bakel et al. (2008). Members of the genus Ammopylocheles range from the mid­dle Oxfordian (Fraaije et al., 2012b) to the lower Berriasian (the present study). Ammopylocheles mclaughlinae is by far the commonest element in Kimmeridgian deposits at Nusplingen (Fraaije, 2014) and at Geisingen (Van Bakel et al., 2008) in southern Germany, but it is rather uncommon to rare at Ernstbrunn (Austria). The same appears to hold true for Štramberk. Ammopylocheles romankijoki n. sp. (Pl. 2.6) Diagnosis: Typical smooth carapace of py­lochelid; carapace longer than broad, shield of equal width and length; broad rostrum and con­vex, rimmed orbital cavity; pronounced post-frontal ridge, centrally indented by deep, short central gastric groove; elongated massetic region; reniform keraial region, distinct V-shaped cervi­cal groove. Derivation of name: Named after Roman Ki-jok (Poland), who collected the specimen and kindly donated it to the Oertijdmuseum, Boxtel. Type material: The holotype, and sole specimen known to date (MAB k.3758), is a near-complete shield with part of the posterior carapace, meas­uring 10.0 mm in maximum total length and 7.0 mm in width. Type locality and type level: Kotouč quarry (Štramberk, Moravia, Czech Republic), level 5; lower Berriasian (see Vašíček & Skupien, 2019, p. 39, fig. 3, locality 10; Vaňková et al., 2019, section B, layer B22). Description: Carapace longer than broad, shield as wide as long, strongly convex in trans­verse section, slightly convex in longitudinal sec­tion; broad rostrum posteriorly extending into pronounced central ridge, effacing towards cen­tral gastric groove; broad and convex, rimmed orbital cavity; postantennal projections obtuse; transverse, convex, post-rostral ridge, with few large pores, medially subdivided by a short, deep, central gastric groove; elongated, more or less oval massetic region; subrounded keraial re­gion not well delineated, about one third size of massetic region; deep V-shaped cervical groove, posterior part of carapace less well calcified (partially preserved), smooth with irregularly distributed large (setal) pores. Remarks: This new species, of early Berria­sian age, is the youngest member of the genus. It differs from its middle Oxfordian congener A. robertboreki in having a larger, wider rostrum, a shorter central gastric groove and a more clear­ly V-shaped cervical groove. Ammopylocheles romankijoki sp. nov. differs from A. mclaughli-nae in having a much larger massetic region, a wider and more pronounced rostrum and a more angular V-shaped cervical groove. The new spe­cies differs from Am. petersi in having a much smaller and more subrounded keraial region, in lacking ornament on the anterior and posteri­or gastric regions and in having a more angular V-shaped cervical groove. Acknowledgements We wish to thank Dr Ewa Krzemińska (Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Krakw, Poland) for bringing the specimen collected by Roman Kijok to our atten­tion, Roman himself for kindly donating it to the Oertijdmuseum, Boxtel, and Yvonne Coole for col­lecting and donating the new species of Masticacheles. We are very grateful to the management of Kotouč qu­arry for access to all levels in their quarry over re­cent years and the journal reviewers, Rok Gašparič (Ljubljana) and Guenter Schweigert (Stuttgart), for pertinent comments on an earlier version of the typescript. References Bate, C. S. 1888: Report on the Crustacea Macrura collected by the H.M.S. Challenger during the years 1873–1876. In: Report on the scienti­ fic results of the voyage of H.M.S. Challenger during the years 1873-76, Zoology 24: 1–942. Forest, J. 1987: Les Pylochelidae ou «Pagures symétriques» (Crustacea Coenobitoidea). In: Crosnier, A. (ed.): Résultats des Campagnes MUSORSTOM, Volume 3. Mémoires du Muséum national d’Histoire naturelle, Série A137: 1–254. Fraaije, R.H.B. 2014: Diverse Late Jurassic ano­muran assemblages from the Swabian Alb and evolutionary history of paguroids based on carapace morphology. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 273: 121–145. Fraaije, R.H.B., Klompmaker, A.A. & Artal, P. 2012a: New species, genera and a fa­mily of hermit crabs (Crustacea, Anomura, Paguroidea) from a mid-Cretaceous reef of Navarra, northern Spain. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 263: 85–92. Fraaije, R.H.B., Krzemiński, W., Van Bakel, B.W.M., Krzemińska, E. & Jagt, J.W.M. 2012b: The earliest record of pylochelid hermit crabs from the Late Jurassic of southern Poland, with notes on paguroid carapace terminology. Acta Palaeontologica Polonica, 57: 647–654. Fraaije, R.H.B., Krzemiński, W., Van Bakel, B.W.M., Krzemińska, E. & Jagt, J.W.M. 2012c: The earliest record of a diogenid hermit crab from the Late Jurassic of the southern Polish Uplands, with notes on paguroid carapace terminology. Acta Palaeontologica Polonica, 57: 655–660. Fraaije, R.H.B., Krzemiński, W., Van Bakel, B.W.M., Krzemińska, E. & Jagt, J.W.M. 2014: New Late Jurassic symmetrical hermit crabs from the southern Polish Uplands and early paguroid diversifcation. Acta Palaeontologica Polonica, 59: 681–688. https://doi.org/10.4202/ app.2012.0022 Fraaije, R.H.B., Van Bakel, B.W.M. & Jagt, J.W.M. 2017: A new paguroid from the type Maastrichtian (Upper Cretaceous, the Netherlands) and erection of a new family. Bulletin de la Société géologique de France, 188/3. https://doi.org/10.1051/bsgf/2017185. Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. & Artal, P. 2008: New decapod crustaceans (Anomura, Brachyura) from mid-Cretaceo­us reefal deposits at Monte Orobe (Navarra, northern Spain), and comments on related type-Maastrichtian material. In: Steurbaut, E., Jagt, J.W.M. & Jagt-Yazykova, E.A. (eds.): Annie V. Dhondt Memorial Volume. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre 78: 193–208. Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M., Klompmaker, A.A. & Artal, P. 2009: A new hermit crab (Crustacea, Anomura, Paguroidea) from the mid-Cretaceous of Navarra, northern Spain. Boletín de la Sociedad Geolgica Mexicana, 61/2: 211-214. Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. & Skupien, P. 2013: First record of paguroid anomurans (Crustacea) from the Tithonian-lower Berriasian of Štramberk, Moravia (Czech Republic). Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 269/3: 251–259. https://doi. org/10.1127/0077-7749/2013/0348. Fraaije, R.H.B., Robins, C., Van Bakel, B.W.M., Jagt, J.W.M. & Bachmayer, F. 2019: Paguroid anomurans from the Tithonian Ernstbrunn Limestone, Austria – the most diverse extin­ct paguroid assemblage on record. Annalen des Naturhistorischen Museums in Wien, 121: 257–289. Gašparič, R., Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. & Skupien, P. 2015: Mesozoic– Cenozoic crustaceans preserved within echinoid tests and bivalve shells. Bulletin of Geosciences, 90/3: 601–611. Houša, V. & Vašíček, Z. 2005: Ammonoidea of the Lower Cretaceous deposits (Late Berriasian, Valanginian, Early Hauterivian) from Štramberk, Czech Republic. GeoLines, 18 (for 2004): 7–57. Krzemińska, E., Krzemiński, W., Fraaije, R.H.B., Van Bakel, B.W.M. & Jagt, J.W.M. 2015: Allometric ontogenetic changes in two Late Jurassic gastrodorid hermit crabs (Crustacea, Decapoda, Anomura) from central Europe. Journal of Systematic Palaeontology, 14/2: 139-148. https://doi.org/10.1080/14772019.201 5.1018968 Latreille, P.A. 1802–1803: Histoire naturelle, générale et particuliere, des Crustacés et des Insectes 3. F. Dufart, Paris: 1–467. Meyer, H. von. 1864: Briefliche Mittheilungen an Prof. H.B. Geinitz. Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, 1864: 206–211. Milne Edwards, H. 1832: Extrait d’une lettre sur les caracteres des Crustacés Anomures, adressée a M. Audouin. Annales des Sciences naturelles, Zoologie et Biologie Animale, 26: 255–256. Moericke, W. 1889: Die Crustaceen der Stramberger Schichten. Palaeontologische Mitteilungen aus dem Museum des kniglich Bayerischen Staates, 3: 43–72. Ortmann, A.E. 1892: Die Decapoden-Krebse des Strassburger Museums, mit besonderer Berücksichtigung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln ge­sammelten und zur Zeit im Strassburger Museum aufbewahrten Formen, IV. Theil. Die Abtheilungen Galatheidea und Paguridea. Zoologische Jahrbcher, Abteilung fr Systematik, Ökologie und Geographie der Tiere, 6: 241–325. Van Bakel, B.W.M., Fraaije, R.H.B., Jagt, J.W.M. & Artal, P. 2008: An unexpected diversi­ty of Late Jurassic hermit crabs (Crustacea, Decapoda, Anomura) in Central Europe. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 250: 137–156. Vaňková, L., Elbra, T., Pruner, P., Vašíček, Z., Skupien, P., Reháková, D., Schnabl, P., Košťák, M., Švábenická, L., Svobodová, A., Bubík, M., Mazuch, M., Čížková, K., & Kdýr, Š. 2019: Integrated stratigraphy and palaeoenvironment of the Berriasian pe­ri-reefal limestones at Štramberk (Outer Western Carpathians, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 532: 109256. https://doi. org/10.1016/j.palaeo.2019.109256 Vašíček, Z. & Skupien, P. 2004: Historie geolo­gických a paleontologických výzkumů svrch­nojurských a spodnokřídových sedimentů na Štramberku [The Štramberk fossil site (uppermost Jurassic/Lower Cretaceous, ou­ter Western Carpathians) – two centuries of the geological and paleontological resear­ch]. Sborník vědeckých prací Vysoké školy báňské, Technické univerzity Ostrava Řada hornicko-geologická, 50: 83–102. Vašíček, Z. & Skupien, P. 2005: Doplňky k histo­rii geologických a paleontologických výzku­mů na Štramberku [Supplements to history of geological and paleontological research of Štramberk territory]. Sborník vědeckých prací Vysoké školy báňské Technické univer­zity Ostrava, Řada hornicko-geologická, 51: 1–6. Vašíček, Z. & Skupien, P. 2019: New Tithonian and Lower Berriasian aptychi of Štramberk Limestone from the Kotouč Quarry (Outer Western Carpathians, Czech Republic). Paläontologische Zeitschrift, 93: 37–48. Vašíček, Z., Skupien, P. & Jagt, J.W.M. 2018: Current knowledge of ammonite assemblages from the Štramberk Limestone (Tithonian-Lower Berriasian) at Kotouč Quarry, Outer Western Carpathians (Czech Republic). Cretaceous Research, 90: 185–203. GEOLOGIJA 63/1, 19-27, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.002 New erymid lobsters from the Nusplingen and Usseltal formations (Upper Jurassic) of southwest Germany Novi jastogi iz družine Erymidae iz formacij Nusplingen in Usseltal (zgornja jura) iz jugozahodne Nemčije Günter SCHWEIGERT1 & Jürgen HÄRER2 1Staatliches Museum f Naturkunde, Rosenstein 1, 70191 Stuttgart, Germany; guenter.schweigert@smns-bw.de 2Roennebergstraße 5, 12161 Berlin, Germany; juergen.haerer@gmail.com Prejeto / Received 28. 10. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Decapoda, Erymidae, Kimmeridgian, Tithonian, Plattenkalk, taphonomy Ključne besede: dekapodni raki, Erymidae, kimmeridgij, tithonij, litografski apnenec, tafonomija Abstract Two new species of Late Jurassic erymid lobsters, Stenodactylina devillezi sp. nov. and Stenodactylina geigerae sp. nov., are described on the basis of isolated, but well-preserved chelipeds from the upper Kimmeridgian of Swabia and the lower Tithonian of Bavaria, respectively. The incomplete nature of the material indicates that these lobsters were not autochthonous elements of the Plattenkalk lagoons, but resulted from predation in nearby shallow-water settings. Izvleček V prispevku predstavljamo dve novi vrsti zgornjejurskih jastogov iz družine Erymidae, to sta Stenodactylina devillezi sp. nov. in Stenodactylina geigerae sp. nov. Novi vrsti sta opisani na podlagi izoliranih, vendar dobro ohranjenih škarnikov iz zgornjega kimmeridgija Švabske in spodnjega tithonija Bavarske. Slabša ohranjenost primerkov kaže, da tovrstni jastogi niso bili avtohtoni prebivalci zgornjejurskih lagun, ampak so verjetno poseljevali bližnja plitvovodna okolja. Introduction The Upper Jurassic Solnhofen-type litho­graphic limestones (“plattenkalks”) of south­west Germany are renowned for their excep­tionally preserved fossils, making them one of the classic examples of conservation Fossillag­erstätten (Seilacher et al., 1985). In addition to iconic vertebrate fossils such as the ancient bird Archaeo-pteryx von Meyer, 1861, hundreds of taxa have been recorded over the centuries (e.g., Leich, 1968; Barthel et al., 1990; Frickhinger, 1994, 1999; Arratia et al., 2015). However, it should be noted that fossils labelled “Solnhofen” come from various deposits of different litholo­gy and age (Schweigert, 2007, 2015a). Decapod crustaceans from these lithographic limestones, and erymid lobsters in particular, have been de­scribed from the early 19th century onwards (e.g., Desmarest, 1817, 1822; von Schlotheim, 1822; zu Mnster, 1839; Oppel, 1861, 1862). More recently, Beurlen (1928) and Förster (1966) studied Juras­sic erymids. However, some of their systematic assignments remained questionable. Taxa based on material from shallow-water deposits consist either of carapace remains or of isolated chelae. More complete specimens, with the carapace and corresponding chelae preserved, are only found when conditions were favourable or within concretions (e.g., Hyžný et al., 2015). At generic level, erymid lobsters are distinguished main­ly by their characteristic carapace groove pat­ tern (Devillez & Charbonnier, 2017, 2019, 2020; Devillez et al., 2018), while chela shape is less characteristic, at least in Eryma s. str. In the lat­ter, there is one clade that has chelae with rela­ tively short fingers; this group is distinguished from another with strikingly longer, straight fin­gers, although the groove pattern of the carapace is the same. As a result, some species of Eryma of the second clade, previously included in a distinct genus, Erymastacus Beurlen, 1928 (see Hyžný et al., 2015), have later been considered to belong to Eryma s. str. (Devillez & Charbonnier, 2017, 2019, 2020). However, there are further taxa that have long and curved fingers, but a different groove pattern on their carapace. These are now includ­ed in the genus Stenodactylina Beurlen, 1928. Remains of Stenodactylina are easily recognised on the basis of their chelae even if such occur isolated (Devillez & Charbonnier, 2019a, 2019b). Most Late Jurassic remains of Stenodactylina represent chelae or chelipeds from coral-bear­ing limestones or other shallow-water lithologies (e.g., Étallon, 1859, 1861; Krause, 1891; Bachmay­er, 1959). Here we describe the first examples of Stenodactylina from Upper Jurassic lithographic limestones. Geological settings Two of the specimens of Stenodactylina de­scribed here come from the upper Kimmeridgian Nusplingen Plattenkalk, also known as Nusplin-gen Lithographic Limestone. The site of prove­nance is located in the western part of the Swa­bian Alb (Fig. 1). The Nusplingen Plattenkalk was deposited in a c. 80-100 metres deep lagoon surrounded by shallower areas and small islands (Stevens et al., 2014). Known since the mid-19th century, it has meanwhile provided more than 400 fossil taxa, among them pterosaurs, marine crocodiles, sharks and numerous other fishes, but also squid-like teuthoids and decapod crus­ taceans (Dietl & Schweigert, 2011). Ammonites have allowed to date it as late Beckeri Zone, Ul­mense Subzone, hoelderi Biohorizon (Schweigert, 2007, 2015a). Especially common are large-sized penaeid prawns (Schweigert, 2001b, 2017; Odin et al., 2019), but polychelid, glypheid and erymid lobsters have been recorded as well (Fraas, 1855; Oppel, 1861, 1862; Schweigert & Dietl, 1999; Sch-weigert et al., 2000; Schweigert, 2001a; Charbon­nier et al., 2013; Audo et al., 2014). Erymid mate­rial from Nusplingen is often incomplete due to predation or decay; however, several valid taxa have been described on the basis of such incom­plete specimens (Oppel, 1861, 1862; Schweigert et al., 2000). Recently, this material has been re­studied within the context of a comprehensive review of all Late Jurassic erymid lobsters (De- villez & Charbonnier, 2020). Fig. 1. Localities that yielded the material of Stenodactylina (aster­isks) and additional Upper Jurassic Plattenkalk local­ities in southwest Germany (modified from Fürsich et al., 2007). A third specimen of Stenodactylina comes from Upper Jurassic plattenkalks exposed at the northern hillside of the River Danube, southwest of the village of Marxheim (Fig. 1). These platten­kalks had not been studied previously for their fossil content. Fesefeldt (1962) mapped the area around Marxheim and described several sections and outcrops. From his descriptions the platten­kalks in question match the so-called “Spindel-tal-Schiefer”, an informal lithological unit which is included in the lower Tithonian Usseltal For­mation (Zeiss, 1977; Niebuhr & Pürner, 2014). For a determination of the age of these plattenkalks, several ammonite remains were sampled from the scree; these include Subplanitoides spin-delense Zeiss, 1968 (Fig. 2), Subplanitoides sp., “Torquatisphinctes” regularis Zeiss, 1968 and Usseliceras sp. This association clearly indicates the franconicum Biohorizon of the lower Titho­nian Mucronatum Zone (see Schweigert, 2015a). The Submediterranean Mucronatum Zone cor­responds approximately to the Tethyan Darwini Zone (Scherzinger & Schweigert, 2003). Assum­ing the duration of a biohorizon to have been around 165 ka (Schweigert, 2006), the Tithonian type horizon of the specimen from Marxheim is around 1.15 myr younger than the Kimmeridgian Nusplingen site. Methods The specimens studied were carefully prepared mechanically with needles and scalpels using a binocular with 50 × magnification. Photographs were taken with digital cameras under normal or ultraviolet illumination. Ultraviolet illumina­tion is often used to enhance the contrast between phosphatic fossils and the surrounding rock ma­trix (e.g., Haug et al., 2009; Tischlinger, 2015). The photographs were finally mounted as illustrations using Adobe Photoshop version CS5.1. Systematic palaeontology Class Malacostraca Latreille, 1802 Order Decapoda Latreille, 1802 Superfamily Erymoidea Van Straelen, 1925 Family Erymidae Van Straelen, 1925 Genus Stenodactylina Beurlen, 1928 Included species: Stenodactylina armata (Secretan, 1964), S. australis (Secretan, 1964), S. burgundiaca (Crônier & Courville, 2004), S. delphinensis (Moret, 1946), S. devillezi sp. nov. (herein), S. falsani (Dumortier, 1867), S. geiger­ae sp. nov. (herein), S. guisei (Wright, 1881), S. insignis (Oppel, 1862), S. lagardettei (Hyžný, Schlögl, Charbonnier, Schweigert, Rulleau & Gouttenoire, 2015), S. liasina Beurlen, 1928 (type species), S. rogerfurzei Schweigert, 2013, S. spi­nosa (Étallon, 1861), S. strambergensis (Bach-mayer, 1959), S. triglypta (Stenzel, 1945) and S. walkerae (Feldmann & Haggart, 2007). Stenodactylina devillezi sp. nov. 2003 Erymastacus sp. nov. – Schweigert & Garassino, fig. 2B. 2020 [fragmentary] Stenodactylina. – Devillez & Charbonnier, in press. Fig. 2. The ammonite Subplanitoides spindelense Zeiss, 1968 from the lower Tithonian, Mucronatum Zone (= Darwini Zone), ‘Spindeltalschiefer’ of Usseltal Formation, Marxheim (leg. K. Geiger). Photograph: K. Geiger. Scale bar equals 20 mm. Fig. 3. Stenodactylina devillezi sp. nov., A, holotype, SMNS 64872; B, paratype, SMNS 70506. Upper Kimmeridgian, Beckeri Zone, Ulmense Subzone, Nusplingen Formation, Nusplingen Quarry, Westerberg hill west of Nusplingen, southwest Germany. Photographs: G. Schweigert. Scale bars equal 10 mm. Holotype: SMNS 64872, from the Nusplingen Formation (upper Kimmeridgian, Beckeri Zone) of Nusplingen, Baden-Württemberg, southwest Germany (Fig. 1). Paratype: SMNS 70506, from same locality and biohorizon as the holotype. Etymology: Named after Julien Devillez (Par­is), who revised all previously described erymid taxa from the Jurassic and Cretaceous. Type locality and horizon: Nusplingen Quarry, west of Nusplingen, southwest Swabian Alb (Fig. 1); Nusplingen Formation (upper Kimmeridgian, Beckeri Zone, Ulmense Subzone; see Schweigert, 2007). Diagnosis: Species of Stenodactylina with a P1 chela that is characterised by a slender sub-rectangular manus, a completely toothless dacty­lus and an index with seven teeth in the proximal half and a sinuosity in the distal part. Description: The holotype is a relatively large left cheliped consisting of a well-preserved che-la with manus and remains of the carpus. Ma-nus subrectangular, length 33 mm, width 17 mm. Manus and carpus covered with fine, randomly scattered pustules; fingers lacking pustules, only with a few setal pits. Dactylus length 34 mm; in­dex and dactylus terminally curved inwards. Oc­clusal surface of dactylus toothless; index bear­ing seven teeth in its proximal part, the strongest one is the third as counted from the distal side, with a longer distance between the first and the second. Distal half of index with a sinuosity. The paratype is a right cheliped consisting of a manus with chela, the carpus and merus. Manus Fig. 4. Stenodactylina geigerae sp. nov., holotype, SMNS 70507. A: photographed under normal illumination; B, photo­graphed under ultraviolet illumination. Lower Tithonian, Mucronatum Zone (= Darwini Zone), ‘Spindeltalschiefer’ of Usseltal Formation, Marxheim, southwest Germany. Photographs: J. Härer. Scale bars equal 10 mm. subrectangular, length 22 mm, width 10.5 mm. Remarks: The slight differences in the fingers/ Carpus 10.5 mm long; merus poorly preserved, manus length ratio between the left and right che­26 mm long. Ornamentation of manus and carpus liped (although observed in different individuals) identical to that in the holotype. Dactylus length point to heterochely in S. devillezi sp. nov., which 26 mm, with some setal pits, otherwise smooth, is well known in other species of Stenodactyli-distally curved, slightly dislocated during buri-na (see Hyžný et al., 2015). A very fragmentary al. Index mostly covered by dactylus, distal half chela from Nusplingen that shows long and slen-broken off. der fingers with strong and widely spaced teeth, originally recorded in open nomenclature (Sch­ weigert et al., 2000: pl. 5, fig. 4, as “Erymidae gen. et. sp. indet.”), possibly belongs to Enoploclytia M’Coy, 1849, another erymid genus recently re­corded from the Upper Jurassic (Devillez et al., 2018). The rather atypical, slender appearance of the propodus is caused by incomplete preserva­tion. No further specimen has been found so far. Stenodactylina geigerae sp. nov. Holotype: SMNS 70507, from the Usseltal For­mation (lower Tithonian, Mucronatum Zone) of Marxheim, Bavaria, southwest Germany (Fig. 1). Etymology: Named after Katharina Geiger (Munich), who found and kindly donated the specimen. Type locality and horizon: Northern hillside of the River Danube, southwest of Marxheim, Bavaria, Germany (Fig. 1), Usseltal Formation, lower Tithonian, Mucronatum Zone (= Submedi­terranean equivalent of Tethyan Darwini Zone). Diagnosis: Species of Stenodactylina with a P1 chela that is characterised by only two teeth in the proximal third of the dactylus and index. Description: The holotype is a left cheliped with the manus, carpus and merus preserved. Several fine cracks are detectable resulting from compaction of the hollow fossil. Manus subrect-angular, 19 mm long, 9.5 mm wide. Merus, car­pus and manus covered with randomly scattered small pustules; coarser tubercles occur only along the inner margins of the merus and carpus. Merus length 23 mm, with a few spiny tubercles along the articulation towards the carpus. Car­pus length 12 mm, distally bordered by a smooth seam. Fingers c. 28 mm long, lacking any pus­tules, only bearing a few tiny setal pits. Occlu­sal surfaces of dactylus and index each with two prominent teeth in the most proximal parts, oth­erwise smooth. Strongest tooth is the first one, counted from the proximal side of each finger. Discussion The preservation of isolated chelipeds of Stenodactylina in lithographic limestones prob­ably results from predation activity in nearby shallower environments. The lobsters themselves usually did not inhabit the hostile sea floor of the lagoons. The most common way for erymid lob­sters and most other decapod crustaceans to be­come fossilised complete in Solnhofen-type plat-tenkalks is via exuviae (Schweigert & Garassino, 2003). The bulk of exuviae, however, represent ju­venile specimens, whereas larval stages are rare as well due to their poor sclerotization (Haug et al., 2011). Juvenile stages of erymid lobsters are not easy to differentiate and much more material is needed to reconstruct their ontogenies. Acknowledgements Katharina Geiger (Munich) is thanked for dona­ting one the specimens described here and for pro­viding useful information on the locality. Martin Kapitzke and Markus Rieter (both SMNS) skilfully prepared the two specimens from Nusplingen. We also thank the volunteers, namely Gerd Dietl (Stuttgart), Rolf Hugger (Albstadt-Onstmettingen), August Ilg (Düsseldorf) and Burkhart Russ (Nusplingen), who helped excavate the Nusplingen Plattenkalk during the last 25 years and who recovered numerous rare specimens such as the present ones. The journal re­viewers, Sylvain Charbonnier (Paris) and Julien Devillez (Paris), provided helpful comments for imp­rovement of the manuscript. References Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G. 2015: Solnhofen - Ein Fenster in die Jurazeit. Friedrich Pfeil, Mnchen: 620 p. Audo, D., Schweigert, G., Haug, J.T., Haug, C., Saint Martin, J.-P. & Charbonnier, S. 2014: Diversity and palaeoecology of the enigmatic Knebelia (Eucrustacea, Decapoda, Eryonidae) from the Upper Jurassic plattenkalks of southern Germany. Palaeontology, 57/2: 397­416. https://doi.org/10.1111/pala.12071 Bachmayer, F. 1959: Neue Crustaceen aus dem Jura von Stramberg (ČSR). Sitzungsberichte der Österreichischen Akademie der Wissenschaften, mathematisch-naturwis­senschaftliche Klasse, Abteilung I, 168: 937-944. Barthel, K.W., Swinburne, N.H.M. & Conway Morris, S. 1990: Solnhofen: a study in Mesozoic palaeontology. Cambridge University Press, Cambridge: IX+236 p. Beurlen, K. 1928: Die Decapoden des Schwäbischen Jura mit Ausnahme der aus den oberjurassischen Plattenkalken stammen-den. Palaeontographica, 70: 115-278. Charbonnier, S., Garassino, A., Schweigert, G. & Simpson, M. 2013: A worldwide review of fossil and extant glypheid and litogastrid lobsters (Crustacea, Decapoda, Glypheoidea). Mémoires du Muséum national d’Histoire na­turelle Paris, 205: 304 p. Crônier, C. & Courville, P. 2004: A rich and high­ly endemic decapod crustacean fauna from the Middle Jurassic of north-east France. Palaeontology, 47/4: 999-1014. https://doi. org/10.1111/j.0031-0239.2004.00393.x Desmarest, A.-G. 1817: Crustacés fossiles. In: Société de Naturalistes et d’Agriculteurs (ed.): Nouveau dictionnaire d’histoire naturelle, appliquée aux arts, a l’agriculture, a l’écono­mie rurale et domestique, a la médecine, etc. 7. Déterville, Paris: 495-519. Desmarest, A.-G. 1822: Les crustacés proprement dits. In: Brongniart, A. & Desmarest, A.-G. (eds.): Histoire naturelle des crustacés fossi­les sous les rapports zoologiques et géologiqu-es. Levrault, Paris: 67-142. Devillez, J. & Charbonnier S. 2017: The genus Eryma Meyer, 1840 (Crustacea: Decapoda: Erymidae): new synonyms, systematic and stratigraphic implications. Bulletin de la Société géologique de France, 188/3: 1-10. https://doi.org/10.1051/bsgf/2017178 Devillez, J. & Charbonnier, S. 2019: Review of the Early and Middle Jurassic erymid lobsters (Crustacea: Decapoda). BSGF, Earth Sciences Bulletin, 190/1: 6 https://doi.org/10.1051/ bsgf/2019005 Devillez, J. & Charbonnier, S. 2020: Review of the Late Jurassic erymid lobsters (Crustacea: Decapoda). Geodiversitas. Devillez, J., Charbonnier, S. & Pezy, J.-P. 2018: First Jurassic occurrence of Enoploclytia M’Coy, 1849 (Crustacea: Decapoda: Erymidae). Annales de Paléontologie, 104/2: 143-148. https://doi.org/10.1016/j.annpal.2018.01.003 Dietl, G. & Schweigert, G. 2011: Im Reich der Meerengel - Fossilien aus dem Nusplinger Plattenkalk (2nd edition). Friedrich Pfeil, Mnchen: 144 p. Dumortier, E. 1867: Études paléontologiques sur les dépôts jurassiques du Bassin du Rhône, deuxieme partie, Lias Inférieur. F. Savy, Paris: 252 p. Étallon, A. 1859: Description des crustacés fos­siles de la Haute-Sane et du Haut-Jura. Bulletin de la Société géologique de France, 2/16: 169-204. Étallon, A. 1861: Notes sur les crustacés juras­siques du bassin du Jura. Recueil agrono­mique, industriel et scientifique publié par la Société d’Agriculture de la Haute-Sane, 9: 129-171. Feldmann, R.M. & Haggart, J.W. 2008: A new species of lobster (Astacidea, Erymidae) from the Smithers Formation (Middle Jurassic) of British Columbia, Canada. Canadian Journal of Earth Sciences, 44/12: 1791-1796. https:// doi.org/10.1139/E07-058 Fesefeldt, K. 1962: Schichtenfolge und Lagerung des oberen Weißjura zwischen Solnhofen und der Donau (sdliche Frankenalb). Erlanger geologische Abhandlungen, 46: 1-80. Frster, R. 1966: Über die Erymiden, eine alte konservative Familie der mesozoischen Dekapoden. Palaeontographica, Abteilung A, 125/4-6: 61-175. Fraas, O. 1855: Beiträge zum obersten weissen Jura in Schwaben. Jahreshefte des Vereins fr vaterländische Naturkunde in Württemberg, 11: 76-107. Frickhinger, K.A. 1994: Die Fossilien von Solnhofen. Goldschneck-Verlag, Korb: 336 p. Frickhinger, K.A. 1999: Die Fossilien von Solnhofen, 2nd volume. Goldschneck-Verlag, Korb: 190 p. Fürsich, F.T., Mäuser, M., Schneider, S. & Werner, W. 2007: The Wattendorf Plattenkalk (Upper Kimmeridgian) - a new conser­vation lagerstätte from the northern Franconian Alb, southern Germany. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 245/1: 45-58. https://doi. org/10.1127/0077-7749/2007/0245-0045 Haug, C., Haug, J.T., Waloszek, D., Maas, A., Frattigiani, R. & Liebau, S. 2009: New methods to document fossils from lithographic lime­stones of southern Germany and Lebanon. Palaeontologia Electronica, 12/3, 6T: 12 p. https://palaeo-electronica.org/2009_3/193/ index.html Haug, J.T., Haug, C., Waloszek, D. & Schweigert, G. 2011: The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. Swiss Journal of Geosciences, 104 (Supplement 1): 585-598. https://doi. org/10.1007/s00015-010-0033-1 Hyžný, M., Schlögl, J., Charbonnier, S., Schweigert, G., Rulleau, L. & Gouttenoire, M. 2015: Intraspecific variation and taphonomy of a new erymid lobster (Crustacea: Decapoda) from the Middle Jurassic of Belmont (Beaujolais, France). Geobios, 48/5: 371-384. https://doi.org/10.1016/j.geobios.2015.07.006 Krause, H.P. G.1891: Die Decapoden des nord­deutschen Jura. Zeitschrift der Deutschen Geologischen Gesellschaft, 43: 171-225. Latreille, P.A. 1802-1803: Histoire naturelle, gé­nérale et particuliere des Crustacés et des Insectes, 3. F. Dufart, Paris: 468 p. Leich, H. 1968: Nach Millionen Jahren ans Licht. Ott-Verlag, Thun & München: 180 p. M’Coy, F. 1849: On the classification of some British fossil Crustacea, with notices of new forms in the University collection at Cambridge. Annals and Magazine of Natural History, including Zoology, Botany, and Geology, 4/2: 330-335. Meyer, H. von 1861: [Briefliche Mittheilung an Prof. Bronn]. Neues Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, 1861: 561, 678-679. Moret, L. 1946: Eryma delphinensis nouvelle es-pece de Crustacé Décapode du Berriasien de Noyarey (Isere). Travaux du Laboratoire de Géologie, Faculté des Sciences de Grenoble, 25: 49-51. Mnster, G. Graf zu. 1839: Decapoda Macroura. Abbildung und Beschreibung der fossilen langschwänzigen Krebse in den Kalkschiefern von Bayern. Beiträge zur Petrefactenkunde, 2: 1-88. Niebuhr, B. & Pürner, T. 2014: Plattenkalk und Frankendolomit - Lithostratigraphie der Weißjura-Gruppe der Frankenalb (auße­ralpiner Oberjura, Bayern). Schriftenreihe der Deutschen Gesellschaft fr Geowissenschaften, 83: 5-71. Odin, G. P., Charbonnier, S., Devillez, J. & Schweigert, G. 2019: On new historical specimens of marine arthropods from the Solnhofen and Nusplingen Lithographic Limestones (Late Jurassic, Germany) housed at the Muséum national d’Histoire naturelle, Paris. Geodiversitas, 41/1: 643-662. https:// doi.org/10.5252/geodiversitas2019v41a17 Oppel, A. 1861: Die Arten der Gattungen Eryma, Pseudastacus, Magila und Etallonia. Jahreshefte des Vereins fr vaterländische Naturkunde in Württemberg, 17: 355-361. Oppel, A. 1862: Ueber jurassische Crustaceen (Decapoda macrura). Palaeontologische Mittheilungen aus dem Museum des koenig­lich Bayerischen Staates, 1: 1-120. Scherzinger, A. & Schweigert, G. 2003: Ein Profil in der Usseltal- und Rennertshofen-Formation der slichen Frankenalb (Unter-Tithonium). Zitteliana, 43: 3-16. https://doi. org/10.5282/ubm/epub.12120 Schlotheim, E. F. von. 1822: Beiträge zur näheren Bestimmung der versteinerten und fossilen Krebsarten. Nachträge zur Petrefaktenkunde. Beckersche Buchhandlung, Gotha: 17-37. Schweigert, G. 2001a: Dimorphismus bei Krebsen der Gattung Cycleryon (Decapoda, Eryonidae) aus dem Oberjura Sddeutschlands. Stuttgarter Beiträge zur Naturkunde, B305: 1-21. Schweigert, G. 2001b: Eine neue Art der Gattung Antrimpos Mnster (Crustacea, Decapoda, Penaeidae) aus dem Oberjura Süddeutschlands. Stuttgarter Beiträge zur Naturkunde, B307: 1-33. Schweigert, G. 2006: Kalibrierung des Oberen Jura in der Stratigraphischen Tabelle von Deutschland 2002 mit- tels Faunenhorizonten. Newsletters of Stratigraphy, 41/1-3: 279-286. https://doi. org/10.1127/0078-0421/2005/0041-0279 Schweigert, G. 2007: Ammonite biostratigraphy as a tool for dating Upper Jurassic litho­graphic limestones from South Germany - first results and open questions. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 245/1: 117-125. https://doi. org/10.1127/0077-7749/2007/0245-0117 Schweigert, G. 2013: A new record of the enigmat­ic lobster genus Stenodactylina Beurlen, 1928 (Crustacea: Decapoda: Erymidae) from the Middle Jurassic of south-western Germany. Paläontologische Zeitschrift, 87: 409-413. https://doi.org/10.1007/s12542-013-0163-7 Schweigert, G. 2015a: Biostratigraphie der Plattenkalke der Sdlichen Frankenalb. In: Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G. (eds.): Solnhofen - Ein Fenster in die Jurazeit. Verlag Friedrich Pfeil, Mnchen: 63-66. Schweigert, G. 2017: Die Garnele Antrimpos un­denarius aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb) und deren Rolle im dortigen Ökosystem. Archaeopteryx, 34: 1-7. Schweigert, G. & Dietl, G. 1999: Neubeschreibung von „Eryon-longipes O. Fraas“ (Crustacea, Decapoda, Eryonidea) aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb). Stuttgarter Beiträge zur Naturkunde, B274: 1-19. Schweigert, G., Dietl, G. & Röper, M. 2000: Die Panzerkrebse der Familie Erymidae van Straelen (Crustacea, Decapoda) aus dem Nusplinger Plattenkalk (Ober-Kimmeridgium, Schwäbische Alb) im Vergleich mit fränkischen Vorkommen. Stuttgarter Beiträge zur Naturkunde B285: 1-25. Schweigert, G. & Garassino, A. 2003: New studies of decapod crustaceans from the Upper Jurassic lithographic limestones of southern Germany. Contributions to Zoology, 72/2: 173-179. https://doi.org/10.1163/18759866-0720203022 Secretan, S. 1964: Les Crustacés décapodes du Jurassique supérieur et du Crétacé de Madagascar. Mémoires du Muséum national d’Histoire naturelle Paris, nouvelle série, C, Sciences de la Terre, 14: 1-226. Seilacher, A., Reif, W.-E. & Westphal, F. 1985: Sedimentological, ecological and temporal patterns of fossil Lagerstätten. Philosophical Transactions of the Royal Society of London, B311: 5-23. Stenzel, H.B. 1945: Decapod Crustacea from the Cretaceous of Texas. Texas University Publications, 4401: 401-476. Stevens, K., Mutterlose, J. & Schweigert, G. 2014: Belemnite ecology and the environment of the Nusplingen Plattenkalk (Late Jurassic, southern Germany): evidence from stable iso­tope data. Lethaia, 47/4: 512-523. https://doi. org/10.1111/let.12076 Tischlinger, H. 2015: Arbeiten mit ultraviolettem Licht (UV). In: Arratia, G., Schultze, H.-P., Tischlinger, H. & Viohl, G. (eds.): Solnhofen - Ein Fenster in die Jurazeit. Friedrich Pfeil, Mnchen: 109-113. Van Straelen, V. 1925: Contribution a l’étude des crustacés décapodes de la période jurassique. Mémoires de la Classe des Sciences de l’Aca­démie royale de la Belgique, 7: 1-462. Wright, T. 1881: On a new astacomorphous crustacean from the middle coral reef of Leckhampton Hill. Proceedings of the Cotteswold Naturalists' Field Club, 8: 56-59. Zeiss, A. 1968: Untersuchungen zur Paläontologie der Cephalopoden des Unter-Tithon der Sdlichen Frankenalb. Abhand­lungen der Bayerischen Akademie der Wissenschaften, mathematisch-naturwissen­schaftliche Klasse, neue Folge, 132: 1-190. Zeiss, A. 1977: Jurassic stratigraphy of Franconia. Stuttgarter Beiträge zur Naturkunde, B31: 1-32. GEOLOGIJA 63/1, 29-38, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.003 Mesogalathea ardua sp. nov., a new species of squat lobster (Decapoda, Galatheidae) from the Upper Jurassic olistolith at Velika Strmica (Dolenjska, Slovenia) Nova vrsta raka Mesogalathea ardua sp. nov. (Decapoda, Galatheidae) iz zgornjejurskega olistolita pri Veliki Strmici (Dolenjska, Slovenija) Rok GAŠPARIČ1,2, Cristina ROBINS3 & Luka GALE4,5 1Oertijdmuseum, Bosscheweg 80, 5293 WB Boxtel, the Netherlands; rok.gasparic@gmail.com 2Novi trg 59, 1241 Kamnik, Slovenia 3The University of Alabama Museums, The University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA; e-mail: cristina.robins@gmail.com 4University of Ljubljana, Faculty of Natural Sciences and Engineering, Department for Geology, Aškerčeva cesta 12, 1000 Ljubljana, Slovenia; e-mail: luka.gale@ntf.uni-lj.si 5Geological Survey of Slovenia, Dimičeva ulica 14, 1000 Ljubljana, Slovenia; e-mail: luka.gale@geo-zs.si Prejeto / Received 22. 12. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Anomura, Galatheoidea, Kimmeridgian-Tithonian, Slovenia, new taxon Ključne besede: Anomura, Galatheoidea, kimmeridgij-tithonij, Slovenija, nova vrsta Abstract A new species of squat lobster, Mesogalathea ardua sp. nov., is described on the basis of newly collected dorsal carapaces from an Upper Jurassic reefal limestone olistolith at Velika Strmica. The fossiliferous olistolith is situated within Upper Cretaceous flysch-type deposits, but originally formed within the central parastromatoporoid zone of a Jurassic reef complex. Mesogalathea ardua sp. nov. represents the first formal description of a Jurassic squat lobster from Slovenia and extends the known palaeobiogeographical distribution of galatheoid anomurans. Izvleček Predstavljena je nova zgornjejurska vrsta raka skakača Mesogalathea ardua sp. nov., opisana na podlagi na novo zbranih primerkov iz grebenskega olistolita pri Veliki Strmici. S fosili bogat olistolit se nahaja znotraj zgornjekrednih flišnih plasti, njegov izvor pa je v parastromatoporoidni coni centralnega dela jurskega koralnega grebena. Novo opisana vrsta Mesogalathea ardua sp. nov. je prvi opis jurskega raka skakača iz Slovenije in širi do sedaj znano paleobiogeografsko razširjenost galatheoidnih rakov. Introduction number of specimens) come from a series of olis- The Upper Jurassic of Europe was a hotspot toliths in the vicinity of Ernstbrunn (Austria), as in galatheoid speciation (Bracken-Grissom et al., well as from numerous other olistoliths labelled 2013; Klompmaker et al., 2013; Fraaije, 2014; Rob-“Štramberk Limestones” across the border of the ins et al., 2012, 2013, 2015, 2016; Robins & Klomp-modern-day Czech Republic and Poland (for fur-maker, 2019). These so-called squat lobsters in-ther details, see Robins et al., 2013, 2016). Sev-habited primarily shallow areas of the tropical eral galatheoid-producing localities within mod-Tethys Ocean. Many of the fossil galatheoids are ern-day Romania are in place (Feldmann et al., found within limestone blocks interpreted as 2006; Schweitzer et al., 2017); however, several parts of former coralgal reefs. The largest number others within the Carpathians represent olisto-of Late Jurassic galatheoid species (and greatest liths as well (Schweitzer et al., 2018). All of these originate from reefal environments. This redepo­sition of Jurassic material within Cretaceous de­posits adds additional levels of complexity as far as their depositional and palaeoenvironmental history is concerned. The better-known Jurassic Solnhofen-type limestones, in contrast, are not reefal in nature. Galatheoids are incredibly rare there, with only a single species recorded to date from the area (Feldmann et al., 2016). In non-Solnhofen carbonate rocks in southern Germany, only a single munidopsid species, Gastrosacus wetzleri von Meyer, 1851, is present. This species is known mainly from sponge-microbial reefs and associated limestones (Robins et al., 2015). The present study discusses a new record of Late Jurassic squat lobsters from Slovenia, de­scribing a new species of Mesogalathea Houša, 1963, on the basis of newly collected material. These specimens extend the palaeobiogeographi-cal distribution of Late Jurassic galatheoids. Geological setting The locality of Velika Strmica, some 10 km northwest of Novo mesto, belongs structurally to the Dinarides, i.e. the folded and thrusted former northeastern margin of the Adria tectonic mi-croplate (Placer, 1999, 2008; Vrabec & Fodor, 2006). According to Kastelic et al. (2008), the main phase Fig. 1. Position of the locality. A - Simplified geographical map showing the locality of Velika Strmica (star) and present-day position of the Upper Jurassic barrier reef complex in Slovenia. B - Palaeoenvironmental differentiation of the Jurassic bar­rier reef complex (adapted after Turnšek, 1997). of the NE- to SW-directed folding and thrusting took place during the Eocene. The northeastern part of the Dinarides was further dissected after the Miocene by the SE-NE trending, post-Miocene strike-slip faults of the Mid-Hungarian tectonic zone. These faults, together with the W-E strik­ing Periadiatic tectonic zone to the north and the NW-SE trending strike-slip faults of the Idrija tectonic zone to the east, form the so-called Sava compressive wedge (Placer, 1999). The stratigraphical succession at Velika Str-mica is incomplete due to the strongly faulted structure of the area. The lower part of the suc­cession comprises Triassic, Jurassic and Lower Cretaceous carbonates (Pleničar & Premru, 1977; Trotošek, 2002; Buser, 2009), deposited on or at the margin of the Adriatic carbonate platform, which covered large parts of the continental crust of the Adria microplate during the Meso­zoic (Buser, 1989; Vlahović et al., 2005). Platform carbonates are discordantly overlain by upper Santonian to mid-Campanian grey and red marly limestone with chert and subordinate interca­lations of calcarenite and calcrudite (Trotošek, 2002), or by Campanian-Maastrichtian flysch-type deposits, comprising basal carbonate brec­cia or calcarenite and marlstone (Pleničar & Premru, 1977; Trotošek, 2002). West of the village of Velika Strmica, the marlstone from the flysch series comprises also a series of Upper Jurassic (Kimmeridgian/Tithonian) carbonate blocks of reefal limestone (Fig. 1). The fossils studied orig­inate from one of these olistoliths, from which a diverse decapod crustacean fauna has been re­covered (Gašparič & Gale, 2018). The Late Juras­sic age of the olistolith has previously been deter­mined on the basis of occurrences of the corals Dermoseris sp. and Dermosmilia etalloni Koby, 1884 (Trotošek, 2002). Material and methods The present study is based on 15 specimens of galatheoid preserved in a coral limestone matrix. They were mostly found by mechanically break­ing down a rock sample, except in rare cases where specimens were visible on weathered sur­faces. Because specimens are heavily recrystal­lised, there is only poor separation between the rock and the thin cuticle. Cuticle is partially pre­served in some specimens, although occasionally damaged in weathered or prepared specimens. However, presence or absence of cuticle seem­ingly has no significant impact on carapace or­namentation in galatheoids (Robins et al., 2016). Material described and illustrated are part of the collections of the Natural History Museum Lju­bljana (Slovenia). Decapod specimens were prepared and stud­ied under a stereomicroscope Leica EZ 4D. Pho­tographs were taken with a digital camera Nikon D750. Some specimens were whitened with am­monium chloride sublimate prior to photography in order to enhance details of cuticle ornamen­tation. Microfacies analysis was performed on nine thin sections, prepared from four samples. Thin sections are now held in the repository of one of us (L.G.; thin sections with number 1231). Microfaci-es types are characterised according to the classi­fications of Dunham (1962) and Embry & Klovan (1971). Quantity grain analysis for grainstone was done on three images at magnifications of ×12.5 and ×25 with JMicroVision v2.7 computer soft­ware (Nicolas Roduit, 2002-2008). Over 200 points per image were counted. Completely micritized grains were counted as peloids, in contrast to in-traclasts, which still preserve original texture. Rounded (abraded) fragments of bounding organ­isms were also treated as intraclasts. Whenever the origin of a peloid could be recognised, e.g., due to incomplete micritization, such a grain was add­ed to non-micritized grains of the same type. Description of olistolith The isolated limestone block, measuring ap­proximately 2 m in diameter, consists of grain-stone in its lower part, followed by sponge float-stone. Macroscopically, the latter facies contains a rich fauna with sponges, decapod crustaceans, corals and brachiopods. Within the grainstone, clasts represent 70 % of the bulk rock. They range in size from 0.08 to 1.32 mm, with most grains around 0.25 mm in diameter. The sediment is moderately well sorted. Grains are subangular to subrounded, mostly with point contacts. In-traclasts account for 28 % of the area. Most are strongly micritized. Unclear particles can be de­tected, and some represent abraded fragments of encrusting algae. Boring and predating abrasion is seen in some of the latter. Sparitic fragments, abraded and micritized to various degrees, are the next common grain type (21.5 %). Peloids account for 14.5 %, and echinoderms for 5 %. Other components (foraminifera, bryozoans, bra-chiopods) are very rare. Bryozoan colonies were fragmented and later abraded. Zooecia are filled with micrite. Most of the benthic foraminifera are fragmentary, whereas planktonic forms are much better preserved, with numerous short spines apparent at the surface. Among the for­mer, Protopeneroplis striata Weynschenk, 1950 and Ammobaculites sp. were identified. Other forms present belong to lagenids, miliolids and planktonic taxa. Intergranular space is filled with drusy-mosaic calcite cement. In the sponge floatstone, clasts larger than 2 mm represent 20-40 % of the area. Sorting is very poor. Most of these are tabular sponges; cor­als and brachiopods are subordinate. Sponges and corals are commonly encrusted by Lithocodium/ Pseudolithocodium-like crusts (see comments in Schlagintweit et al., 2010), sessile foraminifera, serpulids, red algae and sponges. Serpulids are also found within internal canals of sponges. Microborings are also very common on the out­er surface of sponges and corals. Brachiopod shells are preserved with closed valves. The ma­trix consists of bioclastic wackestone and pack-stone. Clasts are strongly fragmented and sparit­ic fragments predominate. Complete bivalve and gastropod shells are rarely preserved. Original shells seem to have been dissolved during dia-genesis and moulds were first lined with bladed rim cement, followed by clear drusy-mosaic cal­cite cement. Other grains include foraminifera, echinoderm ossicles (including echinoid spines), fragmented bryozoans and ostracods. Among foraminifera, Protopeneroplis striata, Earland­ia tintinniformis (Mišik, 1971), indeterminate miliolids and nodosariids of the meandrospiroid form, and Astacolus sp. were identified. Abbreviations Abbreviations of dorsal carapace characters of Galatheoidea used in the illustrations are as fol­lows: L – length, excluding rostrum; R – rostrum length; LR – total length, including rostrum; GH – gastric region length, from base of rostrum to cervical groove; MW – maximum width of speci­men; RW – maximum rostrum width; TW – width at anterior margin; ro – rostrum; os – orbital si­nus; as – anterolateral spine; cg – cervical groove; gr – undifferentiated gastric region; br – undif­ferentiated branchial region. RGA/SMNH - Slovenian Museum of Natural History, Ljubljana, Slovenia (R. Gašparič Collec­tion). Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Anomura MacLeay, 1838 Superfamily Galatheoidea Samouelle, 1819 Family Paragalatheidae Robins, Feldmann, Schweitzer & Bonde, 2016 Genus Mesogalathea Houša, 1963 Type species: Galathea striata Remeš, 1895, by original designation. Diagnosis: Carapace subrectangular to sub-oval; strongly convex, maximum width rough­ly equal to length; ornamented exclusively with transverse ridges. Rostrum very broad, without keel, ending in broadly tridentate tip. Cervical groove weakly to moderately defined; regions usually undefined (after Robins et al., 2016). Remarks: This genus is known exclusively from the Upper Jurassic, with records from Aus­tria, the Czech Republic, Poland, Romania and Slovenia, of the following species: Mesogalathea striata Remeš, 1895, M. macra Robins, Feldmann, Schweitzer & Bonde, 2016, M. pyxis Robins, Feld­mann, Schweitzer & Bonde, 2016 and M. retusa Robins, Feldmann, Schweitzer & Bonde, 2016. Mesogalathea ardua sp. nov. (Figs. 3-5) Etymology: from the Latin “ardus” meaning steep, in reference to the locality name Velika Strmica, which translates as “steep hill”. Diagnosis: Carapace L/MW 1.3; L/TW 1.4 (av­erage). Lateral margins straight; arching inwards anteriorly and posteriorly; maximum width pos­terior of cervical groove. Rostrum large, spat-ulate; covering approximately half total width of anterior of dorsal carapace and representing more than one-third of carapace length (L). Lat­eral edges of rostrum converging anteriorly; dis­tinctly tridentate, with three pointed tips; central tip extending furthest. Carapace and rostrum ornamented with continuous transverse ridges that extend to lateral margins. Defined cervical groove extending across carapace, broadly con­cave and straightening at centre; turning sharply anteriorly at lateral margins. Holotype: RGA/SMNH 1783 (Figs. 3A-B, 4A). Paratypes: RGA/SMNH 2173 (Fig. 4D), RGA/ SMNH 1786 (Fig. 4C), RGA/SMNH 2215 (Fig. 5A), RGA/SMNH 2115 (Fig. 4B), RGA/SMNH 2117 (Fig. 5B) and RGA/SMNH 2094. Type locality: Velika Strmica, Slovenia. Type age: Late Jurassic, Kimmeridgian/Ti­thonian. Distribution: Only known from the type locality. Measurements: details in Table 1. Description: Carapace subrectangular to suboval in shape; narrows slightly at extreme anterior and posterior, maximum width (MW) in posterior third. Carapace strongly convex transversely; moderately convex longitudinally; longer than wide, L/MW relatively constantly at 1.3, L/TW ranging between 1.3 and 1.5. Rostrum very large, spatulate; covering approximately half anterior width of frontal margin of dorsal carapace; representing more than one-third of carapace length (L); rostrum comprising larger portion of total carapace length in smaller than in larger specimens. Rostrum with lateral edges higher at midpoint; smooth lateral margins; mod­erately deflected; bearing no keel. Lateral edges of rostrum subparallel, converging in anterior-most third; rostrum ending in distinct tridentate tip; all three tips pointed, central tip of trident extending more than double the length of lateral Table 1. Dimensions (in millimetres) of Mesogalathea ardua sp. nov. Fig. 3. Mesogalathea ardua sp. nov. A - RGA/SMNH 1783 (holotype), dorsal carapace; B - RGA/SMNH 1783 (holotype), lateral view of carapace. Scale bars equal 5 mm. Fig. 4. Mesogalathea ardua sp. nov. A - RGA/SMNH 1783 (holotype), dorsal carapace; B - RGA/SMNH 2115 (paratype), partial dorsal carapace; C - RGA/SMNH 1786 (paratype), dorsal carapace; D - RGA/SMNH 2173 (paratype), dorsal carapace. Scale bars equal 3 mm (A, B) and 2 mm (C, D). Fig. 5. Mesogalathea ardua sp. nov. A - RGA/SMNH 2215 (paratype), partial dorsal carapace; B - RGA/SMNH 2217 (paratype), partial dorsal carapace; C - RGA/SMNH 2101, rostrum; D - RGA/SMNH 1784a, sternal plastron. Scale bars equal 3 mm (A, B) and 2 mm (C, D). tips. Rostrum adorned throughout by strong me­andering, transverse ornamentation; ornamenta­tion of rostrum mirroring trident rostrum shape. Orbits shallow and directed forwards, apparent­ly continuing under rostrum. Supraorbital mar­gin concave, unornamented, with one forwardly directed spine at anterolateral angle. Lateral margin straight; smoothly arching inwards both anteriorly and posteriorly. De­fined cervical groove extending across carapace, broadly concave and straightening at centre; running progressively anteriorly across carapace and turning sharply anteriorly immediately prior to lateral margins. Branchio-cardiac groove not present. Regions not defined; depressed subpar­allel converging tip of mesogastric region locat­ed posteriorly to rostrum, intersected by orna­mentation, longitudinally depressed and adorned with circular depressions interspaced between transverse ridges. Carapace ornamented with long prominent, uninterrupted, transverse ridg­es; occasionally interspersed with smaller ridges. In anterior part of gastric region, ornamentation continuing smoothly onto rostrum, ridges cen­trally convex; posterior gastric ridges straight­ening and becoming concave, reflecting cervical groove. Anterior branchial regions ornamented with slight concave transverse ridges; straighten­ing where approaching posterior part of branchi­al region. All ornamentation extending to lateral edges and turning sharply anteriorly at lateral margins. Ventral surface (sternal plastron) (Fig. 5D) and preserved appendages disarticulated; hence it is not possible to assign them to Mesogalat­hea ardua sp. nov. with any confidence, but this is likely in view of size, abundance and relative proximity. Discussion: Based on overall carapace shape, a long, broad and tridentate rostrum without a keel, ornamentation of exclusively transverse ridges; a defined cervical groove, but a lack of other defined grooves or regions, the new species can be confidently assigned to the genus Mesoga­lathea. Mesogalathea ardua sp. nov. resembles Mesogalathea striata in overall carapace shape and prominent transverse ornamentation, where­as the ridges in the new species are straighter and more regularly continuous across the cara­pace. Additionally, Mesogalathea ardua sp. nov. possesses a wider, more concave and more deep­ly incised cervical groove and a pointed triden­tate ornamented rostrum, with a longer median tip and a well-developed tip of the mesogastric region. The new species has a more prominent transverse ornamentation, a rostrum with a dis­tinctly longer tridentate tip, anterolateral spines and a deeper cervical groove than in Mesogalat­hea macra and Mesogalathea retusa. Mesogala­thea pyxis has a more convex carapace, a more irregular transverse ornamentation and orna­mented orbits that lack anterolateral spines, as in Mesogalathea ardua sp. nov. Palaeoecology and palaeoenvironment The fossil assemblage recovered from the ol­istolith studied hints at its provenance from the Upper Jurassic reef complex which stratigraph­ically underlies the Lower Cretaceous flysch-type deposits. The Late Jurassic reef complex of the External Dinarides is considered the largest preserved fossil reef in Slovenia. It was a barri­er reef that extended along the northern margin of the Dinaric Carbonate Platform, which pass­es northwards into the deep-marine Slovenian Basin (Fig. 1A; Turnšek et al., 1981; Turnšek, 1997). Turnšek et al. (1981) subdivided the Up­per Jurassic reef complex of the External Dinar-ides into fore-reef, central reef and back-reef, the last-named containing local patch reefs. Based on reefal communities, the central reef area was further subdivided into an outer “actinostrom-arid zone” and an inner “parastromatoporoid zone” (Fig. 1B). The relative abundance of Pro-topeneroplis striata in the olistolith studied, as well as the presence of planktonic foraminifera, is suggestive of original deposition on the up­per slope. This view is supported by the occur­rence of Lithocodium/Pseudolithocodium, also known from shallow- to deeper-water settings (see Schlagintweit et al., 2010). We conclude that the Upper Jurassic olistolith that has yielded the decapod crustaceans described here developed in the central parastromatoporoid zone of a Jurassic coral reef complex. Acknowledgements We wish to thank Mr Samo Trotošek for bringing this Upper Jurassic locality to our attention, Andreja Žibrat Gašparič for thorough proofreading of our manuscript and the journal reviewers, Natalia Starzyk (Institute of Systematics and Evolution of Animals, Krakw, Poland) and Gnter Schweigert (Staatliches Museum fr Naturkunde, Stuttgart, Germany), for constructive comments on an earlier version of the manuscript. References Bracken-Grissom, H.D., Cannon, M.E., Cabezas, P., Feldmann, R.M., Schweitzer, C.E., Ahyong, S.T., Felder, D.L., Lemaitre, R. & Crandall, K.A. 2013: A comprehensive and integra­tive reconstruction of evolutionary history for Anomura (Crustacea: Decapoda). BMC Evolutionary Biology, 13/1: 128 p. https://doi. org/10.1186/1471-2148-13-128 Buser, S. 1989: Development of the Dinaric and the Julian carbonate platforms and of the in­ termediate Slovenian Basin (NW Yugoslavia). Bollettino della Societa Geologica Italiana, 40: 313–320. Buser, S. 2009: Geological map of Slovenia 1:250,000. Geological Survey of Slovenia, Ljubljana. Dunham, R.J. 1962: Classification of carbonate rocks according to depositional texture. In: Han, W.E. (ed.): Classification of carbonate rocks; a symposium. American Association of Petroleum Geologists Memoir, 1: 108–121. Embry, A.F. & Klovan, J. E. 1971: A late Devonian reef tract on northeastern Banks Island, N.W.T. Bulletin of Canadian Petroleum Geology, 19: 730–781. Feldmann, R.M., Lazar, I. & Schweitzer, C.E. 2006: New crabs (Decapoda: Brachyura: Prosopidae) from Jurassic (Oxfordian) sponge bioherms of Dobrogea, Romania. Bulletin of the Mizunami Fossil Museum, 33: 1–20. Feldmann, R.M., Schweitzer, C.E., Schweigert, G., Robins, C., Karasawa, H. & Luque, J. 2016: Additions to the morphology of Munidopsidae (Decapoda: Anomura) and Goniodromitidae (Decapoda: Brachyura) from the Jurassic Solnhofen-type lagerstätten, Germany. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 279/1: 43–56. Fraaije, R.H.B. 2014: Diverse Late Jurassic anomuran assemblages from the Swabian Alb and evolutionary history of paguroids based on carapace morphology. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 273: 121–145. Gašparič, R. & Gale, L. 2018: A new Upper Jurassic deceapod assemblage from a sponge reef olistolith from Velika Strmica, Slovenia. In: Novak, M. & Rman, N.: 5. slovenski geološki kongres, Velenje, 3.-5.10.2018. Book of absract, Velenje: 41-42. Houša, V. 1963: Parasites of Tithonian decapod crustaceans (Štramberk, Moravia). Sborník Ústředního Ústavu Geologické, Paleontologie, 28 (for 1961): 101–114. Kastelic, V., Vrabec, M., Cunningham, D. & Gosar, A. 2008: Neo-Alpine structural evolu­tion and present-day tectonic activity of the eastern Southern Alps: the case of the Ravne Fault, NW Slovenia. Journal of Structural Geology, 30/8: 963–975. Klompmaker, A.A., Schweitzer, C.E., Feldmann, R.M.