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Twin Journals

In 2018 we launched a purely electronic journal The Art of Discrete and Applied Math-
ematics (ADAM), which we like to see as a sibling of the AMC. Although the journals
are similar, in many ways they are complementary. While AMC publishes mostly longer
papers, ADAM welcomes shorter papers and notes.

The main reason for introducing the new journal was to relieve pressure of articles
submitted to AMC. Currently we publish 80 papers per year in AMC, a great leap from the
20 papers we published in 2008. But even with this increase, the acceptance rate remains
quite low: a little less than 28 %.

The current backlog for AMC is almost 20 months. In the second half of 2019, ADAM
was listed on MathSciNet and zbMATH, the leading bibliographic databases covering
Mathematical Research Journals. We hope that this will relieve some of the pressure that
authors put on AMC. Because of this continuing backlog, we encourage authors to trans-
fer their submissions from AMC to ADAM. And with ADAM now well established, we
also decided to stop expanding AMC. Not only that, in the next few years we will begin
to reduce the number of papers published in AMC, first from 20 papers per issue to 15 per
issue, and later to 10 per issue, and increase the number of papers we publish in ADAM
accordingly.

When ADAM is covered by the Web of Science, these two journals will indeed become
twin journals. This will enable us to transfer papers between the two journals in order to
pursue their respective goals and purposes. We hope this will happen in the forseeable
future.

Klavdija Kutnar, Dragan Marušič and Tomaž Pisanski
Editors in Chief
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Abstract

The question of how to find the smallest genus of all embeddings of a given finite con-
nected graph on an orientable (or non-orientable) surface has a long and interesting history.
In this paper we introduce four new approaches to help answer this question, in both the
orientable and non-orientable cases. One approach involves taking orbits of subgroups of
the automorphism group on cycles of particular lengths in the graph as candidates for sub-
sets of the faces of an embedding. Another uses properties of an auxiliary graph defined
in terms of compatibility of these cycles. We also present two methods that make use
of integer linear programming, to help determine bounds for the minimum genus, and to
find minimum genus embeddings. This work was motivated by the problem of finding the
minimum genus of the Hoffman-Singleton graph, and succeeded not only in solving that
problem but also in answering several other open questions.
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1 Introduction
The question of how to find the smallest genus of those embeddings of a given finite con-
nected graph on an orientable (or non-orientable) surface is a natural extension of deter-
mining whether or not a graph is planar, and has a long and interesting history. It is also
quite an important question, with applications found in map colouring, topology, finite ge-
ometry (configurations and block designs), group theory, number theory and the design of
electronic circuits.

Pioneering work was done by Dyck and Heffter in the late 1800s [13, 22], but it was
not until the mid-1900s that significant progress was made, leading to the determination
by Ringel [38, 39] of the minimum non-orientable genus of the complete graph Kn (for
n > 7) and the minimum orientable and non-orientable genera of each of the complete
bipartite graphs Km,n, and then the determination by Ringel and Youngs [40] of the mini-
mum orientable genus of the complete graph Kn (as a key step towards their proof of the
Heawood Map Colouring Problem).

Youngs also gave the first proof of the (now) well known fact that every orientable
embedding of a connected graph is determined by the rotations of edges at its vertices [52],
and this was taken further by Duke [12] to show that the range of genera of embeddings
of a given connected finite graph is an unbroken sequence of non-negative integers (from
the minimum genus to the maximum genus of the graph). Similar theory was developed by
various people for embeddings on non-orientable surfaces; details may be found in [44].
It is worth noting here that a minimum genus non-orientable embedding of a graph is not
necessary a 2-cell embedding, but unless the graph is a tree, there is always at least one
minimum genus non-orientable embedding which is a 2-cell embedding; see [35].

In the later 1990s, the minimum orientable genus was found for several graphs and
families of graphs, some of which are given in [44, Tables I and II]. In many of these
families, the graphs have a large degree of symmetry, which can be helpful to a large extent
in finding nice embeddings. Various authors developed a range of techniques that can work
well for many classes of graphs, involving rotation systems, voltage graphs, edge insertions
and deletions, graph contractions, graph amalgamations and graph products. Some of these
are described nicely in Gross and Tucker’s book on topological graph theory [19].

On the other hand, some other examples proved quite challenging, even when they
were vertex-transitive. Notable cases include the Cartesian product C3 �C3 �C3, a 6-
valent graph of order 27 which took some years to deal with (see [32, 4]), the 3-valent Gray
graph of order 54 (see [30]), and the associated Doyle-Holt graph, a 4-valent graph of order
27 (considered 13 years ago in [30] and dealt with at last in this paper).

The difficulty is not surprising, even for small graphs, in that a k-valent regular graph
of order n has ((k − 1)!)n distinct embeddings into an orientable surface. Furthermore, in
1989 it was shown by Thomassen [47] that the problem of finding the minimum orientable
genus of a graph is NP-hard, and the problem of determining whether or not the minimum
orientable genus of a connected graph is a given non-negative integer g is NP-complete.

Also the problem of deciding whether or not a graph can be embedded in an orientable
surface of given genus g has been considered. A polynomial-time algorithm to solve this
problem was presented in 1979 by Filotti, Miller and Reif [14], but then shown in 2011 to
be flawed, by Myrvold and Kocay [34]. In the meantime, in 1999 Mohar [31] produced
an algorithm for this that runs in linear time in the graph order, but doubly-exponential in
the genus. In the case where the graph has no such embedding, the latter algorithm returns
a minimal subgraph that cannot be embedded in the given surface, and its validity gives
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a constructive proof of the theorem of Robertson and Seymour [42] for any given closed
surface, there are only finitely many minimal forbidden subgraphs.

In contrast, finding the maximum genus of orientable embeddings of graphs is much
easier, thanks largely to some work in the 1970s by Xuong, who in [51] gave a formula
for this number in terms of the minimum ‘deficiency’ of spanning trees for the graph. Ten
years later Škoviera and Nedela used Xuong’s work in [43] to prove that almost every
vertex-transitive connected graph is upper-embeddable (in the sense of having a maximum
genus embedding with just one or two faces), and indeed that this happens whenever the
graph has valency or girth greater than 3.

In this paper we make further progress on the problem of finding the minimum genus
of graphs (in both the orientable and non-orientable cases). Our work was motivated by a
question by the second author about the minimum genus of the Hoffman-Singleton graph,
which arose in joint work with Izquierdo on geometries associated with Moore graphs [46].

The Hoffman-Singleton graph is the unique Moore graph of valency 7 and diameter 2
(and indeed the largest known Moore graph of diameter 2), and accordingly, is a 7-valent
connected graph of order 50, diameter 2 and girth 5. The properties of this graph, includ-
ing its order and valency, made it challenging to find the minimum genus using existing
methods (as summarised in [50] for example), and so we had to take a new approach. By
considering the action of subgroups of the automorphism group of the graph on cycles of
small length, we were able to find a minimum genus embedding on a non-orientable sur-
face with pentagonal faces, and then adapt our approach to find a minimum genus orientable
embedding as well.

We wrote up an early version of this paper describing our approach and the results,
but perplexingly, had difficulty in getting it accepted by a good journal (despite finding a
solution to a very challenging problem and developing a significant new approach in order
to do that). Then we got some highly astute advice from Tomaž Pisanski, who suggested
that we should apply our new approach to more examples, to underline its effectiveness. So
we proceeded to do that, and used our new approach to find (for the first time) the minimum
orientable or non-orientable genus of several other graphs, and answer a number of open
questions about some of these.

The approach we took for the Hoffman-Singleton graph, which we call the subgroup
orbit method, is useful for finding embeddings of graphs on surfaces with a certain degree
of symmetry. The method considers candidates for a subgroup G of suitable order in the
automorphism group of the graph such that G induces a group of automorphisms of the
embedding, and this helps to reduce the complexity of the search for such an embedding.
The automorphism group of a graph embedding is a subgroup of the automorphism group
of the underlying graph, and acts semi-regularly on the ‘flags’ of the embedding (see Sub-
section 3.1), so |G| must divide the number of flags, which is four times the number of
edges of the graph. Orbits of G on closed walks of chosen lengths in the graph are taken as
possibilities for the boundaries of faces of the embedding, and then tested for compatibility,
completeness and orientability.

The subgroup orbit method works well for finding embeddings with face-transitive au-
tomorphism group, but can also work well in other cases where the automorphism group
of the embedding has a small number of orbits on faces, and the lengths of those faces are
close to the girth of the graph. But of course it is a lot to expect such properties, and indeed
for some of the graphs we investigated, there were no such embeddings. For those, we had
to develop other methods, which appear to be new as well.



4 Ars Math. Contemp. 17 (2019) 1–35

These methods involve a more direct consideration of ways in which cycles in the graph
can bound the faces of an embedding. Our second method involves creating an auxiliary
graph, with vertices taken as particular cycles in the graph, and adjacency indicating when
two such cycles cannot be taken simultaneously as faces of an embedding, and then using
the independence number of the auxiliary graph to give an upper bound on the number of
faces (and hence a lower bound on the minimum genus). According to Carsten Thomassen
(in a private communication), this approach has not been taken before. Our third approach
uses (mixed) integer linear programming to achieve the same thing when the auxiliary
graph method is not helpful, and our fourth method uses integer linear programming di-
rectly for finding the faces of a minimum genus embedding of the graph.

All of these methods are quite general, in the sense that they do not expect the given
graph to possess some non-trivial symmetry, even though we developed each of them to
deal with graphs that do.

In particular, our new methods enabled us to prove the following:

(a) the minimum non-orientable genus of the Cartesian product graph C3 �C3 �C3 is
13, answering a 1998 question by Brin and Squier [4],

(b) the minimum non-orientable genus of the Gray graph is 13, complementing the de-
termination in 2005 of its minimum orientable genus in [30],

(c) the minimum orientable genus of the Doyle-Holt graph is 5, answering a 2005 ques-
tion by Marušič, Pisanski and Wilson [30],

(d) the minimum non-orientable genus of the Doyle-Holt graph is 8, complementing (c),

(e) the minimum orientable genus of the dual Menger graph of the Gray (273) configu-
ration is 6, answering two more questions from [30], and its minimum non-orientable
genus is 11,

(f) the minimum orientable genus of the second smallest semi-symmetric 3-valent graph
(which has order 110) is 15, answering the penultimate question in [30], and its
minimum non-orientable genus is 28, and

(g) the minimum orientable genus of the Ljubljana graph (which has order 112) is 13,
answering the final question in [30], and its minimum non-orientable genus is 27.

We also found the minimum orientable and non-orientable genera for several other
interesting graphs, including the Folkman graph and Tutte’s 8-cage.

Many of the discoveries mentioned above are described in this paper, in each case to
illustrate the particular method(s) we used to make them. Before that, we give some further
background in Section 2. Then we describe our ‘subgroup orbit’ method in Section 3,
our ‘independence number’ approach in Section 4, and our integer linear programming
approach in Section 5.

2 Further background
In this section we give further background on graph embeddings, known as maps, and we
briefly describe their connection with geometric realisations of certain set systems, and also
explain the use of voltage graphs to construct embeddings of particular kinds of graphs.
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2.1 Graph embeddings

By an embedding of a connected graph X we mean a 2-cell embedding of X on some
closed surface S. In particular, such an embedding has the property that when the graph is
removed from the surface S, it breaks up S into simply-connected open regions (homeo-
morphic to open unit disks), called the faces of the embedding. (Note here that we do not
require the closure of a face to be homeomorphic to a closed unit disk.) Such an embedding
of a graph is also called a map, and then the graph X is the 1-skeleton of the map M .

Next, if we denote the sets of vertices, edges and faces of the map M by V , E and F
respectively, then by the well known Euler-Poincaré formula we have

|V | − |E|+ |F | = χ,

where χ is the Euler characteristic of the surface S. If S is orientable, then χ = 2 − 2g
where g is the genus of S (and of M ), and in that case; furthermore, in the special case
where g = 0 (and χ = 2), the map M is called planar or spherical, while if g = 1 (and
χ = 0) then M is Euclidean or toroidal, and if g > 1 (and χ < 0) then M is hyperbolic.
On the other hand, if S is non-orientable, then χ = 2 − p where p is the genus of S, with
p = 1 when S is the projective plane, or p = 2 when S is the Klein bottle, and so on.

A given graph X may have several different embeddings, and the Euler characteristic
(and hence also the genus) of each one is determined by the number of resulting faces, since
the numbers of vertices and edges are exactly the same as for the graphX . In the orientable
case, the smallest and largest achievable values of the genus g are called the minimum
orientable genus and the maximum orientable genus of X , respectively. The minimum
orientable genus is often called simply the genus of X , and denoted by γ(X). Similarly, in
the non-orientable case, the smallest and largest achievable values of p are the minimum and
maximum non-orientable genus of X , respectively. The former is sometimes also called
the cross-cap number of X , and is denoted by γ(X). In both cases, the minimum genus
occurs when the number of faces is maximised, or equivalently, when the average face-size
is minimised.