& Kowalewski, M. 2013: The influence of reefs on the rise of Mesozoic marine crusta­ceans. Geology, 41/11: 1179–1182. Koby, F. 1884: Monographie des polypiers juras­siques de la Suisse (4). Mémoires de la Société Paléontologique, 11: 149–212. Latreille, P.A. 1802: Histoire naturelle, générale et particuliere, des crustacés et des insectes, 3: 468 p. Dufart, Paris. MacLeay, W.S. 1838: On the brachyurous deca-pod Crustacea brought from the Cape by Dr. Smith. In: Smith, A.: Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly col­lected during an expedition into the interi­or of South Africa, under the direction of Dr. Andrew Smith, in the years 1834, 1835 and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa”, Smith, Elder, and Co., London: 53–71. Meyer, H. von. 1851: Briefliche Mittheilungen. Neues Jahrbuch fr Mineralogie, Geologie, Geognosie und Petrefaktenkunde, 1851: 677–680. Mišík, M. 1971: Aeolisaccus tintinniformis n. sp. from the Triassic of the West Carpathian Mts. Geologica Carpathica, 22/1: 169–172. Placer, L. 1999: Contribution to the macrotecton­ic subdivision of the border region between Southern Alps and External Dinarides. Geologija, 41: 223–255. https://doi.org/10.54 74/geologija.1998.013 Placer, L. 2008: Principles of the tectonic subdi­vision of Slovenia. Geologija, 51/2: 205–217. https://doi.org/10.5474/geologija.2008.021 Pleničar, M. & Premru, U. 1977: Explanatory book for Sheet Novo mesto, L 33-79, Basic Geological Map SFRY 1:100,000. Federal Geological Survey, Beograd, 61 p. Remeš, M. 1895: Beiträge zur Kenntniss der Crustaceen der Stramberger Schichten. Bulletin international de l’Académie des Sciences de Boheme, 2: 200–204. Robins, C.M., Feldmann, R.M. & Schweitzer, C. E. 2012: The oldest Munididae (Decapoda: Anomura: Galatheoidea) from Ernstbrunn, Austria (Tithonian). Annalen des Natur­ historischen Museums in Wien, A114: 289–300. Robins, C.M., Feldmann, R.M. & Schweitzer, C. E. 2013: Nine new genera and 24 new spe­cies of Munidopsidae (Decapoda: Anomura: Galatheoidea) from the Jurassic Ernstbrunn Limestone of Austria, and notes on fos­ sil munidopsid classification. Annalen des Naturhistorischen Museums in Wien, A115: 167–251. Robins, C.M., Fraaije, R.H.B., Klompmaker, A.A., Van Bakel, B.W.M. & Jagt, J.W.M. 2015: New material and redescription of Gastrosacus wetzleri von Meyer, 1851 (Decapoda, Anomura, Galatheoidea) from the Late Jurassic of southern Germany. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 275/1: 83–91. https://doi. org/10.1127/njgpa/2015/0452 Robins, C.M., Feldmann, R.M., Schweitzer, C.M. & Bonde, A. 2016: New families Paragalatheidae and Catillogalatheidae (Decapoda: Anomura: Galatheoidea) from the Mesozoic, restriction of the genus Paragalathea, and establishment of 6 new genera and 20 new species. Annalen des Naturhistorischen Museums in Wien, A118: 65–131. Robins, C.M. & Klompmaker, A.A. 2019: Extreme diversity and parasitism of Late Jurassic squat lobsters (Decapoda: Galatheoidea) and the oldest records of porcellanids and galatheids. Zoological Journal of the Linnean Society, 187: 1131–1154. https://doi. org/10.1093/zoolinnean/zlz067 Samouelle, G. 1819: The Entomologist’s Useful Compendium, or an introduction to the knowledge of British insects, etc. T. Boys, London: 496 p. Schlagintweit, F., Bover-Arnal, T. & Salas, R. 2010: Erratum to: New insights into Lithocodium aggregatum Elliot 1956 and Bacinella irregularis Radoičić 1959 (Late Jurassic-Lower Cretaceous): two ulvophycean green algae (? Order Ulotrichales) with a het­eromorphic life cycle (epilithic/euendolithic). Facies, 56/4: 635–673. https://doi.org/10.1007/ s10347-010-0223-3 Schweitzer, C.E., Lazăr, I., Feldmann, R.M., Stoica, M. & Franţescu, O.D. 2017: Decapoda (Anomura; Brachyura) from the late Jurassic of Dobrogea, Romania. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 286/2: 207–228. https://doi.org/10.1127/ njgpa/2017/0696 Schweitzer, C.E., Feldmann, R.M., Lazăr, I., Schweigert, G. & Franţescu, O.D. 2018. Decapoda (Anomura; Brachyura) from the Late Jurassic of the Carpathians, Romania. Neues Jahrbuch f Geologie und Paläontologie Abhandlungen, 288/3: 307–341. https://doi.org/10.1127/njgpa/2018/0744 Trotošek, S. 2002: Geological structure of the area north of Šmarješke Toplice. Unpubl. BSc thesis [in Slovenian]. University of Ljubljana, Faculty of Natural Sciences and Engineering, Department of Geology, Ljubljana: 52 p. Turnšek, D. 1997: Mesozoic corals of Slovenia. Založba ZRC, Ljubljana: 513 p. Turnšek, D., Buser, S. & Ogorelec, B. 1981: An Upper Jurassic reef complex from Slovenia, Yugoslavia. SEPM Special Publication, 30: 361–369. Vlahović, I., Tišljar, J., Velić, I. & Matičec, D. 2005: Evolution of the Adriatic carbonate platform: palaeogeography, main events and depositional dynamics. Palaeogeography, Palaeoclimatology, Palaeoecology, 220: 333–360. https://doi.org/10.1016/j. palaeo.2005.01.011 Vrabec, M. & Fodor, L. 2006: Late Cenozoic tec­tonics of Slovenia: structural styles at the northeastern corner of the Adriatic micro-plate. In: Pinter, N., Grenerczy, G., Weber, J., Stein, S. & Medek, D. (eds.): The Adria mi-croplate: GPS geodesy, tectonics and haz­ards. NATO Science Series, IV, Earth and Environmental Sciences, 61: 151–168. Weynschenk, R. 1950: Die Jura-Mikrofauna und -flora des Sonnwendgebirges (Tirol). Schiern-Schriften, Universität Innsbruck, 83: 1–32. GEOLOGIJA 63/1, 39-46, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.004 Well-preserved cuticle of Atherfieldastacus magnus (Decapoda, Glypheida) from the Aptian of Mexico Dobro ohranjena kutikula raka Atherfieldastacus magnus (Decapoda, Glypheida) iz aptijskih plasti v Mehiki Oscar GONZÁLEZ-LEÓN1, Josep A. MORENO-BEDMAR2, Ricardo BARRAGÁN-MANZO2 & Francisco J.VEGA2 1Posgrado en Ciencias de la Tierra, Universidad Nacional Automa de México, CDMX 04510, México, and Facultad de Estudios Superiores Iztacala, Universidad Nacional Automa de México, 54070 México; e-mail: oscar.gonzalez@unam.mx 2Instituto de Geología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán, CDMX 04510, Mexico; e-mails: josepamb@geologia.unam.mx, ricardor@geologia.unam.mx, vegver@unam.mx Prejeto / Received 9. 12. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Pleocyemata, Mecochiridae, cuticular structure, Lower Cretaceous, Chihuahua, Mexico Ključne besede: Pleocyemata, Mecochiridae, kutikula, spodnja kreda, Chihuahua, Mehika Abstract The cuticle structure of fossil decapod crustaceans is an important tool, not only for palaeocological and taphonomic interpretations, but also as a potential way to characterise systematically genera and even species the cuticle of which has not been severely altered by diagenetic processes. Localities with abundant decapod crustacean remains can be interpreted either as reflecting mass mortality events or just simple accumulations of exuviae, on the basis of completeness and comparison of cuticle structures between specimens of the same species from different localities. Association with anoxic events by microfacies analyses can offer clues to explain the unusual abundance of decapod crustacean remains. This is the case for the Early Cretaceous lobster Atherfieldastacus magnus (M’Coy, 1849), which is found in large numbers in different Lower Cretaceous (mainly Aptian) lithostratigraphic units across the globe. In this case, we document the well-preserved cuticle structure of specimens from the upper Aptian of Chihuahua (Mexico), preserved three-dimensionally, mainly in concretions, which were studied in different transverse sections showing the cuticle in diverse portions of the lobster body. Thin cuticle layers show the typical crustacean cuticular structure that suggest these are corpses preserved in an anoxic environment. Izvleček Analiza strukture kutikule fosilnih deseteronožcev je pomembno orodje ne le za paleoekološke in tafonomske interpretacije, ampak tudi kot možen način za sistematsko opredelitev rodov in celo vrst, v kolikor kutikula ni diagenetsko spremenjena. Na podlagi ohranjenosti in primerjave strukture kutikule med primerki iste vrste z različnih nahajališč razlikujemo nahajališča s pogostimi ostanki rakov. Ta lahko kažejo na množičen pogin ali zgolj na akumulacije levov deseteronožcev. V povezavi s prepoznanimi anoksičnimi dogodki v mikrofacialnih analizah nam lahko metoda služi za razlago množičnih nakopičenj fosilnih deseteronožcev na nekaterih lokacijah. Tak primer je zgodnjekredni jastog Atherfieldastacus magnus (M'Coy, 1849), katerega številne ostanke najdemo v različnih litostratigrafskih enotah spodnje krede (predvsem v aptiju) po vsem svetu. V prispevku predstavljamo dobro ohranjeno strukturo kutikule osebkov iz zgornjega aptija iz nahajališča Chihuahua (Mehika). Vzorce tridimenzionalno ohranjene kutikule primerkov iz konkrecij smo pregledali na različnih prečnih presekih z različnih delov telesa jastoga. Tanke plasti kutikule z značilno strukturo kažejo, da gre v našem primeru za trupla, ki so se ohranila v anoksičnem okolju. Introduction An interesting factor of the study of decapod crustaceans is the review and examination of their cuticule structure. At most localities, cuticle structure is obscured by mineral replacement of the original carbonate, but modified by diagenet­ic processes as well (Vega et al., 2005). In previous studies (e.g., Dennell, 1960; Hegdahl et al., 1977a, b; Roer & Dillaman, 1984), cuticle structure of Recent taxa has been studied, while other authors have demonstrated the presence of cuticle in the fossil record (e.g., Neville & Berg, 1971; Feldmann & Tshudy, 1987; Vega et al., 1994, 2005; Feld­mann & Gaździcki, 1998; Guinot & Breton; 2006; González-León et al., 2016, 2018, among others). Studies of the functional morphology and tapho­nomic implications have been addressed by vari­ous authors (Schäfer, 1951; Guinot, 1979; Plotnick et al., 1988; Savazzi, 1988; Haj & Feldmann, 2002; Waugh et al., 2004). The use of this structure for taxonomic purposes is complicated because there are only few well-established characters. With this in mind, Waugh et al. (2009) analysed the morphological characters of some decapod crus­taceans for possible future phylogenetic analysis. Decapod crustaceans rank amongst the most common animals inhabiting a number of differ­ent environments, both at the present day (Abele, 1974) and in the past (Klompmaker et al., 2013; Schweitzer & Feldmann, 2014). The calcified cu­ticle of decapod crustaceans comprises the hard exoskeleton of the animal and is composed of three layers (Haj & Feldmann, 2002); these lay­ers have been documented in some fossil decapod crustaceans as well (Neville & Berg, 1971; Taylor, 1973; Dalingwater, 1977; Vega et al., 1994, 1998; Feldmann & Gaździcki, 1998; Haj & Feldmann, 2002; Waugh & Feldmann, 2003; Vega et al., 2005; Waugh et al., 2006; Amato et al., 2008; Waugh et al., 2009; González-León et al., 2016, 2018). The decapod cuticle has a very distinctive structure when observed in cross section. In spite of the fact that decapod crustacean cuticle is frequently pre­served in material from Mesozoic and Cenozoic shelf deposits (Vega et al., 2005), very few efforts have been made as to how to distinguish corpses from exuviae. For this reason, it is important to recognise and characterise the microstructure as a potential tool in preliminary identification of, at least, major decapod crustacean groups and taphonomic interpretations (Feldmann & Tshudy, 1987; Vega et al., 1994; Klompmaker et al., 2015). The present paper analyses and complements information on cuticule structure of numerous specimens of Atherfieldastacus magnus that are preserved in concretions from the upper Aptian La Pea Formation in Chihuahua State (northern Mexico). Locality and stratigraphy The main locality is in the Cerro Chino region (Chihuahua State), close to the towns of Coyame del Sotol and Cuchillo Parado (Fig. 1). Specimens were collected from upper Aptian strata assigned to the La Pea Formation (Fig. 2); for details on these localities and local stratigraphy, reference is made to Ovando-Figueroa et al. (2017) and González-León et al. (2018). Fig. 1. Locality map showing the fossil site in northern Mexico (Chihuahua State) (modified from González-León et al., 2018). Material and methods About 20 calcareous concretions were collect­ed near Abuja Colorada, in a fossiliferous section dominated by shale. Specimens recorded herein were recovered from concretions of varying size, between 3 and 12 cm in length (Fig. 3) and were prepared with a Paleotools ME-9100 pneumatic percutor and subsequently sectioned transversely with a diamond saw blade and glued to microscop­ic slides with resin, which were then polished by hand, using Kemet polishing abrasive. A Zeiss po­larising microscope, with an adapted Canon EOS Mark I camera, was used to take numerous images of cuticule structure. Thin sections and complete specimens are deposited in the Coleccin Nacion­al de Paleontología “María del Carmen Perrilli-at”, Instituto de Geología, Universidad Nacional Autnoma México (abbreviation: IGM). Systematic palaeontology Order Decapoda Latreille, 1802 Suborder Pleocyemata Burkenroad, 1963 Infraorder Glypheida Zittel, 1885 Superfamily Glypheoidea von Zittel, 1885 Family Mecochiridae Van Straelen, 1925 Genus Atherfieldastacus Simpson in Robin, Charbonnier, Merle, Simpson, Petit & Fernandez, 2016 Fig. 3. Atherfieldastacus magnus (M’Coy, 1849), Abuja Colorada Canyon section (locality 1), Chihuahua State, northern Mexico; a near-complete specimen (IGM 9478) preserved in a calcareous nodule. Anatomical abbreviations are as follows: a = branchiocardiac groove; ac =antennal carina; b = antennal groove; c = post-cervical groove; cd = cardiac groove; e1e = cervical groove; gc = gastro-orbital carina; hr = hepatic ridge; i = inferior groove; p1-2 = pereiopods; r1-r3 = branchial ridges; s2-6 = pleonal somites; t = telson. Scale bar in cm. Photograph: Josep A. Moreno-Bedmar (modified from González-León et al., 2018). Fig. 4. A-G, Several views of thin sections of Atherfieldastacus magnus (M’Coy, 1849) from the upper Aptian of Chihuahua State, northern Mexico. Abbreviations: Endo = endocuticle; Epi = epicuticle; Exo = exocuticle. Fig. 5. Several views of thin sections of Atherfieldastacus magnus (M’Coy, 1849) from the upper Aptian of Chihuahua State, northern Mexico. Abbreviations: Biot = bioturbation; Endo = endocuticle; Epi = epicuticle; Exo = exocuticle; Pca = pore channels; Pyr = pyrite; Qz = quartz. Scale bars in µm. Type species: Meyeria magna M’Coy, 1849, by original designation. Other included species: Atherfieldastacus ra­pax (Harbort, 1905) and A. schwartzi (Kitchin, 1908). Atherfieldastacus magnus (M’Coy, 1849) (Fig. 3) Diagnosis: See González-León et al. (2018). Material examined: Specimens in 22 calcare­ous concretions, of which eight were sectioned for analysis of cuticular structure; in total, 30 thin sections of different portions of the lobster body were obtained. Cuticle structure Analysis and discussion: In our analysis of cut-icule structure, it was possible to recognise clear­ly the three cuticle layers. In some cases, only a single layer was discernible. Elements of cuticule microstructure, such as pore canals, were also observed (Figs. 4, 5). Previously, such features had been recorded by Feldmann & Tshudy (1987), Vega et al. (1994) and González-León et al. (2016, 2018), both for other species and for Atherfieldas­tacus magnus, but recrystallised cuticles do not show clear layers (González-León et al., 2016). The newly collected specimens clearly pres­ ent three discrete layers of cuticle. The first layer observed is the epicuticle (epi), which normally has a thin bilaminar structure; this could not be observed. Below the epicuticle is the second layer or exocuticle (exo), composed of chitin protein fi­bres, stacked in layers with variable orientations (Green & Neff, 1972; Haj & Feldmann, 2002). This layer is altered, but still discernible in almost all specimens studied (Fig. 4). The microstructure is replaced by sparry calcite, as seen in Figures 4A-C and G, although some fibres can still be not­ed (Fig. 4E). The most strongly calcified layer is the third one; this is the endocuticle (endo) which presents broad lamellae in the outer portion and thin laminations on the inner part (Feldmann & Tshudy, 1987). Vertical laminations within the endocuticle were noted in specimens from Chi­huahua and interpreted as pore channels (Figs. 4A, E; 5H, K). A pigmented layer at the top of the endocuticle could also be observed (Fig. 4D-F). This might be associated with the original pig­ment (quinona), as previously recognised by Tay­lor (1973) and Vega et al. (1994). An example of how the microstructure and boundaries between layers can be altered by diagenetic processes was observed as well (Fig. 4G). The epicuticle can be clearly recognised (Figs. 4B, E; 5F, G, I, L), but only as a single layer, not as a double lay­er, which is typical. The membranous layer was not preserved, similar to what has been recorded for other extinct species (Roer & Dillaman, 1984; Vega et al., 1994, 2005; Haj & Feldmann, 2002). Conclusions The completeness of cuticule structure (espe­cially the basis of the endocuticle) and the 3-D preservation and articulation of carapaces with appendages suggest that the Chihuahua spec­imens represent corpses that were accumulat­ed during anoxic events. The presence of small pyrite crystals in the matrix and larger ones in appendages (Fig. 5B, C, J) supports such an in­terpretation, along with bioturbations observed in some thin sections; these were possibly caused by scavengers that were feeding on cuticle re­mains and other organic matter (Fig. 5A). Abun­dant pyrite has also been observed in specimens of Atherfieldastacus magnus from the Aptian of Colombia (González-León et al., 2016). This sug­gests that localities around the world, where A. magnus is abundant, may represent anoxic events that either killed the lobster populations and/or preserved the remains of this globally distribut­ed species during the Early Cretaceous. Acknowledgements We are grateful for support from the Universidad Nacional Autnoma de México, through Direcci General de Asuntos del Personal Académico, with project PAPIIT-IN107617. Our sincere thanks go to Rok Gašparič for kindly invitating us to participate in this special volume, to Torrey Nyborg (Loma Linda University, California, USA) and Guenter Schweigert (Staatliches Museum fr Naturkunde, Stuttgart, Germany) and John Jagt (Natuurhistorisch Museum Maastricht, The Netherlands) for suggestions on how to improve an earlier version of the typescript and to Marco A. Argáez Martínez (Invertebrate Paleontology Laboratory, Instituto de Geología, Universidad Nacional Automa de México) who produced all thin sections. References Abele, L.G. 1974: Species diversity of decapod crustaceans in marine habitats. Ecology, 55: 156–161. Amato, C., Waugh, D.A., Feldmann, R.M. & Schweitzer, C.E. 2008: The effect of calcificati­ on patterns on cuticle density in crabs: a key to lifestyle. Journal of Crustacean Biology, 28/4: 587–595. https://doi.org/10.1651/08-2985.1 Burkenroad, M.D. 1963: The evolution of the Eucarida (Crustacea, Eumalacostraca), in re­lation to the fossil record. Tulane Studies in Geology, 2: 3–17. Dalingwater, J.E. 1977: Cuticular ultrastruc­ture of a Cretaceous decapod crustacean. Geological Journal, 12: 25–32. https://doi. org/10.1002/gj.3350120103 Dennell, R. 1960: Integument and exoskeleton. In: Waterman, T.H. (ed.): The physiology of Crustacea. New York, Academic Press, 449–472. Feldmann, R.M. & Gaździcki, A. 1998: Cuticular ultrastructure of fossil and living homo- lodromiid crabs (Decapoda: Brachyura). Acta Palaeontologica Polonica, 43/1: 1–19. Feldmann, R.M. & Tshudy, D. 1987: Ultrastructure in cuticle from Hoploparia stokesi (Decapoda: Nephropidae) from the López de Bartodano Formation (Late Cretaceous-Paleocene) of Seymour Island, Antarctica. Journal of Paleontology, 61: 1194–1203. González-León, O., Patarroyo, P., Moreno-Bedmar, J.A., Nyborg, T. & Vega, F.J. 2016: A new record and cuticular structure of Meyeria magna (Decapoda, Mecochiridae) from the lower Albian (Lower Cretaceous) of Colombia. Cretaceous Research, 57: 342–349. https://doi.org/10.1016/j.cretres.2015.08.006 González-León, O., Moreno-Bedmar, J. A., Vega, F.J., Oviedo-García, A. & Franco-Rubio, M. 2018: Review of Meyeria mexicana Rathbun, 1935 (Glypheidea, Mecochiridae) from the upper Aptian (Cretaceous) of Chihuahua, northern Mexico. Cretaceous Research, 91: 111–125. https://doi.org/10.1016/j. cretres.2018.05.009 Green, J.P. & Neff, M.R. 1972: A survey of the fine structure of the integument of the fiddler crab. Tissue and Cell, 4: 137–171. https://doi. org/10.1016/S0040-8166(72)80013-2 Guinot, D. 1979: Données nouvelles sur la morphologie, la phylogenese et la taxono­mie des Crustacés Décapodes Brachyoures. Mémoires du Muséum national d’Histoire na­turelle Paris, A. Zoologie, 112: 3–354. Guinot, D. & Breton, G. 2006: Lithophylax tri­geri A. Milne-Edwards & Brocchi, 1879 from the French Cretaceous (Cenomanian) and placement of the family Lithophylacidae Van Straelen, 1936 (Crustacea, Decapoda, Brachyura). Geodiversitas, 28: 591–633. Haj, A.E. & Feldmann, R.M. 2002: Functional morphology and taxonomic significance of a novel cuticular structure in Cretaceous rani­nid crabs (Decapoda: Brachyura: Raninidae). Journal of Paleontology, 76/3: 472–485. https:// doi.org/10.1017/S0022336000037318 Harbort, E. 1905. Die Fauna der Schaumburg-Lippeschen Kreidemulde. Abhandlungen der Preussischen geologischen Landesanstalt, neue Folge, 14: 10–22. Hegdahl, T., Silness, J. & Gustavsen, E. 1977a: The structure and mineralization of the ca­rapace of the crab (Cancer pagurus L.). 1. The endocuticle. Zoologica Scripta, 6: 89–99. Hegdahl, T., Gustavsen, E. & Silness, J. 1977b: The structure and mineralization of the carapace of the crab (Cancer pagurus L.). 2. The exo-cuticle. Zoologica Scripta, 6: 101–105. https:// doi.org/10.1111/j.1463-6409.1978.tb00789.x Kitchin, F. L. 1908. The invertebrate fauna and palaeontological relations of the Uitenhage Series. Annals of the South Africa Museum, 7: 212–268. Klompmaker, A.A., Hyžný, M. & Jakobsen, S.L. 2015: Taphonomy of decapod crusta­ceans and its effect on the appearance as exemplified by new and known taxa from the Cretaceous-Danian crab Caloxanthus. Cretaceous Research, 55: 141–151. https://doi. org/10.1016/j.cretres.2014.11.011 Klompmaker, A.A., Schweitzer, C.E., Feldmann, R.M. & Kowalewski, M. 2013: The influence of reefs on the rise of Mesozoic marine cru­staceans. Geology, 41: 1179–1182. https://doi. org/10.1130/G34768.1 Latreille, P.A. 1802: Histoire naturelle, général et particuliere des crustacés et des insectes, vol. 3. F. Dufart, Paris, 468 pp. M’Coy, F. 1849: On the classification of some British fossil Crustacea, with notices of new forms in the University Collection at Cambridge. The Annals and Magazine of Natural History, 4/2: 330–335. Neville, A.C. & Berg, C.W. 1971: Cuticle ultrastru­cture of a Jurassic crustacean (Eryma stric­klandi). Palaeontology, 14/2: 201–205. Ovando-Figueroa, J.R., Moreno-Bedmar, J.A., Minor, K.P., Franco-Rubio, M., Oviedo, A., Patarroyo, P. & Robert, E. 2017: Ammonite taxonomy and biostratigraphy for the upper Aptian-lower Albian (Lower Cretaceous) of Cerro Chino, Chihuahua State, northeast Mexico. Cretaceous Research, 82: 109–137. https://doi.org/10.1016/j.cretres.2017.10.007 Plotnick, R.E., Baumiller, T. & Wetmore, K.E. 1988: Fossilization potential of the mud crab, Panopeus (Brachyura: Xanthidae) and temporal variability in crustacean tapho­nomy. Palaeogeography, Palaeoclimatology, Palaeoecology, 63/1-3: 27–43. https://doi. org/10.1016/0031-0182(88)90089-2 Robin, N., Charbonnier, S., Merle, D., Simpson, M., Petit, G. & Fernandez, S. 2016. Bivalves on mecochirid lobsters from the Aptian of the Isle of Wight: snapshot on an Early Cretaceous palaeosymbiosis. Palaeogeography, Palae­oclimatolology, Palaeoecology, 453: 10–19. https://doi.org/10.1016/j.palaeo.2016.03.025 Roer, R.D. & Dillaman, R.M. 1984: The structu­re and calcification of the crustacean cuticle. American Zoologist, 24: 893–909. Savazzi, E. 1988: Functional morphology of the cuticular terraces in Ranina (Lophoranina) (brachyuran decapods, Eocene of N.E. Italy). Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 162: 231–243. Schäfer, W. 1951: Fossilisations-Bedingungen brachyurer Krebse. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, 485: 221–238. Schweitzer, C.E. & Feldmann, R.M. 2014: Lobster (Decapoda) diversity and evolu­tionary patterns through time. Journal of Crustacean Biology, 34/6: 820–847. https:// doi.org/10.1163/1937240X-00002288 Taylor, B.J. 1973: The cuticle of Cretaceous ma-crurous Decapoda from Alexander and James Ross islands. British Antarctic Survey Bulletin, 35: 91–100. Van Straelen, V. 1925: Contribution a l’étude des crustacés décapodes de la période Jurassique. Mémoires de l’Académie royale de Belgique, Classe des Sciences, 2/7: 1–462. Vega, F.J., Feldmann, R. M. & Dávila-Alcocer, V.M. 1994: Cuticular structure in Costacopluma mexicana Vega and Perrilliat, from the Difunta Group (Maastrichtian) of northe­astern Mexico, and its paleoenvironmen­tal implications. Journal of Paleontology, 68/5: 1074–1081. https://doi.org/10.1017/ S0022336000026688 Vega, F.J., Dávila-Alcocer, V.M. & Lehman, T. 1998: Cuticle structure and taphonomy of Dakoticancer australis Rathbun; paleoecolo­gical implications for a Late Cretaceous shore in northeast Mexico. In: Geological Society of America, South-Central Section, El Paso, Texas, Abstracts with Program: 34. Vega, F.J., Dávila-Alcocer, V.M. & Filkorn, F.H. 2005: Characterization of cuticle structure in Late Cretaceous and Early Tertiary deca-pod Crustacea from Mexico. Bulletin of the Mizunami Fossil Museum, 32: 37–43. Waugh, D.A. & Feldmann, R.M. 2003: Cuticle microstructure as a new tool in syste­matic paleontology. Contributions to Zoology, 72/2-3: 191–193. https://doi. org/10.1163/18759866-0720203025 Waugh, D.A., Feldmann, R.M., Thomas, B.R., Crawford, R. S. & Jakobsen, S. L. 2004: Epibiont preservational and observatio­nal bias in fossil marine decapods. Journal of Paleontology, 78/5: 961–972. https://doi. org/10.1666/0022-3360(2004)078E2.0.CO;2 Waugh, D.A., Feldmann, R.M., Schroeder, A.M. & Mutel, M.H.E. 2006: Differential cuticle ar­chitecture and its preservation in fossil and extant Callinectes and Scylla claws. Journal of Crustacean Biology, 26/3: 271–282. https:// doi.org/10.1651/S-2692.1 Waugh, D.A., Feldmann, R.M. & Schweitzer, C.E. 2009: Systematic evaluation of raninid cuti­cle microstructure. Bulletin of the Mizunami Fossil Museum, 35: 15–41. Zittel, K.A. von 1885: Handbuch der Palaeontologie, 1. Abtheilung Palaeozoologie, Band 2, Mollusca and Arthropoda. München/ Leipzig, R. Oldenbourg, 525–721. GEOLOGIJA 63/1, 47-56, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.005 New early Paleocene (Danian) paguroids from deep-water coral/bryozoan mounds at Faxe, eastern Denmark Novi zgodnjepaleocenski (danijski) raki samotarji iz globokovodnih koralno­briozojskih kop nahajališča Faxe na vzhodnem Danskem Sten L. JAKOBSEN1, René H.B. FRAAIJE2, John W.M. JAGT3 & Barry W.M.VAN BAKEL2,4 1Geomuseum Faxe, Ostsjallands Museum, Radhusvej 2, 4640 Faxe, Denmark; e-mail: SLJ@oesm.dk 2Oertijdmuseum Boxtel, Bosscheweg 80, 5283 WB Boxtel, the Netherlands; e-mail: info@oertijdmuseum.nl 3Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands; e-mail: john.jagt@maastricht.nl 4Oertijdmuseum Boxtel, Bosscheweg 80, 5283 WB Boxtel, the Netherlands, and Naturalis Biodiversity Center, Leiden, the Netherlands; e-mail: barryvanbakel@gmail.com Prejeto / Received 9. 11. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Anomura, Paguroidea, Paleogene, cheliped morphology, Denmark Ključne besede: Anomura, Paguroidea, paleogen, morfologija škarnikov, Danska Abstract During recent decades, decapod crustacean faunas from middle Danian (lower Paleocene) strata at Faxe (Sjalland, Denmark) have been studied in detail. However, paguroid anomurans have not yet been described formally. Two new species of hermit crab have lately been recognised in the collections of the Geomuseum Faxe. Percentages of total paguroid assemblages and feeding behaviour derived from the morphology of its chelae indicate that one of these, Dardanus faxensis sp. nov., as a generalist, was better adapted to inhabit the deep-water reefal environment of the Faxe carbonates than the more specialised, suspension-feeding Paguristes frigoscopulus sp. nov. Izvleček V zadnjih desetletjih so bile podrobno proučene združbe rakov deseteronožcev iz srednjedanijskih (spodnjepaleocenskih) plasti v Faxu (Sjalland, Danska), vendar raki samotarji do sedaj še niso bili opisani. Pri pregledu zbirk muzeja Geomuseum Faxe sta bili prepoznani dve novi vrsti rakov samotarjev, ki ju predstavljamo v tem prispevku. Zastopanost ostankov v celotni združbi in način prehranjevanja, ki ga kaže funkcionalna morfologija škarij, pričajo, da je bil eden od teh, to je vrsta Dardanus faxensis sp. nov., kot generalist bolje prilagojen za bivanje v globokomorskem grebenskem okolju od bolj specializiranega suspenziofaga Paguristes frigoscopulus sp. nov. Introduction In general, records of paguroid remains from Danian-aged rocks are scarce and hermit crab assemblages of this age remain largely under­studied. Vega et al. (2007) recorded a right and an incomplete left chela of a diogenid from the Rancho Nuevo Formation at Coahuila (Mexico), while Armstrong et al. (2009) described a right paguroid palm, without systematic placement, from the Midway Group of Texas, USA. In addi­tion, Cope et al. (2005) noted Paguristes johnsoni Rathbun, 1935, on the basis of a single, well-pre­served propodus and an additional fragment of a carpus that were closely comparable to the type material illustrated and described by Rathbun (1935) from the Sucarnoochee Formation of Al­abama (USA). Robin et al. (2017) mentioned an indeterminate species of Paguristes Dana, 1851 from a private­ly held collection of Danian decapod crustaceans from Vigny, France. It would appear that this locality was very rich in paguroids of earliest Paleocene age (Wallaard et al., 2020), but unfor­tunately this material is not currently accessible for scientific assessment and publication. A brief visit to the collections of the Geomu­seum Faxe (September 2019) has now resulted in the recognition of fourteen hermit crab speci­mens along with the material from the collections at the Natural History Museum (Copenhagen), all partially complete chelae. The two new paguroid taxa erected to accommodate these forms from the middle Danian of Faxe present a valuable ad­dition to the hermit crab faunas from this time interval. Geological setting A large, cool-water, subphotic coral/bryozoan mound complex at Faxe developed in the Danish Basin during the early Danian, shortly after the Cretaceous/Paleogene boundary event (e.g., Bjer-ager et al., 2018; Schrder & Surlyk, 2019). During the middle Danian, a low-diversity scleractinian coral fauna initiated the formation of extensive cold-water coral mound complexes that interca­lated with bryozoan mounds (e.g., Lauridsen et al., 2012). The coral mounds started to grow be­low the photic zone over the easternmost part of the Ringkbing-Fyn High, only 2 million years after the mass extinction at the K/Pg boundary (Lauridsen et al., 2012). The middle Danian limestones exposed at Faxe quarry (Fig. 1) document the extraordi­nary preservation of a 63-myr-old, cold-water coral mound ecosystem. Bryozoan mounds dom­inate the stratigraphically lower parts and are overlain by interfingering coral and bryozoan mounds. The Faxe quarry exposes a large mound complex that includes individual coral mound bodies. The mound complex is dominated by the frame-building scleractinian coral species, Den-drophyllia candelabrum (Hennig, 1899), which is associated with common Faksephyllia faxoensis (Lyell, 1837) and minor numbers of Oculina becki (Brünnich Nielsen, 1922). A highly diverse fauna is found in middle Danian strata at Faxe quarry, including serpulid annelids, arthropods, brachi­opods, bryozoans, coelenterates, echinoderms, sponges and molluscs (Lauridsen et al., 2012, ta­ble 1). The quarry at Faxe comprises the best-stud­ied Danian decapod crustacean fauna worldwide (Jakobsen & Collins, 1997). Studies dealing with such taxa, in chronological order, are the follow- Fig. 1. Position of Faxe qu­arry and the main structure of the Danish area during the middle Danian (compi­lation by Dr Erik Thomsen, Geological Institute, Aarhus University, Denmark). ing: von Schlotheim (1820), Reuss (1859), von Fis­ cher-Benzon (1866), Segerberg (1900), Woodward (1901), Rasmussen (1973), Frster (1975), Jagt et al. (1993), Collins & Jakobsen (1994), Jakobsen & Collins (1997), Fraaije (2003), Jakobsen (2003), Jakobsen & Feldmann (2004), Collins (2010), Robin et al. (2015) and Klompmaker et al. (2015, 2016). However, in none of these are any paguroid remains recorded, so that our present note is the first formal description of middle Danian hermit crab taxa from Faxe. Material and methods The taxonomic descriptions are based on ma­terial stored at the Geological Museum (now Natural History Museum of Denmark) and and Geomuseum Faxe. Our material comprises four­teen specimens belonging to two genera, repre­sented by two new species. The material includ­ed in the present study was collected mainly by Curator Soren Bo Andersen and the late ama­teur palaeontologist, Alice Rasmussen, of Faxe. In 2012, the latter was awarded the prestigious Mary Anning Prize of the Palaeontological As­sociation (London) in recognition of her out­standing work on fossils from the type locality of the Danian Stage at Faxe. The present mate­rial was collected in various parts of the quarry over many years. The chelae are preserved mainly in the form of internal and external moulds in the coral lime­stone and therefore our descriptions are in part based on casts. However, that of the holotype of Paguristes frigoscopulus relied on the internal mould (‘steinkern’). Preparation and photogra­phy of the material followed the procedures out­lined in Jakobsen & Feldmann (2004). Institutional abbreviations. MGUH, Natural History Museum of Denmark (Geological Muse­um), Copenhagen, Denmark; OESM, Geomuseum Faxe, Faxe, Denmark. Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Anomura H. Milne Edwards, 1832 Superfamily Paguroidea Latreille, 1802 Family Annuntidiogenidae Fraaije, 2014 Genus Dardanus Paul’son, 1875 Dardanus faxensis sp. nov. (Figs. 2-5) 2005 Eremitkrebs 20 mm**; Damholt & Rasmus­sen, p. 22, unnumbered figures. 2005 Klo fra eremitkrebs 20 mm**; Damholt & Rasmussen, p. 38, unnumbered figure. 2010 Eremitkrebs 20 mm**; Damholt et al., p. 23, unnumbered figures. 2010 Klo fra eremitkrebs 20 mm***; Damholt et al., p. 42, unnumbered figure. Diagnosis: Palm transversely oval; inner and outer sides longitudinally and transversely con­vex; outer side of palm covered with forward­ly directed, largely spinose tubercles; proximal part of outer side of palm and distal part of inner side irregularly covered with capsulated setae arranged in a curved row; fixed finger elongated, with a horseshoe-shaped, spoon-like tip. Etymology: In reference to the type locality. Type material: The holotype, OESM 6811, is a near-complete right palm with fixed finger, measuring 10 mm in length and 6 mm in great­est width; both external and internal moulds are present (Fig. 2A-G). Paratypes are MGUH 33401, MGUH 33402, OESM 581, OESM 10178 OESM 10179 and OESM 10180, all representing incom­plete right palms; MGUH 33403, MGUH 33404, MGUH 33405, MGUH 33406 and MGUH 33408 are incomplete left palms. Locality and stratigraphy: The coral lime­stone assigned to the Faxe Formation has been known for centuries due to the extensive quar­rying. The middle Danian levels exposed at Faxe quarry represents an extraordinary preservation of a 63-myr-old, cold-water coral mound com­plex. This coral limestone complex was formally described as a new formation by Lauridsen et al. (2012). The type locality of the Faxe Formation is a Danish GeoSite and is accessible to all mem­bers of the public. The formation was dated as middle Danian (calcareous nannoplankton zones D5-6 of Perch-Nielsen, 1979 and NNTp3-NNT­p4a of Varol, 1998). Description: Cross section of palm transverse­ly oval; inner and outer sides longitudinally and transversely convex, curving slightly inwards; dorsal edge straight, ventral edge concave at cen­tral part; outer side of palm covered with forward­ly directed, largely spinose tubercles, largest tu­bercles irregularly arranged along dorsal edge and outer distal half and proximal half of fixed finger, proximal part of outer side of palm irregularly covered with multiple capsulated setae arranged in circles or rows; inner side of palm smooth with on distalmost part few curved rows of multiple setae (Fig. 3B); fixed finger elongated, curved in­wardly, with horseshoe-shaped, spoon-like tip, which is covered on outer side with a row of very large pits; the cutting edge is covered with about three variably sized, molar-like calcareous teeth. Fig. 2. Dardanus faxensis sp. nov., holotype (OESM 6811). The top three - silicone rubber casts of external mould; the bottom four internal mould. Scale bar in millimetres. Remarks: Normally, setal pits are situated around the bases of tubercles and/or on the ad­jacent integument, but usually not on the tuber­cles themselves. Multiple capsulated pits have previously been recorded for both fossil and ex­tant species of paguroids (see Fraaije et al., 2011, 2015a; Hyžný et al., 2016). During the Paleogene, the genus Dardanus appears to have been high­ly successful and widely distributed (Fraaije & Polkowsky, 2016). In the case of Dardanus faxen-sis sp. nov. all tubercles on the outer side of the palm have large setal pits (Fig. 2A); this morpho­logical trait differentiates it immediately from all congeners. For a list of all known fossil spe­cies referred to the genus, reference is made to Fraaije et al. (2011) and to Fraaije & Polkowsky (2016). The shape of the chelae is indicative of a deposit feeder that was also capable of browsing, scavenging and suspension feeding. This type of paguroid fed by scraping material from cor­als or other solid surfaces using the tips of the spoon-like chelae (compare Schembri, 1982). One specimen, MGUH 33406, is totally covered with epibionts, mainly subcircular colonies of bryozo-ans (Fig. 4). Fig. 3A. Dardanus faxensis sp. nov., silicone rubber cast of external mould of incomplete right palm, outer side (OESM 10178), showing setal pits and tubercles; B. Silicone rubber cast of external mould of incomplete right palm (MGUH 33401, GMF 2004­ 1802), showing rows of multiple setal pits. Scale bar in millimetres. Fig. 4. Dardanus faxensis sp. nov., MGUH 33405, incomplete left palm covered with epibionts. Scale bar in millimetres. Fig. 5. Dardanus faxensis sp. nov., specimens OESM 6811, OESM 10180 and OESM 10179, respectively, with remains of serpu- lid/spirorbid annelids (arrows) on the outer palm surface near the base of the fixed finger. Scale in millimetres. Three specimens of D. faxensis sp. nov. bear remains of serpulid/spirorbid annelids on the outer palm surface at the base of the fixed finger (Fig. 5). This appears to have been a symbiotic relationship, rather than post-mortem serpulid attachment to moulted anomurans, as described by Jakobsen & Feldmann (2004). Family Diogenidae Ortmann, 1892 Genus Paguristes Dana, 1851 Paguristes frigoscopulus sp. nov. (Fig. 6A-E) Diagnosis: Right cheliped transversely oval; outer, dorsal and ventral sides convex, inner side almost straight; outer side covered with regular, dense cover of fine, forwardly directed tubercles, fixed finger short, stout and triangular. Etymology: From Latin, frigus, meaning cold, and scopulus, meaning reef. Type material: The holotype, OESM 6705, is a near-complete right palm with fixed finger, meas­uring 8.5 mm in length and 5.5 mm in greatest width. The paratype, MGUH 33407, is an incom­plete right palm, still embedded in coral-limestone. Fig. 6A-E. Paguristes frigoscopulus sp. nov., A-D. Holotype (OESM 6705), a near-complete right palm in internal mould pre­servation; E. Paratype (MGUH 33407), an incomplete right palm, still embedded in coral limestone. Scale bar in millimetres. Locality and stratigraphy: The same as for Dardanus faxensis sp. nov. (see above). Description: Cross section of right palm trans­versely oval; outer, dorsal and ventral sides con­vex, inner side almost straight; outer side with regular, dense cover of fine, forwardly directed tubercles; fixed finger short, stout and triangu­lar; occlusal margin straight without teeth, sur­rounded by few large pores; interdigital margin oblique; length of fixed finger about one quarter of total length. Remarks: Fraaije et al. (2015b) listed all ex­tinct species of Paguristes known at that time. With a convex dorsal and ventral edge and a short, convex triangular fixed finger, P. frigo­scopulus sp. nov. is morphologically closest to the late Albian P. liwinskii Fraaije, van Bakel, Jagt & Machalski, 2015 from east-central Poland and P. santamartaensis Feldmann, Tshudy & Thom­son, 1993, from the Campanian of Antarctica. It differs in having a less dense, more forwardly di­rected, tuberculose ornamentation. Conclusions In total, fourteen specimens were available for the present study. Of these, about 86 % (12 specimens) are attributed to D. faxensis sp. nov. and only c. 14 % (2 specimens) to P. frigoscopu­lus sp. nov. Unfortunately, there are no detailed studies yet that relate cheliped morphology to feeding strategy. Schembri (1982) is one of the few studies that documented a close relationship between cheliped morphology and types of feed­ing. If we extrapolate his data to Dardanus fax-ensis sp. nov., that species may be considered to have been a generalist and better adapted to the Danian deep-water reefal environment of Faxe than P. frigoscopulus sp. nov., which probably was mainly a filter feeder. Acknowledgements We are greatly indebted to Mr Soren Bo Andersen (Geological Institute, University of Aarhus) for do­ nation of some specimens from Faxe. We also thank the late Mrs Alice Rasmussen for having transfer­red very important material (both holotypes) to the Geomuseum Faxe. Arden Bashforth (Natural History Museum of Denmark, Copenhagen) and Jesper Milan (Geomuseum Faxe) are both thanked for making the material available for study. Finally, we are grateful to both journal reviewers, Hisayoshi Kato (Natural History Museum and Institute, Chiba, Japan) and Francisco J. Vega (Instituto de Geologia, Universidad Nacional Automa de México) for helpful comments on an earlier version of the typescript. References Armstrong, A., Nyborg, T., Bishop, G.A., Ossó-Morales A. & Vega, F.J. 2009: Decapod cru­staceans from the Paleocene of central Texas, USA. Revista Mexicana de Ciencias Geolgicas, 26/3: 745-763. Bjerager, M., Sheldon, E. & Lauridsen, B.W. 2018: Mound-forming cold-water corals and bryo­zoans in the Early Paleocene of Denmark. Sedimentology, 65/4: 1331-1353. https://doi. org/10.1111/sed.12424 Brünnich Nielsen, K. 1922: Zoantharia from Senon and Paleocene deposits in Denmark and Skane. Det Kongelige Danske Videnskabernes Selskabs Skrifter, naturvidenskabelig og mathematisk, Afdeling 3: 199-233. Collins, J.S.H. 2010: New species of crabs (Crustacea, Decapoda), one from the Middle Danian of Denmark, and three new species from the Upper Cretaceous of Nigeria. Bulletin of the Mizunami Fossil Museum, 36: 13-19. Collins, J.S.H. & Jakobsen, S.L. 1994: A syno­psis of the biostratigraphic distribution of the crab genera (Crustacea, Decapoda) of the Danian (Palaeocene) of Denmark and Sweden. Bulletin of the Mizunami Fossil Museum, 21: 35-46. Cope, K.H., Utgaard, J.E., Masters, J.M. & Feldmann, R.M. 2005: The fauna of the Clayton Formation (Paleocene, Danian) of so­uthern Illinois: a case of K/P survivorship and Danian recovery. Bulletin of the Mizunami Fossil Museum, 32: 97-108. Damholt, T. & Rasmussen, A. 2005: Fossiler fra Faxe Kalkbrud. Geomuseum Faxe: 44 p. Damholt, T., Rasmussen, A. & Rasmussen, L. 2010: Fossiler fra Faxe Kalkbrud. Revideret og udvidet udgave. Geomuseum Faxe: 48 p. Dana, J.D. 1851: Paguridae. Conspectus crusta­ceorum quae in orbis terrarum circumnavi­gatione, Carolo Wilkes e classe reipublicae fo­ederatae duce, lexit et descripsit. Proceedings of the Academy of Natural Sciences of Philadelphia, 5: 267-272. Feldmann, R.M., Tshudy, D. & Thomson, M. 1993: Late Cretaceous and Paleocene decapod cru­ staceans from James Ross Basin, Antarctic Peninsula. The Paleontological Society Memoir, 67/S28: 1-41. https://doi.org/10.1017/ S0022336000062077 Fischer-Benzon, R. von. 1866: Über das relati­ve Alter des Faxoe-Kalkes und ber die in demselben vorkommenden Anomuren und Brachyuren. Schweis’sche Buchhandlung, Kiel: 30 p. Frster, R. 1975: Ein Krebs aus dem obe­ ren Campan von Misburg. Berichte der Naturhistorischen Gesellschaft zu Hannover, 119: 285-294. Fraaije, R.H.B. 2003: Evolution of reef-associated decapod crustaceans through time, with parti­cular reference to the Maastrichtian type area. Contributions to Zoology, 72/2-3: 119-130. https://doi.org/10.1163/18759866-0720203010 Fraaije, R.H.B. 2014: Diverse Late Jurassic anomuran assemblages from the Swabian Alb and evolutionary history of paguro-ids based on carapace morphology. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen, 273: 121-145. https://dx.doi. org/10.1127/0077-7749/2014/0419 Fraaije, R.H.B. & Polkowsky, S. 2016: Dardanus colosseus, a new paguroid from the Eocene of Austria preserved in its host gastropod shell. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen, 279/1: 157-162. Fraaije, R.H.B., Van Bakel, B.W.M., Iserbyt, A. & Jagt, J.W.M. 2011: New extinct Paguroidea (Crustacea, Decapoda, Anomura), with the first example of capsulated setae from the fossil record. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen, 262: 247-255. Fraaije, R.H.B., Van Bakel, B.W.M. & Jagt, J.W.M. 2015a: A new Albian hermit crab (Anomura, Paguroidea) from France - another example of capsulated setae in an extinct form. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen, 277/3: 353-359. https://doi. org/10.1127/njgpa/2015/0511 Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. & Machalski, M. 2015b: A new hermit crab (Anomura, Paguroidea) from the upper Albian (Cretaceous) of Annopol, Poland. Zootaxa, 3955/4: 588-594. https://doi.org/10.11646/ zootaxa.3955.4.9 Hennig, A. 1899: Studier fver den baltiska Yngre kritans bildningshistoria. Geologiska Frening i Stockholms Frhandlingar, 21: 133-188. Hyžný, M., Fraaije, R.H.B., Martin, J.E., Perrier, V. & Sarr, R. 2016: Paracapsulapagurus po­ponguinensis, a new hermit crab (Decapoda, Anomura, Paguroidea) from the Maastrichtian of Senegal. Journal of Paleontology, 90/6: 1133-1137. https://doi.org/10.1017/jpa.2016.65 Jagt, J.W.M., Collins, J.S.H. & Fraaye, R.H.B. 1993: A new early Palaeocene genus of raninid crab (Crustacea, Decapoda) from Denmark, southern Sweden and The Netherlands. Contributions to Tertiary and Quaternary Geology, 30/3-4: 177-182. Jakobsen, S.L. 2003: A new preparatory appro­ach of decapod and thoracican crustaceans from the Middle Danian at Fakse, Denmark. Contributions to Zoology, 72: 141-145. https:// doi.org/10.1163/18759866-0720203015 Jakobsen, S.L. & Collins, J.S.H. 1997: New middle Danian species of anomurans and brachyuran crabs from Fakse, Denmark. Bulletin of the Geological Society of Denmark, 44: 89-100. Jakobsen, S. L. & Feldmann, R.M. 2004: Epibionts on Dromiopsis rugosa (Decapoda: Brachyura) from the late Middle Danian limestones at Fakse Quarry, Denmark: novel preparation techniques yield amazing results. Journal of Paleontology, 78: 953-960. Klompmaker, A.A., Hyžný, M. & Jakobsen, S. L. 2015: Taphonomy of decapod crustacean cuticle and its effect on the appearance as exemplified by new and known taxa from the Cretaceous-Danian crab Caloxanthus. Cretaceous Research, 55: 141-151. https://doi. org/10.1016/j.cretres.2014.11.011 Klompmaker, A.A., Jakobsen, S. L. & Lauridsen, B.W. 2016: Evolution of body size, vision, and biodiversity of coral-associated organisms: evidence from fossil crustaceans in cold-wa­ ter coral and tropical coral ecosystems. BMC Evolutionary Biology, 16: 132. https://doi. org/10.1186/s12862-016-0694-0 Latreille, P.A. 1802-1803: Histoire naturelle, générale et particuliere, des Crustacés et des Insectes 3. Dufart, Paris: 467 p. Lauridsen, B.W., Bjerager, M. & Surlyk, F. 2012: The middle Danian Faxe Formation - new lithostratigraphic unit and a rare taphonomic window into the Danian of Denmark. Bulletin of the Geological Society of Denmark, 60: 47-60. Lyell, C. 1837: On the Cretaceous and Tertiary strata of the Danish islands of Seeland and Moen. Transactions of the Geological Society of London, 6: 243-257. Milne Edwards, H. 1832: Extrait d’une lettre sur les caracteres des crustacés anomures, adressée a M. Audouin. Annales des Sciences naturelles, Zoologie et Biologie animale, 26: 255-256. Ortmann, A. 1892: Die Dekapoden-Krebse des Strassburger Museums, mit beson­derer Berücksichtigung der von Herrn Dr. Dderlein bei Japan und bei den Liu­Kiu-Inseln gesammelten und zur Zeit im Strassburger Museum aufbewahrten Formen, IV. Theil. Die Abtheilungen Galatheidea und Paguridea. Zoologische Jahrbcher, Abteilung fr Systematik, Geographie und Biologie der Tiere, 6: 241-326. Paul’son, O. 1875: Issledovaniya rakoobraznykh krasnago morya s zametkami otnositel’no rakoobraznykh drugikh morei. Chast’ 1. Podophthalmata i Edriophthalmata (Cumacea), xiv. S.V. Kul’zhenk, Kiev: 144 p. Perch-Nielsen, K. 1979: Calcareous nannofossil zonation at the Cretaceous-Tertiary bounda­ry in Denmark. In: Birkelund, T. & Bromley, R.G. (eds): Cretaceous-Tertiary Boundary Events Symposium, 1. The Maastrichtian and Danian of Denmark: 115-135. Copenhagen, University of Copenhagen. Rasmussen, H.W. 1973: En lyssky hulefauna fra Fakse som vidnesbyrd om koralkal-kens dannelse i lyszonen. Dansk Geologisk Forening, Arsskrift, (1972): 87-91. Rathbun, M.J. 1935: Fossil Crustacea of the Atlantic and Gulf Coastal Plain. Geological Society of America, Special Paper 2: 1-160. Reuss, A.E. 1859: Zur Kenntnis fossiler Krabben. I. Die Kurzschwänzer der Kreideformation. Denkschriften der kaiserlichen Akademie der Wissenschaften in Wien, 7: 1-90. Robin, N., Van Bakel, B.W.M., d’Hondt, J.-L. & Charbonnier, S. 2015: A new early brachyuran (Crustacea, Decapoda) from the Middle Jurassic of northwest France, epibionts and ecological considerations. Contributions to Zoology, 84/3: 179-191. https://doi. org/10.1163/18759866-08403001 Robin, N., Van Bakel, B.W.M., Pacaud, J.M. & Charbonnier, S. 2017: Decapod crustaceans from the Paleocene (Danian) of the Paris Basin (Vigny stratotype and allied localiti­es) and a limpet palaeoassociation. Journal of Systematic Palaeontology, 15/4: 257-273. https://doi.org/10.1080/14772019.2016.1182950 Schembri, P.J. 1982: Feeding behavior of fifteen species of hermit crabs (Crustacea: Decapoda: Anomura) from the Otago region, southe­astern New Zealand. Journal of Natural History, 16: 859-878. Schlotheim, E.F. von. 1820: Die Petrefaktenkunde, auf ihrem jetzigen Standpunkte, durch die Beschreibung seiner Sammlung verstei­nerter und fossiler Überreste des Thier­und Pflanzenreiches der Vorwelt erläutert, Becker, Gotha: lxii + 437 p. Schroder, A.M. & Surlyk, F. 2019: Adaptive morphologies of the brachiopod fauna from Danian coral mounds at Faxe, Denmark. Palaeogeography, Palaeoclimatology, Palaeoecology, 534: 109332. https://doi. org/10.1016/j.palaeo.2019.109332 Segerberg, K. O. 1900: De Anomura och Brachyura Decapoderna inm Scandinaviens Yngra Krita. Geologiska Frening i Stockholm Frhandlingar, 22: 347-390. Varol, O. 1998: Palaeogene. In: Bown, P.R. (ed.): Calcareous nannofossil biostratigraphy [British Micropalaeontological Society Series], Chapman & Hall/Kluwer Academic, Cambridge: 200-224. Vega, F.J., Nyborg, T.G., Fraaije, R.H.B. & Espinosa, B. 2007: Paleocene decapod Crustacea from the Rancho Nuevo Formation (Parras Basin -Difunta Group), northeastern Mexico. Journal of Paleontology, 81/6: 1432­141. https://doi.org/10.1666/06-018R.1 Wallaard, J.J.W., Fraaije, R.H.B., Jagt, J.W.M., Klompmaker, A.A. & Van Bakel, B.W.M. 2020: The first record of a paguroid shield (Anomura, Annuntidiogenidae) from the Miocene of Cyprus. Geologija, 63/1: 37-43. https://doi.org/10.5474/geologija.2020.004 (pre­sent issue). Woodward, H. 1901: On some Crustacea col­lected by Miss Caroline Birley and Miss L. Copland from the Upper Cretaceous of Faxe, Denmark. Geological Magazine, new series, 4/8: 486-501. GEOLOGIJA 63/1, 57-66, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.006 Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, 2004 (Decapoda Brachyura, Raninidae) from Lower Eocene laminites of the “Pesciara di Bolca” (Verona, northeast Italy) Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, 2004 (Decapoda Brachyura, Raninidae) iz spodnjeeocenskih laminiranih apnencev “Pesciara di Bolca” (Verona, severovzhodna Italija) Alessandra BUSULINI1, Roberto ZORZIN2, Claudio BESCHIN3 & Giuliano TESSIER1 1Societa Veneziana di Scienze Naturali, Museo di Storia Naturale “Giancarlo Ligabue”, Santa Croce 1730, 30135 Venezia, Italy; e-mail: busulini@tin.it; giultess@virgilio.it 2Museo Civico di Storia Naturale di Verona, Lungadige Porta Vittoria 9, 37129 Verona, Italy; e-mail: roberto.zorzin@comune.verona.it 3Museo Civico “G. Zannato”, Piazza Marconi 15, 36075 Montecchio Maggiore (Vicenza), Italy; e-mail: beschin.cl@libero.it Prejeto / Received 1. 12. 2019; Sprejeto / Accepted 7. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Crustacea, Decapoda, taphonomy, Paleogene, Mediterranean Ključne besede: raki, deseteronožci, tafonomija, paleogen, Sredozemlje Abstract The sole specimen of a raninid crab found to date in the Lower Eocene Fossil-Lagerstätte of the “Pesciara di Bolca” (Verona, northeast Italy) and referred to Lophoranina maxima, is described. Results of a CT analysis of this specimen and of a study of its cuticle are discussed. Izvleček Opisan je edini primerek raninidne rakovice, ki je bila do sedaj najdena v spodnjeeocenskih apnencih znanega nahajališča "Pesciara di Bolca" (Verona, severovzhodna Italija) in pripada vrsti Lophoranina maxima. Predstavljeni so rezultati CT analize primerka in analiza kutikule oklepa. Introduction Among representatives of the so-called “minor fauna” from the Lower Eocene Fossil-Lagerstätte called “La Pesciara” (Bolca, Vestenanova, Vero­na, northeast Italy; Fig. 1) abundant specimens of malacostracan crustaceans have been found; these are referred to the Isopoda, Decapoda and Stomatopoda. Most of these are housed in the collections of the Natural History Museum in Verona, the Fossil Museum at Bolca, the Univer­sity of Padua and the Natural History Museum in Milan. After incomplete analyses published during the 19th century, they were studied in de­tail by Secretan (1975). Amongst brachyurans she described species of the families Macropip­idae Stephenson & Campbell, 1960, Portunidae Rafinesque, 1815, Panopeidae Ortmann, 1893, Eriphiidae MacLeay, 1838 and, probably, of the Ocypodidae Rafinesque, 1815. Since then some of these remains have been revised and additional specimens recovered. Vonk et al. (2015) studied the Isopoda, while additional papers dealt with stomatopods (see Giusberti et al., 2014). Final­ly, Pasini et al. (2019a, b) thoroughly revised the crustacean fauna from this area. The sole specimen of the genus Lophorani­na Fabiani, 1910a from the “Pesciara” laminites (Fig. 2) is on display in the permanent exhibition of the Natural History Museum in Verona. De­spite easy access to this fossil it has never been analysed in full. The reason why it was not includ­ed in her study by Secretan (1975) is unknown: at that time, it certainly was already housed in the palaeontological collections of the Veronese museum. It was recorded for the first time by Beschin et al. (2011) as Lophoranina marestiana (Knig, 1825), but not described. Later, Zorzin et al. (2019) referred it to Lophoranina maxima and this attribution has subsequently been confirmed by Pasini et al. (2019b). This note presents a de­tailed description and analysis of this particular individual. Geological setting of the “Pesciara di Bolca” The Bolca area, with its famous Fossil-La­gerstätten of the “Pesciara” and Monte Postale, is located in the eastern part of the Lessini Moun­tains at an altitude of about 800 metres above sea level near the watershed between the high Al-pone Valley (Vestenanova, Verona) and the Chi-ampo Valley (Altissimo, Vicenza). This territory is part of the Southern Alpine tectonic unit; in a general geological framework it is constitut­ed mainly by volcanic rocks and secondarily by small outcrops of carbonate rocks of Cretaceous– Paleogene age that rest on the so-called Trento Platform palaeogeographical unit. During the Middle Jurassic it formed a structural high be­ tween the Lombard and Belluno lateral basins; later it completely subsided and up to the Pale­ocene it assumed the character of a pelagic pla­teau with marine sedimentation. During Alpine Orogeny this area responsed rigidly to tectonic stresses and was broken up into blocks. Some of these rose up to shallow sea conditions; on these small carbonate platforms came into existence. Afterwards they built a unique structure called the Lessini Shelf (Bosellini, 1989). Important faults produced during the Pale­ocene and Early and Middle Eocene activated volcanic cycles with emissions of great amounts of basic lavas, mostly submarine, associated with extensional tectonics (Piccoli, 1965, 1966). Late Eocene volcano-tectonic activity resulted in the opening of the Alpone-Agno graben or semigra­ben, a wide and lengthy depression delimited to the west by the Castelvero Fault and to the east by the Schio-Vicenza fault system. During quies­cent phases of volcanism in the Early and Middle Eocene, carbonate sediments and marls were cy­clically laid down in this graben (Barbieri et al., 1991; Zampieri, 1995). Despite intense magmatic activity, a rich fauna, represented by crustaceans, Fig. 2. Panoramic view of the “Pesciara” site. bivalves, gastropods, echinoids and other macro- biota inhabited the sea floor. Fossils are perfectly preserved and particularly abundant within the Eocene tuffites cropping out in the Chiampo Val­ley and in the Ronca area (central and southern Alpone Valley): they have been studied with great interest since the 18th century. Tectonic stresses produced fragile respons­es on the calcareous rocks with the isolation of a series of blocks bounded by faults; some of these collapsed as olistolithes in the basin (Barbieri & Zampieri, 1992; Zampieri, 1995). This is the case for the “Pesciara” outcrop which is made up of a series of Lower Eocene calcareous strata, about 19 metres thick, and completely surrounded by vol-canoclastic rocks (Papazzoni & Trevisani, 2006). Fossils recovered from the “Pesciara”, mostly fish and plants, are preserved in five successive horizons made of extremely fine-grained, thinly laminated limestones that are interbedded with detrital calcareous levels that yield invertebrate remains, mostly larger foraminifera, bivalves and gastropods. This succession of fine- and coarse-grained limestones testifies to cyclic phases of different environmental conditions. The environment of the “Pesciara” is charac­terised by deposition of calcareous muds within an intra-platform basin, in which anoxic bottom conditions and a microbial film that developed on corpses enabled perfect preservation of its rich and diverse fossil fauna (Marrama et al., 2016; Friedman & Carnevale, 2018). The presence of coral reefs that are similar to the ones observed along the coasts of the present-day St. Croix Is­land (Caribbean Sea) cannot be excluded, at least along the outer margin of the “Pesciara” lagoon (Beschin et al., 2017). The “Pesciara” is the most famous and im­portant Eocene Fossil-Lagerstätte in Italy. Ex­cavations since the 16th century, and particularly those in the 2000s on the instigation of the Muse­um of Natural History in Verona, have allowed to recover not only a great number of fish (Bosellini et al., 2014), but also remains of reptiles and birds and a rich “minor fauna”. The latter comprises crustaceans (malacostracans and ostracods), scorpions, bivalves, cephalopods, gastropods, brachiopods, bryozoans, worms, corals, jellyfish and foraminifera. Material and methods The specimen studied here exposes the cara­pace in dorsal view as well as both chelipeds and is preserved as two slabs (width about 245 mm; length about 195 mm); it is housed in the collec­tions of the Natural History Museum in Verona (Museo Civico di Storia Naturale di Verona), un­der registration numbers CR 55 and CR 56. CR 55 is the negative (Figs. 3a, b), CR 56 the positive (Figs. 4a, b). CR 56 was computed tomog­raphy (CT) scanned and its cuticle was studied with the use of a stereoscopic microscope (Leica M165C). Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Brachyura Linnaeus, 1758 Section Podotremata Guinot, 1977 Subsection Gymnopleura Bourne, 1922 Superfamily Raninoidea De Haan, 1839 Family Raninidae De Haan, 1839 Genus Lophoranina Fabiani, 1910a Type species: Ranina marestiana Knig, 1825, by original designation. Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, 2004 1983 Lophoranina reussi; Busulini et al., p. 61, pl. 2, fig. 1 (non Woodward, 1866). 1988 Lophoranina cf. reussi; Beschin et al., p. 185, fig. 8, pl. 5, fig. 1; pl. 8, figs 1-4; pl. 9, fig. 1. 2004 Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, p. 110, text-figs. 1, 2; pl. 1, figs. 1-3; pl. 2, figs. 1, 2. 2006 Lophoranina maxima; De Angeli & Ga-rassino, p. 35. 2010 Lophoranina maxima; Schweitzer et al., p. 73. 2011 Lophoranina marestiana; Beschin et al., p. 38 (pars). 2011 Lophoranina maxima; Beschin et al., p. 46, text-fig. 9, pl. 4, fig. 1. 2019 Lophoranina maxima; Zorzin et al., p. 97, figs. 1, 2. 2019b Lophoranina maxima; Pasini et al., p. 261, fig. 17A, B. Measurements (in mm): Carapace: maximum width ~ 95; posterior width ~ 50; length > 85. Right carpus: height ~ 20. Right propodus: max­imum length ~ 50; maximum height ~ 35. Right dactylus: length ~ 30; height ~ 10. Description (based on both positive and neg­ative): Subovate carapace, dorsoventrally com­pressed and strongly damaged in both anterior and posterior parts; only right part of wide fron­to-orbital margin preserved with a strong and Fig. 4. CR 56, positive part (maximum width 95 mm), in photograph (a) and line drawing (b). pointed lateral tooth and a supraorbital tooth de­ fined by two fissures (Fig. 5a). Lateral margins convergent; almost completely preserved and appearing double because of separation of upper and lower part of carapace during fossilisation (Fig. 5b). In anterior part of right margin, traces of two large teeth visible; two spiny large teeth can be observed on left margin (Fig. 5c) linked to a fragment of carapace that was thrown for­wards probably during fossilisation and so dis­located from original position. Rear part of right lateral margin showing granulated rim (Fig. 5d). Posterior margin, that should have been narrow­er than fronto-orbital margin, is lacking. Dorsal ornament with at least 21 subparallel transverse terraces, well preserved mainly in intermedi­ate part of carapace, where terraces are nearly continuous from one side to the other, while rear ones appear interrupted. As far as can be seen, the frontal area was short. On terraces, bases of small spines that constituted them are visible as regularly spaced, tiny pits. In median anterior part, there is a structure recognised as the sternal plate using CT scan­ning (Fig. 6b); it shows some weak transverse terraces that probably are traces of ornament of carapace impressed on it. Both chelipeds are preserved: left one is set­tled near carapace, almost in anatomical position and covered with matrix; right one outstretched and shows propodus and carpus; both large, stout, covered with subparallel transverse ridg­es. Carpus appears almost squarish with a spine on upper distal angle; propodus shows a spine on upper margin and three spines on lower margin (including fixed finger); dactylus is long and sick­le-shaped. Distal part of right fifth pereiopod with paddle-like dactylus. Fig. 5. Details of carapace: A. CR 55 (negative), right orbital and lateral margins (scale bar equals 10.0 mm); B. CR 56, double left posterolateral margin (scale bar equals 2.8 mm); C. CR 56, left anterolateral tooth (scale bar equals 2.5 mm); D. CR 56, right posterolateral margin (scale bar equals 4.0 mm). Distribution: Lophoranina maxima has previ­ously been recorded only from Lutetian (Middle Eocene) rocks at Main Quarry (Arzignano-Vi­cenza) and Case Pozza di San Giovanni Ilarione (Verona). It is now recognised in Ypresian (Lower Eocene) levels in the “Pesciara di Bolca” (Vero­na) and, according to Pasini et al. (2019b), also at Monte Postale. Discussion Fabiani (1910a; see also Fabiani, 1910b) erect­ed the genus Lophoranina to accommodate spe­cies that had previously been included in Ranina Lamarck, 1801, but showed transverse terraces composed of tiny, forwardly inclined spines on the dorsal carapace surface. This extinct genus has a worldwide distribution and a stratigraph­ical range from the Eocene to the Miocene. In Veneto (northeast Italy), representatives of Lo-phoranina are highly characteristic of Eocene levels of volcanoclastic origin and include nu­merous species such as L. avesana (Bittner, 1883), L. bittneri (Lőrenthey, 1902), L. laevifrons (Bit­tner, 1875), L. marestiana (Knig, 1825), L. max-ima, L. reussi (Woodward, 1866), L. straeleni Vía Boada, 1959 and, probably, L. aldrovandii (Ran­zani, 1818) (see Beschin et al., 1988, 2011, 2016a). The structure of the dorsal terraces and the large carapace size, the short fronto-orbital region, the position and number (two) of anterolateral spines, the relatively short propodus of chelipeds with only three spines on the lower margin, all suggest that specimen CR 55/56 belongs to Lo-phoranina maxima. As far as comparisons with other large-sized species of Lophoranina are concerned, L. avesana has fewer ridges on the dorsal surface but these are more continuous and form a general anterior concavity; moreover, the anterolateral spines are spatulate rather than spiny, and the propodus of the cheliped is longer with a dentate lower margin. Lophoranina mar-estiana has a longer fronto-orbital area, more regular ridges, less acute anterolateral spines that are situated more anteriorly, the propodus of the cheliped with six spines (including the fixed finger) on the lower margin. The differences with the other species are greater. Our CT analysis of specimen CR 56 (positive) has revealed that the matrix piece in which the specimen is preserved was broken into four main pieces along three straight fractures (Fig. 6a). One fracture cuts the specimen in the rear part of the carapace and a second one runs through the propodus of the right cheliped (Fig. 4a). During restoration, fragments were fixed with a thick cement on a calcareous slab (in its turn divided into two parts) as a reinforcement (total thickness about 37 mm) (Fig. 6c). This prepara­tion method was applied to fossils found in the “Pesciara” during the 1930s (Massimo Cipriano Cerato, pers. comm., 2019; the Cerato family of Bolca are the owners of the “Pesciara” site, where excavations have been ongoing for about two centuries, and during the last fifty years un­der supervision of the Museum of Natural His­tory in Verona). Hence, specimens CR 55/66 of Lophoranina maxima was presumably collected during those years. The CT axial scan shows that the frog crab is almost completely dorsoventral­ly flattened and produced only a weak relief of the surface of the slab. The CT coronal recon­struction shows the outline of the carapace with a thick fracture in its rear part and the collapsed cardiac part; a small shield-shaped structure in the anterior part is reminiscent of the sternal plate (Fig. 6b); it was probably dislocated during fossilisation. The general preservation of this specimen confirms observations made by Secretan (1975), who noted that the crustaceans found in the “Pesciara” were almost flattened and lost any reliefs, their outlines being “confused” and part of the cuticle removed and dislocated. Cuticle is preserved mainly in specimen CR 55 (negative): it shows almost the entire cara­pace cuticle in its inner, deeper part (Fig. 5a). In specimen CR 56 (positive) only a few shreds of the cuticle can be seen. An analysis using a stereoscopic microscope detected thick cuticle in a natural cross section along the lateral mar­gins of the carapace and at the tip of the dacty­lus, and revealed details of the deep structure of the finger. As can be seen in Figure 7a, the pre­served cuticle in its upper margin is composed of a thick endocuticle that shows undulate lam­inations in its deep portion; each undulation corresponds to a small globular swelling in the amorphous filling of the dactylus surmounted by a possibly tegumental canal (i.e., a vestige of a mechanoreceptive sensillum or a tegumental gland) (Fig. 7b) (Waugh et al., 2009a, b; Davie et al., 2015). On the lower margin of the dactylus, a fragmentary exocuticle can be observed as well (Fig. 7c). The presence of a crab with burrowing habits may appear improbable in a palaeoenvironment that has generally been considered as anoxic, but many fish and also crustaceans found in the “Pesciara” were benthic species. Our analysis also aimed at determining whether or not this particular specimen was a moult or a corpse. Most of the individuals of Lophoranina in vol-canoclastic rocks in Veneto are moults (in open moult position, or Salter’s position). The par­ticular preservation of the specimen found in the “Pesciara” laminites does not allow this to be determined; however, the position of the cheli­peds and the collapsed cardiac region suggest that it could be a corpse (Bishop, 1986). The good condition of the lower cuticle layer is in agree­ment with this hypothesis, although Waugh et al. (2009a) pointed out that this feature does not allow to determine with certainty the nature of a specimen in fossil material. Acknowledgements We wish to thank Francesca Rossi, manager of “Direzione dei Musei” (Comune di Verona), for per­mission to study a specimen under her care, Roberta Salmaso (Museo Civico di Storia Naturale di Verona) for providing photographs taken with the stereoscopic microscope, Mario Calvagno for CT scanning of the specimen and post-processing of images, Massimo Cipriano Cerato for useful information on the prepa­ration methods of “Pesciara” fossils. We express our gratitude to René Fraaije (Oertijdmuseum, Boxtel, the Netherlands) and Martina Kočová Veselská (Institute of Geology, Czech Academy of Sciences, Prague, Czech Republic) for their kind and thoughtful re­views of an earlier version of the typescript, and to John Jagt (Natuurhistorisch Museum Maastricht, the Netherlands) for his careful assistance and linguistic help. Thanks also to Matteo Calvagno for help with graphics. References Barbieri, G., De Zanche, V. & Sedea, R. 1991: Vulcanesimo paleogenico ed evoluzione del semi graben Alpone-Agno (Monti Lessini). Rendi­conti della Societa Geologica Italiana, 14: 5–12. Barbieri, G. & Zampieri, D. 1992: Deformazioni sinsedimentarie eoceniche con stile a domi­no nel semigraben Alpone-Agno e relativo campo di paleostress (Monti Lessini orienta­li - Prealpi Venete). Atti Ticinensi di Scienze della Terra, 35: 25–31. Beschin, C., Busulini, A., De Angeli, A. & Tessier, G. 1988: Raninidae del Terziario berico-lessineo (Italia settentrionale). Lavori - Societa Veneziana di Scienze Naturali, 13: 155–215. Beschin, C., Busulini, A., De Angeli, A. & Tessier, G. 2004: The Eocene decapod crustacean fauna of the “Main” quarry in Arzignano (Vicenza – NE Italy) with the description of a new species of Raninidae. Lavori - Societa Veneziana di Scienze Naturali, 29: 109–117. Beschin, C., De Angeli, A. & Zorzin, R. 2011: Il ge­nere Lophoranina Fabiani, 1910 (Crustacea, Decapoda, Brachyura, Raninidae) nel Terziario dei Lessini veronesi (Italia setten­trionale). Bollettino del Museo Civico di Storia Naturale di Verona, 35, Geologia Paleontologia Preistoria: 33–56. Beschin, C., De Angeli, A., Checchi, A. & Zarantonello, G. 2016a: Crostacei decapo­di del “Tufo a Lophoranina” (Luteziano in-feriore) della Valle del Chiampo (Vicenza -Italia nordorientale). Museo di Archeologia e Scienze naturali “G. Zannato”, Montecchio Maggiore (Vicenza): 92 p. Beschin, C., Busulini, A., Tessier, G. & Zorzin, R. 2016b: I crostacei associati a coralli nell’Eoce­ ne inferiore dell’area di Bolca (Verona e Vicenza, Italia nordorientale). Memorie del Museo Civico di Storia Naturale di Verona, 2. serie, Sezione Scienze della Terra, 9: 189 p. Beschin, C., Busulini, A., Calvagno, M., Tessier, G. & Zorzin, R. 2017: Ypresian decapod cru­stacean faunas from the coral-algal envi­ronments in the eastern Lessini Mountains (Vicenza and Verona territory – NE Italy): a comparative analysis. Bulletin de la Société Géologique de France, 188/3: 13. https://doi. org/10.1051/bsgf/2017177 Bishop, G.A. 1986: Taphonomy of the North American decapods. Journal of Crustacean Biology, 6/3: 326–355. https://doi. org/10.2307/1548174 Bittner, A. 1875: Die Brachyuren des Vicentini­ schen Tertiärgebirges. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 34: 63–106. Bittner, A. 1883: Neue Beiträge zur Kenntniss der Brachyuren-Fauna des Alttertiärs von Vicenza und Verona. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Classe, 46: 299–316. Bosellini, A. 1989: Dynamics of Tethyan carbo­nate platforms. In: Crevello, P.D. et al. (eds.): Controls on carbonate platform and basin platform. SEPM, Special Publication, 44: 3–13. Bourne, G.C. 1922: The Raninidae: a study in carcinology. Journal of the Linnean Society, Zoology, 35: 25–76. Busulini, A., Tessier, G., Visentin, M., Beschin, C., De Angeli, A. & Rossi, A. 1983: Nuovo con-tributo alla conoscenza dei Brachiuri eoceni­ci di Cava Main (Arzignano) - Lessini orien-tali (Vicenza) (Crustacea, Decapoda). Lavori - Societa Veneziana di Scienze Naturali, 8: 55–73. Carnevale, G., Bannikov, A.F., Marrama, G., Tyler, J.C. & Zorzin, R. 2014: 5. The Pesciara-Monte Postale Fossil-Lagerstätte: 2. Fishes and other vertebrates. In: Papazzoni, C.A. et al. (eds.): The Bolca Fossil-Lagerstätten: a window into the Eocene world. Rendiconti della Societa Paleontologica Italiana, 4/1, Excursion guidebook: 37–63. Davie,P.J.F.,Guinot,D.&Ng, P.K.L. 2015:Anatomy and functional morphology of Brachyura. In: Treatise on Zoology – Anatomy, Taxonomy, Biology. The Crustacea, 9(C): 11–163. https:// doi.org/10.1163/9789004190832_004 De Angeli, A. & Garassino, A. 2006: Catalog and bibliography of the fossil Stomatopoda and Decapoda from Italy. Memorie della Societa Italiana di Scienze Naturali e del Museo Civico di Storia Naturale di Milano, 35/1: 1–95. De Haan, W. 1833–1850: Crustacea. In: Siebold, P. F. von (ed.): Fauna japonica sive descriptio animalium, quae in itinere per Japoniam, iussu et auspiciis superiorum, qui summum in India Batava Imperium tenent, suscepto annis 1823–1830 collegit, notis, observationi-bus et adumbrationibus illustravit. Lugduni- Batavorum, Leiden: 1–243. Fabiani, R. 1910a: I crostacei terziari del Vicentino. Bollettino del Museo Civico di Vicenza, 1: 40 p. Fabiani, R. 1910b: Sulle specie di Ranina fi­nora note ed in particolare sulla Ranina Aldrovandii. Atti della Accademia Scientifica Veneto-Trentino-Istriana, 3: 85–102. Friedman, M. & Carnevale, G. 2018: The Bolca Lagerstätten: shallow marine life in the Eocene. Journal of the Geological Society, 175/4: 569–579, https://doi.org/10.1144/ jgs2017-164. Giusberti, L., Fornasiero, M. & Zorzin, R. 2014: 7. The Pesciara-Monte Postale Fossil-Lagerstätte: 4. The “minor fauna” of the laminites. In: Papazzoni, C.A. et al. (eds.): The Bolca Fossil-Lagerstätte: a window into the Eocene World. Rendiconti della Societa Paleontologica Italiana., 4/1, Excursion gui­debook: 73-87. Guinot, D. 1977: Propositions pour une nouvel­le classification des Crustacés Décapodes Brachyoures. Comptes Rendus hebdomada-ires des Séances de l’Académie des Sciences Paris, D285: 1049–1052. Knig, C.D.E. 1825: Icones fossilium sectiles. Sowerby, London: 4 p., 19 pls. Lamarck, J.B.P.A. 1801: Systeme des animaux sans vertebres, ou Tableau général des clas­ses, des ordres et des genres de ces animaux; Présentant leurs caracteres essentiels et leur distribution, d’apres la considération de leurs rapports naturels et de leur organisation, et suivant l’arrangement établi dans les galeri-es du Muséum d’Hist. Naturelle, parmi leurs dépouilles conservées; Précédé du discours d’ouverture du Cours de Zoologie, donné dans le Muséum National d’Histoire Naturelle l’an 8 de la République. Paris (Déterville): 432 p. Latreille, P. A. 1802: Histoire naturelle, générale et particuliere des Crustacés et des Insectes. Ouvrage faisant suite a l’histoire naturelle générale et particuliere, composée par Leclerc de Buffon, et rédigée par C.S. Sonnini, memb-re de plusieurs sociétés savantes. Familles na­turelles des genres, 3, F. Dufart, Paris: 1–467. Linnaeus, C. 1758. Systema naturae per regna tria naturae, secundum classes, ordines, ge­nera, species, cum characteribus, differentiis, synonymis, locis (10. edition): 1–824, Holmiae, Laurentius Salvius. Lőrenthey, I. (E.) 1902: Neuere Beiträge zur tertiären Decapodenfauna Ungarns. Mathe- matisch-naturwissenschaftliche Berichte aus Ungarn, 18: 98–120. MacLeay, W. S. 1838: On the brachyurous deca-pod Crustacea brought from the Cape by Dr. Smith. In: Smith, A. (ed.): Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly col­lected during an expedition into the interi­or of South Africa, under the direction of Dr. Andrew Smith, in the years 1834, 1835, and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa”. Smith, Elder and Co., London: 53–71. Marrama, G., Bannikov, A.F., Tyler, J.C., Zorzin, R. & Carnevale, G. 2016: Controlled excava­tions in the Pesciara and Monte Postale si­tes provide new insights about the palaeco- logy and taphonomy of the fish assemblages of the Eocene Bolca Konservat-Lagerstätte, Italy. Palaeogeography, Palaeoclimatology, Palaoecology, 454: 228–245. https://doi. org/10.1016/j.palaeo.2016.04.021 Ortmann, A.E. 1893: Die Decapoden-Krebse des Strassburger Museums, mit besonderer Berücksichtigung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln ge­sammelten und zur Zeit im Strassburger Museum aufbewahrten Formen. VII. Theil. Abtheilung: Brachyura (Brachyura genui­na Boas) II. Unterabtheilung: Cancroidea, 2. Section: Cancrinea, 1. Gruppe: Cyclometopa. Zoologische Jahrbcher, Abteilung fr Systematik, Geographie und Biologie der Tiere, 7/3: 411–495. https://doi.org/10.5962/ bhl.part.24064 Papazzoni, C.A. & Trevisani, E. 2006: Facies analysis, palaeoenvironmental reconstructi­on, and biostratigraphy, of the “Pesciara di Bolca” (Verona, northern Italy): an early Eocene Fossil-Lagerstätte. Palaeogeography, Palaeo-climatology, Palaeoecology, 242/1-2: 21–35. https://doi.org/10.1016/j.palaeo.2006.05.011 Pasini, G., Garassino, A., De Angeli, A., Hyžný, M., Giusberti, L. & Zorzin, R. 2019a: An upda­ted review of the Eocene crustacean decapod fauna from the laminites of the Konservat-Lagerstätte of ‘Pesciara’ (Bolca, Verona) and Monte Postale (Altissimo, Vicenza), NE Italy. In: Gašparič, R. (ed.): Book of Abstracts ­7th Symposium on Mesozoic and Cenozoic Decapod Crustaceans. Ljubljana (Slovenia), 17-21 June 2019: 98–100. Pasini, G., Garassino, A., De Angeli, A., Hyžný, M., Giusberti, L. & Zorzin, R. 2019b: Eocene decapod faunas from the Konservat-Lagerstätten laminites of “Pesciara” (Bolca, Verona) and Monte Postale (Altissimo, Vicenza) in northeast Italy: a review and update. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 293/3: 233–270. https://doi.org/10.1127/njgpa/2019/0840 Piccoli, G. 1965: Rapporto tra gli allineamenti dei centri vulcanici paleogenici e le strutture tettoniche attuali nei Lessini. Bollettino della Societa Geologica Italiana, 84: 141–157. Piccoli, G. 1966: Studio geologico del vulcanis-mo paleogenico veneto. Memorie degli Istituti di Geologia e Mineralogia dell’Universita di Padova, 26: 1–100. Rafinesque, C.S. 1815: Analyse de la nature, ou tableau de l’univers et des corps organisés. L’Imprimerie de Jean Barravecchia, Palermo: 224 p. Ranzani, C. 1818: Sopra un fossile chiamato Sepite dall’Aldrovandi. Opuscoli scientifici. Tomo II. Bologna: 344-348. Schweitzer, C. E., Feldmann, R. M., Garassino, A., Karasawa, H. & Schweigert, G. 2010: Systematic list of fossil decapod crustacean species. Crustaceana Monographs, 10: 222 p. Secretan, S. 1975: Les crustacés du Monte Bolca. In: Studi e ricerche sui giacimenti Terziari di Bolca, 2., Museo Civico di Storia Naturale di Verona: 315–424. Stephenson, W. & Campbell, B. 1960: The Australian portunids (Crustacea: Portunidae) IV: Remaining genera. Australian Journal of Marine and Freshwater Research, 11/1: 73–122. Vía Boada, L. 1959: Decápodos fósiles del Eoceno espanol. Boletín del Instituto Geológico y Minero de Espaa, 70: 331–402. Vonk, R., Latella, L. & Zorzin, R. 2015: Eocene isopods of Pesciara di Bolca (Italy) revisited. Journal of Crustacean Biology, 35/4: 540–546. https://doi.org/10.1163/1937240X-00002342 Waugh, D.A., Feldmann, R.M., Burrell, J.L., Hull, A.L., Hein, K. & Schweitzer, C. E. 2009a: Ontogenetic variations in cuticle morphology in the blue crab Callinectes sapidus Rathbun, 1896. Journal of Crustacean Biology, 29/2: 141–156. https://doi.org/10.1651/08-3105.1 Waugh, D.A., Feldmann, R.M. & Schweitzer, C.E. 2009b: Systematic evaluation of raninid cuti­ cle microstructure. Bulletin of the Mizunami Fossil Museum, 35: 15–41. Woodward, H. 1866: Note on a new species of Ranina (R. porifera) from the Tertiary stra­ta of Trinidad. Proceedings of the Geological Society of London, 22: 591–592. Zampieri, D. 1995: Tertiary extension in the Southern Trento platform, southern Alps, Italy. Tectonics, 14/3: 645–657. https://doi. org/10.1029/94TC03093 Zorzin, R., Beschin, C., Busulini, A. & Tessier, G. 2019: First report of Lophoranina maxima from the Pesciara laminites (Bolca, Verona, NE Italy). In: Gašparič, R. (ed.): Book of Abstracts - 7th Symposium on Mesozoic and Cenozoic Decapod Crustaceans. Ljubljana (Slovenia), 17-21 June 2019: 101-102. GEOLOGIJA 63/1, 67-72, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.007 A new xanthid crab, Neoliomera zovoensis sp. nov. (Decapoda, Brachyura), from the Lower Eocene beds of Zovo (Vestenanova, Verona, northeast Italy) Neoliomera zovoensis sp. nov. (Decapoda, Brachyura), nova vrsta rakovice iz spodnjeeocenskih plasti nahajališča Zovo (Vestenanova, Verona, severovzhodna Italija) Antonio DE ANGELI1 & Alessandro GARASSINO2 1Museo Civico “G. Zannato”, Montecchio Maggiore,Vicenza, Italia; antonio.deangeli@alice.it 2Research Adjunct, Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, California, USA; e-mail: alegarassino@gmail.com Prejeto / Received 4. 11. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Crustacea, Xanthidae, taxonomy, Paleogene, Italy Ključne besede: Crustacea, Xanthidae, taksonomija, paleogen, Italija Abstract A new species of Neoliomera Odhner, 1925, Neoliomera zovoensis sp. nov. from the Lower Eocene (Ypresian) of Zovo (Vestenanova, Verona), which co-occurs with other decapod crustacean species in a richly fossiliferous coral-algal-reef in the Monti Lessini (Verona area, northeast Italy) is herein described. Izvleček V prispevku opisujemo novo vrsto rodu Neoliomera Odhner, 1925, Neoliomera zovoensis sp. nov. iz spodnjega eocena (Ipresij) iz nahajališča v Zovu (Vestenanova, Verona). Nova vrsta se pojavlja v združbi z drugimi deseteronožci v fosilno bogatem grebenskem apnencu s koralami in algami v regiji Monti Lessini (območje Verone, severovzhodna Italija). Introduction The rich arthropod fauna from the Paleogene levels in the Veneto region, which includes mys-idaceans, isopods, stomatopods, and decapod crustaceans, has been recorded over the last two centuries. The decapod crustacean assemblage is rich in genera and species (see Fabiani, 1910; De Angeli & Beschin, 2001). Recent fieldwork has yielded numerous new decapod species in asso­ciation with a bioherm or a smallsized coral reef (for a checklist of species and complete referenc­es see De Angeli & Garassino, 2006; De Angeli et al., 2019). Geological and stratigraphical setting The Bolca area (Verona, northeast Italy; Fig. 1) with fossil-rich deposits of “Pesciara” and Monte Postale, is renowned for the exceptional preser­vation of plants, invertebrates, and vertebrates, chiefly fishes. For a detailed description of the lo­cal geology and stratigraphy, see Fabiani (1914, 1915), Barbieri & Medizza (1969), Medizza (1980a, b), and Pasini et al. (2019). Above the Scaglia Rossa (Late Cretaceous, Campanian) follows the so-called “Calcari di Spilecco” (late Paleocene-early Eocene), which is in turn overlain by Lithothamnium and Nummu-lites limestones, the fish-bearing strata of Pescara and Monte Postale, and the Alveolina limestones, plus marine, brackish, and terrestrial limestones of Monte Postale. Higher upsection, Alveolina and Nummulites limestones are exposed (hamlet of Brusaferri), a thick volcanic mass, containing terrestrial plants and freshwater molluscs (Mon­te Vegroni), shales with Cypris ostracod shells, and a coal bed with crocodilian and turtle re­mains (Monte Purga). The uppermost unit, at the Fig. 1. Map of the Bolca area; the asterisk denotes the locality where the type specimen of Neoliomera zovoensis sp. nov. was co­ llected (modified after De Angeli & Garassino, 2014). top of Monte Purga, comprises columnar basalts. The uppermost stratified limestones along the northern side of Purga di Bolca are dated as late Ypresian (Barbieri & Medizza, 1969). The age of the reptile-bearing coal beds is still uncertain, but could possibly be Lutetian (middle Eocene). The studied specimen was collected from white crystalline limestones with alveolinid and nummulitid foraminifera (Brusaferri Lime­stones), which also contain volcanic material, to the southeast of Bolca, along the road connecting Zovo and the hamlet of Vallecco (Fig. 1). The fos­siliferous level at Zovo, containing coralligenous algae, corals, microforaminifera, scarce mollus-can internal moulds, and exuviae of small-sized decapod crustaceans, was associated with a bi-oherm or a small-sized coral reef, which origi­nated within the AlponeAgno graben. Forma­tions such as this have been recorded from the Valle del Chiampo between Mussolino and Zovo di Castelvecchio (De Zanche, 1965) and along the eastern margin of Monti Lessini (Beschin et al., 2007; De Angeli & Garassino, 2002; De Angeli & Ceccon, 2012). Currently, the decapod crustacean assemblage from Zovo includes 24 species (for complete references see Beschin et al. 2016; De Angeli et al., 2019). Material One carapace preserving its entire cuticle within a small piece of coralligenous rock. It is housed in the palaeontological collection of the Museo Civico “D. Dal Lago” of Valdagno, Vicen­za (MCV). Abbreviations – lcxp: carapace length, wcxp: carapace width, wf: front width, wof: orbito-fron­tal width; Systematic palaeontology For the higher-level classification, we follow the arrangement proposed by Schweitzer et al. (2010). Order Decapoda Latreille, 1802 Infraorder Brachyura Latreille, 1802 Section Eubrachyura de Saint Laurent, 1980 Subsection Heterotremata Guinot, 1977 Superfamily Xanthoidea MacLeay, 1838 Family Xanthidae MacLeay, 1838 Subfamily Liomerinae Sakai, 1976 Genus Neoliomera Odhner, 1925 Type species: Zozymus pubescens H.Milne Edwards, 1834, by original designation. Included fossil species: Neoliomera interme­ dia Odhner, 1925 (fossil and extant), N. kuohwai Hu, 1981 (fossil), N. minuta Beschin, Busulini & Tessier, 2015 (fossil), N. paleogenica Beschin, Busulini, De Angeli & Tessier, 2007 (fossil), N. pubescens (H. Milne Edwards, 1834) (fossil and extant), N. richteroides Sakai, 1969 (fossil and extant); N. zovoensis sp. nov. (herein). Neoliomera zovoensis sp. nov. (Figs. 2.1a, 1b) Diagnosis: Subhexagonal carapace, convex longitudinally, broader than long; bilobed front; small suboval orbits; raised, granulate supraor­bital margin; elongate, convex anterolateral Fig. 2. Neoliomera zovoensis sp. nov., Holotype, MCV 19/09. 1a - carapace in frontal view; 1b - carapace in dorsal view. Scale bar equals 5 mm. margins, with four short spiny lobes; fourth an-terolateral lobe with granulate ridge extending on branchial region; short, convergent postero-lateral margins; undifferentiated dorsal regions; one longitudinal median groove in frontal region; cervical groove dividing hepatic region from branchial ones; smooth dorsal carapace surface, except for some tubercles uniformly arranged in frontal region and in the outer parts of hepatic and epibranchial regions. Etymology: after Zovo where the studied specimen was discovered. Holotype: MCV 19/09. Type locality: Zovo (Vestenanova, Verona, northeast Italy). Measurements: MCV 19/09 – lcxp: 13.3 mm; wcxp: 29.5 mm; wof: 11.5 mm; wf: 8 mm. Description: Subhexagonal carapace, convex longitudinally, broader than long (lcxp/wcxp = 0.45); orbito-frontal margin moderately wide (wof/wcxp = 0.38); bilobed front grooved medi­ally and downturned; frontal margin with small tubercles arranged uniformly; small subround orbits with raised, granulate supraorbital mar­gin; convex inner orbital angle well distinct from the front by an indentation; elongate, convex anterolateral margins, with two or three small spines, close each other, forming four short con­vex spiny lobes, divided by weak fissures: first with two small spines (excluding the extra-orbit­al tooth), second and third with three spines, and fourth, at level of anterolateral angle, with one spine and one granulate ridge (branchial ridge) extending on the branchial region; shorter pos­terolateral margins, strongly converging to the posterior margin; posterior margin as wide as the front, weakly convex and rimmed; undifferenti­ated dorsal regions; one deep longitudinal medi­an groove in the frontal region; cervical groove dividing hepatic region from the branchial ones; weak transverse depression in the cardiac region; weak branchiocardiac grooves, more evident along the cardiac region margins; smooth dor­sal carapace surface, except some tubercles uni­formly arranged in the frontal region and in the outer parts of hepatic and epibranchial regions; small pits arranged uniformly on dorsal surface, richer in frontal and hepatic regions. Discussion: Based upon Sakai (1976) and Serene (1984), the studied specimen shows the main morphological characters of the extant Neoliomera in having a carapace broader than long; anterolateral margins crested and entire, although marked with three to four demarcated, rounded lobes; and poorly defined regions. Neoli­omera is currently widely distributed in the In­ do-West Pacific area with 17 species inhabiting rocky beach, under stones or in coral reef, and shallow waters (Ho & Ng, 2014). Neoliomera is known in the fossil record of northern Italy with two species, N. paleogenica Beschin, Busulini, De Angeli & Tessier, 2007, from the early Eocene of contrada Gecchelina (Monte di Malo, Vicenza) and N. minuta Beschin, Busulini & Tessier, 2015 from the early Eocene of Cava Braggi (Vestenanova, Verona). The for­mer differs from N. zovoensis sp. nov. in having meso-, metagastric, and cardiac regions that are well differentiated by grooves and thick tuber-culate ornamentation uniformly arranged on the whole dorsal surface (Beschin et al., 2007). The latter differs from the new species in having a more oval carapace outline, dorsal surface of car­apace with randomly arranged small tubercles, an anterior mesogastric process that does not reach the front, a carapace that is not marked by a cervical groove, an anterolateral margin with four smooth lobes, and an anterolateral angle without branchial ridge (Beschin et al., 2015). Neoliomera zovoensis sp. nov. has a shallow cervical groove and a weak granulate ridge on the branchial regions, as in the extant N. themis-to (De Man, 1889), widespread in the Persian Gulf (see Guinot, 1964). This extant species dif­fers, however, from the fossil one in having more distinct hepatic and branchial regions with larg­er and more numerous tubercles. Acknowledgements We wish to thank Bernardetta Pallozzi (Museo Civico “D. Dal Lago”, Valdagno, Vicenza) for ma­king the specimen available for study, and Rodney M. Feldmann, (Kent State University, Ohio, USA) and Matúš Hyžný (Comenius University, Bratislava, Slovakia) for careful review and criticism. References Barbieri, G. & Medizza, F. 1969: Contributo alla conoscenza geologica della regione di Bolca (Monti Lessini). Memorie Istituto Geologico Mineralogico dell’Universita di Padova, 27: 1-36. Beschin, C., Busulini, A., De Angeli, A. & Tessier, G. 2007: I Decapodi dell’Eocene inferiore di Contrada Gecchelina (Vicenza - Italia setten­ trionale) (Anomura e Brachyura). Museo di Archeologia e Scienze Naturali “G. Zannato”, Montecchio Maggiore (Vicenza): 76 p. Beschin, C., Busulini, A. & Tessier, G. 2015: Nuova segnalazione di crostacei associati a coralli nell’Eocene inferiore dei Lessini ori­entali (Vestenanova - Verona). Lavori, Societa Veneziana di Scienze Naturali, 40: 47-109. Beschin, C., Busulini, A., Tessier, G. & Zorzin, R. 2016: I crostacei associati a coralli nell’Eocene inferore dell’area di Bolca (Verona e Vicenza, Italia nordorientale). Memorie Museo Civico di Storia Naturale di Verona, 2. Ser., Sezione Scienze della Terra, Verona, 9: 1-190. De Angeli, A. & Beschin, C. 2001: I Crostacei fossili del territorio Vicentino. Natura Vicentina, 5: 5-54. De Angeli, A. & Ceccon, L. 2012: Eouroptychus montemagrensis n. gen., n. sp. (Crustacea, Decapoda, Anomura, Chirostylidae) dell’Eocene inferiore (Ypresiano) di Monte Magre (Vicenza, Italia settentrionale). Societa Veneziana di Scienze Naturali, 37: 19-24. De Angeli, A. & Garassino, A. 2002: Galatheid, chirostylid and porcellanid decapods (Crustacea, Decapoda, Anomura) from the Eocene and Oligocene of Vicenza (N Italy). Memorie della Societa italiana di Scienze naturali e del Museo civico di Storia na­turale di Milano, 30/3: 1-40. https://doi. org/10.1163/18759866-0720203006 De Angeli, A. & Garassino, A. 2006: Catalog and bibliography of the fossil Stomatopoda and Decapoda from Italy. Memorie della Societa italiana di Scienze naturali e del Museo ci­vico di Storia naturale di Milano, 35/1: 1-95. De Angeli, A. & Garassino, A. 2014: A new genus and species of panopeid crab, Zovocarcinus muelleri (Decapoda, Brachyura) from the Eocene of Zovo di Bolca, Verona (northeast Italy). In: Fraaije, R.H.B., Hyžný, M., Jagt, J.W.M., Krobicki M. & Van Bakel, B.W.M. (eds.), Proceedings of the 5th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Krakow, Poland, 2013: A tribute to Pál Mihály Mller. Scripta Geologica, 147: 185-191. De Angeli, A., Garassino, A. & Pasini, G. 2019: Catalog and bibliography of fossil Stomatopoda and Decapoda from Italy (2007­2018). Memorie della Societa italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, 45: 3-70. De Zanche, V. 1965: Le microfacies eoceniche nella Valle del Chiampo tra Arzignano e Mussolino (Lessini orientali). Rivista Italiana di Paleontologia e Stratigrafia, 71/3: 925-948. Fabiani, R. 1910: I crostacei terziari del Vicentino. Bollettino del Museo Civico di Vicenza, 1/1: 1-40. Fabiani, R. 1914: La serie stratigrafica del Monte Bolca e dei suoi dintorni. Memorie dell’Is­tituto Geologico della Reale Universita di Padova, 2: 223-235. Fabiani, R. 1915: Il Paleogene del Veneto. Memorie dell’Istituto Geologico della Reale Universita di Padova, 3: 1-336. Guinot, D. 1964: Crustacés Décapodes Brachyoures (Xanthidae) des Campagnes de la Calypso en Mer Rouge (1952), dans le Golfe Persique et a l’Ile Aldabra (1954). Mémoires du Muséum national d’Histoire naturelle, 32/1: 1-108. Guinot, D. 1977: Proposition pour une nouvel­le classification des Crustacés Décapodes Brachyoures. Comptes Rendus hebdomadai-res des Séances de l’Académie des Sciences, (D), 285: 1049-1052. Ho, P.-H. & Ng, P.K.L. 2014: A new species of Neoliomera Odhner, 1925, from the western Pacific, and the first record of N. demani Forest & Guinot, 1961, from Taiwan (Crustacea: Decapoda: Brachyura: Xanthidae). Zootaxa, 3826/3: 579-590. https://doi.org/10.11646/ zootaxa.3826.3.8 Hu, C.-H. 1981: Studies on Cenozoic fossil crabs from Taiwan Island. Proceedings of the Geological Society of China, 24: 56-74. Latreille, P.A. 1802-1803: Histoire naturelle générale et particuliere, des Crustacés et des Insectes. Ouvrage faisant suite aux uvres de Leclerc de Buffon, et partie du Cours complet d’Histoire naturalle rédigé par C.S. Sonnini, membre de plusieurs Société savantes. 5: 1-407, 6: 1-391; Paris (Dufart). MacLeay, W.S. 1838: On the Brachyurous Decapod Crustacea. Brought from the Cape by Dr. Smith. Illustrations of the Zoology of South Africa; consisting chiefly of figures and descriptions of the objects of natural his­tory collected during an expedition into the interior of South Africa, in the years 1834, 1835, and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa:” together with a summary of African Zoology, and an inquiry into the geographical ranges of species in that quarter of the globe, published under the Authority of the Lords Commissioners of Her Majesty’s Treasury, Invertebratae. IV (1849), London (Smith, Elder & Co.): 53-71. Man, J. G. de 1889: Über einige neue oder selte­ ne indo-pacifische Brachyuren. Zoologische Jahrbcher, Iena, (Systematik) 4: 409-452. https://doi.org/10.5962/bhl.part.18727 Medizza, F. 1980a: Il giacimento di Spilecco (Verona). In: I vertebrati fossili italiani. Catalogo della Mostra, Verona, 139-141. Medizza, F. 1980b: Il giacimento della Purga di Bolca (Verona). In: I vertebrati fossili italiani. Catalogo della Mostra, Verona, 147-148. Milne Edwards, H. 1834-1837: Histoire naturel­le des Crustacés comprenant l’anatomie, la physiologie et la classification de ces anima­ux. Paris. Librairie Encyclopédique de Roret. 1: 1-468, 2: 1-531, 3: 1-638. Odhner, T. 1925: Monographierte Gattungen der Krabbenfamilie Xanthidae. I. Gteborgs Kungliga Vetenskaps-och Vitterhets-Samhälles Handlingar, ser. 4, 29/1: 1-92. Pasini, G., Garassino, A., De Angeli, A., Hyžný, M., Giusberti, L. & Zorzin, R. 2019: Eocene deca-pod faunas from the Konservat-Lagerstätten laminites of “Pesciara” (Bolca, Verona) and Monte Postale (Altissimo, Vicenza) in northeast Italy: a review and update. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 293/3: 233-270. https://doi. org/10.1127/njgpa/2019/0840 Sakai, T. 1969: Two new genera and twenty-two new species of crabs from Japan. Proceedings of the Biological Society of Washington, 82: 243-280. Sakai, T. 1976: Crabs of Japan and the Adjacent Seas. In three volumes; Kodansha Ltd., Tokyo; English Text, 773 pp., Japanese Text, 461 pp. Saint Laurent, M. de 1980: Sur la classification et la phylogénie des Crustacés Décapodes brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. Comptes Rendus heb­domadaires des Séances de l’Académie des Sciences, (D), 290: 1265-1268. Serene, R. 1984: Crustacés Dédapodes Brachyoures de l’Océan Indien Occidentale et de la Mer Rouge. Xanthoidea: Xanthidae et Trapeziidae. Addendum Carpiliidae et Menippidae. A. Crosnier. Faune Tropicale, 24: 1-400. Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H. & Schweigert, G. 2010: Systematic list of fossil decapod crustacean species. Crustaceana Monographs, 10: 1-222. GEOLOGIJA 63/1, 73-81, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.008 A new homolid crab, Cherpihomola italica gen. nov., sp. nov. (Decapoda, Brachyura), from the Rupelian of the Ligure-Piemontese Basin (Alessandria, northern Italy) Nov homolidni rak Cherpihomola italica gen. nov., sp. nov. (Decapoda, Brachyura) iz spodnjeoligocenskih (rupelijskih) plasti Ligursko-piemontskega bazena (Alessandria, severna Italija) Sergio MARANGON1 & Antonio DE ANGELI2 1, 2Museo Civico “G. Zannato”, Piazza Marconi, 17 - 36075, Montecchio Maggiore (Vicenza), Italy 2Corresponding author: e-mail: antonio.deangeli@alice.it Prejeto / Received 6. 6. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Homolidae, lower Oligocene, southern Europe, new taxa Ključne besede: Homolidae, spodnji oligocen, južna Evropa, nova vrsta Abstract A new genus and species of homolid from lower Oligocene (Rupelian) strata in the Ligure-Piemontese Basin (northern Italy) is introduced. Cherpihomola italica gen. nov., sp. nov. represents the first record of homolids from Oligocene deposits across Europe and extends the palaeogeographical distribution of extinct homolids. Izvleček V prispevku predstavljamo nov rod in novo vrsto homolidnih rakov iz spodnjeoligocenskih (rupelijskih) plasti v Ligursko-piemontskem bazenu (severna Italija). Cherpihomola italica gen. nov., sp. nov. je prva najdba homolidnih deseteronožcev iz oligocenskih nahajališč v Evropi, kar nam omogoča boljše poznavanje paleogeografske razširjenosti te skupine fosilne rakov. Introduction Studies of decapod crustaceans of the Ligure Piemontese Basin started with Sismonda (1846, 1861), who recorded brachyurans of Miocene age from the Turin hills. Later, Michelotti (1861) and Crema (1895) added material from Miocene and Pliocene deposits in the same area, while Ristori (1889) described new species from the Rupelian of Sassello, Santa Giustina, Fornaci and Dego. Re­ cently, Allasinaz (1987), Marangon & De Angeli (1997, 2007), De Angeli & Marangon (2001, 2003a, b), Larghi (2003), Busulini et al. (2014), Pasini & Garassino (2017a, b) and Pasini et al. (2019) de­scribed a number of new species from this area. The carcinological fauna includes the fol­lowing species: Hoploparia sp., Callianassa canavarii Ristori, 1889, Callianassa sp., Pagurus sp., Zygopa galantensis (De Angeli & Marangon, 2001), Alcespina ovadaensis Pasini & Garassi-no, 2017 [= Ranina (Ranina) speciosa, sensu Al-lasinaz, 1987], Lophoranina sp. (= Lophoranina ?aldrovandi, sensu Sismonda, 1861), Calappa de­marcoi Pasini & Garassino, 2017, Stenodromia mainii (Allasinaz, 1987) (as Calappilia), Calap­pilia verrucosa A. Milne-Edwards in Bouillé, 1873, Calappilia vicentina Fabiani, 1910, Mursi­opsis postulosus Ristori, 1889, Cherpiocarcinus rostratus Marangon & De Angeli, 1997, Retroplu-ma sp., Portunus ristorii Karasawa, Schweitzer & Feldmann, 2008 (= P. convexus Ristori, 1888), Coeloma vigil A. Milne-Edwards, 1865, Palaeo­carpilius aquitanicus A. Milne-Edwards, 1862 (= P. macrocheilus, sensu Allasinaz, 1987), Eriphia sp. and Grapsus sp. To this list, we here add Cherpihomola italica n. gen., sp. nov. Geological and stratigraphical setting Lithologically, Rupelian strata in the Ligure Piemontese Basin are characterised by an alter­nation of greyish marls with nodular elements and silt-rich marls, occasionally sandy, resting on the “Formazione di Pianfolco”, which is of Rupelian age. Macrofossils are preserved mainly within pebbles or nodules that were eroded from the highest levels exposed of this sedimentary complex, which is referred to as “Formazione di Molare”. These levels overlie terrestrial units of the “Brecce di Costa Cravara and Pianfolco”, studied by Charrier et al. (1964) and dated as ear­ly Rupelian (see also Gelati & Gnaccolini, 1978; Gnaccolini, 1978). The crab-bearing levels were attributed to the transition between the “For-mazione di Molare” and the overlying “Marne di Rigoroso” by Allasinaz (1987) and to the biozone of the benthic foraminifer Operculina compla­nata (Bianco, 1985; Balossino & Bianco, 1986). Other studies on Oligocene deposits in this area were carried out by Franceschetti (1967), Gela- ti & Gnaccolini (1980) and Fantoni et al. (1983). The palaeoenvironment of the Case Cherpione area documents three Rupelian phases, from a fully terrestrial setting with forests and rivers that transported abundant plant remains (early Rupelian), to a marine, warm-water lagoon with moderate currents and coasts nearby (middle Ru-pelian) and finally, during the late Rupelian, dif­ferent platform conditions, a bathymetric change and a different benthos/plankton ratio which led to the disappearance of the macrofauna (Gelati & Gnaccolini, 1980; Fantoni et al., 1983). The material studied here originates from the top levels of the “Molare Formation” (middle Ru-pelian) at Case Cherpione (Alessandria, northern Italy); it is preserved in nodules of diagenetic or­igin (Fig. 1). Material and methods Two specimens from the middle Rupelian of Case Cherpione (Ovada, Alessandria) are housed in the palaeontological collections of the Museo Civico “G. Zannato”, Montecchio Maggiore, Vi-cenza (abbreviation: MCZ). They are three-di­mensionally preserved; preparation was easy be­cause of the unconsolidated matrix. Dimensions are in millimetres. For higher-level classifica­tion, we follow the recent arrangement proposed by Guinot et al. (2013). Fig. 1. Outcrops of Rupelian strata in Case Cherpione (Alessandria, northeast Italy). Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Brachyura Latreille, 1802 Subsection Homoliformia Karasawa, Schweitzer & Feldmann, 2011 Superfamily Homoloidea H. Milne Edwards, 1837 Family Homolidae H. Milne Edwards, 1837 Discussion: The superfamily includes the fam­ilies Homolidae, Poupiniidae Guinot, 1991 and Latreillidae Stimpson, 1858 (Guinot & Richer de Forges, 1995). The typical features of Recent ho-molids have been outlined in detail by Guinot & Richer de Forges (1995) and Davie et al. (2015), while extinct forms have been discussed by Col­lins (1997), Schweitzer et al. (2010), Nyborg & Ga-rassino (2017) and Garassino et al. (2015, 2019). According to several authors (notably Schweitzer et al., 2010; De Angeli & Alberti, 2012; Garassino et al., 2015; Nyborg & Garassino, 2017 and Garassino et al., 2019), eighteen fossil genera (four also with Recent representatives) should be assigned to the Homolidae, as follows: Cretalamoha Nyborg & Garassino, 2017, Dagnau­dus Guinot & Richer de Forges, 1995 (both fossil and Recent), Doerflesia Feldmann & Schweitzer, 2009, Homola Leach, 1815 (both fossil and Re­cent), Homoliformis Collins, Schulz & Jakobsen, 2005, Homolopsis Bell, 1863, Hoplitocarcinus Beurlen, 1928, Latheticocarcinus Bishop, 1988, Lignihomola Collins, 1997, Lindahomola Gar-assino, Weaver, Portell & Vega, 2019, Londinimo-la Collins & Saward, 2006, Nogarhomola De An­geli & Alberti, 2012, Palehomola Rathbun, 1926, Paromola Wood-Mason, in Wood-Mason & Al-cock, 1891 (both fossil and Recent), Paromolop-sis Wood-Mason, in Wood-Mason & Alcock, 1891 (both fossil and Recent), Peedeehomola Garass­ino, Clements & Vega, 2015, Prohomola Karasa­wa, 1992 and Zygastrocarcinus Bishop, 1983. Genus Cherpihomola gen. nov. Type species: Cherpihomola italica sp. nov. Etymology: The generic name refers to Case Cherpione, the locality which yielded the type specimens. Diagnosis: Carapace longitudinally square in outline, as long as wide; well-developed lin-ea homolica, sinuous in outline, acute rostrum, one pseudorostral spine, one infra-orbital spine, one hepatic spine, one anterolateral spine, two posterolateral spines, regions nearly smooth and slightly raised. Cherpihomola italica sp. nov. Fig. 2; Pl. 1 Material and measurements: Two carapac­es; the holotype is MCZ 5759 (carapace length 17.5 mm; carapace width 16.4 mm); the paratype is MCZ 5760 (carapace length 20.6 mm). Description: Carapace longitudinally square, as long as wide, well-developed linea homolica, sinuous; moderately vaulted transversely, less so longitudinally, lateral sides slanted, nearly sub-vertical; regions smooth well marked by grooves; triangular rostrum not sulcate axially; one pseu­dorostral spine, as long as the rostrum; a short infraorbital spine; anterolateral margin with one prominent subhepatic spine directed outwards; a second short spine is present ventrally, not visi­ble in dorsal view; one prominent anterolateral spine directed outwards present between cervi­cal and branchiocardiac grooves; posterolateral margin with two short spines; posterior margin wide, concave and rimmed; deep cervical groove, convex laterally to epibranchial lobe, strongly inclined between inferior margin of mesogastric region; branchiocardiac groove almost straight proximally, downturned posteriorly to gastric lobe, curved and continuous on branchial region; epigastric lobe defined by pair of tubercles po­sitioned just posterior to pseudorostral spines; PLATE 1 Cherpihomola italica n. gen., sp. nov.; 1a-e: MCZ 5759, holotype; a - dorsal view of carapace; b - lateral view of carapace; c ­nodules of diagenetic origin associated with cheliped; d - right propodus; e - ambulatory legs; 2 - MCZ 5760, paratype, dorsal view of carapace. PLATE 2 1. Latheticocarcinus italicus De Angeli & Ceccon, 2013, holotype; 2. Homola vanzoi Beschin, De Angeli & Zorzin, 2009, ho-lotype, part (a) and counterpart (b); 3. Homola barbata (Fabricius, 1793); 4. Nogarhomola aurorae De Angeli & Alberti, 2012, holotype (a) and paratype (b). mesogastric lobe marked by smooth grooves lat-molica; smooth dorsal surface. Chelae with elon­erally and well-defined cervical groove posteri-gate palm with upper and lower margins almost orly; protogastric lobe with two tubercles; narrow parallel; outer surface of palm densely covered mesogastric lobe; triangular cardiac lobe, with by punctuation, fixed finger about two-thirds of three tubercles; long, narrow and smooth intes-palm, long and straight. Long ambulatory legs, tinal lobe, slightly depressed; metabranchial lobe with denticulated upper margin. with two small tubercles aligned along linea ho­ Discussion: The carapace of this new homol-id is characterised by a well-marked linea ho-molica, acute rostrum, one pseudorostral spine, one infra-orbital spine, one sub-hepatic spine, one anterolateral spine and two posterolateral spines, a deep cervical groove, nearly smooth and slightly raised dorsal regions and a narrow car­diac region, with three tubercles. Although Cher-pihomola gen. nov. shares features of the rostrum and pseudorostral spines with Paromola, the lat­ter has convex lateral margins with numerous spines and tuberculated dorsal regions, delimited by shallow grooves. Paromola is known from six modern and two extinct species, namely Paro­mola vetula Crawford, 2008 from the Paleogene of Río Negro Province (Argentina) and Paromo-la roseburgensis Nyborg & Garassino, 2017 from the Roseburg Formation (lower Oligocene) of Or­egon (USA). The new genus has affinities with Latreillop-sis in showing near-parallel lateral margins, a similar arrangement of the frontal and lateral spines, a near-smooth dorsal surface and a nar­row cardiac region with three tubercles. Howev­er, Latreillopsis has longer pseudorostral spines and one or more accessory spines in the rostrum, an epibranchial margin without a spine, while the posterolateral margin has a single robust spine. Of other Cenozoic genera, Prohomola has densely tuberculated dorsal regions and deep cervical and branchiocardiac grooves (see Kara-sawa, 1992; Blow & Manning, 1996). Dagnaudus has a triangular, acute rostrum, long pseudor­ostral spines with two accessory spines, lateral margins with spines and tuberculated regions bounded by shallow grooves (see Jenkins, 1977). Nogarhomola has convex lateral margins with spines, a bifid rostrum and dorsal regions with tubercles (De Angeli & Alberti, 2012), while Pale-homola has an oval carapace (larger posteriorly), a long, pointed rostrum that is strongly down-turned, pseudorostral spines that are slightly longer than the rostrum and with two small ba­sal spinules, as well as a large, inflated subhe­patic region, with one large triangular spine and well-developed cervical and branchiocardiac grooves (Nyborg & Garassino, 2017). Fossil homolids from Italy To date, only three genera are known from the fossil record. Homola Leach, 1815 with H. vanzoi Beschin, De Angeli & Zorzin, 2009 pl. 2, figs. 2a-b from the lower Eocene (Ypresian) of San Giovanni Ilarione (Verona) and H. barbata (Fabricius, 1793) pl. 2, fig. 3, inhabiting the modern Atlantic Ocean (Portugal) and the Mediterranean Sea and occur­ring as a fossil in the upper Pleistocene (Tyrrhe­nian) of Trumbaca (Reggio Calabria). Lathetico­carcinus italicus De Angeli & Ceccon, 2013 pl. 2, fig. 1 is known from the lower Eocene (Ypresian) of Monte Magre (Schio, Vicenza), while Noga­rhomola aurorae De Angeli & Alberti, 2012 pl. 2, figs. 4a-b has been described from the middle Eocene (Lutetian) of Nogarole Vicentino (Vicen­ za) (Beschin et al., 2009; Garassino et al., 2010; De Angeli & Alberti, 2012; De Angeli & Ceccon, 2013). The new genus and species erected herein represents the first record of homolid crabs from Oligocene strata in Europe, thus enlarging their palaeogeographical distribution. Acknowledgements We wish to thank Viviana Frisone (Museo Civico “G. Zannato”, Montecchio Maggiore, Vicenza) for making specimens available for study, and Alex Oss(Terragona, Catalonia), Alessandro Garassino (Research Adjunct, Department of Earth and Biological Sciences, Loma Linda University, USA), and John W.M. Jagt (Natuurhistorisch Museum Maastricht, Maastricht, the Netherlands) for criticism and careful review of an earlier version of the typescript. References Allasinaz, A. 1987: Brachyura Decapoda oli­gocenici (Rupeliano) del Bacino Ligure Piemontese. Bollettino del Museo Regionale di Scienze Naturali di Torino, 5/2: 509-566. Balossino, P. & Bianco, P. 1986: Nota prelimina-re sulla biostratigrafia dell’area di Ponzone, Cimaferle e Bandita (Piemonte SE). Bollettino del Museo Regionale di Scienze Naturali di Torino, 4/2: 469-481. Bell, T. 1863: A Monograph of the fossil mala­costracous Crustacea of Great Britain, Pt. II, Crustacea of the Gault and Greensand. Palaeontographical Society Monograph, London, 40 p. Beschin, C., De Angeli, A. & Zorzin, R. 2009: Crostacei fossili del Veneto: una inedita fau­na dei Lessini orientali (Monte Serea di San Giovanni Ilarione, Verona), con descrizione di tre nuove specie. Bollettino del Museo Civico di Storia Naturale di Verona, 33: 59-83. Beurlen, K. 1928: Die fossilen Dromiaceen und ihre Stammesgeschichte. Paläontologische Zeitschrift, 10: 144-183. Bianco, P. 1985: Nota preliminare sulla biostrati­grafia dell’area di Spigo Monferrato, Pareto e Mioglia (Alpi Liguri, Italia N.O.). Atti dell’Ac­cademia dei Lincei, Roma, 8/78: 34-43. Bishop, G.A. 1983: Two new species of crabs, Notopocorystes (Eucorystes) eichorni and Zygastrocarcinus griesi (Decapoda: Brachyura) from the Bearpaw Shale (Campanian) of north-central Montana. Journal of Paleontology, 57/5: 900-910. Bishop, G.A. 1988: New fossil crabs, Plagiophthalmus izetti, Latheticocarcinus shapiroi, and Sagittiformosus carabus (Crustacea, Decapoda), from the Western Interior Cretaceous, U.S.A. Proceedings of the Biological Society of Washington, 101/2: 375-381. Blow, W.C. & Manning, R.B. 1996: Preliminary descriptions of 25 new decapods crustace­ans from the middle Eocene of the Carolinas, U.S.A. Tulane Studies in Geology and Paleontology, 29/1: 1-26. Bouillé, R. 1873: Paléontologie de Biarritz et de quelques autres localités des Basses Pyrénées. Compte-Rendu des Travaux du Congres Scientifique de France, 39th session a Pau, pp. 11, Pl.4. Busulini, A., Beschin, C. & Tessier, G. 2014: A re­-evalutation of extinct European crabs refer­red to the genus Calappilia A. Milne Edwards in Bouillé, 1873 (Brachyura: Calappidae). Scripta Geologica, 147: 194-219. Charrier, G., Fernandez, D. & Malaroda, R. 1964: La formazione di Pianfolco (Bacino oligoce­nico Ligure Piemontese). Atti Accademia dei Lincei, Memorie, 8/7: 25-81. Collins, J.S.H. 1997: Fossil Homolidae (Crustacea; Decapoda). Bulletin of the Mizunami Fossil Museum, 24: 51-71. Collins, J.S.H. & Saward, J. 2006: Three new genera and species of crabs from the Lower Eocene London Clay of Essex, England. Bulletin of the Mizunami Fossil Museum, 33: 67-76. Collins, J.S.H., Schulz, B.P. & Jakobsen, S.L. 2005: First record of brachyuran decapods (Crustacea, Decapoda) from Fur Formation (early Eocene) of Mors and Fur Island, Denmark. Bulletin of the Mizunami Fossil Museum, 32: 17-22. Crawford, R.S. 2008: A new species of fossil ho- molid crab (Decapoda: Brachyura) from the Río Foyel Formation (Paleogene), Río Negro Province, Argentina. Journal of Paleontology, 82/4: 835-841. Crema, C. 1895: Sopra alcuni decapodi terziari del Piemonte. Atti della Reale Accademia di Scienze di Torino, 30: 664-681. Davie, P.J.F., Guinot, D. & Ng, P.K.L. 2015: Systematics and classification of Brachyura. Crustaceana, 9C/71-18: 1049-1130. https://doi. org/10.1163/9789004190832_021 De Angeli, A. & Alberti, R. 2012: Nogarhomola aurorae n. gen., n. sp. (Decapoda, Brachyura, Homolidae) dell’Eocene medio dei Monti Lessini orientali (Vicenza, Italia settentri­onale). Studi Trentini di Scienze Naturali. Acta Geologica, 92: 63-70. De Angeli, A. & Ceccon, L. 2013: Latheticocarcinus italicus sp. nov. (Decapoda, Brachyura, Homolidae) dell’Eocene inferiore (Ypresiano) di Monte Magre (Vicenza, Italia settentrio­nale). Lavori Societa Veneziana di Scienze Naturali, 38: 103-109. De Angeli, A. & Marangon, S. 2001: Paralbunea galantensis, nuova specie di anomuro oligo­cenico del Bacino Ligure-Piemontese (Italia settentrionale). Studi Trentini di Scienze Naturali - Acta Geologica, 76 (1999): 99-105. De Angeli, A. & Marangon, S. 2003a: Contributo alla conoscenza dei Decapodi oligocenici del Bacino Ligure Piemontese (Italia settentri­onale). Atti della Societa italiana di Scienze naturali e del Museo civico di Storia naturale in Milano, 144/2: 185-196. De Angeli, A. & Marangon, S. 2003b: Decapod crustaceans from the Oligocene of the Ligure Piemontese Basin, northern Italy. In: Second Symposium on Mesozoic and Cainozoic Decapod Crustaceans, Boxtel and Maastricht (the Netherland), 3-6 September, 2003. Contributions to Zoology, 72/23: 101-104. https://doi.org/10.1163/18759866-0720203007 Fabiani, R. 1910: I crostacei terziari del Vicentino. Bollettino del Museo Civico di Vicenza, 1/1: 1-40. Fabricius, J.C. 1793: Entomologiae Systematica Emendata et Aucta, Secundum Classes, Ordines, Genera, Species, Adjectis Synonimis, Locis, Observationibus, Descriptionibus. Hafniae (= Copenhagen), C.G. Proft et Storch, 519 p. Fantoni, R., Lovati, I. & Rossi, P.M. 1983: La su­ccessione oligocenica tra Ovada e Cassinelle (Alessandria). Evoluzione paleogeografia ed implicazioni strutturali. Rivista Italiana di Paleontologia, 88/2: 251-270. Feldmann, R.M. & Schweitzer, C.E. 2009: Revision of Jurassic Homoloidea De Haan, 1839, from the Ernstbrunn and Štramberk limestones, Austria and the Czech Republic. Annalen des Naturhistoririschen Museums, Wien, 111/A: 183-206. Franceschetti, B. 1967: Studi geologici sul-la regione ad Ovest di Ovada (Provincia di Alessandria). Memorie della Societa Geologica Italiana, 6: 379-420. Garassino, A., Clements, D. & Vega, F.J. 2015: A new homolid crab, Peedeehomola deanbogani n. gen., n. sp., from the Peedee Formation (late Maastrichtian), Rocky Point Member, North Carolina, USA. Palaeontología Mexicana, 4/2: 25-29. Garassino, A., De Angeli, A. & Pasini, G. 2010: Homola barbata (Fabricius, 1793) from the Tyrrhenian (late Pleistocene) of Calabria (S Italy). In: 4th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Eichstätt, Germany, June 8-10, 2010, 15 p. Garassino, A., Weaver, P.G., Portell, R.W. & Vega, F.J. 2019: A new homolid crab, Lindahomola longispina n. gen., n. sp. (Crustacea, Decapoda), from the Peedee Formation (late Maastrichtian), Rocky Point Member, North Carolina, USA. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 292/3: 247­258. https://doi.org/10.1127/njgpa/2019/0819 Gelati, R. & Gnaccolini, M. 1978: I conglomera-ti della Val Borbera, al margine orientale del Bacino Terziario Ligure-Piemontese. Rivista Italaliana di Paleontologia e Stratigrafia, 84/3: 701-728. Gelati, R. & Gnaccolini, M. 1980: Significato dei corpi arenacei di conoide sottomarina (Oligocene - Miocene inferiore) nell’evoluzio­ne tettonico-sedimentaria del Bacino Ligure-Piemontese. Rivista Italiana di Paleontologia e Stratigrafia, 86/1: 167-186. Gnaccolini, M. 1978: Depositi oligocenici di “Fan-Delta” nella regione compresa tra Bosio e la Cresta di Cravara (Bacino Terziario Ligure-Piemontese). Rivista Italiana di Paleontologia e Stratigrafia, 84/3: 627-639. Guinot, D. 1991: Établissement de la famille des Poupiniidae pour Poupina hirsuta gen. nov., sp. nov. de la Polynésie (Crustacea Decapoda Brachyura Homoloidea). Bulletin du Muséum national d’Histoire naturelle, Paris, 4/12 (1990): 577-605. Guinot, D. & Richer de Forges, B. 1995: Crustacea Decapoda Brachyura: Révision de la famille des Homolidae de Haan, 1839. In: Résultats des Campagnes Musorstom, 13. Mémoires du Muséum national d’Histoire naturelle Paris, 163: 283-517. Guinot, D., Tavares, M. & Castro, P. 2013: Significance of the sexual openings and supplementary structures on the phylogeny of brachyuran crabs (Crustacea, Decapoda, Brachyura), with new nomina for higher-ran­ked podotreme taxa. Zootaxa, 3665/1: 1-414. https://doi.org/10.11646/zootaxa.3665.1.1 Jenkins, R.J.F. 1977: A new fossil homolid crab (Decapoda, Brachyura), middle Tertiary, so­utheastern Australia. Transactions of the Royal Society of South Australia, 101/1: 1-10. Karasawa, H. 1992: Fossil decapods crustace­ans from the Manda Group (Middle Eocene), Kyushu, Japan. Transactions and Proceedings of the Palaeontological Society of Japan, new series, 167: 1247-1258. Karasawa, H., Schweitzer, C.E. & Feldmann, R.M. 2008: Revision of Portunoidea Rafinesque, 1815 (Decapoda: Brachyura) with emphasis on the fossil genera and families. Journal of Crustacean Biology, 28/1: 82-127. https://doi. org/10.1651/07-2882R.1 Karasawa, H., Schweitzer, C.E. & Feldmann, R.M. 2011: Phylogenetic analysis and revised classification of podotrematous Brachyura (Decapoda) including extinct and extant fa­ milies. Journal of Crustacean Biology, 31/3: 523-565. https://doi.org/10.1651/10-3423.1 Larghi, C. 2003: First record of Oligocene retrop­ lumid crab (Crustacea: Decapoda: Brachyura) from Italy. Bulletin of the Mizunami Fossil Museum, 30: 57-60. Latreille, P.A. 1802: Histoire naturelle générale et particuliere, des Crustacés et des Insectes, 3: 1-468. F. Dufart, Paris. Leach, W.E. 1815a: The zoological miscellany: being descriptions of new, or interesting ani­ mals, illustrated with coloured figures, drawn from Nature, by Nodder, R.P. & c., London. E. Nodder & Son, 2: 145-154. Leach, W.E. 1815b: The zoological miscellany: being descriptions of new, or interesting ani­mals. Vol. 2. Covent Garden and London, E. Nodder and Son. 154 pp., Plates 61-120. https://doi.org/10.5962/bhl.title.41372 Marangon, S. & De Angeli, A. 1997: Cherpiocarcinus, nuovo genere di brachiuro (Decapoda) dell’Oligocene del Bacino Ligure- Piemontese (Italia settentrionale). Lavori Societa Veneziana di Scienze Naturali, 22: 97-106. Marangon, S. & De Angeli, A. 2007: New deca-pod assemblage from the lower Oligocene (Rupelian) of Ligure Piemontese Basin (NO Italy). Memorie della Societa italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, 35/2: 73-75. Michelotti, G. 1861: Étude sur le Miocene inféri­eur de l’Italie septentrionale. Mémoire de la Société Hollandais des Sciences, 2/15: 1-184. Milne-Edwards, A. 1862: Monographie des Crustacés fossiles de la famille Cancériens. Annales des Sciences naturelles Paris (Zoologie), 4/18: 31-85, pls 1-10. Milne-Edwards, A. 1865: Monographie des Crustacés fossiles de la famille Cancériens. Annales des Sciences naturelles Paris (Zoologie), 5/3: 297-351, pls 5-10. Milne Edwards, H. 1837: Description of Dromilites. In: L’Institut, 5: 255. Nyborg, T. & Garassino, A. 2017: New occurren­ces of fossil Homolidae from eastern Pacific. Boletín de la Sociedad Geológica Mexicana, 69/1: 135-148. Pasini, G. & Garassino, A. 2017a: A new raninoid crab (Decapoda, Brachyura, Raninidae) from the early Oligocene (late Rupelian) of Italy. Natural History Sciences, Atti della Societa italiana di Scienze naturali e del Museo ci­vico di Storia naturale in Milano, 4/1: 87-96. https://doi.org/10.4081/nhs.2017.323 Pasini, G. & Garassino, A. 2017b: Calappa demarcoi n. sp. (Crustacea, Brachyura, Calappidae) from the early Oligocene of the Ligure Piemontese Basin, Piedemont (NW Italy). Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 282/1: 73-76. Pasini, G., Garassino, A. & Damarco, P. 2019: A new calappid species from the Ligure Piemontese Basin (NW Italy) and reappraisal of the fossil calappid specimens in the Museo “G. Maini”, Ovada. Boletín de la Sociedad Geolgica Mexicana, 71/1: 219-227. https:// doi.org/10.18268/bsgm2019v71n1a12 Rathbun, M.J. 1926: The fossil stalk-eyed Crustacea of the Pacific slope of North America. United States National Museum Bulletin, 138: 1-155. Ristori, G. 1888: Alcuni crostacei del Miocene medio italiano. Atti della Societa Toscana di Scienze Naturali, 9: 1-8. Ristori, G. 1889: Crostacei Piemontesi del Miocene inferiore. Bollettino della Societa Geologica Italiana, 7: 397-413. Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H. & Schweigert, G. 2010: Systematic list of fossil decapod crustacean species. Crustaceana, Monograph, 10: 1-222. Sismonda, E. 1846: Descrizione dei Pesci e Crostacei fossili nel Piemonte. Memorie della Reale Accademia di Scienze di Torino, 2/10: 1-89. Sismonda, E. 1861: Appendice alla descrizio­ne dei Pesci e Crostacei fossili del Piemonte. Memorie della Reale Accademia di Scienze di Torino, 2/19: 1-24. Stimpson, W. 1858: Prodromus descriptionis ani­malium evertebratorum, quae in Expeditione ad Oceanum Pacificum Septentrionalem, a Republica Federata missa, Cadwaladaro Ringgold et Johanne Rodgers Ducibus, ob-servavit et descripsit. Pars VI. Crustacea Oxystomata. Proceedings of the Academy of Natural Sciences of Philadelphia, 10: 159-163. Wood-Mason, J. & Alcock, A. 1891: A note on the result of the last season’s deep-sea dred­ging: natural history notes from H. M. Indian Marine Survey Steamer “Investigator”: Commander R. F. Hoskyn, R. N. Commanding, no. 21. Annals and Magazine of Natural History, 6/7: 258-272. GEOLOGIJA 63/1, 83-91, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.009 Revision of species Plagiolophus sulcatus Beurlen, 1939 (Decapoda, Brachyura) from the Oligocene of Hungary and Slovenia Revizija vrste Plagiolophus sulcatus Beurlen, 1939 (Decapoda, Brachyura) iz oligocena Madžarske in Slovenije Matúš HYŽNÝ1, Rok GAŠPARIČ2 & Alfréd DULAI3 1Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava 842 15, Slovakia; e-mail: hyzny.matus@gmail.com 2Oertijdmuseum Boxtel, Bosscheweg 80, 5293 WB Boxtel, the Netherlands; e.mail: rok.gasparic@gmail.com 3Department of Palaeontology and Geology, Hungarian Natural History Museum, Ludovika tér 2, Budapest 1088, Hungary; e-mail: dulai.alfred@nhmus.hu (Postal address: P.O. Box 137, Budapest 1431) Prejeto / Received 14. 1. 2020; Sprejeto / Accepted 9. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Decapod crustaceans, crab, Glyphithyreus, Oligocene, Rupelian, Chattian Ključne besede: raki deseteronožci, rakovica, Glyphithyreus, oligocen, rupelij, chattij Abstract The crab species Plagiolophus sulcatus Beurlen, 1939 from the Oligocene (Rupelian) Kiscell Clay of Hungary is revised and its holotype is reillustrated for the first time since its original publication. Material from the upper Oligocene (Chattian) of Trbovlje (Slovenia) is here considered conspecific with P. sulcatus. Attribution of this species to the genus Glyphithyreus, as proposed by Hiroaki Karasawa and Carrie Schweitzer in 2004, is confirmed. Glypthithyreus sulcatus differs from congeners in possessing protogastric regions that are subtriangular in outline and in having fewer and coarser tubercles on elevated carapace regions. Izvleček Revidirana je vrsta rakovice Plagiolophus sulcatus Beurlen, 1939, iz oligocenskih (rupelijskih) kiscellijskih glinenih plasti. Prvič po prvotni objavi je predstavljen holotip in novi primerek iz zgornjega oligocena (chattija) Trbovelj (Slovenija), ki prav tako pripada vrsti P. sulcatus. Potrjena je pripadnost te vrste rodu Glyphithyreus, kar sta predlagala Hiroaki Karasawa in Carrie Schweitzer leta 2004. Glypthithyreus sulcatus se od drugih pripadnikov tega rodu razlikuje po tem, da ima trikotno obliko protogastrične regije in manjše število, a izrazitejše oblikovane bradavice na višjih delih oklepa. Introduction Beurlen (1939) described a decapod crusta­cean faunule from the Oligocene Kiscell Clay of Hungary. The ghost shrimps of this assemblage have since received proper re-evaluation (Hyžný & Dulai, 2014), the three species of brachyu-ran crabs, including Plagiolophus sulcatus, re­mained unrevised in respect with modern clas­sification until now. This species was tentatively retained in the genus Plagiolophus Bell, 1858 (non Pomel, 1857) by Karasawa & Schweitzer (2004) in their revision of Glyphithyreus Reuss, 1859. Those authors noted that, “the placement of G. sulcatus is somewhat tentative and is based upon our translation of Beurlen’s (1939) original description in German and the very poorly repro­duced illustration in our copy of the work (Kara­ sawa & Schweitzer, 2004, p. 148)“. Thus, since the erection of the species by Beurlen (1939), the type material of P. sulcatus has not yet been re-exa­mined. Bittner (1884) presented an extensive over­view of Cenozoic sedimentary rocks and their fossil contents in the vicinity of Sagor (nowadays Zagorje ob Savi) and Trifail (nowadays Trbovlje). Among other faunal elements, Bittner (1884: 29) also mentioned the presence of a crab that was morphologically close to Plagiolophus. Several crab specimens from Trbovlje have recently been traced by one of us (MH) during a detailed screen of the main fossil collections in Austria (Hyžný & Gross, 2016; Hyžný & Zorn, in press). One of these indeed represents Plagiolophus (= Glyph-ithyreus) and has been considered to be conspe­cific with P. sulcatus by Hyžný & Gross (2016). However, this decision was not based on a first­ hand examination of the type material. The aim of the present note is to provide a re­vised description of Glyphithyreus sulcatus on the basis of the type specimen of Plagiolophus sulcatus from Hungary and of additional materi­al from Slovenia. Geological settings The material that forms the basis for the pres­ent study comes from two localities, as follows: Budapest area (Hungary): the holotype of Pla­giolophus sulcatus originated from the Kiscell Clay of Óbuda (currently a part of the city of Bu­dapest; Fig. 1). The Kiscell Clay Formation con­sists of grey, well-bioturbated, calcareous clay and clayey marl (Báldi, 1983), the type area being Óbuda, where brickyards were in operation dur­ing the second half of the 19th century. The most famous of these was the Újlak brickyard (former­ly Holzspach brickyard); this was the type local­ity of Plagiolophus sulcatus. The calcareous nannoflora of the Kiscell Clay is indicative of the lower part of zone NP 24 (up­per Kiscellian) (compare Nagymarosy & Bál­di-Beke, 1988). This assemblage probably equates with the topmost part of zone P 20 and the lower part of zone P 21 in the planktonic foraminife­ral zonation (Horváth, 1998). In the upper part of the Kiscell Clay, the assemblage also belongs to the upper Kiscellian (NP 24 nannoplankton zone and P 21 planktonic foraminiferal zone) (see Horváth, 1998, 2002). K-Ar dating of glauconite from the Kiscell Clay at Pilisborosjenő, north of Budapest, has yielded a date of 33+/-3 Ma (Báldi et al., 1975). The Kiscellian is a regional stage in the Central Paratethys that is used for part of the Lower Oligocene (Rupelian). It was first proposed by Báldi (1979) and later defined in a type section by Báldi (1986). The Kiscellian is now considered to correspond with the Rupelian (Báldi et al., 1999; Piller et al., 2007). Generally speaking, the Kiscell Clay is not very rich in macrofossils. Strata assigned to this unit, however, were mined at several brickyards along the margins of the Buda Mountains for nearly a century, which explains why their fauna is relatively well known, including foraminifera (Hantken, 1875; Majzon, 1966; Sztrákos, 1974; Fig. 1. Left – Simplified map of Hungary and the Budapest area with the position of the former Újlak brickyard (asterisk). Right – Simplified lithostratigraphical scheme of the Hungarian Oligocene at the Buda Hills area (modified after Császár, 1997); the asterisk indicate approximate position of the Kiscell Clay decapod assemblage. 1 = Hárshegy Sandstone Formation Fig. 2. Left – Simplified map of Slovenia and locality of provenance (star) of specimen of Glyphithyreus sulcatus (Beurlen, 1939) studied herein. Right – Simplified lithostratigraphical section of the Trbovlje locality (modified after Bechtel et al., 2004); strata that have yielded crab specimens are marked. Gellai-Nagy, 1988; Horváth, 2002, 2003), gas­tropods and bivalves (Noszky, 1939, 1940; Bál­di, 1986), cephalopods (Szörényi, 1933; Wagner, 1938); brachiopods (Meznerics, 1944), ostracods (Monostori, 1982, 2004), cirripedes (Szényi, 1934), decapod crustaceans (Beurlen, 1939; Hyžný & Dulai, 2014), and fishes (Weiler, 1933, 1938; Nolf & Brzobohatý, 1994; Szabó & Kocsis, 2016). Trbovlje (Slovenia): The locality of Trbovlje is situated in the Laško Syncline and belongs to geotectonic unit of the Sava folds (Placer, 1999; Jelen & Rifelj, 2002). Oligocene and Miocene sed­imentary rocks were laid down disconformably on Triassic and Cretaceous fine-grained, clastic rocks (Hafner, 2000). Successive regressive and transgressive sequences suggest alternating cy­cles of deepening and shallowing in the deposi­tional environment. The stratigraphical sequence also shows a variably strong influence of marine and terrestrial conditions. The locality studied is a disused coal pit (GPS co-ordinates: 46°08’56” N, 15°04’03” E), situated some 3 km east of the city of Trbovlje, along the road to Hrastnik (Fig. 2). The area was inten­sively mined for lignite (brown coal) during the last two centuries. On account of the rich brown coal deposits, the area has been thoroughly stud­ied in the past (Bittner, 1884; Petrascheck, 1952; Kuščer, 1967; Jelen et al., 1992; Placer, 1999; Haf­ner, 2000). The Cenozoic sequence here starts with the upper Oligocene Trbovlje Formation, which disconformably overlies Triassic rocks. The coal-bearing Trbovlje Formation is also known as the Socka beds (“Sotzkaschichten”) or Pseu­do-Socka beds in the older literature (Bechtel et al., 2004). This unit starts with basal conglom­erates, sandstones layers and greyish coloured marls to marly limestones. The marly beds con­tained an economically important coal seam. Pollen and coal analysis have demonstrated the taxodiacean–cupressacean origin of the main coal seam (Bruch, 1998; Križnar, 2000) and most likely a transition to a reed marsh in the upper part. The overlying marls and marly limestones are the most fossil-rich beds (Fig. 2), with diverse molluscan and fish assemblages (Križnar, 2015; Buckeridge, in press) and abundant floral re­mains (Lorencon, 2019). The sequence continues with a horizon of grey marine clay of the Sivica Formation. In the top part of the clay succession occur individual layers and lenses of fine-grained clastic rocks, particularly sandstones and con­glomerates. The transition to the clastic beds of the lower Miocene Govce Formation is continu­ous (Hafner, 2000). The crab-bearing strata of the Trbovlje For­mation are Late Oligocene in age (Odin et al., 1994; Bechtel et al., 2004). Material and methods The crabs studied herein are part of historical collections and have not been prepared further. Specimens were photographed with and without ammonium chloride coating. Abbreviations GBA: Geological Survey of Austria, Vienna (Austria). HNHM: Department of Palaeontology and Geology, Hungarian Natural History Museum, Budapest (Hungary). UMJGP: Department for Geology & Palaeon­tology, Universalmuseum Joanneum, Graz (Aus­tria). Fig. 3. Glyphithyreus sulcatus (Beurlen, 1939), the holotype of Plagiolophus sulcatus (HNHM M.59.4692) from the Kiscellian (Rupelian) of the Budapest area, Hungary. A – Frontal view. B – Dorsal view. C – Left lateral view. D – Ventral view. The spe­cimen was coated with ammonium chloride prior to photography. Scale bar equals 10 mm. Order Decapoda Latreille, 1802 Infraorder Brachyura Latreille, 1802 Subsection Heterotremata Guinot, 1977 Superfamily Xanthoidea MacLeay, 1838 Family Panopeidae Ortmann, 1893 Subfamily Eucratopsinae Stimpson, 1871 Genus Glyphithyreus Reuss, 1859 (= Plagiolophus Bell, 1858, non Pomel, 1857) Type species: Glyphithyreus formosus Reuss, 1859, by original designation. Diagnosis: See Karasawa & Schweitzer (2004: 147). Glyphithyreus sulcatus (Beurlen, 1939) emend. Figures 3–5 *1939 Plagiolophus sulcatus Beurlen, p. 155, pl. 7, fig. 11. 2004 Glyphithyreus sulcatus (Beurlen) – Ka­rasawa & Schweitzer, p. 148. 2010 Glyphithyreus sulcatus (Beurlen) – Schweitzer et al., p. 121. 2016 Glyphithyreus sulcatus (Beurlen) – Hyžný & Gross, p. 110, fig. 15.1. Emended diagnosis: Carapace subhexagonal in outline, widest in anterior one-third of length; fronto-orbital margin about 65 per cent of max­imum carapace width; carapace grooves and regions well defined, with granular transverse ridges; regions covered with coarse granules at elevations; protogastric regions subtriangular in outline. Material studied: HNHM M.59.4692, a near-complete carapace, the holotype of Plagi­olophus sulcatus; Óbuda, Hungary (Fig. 3); UM­JGP 56664, a near-complete individual, retaining pereiopods, inclusive of chelipeds, from Trbovlje, Slovenia; GBA 2007/024/0005 (Fig. 4A), counter­part of UMJGP 56664 from Trbovlje, Slovenia (Figs. 4B–C). Interestingly, part and counterpart of the specimen from Trbovlje ultimately land­ed up in two collections (see also Hyžný & Gross, 2016, fig. 15.1; Hyžný & Zorn, in press, pl. 25, fig. 2). Description: Carapace subhexagonal in out­ line; L/W (length/width) ratio 0.8, widest in anterior one-third of carapace. Fronto-orbital margin about 65 per cent of maximum carapace width; front broken; orbits poorly preserved. Anterolateral margin strongly convex with four blunt teeth, including outer orbital tooth; pos­terolateral margin sinuous, converging posteri­ orly. Carapace grooves and regions well defined; epigastric regions well developed, rectangular in outline; protogastric regions subtriangular in outline, with steep ridges anteriorly; mesogas­tric region well developed, with elongate, narrow anterior process; metagastric region with gran­ular transverse ridge and two distinct gastric pits posteriorly, separated from smooth urogas­tric region by narrow groove; cardiac region as wide as metagastric region, with broad, granular transverse ridge; hepatic regions well defined, delimited by deep cervical groove posteriorly; branchial region divided into two portions by distinct branchio-cardiac groove, each bearing granular transverse ridge. Regions covered with coarse granules at elevations, with cardiac region Fig. 4. Glyphithyreus sulcatus (Beurlen, 1939) from the upper Oligocene (Chattian) of Trbovlje, Slovenia. A – GBA 2007/024/0005 (unwhitened). B – UMJGP 56664 (unwhitened). C – UMJGP 56664 (whitened with ammonium chloride). Scale bars equal 10 mm. being densely granulated, whereas protogastric, meso- and metagastric and branchial regions having only limited number of relatively large tubercles. Chelipeds (pereiopods 1) with robust chelae, insufficiently preserved; carpus subquad-rate in outline; manus approximately two times longer than tall, converging proximally; fingers shorter than manus. Pereiopods 2–5 slender, dis­ tal elements not preserved sufficiently. Remarks: Karasawa & Schweitzer (2004, p. 148) noted that, “the description of G. sulcatus clearly indicates two transverse ridges on the branchial regions, separated by a very deep cav­ity, which is certainly characteristic of Glyphi­thyreus.” We can confirm this and thus corrobo­rate the transfer of this species to this genus. As far as carapace outline is concerned, Glyphithyreus sulcatus appears to be close to G. ellipticus Bittner, 1875 from the Eocene of Italy (Bittner, 1875), as far as the published figure al­lows to judge this. However, the latter differs in having more rounded protogastric regions; these are subtriangular in outline in G. sulcatus. Ad­ditionally, G. sulcatus has fewer granules on the elevated parts of carapace regions (Figs. 3, 5). In this respect, this species differs from all conge­ners known to date, including G. formosus Re-uss, 1859 and G. wetherellii (Bell, 1858), in which carapace regions have a much finer granulation distributed over a larger area. Moreover, G. for-mosus has a wider fronto-orbital margin (Reuss, 1859, pl. 2, fig. 1) than G. sulcatus. Conclusions A revised description of Plagiolophus sulcatus, based both on its type specimen from the lower Oligocene (Rupelian) of Hungary and additional material from the upper Oligocene (Chattian) of Trbovlje (Slovenia), is presented. Interestingly, part and counterpart of the specimen from Tr-bovlje were transferred to the Universal Museum Joanneum at Graz and the Geological Survey at Vienna. The holotype of the species is refigured for the first time here since its original publica­tion. Attribution of P. sulcatus to Glyphithyreus, first suggested by Karasawa & Schweitzer (2004), is confirmed. Comparison with congeners sug­gests that G. sulcatus is differentiated by having subtriangular protogastric regions and fewer and coarser tubercles on elevated carapace regions. Acknowledgements Martin Gross (UMJGP) and Irene Zorn (GBA) granted access to the material studied. Yusuke Ando (Mizunami Fossil Museum, Japan) and John W. M. Jagt (Natuurhistorisch Museum Maastricht, Maastricht, the Netherlands) commented on an earlier version of the typescript. This research was supported by the Slovak Research and Development Agency un­der contract no. APVV-17-0555 and by the Hungarian Scientific Research Fund (OTKA/NKFIH K112708). References Báldi, T. 1979: Changes of Mediterranean (?Indopacific) and Boreal influences in Hungarian marine mollusc faunas since Kiscellian until Eggenburgian times. The sta­ge Kiscellian. Annales Géologiques des Pays Helléniques, VII. Congress CMNS, 1: 19–49. Báldi, T. 1983: Magyarországi oligocén és alsó miocén formációk [Oligocene and Lower Micene formations of Hungary]. Akadémiai Kiadó, Budapest: 293 p. (in Hungarian) Báldi, T. 1986: Mid-Tertiary stratigraphy and paleogeographic evolution of Hungary. Akadémiai Kiadó, Budapest: 201 p. Báldi, T., Báldi-Beke, M., Horváth, M., Nagymarosy, A., Balogh, K. & Sós, E. 1975: On the radiometric age and the biostratigrap­hic position of the Kiscell Clay in Hungary. Proceedings of the VIth Congress of RCMNS, Bratislava, Veda: 315–317. Báldi, T., Less, G. & Mandic, O. 1999: Some new aspects of the lower boundary of the Egerian stage (Oligocene, chronostratigraphic scale of the Paratethyan area). Abhandlungen der Geologischen Bundesanstalt, 56: 653–668. Bechtel, A., Markic, M., Sachsenhofer, R.F., Jelen, B., Gratzer, R., Lücke, A. & Püttmann, W. 2004: Paleoenvironment of the upper Oligocene Trbovlje coal seam (Slovenia). International Journal of Coal Geology, 57/1: 23–48. https:// doi.org/10.1016/j.coal.2003.08.005 Bell, T. 1858: A monograph of the fossil mala­costracous Crustacea of Great Britain, Part I. Crustacea of the London Clay, 44 p. The Palaeontographical Society, London. Beurlen, K. 1939: Neue Dekapoden-Krebse aus dem ungarischen Tertiär. Paläontologische Zeitschrift, 21: 135–161. Bittner, A. 1875: Die Brachyuren des vicentini­schen Tertiärgebirges. Denkschriften der kaiserlichen Akademie der Wissenschaften, mathematisch-naturwissenschaftliche Classe, 34: 63–106. Bittner, A. 1884: Die Tertiär-Ablagerungen von Trifail und Sagor. Jahrbuch der kaiserlich--kniglichen Geologischen Reichsanstalt, 34: 236–281. Bruch, A. 1998: Palynologische Untersuchungen im Oligozän Sloweniens - Paläo-Umwelt und Paläoklima im Ostalpenraum. Tbinger Mi-kropaläontologische Mitteilungen, 18: 1–193. Buckeridge, J.S., Kočí, T., Gašparič, R. & Kočová Veselská, M. in press: Actinobalanus? slove­niensis (Thoracica, Balanoidea), a new species of cirripede from the Oligocene and Miocene of Slovenia that grew attached to wood substrates. Neues Jahrbuch fr Geologie und Paläontologie – Abhandlungen. Accepted in press March 9th, 2020 Császár, G. (ed.) 1997: Basic Lithostratigraphic Units of Hungary. Charts and Short Descriptions. Magyar Állami Fldtani Intézet, Budapest: 114 p. Gellai-Nagy, Á. 1988: Delineation of Hantken’s foraminiferal species from the original co­llection. A Magyar Állami Fldtani Intézet Évi Jelentése 1988 évről: 133–173. Guinot, D. 1977: Propositions pour une nouvel­le classification des Crustacés Décapodes Brachyoures. Comptes rendus hebdomadaires des séances de l’Académie des sciences, D285: 1049–1052. Hafner, G. 2000: Sedimentološke značilnosti tr-boveljskih plasti. Unpublished MSc thesis, University of Ljubljana, Ljubljana: 105 p. Hantken, M. 1875: A Clavulina Szabói rétegek faunája, I. rész. Foraminiferák (Die Fauna der Clavulina Szabói Schichten, I. Teil. Foraminiferen). Jahrbuch der kniglichen ungarischen geologischen Anstalt, 4: 1–93. Horváth, M. 1998: Paleobathymetrical analysis of Upper Eocene-Lower Miocene Foraminifera of the Hungarian Paleogene Basin. Acta Geologica Hungarica, 41/2: 223–262. Horváth, M. 2002: Data to revision and distribu­tion of small foraminifera species described by Hantken (1868, 1875). Part I, Textulariidae and Miliolidae. Fragmenta Palaeontologica Hungarica, 20: 25–42. Horváth, M. 2003: Data to revision and dis­tribution of small Foraminifera species described by Hantken (1868, 1875). Part II. Nodosariidae and Vaginulinidae. Fragmenta Palaeontologica Hungarica, 21: 5–32. Hyžný, M. & Dulai, A. 2014: Deep-water fosso-rial shrimps from the Oligocene Kiscell Clay of Hungary: taxonomy and palaeoecology. Acta Palaeontologica Polonica, 59/4: 947–965. https://doi.org/10.4202/app.2012.0078 Hyžný, M. & Gross, M. 2016: From the palaeon­tological collection of the Universalmuseum Joanneum – The Cenozoic decapod crusta­ceans (Crustacea: Malacostraca: Decapoda). Joannea, Geologie und Paläontologie, 12: 73–127. Hyžný, M. & Zorn, I. in press: A catalogue of the fossil decapod crustaceans in the col­lections of the Geological Survey of Austria in Vienna. Abhandlungen der Geologische Bundesanstalt. Jelen, B. & Rifelj, H. 2002: Stratigraphic struc­ture of the B1 Tertiary tectonostratigraphic unit in eastern Slovenia. Geologija, 45/1: 115– 138. https://doi.org/10.5474/geologija.2002.010 Jelen, B., Aničič, B., Brezigar, A., Buser, S., Cimerman, F., Drobne, K., Monostori, M., Kedves, M., Pavšič, J. & Skaberne, D. 1992: Model of positional relationships for Upper Paleogene and Miocene strata in Slovenia. Interdisciplinary Geological Conference on the Miocene Epoch, Abstracts and Field Trips. Ancona, 1–72. Karasawa, H. & Schweitzer, C.E. 2004: Revision of the genus Glyphithyreus Reuss, 1859 (Crustacea, Decapoda, Brachyura, Xanthoidea) and recognition of a new genus. Paleontological Research, 8: 143–154. Križnar, M. 2000: Ksilotomske analize rjavih premogov iz Zasavja. Unpublished BSc the­sis, University of Ljubljana, Ljubljana: 62 p. Križnar, M. 2015: Oligocenska ihtiofavna (Teleostei) Slovenije - pregled in problematika najdišč. In: Rožič, B. (ed.): Razprave, poroči-la = Treatises, reports / 22. posvetovanje slo­venskih geologov = 22nd Meeting of Slovenian Geologists. Geološki zbornik, 23: 99–104. Kuščer, D. 1967: Zagorski terciar (Tertiary for­mations of Zagorje). Geologija, 10: 5–85. Latreille, P.A. 1802: Histoire naturelle, générale et particuliere des Crustacés et des Insectes. Ouvrage faisant suite a l’histoire naturelle générale et particuliere, composée par Leclerc de Buffon, et rédigée par C.S. Sonnini, mem­bre de plusieurs sociétés savantes. Familles naturelles des genres. Vol. 3. F. DuFart, Paris: 467 p. Lorencon, R. 2019: Oligocenska flora v okolici Trbovelj. Konkrecija, 8: 12–18. MacLeay, W.S. 1838: On the brachyurous deca-pod Crustacea brought from the Cape by Dr. Smith. In: Smith, A. (ed.) Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly col­lected during an expedition into the interi­or of South Africa, under the directin of Dr. Andrew Smith, in the years 1834, 1835. and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa”. Smith, Elder, and Co., London: 53–71. Majzon, L. 1966: Foraminifera-vizsgálatok. Akadémiai kiadó, Budapest: 939 p. Meznerics, I. 1944: Die Brachiopoden des unga­rischen Tertiärs. Annales historico-naturales Musei nationalis hungarici, 36: 10–60. Monostori, M. 1982. Oligocene ostracods from the surroundings of Budapest. Annales Universitatis Scientiarum Budapestinensis de Rolando Etvs Nominatae, Sectio Geologica, 21: 31–102. Monostori, M. 2004: Lower Oligocene (Kiscellian) ostracods in Hungary. Annales Universitatis Scientiarium Budapestinensis, Sectio Geologica, 34: 27–141. Nagymarosy, A. & Báldi-Beke, M. 1988: The position of the Paleogene formations of Hungary in the standard nannoplankton zo-nation. Annales Universitatis Scientiarum Budapestinensis de Rolando Eötvös Nominatae, Sectio Geologica, 28: 3–25. Nolf, D. & Brzobohatý, R. 1994: Fish otoliths from the Late Oligocene (Eger and Kiscell formati­ons) in the Eger area (northeastern Hungary). Bulletin de l’Institut royal des Sciences natu­relles de Belgique, Sciences de la Terre, 64: 225–252. Noszky, J. 1939: A kiscelli agyag mollusz­ ka-faunája. I. rész. Lamellibranchiata (Die Mollusken fauna des Kisceller Tones (Rupelien) aus der Umgebung von Budapest. I. Teil. Lamellibranchiata). Annales histori­co-naturales Musei nationalis hungarici, 32: 19–146. Noszky, J. 1940: A kiscelli agyag molluszka­ faunája. II. rész. Loricata, Gastropoda, Scaphopoda. (Die Mollusken fauna des Kisceller Tones (Rupelien) aus der Umgebung von Budapest. II. Teil. Loricata, Gastropoda, Scaphopoda). Annales historico-naturales Musei nationalis hungarici, 33: 1–80. Odin, G.S., Jelen, B., Drobne, K., Uhan, J., Skaberne, D., Pavsic, J., Cimerman, F., Cosca, M. & Hunziker, J.C. 1994: Premiers âges géochronologiques de niveaux volca­noclastiques oligocenes de la région de Zasavje, Slovénie. Giornale di Geologia, 56/1: 199–212. Ortmann, A.E. 1893: Die Decapoden-Krebse des Strassburger Museums, mit besonderer Berücksichtigung der von Herrn Dr. Döderlein bei Japan und bei den Liu-Kiu-Inseln ge­sammelten und zur Zeit im Strassburger Museum aufbewahrten Formen. VII. Theil. Abtheilung: Brachyura (Brachyura genui­na Boas) II. Unterabtheilung: Cancroidea, 2. Section: Cancrinea, 1. Gruppe: Cyclometopa. Zoologische Jahrbcher. Abteilung fr Systematik, Geographie und Biologie der Thiere, 7/3: 411–495. Petrascheck, W. 1952: Der Einfluß der Fazies der Flzablagerung auf die Eigenschaften der Kohle. Zeitschrift der deutschen geologi­schen Gesellschaft, 104: 1–9. Piller, W.E., Harzhauser, M. & Mandic, O. 2007: Miocene Central Paratethys stratigraphy – current status and future directions. Stratigraphy, 4: 71–88. Placer, L. 1999: Structural meaning of the Sava folds. Geologija, 41: 191–221. https://doi. org/10.5474/geologija.1998.012 Pomel, A. 1857: Note critique sur les caracteres et les limites du genre Palaeotherium. Archives des Sciences physiques et naturelles Geneve, 5: 200–207. Reuss, A.E. 1859: Zur Kenntnis fossiler Krabben. Akademie der Wissenschaften Wien, Denkschrift, 17: 1–90, pls. 1–24. Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H. & Schweigert, G. 2010: Systematic list of fossil decapod crustacean species. Crustaceana Monographs, 10: 1–222. https://doi.org/10.1163/ej.9789004178915.i-222 Stimpson, W. 1871: Preliminary report on the Crustacea dredged in the Gulf Stream in the Straits of Florida by L.F. de Pourtales, Assist. U. S. Coast Survey. Part I. Brachyura. Bulletin of the Museum of Comparative Zoology at Harvard College, 2: 109–160. Szabó, M. & Kocsis, L. 2016: A preliminary report on the Early Oligocene (Rupelian, Kiscellian) selachians from the Kiscell formation (Buda Mts, Hungary), with the re-discovery of Wilhelm Weiler’s shark teeth. Fragmenta Palaeontologica Hungarica, 33: 31–64. Szrényi, E. 1933: Adatok a harmadkori Sepia-félék ismeretéhez, néhány új magyarorszá­gi faj alapján. (Neue tertiäre Sepiinae aus Ungarn nebst Bemerkungen zum zeitlichen Auftreten und zur Entwicklung der Gattung Sepia). Fldtani Kzlny, 63: 1183–1189. Szrényi, E. 1934: Oligocén Scalpellum ma-radványok Magyarországról. (Scalpellum Reste aus dem ungarischen Oligozän). Fldtani Kzlny, 64: 272–277. Sztrákos, K. 1974: Paleogene planktonic fora­miniferal zones in northeastern Hungary. Fragmenta Mineralogica et Palaeontologica, 5: 29–81. Wagner, J. 1938: A kiscelli közép-oligo­cén (Rupélien) rétegek kétkopoltys Cephalopodái és új Sepia-félék a magyar eocénbl. (Die dibranchiaten Cephalopoden der mitteloligozänen (Rupelien) Tonschichten von Kiscell und eine Sepiinae aus dem unga­rischen Eozän). Annales historico-naturales Musei nationalis hungarici, 31: 179–199. Weiler, W. 1933: Két magyarországi oligocén­korhalfauna. (Zwei oligozäne Fischfaunen aus dem Knigreich Ungarn). Geologica Hungarica, Series Palaeontologica, 11: 1–54. Weiler, W. 1938: Neue Untersuchungen an mi-tteloligozänen Fischen Ungarns. Geologica Hungarica, Series Palaeontologica, 15: 1–31. GEOLOGIJA 63/1, 93-99, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.010 The first record of a paguroid shield (Decapoda, Anomura, Annuntidiogenidae) from the Miocene of Cyprus Prva najdba ščitov rakov samotarjev (Decapoda. Anomura, Annuntidiogenidae) iz miocenskih plasti Cipra Jonathan J.W. WALLAARD1, René H.B. FRAAIJE1, John W.M. JAGT2, Adiël A. KLOMPMAKER3,4 & Barry W.M.VAN BAKEL1 1Oertijdmuseum, Bosscheweg 80, 5283 WB Boxtel, the Netherlands; curator@oertijdmuseum.nl 2Natuurhistorisch Museum Maastricht, de Bosquetplein 6-7, 6211 KJ Maastricht, the Netherlands; john.jagt@maastricht.nl 3Department of Museum Research and Collections & Alabama Museum of Natural History, The University of Alabama, Box 870340, Tuscaloosa, AL 35487, USA; adielklompmaker@gmail.com 4Department of Integrative Biology & Museum of Paleontology, University of California, Berkeley, 1005 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA Prejeto / Received 8. 11. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Paguroidea, Mediterranean, Cenozoic, Miocene, Cyprus, new species Ključne besede: Paguroidea, sredozemlje, kenozoik, miocen, Ciper, nova vrsta Abstract For the first time, a paguroid shield is recorded from upper Miocene reefal strata (Koronia Member, Pakhna Formation) that crop out along the northern margin of the Troodos Massif, north of the village of Mitsero, Cyprus. Described here as Paguristes joecollinsi sp. nov., it constitutes the first paguroid shield known from Miocene deposits. The paucity of Cenozoic paguroid shields can probably be linked to a collecting bias in view of their relatively small size; in addition, suitable gastropod shells and internal moulds of such should be screened for ‘hidden’ hermit crabs. Izvleček Predstavljamo prvo najdbo ščita raka samotarja iz zgornjemiocenskih grebenskih apnencev (člen Koronija, formacija Pakhna), ki izdanjajo vzdolž severnega roba masiva Troodos, severno od vasi Mitsero na Cipru. V prispevku predstavljamo novo vrsto Paguristes joecollinsi sp. nov., ki je hkrati tudi prva najdba paguroidnega ščita miocenske starosti. Odsotnost kenozojskih paguroidnih ščitov je verjetno povezana z njihovo majhnostjo, saj jih hitro spregledamo. Pri iskanju ostankov rakov samotarjev je treba natančno preveriti tudi lupine in kamena jedra polžev. Introduction Up to now, abundant paguroid shield mate­rial has been recorded only from Jurassic ree­fal deposits (e.g., Van Bakel et al., 2008; Fraaije, 2014a; Fraaije et al., 2019) and mid- and Upper Cretaceous strata of comparable lithologies (e.g., Fraaije et al., 2008, 2009, 2012). In stark con­trast is the current record of just a single hermit crab shield from Eocene coral-algal limestones in northern Italy as recorded by Beschin et al. (2016, 2017) and of an individual of Dardanus col-osseus, preserved in situ in an internal mould of a gastropod from the Eocene of Austria (Fraaije & Polkowsky, 2016). Recently, six partially pre­served shields have been briefly described and illustrated on the internet by a private collector, who had recovered them from reefal strata of Danian age at a quarry near Vigny (Paris Basin, France) (Buridan.over-blog.com 2018). All of the above constitute the current meagre record of paguroid shields of Paleogene and Neogene age that we are aware of. Although relatively common in the fossil re­cord, hermit crabs rarely become fossilised with­in the empty gastropod shells they usually inhab­it, probably because the animals abandon these when under stress (Dunbar & Nyborg, 2003). Al­ternative hypotheses are that the hard parts fall out of the gastropod shell upon decay of the her­mit crab and not all Mesozoic hermit crabs in­habited gastropods (e.g., Fraaije, 2003). A recent study by Klompmaker et al. (2017) has revealed that the decay of complete paguroid animals is a rapid process, in comparison to other decapod crustaceans such as lobsters and crabs. They also demonstrated that, in addition to paguroid claws, anterior carapaces (shields) also have a relative­ly high preservational potential compared to the less calcified posterior shield. This result sug­gests that the paucity of extinct paguroid car-apaces/shields might be a matter having been overlooked by collectors in the field on account of their small to diminutive size in comparison to other associated decapod crustaceans. Addi­tionally, extensive checking of the content of gas­tropod shells or their internal moulds is likely to yield more paguroid specimens. The new specimen described here was collect­ed in May 2017 by one of us (RHBF) while doing fieldwork together with the fourth author (AAK) in upper Miocene reefal deposits at Mitsero, Cy­prus (Figs. 1, 2). Following the record of a new, shallow-water munidopsid anomuran by Fraaije (2014b), this is only the second study on decapod crustaceans from the Miocene of Cyprus. More material from various localities in Cyprus is now contained in the collections of the Oertijdmuse-um at Boxtel (the Netherlands). Below we adopt the morphological terminology of paguroid car­apaces as described by Fraaije et al. (2019). Institutional abbreviation: MAB, Oertijdmu­seum, Boxtel, the Netherlands. Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Anomura MacLeay, 1838 Superfamily Paguroidea Latreille, 1802 Family Annuntidiogenidae Fraaije, 2014a Genus Paguristes Dana, 1851 Type species: Paguristes hirtus Dana, 1851, by the subsequent designation of Stimpson (1858). Included species: For fossil taxa, reference is made to Gagnaison (2012), Fraaije et al. (2015, ta­ble 1), Karasawa & Fudouji (2018, p. 23) and Bes-chin et al. (2018). For extant species, see Lemaitre & McLaughlin (2019). Fig. 2. Location of a num­ber of basins with Miocene strata, with the type locality of Paguristes joecollinsi sp. nov. marked by a large aste­risk; the provenance of the only other anomuran recor­ded to date from the Miocene of Cyprus, Palmunidopsis muelleri Fraaije, 2014b, is marked by a small asterisk. Image modified from Fraaije (2014b, fig. 1) Fig. 3. Dorsal view of the shield of the holotype of Paguristes joecollinsi sp. nov. (MAB 10456a) as described here. No image of the lateral side is provided because the specimen sits in a depression, making further preparation too risky. Paguristes joecollinsi sp. nov. Diagnosis: Shield elongated (length/width ra­tio c. 1.15); broad, rimmed and shallow orbital cav­ity; convex postrostral ridges indented medially by central gastric furrow; pronounced, globose and spinose massetic region; reniform keraial re­gion; narrow and spinose lateral branchial area. Anterior gastric region with transversely crenu-lated muscle scar; V-shaped cervical groove. Material: The holotype and sole known spec­imen to date (MAB 10456a,b: part and counter­ part) is an anterior part of the carapace with a maximum length of 3.8 mm and a maximum width of 3.3 mm. Etymology: The species is named after our recently departed friend and colleague, Joseph (‘Joe’) S.H. Collins of London (England), who did so much to stimulate decapod crustacean studies by three of us (RHBF, BWMvB and JWMJ). We owe him a great deal. Locality and stratigraphy: To the west of Kreatos Hill, about one kilometre to the north­north-west of the village of Mitsero, in coral-reef talus of the upper Miocene (Tortonian, 11.6­ 7.2 Ma) Koronia Member (Pakhna Formation; see Fig. 1). The shield was recovered from a block of bioclastic rock measuring about one square me-tre. The sedimentology and stratigraphy of this region have been described in detail by Robert­son et al. (1991) and Follows (1992). Description: Shield elongated (L/W ratio c. 1.15), convex transversely, almost straight longi­tudinally, divided into distinct regions by grooves (as shown in Fig. 3); broad, rimmed and shallow orbital cavity, broad, slightly convex postrostral ridges centrally indented by central gastric fur­row, extending posteriorly in faint central line; pronounced, very globose and spinose massetic region, posteriorly covered with finely spinose ridges; tiny reniform but clear keraial region; narrow and spinose lateral branchial area; ante­rior gastric region alongside central furrow with transversely crenulated ornament; V-shaped cervical groove; shield irregularly covered with large (setal) pores. Remarks: The new species is assigned to Paguristes because the shape of the anteri­or shield, the grooves such as a central gastric groove, and the regional definition conform well with those of many modern species (e.g., Forest et al., 2000). Numerous representatives of Paguris­tes have been described from the fossil record, from the Albian (late Early Cretaceous) onwards (see Fraaije et al., 2015, table 1), but nearly all of these are based exclusively on chelae, with the exception of two, namely a partial shield from the upper Pleistocene of southern Italy, referred to Paguristes cf. syrtensis de Saint Laurent, 1971, by Garassino et al. (2014) and a specifical­ly indeterminate form, Paguristes sp., from the lower Eocene of northern Italy (Beschin et al., 2016). A comparison with this specimen is not made here, because this species will be placed in a different genus (Fraaije et al., 2020). Paguristes joecollinsi sp. nov. differs from P. cf. syrtensis in having less convex orbital cavities, a much more globose massetic region, less convex upper orbit­al margins and substantially fewer (setal) pores across the shield, although the cuticle is less well preserved. We have also compared the species to extant representatives from the same geograph­ical region, the Mediterranean, which was a nearly enclosed basin during the Tortonian (e.g., Rgl, 1999). After all, decapods crustaceans with stratigraphical ranges of 10 million years or more have been reported occasionally (Klompmaker et al., 2012, p. 792-793; Hyžný, 2016, table 1). This region may also harbour one or more descend­ants of the species in the present study. However, the shields of extant Mediterranean species of Paguristes are not morphologically identical or very close to the new species. Paguristes joeco­llinsi sp. nov. differs from P. eremita (Linnaeus, 1767) [= P. oculatus (Fabricius, 1775) and P. mac-ulatus (Risso, 1827)] (see Pipitone, 1998; Koçak et al. 2005, for drawings and images), P. streaensis Pastore, 1984 and P. syrtensis in that the general shape is more triangular and the massetic region is more pronounced in the new species. The shield appears to show impressions of the anterior gas­ tric muscles (sensu Klompmaker et al., 2019, fig. 14F) in the anterior portion. The assemblage from Mitsero also contains paguroid appendage fragments, but more re­search is needed to check whether one or more specimens might be ascribed to P. joecollinsi sp. nov. Ascribing disarticulated paguroid elements to one species is difficult, but it is essential to evaluate the true diversity of paguroids within assemblages. For example, Fraaije et al. (2013) have attempted to link sixth abdominal tergites to shield-based species based on the relative abundance of these isolated elements. None of the propodi within the Mitsero assemblage known to date is comparable to another Miocene Paguris­tes, P. cserhatensis Mller, 1984, from the middle Miocene of Hungary, or with Paguristes gagnai­soni from the middle Miocene of France (Gagnai-son, 2012). Acknowledgements We thank Thea van Boom-Fraaije for her com­pany and assistance during fieldwork campaigns over recent years, the late Pál Mller for showing other Miocene localities and inspiring future research, and the journal reviewers, Francisco J. Vega and Ewa Krzemińska, for pertinent comments on an earlier draft of the typescript. This research was supported, in part, by a 2017 Paleontological Society Arthur J. Boucot research grant to one of us (AAK). References Beschin, C., Busulini, A., Tessier, G. & Zorzin, R. 2016: I crostacei associati a coralli nell’Eocene inferiore dell’area di Bolca: Verona e Vicenza, Italia nordorientale. Memorie del Museo ci­vico di Storia naturale di Verona – 2. Serie. Sezione Scienze della Terra, 9: 48-53. Beschin, C., Busulini, A., Calvagno, M., Tessier, G. &Zorzin, R. 2017: Ypresian decapod crustace­ an faunas from the coral-algal environments in the eastern Lessini Mountains (Vicenza and Verona territory - NE Italy): a comparati­ve analysis. Bulletin de la Société géologique de France, 188/3: 13. https://doi.org/10.1051/ bsgf/2017177 Beschin, C., Busulini, A., Fornaciari, E., Papazzoni, C.A. & Tessier, G. 2018: La fau­na di crostacei associati a coralli dell’Eoce­ne superiore di Campolongo di Val Liona (Monti Berici, Vicenza, Italia nordorientale). Bollettino del Museo di Storia Naturale di Venezia, 69: 129-215. Buridan.over-blog.com 2018: Quelques cru­stacés du Danien et du Montien du Bassin de Paris. Deuxieme partie (Faxegalathea; Annuntidiogenes). Accessed through: http:// buridan.over-blog.com/2018/11/quelques--crustaces-du-danien-et-du-montien-du--bassin-de-paris-deuxieme-partie.html (on November 19, 2019). Dana, J. 1851: Conspectus crustaceorum quae in orbis terrarium circumnavigatione, Carolo Wilkes e classe reipublicae foedera­tae duce, lexit et descripsit. (Preprint from) Proceedings of the Academy of Natural Sciences, Philadelphia 5: 267-272. Dunbar, S. & Nyborg, T.G. 2003: Three speci­mens of hermit crabs found associated with their host gastropod shell from the Pliocene San Diego Formation, California and re­assessment of the paucity of fossil hermit crabs associated with gastropod shells in the fossil record. Geological Society of America, Abstracts with Programs, 35: 56. Fabricius, J.C. 1775: Systema Entomologiae, sis-tens insectorum classes, ordines, genera, species, adiectis synonymis, locis, descripti­onibus, observationibus. Flensburg/Leipzig, Officina Libraria Kortii, 832 pp. Follows, E.J. 1992: Patterns of reef sedimentati­on and diagenesis in the Miocene of Cyprus. Sedimentary Geology, 79: 225-253. Forest, J., de Saint Laurent, M., McLaughlin, P.A. & Lemaitre, R. 2000: The marine fau­na of New Zealand: Paguridea (Decapoda: Anomura) exclusive of the Lithodidae, NIWA Biodiversity Memoir, 114: 1-250. Fraaije, R.H.B. 2003: The oldest in situ hermit crab from the Lower Cretaceous of Speeton, UK. Palaeontology, 46: 53-57. https://doi. org/10.1111/1475-4983.00286 Fraaije, R.H.B. 2014a: Diverse Late Jurassic anomuran assemblages from the Swabian Alb and evolutionary history of paguro-ids based on carapace morphology. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 273/2: 121-145. https://doi/ org/10.1127/0077-7749/2014/0419 Fraaije, R.H.B. 2014b: A new shallow-marine mu-nidopsid (Anomura, Galatheoidea) from the Upper Miocene in the Maroni-Psematismenos Basin of Cyprus. In: Fraaije, R.H.B., Hyžný, M., Jagt, J.W. ., Krobicki, M. & Van Bakel, B.W.M. (eds.): Proceedings of the 5th Symposium on Mesozoic and Cenozoic decapod crustaceans, Krakow, Poland, 2013: a tribute to Pál Mihály Mller. Scripta Geologica, 147: 233-239. Fraaije, R.H.B., Artal, P., Van Bakel, B.W.M., Jagt, J.W.M. & Klompmaker, A.A. 2013: An array of sixth abdominal tergite types of paguroid anomurans (Crustacea) from the mid-Cretace­ous of Navarra, northern Spain. Netherlands Journal of Geosciences, 92/2-3: 109-117. https://doi.org/10.1017/S0016774600000032 Fraaije, R.H.B., Beschin, C., Busulini, A., Tessier, G., Jagt, J.W.M. & Van Bakel, B.W.M. 2020: Joecalcinus, a new hermit crab genus from the Eocene of northern Italy: the second Cenozoic representative of the family Calcinidae (Decapoda, Anomura). Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen (accepted in press 13.12.2019). Fraaije,R.H.B.,Klompmaker,A.A.&Artal,P. 2012: New species, genera and a family of hermit crabs (Crustacea, Anomura, Paguroidea) from a mid-Cretaceous reef of Navarra, northern Spain. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 263/1: 85-92. https://doi.org/10.1127/0077-7749/2012/0213 Fraaije, R.H.B. & Polkowsky, S. 2016: Dardanus colosseus, a new paguroid from the Eocene of Austria preserved in its host gastropod shell. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen 279/1: 57-62. Fraaije, R.H.B., Robins, C., Van Bakel, B.W.M., Jagt, J.W.M. & Bachmayer, F. 2019: Paguroid anomurans from the Tithonian Ernstbrunn Limestone, Austria – the most diverse extin­ct paguroid assemblage on record. Annalen des Naturhistorischen Museum Wien, 121: 257-289. Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. &Artal, P. 2008: New decapod crustaceans (Anomura, Brachyura) from mid-Cretaceo­us reefal deposits at Monte Orobe (Navarra, northern Spain), and comments on related type-Maastrichtian material. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 78: 193-208. Fraaije, R.H., Van Bakel, B.W.M., Jagt, J.W.M., Klompmaker, A.A. & Artal, P. 2009: A new hermit crab (Crustacea, Anomura, Paguroidea) from the mid-Cretaceous of Navarra, northern Spain. Boletín de la Sociedad Geolgica Mexicana, 61/2: 211-214. Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. & Machalski, M. 2015: A new hermit crab (Anomura, Paguroidea) from the upper Albian (Cretaceous) of Annopol, Poland. Zootaxa, 3955/4: 588-594. https://doi.org/10.11646/ zootaxa.3955.4.9 Gagnaison, C. 2012: Des bernard-l’hermites dans les faluns miocenes de Channay-sur-Lathan (Indre-et-Loire, France). Cossmanniana, 14: 67-72. Garassino, A., Pasini, G., De Angeli, A. & Hyžný, M. 2014: The decapod fauna (Axiidea, Anomura, Brachyura) from the Late Pleistocene of Trumbaca, Reggio Calabria (Calabria, southern Italy). Natural History Sciences, Atti della Societa italiana di Scienze naturali e Museo ci­vico di Storia naturale di Milano, 1/2: 119-130. Hyžný, M. 2016: Diversity and distribution pa­tterns of the Oligocene and Miocene deca-pod crustaceans (Crustacea: Malacostraca) of the Western and Central Paratethys. Geologica Carpathica, 67/5: 471-494. https:// doi.org/10.1515/geoca-2016-0030 Karasawa, H. & Fudouji, Y. 2018: Two new spe­cies of hermit crabs (Decapoda: Anomura) from the Paleogene Kishima Group, Saga Prefecture, Japan. Bulletin of the Mizunami Fossil Museum, 44: 23-28. Klompmaker, A.A., Feldmann, R. M. & Schweitzer, C.E. 2012: A hotspot for Cretaceous goni­ odromitids (Decapoda: Brachyura) from reef associated strata in Spain. Journal of Crustacean Biology, 32/5: 780-801. https://doi. org/10.1163/193724012X635340 Klompmaker, A.A., Portell, R.W. & Frick, M.G. 2017: Comparative experimental taphonomy of eight marine arthropods indicates dis­tinct differences in preservation potenti­al. Palaeontology, 60/6: 773-794. https://doi. org/10.1111/pala.12314 Klompmaker, A.A., Hyžný, M., Portell, R.W., Jauvion, C., Charbonnier, S., Fussell, S.S., Klier, A.T., Tejera, R. & Jakobsen, S.L. 2019: Muscles and muscle scars in fossil malaco­stracan crustaceans. Earth-Science Reviews, 194: 306-326. https://doi.org/10.1016/j. earscirev.2019.04.012 Koçak, C., Katagan, T. & Özcan, T. 2005: Anomura of the Iskenderun Bay region (southeastern Turkey). Crustaceana, 78/2: 247-252. https:// www.jstor.org/stable/20107478 Latreille, P.A. 1802–1803: Histoire naturelle, générale et particuliere, des Crustacés et des Insectes, 3. Paris (F. Dufart): 1–467. Lemaitre, R. & McLaughlin, P. 2019: World Paguroidea & Lomisoidea database. Paguristes Dana, 1851. Accessed through: World Register of Marine Species at: http:// www.marinespecies.org/aphia.php?p=taxde­tails&id=106844 on November 23, 2019. Linnaeus, C. 1767: Systema naturae per re-gna tria naturae: secundum classes, ordi­nes, genera, species, cum characteribus, differentiis, synonymis, locis. Editio, 12/1, Regnum Animale, 1-2. Holmiae (Stockholm), Laurentius Salvius, pp. 533-1327. MacLeay, W.S. 1838: On the brachyurous deca-pod Crustacea brought from the Cape by Dr. Smith. In: Smith A, ed. Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly col­lected during an expedition into the interi­or of South Africa, under the direction of Dr. Andrew Smith, in the years 1834, 1835. and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa”. London: Smith, Elder, and Co., pp. 53-71. Mller, P. 1984: Decapod Crustacea of the Badenian. Geologica Hungarica, Series Palaeontologica, 42: 1-317. Pastore, M. 1984: Paguristes streaensis n. sp. della costa Jonico-Salentina. Thalassia Salentina, 14: 16-27. Pipitone, C. 1998: Paguristes syrtensis de Saint Laurent, 1971 (Decapoda: Diogenidae) from the coastal waters of south western Sicily, Mediterranean Sea. Journal of Natural History, 32: 1741-1746. https://doi. org/10.1080/00222939800771251 Risso, A. 1827: Histoire naturelle des principa­les productions de l’Europe méridionale et particulierement de celles des environs de Nice et les Alpes Maritimes, volume 5. Paris/ Strasbourg, F.-G. Levrault: 403 pp. Robertson, A.H.F., Eaton, S., Follows, E.J. & McCallum, J.E. 1991: The role of local tecto­nics versus global sea-level change in the Neogene evolution of the Cyprus active mar­gin. Special Publications of the International Association of Sedimentologists, 12: 331-369. https://doi.org/10.1002/9781444303896.ch19 Rgl, F. 1999: Mediterranean and Paratethys. Facts and hypotheses of an Oligocene to Miocene paleogeography (short overview). Geologica Carpathica, 50/4: 339-349. Saint Laurent,M. de 1971: Paguristes syrten-sis, espece nouvelle des ctes tunisiennes (Crustacea Decapoda Diogenidae). Bulletin du Muséum national d’Histoire naturelle de Paris, 42/5: 1099-1107. Stimpson, W. 1858: Prodromus descriptio­nis animalium evertebratorum, quae in expeditione ad oceanum Pacificum sep­tentrionalem, a Republica Federate missa, Cadwaldaro Ringgold et Johanne Rodgers ducibus, obseravit et descripsit. VII. [Preprint (December 1858) from] Proceedings of the Academy of Natural Sciences of Philadelphia, 1858: 225-252. https://doi.org/10.5962/bhl. title.51447 Van Bakel, B.W.M., Fraaije, R.H.B, Jagt, J.W.M. &Artal,P. 2008: An unexpected diversi­ty of Late Jurassic hermit crabs (Crustacea, Decapoda, Anomura) in central Europe. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 250/2: 137-156. https://doi. org/10.1127/0077-7749/2008/0250-0137 GEOLOGIJA 63/1, 101-108, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.011 On the occurrence of Iphiculus eliasi Hyžný & Gross, 2016 (Decapoda, Brachyura, Leucosioidea) from the Miocene of Catalonia (northeastern Iberian Peninsula) Novi podatki o razširjenosti vrste Iphiculus eliasi Hyžný & Gross, 2016 (Decapoda, Brachyura, Leucosioidea) iz miocena Katalonije (severovzhod Iberijskega polotoka) Alex OSSÓ1, Matúš HYŽNÝ2, Manu GÓMEZ3, David ALBALAT4 & Fernando A. FERRATGES5 1Llorenç de Villalonga, 17B, 1-1 43007 Tarragona, Catalonia; Museu de Ciencies Naturals de Barcelona, Paleontologia (Barcelona, Catalonia); e-mail: aosso@comt.cat 2Department of Geology and Palaeontology, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, Bratislava, Slovakia. Geological-palaeontological Department, Natural History Museum,Vienna,Austria; e-mail: hyzny.matus@gmail.com 3Sant Pere 7, 2n 08720 Vilafranca del Penedes (Catalonia); e-mail: mnu.gomez@gmail.com 4Benvingut Socies, 75, 2n, 43700, el Vendrell, Tarragona; e-mail: dalbalat@colgeocat.org 5Departamento de Ciencias de la Tierra-IUCA, Universidad de Zaragoza, Zaragoza E-50009, Spain; e-mail: Ferratges@unizar.es Prejeto / Received 15. 11. 2019; Sprejeto / Accepted 7. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Leucosioidea, Iphiculidae, Miocene, Langhian, Catalonia Ključne besede: Leucosioidea, Iphiculidae, miocen, langhij, Katalonija Abstract Recovery of two specimens of leucosioid crabs in Langhian (middle Miocene) strata at Vilafranca del Penedes (Alt Penedes, Catalonia) and a re-examination of another leucosioid from the palaeontological collections of the Vinseum (Vilafranca del Penedes, Catalonia) have led us to consider all of these as conspecific with Iphiculus eliasi Hyžný & Gross, 2016, described first from the middle Miocene of Austria. The sternal and pleonal remains preserved in one of the Catalonian specimens allows to emend the original description of the species. Likewise, a specimen from the middle Miocene of Portugal, previously described as a paguroid, is herein transferred to this species. The occurrence of I. eliasi, either in outcrops along the northeastern and southwestern coasts of the Iberian Peninsula, corroborates the close relationship between decapod assemblages which inhabited similar palaeoenvironments in the Central Paratethys, the western Mediterranean and even the nearest Atlantic waters, during the middle Miocene. Izvleček Dva nova primerka leukosioidnih rakov langhijske (srednjemiocenske) starosti iz kraja Vilafranca del Penedes (Alt Penedes, Katalonija) in dodaten primerek iz muzeja Vinseum (Vilafranca del Penedes, Katalonija) smo določili kot Iphiculus eliasi Hyžný & Gross, 2016, ki je bil prvič opisan iz srednjemiocenskih plasti Avstrije. Na podlagi dobro ohranjenih morfoloških podrobnosti sternuma in pleona lahko dopolnimo originalni opis vrste. Primerek iz srednjega miocena Portugalske je določen kot I. eliasi, ki je bil opisan kot ostanek raka samotarja. Razširjenost vrste I. eliasi na iberijskem polotoku dodatno potrjuje podobnosti med fosilnimi združbami deseteronožcev, ki so v srednjem miocenu poseljevale centralno Paratetido, zahodno Sredozemlje in plitvovodna območja v Atlantskem oceanu. Introduction Miocene decapod crustacean assemblages of the Valles-Penedes and Camp de Tarragona ba­sins (northeastern Iberian Peninsula) have been studied by a number of scholars and are well known (Almera, 1896; Via, 1932; Solé & Via, 1989; Mller, 1993; Artal, 2008; Garassino et al., 2009; Oss, 2010). Moreover, due to collecting efforts by enthusiastic fossil hunters new occurrences are constantly being reported, thus expanding our knowledge of fossil decapod crustacean assem­blages of these areas. One such occurrence is re­corded in the present contribution. Mller (1993) summarised Neogene decapod crustaceans known at that time from Catalonia and described a number of new taxa, mainly from the reef limestones of Olerdola, as well as from Vilafranca del Penedes and Santa Margari­da i Els Monjos (Alt Penedes). More than a decade ago, a large number of fossil decapods, mainly Palaeopinnixa mytilicola Vía, 1966 were recov­ered in the so-called Vilafranca marls (Langhi-an), extracted during construction works for the high-speed railway line on the outskirts of Vila-franca del Penedes. Among these, remains of a carapace and a counterpart of a male venter of a leucosioid crab were recovered. The taxonom­ic assessment of this leucosioid is the goal of the present report. Geological setting The material studied comes from the localities of Vilafranca del Penedes and Santa Margarida i els Monjos, both within the Valles-Penedes Basin and exposing Miocene strata. This basin repre­sents a NE-SW-oriented depression limited to the northwest and to the southeast by the Prelitoral and Litoral ranges, respectively, which are made of Palaeozoic and Mesozoic rocks. The Valles-Penedes Basin corresponds to the emerged part of the NE-SW and NNW-SSE horst and half-gra­ben system formed during the Oligocene-Mio­cene opening of the western Mediterranean (Bar-trina et al., 1992; Cabrera & Calvet, 1996; Roca et al., 1999; Cabrera et al., 2004) (Fig. 1). Rifting and thermal subsidence related with this open­ing led to the accumulation of marine and con­tinental sediments in the Valles-Penedes Basin, Fig. 1. Simplified geological map of the Valles-Penedes Basin (modified from Roca et al., 2004). The main upper Burdigalian- Langhian coralgal and calcarenitic-terrigenous facies are indicated. The red stars indicate the location of the outcrops. from the early to late Miocene (early Burdigalian to Tortonian), as discussed in detail by Cabrera et al. (2004) and Casanovas-Vilar et al. (2016). Al­though most of the Valles-Penedes sedimentary infill is of terrestrial origin, three transgressions occurred during the late Burdigalian, Langhian and early Serravallian, leading to the deposition of various marine facies (Cabrera et al., 1991; Cabrera & Calvet, 1996; Roca et al., 1999). During the most significant Langhian transgression, a shallow sea developed in the Penedes area, where fringing reefs, carbonate platform and ramp sediments, open marine marls and transitional shales and sands were laid down. At the Vilafranca site, grey marls with inter-bedded levels of fine sands, located predominant­ly at the top of the unit, are exposed. Based on borehole data, the unit attains a thickness of ap­proximately 300 m (Permanyer, 1982; Cabrera et al., 1991) and it extends across the Penedes Basin and also south of the Llobregat River, including the southernmost part of the Valles Basin. The presence of the unit is more significant in the southwest of the Penedes depression, where it occupies a central part below younger terrestri­al and marine deposits. Towards the northeast, the grey marls are thinner and located along the southeastern margin of the basin. The unit is well exposed in a number of outcrops near the towns of Vilafranca del Penedes, Sant Sadurní d’Anoia, Can Rosell (Subirats), Cerdanyola or Rubí; some of them have yielded decapod crus­tacean remains (Mller, 1993; Artal, 2008; Ga-rassino et al., 2009). The Vilafranca marls con­tain also bivalves, gastropods, echinoids, benthic and planktonic foraminifera, as well as remains of flora (Permanyer, 1982). The age of the unit is based on planktonic foraminifera: late Burdiga­lian to Langhian (Macpherson, 1994). The marls are interpreted to have formed in an offshore environment (Permanyer, 1982; Cabrera et al., 1991), although towards the top of the unit they must have originated in a progressively shallow­er environment. The crab-bearing levels are lo­cated in the middle of the sections studied and are attributed to the Langhian. At the Santa Margarida site, about two kilo-metres southwest of Vilafranca del Penedes, fossiliferous and intensely bioturbated yellow­ish calcarenites, alternating with calcisiltites or marls, crop out. Calcisiltites and marls are more frequent towards the middle of the basin (to the northwest), whereas calcisiltites prevail towards the basinal margin (to the southeast). These sed­iments are several tens of metres thick and are well exposed along a SW-NE strip attached to the Prelitoral range, south of the town of Vila-franca, near the villages of Moja, Santa Margari­da i els Monjos and Castellet, among others. The calcarenites are rich in fragments of red algae, planktonic and benthic foraminifera, corals, molluscs, echinoids, fish teeth and decapod crus­taceans. Their age ranges from late Burdigalian to Langhian (Macpherson, 1994). The unit is lo­cated in a transition zone between the carbonate ramp to the southeast and the open marine basin marls to the northwest. It is interpreted to rep­resent distal deposits as a result of erosion and transport of sediments originating in the adja­cent coralgal complex. Decapod crustacean as­semblage at the Santa Margarida site is dominat­ed by portunids such as Portunus monspeliensis (A. Milne-Edwards, 1860) and Necronectes bat-alleri (Via, 1941). The crab-bearing calcarenites and marls of this unit are similar to Serraval­ lian strata in the Camp Basin, which also yield remains of the same crab species (Via, 1932; Oss, 2010). Repositories: MGB, Museu de Geologia de Barcelona-Museu de Ciencies Naturals de Barcelona (Catalonia); MV, Museu de Vila-franca “Vinseum” (Vilafranca del Penedes, Cat­alonia). Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Brachyura Latreille, 1802 Section Eubrachyura de Saint Laurent, 1980 Subsection Heterotremata Guinot, 1977 Superfamily Leucosioidea Samouelle, 1819 Family Iphiculidae Alcock, 1896 Iphiculus Adams & White, 1849 Type species - Iphiculus spongiosus Adams & White, 1849, by monotypy. Iphiculus eliasi Hyžný & Gross, 2016 Figures 2A-E, 3A-E 1941 Illinae, Ebaliinae? - Vía, p. 68, pl. 10, fig. 75. partim 1965 Petrochirus cfr. priscus Brocchi -Veiga Ferreira, p. 142, pl. 2, fig. 8 [non figs. 7, 9, 11, 12 = Petrochirus priscus] 1993 Randallia? sp. - Müller, p. 12, figs. M-N. 2016 Iphiculus eliasi Hyžný & Gross, p. 266, figs. 2A, 3A-E, 4A-C. Material and measurements (in mm): MGB 89842 (internal mould of near-complete dorsal carapace): length=14.5; width=17.0; fronto-or­bital width=6.0. MV15169 (internal mould of complete dorsal carapace preserving remains of cuticle): length=14.5; width=17.5; fronto-orbital width=6.0. MGB 89843 (counterpart of a male venter): length=8.0; width=10.5. Emended description: Carapace small, trans­versely subovate in outline, widest at midlength (at level of posteriormost anterolateral spine), dorsal surface moderately convex in both di­rections. Front not projected, bilobed, slightly raised, very narrow, about 0.13 of total width, me­dially notched, strongly divergent. Orbits small, concave, anteriorly directed; outer orbital spine acute; inner orbital spine fused with frontal lobe; supraorbital margin with subtriangular spine, bounded by two open fissures. Fronto-orbital margin about 0.35 of total width. Lateral margins with 6 conical teeth; anterolateral margin with 4 teeth, fourth being most prominent; posterolater­al margin with 2 teeth; corners between postero-lateral and posterior margins pointed; posterior margin straight, narrow, medially notched. Dor­sal surface of carapace evenly covered with nu­merous densely packed granules, nearly identical in size (when cuticular surface preserved) or with round concave pustules (when cuticular surface Fig. 2. Iphiculus eliasi Hyžný & Gross, 2016. A-D, MGB 89842 from the Langhian of Vilafranca del Penedes (Catalonia); A: dorsal view; B: dorsal view (digital reconstruction); C: posterior view, closeup of posterior part of carapace; D: left lateral view. E, MGB 89843 (male) from the Langhian of Vilafranca del Penedes (Catalonia): ventral view. Abbreviations: st = thoracic sternites; s = pleonal somites; t = telson. Scale bars equal 5 mm. missing). Carapace surface covered evenly with tric region large, indistinctly demarcated with large rounded tubercles; hepatic region with 1 grooves. Cardiac region ovate in outline, strongly tubercle; protogastric region with one pair of arched. Branchial regions broad. Intestinal re-transversely aligned tubercles in each lobe, and gion narrow. Thoracic sternum relatively wide, 2 tubercles aligned at the basis of mesogastric re-maximum width at level of fifth thoracic stern-gion, branchial region with 3 tubercles. Carapace ite, sterno-pleonal cavity reaching end of stern-grooves absent in anterior carapace portion, well ite 3; sternite 3 subtriangular, inverted; sternite developed in posterior carapace portion. Gas-4 subtrapezoidal, wider than sternite 3; sternite Fig. 3. Iphiculus eliasi Hyzny & Gross, 2016 in I. convexus Ihle, 1918 . A, B, D, E: Iphiculus eliasi Hyzny & Gross.: MV15169, from the Langhian of Santa Margarida i Els Monjos (Catalonia); A: dorsal view; B: frontal view; D: right lateral view; E: posterior view. C: holotype UMJGP 75.612, from the lower Badenian of Wetzelsdorf, Austria; C: dorsal view. F, G, Iphiculus convexus Ihle, 1918, ZRC 2009.0462 (male specimen from Vanuatu); F: dorsal view; G: ventral view. Scale bars equal 5 mm, except for F and G in which it is 10 mm. Photographs of F-G by P.K.L. Ng. 5 subrectangular transversely elongate; sternite 6 subtrapezoidal transversely elongate; sternite 7 subtrapezoidal, directed posteriorly, shorter than sternite 6. Episternite 4 laterally directed; episternites 5-6-7 progressively posteriorly di­rected. Suture 3/4 laterally visible, opened; su­tures 4/5, 5/6 and 6/7 apparently complete. Male pleon extremely narrow, inverted T-shaped, all pleonal somites free; somite 3 being widest, sub-rectangular transversely elongate; somites 4, 5, and 6 subrectangular, narrowing progressively to the telson; telson subtriangular longitudinally elongate, sharp pointed, twice as long as somite 6. Pterygostome subtrapezoidal. All ventral sur­face, sternum, pleon, pterygostome and branchi­ostegite densely granulate. Exognath of third maxilliped elongate, inner side smooth. Remarks: Hyžný & Gross (2016) described a new species, Iphiculus eliasi (Fig. 3C), from the Middle Miocene of Austria (Steiermark). In their paper, Hyžný & Gross (2016, p. 268) pointed out that a leucosioid found in outcrops at Santa Margarida i Els Monjos (Alt Penedes, Catalonia), described and figured first as “Iliinae, Ebalii-nae?” by Via (1941, p. 68-69, pl. 10, fig. 75) and subsequently as “Randallia? sp.” by Mller (1993, p. 12, figs. 5M-N), could be an iphiculid related to I. eliasi. Access to this sample of “Randallia sp.?” (Fig. 3A, B, D, E), housed in the Museum of Vilafranca (now Vinseum), has now allowed to conclude that, despite the different types of preservation as a result of different lithologies at outcrops, it is conspecific with the Vilafran-ca specimens and likewise, both specimens are also conspecific with the Austrian one described by Hyžný & Gross (2016) as Iphiculus eliasi (see Hyžný & Gross, 2016, p. 268). Additionally, a small counterpart of a well-preserved male ven­ter, recovered in the Vilafranca outcrop, is avail­able (Fig. 2E). This exhibits the main diagnostic characters of the Iphiculidae, such as a very nar­row male pleon with all somites free (Figs. 2E, 3G; Ng et al., 2008, p. 87); this allows us to attrib­ute it to a single iphiculid known from the area, I. eliasi. A carapace preserved in dorsal aspect from the Middle Miocene of Quinta da Farinheira, Lis-boa (Portugal), described and figured by Veiga Ferreira (1965, p. 142-143, pl. 2, 8) as Petrochirus cf. priscus Brocchi, 1883, does not represent part of a hermit crab, but rather the carapace of a leu­cosioid crab. Actually, the material is considered conspecific with Iphiculus eliasi, thus widening the distribution of the species further to the west. Discussion Mller (1993, p. 5, table 1) already point­ ed out the affinities between the Langhian and Serravallian decapod crustacean assemblages of the westernmost Proto-Mediterranean and roughly coeval Badenian assemblages of the Central Paratethys. Although he concluded that only 9 of 22 identified Miocene species of Cata­lonia were reported also in the Central Parate­thys, recent reports present further taxa that are present in both areas (Díaz-Medina et al., 2018; herein). Nevertheless, some Iberian occurrences are slightly younger, being of Late Miocene age (Díaz-Medina et al., 2017). The presence of Iphiculus eliasi in the north­east and southwest of Iberian Peninsula repre­sents the westernmost (fossil) record for the ge­nus and for the family. Extant representatives of the family Iphiculidae are found mainly in the Indo-West Pacific, in a depth range of 11 to 177 m (Chen, 1989; Chen & Sun, 2002), preferring mud­dy and sandy bottoms (Galil & Ng, 2007), simi­lar environments to that inhabited by Iphiculus eliasi. Conclusions The ventral counterpart, preserving diag­nostic sternal and pleonal characters, allows to emend the original description of Iphiculus eliasi and further corroborate its original systematic assignment. Its presence in the Middle Miocene of the northeastern coast of the Iberian Penin­sula, as well as along the southwestern Iberian coast (Portugal), supports the circum-Mediter­ranean distribution of decapod crustacean as­semblages during that time interval (Gašparič & Ossó, 2016; Hyžný & Gross, 2016; Díaz-Medina et al., 2018 and references therein). Acknowledgements We are grateful to Quim Pastó, Mas Boquera (Baix Camp, Catalonia), who was among the first to discover the decapod crustacean assemblage at the Vilafranca site and brought it to our attention. Hiroaki Karasawa (Mizunami Fossil Museum, Gifu, Japan) offered the first taxonomic evaluation of the material as far back as 2006. Peter K.L. Ng (NUS, Singapore) provided photographs of extant comparative We thanks the staff of Vinseum (Vilafranca del Penedes, Catalonia) for the facilities for access to collections. by Alessandro Garassino (Loma Linda University, Loma Linda, California, USA) and Jonathan Wallaard (Oertijdmuseum, Boxtel, the Netherlands) greatly im­proved the original manuscript. The research of MH was supported by VEGA 02/0136/15 and Hungarian Scientific Research Fund (OTKA K112708). The rese­arch of FAF is supported by Project E18 Aragosaurus: Recursos Geolgicos y Paleoambientes of the gover­nment of Arag-FEDER. References Adams, A. & White, A. 1849: Crustacea, Part II. In: Adams, A. (ed.): Zoology of the Voyage of H. M. S. Samarang; under the command of Captain Sir Edward Belcher, C.B., F.R.A.S., F.G.S., during the years 1843-1846. Reeve, Benham & Reeve, London: 33-67, pls. 7-13. Alcock, A. 1896: Materials for a carcinological fa­ una of India. No. 2. The Brachyura Oxystoma. Journal of the Asiatic Society of Bengal, 65: 134-296, pls. 6-8. Almera, J. 1896: Reconocimiento del primer piso Mediterráneo en el Panadés. Memorias de la Academia de Ciencias y Artes, 1, 20: 22 p. Artal, P. 2008: Uca miocenica (Crustacea, Decapoda), nueva especie del Mioceno de la Provincia de Barcelona (Cataluna, Espaa). Scripta Musei Geologici Seminarii Barcinonensis, Series Palaeontológica, 6: 2-10. Bartrina, M.T., Cabrera, L., Jurado, M.J., Guimera, J. & Roca, E. 1992: Evolution of the central Catalan margin of the Valencia trough (western Mediterranean). Tectonophysics, 203/1-4: 219-247. https://doi. org/10.1016/0040-1951(92)90225-U Brocchi, P. 1883: Notes sur les Crustacés fossiles des terres tertiaires de la Hongrie. Annales des Sciences Géologiques, 2/14: 1-8. Cabrera, L., Calvet, F., Guimera, J. & Permanyer, A. 1991: El registro sedimentario miocénico en los semigrabens del Vallés-Penedés y de El Camp: organizacin secuencial y relaciones tectnica sedimentacin. In: F. Colombo (ed.): Libro-Guía Excursin no 4 del I Congreso del Grupo Espanol del Terciario. Vic, Barcelona. Cabrera, L. & Calvet, F. 1996: Onshore Neogene record in NE Spain: Valles-Penedes and El Camp half-grabens (NW Mediterranean). In: P.F. Friend & C.J. Dabrio (eds.): Tertiary basins of Spain: the stratigraphic record of crustal kinematics, 97-105. https://doi. org/10.1017/CBO9780511524851.017 Cabrera, L., Roca, E., Garcés, M. & Porta, J. de 2004: Estratigrafía y evolucin tectono-se­dimentaria oligocena superior-negena del sector central del margen catalán (Cadena Costero-Catalana. In: J.A. Vera (ed.): Geología de Espaa, Madrid: SGE-IGME: 569-573. Casanovas-Vilar, I., Garcés, M., Van Dam, J., García-Paredes, I., Robles, J. M. & Alba, D. M. 2016: An updated biostratigraphy for the late Aragonian and Vallesian of the Valles-Penedes basin (Catalonia). Geologica Acta, 14/3: 195-217. https://doi.org/10.1344/ GeologicaActa2016.14.3.1 Chen, H. 1989: Leucosiidae (Crustacea, Brachyura). In: Forest J. (ed.): Résultats des Campagnes MUSORSTOM, Mémoires du Muséum national d’Histoire naturelle Paris, 5/A144: 181-263. Chen, H. & Sun, H. 2002: Brachyura: marine pri­mitive crabs. In: Fauna Sinica Invertebrata: Arthropoda: Crustacea. Science Press, Beijing, 30/13: 597 p. Díaz-Medina, G., Hyžný, M. & Klompmaker, A. A. 2017: A lithostratigraphic and palaeoenvi­ronmental framework for the Late Miocene El Caracolar section (Granada Basin, Betic Cordillera, Spain) and description of decapod crustaceans. Geobios, 50: 173-195. Díaz-Medina, G., Ossó, A. & Hyžný, M. 2018: A middle Miocene decapod faunule from Granada (Spain), with remarks on distri­bution pattern of the crab Portunus mons­peliensis. Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen, 288: 129-141. Galil, B.S. & Ng, P.K. 2007: Leucosiid crabs from Panglao, Philippines, with descriptions of three new species (Crustacea: Decapoda: Brachyura). The Raffles Bulletin of Zoology, 16: 79-94. Garassino, A., Artal, P. & Pasini, G. 2009: Upogebia miocenica n. sp. (Crustacea, Thalassinidea, Upogebiidae) from the Miocene of Catalonia (Spain). Atti della Societa italiana di Scienze naturali e del Museo civico di Storia naturale in Milano, 150/1: 61-68. Gašparič, R. & Ossó, A. 2016: New reports of decapod Portunus monspeliensis A. Milne Edwards, 1860 from Miocene beds of eastern Slovenia with notes on palaeoecology and palaeobiogeography. Geologija 59/1, 55-66. https://doi.org/10.5474/geologija.2016.005 Guinot, D. 1977: Propositions pour une nou­velle classification des Crustacé Décapodes Brachyoures. Comptes rendus hebdomada-ires des séances de l’Académie des sciences, Série D, 285: 1049-1052. Hyžný, M. & Gross, M. 2016: A new iphiculid crab (Crustacea, Brachyura, Leucosioidea) from the Middle Miocene of Austria, with notes on palaeobiogeography of Iphiculus. Zootaxa 4179/2: 263-270. https://doi.org/10.11646/ zootaxa.4179.2.6 Ihle, J.E.W. 1918: Die Decapoda Brachyura der Siboga-Expedition. III. Oxystomata: Calappidae, Leucosiidae, Raninidae. Siboga Expeditie Monographie, 39/b2: 159-322, figs. 78-148 Latreille, P.A. 1802-1803: Histoire naturelle, générale et particuliere, des Crustacés et des Insectes. Vol. 3. F. Dufart, Paris, 468 p. Macpherson, I. 1994: Revisión bioestratigráfica de los depsitos marinos del Mioceno medio en la cuenca del Penedés. Acta Geolgica Hispánica, 29/2: 123-132. Milne-Edwards, A. 1860: Histoire des Crustacés podophthalmaires fossiles et Monographie des Décapodes Macroures de la famil­le des Thalassiniens. Annales des Sciences Naturelles, 4e série, 14: 129-357. Mller, P. 1993: Neogene decapod crustaceans from Catalonia. Scripta Musei Geologici Seminarii Barcinonensis, 225: 1-39. Ng, P.K.L., Guinot, D. & Davie, P.J.F. 2008: Systema Brachyurorum: Part I. An annotated checklist of extant brachyuran crabs of the world. Raffles Bulletin of Zoology, 17: 1-286. Oss, A. 2010: Els fssils al Camp de Tarragona. Kesse, Dossier, 43: 4-10. Permanyer, A. 1982: Sedimentologia i diagenesi dels esculls miocens de la conca del Penedes. Tesi doctoral. Departament de Petrologia i Geoquímica. Universitat Barcelona: 545 p. Roca, E., Sans, M., Cabrera, L. & Marzo, M. 1999: Oligocene to Middle Miocene evolution of the central Catalan margin (northwestern Mediterranean). Tectonophysics, 315(1/4): 209-233. https://doi.org/10.1016/ S0040-1951(99)00289-9 Roca, E., Frizon de Lamotte, D., Mauffret, A., Bracene, R., Vergés, J., Benaouali, N., Fernandez, M., Munoz, J.A. & Zeyen, H. 2004 : TRANSMED Transect II. In: Cavazza, W., Roure, F., Spakman, W., Stampfli, G.M. & Ziegler, P. (eds.): The TRANSMED Atlas- The Mediterranean Region from Crust to Mantle. Springer, Berlin Heidelberg. Saint-Laurent, M. de 1980: Sur la classificati­on et la phylogénie des Crustacés Décapodes Brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. Comptes Rendus heb­domadaires des Séances de l’Académie des Sciences, Paris, Série D, 290: 1265-1268. Samouelle, G. 1819: The entomologist’s use­ful compendium; or an introduction to the knowledge of British insects, comprising the best means of obtaining and preserving them, and a description of the apparatus generally used; together with the genera of Linné, and the modern method of arranging the classes Crustacea, Myriapoda, Spiders, Mites and Insects, from their affinities and structure, according to the views of Dr. Leach. Also, an explanation of the terms used in entomology; a calendar of the times of appearance and usu­al situations of near 3,000 species of British insects; with instructions for collecting and fitting up objects for the microscope. Printed for Thomas Boys, London : 496 p. Solé, J. & Via, L. 1989: Crustacis Decapodes fossils dels Paisos Catalans. Batalleria, 2: 23-42. Veiga Ferreira, O. da 1965: Nova contribiçao para o conhecimento dos Malacostráceos do Miocénico Marinho de Portugal. Comunicaçes dos Serviços Geologicos de Portugal, 48: 5-19. Via, L. 1932: Els crancs fossils del Terciari de Catalunya. Butlletí de la Institució Catalana d’Histria Natural, 32/4: 1-16. Vía, L. 1941: Los cancrejos fsiles de Catalua. Boletín del Instituto Geológico de Espana, 55: 55-128. Via, L. 1966: Pinnixa (Palaeopinnixa) mytilico-la, nuevo braquiuro fsil, en el mioceno ma-rino del Vallés (Barcelona). Acta Geológica Hispánica, 1/4: 1-4. GEOLOGIJA 63/1, 109-123, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.012 Additional records of decapod crustaceans from the lower Pleistocene beds of Poggi Gialli (Tuscany, central Italy) Nove najdbe rakov deseteronožcev iz spodnjepleistocenskih plasti v kamnolomu Poggi Gialli (Toskana, Italija) Giovanni PASINI1, Alessandro GARASSINO2, Antonio DE ANGELI3 & Francesco PIZZOLATO4 1Via Alessandro Volta 16, 22070 Appiano Gentile (Como), Italy; e-mail: giovannialdopasini@gmail.com 2Research Adjunct, Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92354, USA; e-mail: alegarassino@gmail.com 3Museo Civico “G. Zannato”, Piazza Marconi 15, 36075 Montecchio Maggiore (Vicenza), Italy; e-mail: antonio.deangeli@alice.it 4Via Cimabue 54, 52100 Arezzo, Italy; e-mail: arch.pizzolatofrancesco@gmail.com Prejeto / Received 12. 11. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Decapoda, Astacidea, Anomura, Brachyura, Cenozoic, Mediterranean Ključne besede: Decapoda, Astacidea, Anomura, Brachyura, kenozoik, Sredozemlje Abstract Additional species of decapod crustaceans are recorded from the lower Pleistocene beds exposed at the Poggi Gialli quarries (Sinalunga, Tuscany, central Italy). They include Galathea tuscia sp. nov., Ilia sp., Liocarcinus cf. L. maculatus (Risso, 1827), and Aliaplax tyrsenorum gen. nov., sp. nov. Novel morphological details for Distolambrus rasnus De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017, based on a single newly collected specimen, are added, as is the rare record of an indeterminate nephropid. These additions augment our knowledge of the composition of carcinological faunas in this peculiar environment from the early Pleistocene of central Italy. An updated list of decapod crustacean species from Poggi Gialli is also provided herein. Izvleček V prispevku predstavljamo nove najdbe in nove vrste rakov deseteronožcev iz spodnjepleistocenskih plasti v kamnolomu Poggi Gialli (Sinalunga, Toskana, osrednja Italija). Najdbe vključujejo vrste Galathea tuscia sp. nov., Ilia sp., Liocarcinus cf. L. maculatus (Risso, 1827) in Aliaplax tyrsenorum gen. nov., sp. nov. Dodatno opisujemo tudi nove morfološke podrobnosti vrste Distolambrus rasnus De Angeli, Garassino & Pasini na Baldanzi, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017, ki temeljijo na novo odkritem primerku. Opisujemo tudi redko najdbo nedoločenega nefropidnega raka. Opisan material dopolnjuje naše znanje o sestavi združb deseteronožcev v tem nenavadnem okolju zgodnjepleistocenske starosti. Prispevku je dodan tudi posodobljen seznam vseh fosilnih deseteronožcev iz kamnoloma Poggi Gialli. Introduction Both fully marine and transitional sedimen­tary rocks that crop out in a relatively restricted quarried area at Poggi Gialli (Sinalunga, Siena, Tuscany) have yielded diverse macrofossil as­semblage from the early Pleistocene, including molluscs, echinoids, bryozoans, corals, decapod crustaceans, isopods, and plant remains (for a full list, see Baldanza et al., 2017). The rich and peculiar decapod crustacean assemblage, which is incomparable to other communities previous­ly recorded from the Pleistocene of Tuscany and from the Mediterranean basin, has recently been discussed in detail by Baldanza et al. (2017) who also provided a sedimentological, stratigraphic and palaeoenvironmental interpretations of the Poggi Gialli quarries. Subject of the present note is a description of a number of recently collected specimens of de­capod crustaceans that are referred to species, unknown from this locality until now. Material and methods In the Poggi Gialli area there are two disused quarries that are traversed by the Siena-Bettole highway and formally named as Poggi Gialli North (PGN) and Poggi Gialli South (PGS) re­ spectively (see Baldanza et al., 2017, p. 43, fig. 4). The studied specimens are mostly preserved three-dimensional, partially mineralised, inner moulds embedded in small chunks of loose yel­low-grey, sandy clay. They were collected from the PGS quarry section and are housed in the pa-laeontological collections of the Museo di Storia Naturale dell’Accademia dei Fisiocritici (Siena) (MUSNAF). The Anomura includes Galathea tuscia sp. nov. (Galatheidae Samouelle, 1819) (1 specimen); the Brachyura includes Ilia sp. (3 specimens) (Leuco­siidae Samoulle, 1819); Distolambrus rasnus (Par-thenopidae MacLeay, 1838) (1 specimen); Liocarc­inus sp. cf. L. maculatus (Risso, 1827) (Portunidae Rafinesque, 1815) (1 specimen); and Aliaplax tyrsenorum gen. nov., sp. nov. (Goneplacidae Ma-cLeay, 1838) (2 specimens). Finally, one specimen was assigned to a nephropid (Astacidea Latreille, 1802), genera and species indeterminate. Abbreviations – lcxp: carapace length (includ­ing rostrum); lpa: palm length (excluding index); P1-P5: pereiopods 1 to 5; pll: pleon length; plw: pleon width; s1-s6: pleonal somites 1 to 6; St: tho­racic sternites; wcxp: carapace width; wpa: palm width. Systematic palaeontology The classification used in this paper follows Ng et al. (2008) and Schweitzer et al. (2010), while for the description of leucosiids and parthenopids we follow, in part, the terminology proposed by Ihle (1918) and Tan & Ng (2007), respectively. Order Decapoda Latreille, 1802 Infraorder Astacidea Latreille, 1802 Superfamily Nephropoidea Dana, 1852 Family Nephropidae Dana, 1852 Nephropidae genus and species indeterminate (Plate 1 A) Material: A single, three-dimensionally pre­served P1 palm, with an incomplete index and dactylus (MUSNAF/GEO/7175 – lpa: c. 17 mm; wpa: 6 mm). Description: Elongate slender and subrect-angular P1 chela; subparallel upper and lower margins, with rounded tubercles; palm surface slightly convex, partially crushed, covered by sparse, irregular tubercles of different sizes; elongate straight index, with upper margin bear­ing a rim of strong pointed tubercles directed upwards; occlusal margin of index not observ­able; sparse tubercles, similar to those at the up­per margin, extending over entire index length; dactylus stouter than index; index with line of stronger elongate tubercles directed upwards along the occlusal margin; distal extremity of in­dex and dactylus not preserved. Discussion: The shape and some characters of this P1 chela allow it to be compared with chelae of a number of extant and fossil representatives of the Nephropidae. We consider the coarse orna­mentation of the palm and dactylus, consisting of more or less pointed to rounded coarse tubercles of different sizes to be partial internal casts of possibly pointed spines protruding on the origi­nal exocuticle, as in extant representatives of Ne-phropidae. According to Garassino & De Angeli (2004, p. 35), among Nephropoidea “only the rep­resentatives of the family Nephropidae exhibit a slender and very elongate propodus of the che­lae”. For example, the elongate and slender spiny chelae with rows of pointed spines is a feature of the extant and fossil Nephrops norvegicus (Lin­naeus, 1758). This species differs, however, from the studied specimen in the general ornament of the palm, lacking the strong spiny rims along both fingers. Unfortunately, the poor preserva­tion and incompleteness of the studied specimen make impossible a more detailed systematic as­signment. Baldanza et al. (2017, p. 49, fig. 9A) recorded another indeterminate nephropid from the PGN quarry. This specimen differs, however, from the studied one in having a wider flattened palm covered by sparse, irregular pointed tubercles directed upwards; an elongate straight index gently decreasing towards the tip; an occlusal margin of the index with unequal molariform, rounded teeth proximally, followed by subtrian­gular equal-sized teeth; a median longitudinal rim with pointed tubercles, rimmed by two lat­eral longitudinal grooves; an elongate straight dactylus with a molariform tooth in the median part; and two longitudinal grooves that extend along the middle longitudinal part of the flat dactylus. In the Mediterranean area, nephropids from the late Cenozoic (Plio-Pleistocene) are quite PLATE 1 A – Nephropidae genus and species indeteterminate, MUSNAF/GEO/7175 (× 6). B, C – Galathea tuscia sp. nov., Holotype, MUSNAF/GEO/7176a, b with a rounded inflated bulge on the left branchial chamber margin as a result of isopod (bopyrid) infestation (red arrow) (× 8). D – Galathea tuscia sp. nov., carapace, line drawing. rare and mostly poorly preserved. Indeed only two genera have previously been recorded from Italy, namely Nephropsis sp. from the Pleistocene of the Enza River (Emilia-Romagna; Garassino & De Angeli, 2004) and Nephrops cf. N. norvegi­cus (Linnaeus, 1758) from the early Pleistocene of Poggio i Sodi (Tuscany; Baldanza et al., 2013). Infraorder Anomura MacLeay, 1838 Superfamily Galatheoidea Samouelle, 1819 Family Galatheidae Samouelle, 1819 Genus Galathea Fabricius, 1793 Type species: Cancer strigosus Linnaeus, 1761, by original designation. Fossil species: Galathea affinis Ristori, 1886; G. berica De Angeli & Garassino, 2002; G. ca-poriondoi De Angeli & Ceccon, 2017; G. hexac­ristata Beschin, Busulini & Tessier in Beschin, Busulini, Fornaciari, Papazzoni & Tessier, 2018; G. keijii Karasawa, 1993; G. lovarica Beschin, De Angeli, Checchi & Zarantonello, 2016; G. lupiae Robineau-Desvoidy, 1849; G. mainensis Ceccon & De Angeli, 2012; G. sahariana Garassino, De An­geli & Pasini, 2008; G. spitzbergica Gripp, 1927; G. strigifera Fischer-Benzon, 1866; G. tuscia sp. nov. (this study); G. valmaranensis De Angeli & Garassino, 2002; G. weinfurteri Bachmayer, 1950. Galathea tuscia sp. nov. (Plate 1 B-D) Diagnosis: Subsquare carapace (excluding rostrum), slightly convex in transverse section; rostrum wide, triangular, with slight median depression, large dorsal tubercles and two lat­eral spines; cervical groove laterally bifurcated; carapace with nine main uninterrupted sinuous transverse ridges, intercalated with five inter­rupted transverse ridges; anterior branchial re­gion with two main diagonal uninterrupted ridg­es. Etymology: from the Latin tuscus, tusci = Tuscia or Etruria, the southern part of Tuscany inhabited by Tusci or Etruschi people between 900 to 27 BC. Holotype: MUSNAF/GEO/7176a, b (part-coun­terpart). Measurements: MUSNAF/GEO/7176 – lcxp: 9.5 mm; wcxp: 7 mm. Description: Carapace subsquare in dorsal view, as long as wide, transversely convex and en­larged chiefly in posterior third; wide triangular rostrum, enlarged towards base, well developed anteriorly, with at least one median spine along lateral margins; first rostral spine (supraorbital spine) shorter than the other one; dorsal surface of rostrum with a weak median depression and covered with many large uniformly arranged tu­bercles; wide orbits; extraorbital spine apparent­ly shorter than the supraorbital one; one strong anterolateral spine directed forwards; anterior branchial margins slightly convex, with three spines, equal in size and directed forwards; pos­terior branchial margins convergent posteriorly, with four spines, equal in size and directed for­wards; posterior margin wide, slightly concave and marked by one thin marginal ridge; deep cervical groove laterally bifurcated; epigastric region with one main uninterrupted sinuous transverse ridge and one weak laterally inter­rupted ridge; proto-, meso-, and metagastric re­gions not well separated, with five main uninter­rupted sinuous transverse ridges, intercalated with two medially interrupted transverse ridges; subtriangular anterior branchial regions, with two main short uninterrupted strongly diagonal ridges; posterior branchial regions with three main uninterrupted sinuous transverse ridges, intercalated with one weak medially interrupt­ed transverse ridge and one laterally interrupted transverse ridge. Discussion: According to Robins et al. (2013, p. 174) and MacPherson & Robainas-Barcia (2015, p. 13), the broad, subtriangular rostrum, with lateral teeth and the poorly defined cardiac re­gion allow to assign the studied specimen to the Galatheidae. Fossil representatives of the Galatheoidea are very rare in Tuscany, being limited to only two genera, Galathea Fabricius, 1793 and Munida Leach, 1820. Baldanza et al. (2013, p. 343) noted that of Galathea there was only a single record, Galathea sp. from the early Pleistocene of Pog­gi i Sodi (Siena, Tuscany); this differs from the G. tuscia sp. nov. in having the dorsal carapace regions with only uninterrupted ridges. Later, Garassino & Pasini (2015, p. 40) described Muni­da grossetana Garassino & Pasini, 2015 from the Pliocene of Monterotondo Marittimo (Grosseto, Tuscany), its needle-like rostrum ruling out any congeneric assignment of the new species. The sole species that is close, stratigraphically speaking, is Galathea affinis Ristori, 1886 from the late Pliocene of Bianchi (Sicily) and from the Miocene of Capo San Marco (Sardinia) (Lőren-they, 1909). A detailed comparison, however, with the new species is impossible because the holo-type and additional sample are lost. Additional­ly, the poor description and the poor quality of the line drawing provided by Ristori (1886, p. 126, 127, pl. 2, fig. 18) preclude to note diagnostic characters of G. affinis. Based on these observa­tions, we herein consider G. affinis to be a nomen dubium. We justify the erection of the new species, G. tuscia, based on these characters: dorsal carapace regions without hepatic, epigastric, parahepatic, anterior branchial, and postcervical spines; such are always present in extant species of the Medi­terranean Sea (Zariquey Alvarez, 1968; Falciai & Minervini, 1992) and occassionally in some Eo­cene and Oligocene species (Beschin et al. 2016, 2018; Ceccon & De Angeli, 2012; De Angeli & Ceccon, 2017; De Angeli & Garassino, 2002) and two uninterrupted strongly diagonal ridges on the anterior branchial regions – this is a peculiar character not seen in any other fossil species of Galathea from the Italian fossil record. Note: The studied specimen shows a typi­ cal rounded inflated bulge on the left branchial chamber margin, most probably denoting isopod (bopyrid) infestation. Isopod parasitism in deca-pod crustaceans, including squat lobsters, has been recorded by several authors for Mesozoic and Cenozoic taxa (for full references see Klomp- maker & Boxshall, 2015). The only examples of isopod parasitism in fos­sil material from Italy are those recorded by Cec-con & De Angeli (2013) for the Eocene of Vicen­za, which we can here supplement with a record from the early Pleistocene. Infraorder Brachyura Latreille, 1802 Section Eubrachyura de Saint Laurent, 1980 Subsection Heterotremata Guinot, 1977 Superfamily Leucosioidea Samouelle, 1819 Family Leucosiidae Samouelle, 1819 Subfamily Ebaliinae Stimpson, 1871 Genus Ilia Leach, 1817 Type species: Cancer nucleus Linnaeus, 1758, by monotypy. Included fossil species: see Schweitzer et al. (2010). Ilia sp. (Plate 2 A–B) Material: Two pleons in ventral view (MUS­NAF/GEO/7177 – pll: 10 mm; plw: 10 mm; MUS­NAF/GEO/7178 – pll: 8 mm; plw: 8 mm); and a single, incomplete P1 [MUSNAF/GEO/7179 – lpa: 15 mm (including index); wpa: 3 mm]. Description: Pleon – Sternum ovoid, with granulate surface; thoracic sternites exposed, subpetaloid in shape, decreasing in size and length posteriorly; St 1-4 fused; triangular elon­gate sternum pleonal cavity deeply excavated, narrowing to the anterior part of sternum. P1 – elongate globular palm, preserved as an inner mould, ovoid in transverse section; straight upper and inferior margins, narrowing distally; thin very elongate pointed index directed down­wards, curved distally with small conical alter­nating occlusal teeth. Discussion: Based on the proxy characters, these rounded granulate pleons and typically elongate chela are compared with those of some representatives of the family Leucosiidae and, tentatively, with Ilia Leach, 1817. The studied pleon has affinities in shape and ornamentation with that of the fossil representa­tives of Ilia nucleus (Linnaeus, 1758), as record­ed and illustrated by Garassino et al. (2012, p. 28, fig. 14C) from the early Pliocene of La Ser­ra quarry (San Miniato, Tuscany), whereas the globular elongate palm and index are compara­ble in shape with those of the extant representa­tives of the same species (Garassino et al., 2012, p. 28, fig. 14H). The studied specimens seem to have, however, a larger, coarse granules on the pleon, whereas the palm, preserved as an inner mould, does not allow any comparison of the external ornamentation of the chela. We prefer to leave the studied specimens in open nomenclature, await­ing the discovery of more complete material. Superfamily Portunoidea Rafinesque, 1815 Family Portunidae Rafinesque, 1815 Subfamily Polibinae Ortmann, 1893 Genus Liocarcinus Stimpson, 1871 Type species: Portunus holsatus Fabricius, 1798, by original designation. Fossil species: see Schweitzer et al. (2010). Liocarcinus cf. L. maculatus (Risso, 1827) (Plate 2 C) Material and measurements: A single, near-complete carapace in dorsal view (MUS­NAF/GEO/7180 – lcxp: 8 mm; wcxp: 7 mm). Description: Small-sized, subhexagonal cara­pace weakly convex transversely; front with three spines projecting beyond the orbits, median slight­ly longer and sharper than lateral ones; anterolat­eral margins, with four triangular spines, direct­ed anterolaterally (excluding extraorbital spine), fourth spine smaller than the others; convergent posterolateral margins concave and longer than PLATE 2 A, B – Ilia sp., MUSNAF/GEO/7179, P1 in lateral view (× 8) and MUSNAF/GEO/7177, thoracic sternum and pleon (× 8.5). C – Liocarcinus cf. L. maculatus (Risso, 1827), MUSNAF/GEO/7180, carapace in dorsal view (× 13.5). D – Distolambrus rasnus De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017, MUSNAF/ GEO/7181a, carapace in dorsal view (× 15). the anterolateral ones; rounded and well-raised protogastric regions; subtriangular mesogastric region strongly tuberculate; undifferentiated branchial regions; cardiac region with three bulg­es; tuberculate dorsal surface. Discussion: The morphological characters of the anterolateral margins with spines, as well as the configuration of the front match those of the Liocarcinus “pusillus” group (i.e. “small sized Liocarcinus having front projecting beyond the orbits”) as recognised by Froglia & Manning (1982, p. 257), and especially into those of the extant Liocarcinus maculatus (Risso, 1827) in particular, as based on the diagnosis provided by Froglia & Manning (1982, p. 262). However, we prefer prudence in our comparison of the stud­ied specimen with L. maculatus due to the lack of carpus and antennal flagellum; those provide essential specific diagnostic characters (Froglia & Manning, 1982, p. 264). Although the studied specimen is only likened to the extant taxon, it would constitute the first mention of L. macula­tus from the fossil record. The extant species in­habits the Mediterranean Sea at sublittoral (5-73 meters) depths (Froglia & Manning, 1982, p. 262). Note: Baldanza et al. (2017, p. 69, fig. 15D), re­corded Liocarcinus depurator (Linnaeus, 1758), from the PGS quarry based on a single, small and incomplete carapace, lacking the frontal margin. A revision of this specimen might also document L. maculatus rather than L. depurator. Superfamily Parthenopoidea MacLeay, 1838 Family Parthenopidae MacLeay, 1838 Subfamily Parthenopinae MacLeay, 1838 Genus Distolambrus Tan & Ng, 2007 Type species: Heterocrypta maltzani Miers, 1881, by original designation. Fossil species: Distolambrus rasnus De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De An­geli, Famiani Garassino, Pasini & Pizzolato, 2017. Distolambrus rasnus De Angeli, Garassino & Pasini, 2017 in Baldanza, Bizzarri, De Angeli, Famiani Garassino, Pasini & Pizzolato, 2017 (Plate 2 D) 2017 Distolambrus rasnus De Angeli, Garass­ino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani Garassino, Pasini & Pizzolato; p. 57, Fig. 14A, B. Material and measurements: A single complete carapace in dorsal view (MUSNAF/GEO/7181a, b – lcxp: 5 mm; wcxp: 6 mm). Description: Very small-sized carapace for the genus, trapezoidal transversaly; dorsal sur­face with raised granulate ridges on gastric, epibranchial, and cardiac regions; protrud­ing triangular rostrum; serrate straight ante-rolateral margins, tapering frontally; serrate posterolateral margins gently convex medially ending in a point at level of the posterior mar­gin; V-shaped granulate gastric ridge; diago­nal branchial granulate ridge not continuous with the gastric ridge; strong raised, round tu­bercle on the median cardiac region, bearing some small sparse tubercles dorsally; intesti­nal region flat expanded posteriorly; convex epibranchial margin; posterior margin convex medially. Discussion: This specimen shows the main diagnostic characters of Distolambrus rasnus described from PGS quarry by De Angeli, Ga-rassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani Garassino, Pasini & Pizzola-to (2017, p. 57, fig. 14A, B), as follows: subpen­tagonal and smooth carapace; triangular and pointed rostrum domed depressed medially, with serrate margins; serrate antero- and pos­terolateral margins; raised, granulate ridges on gastric, epibranchial and cardiac regions; V-shaped ridge on the gastric region; oblique branchial ridge not continuous with the gastric one; strong median cardiac tubercle; and intes­tinal region flat. Here we wish to remark that the antero- and posterolateral margins in the studied specimen are not distinctly separated by a small hepatobranchial notch as the one seen in the type specimen, which is possibly due to its smaller size or this could reflect intraspe­cific variation. This is only the second specimen of this un­common fossil species, reported from the Poggi Gialli quarries only. Superfamily Goneplacoidea MacLeay, 1838 Family Goneplacidae MacLeay, 1838 Subfamily Goneplacinae MacLeay, 1838 Genus Aliaplax gen. nov. Diagnosis: Carapace trapezoidal, strong­ly elongate transversely, twice wider than long, broadest at exorbital angle; orbital angle out­wardly projected in a pointed spine; distinct­ly T-shaped narrow front directed downwards; very elongate orbit grooves occupying the entire frontal margin, deeper proximally; supraorbital margin smooth slightly sinuous; suborbital mar­gin smooth, notably sinuous, projected frontally, exceeding supraorbital margin; diagonal pos­terolateral margins slightly convex gently ta­pering posteriorly to the wide posterior margin, wider than the half of the total frontal margin; dorsal carapace convex fronto-posteriorly and smooth, with one weak horizontal uninterrupt­ed ridge on the posterior third, without clear in­dications of regions; protogastric region with a drop-shaped bulge, extending from the frontal base to the mesogastric region; intestinal region with one transverse arched groove, concave dor­sally behind the metabranchial regions slightly constricted forming two lateral rounded depres­sions. Etymology: From the name of the mythical marine nereid Alia, described by Homer as the nymph with “large eyes”, and the suffix –plax. Gender: feminine. Type species: Aliaplax tyrsenorum sp. nov., by monotypy. Fossil species: Aliaplax tyrsenorum sp. nov. (this study). Discussion: According to Castro (2007, p. 616) the studied specimens have been assigned to the Goneplacidae in having transversely rectangular carapace, narrow front, wide and long orbits, and dorsal surface with horizontal ridges, without clear indication of regions. According to De Angeli et al. (2019), goneplac-ids are represented in the fossil record of Italy by five genera: Albaidaplax Garassino, Pasini & Castro, 2013 from the early Pliocene-early Pleis­tocene of Tuscany and Umbria; Astiplax Garas­sino & Pasini, 2013 from the late Pliocene of San Pietro (Asti, Piedmont), Goneplax Leach, 1814 from the Miocene to early Pleistocene of Pied­mont, Emilia-Romagna, Tuscany, Lazio, and Sicily; Magyacarcinus Schweitzer & Karasa­wa, 2004 from the middle Eocene-late Eocene of Veneto; and Ommatocarcinus White, 1851 from the early Pleistocene of Tuscany. The subrectangular carapace, slightly wid­er than long, the front as wide as the orbits, and the short posterior margin rule out assignment of the studied specimens to Albaidaplax, while the strongly tuberculate carapace, the very nar­row front, and the presence of gastric pits and branchiocardiac groove exclude Astiplax. The studied specimens cannot be placed in Goneplax because the carapace has a strong outer orbital tooth, the notch between the front, and one an-terolateral tooth, while the subsquare carapace, the wide straight front, the deep branchiocar­diac groove, and the swollen subhepatic regions set them apart from Magyacarcinus. Ommato­carcinus, recently recorded from Poggi Gialli by De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani Garassino, Pasini & Pizzolato (2017, p. 62), shares some characters with the studied specimens, as follows: carapace transversely rectangular, much wider than long; orbits wide, greatly expanded laterally; supraor­bital margin sinuous; dorsal surface of carapace smooth, with one weak horizontal ridge, without clear indication of regions; the outer orbital angle with one tooth; and anterolateral tooth absent. The studied specimens, however, differ from Om-matocarcinus in having shorter, T-shaped front; very elongate orbit grooves occupying the entire frontal margin; smooth suborbital margin nota­bly projected frontally, exceeding supraorbital margin; median drop-shaped bulge on gastric region; intestinal transverse groove concave dor­sally behind the metabranchial regions that are slightly constricted forming two lateral rounded depressions; and wide posterior margin. Castro (pers. comm, 2019) identified strictly morphological affinities, such as the shape of the frontal region, outer orbital angle with conspic­uous acute tooth, and the long straight posterior margin when comparing the studied specimens with two extant Indo-Pacific genera of the Go-neplacinae, Singhaplax Serene & Soh, 1976 and Microgoneplax Castro, 2007. However, the stud­ied specimens differ from these extant genera in having protogastric regions with a drop-shaped bulge, intestinal region with one transverse arched groove, and one weak horizontal uninter­rupted ridge on the posterior third of the dorsal carapace surface. Based upon these observations, we believe the description of a new genus is warrented to ac­commodate these specimens. Aliaplax tyrsenorum sp. nov. (Plate 3 A–D) Etymology: The trivial name originates from the Tyrseni, the ancient Greek name for the in­habitants of the Etruscan regions. Holotype: MUSNAF/GEO/7183. Paratype: MUSNAF/GEO/7182 a, b. Material and measurements: One complete specimen in dorsal view (part-counterpart) (MUSNAF/GEO/7182a, b – lcxp: 6 mm; wcxp: 13 mm, excluding lateral spine), and another in counterpart only (MUSNAF/GEO/7183 – lcxp: 4.5 mm; wcxp: 10 mm, excluding lateral spine). PLATE 3 Aliaplax tyrsenorum gen. nov., sp. nov. A – Holotype, MUSNAF/GEO/7183 (× 5). B, C – Paratype, MUSNAF/GEO/7182a, b (× 6.5). D – Carapace, line drawing. Description: Carapace trapezoidal, strong­ly elongate transversely, twice wider than long, broadest at exorbital angle; orbital angle out­wardly projected in a pointed spine; distinct­ly T-shaped narrow front directed downwards; very elongate orbit grooves occupying the entire frontal margin, deeper proximally; supraorbital margin smooth slightly sinuous; suborbital mar­gin smooth, notably sinuous, projected frontally, exceeding supraorbital margin; diagonal antero-lateral margins slightly convex gently tapering posteriorly to the wide posterior margin, wider than the half of the total frontal margin; dorsal carapace convex fronto-posteriorly and smooth, with one transverse uninterrupted ridge on the posterior third; protogastric region with a drop-shaped bulge, extending from the frontal base to the mesogastric region; intestinal region with one transverse arched groove, concave dorsally behind the metabranchial regions that appears slightly constricted forming two lateral round­ed depressions. P1 elongate, heterochelous with stout rectangular right palm and shorter left palm; dactylus gently curved; P4-P5 elongate, with pointed dactyli. Conclusions The present study updates the rich and pecu­liar Poggi Gialli decapod crustacean assemblage by adding a few new, recently collected and not previously recorded taxa. Among these is a new squat lobster Galathea tuscia sp. nov.; in addi­tion, the presence of Aliaplax tyrsenorum gen. nov., sp. nov., is remarkable. The presence of a few goneplacids that have closer affinities to some In-do-Pacific genera than to those from the Medi­terranean calls for a discussion of their presence, diffusion, and extinction in the paleo-Mediter­ranean Sea. Moreover, the presence of swimming macrurans is herein corroborated by a new re­cord of an indeterminate nephropid. The new data corroborate the previous char-acterisation of the paleoenvironment suggested by Baldanza et al. (2017, p. 67), with “a sub-tidal marine shallow to moderate deep environment with some terrestrial fresh water influence (pos­sibly from a few to less than 100 m deep), in tem­perate waters at low levels of water energy…”. Updated list of decapod crustacean species from the early Pleistocene of Poggi Gialli (Siena, central Italy) is herein provided. Taxa with an asterisk (*) appear to be confined to Poggi Gialli (after De Angeli, Garassino & Pasini in Baldan­za, Bizzarri, De Angeli, Famiani, Garassino, Pas-ini & Pizzolato, 2017; this study). Superfamily Thalassinoidea Latreille, 1831 Family Laomediidae Borradaile, 1903 Genus Jaxea Nardo, 1847 Jaxea nocturna Nardo, 1847 Superfamily Galatheoidea Samouelle, 1819 Family Galatheidae Samouelle, 1819 Genus Galathea Fabricius, 1793 Galathea tuscia sp. nov.* Superfamily Paguroidea Latreille, 1802 Family Paguridae Latreille, 1802 Genus Anapagurus Henderson, 1886 Anapagurus cf. A. breviaculeatus Fenizia, 1937 Superfamily Raninoidea De Haan, 1839 Family Lyreididae Guinot, 1993 Subfamily Lyridinae Guinot, 1993 Genus Lyreidus De Haan, 1841 Lyreidus paronae (Crema, 1895) Superfamily Dorippoidea MacLeay, 1838 Family Ethusidae Guinot,1977 Genus Ethusa Roux, 1830 Ethusa cf. E. mascarone Herbst, 1785 Superfamily Leucosioidea Samoulle, 1819 Family Leucosiidae Samoulle, 1819 Subfamilu Ebaliinae Stimpson, 1871 Genus Leucosiraja De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017 Leucosiraja manta De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017* Genus Merocryptus A. Milne-Edwards, 1873 Merocryptus viperinus De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017* Superfamily Majoidea Samouelle, 1819 Family Majidae Samouelle, 1819 Subfamily Majinae Samouelle, 1819 Genus Eurynome Leach, 1814 Eurynome italica De Angeli, Garassino & Pa-sini in Baldanza, Bizzarri, De Angeli, Famia­ni, Garassino, Pasini & Pizzolato, 2017* Superfamily Parthenopoidea MacLeay, 1838 Family Parthenopidae MacLeay, 1838 Subfamily Parthenopinae MacLeay, 1838 Genus Distolambrus Tan & Ng, 2007 Distolambrus rasnus De Angeli, Garassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzolato, 2017* Superfamily Retroplumoidea Gill, 1894 Family Retroplumidae Gill, 1894 Genus Retropluma Gill, 1894 Retropluma craverii (Crema, 1895) Superfamily Cancroidea Latreille, 1802 Family Cancridae Latreille, 1802 Subfamily Lobocarcininae Beurlen, 1930 Genus Lobocarcinus Reuss, 1857 Lobocarcinus sismondai (von Meyer, 1843) Superfamily Xanthoidea MacLeay, 1838 Family Xanthidae MacLeay, 1838 Subfamily Euxanthinae Alcock, 1898 Genus Monodaeus Guinot, 1967 Monodaeus bortolottii Delle Cave, 1988 ?Superfamily Xanthoidea MacLeay, 1838 Genus Ancipitecancer Pasini, Luque & Garassino, 2020 Ancipitecancer collinsi Pasini, Luque & Garassino, 2020* Superfamily Portunoidea Rafinesque, 1815 Family Portunidae Rafinesque, 1815 Subfamily Polybinae Ortmann, 1893 Genus Liocarcinus Stimpson, 1871 Liocarcinus depurator (Linnaeus, 1758) Liocarcinus cf. L. maculatus (Risso, 1827) Superfamily Goneplacoidea MacLeay, 1838 Family Goneplacidae MacLeay, 1838 Subfamily Goneplacinae MacLeay, 1838 Genus Aliaplax gen. nov. Aliaplax tyrsenorum gen. nov., sp. nov.* Genus Goneplax Leach, 1814 Goneplax rhomboides (Linnaeus, 1758) Genus Ommatocarcinus White, 1851 Ommatocarcinus occidentalis De Angeli, Ga- rassino & Pasini in Baldanza, Bizzarri, De Angeli, Famiani, Garassino, Pasini & Pizzola-to, 2017* Acknowledgements We wish to thank G. Manganelli (Museo di Storia Naturale dell’Accademia dei Fisiocritici, Siena), who give us the permission to study the specimens; G. Teruzzi (Museo di Storia Naturale di Milano), for photgraphs of specimens; M. Mura (Museo di Storia Naturale di Milano), for the set­tlement of the iconographic apparatus; H. Kara-sawa (Mizunami Fossil Museum, Yamanouchi, Akeyo, Mizunami, Japan) and P. Castro (Califor­nia State Polytechnic University, Pomona, Cal­ifornia, USA), for useful advice on Goneplaci­dae; Y. Ando (Mizunami Fossil Museum) and A. Busulini (Societa Veneziana di Scienze Naturali) for careful reviews and criticism. References Alcock, A. 1898: Materials for a carcinologi- cal fauna of India. No. 3. The Brachyura Cyclometopa. Part I. The family Xanthidae. Journal of the Asiatic Society of Bengal, 67/1: 67–233. Bachmayer, F. 1950: Neue Dekapoden aus dem sterreichischen Tertiär. Annalen des Naturhistorischen Museums in Wien, 57: 133–140. Baldanza, A., Bizzarri, R., Famiani, F., Garassino, A., Hyžný, M. & Pasini, G. 2013: The bathyal decapod crustacean community from the Poggio i Sodi quarries (Siena Basin, Tuscany, Italy). Boletín de la Sociedad Geológica Mexicana, 65/2: 335–353. Baldanza, A., Bizzarri, R., De Angeli, A., Famiani, F., Garassino, A., Pasini, G. & Pizzolato, F. 2017: A distinctive shallow marine crustace­an fauna from the early Pleistocene of Poggi Gialli (Tuscany, central Italy): taxonomic inferences and palaeoenvironmental recon­struction. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen, 286/1: 35–74. https:/doi.org/10.1127/njgpa/2017/0685 Beschin, C., Busulini, A., Fornaciari, E., Papazzoni, C.A. & Tessier, G. 2018: La fau­na di crostacei associati a coralli dell’Eoce­ne superiore di Campolongo di Val Liona (Monti Berici, Vicenza, Italia nordorientale). Bollettino del Museo di Storia Naturale di Venezia, 69: 129–215. Beschin, C., Busulini, A., Tessier, G. & Zorzin, R. 2016: I crostacei associati a coralli nell’Eocene inferiore dell’area di Bolca (Verona e Vicenza, Italia nordorientale). Memorie del Museo Civico di Storia Naturale di Verona, 2a serie, Sezione Scienze della Terra, 9: 13–168. Beurlen, K. 1930: Vergleichende Stammes­geschichte, Grundlagen, Methoden, Probleme unter besonderer Berücksichtigung der höhe­ren Krebse. Fortschritte in der Geologie und Paläontologie, 8: 317–586. Borradaile, L.A. 1903: On the classification of the Thalassinidea. Annals and Magazine of Natural History, 7/12: 534–551. Castro, P. 2007: A reappraisal of the family Goneplacidae MacLeay, 1838 (Crustacea, Decapoda, Brachyura) and revision of the subfamily Goneplacinae, with description of 10 new genera and 18 new species. Zootaxa, 29/4: 609–774. Ceccon, L. & De Angeli, A. 2012: Galathea mainensis n. sp., (Crustacea, Decapoda, Anomura, Galatheidae) dell’Eocene medio di Cava “Main” di Arzignano (Vicenza, Italia settentrionale). Lavori, Societa Veneziana di Scienze Naturali, 37: 25–31. Ceccon, L. & De Angeli, A. 2013: Segnalazione di decapodi eocenici infestati da parassiti iso­podi (Epicaridea) (Vicenza, Italia settentri­onale). Lavori, Societa Veneziana di Scienze Naturali, 38: 83–92. Crema, C. 1895: Sopra alcuni Decapodi terziarii del Piemonte. Atti della Reale Accademia del­le Scienze di Torino, 30: 664–681. Dana, J.D. 1852: Conspectus Crustaceorum & Conspectus of the Crustacea of the Exploring Expedition under Capt. Wilkes, U.S.N. Macroura. Proceedings of Natural History Society of Philadelphia, 6: 73–86. De Angeli, A. & Ceccon, L. 2017: Contributo ai crostacei decapodi dell’Eocene inferiore dei Monti Lessini orientali (Italia nordorientale). Natura Vicentina, 20: 5–38. De Angeli, A. & Garassino, A. 2002: Galatheid, chirostylid and porcellanid decapods (Crustacea, Anomura) from the Eocene and Oligocene of Vicenza (N Italy). Memorie del-la Societa italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, 30/3: 1–40. De Angeli, A., Garassino, A. & Pasini, G. 2019: Catalog and bibliography of fossil Stomatopoda and Decapoda from Italy (2007­2018). Memorie della Societa italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, 45: 3–70. De Haan, H.M. 1833-1849: Crustacea. In: Siebold, P.F. von (ed.): Fauna Japonica, sive Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batavia imperium tenet, suscepto, annis 1823-1830 collegit, notis, observationi-bus a adumbrationibus illustravit. Lugduni Batavorum [Leiden] (J. Müller et Co.). Delle Cave, L. 1988: Monodaeus bortolottii, a new species of Brachyura (Crustacea, Drcapoda) from the Pliocene of Toscana (Italy). Bollettino della Societa Paleontologica Italiana, 27: 123–127. Fabricius, J.C. 1793: Entomologia systematica emendate et aucta secundum classes, ordines, genera, species adjectis synonimis, locis, ob-servationibus, descriptionibus, 2. (C.G. Proft & Storch, Hafniae); 519 p. Fabricius, J.C. 1798: Supplementum Entomologiae systematicae. (C.G. Proft & Storch, Hafniae): 573 p. Falciai, L. & Minervini, R. 1992: Guida dei Crostacei Decapodi d’Europa. Roma (Muzzio): 318 p. Fenizia, G. 1937: I Paguridi del golfo di Napoli. 2° Contributo. Specie e varieta dei gene-ri Catapagurus M. Edwards e Bouvier, Anapagurus Henderson e Nematopagurus M. Edwards e Bouvier. Annuario del Museo Zoologico dell’Universita di Napoli, nuova se­rie, 7/2: 1–40. Fischer-Benzon, R. 1866: Über das relative Alter des Faxoe-Kalkes und ber die in demselben vorkommenden Anomuren und Brachyuren. Kiel. Froglia, C. & Manning, R.B. 1982: Notes on Liocarcinus pusillus (Leach) and related spe­ cies. Quaderni del Laboratorio di Tecnologia della Pesca, 3/2-5: 257–266. Garassino, A. & De Angeli, A. 2004: Decapod Crustacean fauna from the Pliocene and Pleistocene of Arda, Stirone and Enza River (Piacenza, Parma and Reggio Emilia Provinces, N Italy). Atti della Societa italia­na di Scienze naturali e del Museo civico di Storia naturale in Milano, 145/1: 29–57. Garassino, A., De Angeli, A. & Pasini, G. 2008: New decapod assemblage from the Upper Cretaceous (Cenomanian-Turonian) of Gara Sbaa, southeastern Morocco. Atti del-la Societa italiana di Scienze naturali e del Museo civico di Storia naturale in Milano, 149/1: 37–67. Garassino, A. & Pasini, G. 2013: Calappa granu­lata (Linnaeus, 1758) (Crustacea, Decapoda, Brachyura, Calappidae) and Astiplax aspe­ra n. gen., n. sp. (Crustacea, Decapoda, Brachyura, Goneplacidae) from the Asti sand Fm. (Late Pliocene) of S. Pietro (Asti, Piedmont, NW Italy). Boletín de la Sociedad Geolgica Mexicana, 65/2: 329–334. Garassino, A. & Pasini, G. 2015: A new squat lobster (Crustacea, Anomura, Munididae) from the Pliocene of Monterotondo Marittimo (Tuscany, Italy). Natural History Sciences. Atti della Societa italiana di Scienze natu­rali e del Museo civico di Storia naturale in Milano, 2/1: 39–41. https://doi.org/10.4081/ nhs.2015.239 Garassino, A., Pasini, G. & Castro, P. 2013: Revision of the fossil species of Goneplax Leach, 1814 (Crustacea, Decapoda, Brachyura, Goneplacidae). Boletín de la Sociedad Geolgica Mexicana, 65/2: 355–368. https://doi.org/10.18268/BSGM2013v65n2a16 Garassino, A., Pasini, G., De Angeli, A., Charbonnier, S., Famiani, F., Baldanza, A. & Bizzarri, R. 2012: The decapod commu­nity from the Early Pliocene (Zanclean) of “La Serra” quarry (San Miniato, central Italy): sedimentology, systematics, and pa-laeoenvironmental implications. Annales de Paléontologie, 98/1: 1–61. https://doi. org/10.1016/j.annpal.2012.02.001 Gill, T. 1894: A new bassalian type of crabs. American Naturalist, 28: 1043–1045. Gripp, K. 1927: Beiträge zur Geologie von Spitzbergen. Abhandlungen aus dem Gebiete der Naturwissenschaften, herausgegeben vom Naturwissenschaftlichen Verein Hamburg, 21/3-4: 1–38. Guinot, D. 1967: Recherches préliminaires sur les groupements naturels chez les Crustacés Décapodes Brachyoures. II. Les anciens ge­nres Micropanope Stimpson et Medaeus Dana. Bulletin du Muséum national d’Histoi-re naturelle, ser. 2, 39/2: 345–374. Guinot, D. 1977: Proposition pour une nouvel­le classification des Crustacés Décapodes Brachyoures. Comptes Rendus hebdomadai-res des Séances de l’Académie des Sciences, (D), 285: 1049–1052. Guinot, D. 1993: Donneés nouvelles sur les Raninoidea de Haan, 1841 (Crustacea, Decapoda, Brachyura, Podotremata). Comptes Rendus de l’Académie des Sciences, ser. 3, 316/11: 1324–1331. Henderson, J.R. 1886: The decapod and schizopod Crustacea of the Firth of Clyde. Proceedings and Transactions of the Natural History Society of Glasgow, 3: 315–353. Herbst, J.F.W. 1782-1804: Versuch einer Naturgeschichte der Krabben und Krebse nebst einer Systematischen Beschreibung ihrer verschiedenen Arten. Berlin & Zürich (Lange & Fuessly): 515 p. Ihle, J.E.W. 1918: Die Decapoda Brachyura der Siboga-Expedition III. Oxystomata: Calappidae, Leucosiidae, Raninidae. Siboga Expeditie, 391: 159–322. Karasawa, H. 1993: Cenozoic decapod Crustacea from southwest Japan. Bulletin of the Mizunami Fossil Museum, 20: 1–92. Klompmaker, A. & Boxshall, G.A. 2015: Fossil Crustaceans as Parasites and Hosts. Advances in Parasitology, 90: 233–289. https://doi. org/10.1016/bs.apar.2015.06.001 Latreille, P.A. 1802-1803: Histoire naturelle générale et particuliere, des Crustacés et des Insectes. Ouvrage faisant suite aux ouvres de Leclerc de Buffon, et partie du Cours complet d’Histoire naturalle rédigé par C.S. Sonnini, membre de plusieurs Sociétés savantes. 5: 1–407, 6: 1–391; Paris (Dufart). Latreille, P.A. 1831: Cours d’entomologie, ou de l’histoire naturelle des Crustacés, des Arachnides, des Myriapodes, et des Insectes, etc. Annales I, Atlas: 1–26. Leach, W.E. 1814: Crustaceology. In: Brewster, D. (ed.): The Edinburgh Encyclopaedia, 7: 383–437. Leach, W.E. 1817: The zoological miscellany; be­ing descriptions of new, or interesting ani­ mals. (B. McMillan, London). 151 p. Leach, W.E. 1820: Galatédées. Dictionnaire des Sciences Naturelles, 18: 49–56 (F. G. Levrault, Paris). Linnaeus, C. 1758: Systema Naturae Per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, Cum Characteribus, Differentiis, Synonymis, Locis, 1: 1–824. Laurentii Salvii, Holmiae. Linnaeus, C. 1761: Fauna Suecica sistens Animalia Sueciae Regni: Distributa per Classes, Ordines, Genera, Species, cum Differentiis Specierum, Synonymis Auctorum, Niominibus Incolarum, Locis Natalium, Descriptionibus insectorum, Editio altera, auctior, 48: 1–578. Laurentii Salvii, Stockholmiae. Lőrenthey, I. 1909: Beiträge zur Tertiären Dekapodenfauna Sardiniens: Mathematische und Naturwissenschaftlichen Berichte aus Ungarn, 24: 202–259. MacLeay, W.S. 1838: On the Brachyurous Decapod Crustacea. Brought from the Cape by Dr. Smith. Illustrations of the Zoology of South Africa; consisting chiefly of figures and descriptions of the objects of natural his­tory collected during an expedition into the interior of South Africa, in the years 1834, 1835, and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa:” together with a summary of African Zoology, and an inquiry into the geographical ranges of species in that quarter of the globe, published under the Authority of the Lords Commissioners of Her Majesty’s Treasury, Invertebratae. IV (1849): 53–71; London (Smith, Elder & Co.). MacPherson, E. & Robainas-Barcia, A. 2015: Species of the genus Galathea Fabricius, 1793 (Crustacea, Decapoda, Galatheidae) from the Indian and Pacific Oceans, with descriptions of 92 new species. Zootaxa, 3913/1: 1–335. https://doi.org/10.11646/zootaxa.3913.1.1 Meyer, H. von 1843: Briefliche Mittheilungen. Neues Jahrbuch fr Mineralogie, Geognosie, Geologie und Petrefaktenkunde, 1843: 579–590. Miers, E.J. 1881: On a collection of Crustacea made by Baron Hermann Maltzam [sic] at Goree Island, Senegambia. Annals and Magazine of Natural History, ser. 5, 8/45: 204–220; 8/46: 259–281; 8/47: 364–377. Milne-Edwards, A. 1873: Recherches sur la fau­ne carcinologique de la Nouvelle Calédonie, Chapitre II. Groupe des cyclometopes. Portuniens. Nouvelles Archives du Muséum d’Histoire naturelle de Paris, 9: 155–352. Nardo, G.D. 1847: Sinonimia moderna delle spe­cie registrate nell’opera intitolata: descrizi-one de’Crostacei, de’Testacei e de’Pesci che abitano le lagune e golfo Veneto rappresentati in fugure, a chiaro-scuro ed a colori dell’Aba­te Stefano Chiereghini Ven. Clodiense appli­cata per commissione governativa: 1–127. (I. R. Priv. Stabilimento Antonelli, Venice). Ng, P.K.L., Guinot, D. & Davie, P.J.F. 2008: Sistema Brachyurorum: Part I. An annota­ted checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology, 17: 3–286. Ortmann, A.E. 1893: Die Decapoden-Krebse des Strassburger Museums, mit beson­derer Berücksichtigung der von Herrn Dr. Dderlein bei Japan und bei den Liu-Kiu Inseln gesammelten und zur Zeit im Strassburger Museum aufbewahrten Formen. VI Theil. Abtheilung: Brachyura (Brachyura genuine Boas). I. Unterabtheilung: Majoidea und Cancroidea, 1: Section Portuninea. Zoologische Jahrbcher, Abteilung fr Systematik, Geographie und Biologie der Thiere, 7/1: 23–88. Pasini, G., Luque, J. & Garassino, A. 2020: Ancipitecancer collinsi, a new genus and spe­cies of problematic eubrachyuran crab from the Pleistocene of Italy. Neues Jahrbuch fr Geologie und Paläontologie, Abhandlungen, 296/1: 1-7. https://doi.org/10.1127/ njgpa/2020/0890 Rafinesque, C.S. 1815: Analyse de la nature, ou tableau de l’univers et des corps organisée.. Palermo (Barravecchia): 224 p. https://doi. org/10.5962/bhl.title.106607 Reuss, A. E. 1857: Zur Kenntnis fossiler Krabben. Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften zu Wien, 27: 161–166. Risso, A. 1826-1827: Histoire naturelle des prin­cipales productions de l’Europe Méridionale et particulierement de celles des environs de Nice et des Alpes Maritimes. Paris (Levrault): 480 p. Ristori, G. 1886 : I crostacei brachiuri e anomuri del Pliocene italiano. Bollettino della Societa Geologica Italiana, 5: 93–128. Robineau-Desvoidy, J.B. 1849: Mémoire sur les Crustacés du terrain néocomien de St. Sauveur-en-Puisaye. Annales de la Societé Entomologique de France, ser. 2/7: 95–141. Robins, C. M., Schweitzer, C. E. & Feldmann, R. M. 2013: Nine new genera and 24 new speci­es of the Munidopsidae (Decapoda: Anomura: Galatheoidea) from the Jurassic Ernstbrunn Limestone of Austria, and notes on fossil munidopsid classification. Annalen des Naturhistorischen Museums in Wien, 115: 167–251. Roux, P. 1828-1830: Crustacés de la Méditerranée et de son littoral. Paris (Levrault): 176 p. Saint Laurent, M. de 1980: Sur la classification et la phylogénie des Crustacés Décapodes brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. Comptes Rendus heb­domadaires des Séances de l’Académie des Sciences, (D), 290: 1265–1268. Samouelle, G. 1819: The entomologists’ use­ful compendium; or an introduction to the knowledge of British insects, comprising the best means of obtaining and preserving them, and a description of the apparatus generally used; together with the genera of Linné, and modern methods of arranging the Classes Crustacea, Myriapoda, spiders, mites and insects, from their affinities and structure, according to the views of Dr. Leach. Also an explanation of the terms used in entomology; a calendar of the times of appearance and usual situations of near 3000 species of British Insects; with instructions for collecting and fitting up objects for the microscope. London, T. Boys: 496 p. Schweitzer, C.E., Feldmann, R.M., Garassino, A., Karasawa, H. & Schweigert, G. 2010: Systematic list of fossil decapod crustacean species. Crustaceana Monographs, 10: 1–222. Schweitzer, C.E. & Karasawa H. 2004: Revision of Amydrocarcinus and Palaeograpsus (Decapoda: Brachyura: Xanthoidea) with de­finition of three new genera. Palaeontological Research, 8/1: 71–86. https://doi.org/10.2517/ prpsj.8.71 Serene, R. & Soh, C.L. 1976: Brachyura collected during the Thai-Danish Expedition (1966). Research Bulletin Phuket Marine Biological Center, 12: 1–37. Stimpson, W. 1871: Preliminary Report on the Crustacea dredged in the Gulf Stream in the Straits of Florida, by L.F. de Pourtales, Assist. U.S. Coast Survey. Part I. Brachyura. Bulletin of the Museum of Comparative Zoology, 2: 109–160. Tan, S.H. & Ng, P.K.L. 2007: Descriptions of new genera from the subfamily Parthenopinae (Crustacea: Decapoda: Brachyura: Parthenopidae). The Raffles Bulletin of Zoology, Supplement 16: 95–119. White, A. 1851: Descriptions of some appa­rently new species of Annulosa (collected by Mr. MacGillivray during the voyage of H.M.S. Rattlesnake). In: MacGillivray, J. (ed.): Narrative of the voyage of H.M.S. Rattlesnake, commanded by the late Captain Owen Stanley, R.N., F.R.S. & C. during the years 1846-1850, including discoveries and surveys in New Guinea, the Louisiade Arcipelago, etc. to which is added the account of Mr. E.B. Kennedy’s expedition for the exploration of the Cape York Peninsula, 2: 387–395. Zariquiey Álvarez, R. 1968: Crustáceos Decápodos Ibéricos. Investigación Pesquera, 32: 1–499. GEOLOGIJA 63/1, 125-131, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.013 On the systematic placement of Pyreneplax Ossó, Domínguez & Artal, 2014 (Decapoda, Brachyura, Vultocinidae) Taksonomska uvrstitev rodu Pyreneplax Ossó, Domínguez & Artal, 2014 (Decapoda, Brachyura, Vultocinidae) Alex OSSÓ1 & José Luis DOMÍNGUEZ2 1Llorenç de Villalonga, 17B, 1-1 43007 Tarragona, Catalonia, and Museu de Ciencies Naturals de Barcelona, Pale-ontologia, Barcelona, Catalonia; e-mail: aosso@comt.cat 2Padre Manj, 12 50010 Zaragoza, Spain; e-mail: jl.domin@hotmail.com Prejeto / Received 14. 10. 2019; Sprejeto / Accepted 2. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: Goneplacoidea, Martinocarcinidae, systematics, Eocene, Priabonian, Europe Ključne besede: Goneplacoidea, Martinocarcinidae, sistematika, eocen, priabonij, Evropa Abstract Examination of the thoracic sternum and pleonal elements of a new male specimen of Pyreneplax basaensis Ossó, Domínguez & Artal, 2014 from the upper Eocene of northern Spain confirms its assignment to the family Vultocinidae Ng & Manuel-Santos, 2007 and reveals the presence of an old lineage (Pyreneplax and possible allies) that appeared during the Eocene, persisting to the present day. Izvleček V prispevku opisujemo nove fosilne ostanke primerka samca vrste Pyreneplax basaensis Ossó, Domínguez & Artal, 2014 iz zgornjega eocena na severu Španije. Ohranjene podrobnosti delov oprsja in repa potrjujejo njegovo uvrstitev v družino Vultocinidae Ng & Manuel-Santos, 2007 in razkrivajo prisotnost stare linije (Pyreneplax in sorodni taksoni), ki se je pojavila v eocenu in je prisotna še danes. Introduction A new specimen of Pyreneplax basaensis with complete sternal and pleonal features and remains of ambulatory legs reveals additional features that were not seen in the type series. It has allowed observation of additional similar­ities to the extant species Vultocinus anfractus Ng & Manuel-Santos, 2007 and a more detailed comparison between both taxa (see Domínguez & Ossó, 2019). The genus Pyreneplax Ossó, Domínguez & Artal, 2014 was erected to accommodate P. ba­saensis from the Priabonian of the south Pyrene-an basins of Spain. Subsequently, other, closely similar species have been recorded from the Eo­cene of the Atlantic Coast of North America and from northern Italy. On the basis of dorsal cara­pace morphology, fossil crab species such as Lo-bonotus saundersi (Blow & Manning, 1997) from South Carolina (USA) and L. granosus (Beschin, Busulini, De Angeli & Tessier, 2002) and L. som­marugai Beschin, Busulini & Tessier, 2009 from northern Italy, have lately been transferred to the genus Pyreneplax (see Ossó, Domínguez & Artal, 2014; De Angeli, 2014). Dorsal and ventral (thoracic sternum, pleon) features of Pyreneplax basaensis confirm its family relationship with Vultocinus anfractus, in spite of the time span that separates both spe­cies, placing the origins of the family Vultocini­dae in the late Eocene. Furthermore, new DNA molecular studies of Vultocinus anfractus have revealed that, “it comes out as a long branch in­side the Heterotremata, far away from the rest of the Goneplacoidea” (Ng & Tsang, pers. comm., June/2019). The studied material is housed at Museo de Ciencias Naturales de la Universidad de Zarago­za (Spain), under acronym MPZ. Systematic palaeontology Order Decapoda Latreille, 1802 Infraorder Brachyura Latreille, 1802 Section Eubrachyura de Saint-Laurent, 1980 Subsection Heterotremata Guinot, 1977 Superfamily Goneplacoidea MacLeay, 1838 Family Vultocinidae Ng & Manuel-Santos, 2007 Genus Pyreneplax Ossó, Domínguez & Artal, 2014 , emend. Type species: Pyreneplax basaensis Oss, Domínguez & Artal, 2014. Other species included: Pyreneplax granosa (Beschin, Busulini, De Angeli & Tessier, 2002), Pyreneplax saundersi (Blow & Manning, 1997) and Pyreneplax sommarugai (Beschin, Busulini & Tessier, 2009). Diagnosis (emended): Small-to medium-sized carapace, suboctagonal, from wider than long to slightly wider than long, slightly convex in an­terior third, widest at level of third anterolater­al tooth. Dorsal regions well defined, elevated, ornamented with granules; delimited by large and smooth grooves. Frontal margin bilobed, slightly advanced, edge granulated. Orbits oval, oblique, separated from frontal margin by deep fold; supraorbital margin with three teeth sepa­rated by two notches, inner orbital tooth subtri-angular, prominent. Anterolateral margins with four rounded and granulated teeth (outer orbital spine excluded); first one smallest, at lower lev­el. Posterolateral margins slightly convex, orna­mented with granules. Posterior margin slightly convex, medially depressed, rimmed. Cervical and hepato-gastric grooves well marked, broad, smooth. Gastric process well marked; epigastric lobes swollen; protogastric lobes, swollen, oval, U-shaped, anterior portion medially depressed; mesogastric lobe broad posteriorly; anterior por­tion slender, low, long, reaching basal portion of epigastric lobes; metagastric lobe indistinct; urogastric region swollen, well delimited from meso-metagastric lobe by narrow groove with gastric pits. Cardiac region swollen, broadly T-shaped. Intestinal region transversely elon­gate, inflated, narrow, subparallel along poste­rior margin, medially divided by small smooth depression. Hepatic region inflated. Branchial regions well defined by swollen lobes, separated by broad, shallow, smooth grooves; epibranchi­al lobe subdivided into two: supra-epibranchial lobe transversely elongate, from horizontal to oblique, directed to fourth anterolateral tooth; sub-epibranchial lobe from rounded to triangu­lar; both delimited by shallow smooth groove; mesobranchial lobe inflated. Male thoracic ster­num flattened, covered by coarse granules; ster­nopleonal cavity narrow, deep; sternite 3 with a shallow longitudinal median groove connecting with sternopleonal cavity, reaching end of ster­nite 4; sternites 1 and 2 fused, subtriangular; sternite 3 subtriangular; sternite 4 subtrapezoi­dal, with prominent lateral edges, with marked grooves paralleling edges; sternites 5, 6 and 7 subtrapezoidal, elongate; sternite 7 shorter than sternite 6; suture 1/2 absent; suture 2/3 complete; suture 3/4 distinct, defined by groove, suture vis­ible only laterally; sutures 4/5, 5/6 medially in­terrupted; episternites not laterally extended, episternite 7 strongly produced, spur shaped, reaching coxa of P5. Male pleon narrow, with free somites, axially vaulted; somites 1, 2 not folded ventrally, visible dorsally; somites 1 to 5 subrec­tangular, transversely narrow, somite 6 almost as long as broad; somite 3 largest, reaching coxa of P5; somites 4, 5, 6, with slightly concave upper and lateral margins covered by uniformly dis­tributed granules; telson subtriangular, rounded tip. Ischium of third maxilliped subrectangular with median sulcus, inner margin convex, outer margin concave, covered by scarce granules; ex-ognath slender; merus subquadrate. Ambulatory legs keeled, spiny. Remarks: At the time, the dorso-ventral sim­ilarities highlighted by Osset al. (2014, pp. 36­ 38) were considered sufficient to place the Late Eocene Pyreneplax within the extant family Vultocinidae (Fig. 1); the additional sternal and pleonal features observed in the new specimen (Fig. 2) confirm this course of action (Domínguez & Ossó, 2019, pp. 70-72). Indeed, in the new spec­imen, a male, the sternopleonal cavity is deep and relatively narrow, almost reaching the end of sternite 4, as in Vultocinus (Ng & Manuel-San­tos, 2007, p. 43, figs. 12A, 9A). The position of the press-button in Vultocinus, considered impor­tant by Ng & Manuel-Santos (2007, p. 42), cannot be observed in the new specimen due to preserva­tion; however, in view of the position of the pleon, Fig. 1. Pyreneplax basaensis Ossó, Domínguez & Artal, 2014 from the Priabonian (Upper Eocene) of the central Pyrenees of Huesca (Aragón, Spain). A: holotype MPZ 2013/80, dorsal view; B: ventral view of holotype. C: paratype MPZ 2013/82, dorsal view. D: paratype MPZ 2013/83, ventral view. Scale bars equal 10 mm. slightly shifted down, it is believed that it is on the posterior part of sternite 5, close to sternite 6, as in Vultocinus (Figs. 2B, C). It should be noted that the male pleonal somites 1 and 2 of the new specimen do not appear to be folded ventrally and are therefore located in dor­sal position, as in Vultocinus anfractus (Figs. 2A, D; compare Ng & Manuel-Santos, 2007, figs. 1B­C, 2). Likewise, it presents a pleonal pattern sim­ilar to that of Vultocinus anfractus, namely free pleonal somites, axially vaulted, pleonal somites 4 to 6 showing slightly concave upper and lateral margins and pleonal somite 6 almost as long as broad (Figs. 2C, D; Ng & Manuel-Santos, 2007, figs. 5B, 9A, 10A, 11A; Ng & Richer de Forges, 2009, fig. 1B). Fig. 2. In addition, the posterior edge of episternite 7 in Pyreneplax basaensis is, similar to Vultoci-nus anfractus, “strongly produced posteriorly to form a spur which reaches coxa of P5” (Ng & Ma-nuel-Santos, 2007, p. 44). This character, consid­ered “unusual” by Ng & Manuel-Santos (2007), which together the lateral expansion of pleonal somite 3 covers the penis completely, differen­tiates the Vultocinidae from other goneplacoid families (Ng & Manuel-Santos, 2007, pp. 44, 49, figs. 13A-B; Castro et al., 2010). It is also seen in Pyreneplax (Fig. 2E). Discussion: Penis protection is present, in a range of expressions, among the Heterotremata (Guinot et al., 2013, pp. 84-90). In most gonepla­coid families, to which the vultocinids were ini­tially compared, it is usually present as an exten­sion of sternite 7. For example, Davie et al. (2015) noted this condition in the families Acidopsidae Števčić, 2005, Chasmocarcinidae Serene, 1964, Conleyidae Števčić, 2005, Euryplacidae Stimp-son, 1871, Goneplacidae MacLeay, 1838, Lito­cheiridae Števčić, 2005, Progeryonidae Števčić, 2005 (just touching coxa P5) and Scalopidiidae Števčić, 2005. This sternal protection is not pres­ent in the Mathildellidae Karasawa & Kato, 2003, Progeryonidae Števčić, 2005 and Sotoplacidae Castro, Guinot & Ng, 2010. However, none of the families that have penis protection possess the spur-shaped prolongation that is seen in Vulto­cinus anfractus and Pyreneplax basaensis. This unique character, shared by both genera, in addi­tion to the set of the above-mentioned characters, shows their clear family relationship. In this respect, the Eocene Martinocarcinus ickeae Böhm, 1922 (family Martinocarcinidae Schweitzer, Feldmann & Bonadio, 2009 within the Goneplacoidea) also deserves attention. In­deed, Schweitzer et al. (2009, p. 4) already point­ed out the striking similarities in sternal and pleonal features of Martinocarcinus and Vultoci-nus (Schweitzer et al., 2009, pl. 1, fig. 4; pl. 2, figs. 1-5), but in view of the substantial differences in dorsal carapace and chelae, they did not conclude that there was a close relationship between them. Osset al. (2014, p. 38) also noted the sternal and pleonal similarities between Martinocarcinus and Pyreneplax but argued against a family rela­tionship, based on differences of dorsal carapace morphology. However, in view of the new pieces of evidence provided by the new specimen of Pyr­eneplax, regarding penis protection, a re-exami­nation of the holotype of Martinocarcinus ickeae would appear to be interesting, in particular to see whether or not it has the same pattern of pe­nis protection as in Vultocinus anfractus and P. basaensis; this cannot be seen in the illustrations of Schweitzer et al. (2009). This character may well connect these three taxa phylogenetically. Another Eocene taxon, Agostella terrersensis Oss-Morales, 2011 (Goneplacoidea, incertae se-dis), reveals an extension of sternite 7, as a plate that reaches the coxa of P5, with the lateral mar­gin of pleonal somite 3 completely covering the penis (Ossó, 2011, fig. 4.3). This pattern of penis protection is similar to that seen in some gone-placoid families (Ng & Manuel-Santos, 2007, fig. 10), which supports its original placement within this superfamily and consequently rejects inclu­sion in the Tumidocarcinidae Schweitzer, 2005 (see Schweitzer et al., 2018, pp. 10-12, fig. 8/1a, b). The nomenclature of Pyreneplax saundersi (Blow & Manning, 1997) (formerly Eohalimede saundersi) must be retained as it was original­ly spelled by Blow & Manning (1997), instead of the correct sandersi (see Blow & Manning, 1998). This change of spelling is not allowed under the current Code (ICZN, 1999), in accordance with articles 32.5.1 and 32.5.1.1 (Ng, pers. comm., No­vember/2019). Conclusions Molecular studies carried out recently, using several mitochondrial and nuclear genes, have demonstrated that Vultocinus sits in its own deep lineage within the Heterotremata and is not re­lated to any of the known goneplacoids, includ­ing those without living relatives (Ng & Tsang, pers. comm., October/2019). These results are consistent with what had already been stated in the original paper by Ng & Manuel-Santos (2007, p. 40) that, “Vultocinus, new genus, possesses a suite of unusual characters that make its precise affinities difficult to ascertain”. The fossil evidence suggests that we are deal­ing with a case of an extinct family with an ex- Fig. 2. Pyreneplax basaensis Ossó, Domínguez & Artal, 2014, MPZ 2019/265, from the Priabonian of the central Pyrenees of Huesca (Aragón, Spain). A: dorsal view; B: ventral view; C: closeup view of pleon; D: closeup view of posterior margin of carapace; E: closeup view of the spur-shaped prolongation of sternite 7 (episternite). Abbreviations: a - pleonal somites; cxP5 - coxa of fifth pereiopod; es - episternite; P - pereiopods; st - thoracic sternites; t - telson. Scale bar equals 10 mm. tant representative rather than an extant family with fossil representatives. The dorsal morpholo­gy of Pyreneplax is relatively common in numer­ous Eocene genera, but only preserved sternal and pleonal features can establish the relation­ship among these (Osset al., 2014, p. 41; Jagt et al., 2015, p. 883). The persistence of this dorsal carapace pattern is interpreted either as evolu­tionary success or an example of convergence. In the case of the Vultocinidae and in view of the preserved ventral features now observed in Pyr­eneplax basaensis, this indicates that the unu­sual penis protection structures are a successful adaptation and hence persisted over time. Future works and new discoveries will be expected to shed light on the suprafamily relationships of this family and their possible allies. Acknowledgements We thank Peter K.L. Ng (National University of Singapore) and Ling M. Tsang (Chinese University of Hong Kong) for providing crucial information and use­ful comments on molecular studies and the first-na­med also for advice on rules of nomenclature (P.K.L. Ng) and we are grateful to Daniele Guinot (MNHN, Paris, France) and Peter K.L. Ng (NUS, Singapore), whose accurate reviews have greatly improved the present note. References Beschin, C., Busulini, A., De Angeli, A. & Tessier, G. 2002: Aggiornamento ai crostacei eocenici di cava “Main” di Arzignano (Vicenza - Italia Settentrionale) (Crustacea, Decapoda). Studi e Ricerche, Associazione Amici del Museo, Museo Civico “G. Zannato”, Montecchio Maggiore (Vicenza), 9: 7-28. Beschin, C., Busulini, A. & Tessier, G. 2009: The decapod crustaceans from the upper Eocene of Parona (Veronese Lessini - NE Italy). Studi e Ricerche, Associazione Amici del Museo, Museo Civico “G. Zannato”, Montecchio Maggiore (Vicenza), 16: 5-22. Blow, W.C. & Manning, R.B. 1997: A new genus, Martinetta, and two new species of xantho-id crabs from the middle Eocene Santee Limestone of South Carolina. Tulane Studies in Geology and Paleontology, 30/3: 171-180. Blow, W.C. & Manning, R.B. 1998: Eohalimede sandersi, the correct name for the speci­es described as Eohalimede saundersi Blow & Manning, 1997 (Crustacea: Decapoda: Xanthidae). Proceedings of the Biological Society of Washington, 111/2: 409. Böhm, J. 1922: Arthropoda. Crustacea. In Martin, K. (ed.): Die Fossilien von Java I. Band, 2 Abteilung: Leiden, E.J. Brill, 521-535. Castro, P., Guinot, D. & Ng, P.K.L. 2010: A new family for Sotoplax robertsi Guinot, 1984, with a diagnosis and key to the Goneplacoidea Macleay, 1838 (Crustacea: Decapoda: Brachyura). Zootaxa, 2356: 36-56. https://doi. org/10.11646/zootaxa.2356.1.2 Davie, P.J.F., Guinot, D. & Ng, P.K.L. 2015: Systematics and classification of Brachyura. In: Castro, P., Davie, P.J.F., Guinot, D., Schram, F. & Von Vaupel Klein, C. (eds.): Treatise on Zoology - Anatomy, Taxonomy, Biology. The Crustacea, complementary to the volumes translated from the French of the Traité de Zoologie, 9 C, (I), Decapoda: Brachyura (Part 2): 1049-1130. https://doi. org/10.1163/9789004190832_021 De Angeli, A. 2014: Pyreneplax granosa (Beschin, Busulini, De Angeli and Tessier, 2002) (Decapoda, Brachyura, Vultocinidae) dell’Eocene medio di Cava “Main” di Arzignano (Vicenza, Italia settentrionale). Natura Vicentina, 17: 165-172. Domínguez, J.L. & Ossó, A. 2019: New insights on the systematic placement of Pyreneplax Ossó, Domínguez & Artal, 2014 (Decapoda: Brachyura: Vultocinidae). In: Gašparič, R. (ed.): 7th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, Ljubljana, Slovenia, 17-21 June 2019. Book of abstracts: 70-72. https://doi.org/10.13140/RG.2.2.23496.98564 Guinot, D. 1977: Proposition pour une nou­velle classification des Crustacés Décapodes Brachyoures. Comptes Rendus hebdoma­daires des Séances de l'Académie des Sciences (Paris), D285: 1049-1052. Guinot, D., Tavares, M. & Castro, P. 2013: Significance of the sexual openings and supplementary structures on the phylogeny of brachyuran crabs (Crustacea, Decapoda, Brachyura), with new nomina for higher-ran­ked podotreme taxa. Zootaxa, 3665/1: 1-414. https://doi.org/10.11646/zootaxa.3665.1.1 ICZN, International Commission on Zoological Nomenclature, 1999. International Code of Zoological Nomenclature. International Commission of Zoological Nomenclature. Fourth Edition. Adopted by the XXI General Assembly of the International Union of Biological Sciences. International Trust for Zoological Nomenclature, in association with the British Museum (Natural History), London: 338 p. Jagt, J.W.M., Van Bakel, B.W.M., Guinot, D., Fraaije, R.H.B. & Artal, P. 2015: Fossil Brachyura. In: Castro, P., Davie, P.J.F. Guinot, D., Schram, F.R. & von Vaupel Klein, J.C. (eds.): The Crustacea, Treatise on Zoology – Anatomy, Taxonomy, Biology, Vol. 9, part C-II. Koninklijke Brill NV, Leiden: 847-920. Karasawa, H. & Kato, H. 2003: The family Goneplacidae MacLeay, 1838 (Crustacea: Decapoda: Brachyura): systematics, phylo­geny, and fossil records. Paleontological Research, 7/2: 129-151. https://doi.org/10.2517/ prpsj.7.129 Latreille, P.A. 1802-1805: Histoire naturelle, gé­nérale et particuliere des Crustacés et des Insectes, 3: Paris, F. Dufart: 468 p. https://doi. org/10.5962/bhl.title.15764 MacLeay, W.S. 1838: On the brachyurous deca-pod Crustacea brought from the Cape by Dr. Smith. In Smith, A. (ed.): “Illustrations of the Annulosa of South Africa; being a portion of the objects of natural history chiefly col­lected during an expedition into the interi­or of South Africa, under the direction of Dr. Andrew Smith, in the years 1834, 1835 and 1836; fitted out by “The Cape of Good Hope Association for Exploring Central Africa”, Smith, Elder & Co., London : 53-71, pls. 2-3. Ng, P.K.L. & Manuel-Santos, M.R. 2007: Establishment of the Vultocinidae, a new fa­mily for an unusual new genus and new spe­cies of Indo-West Pacific crab (Crustacea: Decapoda: Brachyura: Goneplacoidea), with comments on the taxonomy of the Goneplacidae. Zootaxa, 1558: 39-68. https:// doi.org/10.5281/zenodo.178296 Ng, P.K.L. & Richer de Forges, B. 2009: Vultocinus anfractus Ng & Manuel-Santos, 2007 (Decapoda, Brachyura, Vultocinidae): a new record for New Caledonia, with notes on fe­male characters. Crustaceana, 82/5: 627-634. https://doi.org/10.1163/156854009X407731 Oss-Morales, A. 2011: Agostella terrersensis gen. et sp. nov. (Crustacea, Decapoda, Brachyura, Goneplacoidea) from the middle Eocene of alicante province, Spain. Revista Mexicana de Ciencias Geolgicas, 28/3: 413-419. Ossó, A., Domínguez, J.L. & Artal, P. 2014: Pyreneplax basaensis new genus, new speci­ es (Decapoda, Brachyura, Vultocinidae) from the Priabonian (Late Eocene) of the Pyrenees of Huesca (Aragn, Spain), and remarks on the genus Lobonotus A. Milne-Edwards, 1863. Treballs del Museu de Geologia de Barcelona, 20: 33-43. https://doi.org/10.32800/ tmgb.2014.20.0033 Saint-Laurent, M. de. 1980: Sur la classification et la phylogénie des Crustacés Décapodes Brachyoures. I. Podotremata Guinot, 1977, et Eubrachyura sect. nov. Comptes Rendus heb­domadaires des Séances de l’Académie des Sciences Paris, D290: 1265-1268. Schweitzer, C.E. 2005: The genus Xanthilites Bell, 1858 and a new xanthoid family (Crustacea: Decapoda: Brachyura: Xanthoidea): new hypotheses on the origin of the Xanthoidea MacLeay, 1838. Journal of Paleontology, 79/2: 277-295. https://doi.org/10.1666/ 0022-3360(2005)079<0277:TGXBAA>2.0.CO;2 Schweitzer, C.E., Feldmann, R.M. & Bonadio, C. 2009: A new family of brachyuran (Crustacea: Decapoda: Goneplacoidea) from the Eocene of Java, Indonesia. Scripta Geologica, 138: 1-10. Schweitzer, C.E., Feldmann, R.M. & Karasawa, H. 2018: Part R, Revised, Volume 1, Chapter 8T2: Systematic descriptions: Superfamily Carpilioidea. Treatise Online, 112: 1-22. Serene, R. 1964: Goneplacidae et Pinnotheridae récoltés par le Dr. Mortensen. Papers from Dr. Th. Mortensen’s Pacific Expedition 1914­1916, part 80. Videnskabelige Meddelelser fra Dansk Naturhistorisk Forening i Kbenhavn, 126: 181-282, pls. 16-24. Števčić, Z. 2005: The reclassification of bra-chyuran crabs (Crustacea: Decapoda: Brachyura). Natura Croatica, 14/1: 1-159. Stimpson, W. 1871: Preliminary report on the Crustacea dredged in the Gulf Stream in the Straits of Florida by L.F. de Pourtales, Assist. U. S. Coast Survey. Part I. Brachyura: Bulletin of the Museum of Comparative Zoology at Harvard College, 2: 109-160. GEOLOGIJA 63/1, 133-166, Ljubljana 2020 © Author(s) 2020. CC Atribution 4.0 License https://doi.org/10.5474/geologija.2020.014 An update of phylogenetic reconstructions, classification and morphological characters of extant Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata), with a discussion of their relevance to fossil material Posodobitev filogenetske rekonstrukcije, klasifikacije in morfoloških znakov recentnih rakovic Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata) z razpravo o njihovi pomembnosti za fosilni material Vassily A. SPIRIDONOV Shirshov Institute of Oceanology of Russian Academy of Sciences, Nakhimovskiy Prospekt 36, Moscow 117997, Russia; valbertych@gmail.com; vspiridonov@ocean.ru Prejeto / Received 9. 12. 2019; Sprejeto / Accepted 11. 4. 2020; Objavljeno na spletu / Published online 22. 4. 2020 Key words: phylogeny, evolutionary systematics, extant fauna, fossil record, Cretaceous, Eocene, Miocene Ključne besede: filogenija, evolucijska sistematika, recentna favna, fosilni zapis, kreda, eocen, miocen Zoobank: CA7E47BF-F0E7-4178-8F21-463FB908E6A4 Abstract The classification of extant Portunoidea has recently been significantly rearranged on the basis of morphological revision and molecular phylogenetic reconstructions. There is an urgent need to reach compatibility of fossil portunoid taxa with this new classification. Furthermore, several genera with a variety of both Recent and fossil representatives, e.g., the genus Portunus (sensu lato), have been split into other genera, but referring fossil species to these is still problematic. In order to facilitate the development of an integrated system that includes both extant and extinct portunoid taxa, a review of recent results regarding the phylogeny of portunoid crabs, an update of their extant taxa classification and a reappraisal of important morphological characters that can be used for assessment of both fossil and contemporary species are presented. A new subfamily, Parathranitiinae, is established within the Carcinidae and within the Portunidae, another new subfamily, Achelouinae, is introduced. Integration of palaeontological data and the evolutionary classification of extant Portunoidea is a challenging task that requires further development of comparative morphological, ecological and molecular genetic studies of modern species. Izvleček Razvrstitev recentnih portunoidnih rakovic je bila v zadnjem času bistveno preurejena na podlagi revizije morfologije in molekularnih filogenetskih rekonstrukcij. Potrebno je zagotoviti združljivost fosilnih portunoidnih taksonov z novo klasifikacijo. Več rodov z živečimi in fosilnimi predstavniki, na primer rod Portunus (sensu lato), je bilo razdeljenih na druge rodove, zato je uvrščanje fosilnih vrst vanje problematično. Da bi zagotovili razvoj integriranega sistema, ki vključuje obstoječe in izumrle portunoidne taksone, je potreben pregled novih spoznanj o filogeniji portunoidnih rakov, posodobitev njihove obstoječe klasifikacije in ponovna ocena pomembnih morfoloških znakov, ki jih je mogoče uporabiti za določanje fosilnih in recentnih vrst. V okviru družine Carcinidae je ustanovljena nova poddružina Parathranitiinae, znotraj Portunidae pa nova poddružina, Achelouinae. Vključevanje paleontološkega materiala in evolucijske klasifikacije recentnih portunoidnih rakovic je zahtevna naloga, ki zahteva nadaljnji razvoj primerjalno morfoloških, ekoloških in molekularno genetskih raziskav obstoječih vrst. Introduction Portunoid crabs (superfamily Portunoidea) comprise over 420 extant and more than 200 ex­tinct species (De Grave et al., 2009), making it one of the most diverse and species-rich groups of Brachyura. Their characteristic features in­clude a specific construction of pereopods 5, preadapted for burrowing and constituting part of the swimming apparatus (Garstang, 1897a, b; Schäfer, 1954; Hartnoll, 1971; Steudel, 1998; Spiridonov et al., 2014). Another important fea­ture of portunoids is the peculiar morphology of the chelae, which is essential in maintaining the habit of active generalist predators and scaven­gers (Schäfer, 1954; Spiridonov et al., 2014). Por­tunoid crabs have a worldwide distribution (with the exception of subarctic waters of the North Pa­cific, Arctic and Antarctic), live in a variety of bi-otopes, although predominately on soft bottoms, from the intertidal and upper subtidal (Fig. 1) to deep waters of the continental slope and un­derwater rises (e.g., Geryonidae; see Manning & Holthuis, 1989; but also some representatives of generally shallow-water groups; see Spiridonov & Türkay, 2001). Particular groups have symbi­otic relationships with a variety of animal and plant taxa (Evans, 2018). Being abundant pred­ators, portunoid crabs play a significant role of ecosystems, hold a leading position among hu­man-mediated invaders (Brockerhoff & McLay, 2011) and include several highly important com­mercial species (Figs. 1G, H). Classification of Recent portunoids had been stable for about half a century, owing to the dominating taxonom­ic concept of Stephenson (1972). This state was largely reflected in the ‘Systema Brachyurorum’ by Ng et al. (2008), although it accommodated several revisions of particular species and gen­era and descriptions of new taxa introduced dur­ing the 1990s and early 2000s. Right after this ground-laying publication the taxonomy and classification of the Portunoidea entered a major revision. The impetus for this was given by pal­aeontologists (Karasawa et al., 2008), who sug­ gested the first phylogenetic reconstruction of the Portunoidea based on morphological cladistics and attempted to construct a new classification for both extant and extinct portunoid taxa. Sub­sequent molecular phylogenetic reconstructions (Schubart & Reuschel, 2009; Spiridonov et al., 2014; Evans, 2018; Mantelatto et al., 2018) have significantly changed the very concept of what are portunoids, challenged both the traditional (Stephenson, 1972; Ng et al., 2008) and Karasawa et al. (2008) views on major groups and evolution­ary lineages, stimulated new comparative mor­phological analysis of extant groups and revised the classification of the Portunoidea (see a scheme that reflects recent changes in Evans, 2018, fig. 5). In the present paper, I shall review recent developments in phylogenetic reconstruction, taxonomy, variability and classification of mor­phological structures and characters in order to facilitate the integration of palaeontological and neontological data in a coherent system of the Portunoidea. It is not really my intention here to classify extinct taxa but rather to comment on some of them to stimulate further taxonomic revision by palaeontologists or jointly by palae­ontologists and neontologists. Therefore, palae-ontological data are here presented only as ex­amples without any ambitions to provide their comprehensive coverage. The purpose of the present contribution is to review recent studies on extant Portunoidea and facilitate their integration with palaeontological data, in order to: 1) synthesise relevant molecular phylogenetic reconstructions and fossil records of extant genera; 2) update the classification of modern portunoid crabs; 3) make a comparative description of the taxonomic value of morpholog­ical characters that can be applied to both extant and fossil material. Fig. 1. Examples of portunoid crabs showing characteristic habit and commercial importance. A: Carcinus maenas (Linnaeus, 1761), medium size (to about 80 mm carapace width, CW), common inhabitant of intertidal-low subtidal habitats, north­east Atlantic; a global invader; rocky intertidal, North Sea, German Bight, Wilhelmshaven. B. Carcinus aestuarii Nardo, 1869, medium-sized species, a common inhabitant of Mediterranean Sea, low subtidal, in semi-burrowed condition, Black Sea. C. Liocarcinus vernalis (Risso, 1816), medium-sized species, a common inhabitant of low subtidal sandy habitats in the Mediterranean Sea, swimming over sand bottom, Black Sea. D. same specimen as C, burrowed in sand. E. Thalamita crenata Rüppell, 1830, medium-sized species, a common inhabitant of intertidal habitats in Indo-Pacific; after burrowing in sedi­ments, mangrove, Dam Bay, Tre Island, Vietnam, South China Sea. F. Xiphonectes sp., small (to about 50 mm CW) species, in coral rubble; Mot Island, Vietnam, South China Sea. G. Portunus trituberculatus Miers, 1879, a large (about 300 mm CW) commercially important species in East Asia; fish market in Busan, Korea. H. Scylla paramomosain Estampador, 1949, a large, commercially important and cultured species in southeast Asia, fish market in NhaTrang, Vietnam. Photograph credits: V. Spiridonov (A, E, G, H); S. Anosov (B, C, D) and T. Antokhina (F). Fig. 1. Material and methods The present study is based on my 20+ years’ work with collections of portunoid crabs at the Natural History Museum London, UK (NHMUK), the Naturhistorisches Museum Wien, Vienna, Austria (NHMW), the Senckenberg Museum, Frankfurt am Main, Germany (SMF), the Zoolog­ical Institute of the Russian Academy of Sciences, St Petersburg, Russia (ZIN-RAS), the Zoological Museum of Moscow University, Moscow, Russia (ZMMU), the Zoologisches Museum, Museum fr Naturkunde, Berlin, Germany (ZMB), where spec­imens illustrated are deposited, as well as other European, American and Australian collections. Morphological terms generally follow usage in Stephenson & Hudson (1957), Apel & Spiridonov (1998), Ng et al. (2008) and Evans (2018). In the carapace description the epithets “quasi-hexago­nal”, “quasi-trapezoidal” etc. are preferred over “subhexagonal”, “subtrapezoidal” etc. The simplified scheme of the phylogenetic re­lationships of extant portunoid genera (Fig. 2) is based on results obtained by recent molecular phylogenetic reconstructions (Schubart & Reus­chel, 2009; Spiridonov et al., 2014; Evans, 2018; Mantelatto et al., 2018). The branching of the tree follows particular patterns agreed between dif­ferent reconstructions; where there is no agree­ment between particular studies, the relation­ships are shown as an unresolved polytomy. The updated classification of Recent Por­tunoidea is based on the principles of evolution­ary systematics (Simpson, 1961), which requires compatibility with phylogenetic reconstructions but implies a thorough morphological analysis for definition of the boundaries of taxa. In linking particular extant portunoid genera to their palaeontological records I generally fol­low Mller (1984) and Karasawa et al. (2008) with additions of recent fossil records, for instance, of Geryon Kryer, 1838 (Feldmann et al., 2010), Bathynectes Stimpson, 1871 (Ossó & Stalennuy, 2011) and Liocarcinus Stimpson, 1871 (De An­geli et al., 2019). Since most pre-Pleistocene re­cords of Callinectes Stimpson, 1860 are based on incompete and poorly preserved material, the known range of Callinectes was corrected ac­cording to well-preserved specimens reported by Collins et al. (2014). As fossil crabs identified as Portunus (sensu lato) may indeed refer to several genera, I have specifically checked the original figure of one of the oldest representatives, namely Portunus kochi Bittner, 1893 (see Bittner, 1893, pl. 1, fig. 1). For further explanations, reference is made to the caption of Figure 2. A review of the phylogeny of the Portunoidea based on published molecular genetic reconstructions and palaeontological history of extant taxa The genera Geryon (living in the northeast Atlantic), Chaceon Manning & Holthuis, 1989 (inhabiting continental slopes and underwater rises worldwide), Raymanninus Ng, 2000 (occur­ring in the deep water of the Caribbean) form a distinct clade in all molecular phylogenetic re­constructions, which shows sister relationships to the deep-water Indo-Pacific Benthochascon Alcock & Anderson, 1899 or the Benthochas-con + Ovalipes clade. Species of Ovalipes occur mostly in the Southern Hemisphere but are also known from the northeast Pacific and northwest Atlantic. This clade is interpreted as the basal portunoid lineage that possesses a number of plesiomorphic character states and shows a close affinity to one of the most ancient potential por­tunoid taxa, the genus Eogeryon Oss, 2016 from the upper Cenomanian (Oss, 2016). The clade comprises the family Geryonidae (sensu Evans, 2018) and shows sister relationships to other studied portunoids (Fig. 2). The latter in turn are well separated into two major clades which are resolved in all re­constructions (Schubart & Reuschel, 2009; Spiridonov et al., 2014; Evans, 2018), although with varying internal topologies. Following the most comprehensive study by Evans (2018), one of this major lineages includes the Indo-Pacific taxa Parathranites Miers, 1886 and Coelocarci-nus Edmondson, 1930 as basal groups. All pub­lished phylogenetic trees define the related clades Carcinus Leach, 1814 + Portumnus Leach, 1814 and Pirimela Leach, 1816 or Pirimela + Sirpus Gordon, 1953. All these taxa are originally con­fined to the North Atlantic. Their possible sister clade includes morphologically diverse genera such as Thia Leach, 1816, Bathynectes, Macro-pipus Prestandrea, 1833, Necora Holthuis, 1987 and Liocarcinus, also living mostly in the Atlan­tic. The topology of relationships between these groups differ in the reviewed studies, so in Fig­ure 2 no resolved branching is shown. Polybius Leach, 1820 is nested within Liocarcinus in all reconstructions (see also Plagge et al., 2016) and is not shown in the present scheme (Fig. 2). All the genera mentioned were combined in the new­ly defined family Carcinidae (sensu Evans, 2018). Most fossil records of thus defined carcinids are no older than Miocene, and only records of Lio­carcinus spp. date back to the Eocene (De Angeli et al., 2019; Á. Oss, pers. comm., January 2020). Fig. 2. Schematic phylogenetic tree of extant portunoid genera based on molecular phylogenetic reconstructions by Schubart & Reuschel (2010), Spiridonov et al. (2014), Evans (2018) and Mantelatto et al. (2018). Black bands indicate the temporal ex­tension of particular genera from the first palaeontological record onwards. The tree does not have an unbiased temporal scale; the positions of nodes only indicate that the divergence between families occurred not later than the Cretaceous, the divergence between major genera not later than the Eocene, Oligocene or Miocene. Abbreviations of geological epochs: PAL – Paleocene; PLEI – Pleistocene; PLIO – Pliocene; OLI – Oligocene. Another large group which shows sister rela­tionships to the Carcinidae are the Portunidae (sensu Schubart & Reuschel, 2009; Spiridonov et al., 2014). The topology of clades within the Portunidae is not stable through reviewed recon­structions, although the clade of taxa referred to the Thalamitinae (sensu Apel & Spiridonov, 1998), plus symbiotic taxa formerly referred to the Caphyrinae Paulson, 1875 is always revealed (Fig. 2). The Atlantic-eastern Pacific genus Cro­nius Stimpson, 1860 was shown to be basal to this clade, the other species of which have a mostly Indo-Pacific distribution (Evans, 2018). All molecular phylogenetic studies indicate that the American and eastern Atlantic species earli­er considered to belong to the subgenus Achelous De Haan, 1833 of the genus Portunus Weber, 1795 (Ng et al., 2008) constitute a distinct clade, which in some reconstructions show sister relationships to the Thalamitinae (Spiridonov et al., 2014; Ev­ans, 2018; Mantelatto et al., 2018). Species of Portunus (sensu stricto) (occurring in the Indo-Pacific and Atlantic) are revealed as having close phylogenetic relationships with the Atlantic genera Arenaeus Dana, 1851 and Calli-nectes. Several Indo-Pacific genera, most of them earlier included in the Carupinae (sensu Apel & Spiridonov, 1998), such as Atoportunus Ng & Takeda, 2003, Carupa Dana, 1851, Catoptrus A. Milne-Edwards, 1870, Laleonectes Manning & Chace, 1990, Libystes A. Milne-Edwards, 1867 and Richerellus Crosnier, 2003) are also phyloge­netically related, although their tree cannot be perfectly resolved to date (Fig. 2). Other genera do not show a stable pattern of relationships in particular reconstructions (except for Monomia Gistel, 1848 and Cycloachelous Ward, 1942), and therefore the general phylogeny of the Portu­nidae may now be schematically presented as a polytomy (“bush” rather than a tree). One of the oldest known portunids, “Por-tunus” kochi (Bittner, 1883) from the Upper Eo­cene, can be referred to Achelous according to the morphology of the frontorbital and anterolateral margins and carapace ornamentation (see Bit-tner, 1893: pl. 1, fig. 1). This suggests a significant geological age of the Achelouinae. Such genera as Scylla De Haan, 1833 are known to have occurred since at least the Miocene, while Necronectes A. Milne-Edwards, 1881, which is morphologically very similar to Scylla, is at least of Oligocene age (Karasawa et al., 2008; Ossó & Gagnaison, 2019). Therefore, the divergence of major portunid line­ages most probably took place no later than Mid­dle Eocene or even in pre-Eocene times (Fig. 2) Updated classification of recent Portunoidea Family Geryonidae Colosi, 1923 Diagnosis: Spiridonov et al. (2014). Type genus: Geryon Kryer, 1837. Subfamily Benthochasconinae Spiridonov, Neretina & Schepetov, 2014 Diagnosis: Spiridonov et al. (2014). Genus: Benthochascon Alcock & Anderson, 1899 Subfamily Geryoninae Colosi, 1923 Diagnosis: Spiridonov et al. (2014). Genera: Chaceon Manning & Holthuis, 1989; Geryon Kryer, 1837(type genus); Raymanninus Ng, 2001 and Zariquieyon Manning & Holthuis, 1989. Subfamily Ovalipiinae Spiridonov, Neretina & Schepetov, 2014 Diagnosis: Spiridonov et al. (2014). Genera: Ovalipes Rathbun, 1898 (type genus). Remarks: Originally, this taxon was estab­lished at the family level, although possible sister relationships to the Geryonidae were assumed (Spiridonov et al., 2014). On the basis of his mo­lecular phylogenetic reconstruction, Evans (2018) argued for even closer relationships of Ovalipes with geryonids and suggested to consider this group as a subfamily of the Geryonidae. I ac­cept his concept here. Although Ovalipes spp. are characterised by a number of apomorphies in relation to other geryonids, they share with them apparently plesiomorphic conditions of non-fused pleomeres of the male pleon and long gonopods 2, and an apparently apomorphic ten­dency for reduction of one of the orbital fissures (see below). The grammatically correct form for the fami­ly/subfamily name is Ovalipiinae, not Ovalipinae as suggested by Spiridonov et al. (2014). It is cor­rected here. Genera incertae sedis: Echinolatus Davie & Crosnier, 2006 and NectocarcinusA. Milne-Edwards, 1861. Remarks: These genera share with the Geryo­nidae such plesiomorphic conditions as non-fused pleomeres of the male pleon and long gonopods 2, a tendency for reduction of one orbital fissure, as well as an even number of frontal lobes and four anterolateral teeth, characters not common­ly found in the Carcinidae. On the other hand, species assigned to these genera have some char­acters that are unique to portunoid crabs, such as a double inner carpal spine and additional ante-rolateral teeth in Echinolatus spp. These genera have not yet been included in molecular phyloge­netic reconstuctions. I tentatively assign them to the Geryonidae, although they may deserve sep­arate status. Family Carcinidae MacLeay, 1838 Diagnosis: Evans (2018). Type genus: Carcinus Leach, 1814. Subfamily Carcininae MacLeay, 1838 Diagnosis: Spiridonov et al. (2014). Genera: Carcinus Leach, 1814 (type genus). Subfamily Coelocarcininae Števćić, 1991 Diagnosis: Evans (2018). Genera: Coelocarcinus Edmondson, 1930 (type genus). Subfamily Parathranitiinae Spiridonov subfam. nov. Zoobank: urn:lsid:zoobank.org:act:74EF­ 9937-1342-4BF6-8847-5F220ED11882 Diagnosis (new): Carapace distinctly qua-si-hexagonal, regions well defined, with well-de­fined ridged and granular ornamentation. Fron­tal margin subdivided into 4 teeth. Infra-orbital margin consisting of several lobes. Posteriormost of five anterolateral teeth distinctly longer than others. Posterolateral corners of carapace angu­lar or spiniform. Cheliped with spines on anteri­or and posterior faces of merus, carpus with out­er spines, propodus with upper spines, dactyli of last pereopods lanceolate. Genera: Parathranites Miers, 1886 (type ge­nus). Remarks: Parathranites spp. (see Cros­nier, 2002) differ from all Carcinidae in having well-defined regions of the carapace, spiniform posterolateral corners of the carapace, and from most of the carcinids by upper spines on the che-la palm (propodus) and four frontal teeth/ lobes. Molecular phylogenetic reconstruction (e.g., Ev­ans, 2018; see Fig. 2 here) indicates the basal po­sition of the genus in relation to other groups of the family. To emphasise this peculiar position, I find it reasonable to define a new subfamily, Par-athranitiinae, within the Carcinidae. Subfamily Platyonichinae Dana, 1851 (= Portumninae Ortmann, 1899; see Davie et., 2015 for a discussion of the synonymy). Diagnosis: Spiridonov et al. (2014; as Por­tumninae). Genera: Portumnus Leach, 1815 (type genus) and Xaiva MacLeay, 1838. Subfamily Pirimelinae Alcock, 1899 Diagnosis: Spiridonov et al. (2014; as family Pirimelidae). Genera: Pirimela Leach, 1816 (type genus) and Sirpus Gordon, 1953. Subfamily Polybiinae Ortmann, 1893 Diagnosis: Spiridonov et al. (2014: 422, as fam­ily Polybiidae). Genera: Bathynectes Stimpson, 1871; Coe­nophthalmus A. Milne-Edwards, 1873; Liocar­cinus Stimpson, 1871; Macropipus Prestandrea, 1833; Necora Holthuis, 1987 and Polybius Leach, 1820 (type genus). Subfamily Nautilocorystinae Ortmann, 1893 Diagnosis: Spiridonov et al. (2014). Genera: Nautilocorystes H. Milne Edwards, 1837 (type genus). Subfamily Thiinae Dana, 1852 Diagnosis: Spiridonov et al. (2014; as Thiidae) Genera: Thia Leach, 1816 (type genus). Remarks: Nautilocorystes was referred to the Thiidae by Ng et al. (2008) on the basis of im­portant morphological similarities. In spite of an appearance that is highly unusual for por­tunoid crabs, Nautilocorystes has several char­acters, such as a cheliped morphology typical of portunids (Spiridonov et al., 2014). Thia has re­peatedly been shown to nest within the polybi­ine clade (Schubart & Reuschel, 2009; Spiridonov et al., 2014; Evans, 2018), although its significant morphological peculiarity calls for a separate status. Therefore, a subfamily rank for the Thi­inae was accepted by Evans (2018) and it is here too. The relationships of Nautilocorystes to the Carcinidae in the current concept remain un­clear, as no molecular phylogenetic study of this taxon has been conducted to date. Here, I tenta­tively place Nautilocorystinae as a separate sub­family of the carcinids. Family Portunidae Rafinesque, 1815 Diagnosis: Spiridonov et al. (2014). Type species: Portunus Weber, 1795. Subfamily Achelouinae subfam. nov. Zoobank: urn:lsid:zoobank.org:act:B094745A-E­EB2-408A-B91F-E30DE868449A Diagnosis (new): Carapace more than 1.5 times wider than long, quasi-hexagonal; regions well expressed; with distinct granular ridges and groups of granules both in anterior and posterior parts. Nine sharp anterolateral teeth: teeth 1 to 8 subequal, last tooth distinctly longer than others. Front narrower than posterior border, consisting of 4 or 6 lobes; outer lateral lobes may be fused with inner supraorbital lobes. Chelipeds with several teeth on anterior margin and a single posterior tooth; carpus with a single outer spine; inner spine well expressed and may be very long, reaching to chela fingers; propodus strongly costate, with a single spine; heterochely moder­ate; larger chela with flattened molariform tooth. Dactyli of pereopods 2–4 strong, knife-shaped. Merus of pereopod 5 much broader than meri of pereopods 2–4, posterior spine may be pres­ent although obsolete; propodus without spinules on posterior margin, dactylus paddle-like. Male pleon triangular, unclear sutures may be present at fused pleomere 3–5. Gonopod 1 of generalised shape, curved, thinning apically, with micro-spopic spinules. Female genital opening large, occupying about one third of sternite. Remarks: Numerous Atlantic and eastern Pa­cific species referred to Achelous, Lupella Rath-bun, 1897 or Portunus (except for Portunus sayi (Gibbes, 1850) form a distinct monophyletic clade which does not show clear relationships to other groups (Spiridonov et al., 2014; Mantelatto et al., 2018) and are characterised by distinct morpho­logical characters. It justifies placing them in a separate subfamily, Achelouinae. Genera: Achelous De Haan, 1833 (type genus) and Lupella Rathbun, 1897. Subfamily Carupinae Paulson, 1875 Diagnosis (extended from Apel & Spirido­nov, 1998): Carapace much wider than long, up to about twice, transversely oval, elliptical or indistinctly quasi-hexagonal, relatively convex; regions poorly expressed; usually with only epi­branchial ridge or smooth; sometimes with dif­fuse granules. Supraorbital fissures may be re­duced, infraorbital margin variously modified. Front much narrower than posterior border, four-, or two-lobed, or nearly entire; anterolat­eral border convex, toothed or entire. Postero-lateral reentrant poorly developed, or not at all. Secondary sulci of sternum may be absent. Basal antennal segment narrow, long, lying obliquely, not lobulate, antennal peduncle entering orbital hiatus. Chelipeds of various construction, spines on cheliped segments usually reduced in num­ber or absent. Some representatives are second­arily homoiochelic and homoiodontic, with long and thin chelae. Pereopods 2–4 usually long and thin, non-costate. Merus of pereopod 5 long and thin, not broader or not much broader than meri of pereopods 2–4, without posterior spinule; dac­tylus styliform, lanceolate, or knife-shaped. Male pleon triangular. Gonopod 1 usually with rela­tively robust subterminal spines. Female genital openings large, without cuticular emargination and caps. Genera: Atoportunus Ng & Takeda, 2003; Carupa Dana, 1851 (type genus); Catoptrus A. Milne-Edwards, 1870; Kume Naruse & Ng, 2012; Laleonectes Manning & Chace, 1990; Liby­stes A. Milne-Edwards, 1867; Pele Ng, 2011 and Richerellus Crosnier, 2003. Remarks: The name of the author of the sub­family is often spelled “Paul’son” following the English translation of the original monograph in the