As mentioned in the Introduction, every embedding of a connected graph X on an ori-
entable surface is uniquely determined by the cyclic orientation of the edges at each vertex,
giving what is known as the ‘rotation system’ of the embedding. Equivalently, the em-
bedding can be described by giving a set of closed walks (not necessarily simple cycles)
bounding the faces, with consistent orientation and folding well around each vertex. For
example, if the (anti-clockwise) rotations at the vertices 1 to 4 of K4 are taken as those
which induce the permutations (2, 3, 4), (1, 4, 3), (1, 2, 4) and (1, 3, 2) on their neighbours,
respectively, and we trace faces anti-clockwise (by ‘turning left’ at each successive ver-
tex, then the faces are bounded by the cycles (1, 2, 3), (1, 3, 4), (1, 4, 2), (2, 4, 3), and this
gives an orientable embedding of characteristic χ = 4 − 6 + 4 = 2 and minimum ori-
entable genus 0. If we then replace the rotation at vertex 4 by its inverse, then the faces
are bounded by the cycle (1, 2, 3) and the closed walk (1, 3, 4, 2, 1, 4, 3, 2, 4), giving an
orientable embedding with χ = 4− 6 + 2 = 0 and maximum orientable genus 1.

For non-orientable embeddings, the situation is a little more complicated. Any such
embedding can also be described by cyclic orientation of the edges at each vertex, or by
a set of closed walks bounding the faces, but without consistent orientation. For example,
there exists a non-orientable embedding of K5 with χ = 5 − 10 + 6 = 1 and mini-
mum non-orientable genus 1 with faces bounded by the cycles (1, 3, 5), (1, 3, 4), (2, 4, 3),
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(1, 5, 2), (2, 5, 4), (1, 4, 5, 3, 2), and for this, the local orientations at vertices 1 to 5 are
given up to reversal by the cyclic permutations (2, 5, 3, 4), (1, 3, 4, 5), (1, 4, 2, 5), (1, 3, 2, 5)
and (1, 2, 4, 3) of their neighbours, but there is no consistent way of orienting these cycles
that gives an orientable embedding with the same face-bounding cycles. A connection be-
tween the two descriptions above can be made by ‘twisting’ some edges. Further details
are explained in [19, 44] for example.

Finally, before continuing, we make two more points. One is that we may assume that
the given connected graph X has no vertices of valency 1 or 2, as their presence does not
affect the minimum (or maximum) genus of the graph: in any embedding, a leaf can be
added to any vertex, and similarly, a new vertex of valency 2 can be inserted into any edge,
without altering the genus. Another is that sometimes for ease of expression we will use
Fk to denote the number of faces of size/length k, and F` to denote the number of faces
that are larger than some prescribed integer k.

2.2 Connections with geometric realisations of block designs and configurations

Closely related to the study of embeddings of graphs in surfaces is the study of geometric
realisations of set systems, especially block designs and combinatorial configurations.

In 1897, Heffter observed that certain triangular embeddings of graphs in surfaces can
be used to construct two-fold triple systems, with the role of the blocks being played by the
faces of the map; see [23]. Subsequent work by others took this further, and showed a link
between partially balanced incomplete block designs (PBIBDs) and triangular embeddings
of strongly regular graphs, for example. Further details can be found in the surveys [16, 17].

A combinatorial configuration is a set system with intersection properties that mimic the
properties of geometric configurations of points and lines, or occasionally configurations
of other geometric objects such as circles, planes, and so on. Geometric realisations of
configurations make up an important and classical area of geometry, described for example
in books by Grünbaum [20], Hilbert and Cohn-Vossen [24] and Pisanski and Servatius [37].
Many authors consider embeddings of the Levi graph (incidence graph) of a configuration
in a surface to be a geometric embedding of the configuration — see for example the work
by Coxeter in [10]. Similarly, geometric realisations of neighbourhood geometries were
considered by Van Maldeghem in [48].

On the other hand, any isometric embedding of a graph on a surface gives a geometric
realisation of a point-circle configuration, by drawing a circle through the neighbourhood of
each vertex of the graph. This was first observed by Gévay and Pisanski for the Euclidean
plane [15], and later by Izquierdo and Stokes for other surfaces [46]. Note that this way of
realising configurations geometrically is essentially different from the embeddings of block
designs described above, because it is not the faces but rather the rotation systems of the
embedded graph that constitute the blocks (or circles) of the geometric set system. In par-
ticular, isometric embeddings of Moore graphs induce geometric realisations of balanced
pentagonal geometries, and this was the motivation for our initial work on embeddings of
the Hoffman-Singleton graph, as explained in [46].

2.3 Voltage graphs and covering graphs

Voltage graphs provide a very good way to describe or construct covers of a given smaller
graph (or multigraph), and can also be used to construct certain kinds of embeddings of
such covering graphs. Here we give a brief summary of some key points about these things,
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and refer the reader to [18, 19] for further details.
Let X be any finite graph whose automorphism group A = Aut(X) has a non-trivial

subgroup B that acts semi-regularly on V (X) and E(X), meaning that every non-trivial
element of B fixes no vertex or edge of X . In this case, all orbits of B on V (X) or E(X)
have the same length n = |B|. Then we may define a smaller graph Y whose vertices are
the orbits of B on V (X), and an edge joins two such vertices if and only if some edge of
X joins a pair of vertices in the corresponding orbits. In particular, Y is a quotient of X ,
and X is a regular cover of Y.

Now choose a set of representatives of the orbits of B on V (X), and let v be the
representative of the B-orbit containing a vertex v. If {v, w} is any edge of X , then so is
{v, wβ} for some β ∈ B, and hence so is {vα, wβα} for all α ∈ B. Accordingly, there is
an arc from uB to vB in the quotient graph Y that we can label with the element β of B.
(Also the reverse are could be labelled with β−1, but that is not necessary.) After doing this
for an edge from each orbit of B on E(X), we have a directed labelling of the edges of Y
that gives enough information to define the covering graph X uniquely, with B considered
as a regular permutation group of degree n = |B|. When so labelled, the quotient graph
Y is called the voltage graph, and B is called the voltage group, while X is the derived
graph, constructible from the graph Y and the voltage assignments.

The vertex-set of the derived graph can be regarded as the Cartesian product V (Y )×B,
and its edges are of the form {(y, α), (z, βα)} where α ∈ B, and (y, z) is an arc of Y
labelled with β ∈ B. To see the connection with constructing Y from the derived graph X ,
note that y and z may be viewed as v and w, and (y, α) as v = vα, and (z, βα) as wβα.

The voltage graphs described above are also called regular voltage graphs, and they
correspond to regular coverings of graphs. Permutation voltage graphs were introduced by
Gross and Tucker in [18], where they proved that it is enough to use permutations from a
symmetric group as labels on the (possibly multiple) edges of a voltage graph, to represent
an ordinary covering of a given graph. Any regular voltage graph can be expressed as a
permutation voltage graph. More generally, a branched covering of a graph (which in the
literature is also known as a wrapped quasi-covering of a graph (see [27, 36])) is a pair of
graphs, similar to the pair consisting of a permutation voltage graph and its derived graph,
except that branched (or wrapped) vertices are also allowed.

Next, embeddings of the voltage graph Y can also be used to construct embeddings
of the derived graph X . To do this, simply assign a cyclic rotation of the edges at each
vertex of Y, and then use the voltage assignments to give the analogous rotations at the
corresponding vertices of X .

One particularly good feature of this process is that it preserves much of the symmetry
of the initial embedding – and indeed there are many cases where a highly symmetric or
minimum genus embedding can be described in terms of a voltage graph (see [29]). Not all
embeddings of the derived graph X can be obtained in this way, however, as we will see
with the Hoffman-Singleton graph. Given a nice embedding of a (branched) cover, it is not
certain that the quotient of this embedding is an embedding which is easily recognisable as
nice embedding for lifting. In other words, it is not usually clear in advance what kinds of
embeddings of the voltage graph (or even what voltage groups and voltage assignments)
will result in particularly nice embeddings of the derived graph.

In Section 3.4, we will compare one of our methods for finding graph embeddings with
methods that use coverings and voltage graphs.
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3 The subgroup orbit method
Here we present the method that we used successfully to find minimum genus embeddings
of many of the graphs mentioned in the Introduction. It works well for finding embeddings
of a graph with certain degree of non-trivial symmetry. The method uses selected elements
of the automorphism group of the graph to construct an embedding which will have an
automorphism group featuring at least the selected automorphisms.

3.1 Motivation

This method was inspired by properties of regular maps.
A flag of a map M is usually defined as an incident vertex-edge-face triple (v, e, f) in

M , but more technically it should be defined as follows, to avoid ambiguity in cases where
an edge e lies in just one face. Subdivide each face f of length k in M into 2k topological
triangles, with the vertices of each triangle being the centre of the face f , a vertex v of M
on the boundary of the face f , and the mid-point of an edge e incident with both v and f .
We then call each such triangle a flag of M . In this way, every edge of M lies in four flags
(with two for each choice of the vertex v).

An automorphism of map M is a bijection from M to itself that preserves its vertex-
set, edge-set and face-set, and preserves incidence between these sets. By connectness,
every automorphism of M is uniquely determined by its effect on any flag, so the automor-
phism group of M (denoted by Aut(M)) acts semi-regularly on flags, and it follows that
|Aut(M)| divides the number of flags, namely 4|E(M)|.

A map M is called regular if Aut(M) is transitive (and hence acts regularly) on the
flags ofM , or ifM is orientable and the group of all orientation-preserving automorphisms
of M acts regularly on the arcs of M ; see [11] (or [9], for example). These two definitions
are not equivalent (indeed the two cases are different, but not mutually exclusive). In both
cases the automorphism group ofM has a single orbit on faces, and if the face-size is small
enough then M can be expected to be a minimum genus embedding of X . (For example,
this always happens when all faces of M are triangular.) There are also non-regular maps
whose automorphism group has a small number of orbits on faces, and again if the faces
are small, then these can give minimum genus embeddings of the underlying graph.

Our method finds minimum genus embeddings for which some non-trivial subgroup
of the automorphism group of the graph induces a group of automorphisms of the map,
usually with a small number of orbits on faces, when such a subgroup exists.

Before describing it, we repeat the observation that the smallest genus embeddings have
the largest possible number of faces (in each of the orientable and non-orientable cases).
Also we note the following.

Lemma 3.1. If X is a connected finite graph of girth g, then in any embedding of X , every
face has size at least g, and the number of faces is at most 2|E(X)|/g.

Proof. The first conclusion is obvious, and the second follows by counting incident edge-
face pairs, which shows that the sum of the sizes of all faces at most 2|E(X)|.

The above observations show that it makes sense to consider cycles in the graph of
relatively small length (either girth cycles, or ‘almost’ girth cycles) as possibilities for the
closed walks bounding the faces of a small genus embedding. We also use subgroups of
the automorphism group of the graph (of order dividing 4|E|) to reduce the search space.
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3.2 Description

Our subgroup orbit method proceeds as follows, for the given connected graph X:

Step 1. Find the set C of cycles of X of small lengths of interest.

Step 2. Find the automorphism group of X and its conjugacy classes of subgroups.

Step 3. For every representative subgroup G of order dividing 4|E(X)| in Aut(X), taken
in decreasing order of G,

(a) find the set S of orbits of G on the cycles in C,
(b) find subsets of S whose union forms the set of faces of an embedding of X ,
(c) for each such subset, determine the orientability and genus of the resulting map.

Note that Step 3(b) requires checking that the union of the chosen subsets of S uses
every edge exactly twice; in particular, the sum of the lengths of the cycles in the union
must be 2|E(X)|. Also, if some set S of orbits of G on cycles produces an embedding of
X , then G will induce a subgroup of the automorphism group of the resulting map, so its
order must divide 4|E(X)|.

Step 3(b) also requires that the cycles incident with each vertex v fold well around v,
providing a cyclic permutation of the edges incident with v. Testing this can be achieved
simply by constructing a ‘local’ graph, representing the vertex-figure on the neighbourhood
X(v) of v, with an edge between vertices u and w if and only if the union contains a
cycle with edges {u, v} and {v, w}, and then checking that this graph is a k-cycle, where
k = |X(v)| is the valency of v. The test for orientability in Step 3(c) then follows on easily
from that. Also Step 3(b) can be sped up by use of a backtrack search, adding and removing
G-orbits on cycles to and from a union of such orbits, with feasibility tests at each node of
the search tree.

In practice, the length of time needed for Steps 1 and 2 is relatively small, while most of
the time is required for Step 3. Also the time needed increases as the order of G decreases,
because the number of orbits of G on C increases. But usually we do not conduct Step 3
for every class of subgroups. Indeed we stop the search if it finds an orientable embedding
and/or non-orientable embedding of provably minimum genus, since there is then no need
to proceed further, and in that case we have found such an embedding (or embeddings)
with largest possible automorphism group. Also we can stop the search if it takes too long
or requires too much memory, but in principle it can work even when the subgroup G is
trivial.

3.3 Application to the Hoffman-Singleton graph

The Hoffman-Singleton graph is the unique Moore graph of valency 7 and diameter 2, and
hence has order 1 + 7 + 7 · 6 = 50 and girth 5.