Russian language (Paulson, 1875). I prefer, however, “Paulson” because Otto Paulson used this spelling in his German-language publica­tions (i.e. Paulson, 1862). Subfamily Lupocyclinae Paulson, 1875 Diagnosis (new): Cephalothorax quasi-hex­agonal or quasi-circular in outline, dorsally convex. Carapace with granular ridges and/or patches. Front narrower than posterior border, consisting of 4 lobes or teeth, markedly produced beyond inner supraorbital lobes. Orbit circular. Anterolateral margin with 5–9 teeth. Postero-lateral margin with rounded corners. Expansion of basal antennal segment not produced into or­bit being directed nearly anteriorly; flagellum standing in orbital hiatus. Chelipeds long, ho-moiochelic or slightly heterochelic; merus with 4–7 spines on anterior margin and 2 spines on posterior margin; carpus with a single spine on outer face; manus with two subdistal spines on dorsal face. Chelae very long and thin, dis­tinctly thinner than cheliped meri. Heterodonty not expressed or poorly expressed. Distal parts of chelae fingers curved in sagittal plane. Pere­opods 2–4 long, thin, dactyli narrow, ensiform, Merus of P 5 broader and shorter than meri of pereopods 2–4, with a small posterodistal spine; dactlylus lanceolate or paddle-like. Male pleon triangular. Gonopod 1 of generalised shape, rel­atively straight or curved, with sharpened distal part, without large subterminal spines. Female genital openings large, occupying half or more of length of mesial part of sternite, without cuticu­lar emargination and caps. Genera: Lupocycloporus Alcock, 1899 and Lupocyclus Adams & White, 1848 (type genus). Subfamily Necronectinae Glaessner, 1928 Diagnosis (modified after Karasawa et al., 2008): Carapace of intermediate outline between quasi-hexagonal and oval, dorsally convex, smooth with recognisable gastric and epibranchi­al finely granular ridges. Front narrower than posterior border, usually consisting of 4 lobes or teeth, not produced beyond inner supraorbital lobes. Orbit semi-oval. Anterolateral margin with 9 (or 8 in some fossil taxa) teeth. Posterolat­eral margin with rounded corners. Basal anten­nal segment with latero-distal spine; flagellum standing in orbital hiatus. Cheliped merus with 3 spines on anterior margin and 2 distal spinules on posterior margin; carpus with 1-3 spinules (of­ten reduced) on outer face; manus nearly smooth, with 1 or 2 subdistal spinules on dorsal face. Het­erochely and heterodonty well expressed; chela inflated; molariform teeth present on both che­lae. Distal parts of chelae fingers not curved in sagittal plane. Dactyli of pereopods 2–4 relative­ly broad and strong, ensiform. Merus of pereo-pod 5 much shorter than meri of pereopods 2–4, without a posterior spine; propodus without pos­terior spinules; dactylus paddle-like. Male pleon triangular. Gonopod 1 sinuous or slightly curved, without large subterminal spines. Female geni­tal openings without cuticular emargination and caps. Genera: Scylla De Haan, 1833 and Sanquerus Manning, 1989. Type genus: Necronectes A. Milne-Edwards, 1881 (extinct). Subfamily Podophthalminae Stimpson, 1860 Diagnosis: Apel & Spiridonov (1998: 169). Genera: Euphylax Stimpson, 1860 and Po-dophthalmus Lamarck, 1801 (type genus). Subfamily Portuninae Rafinesque, 1815 Diagnosis (new): Cephalothorax quasi-hex­ agonal in outline, dorsally flattened. Carapace granular, usually with granular ridges and/ or patches. Frontal margin of carapace divided into even number of lobes or teeth (usually 4), usually not distinctly produced beyond inner supraorbital lobes. Orbit elliptoidal. Anterolateral margin di­vided into 9 teeth, usually without indication of reduction of particular teeth. Posterolateral reentrant well developed; posterolateral margin usually with rounded corners. Expansion of basal antennal segment produced into orbit but not fill­ing orbital hiatus completely, flagellum standing in orbital hiatus. Cheliped merus with 3–4 spines on anterior margin and 1–2 spines on posterior margin; on dorsal face along posterior margin there may be a suture and a granular line termi­nated at one of posterior spines. Carpus with a single spine or without spines but carina on out­er face. Manus with one or two subdistal spines on dorsal face. Heterochely usually expressed. Heterodonty usually expressed by a molariform tooth developed to various degrees at base of larger chela dactylus; in some cases symmetrical chelae present. Distal parts of chelae fingers not curved in sagittal plane. Dactyli of pereopods 2–4 robust, ensiform or narrowly lanceolate. Merus of P 5 much shorter and broader than meri of pere­opods 2–4, without a posterior spine, propodus without spinules on posterior margin, dactylus paddle-like. G 1 of simple shape or modified (very thin), without large subterminal spines. Female genital openings relatively compact, occupying less than half of length of mesial part of sternite, often with emarginations and caps. Genera: Arenaeus Dana, 1851; Callinectes Stimpson, 1860 and Portunus Weber, 1795 (type genus). Genera tentatively included here: Cavopor­tunus Nguyen & Ng, 2010; Cycloachelous Ward, 1942 and Monomia Gistel, 1848. Remarks: Portuninae had been the largest subfamily of Portunidae when the lumping con­cept of Stephenson (1972) became dominant. With the subsequent revalidation and redefinition of the Lupocyclinae, Thalamitinae and Necronecti-nae, this subfamily has been considered in an in­creasingly restricted sense (e.g., Apel & Spirido­nov, 1998; Karasawa et al., 2008; Ng et al., 2008). To date, even this restricted concept is no longer supported by molecular phylogenetic reconstruc­tions and comparative morphology (Schubart & Reuschel, 2009; Spiridonov et al., 2014; Ev­ans, 2018; Mantelatto et al., 2018). In particular, the genus Portunus (sensu lato) of Stephenson’s (1972) classification is now considered to consist of several not closely related and morphological­ly different genera. The American-eastern At­lantic genus Achelous is here taken to represent a separate subfamily. Xiphonectes A. Milne-Ed­wards, 1873, which has been considered as a sub-genus of Portunus (Ng et al., 2008), appears to be polyphyletic as well and is, for the time being, listed as a genus incertae sedis within the Portu­nidae. I tentatively include here in the Portuni-nae three additional genera previously combined in Portunus. This makes possible to formulate a consistent morphological diagnosis, until more detailed ongoing molecular genetics and com­ parative morphological studies provide sufficient data for a more appropriate classification of Cav­oportunus, Cycloachelous and Monomia. Subfamily Thalamitinae Paulson, 1875 Diagnosis: Evans (2018: 40). Genera: Caphyra Guérin, 1832; Charybdis De Haan, 1833; Cronius Stimpson, 1860; Gonio­infradens Leene, 1938; Goniosupradens Leene, 1938; Lissocarcinus Adams & White, 1848; Tha­lamita Latreille, 1829 (type genus); Thalami-toides A. Milne-Edwards, 1869; Thalamonyx A. Milne-Edwards, 1873; Thranita Evans, 2018; Tri­erarchus Evans, 2018 and Zygita Evans, 2018. Remarks: Thalamitinae was recognised as a morphologically distinct subfamily of Portunidae by Paulson (1875), but the taxon was subsequent­ly largely ignored until revalidation and redef­inition by Apel & Spiridonov (1998). Spiridonov et al. (2014) provided molecular phylogenetic support for the monophyly of the most speciose thalamitine genera, Charybdis and Thalamita. Recently, Evans (2018) has presented evidence of the basal position of Cronius (formerly assigned to the Portuninae) in the thalamitine phylogenet­ic tree and has demonstrated the phylogenentic relationships of Thalamitinae (sensu stricto) and Caphyra and Lissocarcinus (formerly considered to belong to the subfamily Caphyrinae Paulson, 1875, by Ng et al., 2008). The latter two genera, along with some groups formerly referred to Tha­lamita (Trierarchus, Zygita), form a symbiotic clade within the Thalamitinae in the new concept (Evans, 2018). Genus incertae sedis: Carupella Lenz & Strunk, 1914 Remarks: Two syntypes of Carupella natalen- sis Lenz & Schtrunk, 1914 that I have examined (ZMB 19917) are juvenile, just settled crabs, most likely belonging to the Portuninae (although as­signment to the Lupocyclinae in its present con­cept cannot be completely ruled out). They may in fact belong to yet another known species for which precise identification is currently difficult due to a lack of knowledge on age-related varia­tion in portunids. Thus, the genus Carupella may be synonymous with another, established genus. The holotype of Carupella banlaensis Tien, 1969 (ZIN-RAS 1/58265) is certainly a juvenile speci­men of Portunus sp. The type of the third species of the genus, Carupella epibranchialis Zarenkov, 1970, has not been traced in the ZMMU collections where it would presumably have been deposited. It is thus appropriate to consider Carupella as a genus incertae sedis within the Portunidae until new comparative research will clarify its status. Genus incertae sedis: Xiphonectes A. Milne-Edwards, 1873 Remarks: See above under the subfamily Por­tuninae. Family Brusiniidae Števćić, 1991 Genus: Brusinia Števćić, 1991. Remarks: Brusinia spp. are very peculiar mor­phologically (Spiridonov et al., 2014) and are not nested within the Portunoidea in updated phy­logenetic trees based on the 16S RNA gene (Ev­ans, 2018). The family is tentatively considered as a portunoid group until more comprehensive data become available. Morphological characters of Portunoidea applicable to fossil material Carapace morphology Most portunoid crabs have a quasi-hexagonal carapace shape, with the maximum width usual­ly exceeding the maximum length (Fig. 3). This general carapace outline portunoids share with a number of other heterotremate crabs such as the superfamilies Cancroidea, Goneplacoidea and Pilumnoidea (Guinot, 1979; Ng et al., 2008; Davie et al., 2015). Fig. 3. Examples of portunoid crabs with a typical quasi-hexagonal (A–E) and a derived quasi-trapezoidal carapace (F). A. Geryon trispinosus Kroyer, 1838, North Sea, ZMMU Ma 2921; B. Benthochascon hemmingi Alcock & Anderson, 1899, South China Sea, ZIN-RAS 88509; C. Xaiva biguttata (Risso, 1816), North Sea, SMF 3969; D. Achelous spinimanus Latreille, 1819, Jamaica, SMF 31987; E. Thalamita spinimana Dana, 1852, Indo-Pacific, SMF 3881; F. Podophthalmus vigil Fabricius, 1798, Vietnam, collections of the Department of Hydrobiology of Moscow University. Abbreviations: f – frontal margin; o – orbit; al – anterolateral margin; pl – posterolateral margin; mer – merus; cp – carpus; pp – propodus; d – dactylus; ch – chela. Scale bar equals 5 mm. In some portunoid taxa the cephalothorax is comparatively lengthened, so that the length becomes equal to or greater than the maximum width. The carapace morphology in such taxa shows a transition to a pear-shaped (Portumnus, Brusinia) or a nail-shaped (Thia, Nautilocoryst-es) outline (Fig. 4). The carapaces of Brusinia and Nautilocorystes are also distinctly longer than broad, which is an exception in the Por­tunoidea. The former genus may not even belong to the portunoid crabs phylogenetically (Evans, 2018), while the phylogenetic relationships of the latter are not yet reconstructed using molecular markers. However, all these taxa with a carapace shape that is unusual for portunoids have typi­cal characters of burrower ecomorphs (Schäfer, 1954), while some of them (e.g., Portumnus and Thia; Figs. 4B, E) are definitely known to spend most of time burrowed in sandy sediments (Spiri­donov et al., 2014). In various subfamilies and genera of Recent portunoids one can also see transitions from qua-si-hexagonal to other carapace shapes. Species of Ovalipes are flattened and approach an ovoid shape owing to arching of lateral carapace mar­gins (Fig. 4A). Several actively swimming Po-dophthalminae, e.g., Euphylax dovii Stimpson, 1860, are also flat and ovoid. Arching of lateral carapace margin is more expressed in the Lup­ocyclinae which have a quasi-circular carapace and the Carupinae with broad quasi-oval cara­paces (Fig. 5H). In the latter subfamily (genera Atoportunus, Carupa and Catoptrus) this type of carapace morphology is associated with living in reef cracks and caves (Spiridonov et al., 2014). In the non-reef-dwelling and likely non-swimming genus Libystes (Carupinae), e.g., L. edwardsi Al-cock, 1900, the carapace is quasi-hexagonal with a convex anterolateral margin bearing notable teeth, while these teeth are strongly reduced and the general outline approaches the oval one in Libystes aff. nitidus (Apel & Spiridonov, 1998: figs 5a, 6a), reaching a perfect oval condition in Libystes nitidus A. Milne-Edwards, 1867 (Fig. 5H). Another group with ovoid or quasi-circular carapaces includes symbiotic Caphyra and Trier-archus rotundifrons (A. Milne-Edwards, 1869), associated with green algae (Crosnier, 1975; Ev­ans, 2018). A very unusual quasi-circular cara­pace shape with protruding frontal and posterior regions is known for the Coelocarcininae which inhabit coarse coral sand and rubble (Ng, 2002). A trapezoidal carapace is characteristic of several portunids with extended frontorbital margin, which approaches the maximum breadth between posterior anterolateral teeth or becomes the widest part of the carapace. This is seen in Podophthalmus vigil (Fabricius, 1798) and some Thalamitinae. In the first case the extension is achieved owing to enlargement of the orbits, be­ing associated with long eyestalks, and is com­monly recorded among various and not closely related brachyuran taxa (e.g., Ocypodidae, Mac-rophthalmidae, some Goneplacidae). The second case is associated with the extension of the ba­sal antennal segment and the frontal margin and seems to be practically unique among crabs. The posterior part of carapace may be mark­edly longer than the anterior one (Geryonidae and most Carcinidae), or be nearly equal to it (a quasi-symmetrical shape in relation to the max­imum width axis carapace), and even shorter, which is characteristic of active swimmers in the Portunidae (see Schäfer, 1954: fig. 41). It is worth noting that the Parathranitiinae, a taxon appar­ently separate from most other extant carcinids, also has such quasi-symmetrical carapaces (see Crosnier, 2002). It is furthermore characteristic of Echinolatus (see Davie & Crosnier, 2006), a ge­nus incertae sedis, which I here tentatively place in the Geryonidae. Fossil portunoids, or taxa resembling por­tunoids, are mostly characterised by quasi-hex­agonal or ovoid carapaces which are mostly asymmetrical in relation to the maximum width axis (e.g., Karasawa et al., 2008; Oss, 2016). In some cases, for instance in the Lithophylacidae Van Straelen, 1936 from the Cenomanian (lower Upper Cretaceous) quasi-trapezoidal carapac­es have been reported (Guinot & Breton, 2006). In the Cretaceous family Carcineretidae Beur­len, 1930 an intermediate condition between the quasi-quadrate and quasi-trapezoidal outline of the carapace is characteristic of the type genus Carcineretes Withers, 1922 (Withers, 1922, pl. 16; Vega et al., 2001, fig. 1; Schweitzer et al., 2007). Another Cretaceous taxon with a near-quadrate carapace is Binkhorstia ubaghsii (Van Binck­horst, 1857) currently included in the family Lon-gusorbiidae Karasawa, Schweitzer & Feldmann, 2008 (see Schweitzer et al., 2007, figs. 2 A-C). The Late Cretaceous Ophthalmoplax Rathbun, 1935, earlier considered within the Carcineretidae and currently within the Macropipidae (sensu Kara-sawa, Schweitzer & Feldmann, 2008) also has a subquadrate carapace (Schweitzer et al., 2007; Vega et al., 2013). In general, the carapace outline and symmetry/asymmetry patterns are charac­ters of considerable taxonomic value at the genus or family level. Fig. 4. Examples of portunoid crabs with modified carapace. .. Ovalipes punctatus De Haan, 1833, Japan, SMF, no catalogue number; B. Portumnus latipes Leach, 1814, Black Sea, ZIN-RAS 25087: C. Brusinia brucei Števćić, 1991, southern Australia, Museum of Victoria MV J 61074; D. Nautilocorystes ocellatus H. Milne Edwards, 1837, NHMW, from the collection of the frig­ate “Novara” Expedition, # 83; E. Thia scutellata Fabricius, 1793, North Sea, SMF 38490. Scale bar equals 5 mm. Carapace regions The carapace of Decapoda is subdivided into regions which correspond to location of particu­lar internal organs of the cephalothorax (Glaes­sner, 1960). These regions may be separated by furrows expressed with various degrees of dis­tinctness, or practically smoothed (Figs. 1, 3, 4, 5E, H). Amongst the Portunoidea, relatively dis­tinct carapace regions are usually found in many groups with quasi-hexagonal carapace outlines (Figs. 3B, D, 5E). The species with another cara­pace outline, particularly ovoid or rounded, usu­ally have smooth carapace regions (Fig. 4). The smooth carapace regions are typical of burrowing (Portumnus spp.; Fig. 4 B) or actively swimming species (e.g., Charybdis smithii MacLeay, 1838); in the latter case, this is in contrast to related species (see Türkay & Spiridonov, 2006, pl. 1). Most fossil portunoids appear to have few dif­ferences from Recent representatives of the su­perfamily in the expression of carapace regions. Representatives of Cretaceous families referred to the Portunoidea are illustrated as having more strongly separated carapace regions compared to those in extant families: Carcineretidae (see Vega et al., 2001, fig. 1), Lithophylacidae Van Straelen, 1936 (see Guinot & Breton, 2006), Longusorbii­dae (see Schweitzer et al., 2007, figs 2A-C). Most records of Ophthalmoplax brasiliana (Maury, 1930) also show quite distinct carapace regions, more expressively separated than in the majority of extant portunoid taxa (Vega et al., 2013, fig. 5). The distinctness of carapace regions may be con­sidered as a character of varying taxonomic val­ue although it tends characterise taxa at the ge­nus level or higher. Carapace ridges and cuticular structures The dorsal carapace surface in portunoid crabs may be practically smooth as in Brusinia, Benthochascon, Portumnus, Nautilocorystes and Thia, evenly covered with granules (as in some Ovalipes and Chaceon) or carry complex sculp­ture, such as granular ridges, groups of gran­ules, terraces and tubercles. Smooth carapaces are characteristic, first of all, of those species which spend a significant length of time bur­rowed in sandy sediments (see Garstang, 1897a, b; Schäfer, 1954), and also of those spending much time swimming in the water column, such as Polybius henslowi Leach, 1820 or Charybdis smithii (see Türkay & Spiridonov, 2006). The absence of sculpture on the carapace decreases friction and is most likely a derived condition. Most portunoid crabs possess epibranchial gran­ular ridges that continue from last anterolateral tooth to the middle longitudinal axis of the body. In geryonids and carcinids these ridges consist of relatively sparse granules and are often inter­rupted and indistinct (Figs. 3A, B), similarly to many other heterotrenate crabs which have only epibranchial ridges. This is most probably a ple­siomorphic condition for the Portunoidea. Among the Carcinidae, some species of Liocarcinus (e.g., Liocarcinus corrugatus; see Plagge et al., 2016) and Necora (see Holthuis, 1987) have additional granular ridges and even terraces. Parathranites (Fig. 5E) is characterised by a heavily sculptured carapace (see Crosnier, 2002), while in the Portu­nidae, particularly in the Thalamitinae and such genera as Monomia and Xiphonectes that sculp­ture is most diverse and spectacular (see e.g., Fig. 1F). The location of granular ridges and patches create specific patterns useful for distinguishing species and their groups in speciose genera such as Achelous, Charybdis, Cycloachelous, Mono-mia, Thalamita and related taxa, and Xiphonect-es. Fossil taxa also show a variety of dorsal cara­pace structures. Several Cretaceous genera have strong transverse ridges, even described as keels: across most of carapace regions as in Ophthal­moplax (see Vega et al., 2013, figs. 4-1) and Icri­ocarcinidae Števčić, 2005 (Phillips et al., 2014), or across the protogastric region as in Carciner­etes (Schweitzer et al., 2007). Icriocarcinidae and Longusorbiidae are characterised by a row of massive tubercles along the posterolateral mar­gin, particularly well developed in Binkhors­tia Noetling, 1881 (see Schweitzer & Feldmann, 2011, fig. 8.1). Significant differences in carapace ornamentation of fossil taxa, judging from the variation observed in extant portunoids, support their distinctness and a relatively high taxonom­ic rank (i.e. family). Frontorbital margin The front per se is usually subdivided into sev­eral lobes or teeth, the number of which is either even (2–6), or odd (1–3). The functionality of the frontal lobes and space between them may be re­lated to the sensory functions of antennules, their protection and cleaning, although this is large­ly unstudied. In the Geryonidae, the subfamily Geryoninae is characterised by a pair of separated median teeth and the lateral teeth are completely fused with inner orbital lobes (Fig. 3A). This fu­sion can be inferred from the presence of inner orbital lobes in with distinct two parts in some species of Chaceon and Zariquieyon (Manning & Holthuis, 1989, figs. 12, 14, 18). In the Benthochas­coninae the median lobes are fused and the later­al frontal lobes can be recognised as distinct from the much smaller outer lateral lobes (Fig. 3B). In most species of Ovalipes, the frontal margin has two teeth (Fig. 6A). In O. molleri (Ward, 1933) these teeth are fused at the base so that they can be considered as a single, bifid tooth. Low projec­tions of the frontal margin, possible rudiments or vestiges of lateral frontal lobes, are located lat­erally (Fig. 6B). In O. iridescens Miers, 1886, the species most closely similar to O. molleri, only a single median tooth is present and lateral concav­ities can be recognised in the largest specimens (Fig. 6C). In O. ocellatus (Herbst, 1799) nothing besides a sharp median frontal tooth can be seen (Fig. 6D). Nectocarcinus (Fig. 5B) and Echinola­tus (see Davie & Crosnier, 2006) have a 4-lobed front that provides additional support to their placement in the Geryonidae. With few exceptions, Brusiniidae and Carci­nidae mostly have a 3-lobed front. The 4-lobed frontal region of Bathynectes (Fig. 5D) and Par­athranites (Fig. 5E) largely resembles the condi­tion in the Benthochasconinae. Nautilocorystes, a taxon with a burrowing habit, is characterised by a narrow bilobed front with lateral frontal lobes fused with the inner supraorbital ones (Fig. 4D). However, the relationships of the above-men­tioned three genera to the Carcinidae remain to be clarified. A unique, for Recent carcinids, case of a broad bilobed front is represented by Coe­nophthalmus whose position within the Carcini­dae also remains unclear. There are several cases of transformation of a 3-lobed to an entire front, even within a single genus, e.g., in Liocarcinis navigator (Herbst, 1794). with indication of fu­sion of the original three lobes. Other examples of a practically entire front include Coelocarci-nus (see Ng, 2002) and Thia (Fig. 4E). The Portunidae show a variety of frontal shapes, although most have an even number of teeth/lobes. In some genera the number of lobes varies: 4 to 6 in Achelous, and 2 to 6 in Thalami-ta (sensu lato). In these, not closely related, taxa, some species with transitional states are also re­ported, for instance Thalamita bevisi (Stebbing, 1921) (= T. dakini Montgomery, 1931; see Apel & Spiridonov, 1998, fig. 53a, c, d). An entire fron­tal margin in some species of Libystes has been apparently evolutionarily derived from an indis­tinctly bilobed front, characteristic of other spe­cies of the genus, less deviating from the general portunoid appearance, like in Libystes edwardsi (see Apel & Spiridonov, 1998, fig. 5a). There are relatively few portunid taxa with 3-lobed fronts; most of these belong to the genus Xiphonectes, which is most probably heterogenous (Spiri­donov et al., 2014). In several Xiphonectes with a 4-lobed front the lateral lobes are broad and produced forwards, while the median ones are small and often partly fused. This may be a con­dition from which a 3-lobed front, characteristic of some species of the genus, such as X. tenuipes (De Haan, 1833), could evolve. Another example refers to some symbiotic species of Lissocarcinus in which the frontal margin is transitional be­tween triangular entire and indistinctly 3-lobed ones, while other species of the genus have an in­distinctly bilobed front (see Evans, 2018, fig. 3C, D). In the Podophthalminae the T-shaped frontal region is strongly reduced due to the enormous development of the orbits. Thus, the frontal mar­gin shows a possibility for transformation, where both fusion and separation of the lobes seem possible in phylogeny, although the core groups of the main portunoid taxa are characterised by relatively constant patterns of frontal lobes. Most fossil portunoid taxa were reported to have an even number of frontal teeth or lobes, or a flattened frontal margin with protuber­ances, usually even in number (Mller, 1984; Schweitzer & Feldmann, 2000; Karasawa et al., 2008). A 3-lobed front was particularly report­ed for species assigned to Liocarcinus and for such taxa as “Xaiva” bachmayeri Mller, 1984, Mioxaiva psammophila Mller, 1984 and “Lis-socarcinus” szoeraenyiae (Mller, 1974) from the Miocene (Mller, 1984). An example of a possible portunoid, although not referable to any Recent family, is a species with an odd number of fron­tal teeth, Psammocarcinus hericarti Desmarest, 1822 from the Eocene, in which the prolonged front “has three spiniform teeth: the middle one is the largest; the lateral ones merge with the inner orbital angle” (A. Milne-Edwards, 1860, 279; translation by Karasawa et al., 2008). A unique frontal margin in the form of a deflected rostrum is characteristic of the Carcineretidae (Schweitzer et al., 2007). Ophthalmoplax spp. also possess a peculiar front: relatively narrow, deflected and bifid (Vega et al., 2013; Internet 1). Another frontal region that is unusual for por­tunoids is interpreted for Longusorbis Richards, 1975 (Upper Cretaceous–Eocene) as located “be­tween interior-most orbital notches, axially pro­duced into long, blunt-tipped rostrum, rostrum axially sulcate, strongly down-turned distally so that distal part is nearly perpendicular to dorsal carapace” (Karasawa et al., 2008, 95). The mor­phology of the frontal margin, its subdivision into teeth or lobes and inferred patterns of their transformation thus provide a set of characters highly applicable at the generic and suprageneric levels of taxonomic hierarchy. Orbit The orbit is a complex morphological structure, consisting of several lobes, separated by notches or fissures. The margins of the lobes may be rounded or polygonal. The number of lobes is a relatively stable character, although there are some excep­tions. The supraorbital margin of one of the ba­sal portunoid genera, Chaceon, consists of inner, median and outer supraorbital lobes separated by narrow fissures (Fig. 5A). The infraorbital part in­cludes a tooth-like inner lobe, following which the inner orbital margin continues, smoothly forming an outer lobe (= 1st anterolateral tooth) (Fig. 5C). Such construction is similar to the one observed in most other portunoids although they usually have one more fissure or notch laterally of the outer lobe; moreover, in some taxa an outer infraorbital lobe, Fig. 5. Examples of frontorbital margins and carapaces. A. Chaceon macphersoni Manning & Holthuis, 1988, southwestern Indian Ocean, ZMMU Ma 4044, dorsal view; B. Nectocarcinus bennetti Takeda & Miyake, 1969, Maquarie Islands, ZMMU Ma 2301; C. Chaceon macphersoni Manning & Holthuis, 1988, ZMMU Ma 4044, ventral view; D. Bathynectes longispina Stimpson, 1871, Amper Seamount, Atlantic Ocean, ZMMU Ma 2392; E. Parathranites orientalis Miers, 1886, ZMB, without catalogue number; F. Thalamita savignyi A. Milne-Edwards, 1861, Gulf of Aden, ZMB 15592; G. Carupa tenuipes Dana, 1851, Japan, SMF, without catalogue number; H. Libystes nitidus A. Milne-Edwards, 1867, Maldive Islands, NHM 1991-156-1. Scale bars equal 10 mm (A, B, C, G), 5 mm (D, E, F) and 2 mm (H). separated from the 1st anterolateral tooth, is also on; Fig. 3A) are strongly reduced. In the Ovalipes present. In some portunoids belonging to taxa that iridescens group only a single fissure is present: otherwise have numerous plesiomorphies (Spiri-this is morphogenetically correlated with a trans-donov et al., 2014), one (in Nectocarcinus; Fig. 5B formation of the front with paired median teeth to here; in Zariquieyon Manning & Holthuis, 1989, a single tooth condition (Fig. 6). Finally, Brusinia figs. 18, 19) or both supraorbital fissures (in Gery-(Fig. 4C), Catoptrus and Libystes (Fig. 5H) lack supra- and infraorbital fissures, while in Por­tumnus only a single strongly reduced supraor­ bital fissure is present (Fig. 4D). These groups are morphologically different and apparently belong to different phylogenetic lineages (except for the relatively closely related Catoptrus and Libystes). Forms with reduced fissures or an entire supraor­bital margin in many cases belong to deep-water (Geryonidae) or burrowing (Ovalipes) species or are inhabitants of reef cavities and underwater caves (Catoptrus). They are characterised by a re­duction of orbits, which may be achieved by fusion of orbital lobes. An opposite case also leading to the disappearance of the orbital fissure is a long but open and shallow orbit of the Podophthalmi-nae where their long eyestalks are held. Thus, it is very likely that portunoid crabs originally had a 3-lobed supraorbital margin but in particular lineages transformation of morphogenetic pattern took place, thus leading to formation of a bilobed or an entire margin. Derived conditions from the 3-lobed supraor­ bital margin involve modifications of lobes. The outer and inner lobes have various relative sizes and shapes, and may be modified to teeth, such as in Pirimela which has a long and sharp median supraorbital tooth (Fig. 3C). An unusually look­ing infraorbital margin in Bathynectes is subdi­vided into three denticulated teeth (Fig. 5E), al­though this condition may be a derivation of the typical 3-lobed one. Where the details of orbit morphology can be recognised, fossil taxa often show a condition that is characteristic for extant portunoids. two or one supraorbital fissures. In one of the earliest, Cre­taceous portunoids, Eogeryon elegius Oss, 2016, the supraorbital margin closely resembles that of Benthochascon (Fig. 3B), while the infraor­bital margin appears to be 3-lobed (Oss, 2016, figs 5A, B). Orbits of some Cretaceous portunoid families (Carcineretidae, Longusorbiidae) are markedly broad at the expense of a narrow front and are similar in that respect to the orbits of the Podophthalminae. Carcineretes is diagnosed as having a sinuous orbit, “with two or three in-tra-orbital spines and notches (Schweitzer et al., 2007, 19). The original reconstruction of Carci­neretes woolacotti Withers, 1922 shows four lobes of different width and shape and three notches (Withers, 1922; pl. 16). Protuberances and spines without fissures are characteristic of the orbits of Longusorbis (Schweitzer et al., 2007). The other Cretaceous genus with a narrow front, wide or­bits and long eyestalks, Ophthalmoplax, also has three supraorbital lobes and two intra-orbital spines (Schweitzer et al., 2007; Vega et al., 2013, figs. 3, 13). The median orbital tooth similar to the one in Recent Pirimelidae is seen in the Mi­ocene Pirimela lorentheyi Mller, 1984 (Mller, 1984, pl. 60, fig. 3). Some extinct portunoid taxa are also reported to have an entire supraorbital margin, e.g., Psammocarcinus A. Milne-Ed­ wards, 1860 (see Desmarest, 1822, pl. V, fig. 5; A. Milne-Edwards, 1860). The most unusual orbit with a completely denticulated supraorbital mar­gin is found in Pheophthlamus mochaensis Feld­ mann, Schweitzer & Encinas, 2010 (assigned to the Podophthalminae) from the Neogene of South America (Feldmann et al., 2010, fig. 11), although most of the taxa included in this subfamily have a relatively simple supraorbital margin. Thus, the orbits of portunoids provide an important set of characters that may be used at various levels of taxonomic hierarchy. Anterolateral carapace margin The anterolateral margin of the carapace is subdivided into several teeth, the first corre­sponding to the outer orbital lobe. The functional significance of the anterolateral teeth was first interpreted by Garstang (1897a), who considered them as part of the apparatus preventing enter­ing sediment particles to the branchial cavity in burrowing crabs. Brusiniidae, Geryonidae and Carcinidae do not have more than five teeth. In geryonids their number varies from three (Gery-on, Raymanninus) to five (Ovalipiinae). In Cha­ceon, which typically has five anterolateral teeth, some teeth become obsolete with age. Bentho­chascon, Nectocarcinus and Echinolatus, which are tentatively referred to this family (but are considered by me as genera incertae sedis) are characterised by four large teeth. Some species of the last-named genus possess a unique char­acter of additional denticles on the anterior mar­gin of the anterolateral teeth or bifid teeth (Davie & Crosnier, 2006, fig. 3). Most of the Carcinidae have five anterolateral teeth. Important examples of reduction of anterolateral teeth in the Carci­nidae are Coenophthalmus with three teeth and Thia with a nearly entire anterolateral margin, although one can see four notches on this mar­gin which mark the position of five reduced teeth. A very dense belt of setae bordering the lateral margin in this burrowing species probably plays the role of branchial cavity protection in the ab­sence of anterolateral teeth (Fig. 4E). The number of anterolateral teeth in the Por­tunidae varies from two to nine and is largely a taxonomic character used at the generic level. Fig. 6. Frontorbital margin of carapaces in Ovalipes spp. .. O. trimaculatus (De Haan, 1833), Patagonia, ZMMU, without catalogue number. B. O. molleri (Ward, 1933) (drawn on basis of photograph in Davie & Short, 1989, fig. 14B). C. O. iridescens Miers, 1886, southwestern Indian Ocean, ZMMU .. 2300. D. O. ocellatus, northwest Atlantic, coast of Georgia, USA, SMF 7325. Abbreviations: isl: inner supraorbital lobe; mft: median frontal teeth (tooth); msl: medial supraorbital lobe; of: orbital fissure; osl: outer supraorbital lobe. Spiridonov et al. (2014) argued that the nine teeth corresponded to a plesiomorphic condition for this family and the number of teeth showed var­ious patterns of reduction in particular genera. Evans (2018) provided additional evidence for this in the Thalamitinae (which generally have a reduced number of teeth, from six to three) and suggested a nomenclature of teeth based on their general pattern and presumed homologies. Some oval forms, such as Libystes, have anterolateral teeth that are strongly reduced to nearly com­ pletely absent (see Apel & Spiridonov, 1998, figs. 5, 6a). Podophthalmines also show a reduction of teeth (up to two), which is apparently connected to their habits and a characteristic shortening of the anterolateral margin. Noteworthy, the sin­gle extinct portunoid taxon that is characterised by nine anterolateral teeth, but not referred to the Portunidae is Archaeoportunus Artal, Oss& Domínguez, 2010, for which a separate fami­ly was introduced (Artal et al., 2010). Otherwise, fossil taxa do not show such morphological pe­culiarities of the anterolateral margin that re­markably exceed variation observed in extant portunoids (see e.g., Internet 2). Although the number of lateral teeth is subject to change in particular groups of portunoids, the major taxa have a distinct pattern of variation of this char­acter. Posterolateral and posterior carapace margin A supra-dorsal position of the 5th pair of pereopods is morphologically correlated with the development of the posterolateral reentrant which extends motion possibilities for the last pair of legs, used for burrowing and swimming. Although this reentrant is feebly developed in the non-swimming Geryonidae (Figs. 3A–B), or carcinids like Carcinus (not swimming, and not commonly burrowing) and Portumnus, Thia, Nautilocorystes and Brusinia, presumably using all legs for burrowing (Figs. 4B–D). The posterior carapace margin is bordered by a cuticular “wall” touching the 1st pleonal tergite. This margin is usually straight or gen­tly convex (e.g., Figs. 3, 4). Much rarely, for in­stance in Benthochascon, this margin is concave (Fig. 3B). The majority of portunoids have round­ed transitions between the posterolateral and posterior carapace margins. In some groups these corners are angled (e.g., subgenera Goniohellenus and Gonioneptunus of the genus Charybdis; see Türkay & Spiridonov, 2006) or even spined, as in Xiphonectes (see Spiridonov, 2016) in the Portu­nidae. The only Recent carcinoid genus having angled, or spiny posterolateral corners is Par-athranites (Fig. 5E; see also Crosnier, 2002). Most fossil portunoids studied that have variously ex­pressed posterolateral reentrants are character-ised by rounded posterolateral corners (Karasa­wa et al., 2008; see also examples via Internet 3). There are few exceptions, e.g., Psammocarcinus which shows an angled posterolateral corner (see Desmarest, 1822, pl. 5, fig. 3). A unique morphol­ogy of the posterolateral margin with a series of teeth is seen in Styracocarcinus meridionalis (Secretan, 1961), a Campanian crab considered within the Portunoidea but not assigned to any family (see Ossó, 2016, fig. 6A, B). The characters associated with the posterior part of the carapace are thus important for the diagnosis of genus-lev­el taxa within portunoid families. Pterygostomial and subhepatic regions Surfaces of the carapace regions located ven­tral to the anterolateral margin determine both an absolute and a relative height of the carapace, which is a taxonomically important character at higher levels. In most groups these surfaces are smooth, granular or markedly setose. Particu­lar taxa such as not closely related Ovalipes and Laleonectes are characterised by the presence of granular lines and other cuticular armature constituting parts of the stridulating apparatus which counterparts constitute processes of cheli­peds. The construction of this apparatus is a set of characters at the species level, for instance in Ovalipes (see Stephenson & Rees, 1968). In the deep-water species of this genus a reduction of the stridulatory apparatus occurs, which is cor­related with the development of an optical com­munication system on the basis of iridescent sur­faces reflecting polarised light under conditions of practical darkness (Parker et al., 1998). Sternal part of cephalothorax Sternites and episternites are sclerites of the sternal part of the cephalothorax. The latter join the former in their posterolateral part by dis­tinct or partly interrupted sutures. The hollow space between the lateral margin of the sternite and the respective episternite houses the condyle of the pereopod coxa, and the entire structure forms a sterno-coxal articulation. The major part of episternites 4 to 6 is usually sickle shaped; it is extended posteriorly, touching the lateral mar­gin of the next sternite over more than half of its extension. The shape of episternites 7 and 8 usually strongly deviates from the sickle-shaped one and may characterise taxa at family and sub­family levels (Fig. 7). In most portunoid crabs the width of episternites is several times less than the width of sternites but in Thia sternites are less than twice wider than episternites (Fig. 7B). Sternites and episternites of thoracomeres 1–4 is consolidated as a thoracic sternum, the parts of which may be separated by furrows of various distinctness. This has taxomomic significance for diagnosing particular families, subfamilies and genera. The longitudinal median groove is char­acteristic of most Portunoidea, although may be present in other taxa as well. Sutures between sternites 4–8 may be inter­rupted in various ways that usually characterise particular genera and subfamilies. The Portu­nidae have secondary sulci between sternites 6 and 7, which are considered as their unique syn-apomorphy, although Libystes lacks this charac­ter (Karasawa et al., 2008). Sternal characteris­tics are relatively well preserved and have been widely used in the taxonomy of fossil portunoids (Schweitzer et al., 2007; Karasawa et al., 2008). Antennules and antennae Antennules of most portunoids are relatively short, transversely folded and generally similar even in such distant groups as geryonids and por­tunids. In completely folded conditions, the an-tennules are concealed under the frontal margin and not seen dorsally. Only in podophthalmines, with their very narrow front, folded antennules cannot be completely hidden in dorsal view. Antennae differ first of all by a so-called ba­sal antennal segment which is interpreted as a fusion of the original segments 2 and 3 of the antennae (Ng et al., 2008). In a number of por­tunoid crabs this segment tends to form a dis-tolateral process entering the orbital hiatus. Size and form of this process are important taxo­nomic characters. The tendency for enlargement reaches a maximum in the Thalamitinae: the process contacts the orbital margins and isolates the antennal flagellum from the orbital hiatus. The enlarged basal antennal segment itself often bears armature, e.g., granules, ridges and spines, the pattern of which is an important taxonom­ic character at the species level in thalamitines (Stephenson & Hudson, 1957; Apel & Spiridonov, Fig. 7. 1998). A highly unusual antennular morphology for portunoids is seen in Nautilocorystes, which has long setose antennae (Fig. 4D), similar to the ones of Corystes Bosc, 1802 that are in turn as­sociated with the burrowing habit of this crab (Schäfer, 1954: fig. 28). The details of antennae and antennules are rarely enough preserved to be considered for fossil taxa. Maxillipeds Although mouthparts including mandibles, maxillae and maxillipeds 1 and 2 are usual­ly not preserved, maxilliped 1 should be men­tioned here as having particular significance in portunoid taxonomy. The upper part of its endo-pod has a quasi-triangular or quasi-trapezoidal shape. Antero-mesially the so-called “portunid lobe” is attached; this usually is dentiform, stick-shaped or finger-shaped. This lobe is present in all Portunidae but also in some carcinids, for ex­ample in Bathynectes, Liocarcinus and Macro-pipus, although absent in the Carcininae, Gery-oninae and Ovalipinae along with Nectocarcinus (Spiridonov et al., 2014). In Benthochascon, the lobe is morphologically different from the one observed in other portunoids (Spiridonov et al., 2014). Currently, it is difficult to judge if the ob­served pattern is a result of parallel origin of lobes or reduction of this structure takes place independently in particular families. Functional properties of the maxilliped 1 lobe have not been studied. Maxillipeds 3 are of similar construction in all Portunoidea. The shape of the meropodite, which covers the mouth cavity anteriorly is about as long as wide, quasi-quadrilateral, with a convex setose mesial margin and is not much different in geryonids and carcinids, except for some burrowing species in which it is more elongated. In the Thalamitinae and Portuninae, meropodites of maxilliped 3 are most diverse and may have a different shape, with rounded or angular anterior margins and varying setal coverage and granulation. These usually are characters that are taxonomically important at lower taxonomic level (species, species groups and small genera). Chelipeds The relative length of the chelipeds is a charac­ter that marks taxa at the family level. While rel­atively short, not exceeding in length pereopods 2 and 3, chelipeds are most probably a plesiomorphy, characteristic of Carcinidae and most Geryonidae (Figs. 3A–C), except for some species of Ovalipes, for instance the Ovalipes iridescens group. Chelipeds of the Portunidae are the longest pair of pereopods, on acount of their long meri and chelae (Figs. 3D–F). Meri of chelipeds may be smooth or possess spines. Geryonines possess a solitary spine on the posterior surface of merus. Nearly all Portunidae and few non-portunid portunoids (Bathynectes, Parathranites and species of the Ovalipes irides-cens group) have spines on the anterior face of the merus (Figs. 3D–F). Long and spiny chelipeds are advantageous for defence (in particular, in typical defensive reaction), prey capture, courtship and mating behaviour (Schäfer, 1954; Spiridonov et al., 2014). Carpi of chelipeds may have various shapes, although the respective taxonomic characters are associated mostly with carpal spines. All por­tunoid crabs, along with several other heterotreme taxa, have an inner spine on the after carpus its length is varying between taxa but is particular­ly significant in some species of Achelous. On the other hand, this is obsolete, in Callinectes spp. The taxa referred to the Geryonidae with reservation, such as Echinolatus (see Davie & Crosnier, 2006) and some Nectocarcinus, e.g., Nectocarcinus ben­neti Takeda & Miyake, 1969 are characterised by double carpal spines, similar to the ones seen in the Mathildellidae (Goneplacoidea). Spines on the outer face of carpus are char­acteristic, first of all, of the Portunidae, but are also present in Parathranites (see Crosnier, 2002). They may undergo reduction; in particular, one of the differences between related species of Xi-phonectes, X. tenuipes (De Haan, 1835) and X. pseudotenuipes (Spiridonov, 1999) is the reduced spines in the latter (Spiridonov, 1990, figs 2E, 3B). An important character in Thalamita and related genera is an additional spinule on the upper face of the cheliped carpus. It appears to have a paral­lel origin in several groups of species and genera (Spiridonov & Neumann, 2008; Evans, 2018). Fig. 7. Sternal regions. A. Benthochascon hemingi Alcock & Anderson, 1899, South China Sea, ZIN-RAS 88509; B. Thia scute­llata Fabricius, 1793, North Sea, SMF 38490. C. Ovalipes iridescens Miers, 1886, southwestern Indian Ocean, ZMMU Ma 2300. D. Carcinus aestuarii Nardo, 1848, Black Sea, .. 5181. E. Bathynectes longispina Stimpson, 1871, Atlantic, Amper Seamount, ZMMU .. 2392; F. Achelous spinimanus (Latreille, 1819), Gulf of Mexico, ZMMU Ma 4848. Abbreviations: G I – gonopod 1; G O – genital opening; TS – thoracic sternum; st – sternite; est – episternite; V – VIII – number of sternites. Scale bar equals 5 mm. Fig. 8. Chelae. A. Nauticorystes ocellatus, NHMW, from the collection of the frigate “Novara” Expedition, # 83. B. Patrathranites orientalis Miers, 1886, ZMB, without catalogue number. Scale bar equals 5 mm. Chela morphology and patterns of heterochely lariform tooth on the dactylus of one of the che- Chela morphology is essential for morphologi-lae (heterodonty) along with serial bi- and tri-cal characterisation of the Portunoidea (Schäfer, lobed conical teeth on the dactylus and the polex 1954; Manning & Holthuis, 1981; Spiridonov et of both chelae. Serial teeth separated into lobes al., 2014), the presence of a large proximal mo-increase the cutting edge and work as scissors. The presence of a massive molariform tooth al­lows the portunoid chelae to maintain signif­icant crushing capacity and perform various crushing techniques when feeding on molluscs. Various modifications from this basic plan and symmetrisation of chelae construction have been described by Spiridonov et al. (2014, figs. 2, 3) and interpreted in terms of belonging to particular ecomorphs: burrowers, walkers and swimmers. Reference is made to that paper for a detailed description. Typical portunoid heterodont che­lae are found in Nautilocorystes (Fig. 8), which otherwise has a very peculiar “non-portunoid” general appearance which possibly is associated with a burrowing habit (Fig. 4D). Surprisingly, this chela is very similar to the that of the Polybi­inae with a very different habit (see Spiridonov et al., 2014, fig. 2). Chelae are usually well preserved in fossil taxa which can often be recognised as portunoids by the characteristic morphological features of their palms (Mller, 1984; Schweitzer & Feldmann, 2000, 2011; Schweitzer et al., 2007; Karasawa et al., 2008; Phillips et al., 2013). Pereopods 2–4 (ambulatory legs) In portunoid crabs, pereopods 2–4 are usual­ly similar but differ in size from front to rear, P2 or P3 being the longest. The orientation of the sterno-coxal articulation allow for the parallel position of pereopods which become in that case somewhat inclined in relation to the transverse axis of the body. Meri, carpi and propodi are compressed so that the morphologically dorsal face is exposed anteriorly. In most geryonids an anterodistal process or lobe is present in meri; in Ovalipes only low lobes can be traced there. Oth­er processes and spines are rare on pereopods 2-4 and, usually, are characters used at intermediate hierarchical levels (e.g., goups of species and gen­era), such a series of spines on the anterior face of the merus is seen in Coenophthalmus (Steudel, 1998, figs. 37c-d). In most portunoids, dactyli (fingers) of pere­opods 2–4 are relatively similar, piercer shaped, or narrow knife-shaped, costate, often setose on the flexor margin. Active natatory species, such as Callinectes spp., Portunus pelagicus (Linnae­us, 1758) and related species, Polybius henslowii Leach, 1820, Euphylax dovii Stimpson, 1860 and Charybdis smithii, have leaf-shaped leg fingers, which are used in swimming. However, the mor­phology of dactyli in the the overwhelming ma­jority of cases does not differ between pereopods. Heterodactyly (differing between pereopods 2–4 shape of fingers) is characteristic of a few taxa known or presumed for their burrowing habits (Brusinia, Thia, Nautilocorystes, Ovalipes, Por­tumnus) (Fig. 4). However, the pattern of heter­odactyly in these groups differs, which makes it a taxonomic character of a relatively high level (subfamily or family). In fossil portunoid taxa, the morphology of ambulatory legs varies significantly, although this mostly refers to the more proximal seg­ments of legs, while dactyli are less frequently preserved. In particular, in the Carcineretidae, pereopod 4 has a flattened carpus and merus (Schweitzer et al., 2007). Pereopod 5 The dorsal position of the last pair of pereo-pods that is typical of portunoid crabs is achieved by a higher position of their coxae in relation to other legs (the so-called dorsal coxal shift). The fewer differences in the plane where the coxae of the 5th and other pereopods are located are known for Brusinia and Portumnus. The highest dorsal coxal shift is characteristic of such taxa as Coenophthlamus (non-swimming ecomorph), Liocarcinus, Portunus, Thalamita (all swimming or at least lifting over substrate) and Caphyra (non-swimming symbionts of cnidarians). A pe­culiar morphology of a modified pereopod 5 is an important portunoid character, used for swim­ming, burrowing and attaching to a host. The modification affects a shortening and broadening of the merus, flattening of the propodus, and ensi-form, ovate, lanceolate, or hook shape of the dac­tylus. This construction, however, is not shared by all portunoid taxa, in particular Chaceon and Geryon have the last pair of pereopods not par­ticularly different from others (Fig. 3A). This is probably also the case for such fossil family as the Icriocarcinidae (Phillips et al., 2013) of Cre­taceous age. The shape of segments of pereopod 5 provides a number of taxonomic characters which are used at various hierarchical levels. It is of inter­est to note that within a single (although prob­ably non-monophyletic) genus Liocarcinus both broad (for instance in L. vernalis; see Fig. 1C) and relatively narrow dactyli of the last pair of legs are known (e.g., in L. navigator). Even greater variation is known for symbiotic Lissocarcinus spp. (an apparently monophyletic group; see Ev­ans, 2018), where the dactyli are variously modi­fied, possibly depending on the relationships of a particular species with its host. Wherever preservation conditions enable an examination of the last pair of ambulatory legs in Fig. 9. Male pleons. A. Ovalipes iridescens Miers, 1886, southwestern Indian Ocean, ZMMU .. 