It has a very nice ‘pentagons-and-pentagrams’ construction (due to Robertson [41]),
which may be described as follows: Take five pentagons P1, P2, P3, P4, P5, with each
Pi having vertices ui1, ui2, ui3, ui4 and ui5 and edges {ui1, ui2}, {ui2, ui3}, {ui3, ui4},
{ui4, ui5} and {ui5, ui1}, and five pentagrams (5-pointed stars) Q1, Q2, Q3, Q4, Q5, with
eachQi having vertices vi1, vi2, vi3, vi4 and vi5 and edges {vi1, vi3}, {vi3, vi5}, {vi5, vi2},
{vi2, vi4} and {vi4, vi1}, and then add an edge from vertex uij to vertex vrs whenever
s ≡ ir + j (mod 5).
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Equivalently, it may be constructed as the derived graph of a graph T of order 10 whose
vertices are P1, P2, P3, P4, P5, Q1, Q2, Q3, Q4 and Q5, with a loop at each vertex and an
edge joining each of the 25 pairs of vertices Pi and Qj , and voltage group Z5 (under
addition). In particular, this makes it a 5-fold cover of T .

For ease of notation, we may re-label the vertices u11, u12, u13, u14, u15, u21, u22, . . . ,
u55 as 1 to 25, and the vertices v11, v12, v13, v14, v15, v21, v22, . . . , v55 as 26 to 50. Then
for example, the neighbours of the vertex 1 are 2, 5, 27, 33, 39, 45 and 46.

The Hoffman-Singleton graph is vertex-transitive. Indeed its automorphism group has
order 252 000 and is isomorphic to PΣU(3, 5), which is a semi-direct product of the simple
linear group PSU(3, 5) by a cyclic group of order 2 generated by the Frobenius automor-
phism of GF(52). The stabiliser of a given vertex v is isomorphic to S7, which acts faith-
fully on the neighbourhood of v. In particular, the graph is also arc-transitive, or symmetric.

An easy computation with the MAGMA system [2] shows that the automorphism group
has 148 conjugacy classes of subgroups, of orders 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16,
18, 20, 21, 24, 25, 32, 36, 40, 42, 48, 50, 60, 72, 80, 96, 100, 120, 125, 144, 168, 200, 240,
250, 336, 360, 480, 500, 720, 1000, 1440, 2000, 2520, 5040, 126 000 and 252 000 (with
many orders repeated). We can limit our attention to those of order dividing 4|E| = 700,
that is, of order 1, 2, 4, 5, 7, 10, 14, 20, 25, 50 or 100.

It is easy to check that there is no subgroup of order 50 that is complementary to the
vertex-stabiliser, and hence the Hoffman-Singleton graph is not a Cayley graph. Moreover,
it has no subgroup of order 175, 350 or 700, and hence has no subgroup that acts regularly
on the edges or on the arcs of the graph, or on the flags of any embedding. In particular, the
Hoffman-Singleton graph is not the underlying graph of a regular map, and this explains
why we started thinking about different kinds of embeddings. We collect some of our
findings in the following.

Proposition 3.2. The Hoffman-Singleton is not a Cayley graph, and is not the underlying
graph of a regular map.

Next, by Lemma 3.1, an upper bound on the number of faces of any embedding is
350/5 = 70, with the bound attained only when all faces are pentagonal.

We implemented our subgroup orbit method in MAGMA, and ran it on an Apple laptop.
With C chosen as the set of all cycles of length 5 (of which there are 1260), it took only
minutes to check and eliminate subgroups of order 20 or more, but the computation then
slowed down considerably once it reached subgroups of order 10. Because of this, we
restricted the search to cyclic subgroups of prime order, and that led us to discover some
minimum genus embeddings.

One of the first ones we found (taking only a few minutes in the restricted computation)
uses ten orbits on C of a cyclic subgroup of order 7 in the automorphism group of the graph,
generated by the automorphism α that induces the permutation

(2, 5, 27, 33, 39, 45, 46) (3, 26, 10, 12, 37, 7, 49) (4, 29, 9, 36, 13, 6, 47)

(8, 19, 48, 28, 50, 30, 20) (11, 40, 38, 14, 35, 17, 43) (15, 25, 16, 41, 32, 18, 23)

(21, 34, 44, 22, 31, 24, 42)

on the re-labelled vertices. Note that this permutation does not act semi-regularly on the
vertices, since it fixes the vertex 1. The 70 faces of the embedding are bounded by the ten
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5-cycles

(1, 2, 34, 32, 5), (2, 3, 29, 26, 28), (2, 3, 35, 17, 47),

(2, 28, 23, 38, 40), (2, 34, 13, 12, 47), (2, 40, 18, 44, 41),

(3, 35, 32, 8, 48), (3, 36, 12, 44, 42), (4, 30, 16, 34, 31),

(4, 30, 28, 23, 43),

and their images under non-trivial powers of the automorphism α.
This embedding is non-orientable, since the Euler characteristic χ is 50− 175 + 70 =

−55, which is odd. In particular, it is a non-orientable embedding of minimum genus, and
gives the cross-cap number of the graph as 2 − χ = 57. The embedding is illustrated in
Figure 1, and also in [46].

At this point, we note that the resulting map admits an automorphism of order 7 (acting
on the underlying graph in the same way as α above), and also that with the help of MAGMA
it is not difficult to show that there are no other map automorphisms apart from powers of
α, and so the full automorphism group of this map has order 7.

Another non-orientable embedding we found of the same genus uses 14 orbits of a
cyclic subgroup of order 5 generated by the automorphism β that induces the semi-regular
permutation

(1, 6, 12, 19, 22) (2, 7, 13, 20, 23) (3, 8, 14, 16, 24) (4, 9, 15, 17, 25)

(5, 10, 11, 18, 21) (26, 50, 43, 40, 31) (27, 46, 44, 36, 32) (28, 47, 45, 37, 33)

(29, 48, 41, 38, 34) (30, 49, 42, 39, 35).

The 70 faces of this embedding come from the orbits of the following 5-cycles:

(1, 2, 41, 20, 33), (1, 33, 23, 48, 46), (1, 46, 16, 42, 45),

(1, 45, 13, 14, 27), (1, 27, 18, 17, 39), (1, 39, 36, 38, 5),

(1, 5, 50, 47, 2), (2, 3, 4, 37, 40), (2, 34, 31, 18, 40),

(3, 4, 30, 8, 48), (3, 48, 18, 44, 42), (3, 42, 9, 26, 29),

(4, 5, 32, 11, 43), (4, 31, 15, 39, 37).

We later used linear programming (as we will describe in Section 5) to find a large
number of non-orientable embeddings of minimum genus with trivial automorphism group,
and some further computations using MAGMA showed that 7 is the largest order of the
group of automorphisms of any such embedding.

We collect our findings in the following theorem.

Theorem 3.3. The minimum non-orientable genus of the Hoffman-Singleton graph is 57,
and occurs for embeddings with 70 pentagonal faces. Moreover, the maximum order of a
group of automorphisms of such an embedding of this graph is 7, and other possibilities
for the order are 1 and 5.

For orientable embeddings, an upper bound on the number of faces is 69, potentially
giving Euler characteristic χ = 50− 175 + 69 = −56 and genus 29. In theory, this could
be achieved in a number of ways: ranging from 68 faces of length 5 and one of length 10,
to 64 faces of length 5 and five of length 6.
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Figure 1: A minimum genus non-orientable embedding of the Hoffman-Singleton graph.
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We ran another version of our MAGMA procedure with S chosen as a cyclic subgroup
of order 5 in the automorphism group of the graph, and C chosen as the set of all cycles of
length 5 and all the 6-cycles in a single orbit of S, and found an orientable embedding of
minimum genus 29, with 64 faces of length 5 and five of length 6. This embedding came
from the subgroup of order 5 generated by the obvious automorphism γ of order 5 that
induces the semi-regular permutation

(1, 2, 3, 4, 5) (6, 7, 8, 9, 10) (11, 12, 13, 14, 15) (16, 17, 18, 19, 20)

(21, 22, 23, 24, 25) (26, 27, 28, 29, 30) (31, 32, 33, 34, 35) (36, 37, 38, 39, 40)

(41, 42, 43, 44, 45) (46, 47, 48, 49, 50).

This subgroup is not conjugate to the subgroup generated by the earlier automorphism β
mentioned above. The 69 faces of the embedding come from 11 orbits of 〈γ〉 of length 5
on 5-cycles, with representatives

(1, 2, 34, 10, 27), (1, 5, 38, 7, 45), (1, 45, 13, 37, 39),

(1, 46, 11, 12, 33), (6, 35, 17, 47, 7), (6, 37, 22, 23, 28),

(6, 46, 21, 41, 44), (11, 29, 24, 34, 32), (11, 43, 17, 26, 29),

(11, 46, 48, 18, 40), (16, 17, 43, 23, 38),

plus another nine individual 5-cycles, which are all preserved by γ, namely

(6, 7, 8, 9, 10), (11, 15, 14, 13, 12), (16, 20, 19, 18, 17),

(21, 25, 24, 23, 22), (26, 28, 30, 27, 29), (31, 33, 35, 32, 34),

(36, 39, 37, 40, 38), (41, 43, 45, 42, 44), (46, 49, 47, 50, 48),

and a single orbit of 〈γ〉 of length 5 on 6-cycles, with representative

(1, 27, 18, 31, 21, 46).

These 69 cycles are consistent, in that they give the rotation system for an orientable
embedding. For example, the seven of those 69 cycles that contain the vertex 1 are the six
5-cycles

(1, 2, 34, 10, 27), (5, 1, 33, 9, 26), (1, 5, 38, 7, 45),

(2, 1, 39, 8, 41), (1, 45, 13, 37, 39), (1, 46, 11, 12, 33),

plus the single 6-cycle
(1, 27, 18, 31, 21, 46),

and these are consistent with ρ = (2, 39, 45, 5, 33, 46, 27), which gives a rotation at ver-
tex 1. The rotations at other vertices can be found similarly.

The resulting orientable embedding admits γ as a map automorphism of order 5, and
an easy MAGMA computation shows that there are no other automorphisms. In particular,
the above embedding is chiral (irreflexible), meaning that it does not admit an orientation-
reversing automorphism. Also an extended MAGMA computation showed that 5 is the
largest order of any group of automorphisms of an orientable embedding of minimum
genus 29.

We collect our findings in the following theorem.
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Theorem 3.4. The minimum orientable genus of the Hoffman-Singleton graph is 29, and
this is attainable by a chiral embedding with 69 faces, of which 64 have length 5 and five
have length 6, and with automorphism group of order 5. Moreover, 5 is the maximum order
of a group of automorphisms of any minimum genus orientable embedding of this graph.

3.4 Comparison with the voltage graph method

Here we make some observations that compare the voltage graph method (as described
near the end of Subsection 2.3) with our new subgroup orbit method, in response to a
suggestion by Tomaž Pisanski. Each of these two methods involves choice of an eventual
group of automorphisms of an embedding (or just a suitable set of permutations), in order
to reduce the size of the search space for nice embeddings, and this also makes it easy to
describe each embedding found.

But there are many important respects in which they differ.
The voltage graph method involves guessing a way of regarding the given graph as a

covering graph of a nice voltage graph (and then choosing suitable voltage assignments,
and so on), while the subgroup orbit method does not do this, even though those things can
sometimes be the outcome. In this sense, the subgroup orbit method is more systematic than
the voltage graph method (even without putting any extra restrictions on the set C of cycles
or the subgroup G, as we did when finding minimum genus orientable embeddings of the
Hoffman-Singleton graph). Also the subgroup orbit method can find embeddings that are
unlikely to be obtained by the voltage graph method. In particular, this may happen when
vertices in some face are identified in the quotient embedding while others are not, but also
in other cases where the quotient graph is not obvious or natural.

The minimum genus embeddings we found for the Hoffman-Singleton graph make a
good illustration of these arguments. Our orientable embedding with 69 faces can be con-
structed from an embedding of the quotient graph via the automorphism γ of order 5, and
this graph happens to be the very nice voltage graph T from which the Hoffman-Singleton
graph is often constructed (as described at the beginning of Section 3.3). On the other
hand, the minimum genus non-orientable embeddings that we found have automorphisms
that define quite different voltage graphs: the automorphism β of order 5 gives a quotient
graph on 10 vertices with multiple edges but no loops, while the automorphism α of order
7 defines a quotient graph on 8 vertices (with one being a branched vertex). Every em-
bedding of one of these quotient graphs will give an embedding of the Hoffman-Singleton
graph in some surface. In the third case (using α), however, the quotient graph is not the
most obvious one to choose. Also the third case also shows that no particular difficulties
need arise from using an automorphism that is not semi-regular.

The next point we make is that it can be difficult to choose the quotient graph and
voltage assignments when we want control over the size of the faces and/or the number of
faces in the derived embedding, which of course is what we need to do when searching for
minimum genus embeddings. Indeed it can be difficult even to guess what lengths the faces
should have in the quotient embedding in order to get faces of the desired lengths in the
covering graph, without considering also the values of the voltages on the edges, and how
they compose. For example, some of the pentagonal faces of the non-orientable embedding
obtained from the automorphism β are lifted from closed walks of length 5 in the quotient
embedding, consisting of a triangular face together with a closed walk of length 2, but in
the voltage graph construction it would not be immediately clear if such a walk would lift
to a pentagonal face, or to something larger. In other examples, it may be easy to see how
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short closed walks will lift in the derived graph, and often they unwind simply as desired
(almost by pure luck), but in many cases the situation can be rather complicated, especially
when a face is created from a union of smaller closed walks.