2300. B. Achelous hastatus (Linnaeus, 1767), Mediterranean, ZMMU Ma 1910; C. Parathranites orientalus Miers, 1886, Indo-Pacific, ZMB, without cata­logue number; D. Monomia petrea Alcock, 1899, western Indian Ocean, ZMMU 2294. Abbreviations: 1–6 – pleomeres; t – tel-son. Scale bar equals 1 mm. fossil crabs assigned to the Portunoidea, we see modified propodi and dactyli. While the Recent Geryoninae have the segments of pereopod 5 not much different from the anterior legs, Chaceon peruvianus (d’Orbigny, 1842) from the Miocene of South America clearly possessed broadened propodi and narrow-lanceolate dactyli of pere­ opod 5 (Schweitzer & Feldmann, 2000, fig. 10-1). This indicates that a characteristic construction of pereopod 5 can undergo evolutionary reversal and/or evolve as a parallelism (Simpson, 1961) in various groups of portunoids. Pleon A nearly universal characteristic of the por­tunoid pleon is the presence of a transverse keel on the tergite of the 3rd pleomere (Figs. 9B–D) (absent in Brusinia, Ovalipes [Fig. 9A] and Caru-pa). Male pleons are characterised by a tendency for fusion of pleomere terga 3 to 5, which is, how­ever, not a universal characteristic of the group. Six separate pleomeres and the telson are appar­ently a plesiomorphic condition typical of most Heterotremata (Guinot, 1979; Davie et al., 2015). In Geryon, Chaceon, Benthochascon, Ovalipes (Fig. 9A), Echinolatus, Nectocarcinus, and Brusinia pleomeres 3–5 are separated, al­though an ability of individual motion may be lost. In most carcinids and portunids they are fused, while some sutures or their traces may re­main (Figs. 9B–D). It is of interest to note that similar, possibly convergent or parallel fusion of the pleomeres is known for the American freshwater brachyuran family Trichodactylidae (Rodriguez, 1992). The functional significance of the pleomere fusion is unknown. It is possible that it is correlated with particular mechanisms of copulation (Karasawa et al., 2008). All portunoids with fused pleomeres also have short gonopods 2 (see below). Gery-onids that have separated pleomeres possess also long gonopods 2 (Spiridonov et al., 2014). A unique condition is observed in the males of Thia, where separated pleomeres (a unique char­acter of carcinids) are associated with short go-nopods 2. Since Thia is a quite specialised and not a basal taxon to the Carcinidae, it is unclear how this condition could originate and whether a reversal to non-fused pleonal segments is pos­sible. Males of most portunoids have a triangular or (in the Portunidae) T-shaped pleon (Figs. 9B– D), although a different condition is observed in Ovalipes with its quasi-rectangular pleon (Fig. 9 A). In most fossil portunoids male pleons are also triangular, while in Proterocarcinus it is quasirectangular (Feldmann et al., 2005, fig. 5 E), in some respect similar to that of Ovalipes. Not all fossil taxa can be characterised by ple-on morphology owing to preservation conditions. However, separated pleomeres 3–5, although probably immovable, are known for ancient gery­onines (e.g., Schweitzer & Feldmann, 2000, fig. 9), Longusorbiidae (Karasawa et al., 2008), Icrio­carcinidae (Philips et al., 2013), Lithophylacidae (Guinot & Breton, 2006) and the genus Ophthal­moplax (Schweitzer et al., 2007; Vega et al., 2013; Oss-Morales et al., 2010). Surprisingly, separa­tion of pleomeres is also characteristic of such genus as Archaeoportunus, which in several oth­er respects is similar to the Portunidae (Artal et al., 2013, fig. 4b), although such Cretaceous taxa as Carcineretes had fused pleomeres (Schweitzer et al., 2007). The shape of the male pleon and the pattern of pleomere fusion can thus be regard­ed as important taxonomic characters for high-er-level portunoid taxa, in most cases of family/ subfamily rank. Discussion Recent morphological and molecular phy­logenetic studies have indicated that several high-level extant taxa of portunoid crabs (fami­lies and subfamilies) are much more diverse mor­phologically than had been intuitively expected, although possible morphogenetic transitions be­tween different character states may be inferred in many cases, as in the case of the frontal margin of Ovalipes (Fig. 6). Furthermore, each internally diverse taxon of portunoid crabs is characterised by a core suit of characters, which may be even called an “archetype” (I use this term only in­strumentally, without a reference to essentialism; see Lyubarskiy, 1995) and peripheral conditions. This is a result of mosaic evolution and leads to polythetic diagnoses of taxa in many eukaryotic groups (see Mayr & Bock, 2002; Takhtajan, 2009) and varying resolution of particular taxonomic characters (Zarenkov, 1974). A proper description and understanding of this “archetype” may help to classify extinct taxa using a comparative ap­proach to extant ones. Firstly, several families established earlier by palaeontologists and redefined by Karasawa et al. (2008), such as the Carcineretidae, Lithophy­lacidae, Longusorbiidae and Psammocarcinidae, appear to have a distinct suit of characters that do not fit even peripheral conditions of extant portunoid families. Similarities of these families to extant por­tunoid taxa may be the result of parallelism rath­er than of common origin. Although testing this is currently hardly possible, and the Portunoidea that contain the above-mentioned families should be considered as an evolutionary taxon in Simpson’s (1961) sense. The composition of the Portunoidea, including the extant families along with the Carcineretidae, Lithophylacidae, Lon-gusorbiidae and Psammocarcinidae, appears to be appropriate and can be only rejected if a com­pletely convergent origin of the core portunoid character suit in extant and extinct families is demonstrated. Oss(2016) established the family Eogery­onidae based on Eogeryon elegius. This fam­ily apparently has an affinity to portunoids, in particular to the Geryonidae, although shows some important differences. However, taking the significant variability of taxa combined in the Geryonidae (e.g., Geryoninae, Benthochascon­inae and Ovalipiinae, possibly Echinolatus and Nectocarcinus), it would not be surprising to find additional support for considering Eogeryon as a taxon close to the ancestral geryonid. The sub­rectangular male pleon of Eogeryon is indeed similar to the one of Ovalipes, while the general carapace outline of this fossil portunoid resem­bles that of Benthochascon. Karasawa et al. (2008) performed a morpho­logical cladistic analysis of Recent and extinct genera of portunoids and some other taxa, show­ing affinity to this group. To make classification compatible with reconstructed phylogenies they redefined the family Macropipidae Stephenson & Campbell, 1960 and included in this sever­al fossils (Cretaceous to Neogene) genera (e.g., Ophthalmoplax), along with Recent taxa. This resulted in a quite broad diagnosis of the taxon. The extant Macropipidae (sensu Karasawa et al., 2008) turned out to be incompatible with molecu­lar phylogenetic reconstructions (Schubart & Re-uschel, 2009; Spiridonov et al., 2014; Evans, 2018). This indicated the necessity of splitting them be­tween various groups of the newly defined Carci­nidae (Bathynectes, Macropipus, Parathranites) and Geryonidae (Raymanninus, and possibly Echinolatus and Nectocarcinus). In this case, ex­tinct genera return to an uncertain status, which is not a desirable situation. Briefly commenting on this, I can suggest to examine the relationships of the genera that have numerous plesiomorphies, such as Proterocarcinus to the Geryonidae in the broad new concept, and others such as Portunites to the Parathranitinae. Ophthalmoplax appar­ently does not have affinities to the Geryonidae, but it is also different from the Carcinidae. The general quasi-guadrate outline of the carapace, well-developed carapace regions and transverse ridges, narrow bilobed frontal margin, orbits and the construction of chela (Vega et al., 2013) are not typical of any extant subfamily. Few taxa within the Recent Carcinidae have spines on the upper face of cheliped dactylus, e.g., Parathranites and Bathynectes. The former genus is also character-ised by an odd number of frontal lobes, similar to Ophthalmoplax. However, in other respects they do not have anything in common to assume close relationships. Ophthalmoplax apparently shows a unique combination of plesiomorphic and apo­morphic character states that makes close rela­tionships with an unknown ancestor of the Re­cent Carcinidae unlikely, so it would be better considered within a separate family. Several other well-preserved and relatively speciose genera, such as Coeloma A. Milne-Ed­wards, 1865, mostly of Eocene – Oligocene age, have been variously treated since their discov­ery (Karasawa et al., 2008; De Grave et al., 2009; Jagt et al., 2010). I would agree with Oss(2016) on their very likely affinity to the Geryonidae, particularly considering the new concept of this family. Another particular, but important, task is to revise the good fossil record of the carcinid genus Liocarcinus (Hyžný et al., 2015) in the light of its recently documented paraphyly (Plagge et al., 2016), its significant persistence in the geo­logical time (Fig. 2) and the new concept of the Carcinidae. Within the Portunidae there generally are few­er problems in interpreting and positioning fossil taxa, although the classification of extant taxa at the subfamily level is still far from perfect. Clas­sification of extinct taxa could thus significantly benefit from the progress of taxonomic studies of contemporary faunas. A particularly important issue is the relatively numerous fossil examples of Portunus (sensu lato) which may, in fact, belong to other genera such as Portunus (sensu stricto), Achelous, Monomia and others. Distinguishing between them is not an easy task because many important characters are not available for study. For example, as stated above, the oldest species of the group, “Portunus” kochi resembles Achelous in several morphological characters. “Portunus” atecuicitlis Vega, Feldmann, Villalobos-Hiriart & Gio-Argaez, 1999, a common species from the Lower and Middle Miocene of Mexico, also likely belongs to Achelous on account of the construc­tion of the front and chelae (Vega et al., 2009). Another common Miocene species in the Tethys and Paratethys, “Portunus” monspeliensis A. Milne-Edwards, 1860, could be referred either to Achelous and Monomia on account of the single visible spine on the cheliped manus and well-de­veloped sculpture of the carapace (see Marangon & De Angeli, 2009, fig. 3; Gašparič & Ossó, 2016, pl. I, E, G), although the shape of the front and orbits and the relative size of the 1st anterolat­eral tooth support assignment of this species to Achelous. “Portunus” miocaenicus Mller, 1984 was referred to Monomia (as a subgenus) by the author himself. Examination of the published photograph (Müller, 1984, pl. 62, fig. 5) does not disapprove nor approve this because several im­portant characters, i.e. the sternum, pleon and merus of cheliped remain unavailable for study. A few other species may be relatively confident­ly referred to Portunus (sensu stricto), such as Portunus neogenicus Mller, 1979, which shows a similarity to the extant Indo-Pacific species Portunus sanguinolentus (Herbst, 1783) (Mller, 1984, pl. 62, figs. 3, 4). A complete revision of fos­sil “Portunus” spp. is a challenge but it is worth to undertake this task because these numerous records may tell much more about the history of Cenozoic faunas when properly assigned to gen­era. Conclusions It is trivial to say that our understanding of evolution of any taxonomic group, including por­tunoid crabs, would strongly benefit from inte­gration of knowledge of extant and fossil taxa. However, we should carefully and clearly define a background for successful integration. Combin­ing extant and fossil groups of portunoid crabs into a coherent classification that is compatible with phylogenetic reconstructions implies an ac­ceptance of the concept of vertical taxa (Simpson, 1961). That is what palaeontologists explicitly or implicitly do when referring fossils to particular genera or families established on extant materi­al, even though they necessarily work with in­complete sets of characters. Some standard char­acters for extant taxa, such as genital structures, maxillipeds, even dactyli of pereopods 2–4 and others are rarely available for comparative study of fossil taxa. This calls for extension of com­parative morphological studies of Recent groups in order to find new characters that can help to classify fossil forms. Acknowledgements I am deeply indebted to Michael Trkay (decea­sed), Paul Clark, Oliver Coleman, Peter Dworschak and Victor Petryashov (deceased) for their help whi­le working in the collections of SMF, NHM, ZMB, NHMW and ZIN-RAS, respectively. I thank Rok Gašparič and other organisers of the 7th Mesozoic and Cenozoic Decapod Symposium at Ljubljana for the excellent opportunity to present this work. My grati­tude is also extended to Tatiana Antokhina and Sergey Anosov for permission to use their underwater photo­graphs of crabs, and to Matúš Hyžný and Álex Ossó for reviews of the manuscript and numerous valuable comments and suggestions, and John Jagt for lingui­stic correction of the text. This study was supported by the Russian Foundation for Basic Research Project 20-04-00067. References Adams, A. & White, A. 1848: Crustacea. In: Adams A. (ed.): The Zoology of the voyage of H.M.S. “Samarang”, under command of Captain Sir Edward Belcher, during the ye­ ars 1843-46. Part 2. Reeve, Bentham & Reeve, London, 33–67, pls 7–13 Alcock, A.W. 1899. Material for a carcinologi-cal fauna of India. No. 4: The Brachyura Cyclometopa. Part II: A revision of the Cyclometopa, with an account of the fami­lies Portunidae, Cancridae and Corystidae. Journal of the Asiatic Society of Bengal, 68/2: 1–104. Alcock, A.W. 1900: Material for a carcinologi-cal Fauna of India. No. 6: The Brachyura Catometopa, or Grapsoidea. Journal of the Asiatic Society of Bengal, 69/2: 279-456. Alcock, A. & Anderson, A.R.S. 1899: Natural history notes from H.M. Royal Indian mari­ne survey ship Investigator, commander T.H. Heming, R.N., commanding. Series III, No. 2. An account of the deep-sea Crustacea dred­ged during the surveying season of 1897-98. Annals and Magazine of Natural History (ser. 7), 3: 1–27, 278–292. Apel, M. & Spiridonov, V.A. 1998: Taxonomy and zoogeography of the portunid crabs (Crustacea: Decapoda: Brachyura: Portunidae) of the Arabian Gulf and the ad­jacent waters. Fauna of Arabia, 17: 159–331, pls 1-12. Artal, P., Ossó, A. & Domínguez, J.L. 2013: Archaeoportunus isabenensis, a new genus and species of portunoid crab (Crustacea, Decapoda) from the lower Eocene of Huesca (Spain). Boletín de la Sociedad Geológica Mexicana, 65/2: 307–317. Beurlen, K. 1930: Vergleichende Stammes­geschichte Grundlagen, Methoden, Probleme unter besonderer Berücksichtigung der höhe­ren Krebse. Fortschritte der Geologie und Palaeontologie, 8/26: 317-586. Binkhorst, J.T. van 1857: Neue Krebse aus der Maestrichter Tuffkreide. Verhandlungen des naturhistorischen Vereins im Preussischen Rheinland und Westfalen, 14: 107–110. Bittner, A. 1893: Decapoden des pannonischen Tertiärs. Sitzungsberichte der kaiserlichen Akademie der Wissenschaften zu Wien, 102: 10–37. Bosc, L.A.G. 1802: Histoire naturelle des crusta­cés contenant leur description et leurs murs; avec figures dessinées d’apres nature. T. Deterville, Paris: 1–258, pls 1–8. Brockerhoff, A.M. & McLay, C.L. 2011: Human- mediated spread of alien crabs: 27–106. In: Galil, B., Clark, P.F. & Carlton, J.T. (eds.): In the wrong place - alien marine crustaceans: distribution, biology and impacts. Springer Science, Frankfurt am Main. Collins, J.S.H., Garvie, C.L. & Melish, C.J.T. 2014: Some decapods (Crustacea; Brachyura and Stomatopoda) from the Pleistocene Beaumont Formation of Galveston, Texas. Scripta Geologica, 147: 309–322. Colosi, G. 1923: Una specie fossile de Gerionide (Decapodi brachiuri). Bolettino della Societa´ dei Naturalisti in Napoli (series 2, vol. 15) 37: 248–255. Crosnier, A. 1975: Sur les Caphyra (Crustacea Decapoda Portunidae) de l’Océan Indien occidental et de la Mer Rouge. Bulletin du Muséum national d’Histoire naturelle Paris, (3)304 (Zoologie 214): 743–764. Crosnier, A. 2002: Révision du genre Parathranites Miers, 1886 (Crustacea, Brachyura, Portunidae). Zoosystema, 4/4: 799–825. Crosnier, A. 2003: A new genus and species of por­ tunid crab (Crustacea: Decapoda: Brachyura) from New Caledonia, South-west Pacific. The Raffles Bulletin of Zoology, 51/2: 315–321. Dana, J.D. 1851: On the classication of the Cancroidea (Cyclometopa). American Journal of Science and Arts. Ser. 2, 12: 121–131. Dana, J.D. 1852: Crustacea. Part I. United States Exploring Expedition during the years 1838­1842 under the command of Charles Wilkes, U.S.N., 13: C. Sherman, Philadelphia, I– VIII + 1–685, 96 pls. Davie, P.J.F. & Crosnier, A. 2006: Echinolatus n. gen. (Crustacea, Decapoda, Portunidae) with description of two new species from the South-West Pacific. In: Richer de Forges, B., Justine, J.-L. (eds.): Tropical Deep-Sea Benthos. Mémoires du Muséum national d’Histoire naturelle Paris, 24: 193: 393–410. Davie, P.J.F., Guinot, D. & Ng, P.K.L. 2015: Systematics and classification of Brachyura: 1049–1130. In: Castro, P., Davie, P.J.F., Guinot, D., Schram, F.R. & von Vaupel Klein, J.C. (eds.): Treatise on Zoology–Anatomy, Taxonomy, Biology–The Crustacea (com­plementary to the volumes translated from the French of the Traité de Zoologie 9(C)(I), Decapoda: Brachyura (Part 1)). Brill, Leiden. Davie, P.J.F. & Short, J.W. 1989. Deepwater Brachyura (Crustacea: Decapoda) from so­uthern Queensland, Australia with descripti­ons of four new species. Memoirs of the Queensland Museum, 27: 157–187. De Angeli, A., Garassino, A. & Pasini, G. 2019: Catalog and bibliography of fossil Stomatopoda and Decapoda from Italy (2007­2018). Memorie della Societa Italiano di Scienze naturali e Museo di Storia naturale de Milano, 45: 1–340. De Grave, S., Pentcheff, D.N., Ahyong, S.T., Chan, T.-Y., Crandall, K.A., Dworschak, P.C., Felder, D.L., Feldmann, R.M., Fransen, C.H.J.M., Goulding, L.Y.D., Lemaitre, R., Low, M.E.Y., Martin, J.W., Ng, P.K.L., Schweitzer, C.E., Tan, S.H., Tshudy, D. & Wetzer, R. 2009: A classification of living and fossil genera of decapod crustaceans. The Raffles Bulletin of Zoology, 21(Supplement): 1–109. De Haan, W. 1833–1850: Crustacea. In: Siebold P.F. (ed.): Fauna Japonica sive Descriptio animalium, quae in itinere per Japoniam, jussu et auspiciis superiorum, qui summum in India Batava Imperium tenent, suscepto, annis 1823-1830 collegit, notis, observationi-bus et adumbrationibus illustravit. Lugduni- Batavorum, I–XXXI + 1–244. Desmarest, A.G. 1822: Les crustacés propre­ment dits. In: Histoire naturelle des crustacés fossiles, sous les rapports zoologique et géo­logique. Savoir: les trilobites, par Alexandre Brongniart. Les Crustacés proprement dits, par Anselme-Gaëtan Desmarest. F.G. Levrault, Paris/Strassbourg: 67–154, pls V–IX. Edmondson, C.H.1930: New Hawaiian Crustacea. Bernice P. Bishop Museum Occasional Papers, 9/10: 3–17. Estampador, E.P. 1949: Studies on Scylla (Crustacea: Portunidae). 1. Revision of the ge­nus. Philippine Journal of Science, 78: 95–108. Evans, N. 2018: Molecular phylogenetics of swim­ming crabs (Portunoidea Rafinesque, 1815) supports a revised family-level classifica­tion and suggests a single derived origin of symbiotic taxa. PeerJ, 6: e4260. https://doi. org/10.7717/peerj.4260 Fabricius, J.C. 1798. Supplementum entomologiae systematicae. Proft et Stoch, Hafniae: 1–572. Feldmann, R.M., Schweitzer, C. E. & Encinas, A. 2005: New decapods from the Navidad Formation (Miocene) of Chile. Journal of Crustacean Biology, 25/3: 427-449. https://doi. org/10.1651/C-2547 Feldmann, R.M., Schweitzer, C.E. & Encinas, A. 2010: Neogene decapod crustaceans from southern Chile. Annals of Carnegie Museum, 78/4: 337–366. https://doi. org/10.2992/007.078.0404 Garstang, W. 1897a: Contribution to marine bi-onomics. II. The function of antero-late­ral denticulation in sand-burrowing crabs. Journal of the Marine Biological Association of the United Kingdom, 4/4: 396–401. https:// doi.org/10.1017/S002531540000552X Garstang, W. 1897b: Contribution to marine bi-onomics. III. The systematic features, habits and respiratory phenomena of Portumnus nasutus. Journal of the Marine Biological Association of the United Kingdom, 4/4: 402–407. https://doi.org/10.1017/ S0025315400005531 Gašparič, R. & Ossó, Á. 2016: New reports of decapod Portunus monspeliensis A. Milne-Edwards, 1860 from Miocene beds of eastern Slovenia with notes on palaeoecology and palaeobiogeography. Geologija, 59/1: 55–66. https://doi.org/10.5474/geologija.2016.005 Gibbes, L.R. 1850: On the carcinological col­lections of the United States. Proceedings of American Association Advancement of Sciences, 3: 167–201. Gistel, J. 1848: Naturgeschichte des Thierreichs fr hhere Schulen. Hoffmann’sche Verlags-Buchhandlung, Stuttgart: i– xvi, 1–216, pls 1–32. Glaessner, M.F. 1928: Die Dekapodenfauna des sterreichischen Jungtertiärs. Jahrbuch der Geologischen Bundesanstalt, 78: 161–219, pls. 3–4. Glaessner, M.F. 1960: The fossil decapod Crustacea of New Zealand and the evolution of the order Decapoda. New Zealand Geological Survey, Paleontological Bulletin, 31: 1–79. Gordon, I. 1953: On Sirpus, a genus of pigmy can- croid crabs. Bulletin of The British Museum (Natural History), Zoology, 2/3: 43–65. Guérin, F.E. 1832: Notice sur quelques modifica­tions á introduire dans les Notopodes de M. Latreille, et éstablissement d’un nouveau ge­nre dans cette tribu. Annales des Science na­turelles (Zoologie), 25: 285–286. Guinot, D. 1979: Données nouvelles sur la morphologie, la phylogenese et la taxiono­mie des Crustacés Décapodes Brachyoures. Mémoires du Muséum national d’Histoire na­turelle Paris, A112: 1–354. Guinot, D. & Breton, G. 2006: Lithophylax tri­geri A. Milne-Edwards & Brocchi, 1879 from the French Cretaceous (Cenomanian) and placement of the family Lithophylacidae Van Straelen, 1936 (Crustacea, Decapoda, Brachyura). Geodiversitas, 28: 591–633. Hartnoll, R.G. 1971: The occurrence, methods and significance of swimming in the Brachyura. Animal Behaviour, 19: 34–50. Herbst, J.F.W. 1782-1804. Versuch einer Naturgeschichte der Krabben und Krebse nebst einer systematischen Beschreibung ihrer verschiedenen Arten. G.A. Lange, Berlin & Stralsund, Vol. 1: 1–274, Vol. 2: 1–226, Vol. 3: 1–216, Atlas: pls 1–72. Holthuis, L.B. 1987: Necora, a new genus of European swimming crabs (Crustacea, Decapoda, Portunidae) and its type spe­cies Cancer puber L., 1767. Zoologische Mededelingen, 61/1: 1–13. Hyžný, M., Harzhauser, M. & Danninger, W. 2015: Decapod Crustacea of the Central Paratethyan Ottnangian Stage (middle Burdigalian): im­plications for systematics and biogeography. Geologia Carpathica, 66/3: 217–233. https:// doi.org/10.1515/geoca-2015-0021 Jagt, J.W.M., Van Bakel, B.W.M. & Fraaije, R.H.B. 2010: Coeloma rupeliense (Crustacea, Decapoda, Brachyura) from the Bilzen Formation (Rupel Group, Lower Oligocene) in northeast Belgium. Bulletin de l’Institut royal des Sciences naturelles de Belgique, Sciences de la Terre, 80: 245–252. Karasawa, H., Schweitzer, C.E. & Feldmann, R.M. 2008: Revision of Portunoidea Rafinesque, 1815 (Decapoda: Brachyura) with emphasis on the fossil genera and families. Journal of Crustacean Biology, 28: 82–127. https://doi. org/10.1651/07-2882R.1 Kryer, H. 1838: Conspectus Crustaceorum Groenlandia. Naturhistorisk Tidsskrift, 2: 249–261. Lamarck, J.B. 1801: Systeme des Animaux sans Vertebres. Deuxieme edition. Vol. 5. Deterville, Paris: i–viii, 1–432. Latreille, P.A. 1819: Nouveaux Dictionaire d’His­toire Naturelle, 28: 1–570. Latreille, P.A. 1829: Les Crustacés, les Arachnides et les Insectes distribués en familiés naturel­les. In: Cuvier G. La Régne Animal. Vol. 4. Paris. 1829 —. P. I–XXVII + 1–584. Leach, W.E. 1814: Crustaceology. In: Brewster’s Edinburgh Encyclopaedia, 7: 383–437. Leach, W.E. 1815–1820: Malacostraca Podophthalmata Britaniae; or Description of the British Species of the Linnean Genus Cancer as Have Their Eyes Elevated on Footstalks. James Sowerby, London: 1–124, pls 1–45. Leene, 1938: The Decapoda Brachyura of the Siboga-Expedition. VII. Brachygnatha: Portunidae. Siboga Expeditie Monographien, 39c3: 1–156. Lenz, H. & Strunk, K.1914: Die Dekapoden der Deutschen Sdpolar-Expedition 1901–1903. I. Brachyuren und Macruren mit Ausschluss der Sergestiden. Deutsche Spolar-Expedition, 1901–03, Zoologie, 15/7: 257–345, pls 12–22. Linnaeus, C. 1758: Systema naturae per regna tria naturae, secundum classes, ordines, ge­nera, species, cum characteribus, differenti-is, synonymis, locis. Tomus I. Edit. decima, reformata. L. Salvius, Stockholmiae: I–III, 1–823. Linnaeus, C. 1761: Fauna Svecica. Sistens Animalia Sveciae Regni: Mammalia, Aves, Amphibia, Pisces, Insecta, Vermes. Distributa per Classes & Ordines, Genera & Species, cum differentiis specierum, synonymis au­ctorum, nominibus incolarum, locis nata­lium, descriptionibus Insectorum. L. Salvius, Stockholmiae: 1–578. Lyubarskiy, G.Yu. 1996: Archetype, style and rank in biological systematics. KMK Scientific Press, Moscow: 1–432 (in Russian). MacLeay, W.S. 1838: On the brachyurous deca-pod Crustacea brought from the Cape by Dr. Smith. In: Illustrations of the Zoology of South Africa. 5. Invertebrata, 3. Smith, A. (ed.): Smith, Elder & Co, London: 53–71, pls 2–3. Manning, R.B. 1989: Sanquerus, a replacement name for Posidon Herklots, 1851 (Crustacea, Decapoda, Portunidae). Proceedings of the Biological Society of Washington, 102/3: 698–700. Manning, R.B. & Chace Jr. F.A. 1990: Decapod and stomatopod Crustacea from Ascension Island, South Atlantic Ocean. Smithsonian Contributions to Zoology, 503: 1–91. https:// doi.org/10.5479/si.00810282.503 Manning, R.B. & Holthuis, L.B. 1989: Two new genera and nine new species of geryonid crabs (Crustacea, Decapoda, Geryonidae). Proceedings of Biological Society of Washington, 102/1: 50–77. Mantelatto, F.L., Robles, R., Wehrtmann, I.S., Schuhbart, C.D. & Felder D.L. 2018: New insights into the molecular phylogeny of the swimming crabs of the genera Portunus Weber, 1795 and Achelous De Haan, 1833 (Brachyura: Portunidae) of the Americas. Journal of Crustacean Biology, 38: 190–197. Marangon, S. & De Angeli, A. 2009: Exceptionally preserved specimens of Portunus monspeli­ensis (A. Milne Edwards, 1860) (Brachyura, Portunidae) from the Miocene of Sardinia (Italy). Atti della Societa italiana di Scienze naturali e del Museo civico di Storia naturale di Milano, 150/I: 3–12. Maury, C.J. 1930 by O Cretaceo da Parahyba do Norte. Monographias do Servicio Geologico e Mineralogico do Brasil 8: 1–305. Mayr, E. & Bock, W.J. 2002 ali 2008: Classifications and other ordering systems. Journal of Zoology, Systematics and Evolutionary Research 40/4, 169–194. https:// doi.org/10.1046/j.1439-0469.2002.00211.x Miers, E.F. 1886: Report on the Brachyura col­lected by H.M.S. Challenger during the years 1873 – 1876. Reports of the scientific results of the voyage of H.M.S. Challenger. Zoology. 17/I: 1–362, pls 1–29. Milne-Edwards, A. 1860: Historie des Crustacés podophthalmaires fossiles. Annales des Sciences naturelles (Zoologie), 4/14: 129–353, pls 1–10. Milne-Edwards, A. 1861: Etudes zoologiqu-es sur les crustacés recents de la familie de Portuniens. Archives du Muséum national d’Histoire naturelle, 10: 309–421, pls 28–38. Milne-Edwards, A. 1865: Monographie des Crustacés fossiles de la famille des Cancériens (suite). Annales des Sciences Naturelles, série 5, 3: 297–351. Milne-Edwards, A. 1867: Descriptions de quelqu- es especes nouvelles de Crustacés Brachyures. Annales de la Société entomologique de France, 4/7: 263–288. Milne-Edwards, A. 1869: Description de quelqu-es crustacés nouveaux de la familie portuni-ens. Nouvelle Archives du Muséum national d’Histoire naturelle, 5: 146–158, pl. 6 Milne-Edwards, A. 1870: Note sur le Catoptrus, nouveau genre appartenant a´ la division des Crustace´s Brachyures catometopes. Annales des Sciences Naturelles, Zoologie, série 5, 13: 80-86 Milne-Edwards, A. 1873: Recherches sur la faune carcinologique de la Nouvelle-Calédonie, II. Nouvelles Archives du Muséum d’histoire na­turelle, 9: 155–332, pls 4–18. Milne-Edwards, A. 1881: Note sur quelques Crustace´s fossiles des environs de Biarritz. Annales des Sciences Géologiques (Paris), 11/2: 1–8, pls. 21. Milne Edwards, H. 1834. Histoire naturelle des Crustacés, comprenant l’Anatomie, la Physiologie et la Classification de ces anima­ux. Vol. I. Librairie encyclopédique der Roret, Paris: I–XXXV + 1–468. Milne Edwards, H. 1837. Histoire naturelle des Crustacés, comprenant l’Anatomie, la Physiologie et la Classification de ces ani­maux. Vol. II. Librairie encyclopédique der Roret, Paris: 1–531, pls 1–42. Montgomery, S.K. 1931: Report on the Crustacea Brachyura of the Percy Sladen Trust Expedition to the Abrolhos Islands under the leadership of Prof. W.J. Dakin, in 1913 along with other crabs from the Western Australia. Journal of the Linnean Society of London (Zoology), 37: 405-465, pls 24-30. Mller, P. 1974: Decapoda (Crustacea) fauna a budapesti miocénből (2). Földtani Közlöny, 104: 275-287 (in Hungarian). Müller, P. 1979: Crustacés décapodes du Badénien et Sarmatien de Bulgarie. Palaeontology, Stratigraphy and Lithology, 10: 3–8, pls.1–3. Mller, P. 1984: Decapod crustaceans of the Badenian. Geologica Hungarica, Series Palaeontologica, 42: 1–317. Nardo, G.D. 1869: Annotazioni illustranti cinqu­antaquattro specie di Crostacei poddotalmi, endottalmi e succhiatori del mare Adriatico, alcune delle quali nuove o male conosciute, accompagante da trentare figure litographie, e precedute dalla storia della carcinologica Adriatica antica e recente. Memorie del Reale Instituto di Szienze, Lettere ed Arti, Venezia, 14: 217–340. Naruse, T. & Ng, P.K.L. 2012: Kume tigra, a new genus and new species of carupine swimming crab (Crustacea: Brachyura: Portunidae) from Kume Island, Ryukyu Islands, Japan. Zootaxa, 3367/1: 204 – 221. https://doi. org/10.11646/zootaxa.3367.1.19 Ng, P.K.L. 2000: The deep-water swimming crabs of the genus Benthochascon (Decapoda: Brachyura: Portunidae), with description of a new genus for the American B. schmitti. Journal of Crustacean Biology, 20/5: 310–324. https://doi.org/10.1163/1937240X-90000033 Ng, P.K.L. 2002: On the unusual swimming crab, Coelocarcinus foliatus Edmondson, 1930, with description of a new species from the Indian Ocean (Decapoda, Brachyura, Portunidae). Crustaceana, 75: 51–60. https:// doi.org/10.1163/156854002317373519 Ng, P.K.L. 2011: Pele ramseyi, a new genus and new species of anchialine swimming crab (Crustacea: Brachyura: Portunidae) from the Hawaiian Islands. Zootaxa, 2737/1: 34–48. https://doi.org/10.11646/zootaxa.2737.1.3 Ng, P.K.L., Guinot, D. & Davie, P.J.F. 2008: Systema Brachyurorum: Part I. An annota­ted checklist of extant brachyuran crabs of the world. The Raffles Bulletin of Zoology, Supplement 17: 1–286. Ng, P.K.L. & Takeda, M. 2003: Atoportunus, a remarkable new genus of cryptic swimming crab (Crustacea; Decapoda; Brachyura: Portunidae), with descriptions of two new spe­ cies from the Indo-West Pacific. Micronesica, 35–36: 417–430. Nguyen, T.S., Ng, P.K.L. 2010: A new genus of the family Portunidae (Crustacea: Decapoda: Brachyura) and the identity of Portunus (Cycloachelous) yoronensis Sakai, 1974. Zootaxa, 2677: 38–48. Noetling, F. 1881: Ueber einige Brachyuren aus dem Senon von Mastricht und dem Tertiar Norddeutschlands. Zeitschrift der Deutschen Geologischen Gesellschaft, 33: 357– 371. Orbigny, A.D. d’. 1842: Voyage dans l’Amerique méridionale: (le Brésil, la république orienta­le de l‘Uruguay, la République Argentine, la Patagonie, la république du Chili, la républi­que de Bolivia, la république du Pérou), exé­cuté pendant les années 1826, 1827, 1828, 1829, 1830, 1831, 1832, et 1833 (1835). Paleontologie. Partie. 3/4. Pitois-Levraul, Paris: 1–188. Oss, Á. 2016: Eogeryon elegius n. gen. and n. sp. (Decapoda: Eubrachyura: Portunoidea), one of the oldest modern crabs from late Cenomanian of the Iberian Peninsula. Boletín de la Sociedad Geolgica Mexicana, 68/2: 213–246. Ossó, Á. & Gagnaison, C. 2019: An appraisal of the Middle-Late Miocene fossil decapod cru­ staceans of the ‘Faluns’ (Anjou-Touraine, France). Geodiversitas, 41/9: 367–383. Ossó, Á. & Stalennuy, O. 2011: Description of the first fossil species of Bathynectes (Brachyura, Polybiidae) in the Badenian (middle Miocene) of the Medobory Hills (Ukraine, Central Parathetys), with remarks on its habitat eco­logy. Treballs Museu Geologic Barcelona, 18: 37–46. https://doi.org/10.32800/ tmgb.2011.18.0037 Ossó-Morales, Á., Artal, P. & Vega, F.G. 2010: New crabs (Crustacea, Decapoda) from the Upper Cretaceous (Campanian) of the Moyenne Moulouya, northeast Morocco. Revista Mexicana de Ciencias Geolgicas, 27: 213–224. Ortmann, A.E. 1893: Die Dekapoden-Krebse des Strassburger Museums. VI-te Theil. Abteilung Brachyura. Unterabteilung Majoidea und Cancroidea, Section Portuninea. Zoologische Jahrbucher. Abteilung fr Systematik, Geographie und Biologie der Tiere, 7: 23–88, pl. 3. Ortmann, A.E. 1899: Crustacea, Zweite Hälfte: Malacostraca. In: Bronn H.G. (ed.): Klassen und Ordnungen des Thier-Reichs, Band 5, Abtheilung II (Gliederfssler: Arthropoda), Lieferung 53-56. C.F. Winter, Leipzig: 1169-1232. Parker, A.R., McKenzie, D.R, Ahyong, S.T. 1998: A unique form of light reflector and the evo­lution of signalling in Ovalipes (Crustacea: Decapoda: Portunidae). Proceedings of Royal Society of London B, 265: 861–867. Paulson, O. 1862. Zur Anatomie von Diplozoon paradoras. Mémoires de l’Academie Imperilae des Sciences de St.-Pétersbourg, 7/5, 1: 1–16, 1 pl. 1. Paulson, O. 1875: Studies on Crustacea of the Red Sea, with notes regarding other seas. Part I. Podophthalmata and Edriophthalmata (Cumacea), xv + 144 p. Kiev, S.V. Kulzhenko (in Russian; English translation published by Por, F.D. 1961, 164 p. Jerusalem, Israel Program for Scientific Translations). Phillips, G.E., Nyborg, T. & Vega, F.J. 2014: Icriocarcinidae: a family of portunoid crabs from the Upper Cretaceous of North America. Paläontologische Zeitschrift, 88: 139–158. https://doi.org/10.1007/s12542-013-0190-4 Plagge, C., Son, N.T., Ng, P.K.L, Trkay, M., Streit, B. & Klaus, S. 2016: Liocarcinus corru­gatus (Pennant, 1777) (Crustacea: Brachyura: Portunidae): a cosmopolitan brachyuran species? The Raffles Bulletin of Zoology, 4: 374–388. Prestandrea, N. 1833: Su di alcuni nuovi crustacei dei mari di Messina.Effemeridi Scientifiche e Letterarie per La Sicilia, April 1833: 3–14. Rafinesque, C.S. 1815: Rafinesque C.S. 1815. Analyse de la Nature ou tableau de l’univers et des corps organisés, Aux depeus de l’Aute­ur, Palerme: 1–223. Rathbun, M.J. 1897: A revision of the nomencla­ture of the Brachyura. Proceedings of the Biological Society of Washington 11: 153–167. Rathbun, M.J. 1898: The Brachyura collected by the U.S. Fish Commission steamer Albatross, on the voyage from Norfolk, Virginia, to San Francisco, California, 1887-1888. Proceedings of United States National Museum, 21: 567– 616, pls 41–44. Rathbun, M.J. 1935: Fossil Crustacea of the Atlantic and Gulf Coastal Plain Geological Society of America, Special paper 2: 1–160. Richards, B.C. 1975: Longusorbis cuniculosus: a new genus and species of Upper Cretaceous crab with comments on the Spray Formation at Shelter Point, Vancouver Island, British Columbia. Canadian Journal of Earth Sciences, 12: 1850–1863. Risso, A. 1816: Histoire naturelle des Crustacés de Nice. Paris: 1–175, pls 1–3. Rodriguez, G. 1992: The freshwater crabs of America. Family Trichodactylidae and a Supplement to the family Pseudothelphusidae. Faune Tropicale 31: 1–178. ORSTOM, Paris. Rüppell, E. 1830. Beschreibung und Abbildung von 24 Arten kurzschwänzigen Krabben, als Beitrag zur naturgeschichte des rothen Meeres. H.L. Bröner, Frankfurt a.M.: 1–28, pls. 1–6. Schäfer, W. 1954: Form und Funktion der Brachyuren-Schere. Abhandlungen der Senckenbergischen naturforschenden Gesellschaft, 489: 1–65. Schubart, C.D. & Reuschel, S. 2009: A proposal for a new classification of Portunoidea and Cancroidea (Brachyura: Heterotremata) ba­sed on two independent molecular phylogeni­es. In: Martin, J.W., Crandall, K.A. & Felder, D.L. (eds.): Decapod crustacean phylogenetics [Crustacean Issues, 18]: 533–550. CRC Press, Boca Raton, FL. Schweitzer, C.E., Feldmann, R.M. & Karasawa, H. 2007: Revision of the Carcineretidae Beurlen, 1930 (Decapoda: Brachyura: Portunoidea) and remarks on the Portunidae Rafinesque, 1815. Annals of the Carnegie Museym 76/1: 15–37. https://doi.org/10.2992/ 0097-4463(2007)76[15:ROTCBD]2.0.CO;2 Schweitzer, C.E. & Feldmann, R.M. 2000: New fossil portunids from Washington, USA, and Argentina, and re-evaluation of generic and family relationships within the Portunoidea Rafinesque, 1815 (Decapoda, Brachyura). Journal of Paleontology, 74/4: 636–653. https:// doi.org/10.1666/0022-3360(2000)074<0636:N­ FPFWU>2.0.CO;2 Schweitzer, C.E. & Feldmann, R.M. 2011: Revision of some fossil podotrema­ tous Brachyura (Homolodromiidae; Longodromitidae; Torynommidae). Neues Jahrbuch fr Geologie und Paläontologie Abhandlungen 260/2: 237–256. https://doi. org/10.1127/0077-7749/2011/01.38 Secretan, S. 1961: Une nouvelle espece de Xanthidés au Maroc: Titanocarcinus meridi­onalis nov. sp. Notes de Service Géologique de Maroc, 20/152: 39–50. Simpson, G.G. 1961: Principles of animal taxo­nomy. Columbia University Press, New York: 247 p. Spiridonov, V.A. 1999: Results of the Rumphius Biohistorical Expedition to Ambon (1990). Part. 8. Swimming crabs of Ambon (Crustacea: Decapoda: Portunidae). Zoologische Mededelingen (Leiden), 73/4: 63–97. Spiridonov, V.A. 2016: Xiphonectes tuer­kayi sp.n. from the Indian Ocean with no­tes on Xiphonectes longispinosus Dana, 1852 (Crustacea: Decapoda: Portunidae). Arthropoda Selecta, 25/4: 357–372. Spiridonov, V.A., Neretina, T.V. & Schepetov, D. 2014: Morphological characterization and mo­ lecular phylogeny of Portunoidea Rafinesque, 1815 (Crustacea Brachyura): implications for understanding evolution of swimming capa­city and revision of the family-level classi­ fication. Zoologischer Anzeiger, 253/5: 404– 429. https://doi.org/10.1016/j.jcz.2014.03.003 Spiridonov, V. & Neumann, V. 2008: Coral-inhabiting swimming crabs (Crustacea, Decapoda, Portunidae) of the Sudanese Red Sea. Organisms, Diversity and Evolution, 8/3: 170e1-170e19. https://doi.org/10.1016/j. ode.2007.06.005 Spiridonov, V.A. & Türkay, M. 2001: Deep sea swimming crabs of the Charybdis miles species group in the western Indian Ocean. Journal of Natural History, 35/3: 434–464. https://doi.org/10.1080/002229301300009649 Stebbing, T.R.R.1921: Some Crustacea of Natal. III. Annals of the Durban Museum, 3/1: 12– 26, pls. 1–5. Stephenson, W. 1972: An annotated checklist and key to the Indo-West-Pacific swimming-crabs (Portunidae). Royal Society of New Zealand Bulletin, 10: 1–64. Stephenson, W. & Hudson, J. 1957: The Australian portunids (Crustacea: Portunidae). II. The ge­nus Thalamita. Australian Journal of Marine and Freshwater Research, 8/3: 312–368, 6 pls. Stephenson, W. & Rees, M. 1968: A revisi­on of the genus Ovalipes Rathbun, 1898 (Crustacea, Decapoda, Portunidae). Records of the Australian Museum, 27/11: 213–261, pls 35–42. Steudel, S.C. 1998: Über Schwimmkrabben und Krabbenschwimmen. Unpubl. PhD thes­is, Johann Wolfgang Goethe-Universität, Frankfurt am Main: 183 p. Števčić, Z. 1991: Note on some rare and aber­rant Australian crabs. The Beagle. Records of Northern Territory Museum of Arts and Sciences, 8/1: 121–134. Števčić, Z. 2005: Fauna Croatica. The reclassi­fication of brachyuran crabs (Crustacea: Decapoda: Brachyura). Natura Croatica, 4/1: 1–150. Stimpson, W. 1860. Notes on North American Crustacea, in the Museum of the Smithsonian Institution. No. II. Annals of the Lyceum of Natural History of New York, 7: 177–246, pls 2, 5 Stimpson, W. 1871: Preliminary report on the Crustacea dredged in the Gulf Stream in the Straits of Florida, by L.F. de Pourtales, Assistant U.S. Coast Survey. Bulletin of the Museum of Comparative Zoology at Harvard College, 2: 109–160. Takeda, M. & Miyake, S. 1969: A small collecti­on of crabs from New Zealand. OHMU – Occasional Papers of Zoological Laboratory Faculty of Agriculture Kyushu University, 2/8: 157–193, pls 1–3. Takhtajan, A.L. 2009: Flowering plants. Springer Science, Berlin: 1–871 Tien, D.D. 1969: New species of swimming crabs from the Tonkin Gulf and Hainan Island. Zoologicheskiy Zhurnal, 48: 505–511 (in Russian). Türkay, M. & Spiridonov, V.A. 2006: Deep sea swimming crabs of the subgenus Charybdis (Goniohellenus) Alcock, 1899 of the western Indian Ocean (Crustacea: Decapoda: Portunidae). Fauna of Arabia, 22: 199–223. Van Straelen, V. 1936: Crustacés décapodes nou­veaux ou peu connus de l’époque crétacique. Bulletin du Musée royal d’Histoire naturelle de Belgique, 12/45: 1–50. Vega, F.J., Feldmann, R.M., García-Barrera, P., Filkorn, H., Pimentel, F. & Avendano, J. 2001: Maastrichtian Crustacea (Brachyura: Decapoda) from the Ocozocuautla Formation in Chiapas, southeast Mexico. Journal of Paleontology, 75/2: 319–329. https://doi. org/10.1017/S0022336000018126 Vega, F.J., Feldmann, R.M. Villalobos-Hiriart, J.L. & Gío-Argez, R. 1999: A new decapod fauna from the Miocene Tuxpan Formation, Eastern Mexico. Journal of Paleontology, 73/3: 407–413. https://doi.org/10.1017/ S0022336000027931 Vega, F.J., Nyborg, T., Coutio, M.A., Solé, J. & Hernández-Monzón, O. 2009: Neogene Crustacea from south eastern Mexico. Bulletin of the Mizunami Fossil Museum, 35: 51–69. Vega, F.J., Phillips, C.E., Nyborg, T., Flores- Ventura, J., Clements, D., Espinosa, B. & Solís-Pichardo, G. 2013: Morphology and size variation of a portunoid crab from the Maastrichtian of the Americas. Journal of South American Earth Sciences, 47: 116–135. Ward, M. 1933: New genera and species of marine Decapoda Brachyura from the coasts of New South Wales and Queensland. Australian Zoologist, 7: 377–394, pls 21– 23. Ward, M. 1942: Notes on the Crustacea of the Desjardins Museum, Mauritius Institute with descriptions of new genera and species. Mauritius Institute Bulletin, 2/2: 49-109. Weber, F. 1795: Nomenclator entomologicus se­cundum entomologiam systematicum III. Fabricii adjectis speciebus recens detectis et varietabilis. C.E. Bohn, Kiel & Hamburg: I– VIII + 1–172. Withers, T.H. 1922: On a new brachyurous crusta­cean from the Upper Cretaceous of Jamaica. Zarenkov, N.A. 1970: Crabs of the Portunidae family collected by Soviet Expeditions in the tropical waters of the Pacific and Indian Oceans. Bulletin Moskovskogo Obshchestva Ispytatelei Prirody (Otdel Biologicheskiy), 75/5: 42-47 (in Russian). Zarenkov, N.A. 1974: Lectures in theory of syste­matics. Moscow University Press, Moscow: 1– 154 (in Russian). Internet sources: Internet 1: http://www.mbfossilcrabs.com/portu­noidea/Ophthalmoplax%20minimus.jpg3..jpg (accessed 20 March2020). Internet 2: http://www.mbfossilcrabs.com/Portu­noidea.html (accessed 23 March 2020). Internet 3: http://www.mbfossilcrabs.com/Portu­noidea.html (accessed 23 March 2020). Report/Poro~ilo 7th Symposium on Mesozoic and Cenozoic Decapod Crustaceans, 17th–21st June 2019, Ljubljana (Slovenia) Rok GAŠPARIČ 1Oertijdmuseum, Bosscheweg 80, 5293 WB Boxtel, the Netherlands; e-mail: rok.gasparic@gmail.com 2 Novi trg 59, 1241 Kamnik, Slovenija The 7th triennial Symposium on Mesozoic and Cenozoic Decapod Crustaceans was held in Lju­bljana (Slovenia) this time, a European capital with a long history. The aim of the symposium is to meet with other decapod researchers every three years to discuss their research and to pro­mote international collaborative work on fossil decapod crustaceans. The 44 attending palaeon­tologists and marine biologists from 17 countries exchanged new concepts and ideas in the fields of palaeobiology, with contributions on taxono­my, systematics, taphonomy, palaeobiogeography and macroevolution of decapods. Decapod crus­taceans are evolutionarily one of the most suc­cessful groups of multicellular organisms. They form a diverse group of arthropods that inhab­it various environments, ranging from shallow continental shelves to deep ocean floors, found in rivers, lakes and cave systems, with species even adapted to life on land. To advance and transform decapod palaeontology by sharing new findings and approaches, close scientific ex­change between scientists, students and enthusi­asts is necessary. Comprising 26 oral presentations and 20 post­ers presented in two days of scientific sessions and followed by four fieldtrips, the symposium was staged by a Slovenian organising commit­tee, consisting of Rok Gašparič (Oertijdmuseum, Boxtel), Luka Gale (Geological Survey of Slove­nia, Faculty of Natural Sciences and Engineer­ing, Ljubljana), Matija Križnar (Slovenian Muse­um of Natural History, Ljubljana), Boštjan Rožič (Faculty of Natural Sciences and Engineering, Ljubljana), Bogomir Celarc (Geological Survey of Slovenia, Ljubljana) and Matic Rifl (Charles University, Faculty of Science, Prague). The reception and ice breaker took place on the first day (17th June 2019) at the Slovenian Mu­seum of Natural History, where attendees were greeted by museum director Breda Činč Juhant and had a chance to visit the temporary exhi­bition on Slovenian fossil decapod crustaceans. The scientific part of the symposium was hosted by the Geological Survey of Slovenia. The scien­tific session was opened by words of the organ-ising committee chairman, Rok Gašparič, and Geological Survey director, Miloš Bavec. Two days of scientific sessions (18th and 19th June 2019) were concluded in a spirit of good co-operation with relaxed informal discussions and plenty of opportunity for individual meetings in between the session breaks. We opened the first day with a keynote lecture by Adiël Klompmaker on “Evo­lutionary and ecological trends in decapods” and concluded with a poster session, whereas the second day was kick-started by keynote speaker Matúš Hyžný on the state-of-the-art and future directions in research on Paratethyan decapods. We concluded the scientific part of the sympo­sium with a final address, in which Zaragoza (Spain) was chosen as the next venue of the 8th Symposium on Mesozoic and Cenozoic Decapod Crustaceans in 2022, followed by a dinner in one of Ljubljana’s authentic Slovenian restaurants. Weather throughout the symposium was won­derful, so there were no issues with conducting the final two days of the symposium (20th and 21st June), which were reserved for field trips to the four fossil decapod-bearing localities in Slo­venia. On Thursday (20th June) we started our field trip at the Geological Survey in Ljubljana and travelled south to explore the decapod-rich, upper Eocene (Lutetian) deposits along the road Gračišče–Kubed, and visited a nearby 12th cen­tury church of the Holy Trinity at Hrastovlje to admire the famous 15th century frescoes of Dance of Death or Dance Macabre. In the afternoon, the virgin forests of Trnovo Plateu protected us from the heat and gave us the opportunity to observe the Upper Jurassic (Oxfordian) coral barrier reef preserved in situ. The reef complex is composed of sponges, corals and stromatoporids, but also diverse molluscs, echinoderms and frequent de­capods are found between stromatoporid and corals framework, which enabled preferential preservation of delicate carapaces. For the last day (Friday, 21st June) the dele­gates were transported through the Miocene Pa-ratethys sea all the way back to the Middle Tri­assic Tethyan Ocean. The final excursion started with a visit to the active quarry of Lipovica in middle Miocene (Langhian) limestone, where we followed the safety regulations and explored the abundant outcrops for the remains of Miocene decapods and lucky finds of the charismatic Pa-ratethyan crab Tasadia carniolica. The final des­tination was a visit to one of the most picturesque European glacial alpine valleys, Logarska Valley, where we visited an exhibition on Middle Trias- sic fossil fauna at Solčava and hiked to a nearby outcrop of Middle Triassic (Anisian) bituminous, thin-bedded limestones with vertebrate remains and shrimp fossils. The field trip was concluded with an enjoyable dinner accompanied by many good-natured discussions and forgings of future collaborations. We cordially thank all participants for at­tending the 7thSymposium on Mesozoic and Ce­nozoic Decapod Crustaceans in Ljubljana and for presenting their latest research in the excit­ing field of palaeocarcinology. The organisation of the symposium would not have been possible without a lot of hard and selfless work from all the colleagues in the organising committee. In addition, we would like to express our thanks to the following organisations for their support: the Geological Survey of Slovenia, the Sloveni­an Museum of Natural History and the Faculty of Natural Sciences and Engineering at the Uni­versity of Ljubljana. Our sincere thanks to all volunteers and people who helped in the prepa­ ration of the symposium: Stanka Žibert, Valerija Majer and Matevž Novak (Geological Survey of Slovenia) for their organisational support, An- dreja Žibrat Gašparič (University of Ljubljana, Faculty of Arts, Department of Archaeology) for thorough proofreading and editorial work on the abstract book, Tomaž Hitij (Dental School, Fac­ulty of Medicine, University of Ljubljana) and Jure Žalohar (T-TECTO d.o.o.) for help on Trias­sic localities, Manca Hočevar (Slovenian Museum of Natural History) for support in preparation of the reception at the museum, Željko Pogačnik (Georudeko d.o.o.) for access to the Lipovica quarry, Alex Žagar for work on the symposium webpage design, as well as Anja Kocijančič, Kris­tina Peulič and Miha Marinšek for their logistic support during the symposium. Navodila avtorjem GEOLOGIJA objavlja znanstvene in strokovne članke s področja geologije in sorodnih ved. Revija izhaja dvakrat letno. Članke recenzirajo domači in tuji strokovnjaki z obravnavanega področja. Ob oddaji člankov avtorji predlagajo tri recenzente, uredništvo si pridržuje pravico do izbire recenzentov po lastni presoji. Avtorji morajo članek popraviti v skladu z recenzentskimi pripombami ali utemeljiti zakaj se z njimi ne strinjajo. Avtorstvo: Za izvirnost podatkov, predvsem pa mnenj, idej, sklepov in citirano literaturo so odgovorni avtorji. Z objavo v GEOLOGIJI se tudi obvežejo, da ne bodo drugje objavili prispevka z isto vsebino. Avtorji z objavo prispevka v GEOLOGIJI potrjujejo, da se strinjajo, da je njihov prispevek odprto dostopen z izbrano licenco CC-BY. Jezik: Članki naj bodo napisani v angleškem, izjemoma v slovenskem jeziku, vsi pa morajo imeti slovenski in angleški izvleček. Za prevod poskrbijo avtorji prispevkov sami. Vrste prispevkov: Izvirni znanstveni članek Izvirni znanstveni članek je prva objava originalnih razisko­ valnih rezultatov v takšni obliki, da se raziskava lahko ponovi, ugotovitve pa preverijo. Praviloma je organiziran po shemi IMRAD (Introduction, Methods, Results, And Discussion). Pregledni znanstveni članek Pregledni znanstveni članek je pregled najnovejših del o določenem predmetnem področju, del posameznega razisko­ valca ali skupine raziskovalcev z namenom povzemati, analizirati, evalvirati ali sintetizirati informacije, ki so že bile publicirane. Prinaša nove sinteze, ki vključujejo tudi rezultate lastnega raziskovanja avtorja. Strokovni članek Strokovni članek je predstavitev že znanega, s poudarkom na uporabnosti rezultatov izvirnih raziskav in širjenju znanja. Diskusija in polemika Prispevek, v katerem avtor ocenjuje ali komentira neko delo, objavljeno v GEOLOGIJI, ali z avtorjem strokovno polemizira. Recenzija, prikaz knjige Prispevek, v katerem avtor predstavlja vsebino nove knjige. Oblika prispevka: Besedilo pripravite v urejevalniku Micro­soft Word. Prispevki naj praviloma ne bodo daljši od 20 strani formata A4, v kar so vštete tudi slike, tabele in table. Le v izjemnih primerih je možno, ob predhodnem dogovoru z uredništvom, tiskati tudi daljše prispevke. Članek oddajte uredništvu vključno z vsemi slikami, tabelami in tablami v elektronski obliki po naslednjem sistemu: - Naslov članka (do 12 besed) - Avtorji (ime in priimek, poštni in elektronski naslov) - Ključne besede (do 7 besed) - Izvleček (do 300 besed) - Besedilo - Literatura - Podnaslovi slik in tabel - Tabele, Slike, Table Citiranje: V literaturi naj avtorji prispevkov praviloma upoštevajo le objavljene vire. Poročila in rokopise naj navajajo le v izjemnih primerih, z navedbo kje so shranjeni. V seznamu literature naj bodo navedena samo v članku omenjena dela. Citirana dela, ki imajo DOI identifikator (angl. Digital Object Identifier), morajo imeti ta identifikator izpisan na koncu citata. Za citiranje revije uporabljamo standardno okrajšavo naslova revije. Med besedilom prispevka citirajte samo avtorjev priimek, v oklepaju pa navajajte letnico izida navedenega dela in po potrebi tudi stran. Če navajate delo dveh avtorjev, izpišite med tekstom prispevka oba priimka (npr. Pleničar & Buser, 1967), pri treh ali več avtorjih pa napišite samo prvo ime in dodajte et al. z letnico (npr. Mlakar et al., 1992). Citiranje virov z medmrežja v primeru, kjer avtor ni poznan, zapišemo (Internet 1). V seznamu literaturo navajajte po abecednem redu avtorjev. Imena fosilov (rod in vrsta) naj bodo napisana poševno, imena višjih taksonomskih enot (družina, razred, itn.) pa normalno. Imena avtorjev taksonov naj bodo prav tako napisana normalno, npr. Clypeaster pyramidalis Michelin, Galeanella tollmanni (Kristan), Echinoidea. Primeri citiranja članka: Mali, N., Urbanc, J. & Leis, A. 2007: Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environ. geol., 51/8: 1401–1412. https://doi.org/10.1007/s00254-006-0437-4 Pleničar, M. 1993: Apricardia pachiniana Sirna from lower part of Liburnian beds at Divača (Triest-Komen Plateau). Geologija, 35: 65–68 Primer citirane knjige: Flel, E. 2004: Mikrofacies of Carbonate Rocks. Springer Verlag, Berlin: 976 p. Jurkovšek, B., Toman, M., Ogorelec, B., Šribar, L., Drobne, K., Poljak, M. & Šribar, Lj. 1996: Formacijska geološka karta južnega dela Tržaško-komenske planote – Kredne in paleogenske kamnine 1: 50.000 = Geological map of the southern part of the Trieste-Komen plateau – Cretaceous and Paleogene carbonate rocks. Geološki zavod Slovenije, Ljubljana: 143 p., incl. Pls. 23, 1 geol. map. Primer citiranja poglavja iz knjige: Turnšek, D. & Drobne, K. 1998: Paleocene corals from the northern Adriatic platform. In: Hottinger, L. & Drobne, K. (eds.): Paleogene Shallow Benthos of the Tethys. Dela SAZU, IV. Razreda, 34/2: 129–154, incl. 10 Pls. Primer citiranja virov z medmrežja: Če sta znana avtor in naslov citirane enote zapišemo: Čarman, M. 2009: Priporočila lastnikom objektov, zgrajenih na nestabilnih območjih. Internet: http://www.geo-zs. si/UserFiles/1/File/Nasveti_lastnikom_objektov_na_ nestabilnih_tleh.pdf (17. 1. 2010) Če avtor ni poznan zapišemo tako: Internet: http://www.geo-zs.si/ (22. 10. 2009) Če se navaja več enot z medmrežja, jim dodamo še številko: Internet 1: http://www.geo-zs.si/ (15. 11. 2000) Internet 2: http://www.geo-zs.si/ (10. 12. 2009) Slike, tabele in table: Slike (ilustracije in fotografije), tabele in table morajo biti zaporedno oštevilčene in označene kot sl. 1, sl. 2 itn., oddane v formatu TIFF, JPG, EPS ali PDF z ločljivostjo 300 dpi. Le izjemoma je možno objaviti tudi barvne slike, vendar samo po predhodnem dogovoru z uredništvom. Če avtorji oddajo barvne slike bodo te v barvah objavljene samo v spletni različici članka. Pazite, da bo tudi slika tiskana v sivi tehniki berljiva. Grafični materiali naj bodo usklajeni z zrcalom revije, kar pomeni, da so široki največ 172 mm (ena stran) ali 83 mm (pol strani, en stolpec) in visoki največ 235 mm. Večjih formatov od omenjenega zrcala GEOLOGIJE ne tiskamo na zgib, je pa možno, da večje oziroma daljše slike natisnemo na dveh straneh (skupaj na levi in desni strani) z vmesnim "rezom". V besedilu prispevka morate omeniti vsako sliko po številčnem vrstnem redu. Dovoljenja za objavo slikovnega gradiva iz drugih revij, publikacij in knjig, si pridobijo avtorji sami. Če je članek napisan v slovenskem jeziku, mora imeti celotno besedilo, ki je na slikah in tabelah tudi v angleškem jeziku. Podnaslovi naj bodo čim krajši. Korekture: Avtorji prejmejo po elektronski pošti članek v avtorski pregled. Popravijo lahko samo tiskarske napake. Krajši dodatki ali spremembe pri korekturah so možne samo na avtorjeve stroške. Prispevki so prosto dostopni na spletnem mestu: http://www. geologija-revija.si/ Oddaja prispevkov: Avtorje prosimo, da prispevke oddajo v elektronski obliki na naslov uredni{tva: GEOLOGIJA Geolo{ki zavod Slovenije Dimi~eva ulica 14, SI-1000 Ljubljana bernarda.bole.geo-zs.si ali urednik.geologija-revija.si Uredni{tvo Geologije Instructions for authors Scope of the journal: GEOLOGIJA publishes scientific papers which contribute to understanding of the geology of Slovenia or to general understanding of all fields of geology. Some shorter contributions on technical or conceptual issues are also welcome. Occasionally, a collection of symposia papers is also published. All submitted manuscripts are peer-reviewed. When submitting paper, authors should recommend at least three reviewers. Note that the editorial office retains the sole right to decide whether or not the suggested reviewers are used. Authors should correct their papers according to the instructions given by the reviewers. Should you disagree with any part of the reviews, please explain why. Revised manuscript will be reconsidered for publication. Author’s declaration: Submission of a paper for publication in GEOLOGIJA implies that the work described has not been published previously, that it is not under consideration for publication elsewhere and that, if accepted, it will not be published elsewhere. Authors agree that their contributions published in GEOLOGIJA are open access under the licence CC-BY. Language: Papers should be written in English or Slovene, and should have both English and Slovene abstracts. Types of papers: Original scientific paper In an original scientific paper, original research results are published for the first time and in such a form that the research can be repeated and the results checked. It should be organised according to the IMRAD scheme (Introduction, Methods, Results, And Discussion). Review scientific paper In a review scientific paper the newest published works on specific research field or works of a single researcher or a group of researchers are presented in order to summarise, analyse, evaluate or synthesise previously published information. However, it should contain new information and/or new interpretations. Professional paper Technical papers give information on research results that have already been published and emphasise their applicability. Discussion paper A discussion gives an evaluation of another paper, or parts of it, published in GEOLOGIJA or discusses its ideas. Book review This is a contribution that presents a content of a new book in the field of geology. Style guide: Submitted manuscripts should not exceed 20 pages of A4 format including figures, tables and plates. Only exceptionally and in agreement with the editorial board longer contributions can also be accepted. Manuscripts submitted to the editorial office should include figures, tables and plates in electronic format organized according to the following scheme: - Title (maximum 12 words) - Authors (full name and family name, postal address and e-mail address) - Key words (maximum 7 words) - Abstract (maximum 300 words) - Text - References - Figure and Table Captions - Tables, Figures, Plates References: References should be cited in the text as follows: (Flügel, 2004) for a single author, (Pleničar & Buser, 1967) for two authors and (Mlakar et al., 1992) for multiple authors. Pages and figures should be cited as follows: (Pleničar, 1993, p. 67) and (Pleničar, 1993, fig. 1). Anonymous internet resources should be cited as (Internet 1). Only published references should be cited. Manuscripts should be cited only in some special cases in which it also has to be stated where they are kept. Cited reference list should include only publications that are mentioned in the paper. Authors should be listed alphabetically. Journal titles should be given in a standard abbreviated form. A DOI identifier, if there is any, should be placed at the end as shown in the first case below. Taxonomic names should be in italics, while names of the authors of taxonomic names should be in normal, such as Clypeaster pyramidalis Michelin, Galeanella tollmanni (Kristan), Echinoidea. Articles should be listed as follows: Mali, N., Urbanc, J. & Leis, A. 2007: Tracing of water movement through the unsaturated zone of a coarse gravel aquifer by means of dye and deuterated water. Environ. geol., 51/8: 1401–1412. https://doi.org/10.1007/s00254-006-0437-4 Pleničar, M. 1993: Apricardia pachiniana Sirna from lower part of Liburnian beds at Divača (Triest-Komen Plateau). Geologija, 35: 65–68. Books should be listed as follows: Flel, E. 2004: Mikrofacies of Carbonate Rocks. Springer Verlag, Berlin: 976 p.Jurkovšek, B., Toman, M., Ogorelec, B., Šribar, L., Drobne,K., Poljak, M. & Šribar, Lj. 1996: Formacijska geološka karta južnega dela Tržaško-komenske planote – Kredne in paleogenske kamnine 1: 50.000 = Geological map of the southern part of the Trieste-Komen plateau – Cretaceous and Paleogene carbonate rocks. Geološki zavod Slovenije, Ljubljana: 143 p., incl. Pls. 23, 1 geol. map. Book chapters should be listed as follows: Turnšek, D. & Drobne, K. 1998: Paleocene corals from the northern Adriatic platform. In: Hottinger, L. & Drobne, K. (eds.): Paleogene Shallow Benthos of the Tethys. Dela SAZU, IV. Razreda, 34/2: 129–154, incl. 10 Pls. Internet sources should be listed as follows: Known author and title: Čarman, M. 2009: Priporočila lastnikom objektov, zgrajenih na nestabilnih območjih. Internet: http://www.geo-zs. si/UserFiles/1/File/Nasveti_lastnikom_objektov_na_ nestabilnih_tleh.pdf (17. 1. 2010) Unknown authors and title: Internet: http://www.geo-zs.si/ (22.10.2009) When more than one unit from the internet are cited they should be numbered: Internet 1: http://www.geo-zs.si/ (15.11. 2000) Internet 2: http://www.geo-zs.si/ (10.12. 2009) Figures, tables and plates: Figures (illustrations and photographs), tables and plates should be numbered consecutively and marked as Fig. 1, Fig. 2 etc., and saved as TIFF, JPG, EPS or PDF files and submitted at 300 dpi. Colour pictures will be published only on the basis of previous agreement with the editorial office. If, together with the article, you submit colour figures then these figures will appear in colour only in the Website version of the article. Be careful that the grey scale printed version is also readable. Graphic materials should be adapted to the journal’s format. They should be up to 172 mm (one page) or 83 mm wide (half page, one column), and up to 235 mm high. Larger formats can only be printed as a double-sided illustration (left and right) with a cut in the middle. All graphic materials should be referred to in the text and numbered in the sequence in which they are cited. The approval for using illustrations previously published in other journals or books should be obtained by each author. When a paper is written in Slovene it has to have the entire text which accompanies illustrations and tables written both in Slovene and English. Figure and table captions should be kept as short as possible. Proofs: Proofs (in pdf format) will be sent by e-mail to the corresponding author. Corrections are made by the authors. They should correct only typographical errors. Short additions and changes are possible, but they will be charged to the authors. GEOLOGIJA is an open access journal; all pdfs can be downloaded from the website: http://www.geologija-revija.si/ en/ Submission: Authors should submit their papers in electronic form to the address of the GEOLOGIJA editorial office: GEOLOGIJA Geological Survey of Slovenia Dimi~eva ulica 14, SI-1000 Ljubljana, Slovenia bernarda.bole.geo-zs.si or urednik.geologija-revija.si The Editorial Office GEOLOGIJA št.: 63/1, 2020 www.geologija-revija.si Gašparič, R., Jagt, J.W.M., Žibrat Gašparič, A. & Gale, L. (gostujoči uredniki) 5 Uvodnik / Editorial Fraaije, R.H.B., Van Bakel, B.W.M., Jagt, J.W.M. & Skupien, P. 9 Paguroid anomurans from the upper Tithonian–lower Berriasian of Štramberk, Moravia (Czech Republic) Schweigert, G. & Härer, J. 19 New erymid lobsters from the Nusplingen and Usseltal formations (Upper Jurassic) of southwest Germany Gašparič, R., Robins, C. & Gale, L. 29 Mesogalathea ardua sp. nov., a new species of squat lobster (Decapoda, Galatheidae) from the Upper Jurassic olistolith at Velika Strmica (Dolenjska, Slovenia) González-León, O., Moreno-Bedmar, J.A., Barragán-Manzo, R. & Vega, F.J. 39 Well-preserved cuticle of Atherfieldastacus magnus (M Coy, 1849) (Decapoda, Glypheida) from the Aptian of Mexico Jakobsen, S.L., Fraaije, R.H.B., Jagt, J.W.M. &. Van Bakel, B.W.M 47 New early Paleocene (Danian) paguroids from deep water coral/bryozoan mounds at Faxe, eastern Denmark Busulini, A., Zorzin, R., Beschin, C. & Tessier, G. 57 Lophoranina maxima Beschin, Busulini, De Angeli & Tessier, 2004 (Decapoda, Brachyura, Raninidae) from lower Eocene laminites of the “Pesciara di Bolca (Verona, northeast Italy) De Angeli, A. & Garassino, A. 67 A new xanthid crab, Neoliomera zovoensis sp. nov. (Decapoda, Brachyura), from the lower Eocene beds of Zovo (Vestenanova, Verona, northeast Italy) Marangon, S. & De Angeli, A. 73 A new homolid crab, Cherpihomola italica gen. nov., sp. nov. (Decapoda, Brachyura), from the Rupelian of the Ligure-Piemontese Basin (Alessandria, northern Italy) Hyžný, M., Gašparič, R. & Dulai, A. 83 Revision of species Plagiolophus sulcatus Beurlen, 1939 (Decapoda, Brachyura) from the Oligocene of Hungary and Slovenia Wallaard, J.J.W., Fraaije, R.H.B., Jagt, J.W.M., Klompmaker, A.A. & Van Bakel, B.W.M. 93 The first record of a paguroid shield (Decapoda, Anomura, Annuntidiogenidae) from the Miocene of Cyprus Ossó, A., Hyžný, M., Gómez, M., Albalat, D. &. Ferratges, F.A. 101 On the occurrence of Iphiculus eliasi Hyžný & Gross, 2016 (Decapoda, Brachyura, Leucosioidea) from the Miocene of Catalonia (northeastern Iberian Peninsula) Pasini, G. Garassino, A., De Angeli, A. & Pizzolato, F. 109 Additional records of decapod crustaceans from the lower Pleistocene beds of Poggi Gialli (Tuscany, central Italy) Ossó, A. & Domínguez, J.L. 125 On the systematic placement of Pyreneplax Ossó, Domínguez & Artal, 2014 (Decapoda, Brachyura, Vultocinidae) Spiridonov, V.A. 133 An update of phylogenetic reconstructions, classification and morphological characters of extant Portunoidea Rafinesque, 1815 (Decapoda, Brachyura, Heterotremata), with a discussion of their relevance to fossil material ISSN 0016-7789