Here we feel it is interesting to note that voltage graph methods cannot be used to
construct a minimum non-orientable genus embedding of the Hoffman-Singleton graph
from the natural 10-vertex voltage graph T (mentioned earlier). Such an embedding must
have 70 pentagonal faces, lifted from 14 closed walks of length 5 in T that use each arc
exactly once. According to [21], there are four types of cycles of length 5 in the Hoffman-
Singleton graph. Cycles of type I are lifted loops, cycles of type II and III are lifts of
closed walks of type (v, v, v, u, u), and cycles of type IV are lifts of a cycle of length 4
with an attached loop. Any walk that lifts to a cycle may use each arc no more than once,
and it follows that only cycles of types I and IV can be used in a lifted embedding. (Any
closed walk of type (v, v, v, u, u) in T could not unwind to a simple cycle of length 5 in the
derived graph if the loop at v was taken in both possible directions, and so would have to
traverse the loop at v twice in the same direction.) On the other hand, a counting argument
shows that we cannot cover each arc in T exactly once using quotient walks of cycles of
type I and IV, and so this voltage graph T cannot be used to construct an embedding of the
Hoffman-Singleton graph with only pentagonal faces.

The above example shows that the knowledge of a ‘special’ voltage graph does not
necessary help when looking for a minimum genus embedding. More generally, if a voltage
graph has a large number of vertices or edges, then it can be quite a challenge to find nice
embeddings of it, let alone nice embeddings of the derived graph, while the subgroup orbit
method is quite capable of easily finding nice embeddings also in those cases. In summary,
the subgroup orbit method can produce a greater range of embeddings than the voltage
graph method.

On the other hand, the subgroup orbit method works best when the graph has nice
embeddings with non-trivial symmetry, while the voltage graph method can be made to
work well also in cases where that does not happen (using permutation voltage graphs).

3.5 Some other examples

Example 3.5. The Cartesian product C3 �C3 �C3.
This is an arc-transitive graph of order 27, valency 6, girth 3 and diameter 3 (and is a

Cayley graph for the abelian group Z3 ⊕ Z3 ⊕ Z3). By Lemma 3.1, any embedding of this
graph has at most 162/3 = 54 faces. In 1985 it was shown to have a genus 7 orientable
embedding with 42 faces, by Mohar, Pisanski, Škoviera and White [32], and three years
later Brin and Squier proved in [4] that any embedding has as most 43 faces, and thereby
showed that the minimum orientable genus of C3 �C3 �C3 is 7, but they left open the
question of the minimum non-orientable genus.

With a natural vertex-labelling, our subgroup orbit method implemented in MAGMA
takes only a couple of minutes to produce a different and more symmetric orientable em-
bedding of minimum genus than the one found in [32]. This new embedding has automor-
phism group S of order 36, generated by elements that induce the permutations

(2, 7) (3, 4) (5, 9) (10, 19) (11, 25) (12, 22) (13, 21)

(14, 27) (15, 24) (16, 20) (17, 26) (18, 23)
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and

(1, 14, 27) (2, 15, 25) (3, 13, 26) (4, 23, 21, 10, 17, 9)

(5, 24, 19, 11, 18, 7) (6, 22, 20, 12, 16, 8).

The resulting map has 18 triangular faces, 18 quadrangular faces and 6 hexagonal faces,
coming from the orbits under S of the 3-cycles (4, 6, 5), the 4-cycle (1, 2, 8, 7) and the
6-cycle (2, 3, 21, 24, 23, 5). In particular, the first of the two generators for S given above
reverses the 4-cycle (1, 2, 8, 7), and it follows that this embedding is reflexible.

Our subgroup orbit method also quickly finds a non-orientable embedding of minimum
genus, with 43 faces, answering the question left open in 1988 by Brin and Squier [4]. This
embedding has 24 triangular faces, 12 quadrangular faces, and 7 hexagonal faces, and its
automorphism group is a dihedral group of order 12, generated by two elements that induce
the permutations

(2, 3) (4, 7) (5, 9) (6, 8) (10, 19) (11, 21) (12, 20) (13, 25)

(14, 27) (15, 26) (16, 22) (17, 24) (18, 23)

and

(1, 5, 9) (2, 8, 7, 4, 6, 3) (10, 14, 18) (11, 17, 16, 13, 15, 12)

(19, 23, 27) (20, 26, 25, 22, 24, 21).

The 43 faces come from the orbits of the cycles (1, 2, 3), (2, 11, 20), (10, 11, 12),
(1, 2, 11, 10), (10, 12, 15, 24, 22, 19) and (2, 3, 6, 4, 7, 8).

Thus we have proved the following improvement of what was achieved in [32] and [4].

Theorem 3.6. The minimum orientable genus of the Cartesian product C3 �C3 �C3 is 7,
and this is attainable by a reflexible embedding with 42 faces, in which there are 18 faces of
length 3, plus 18 of length 4, and 6 of length 6, and with automorphism group of order 36.
The minimum non-orientable genus of the Cartesian product C3 �C3 �C3 is 13, and this
is attainable by an embedding with 43 faces, in which there are 24 faces of length 3, plus
12 of length 4, and 7 of length 6, and with automorphism group of order 12.

Example 3.7. Tutte’s 8-cage.
This is the smallest 5-arc-transitive 3-valent graph. It is bipartite of order 30, with

girth 8; indeed it is also the smallest 3-valent graph of girth 8. Its automorphism group is
isomorphic to Aut(S6), of order 1440.

The number of faces of any embedding is bounded above by b2|E|/8c = b90/8c = 11.
Moreover, if there are exactly 11 faces, and F8 and F` are the numbers of faces of length 8
and greater than 8, then 88 + 2F` = 8(F8 + F`) + 2F` = 8F8 + 10F` ≤ 2|E| = 90 and
so F` ≤ 1, which implies that there are ten faces of length 8 and one of length 10.

Our subgroup orbit method quickly gives a minimum genus non-orientable embedding
with 11 faces, and cyclic automorphism group of order 10. With a suitable labelling of
vertices, the automorphism group is generated by an element inducing the permutation

(1, 11, 25, 20, 26, 3, 23, 22, 28, 14) (2, 5, 13, 29, 19, 7, 15, 24, 12, 6)

(4, 27, 17, 8, 18, 9, 16, 10, 21, 30),
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and the ten faces of length 8 come from the orbit of (1, 2, 5, 11, 23, 16, 8, 4), while the
single face of length 10 is bounded by the cycle (2, 6, 12, 24, 15, 7, 19, 29, 13, 5).

Also our subgroup orbit method gives an orientable embedding with 9 faces, and au-
tomorphism group of order 3. The automorphism group S is generated by an element
inducing the permutation

(2, 3, 4) (5, 9, 10) (6, 7, 8) (11, 21, 18) (12, 19, 16)

(13, 17, 22) (14, 15, 20) (23, 28, 26) (24, 29, 30),

and the embedding has three faces of length 8, three of length 10 and three of length 12,
which come from the orbits under S of the cycles

(1, 2, 5, 11, 23, 16, 8, 4), (5, 13, 25, 17, 30, 14, 26, 18, 27, 11) and
(2, 6, 14, 30, 16, 23, 15, 7, 19, 29, 13, 5).

Our method found no orientable embedding with 11 faces, for a good reason. If there
existed one, then there would be ten faces of length 8 and a single face of length 10 (as
shown above). By transitivity of the automorphism group of Tutte’s 8-cage on 10-cycles,
we may choose any 10-cycle C to bound the single face of length 10, and then consider
the way the other ten faces wrap around it. By inspection of the edge-set of the graph, it
is easy to see that there are exactly four possibilities for a cycle of length 8 containing any
edge, and it follows that there are 410 possibilities for how to arrange potential faces of this
length around the given 10-cycle C. But then an easy MAGMA computation shows that in
all 410 cases, some arc is repeated in two different faces, so this is impossible. (In fact there
are only two embeddings that can be found in this way, and both are non-orientable.)

Thus we have the following:

Theorem 3.8. The minimum orientable genus of Tutte’s 8-cage is 4, attainable by a chiral
embedding with 9 faces, in which there are three faces of length 8, three of length 10, and
three of length 12, and with automorphism group of order 3. The minimum non-orientable
genus of Tutte’s 8-cage is 6, attainable by an embedding with 11 faces, in which there are
ten faces of length 8 and one of length 10, and with cyclic automorphism group of order 10.

Further examples will be met in the next two sections.

4 The independence number approach
4.1 Motivation and description

Lemma 3.1 gives a theoretical upper bound on the number of faces of an embedding, and
hence a lower bound on the minimum genus. If an embedding attains that bound, then it
will automatically have minimum genus (whether orientable or not). Also if an orientable
embedding falls short by just one face, then it will have minimum orientable genus, since
in that case the Euler characteristic has to be even.

The two examples considered in Subsection 3.5 (and many other graphs besides those)
show that these theoretical upper bounds on the number of faces of an embedding are not
always attainable, and in such cases, some other information is required to help decide
whether a given embedding has minimum genus. This was already done for C3 �C3 �C3

(in Example 3.5) by Brin and Squier [4], using knowledge of the structure of the graph
to reduce the bound from 54 to 43 faces, and similarly, in Example 3.7 we used some
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particular properties of Tutte’s 8-cage to decrease the bound from 11 to 9 in the orientable
case. These kinds of approach, however, are not likely to work well in general, so some
other approaches are needed.

The main idea of our new approach is that we analyse an appropriate set C of cycles of
the graph that are candidates for the faces, with the aim of finding an upper bound on the
number of members of C that can be combined together to form the faces of an embedding
or partial embedding. For example, the set C could be the set of all girth cycles, or all cycles
of length close to the girth.

We then define an auxiliary graph XC with C as its vertex-set, and with two cycles in C
joined by an edge if and only they cannot occur together in the same embedding.

There are several ways of telling that two cycles cannot occur in the same embedding.
Here we use the fact that the local arrangement of neighbours of a vertex requires that any
given 2-path lies in at most one face (under the assumption that no vertex of X has valency
2), and accordingly, we define an edge between two members of C if and only if they have
a 2-path in common.

Next, we compute the independence number of the auxiliary graph XC . This is the
maximum number of pairwise non-adjacent vertices ofXC , and can be found (for example)
in MAGMA using the MaximumIndependentSet command. The resulting number
gives an upper bound on the number of cycles from C that can bound faces of an embedding,
and hence can be used to find a lower bound on the average face size, and thereby obtain
an improved upper bound on the total number of faces.

The method can be summarised as follows:

Step 1. Choose an appropriate set C of cycles of interest in the given graph X .

Step 2. Define the auxiliary graph XC on the vertex-set C, with two elements of C joined
by an edge if and only if they cannot occur together in the same embedding.

Step 3. Find the independence number of the auxiliary graph XC , which gives an upper
bound on the number of the cycles of C that can occur as faces of any embedding.

This approach works for both orientable and non-orientable embeddings alike, but can
be further improved for orientable embeddings by taking C as a suitable set of oriented
cycles, and by joining two elements of C by an edge when they have either an arc (ordered
edge) or an underlying 2-path (or both) in common.

Also at Step 3 in both cases, the MaximumIndependentSet command can produce
an independent set of maximum size, in case that is helpful.

As the examples below will show, this approach can lead to significant reduction in the
upper bound on the number of faces, and then help with determining the minimum genus.

4.2 Some applications

Example 4.1. The Gray graph.
This is the smallest cubic (3-valent) graph that is semi-symmetric, which means regular

and edge-transitive but not vertex-transitive; see [8]. It is bipartite with order 54, diameter 6
and girth 8, and has automorphism group of order 1296. An upper bound on the number of
faces of any embedding is b162/8c = 20, but this is not sharp. The minimum orientable
genus of the Gray graph was found in 2005 by Marušič, Pisanski and Wilson [30] to be 7,
via an embedding with only 15 faces, obtained from the embedding of C3 �C3 �C3 on a
surface of genus 7 given in [32].
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Our new approach also gives both this and the minimum non-orientable genus quite
easily. First, the Gray graph has 81 cycles of length 8, but none of length 10. With C
taken as the set of all 8-cycles, our independence number approach gives F8 ≤ 9, and then
because there are no 10-cycles, all other faces have length at least 12, and so we find that
|F | ≤ 9+(2|E|−72)/12 = 9+90/12, which gives |F | ≤ 16. Hence every non-orientable
embedding of the Gray graph has at most 16 faces, while every orientable embedding has
at most 15.

Furthermore, our subgroup orbit method easily finds one of each kind of embedding
from a dihedral subgroup S of order 6 in the automorphism group of the graph: an ori-
entable embedding with F8 = F12 = 6 and F14 = 3, and a non-orientable embedding with
F8 = 9, F12 = 4 and F14 = 3.

With a suitable labelling of the vertices, the dihedral subgroup S can be generated by
the two elements of orders 2 and 3 inducing the permutations

(1, 2) (3, 15) (5, 14) (6, 8) (7, 9) (11, 13) (12, 17) (16, 18) (19, 21) (20, 27)

(23, 24) (25, 26) (29, 31) (30, 32) (34, 35) (36, 37) (38, 40) (39, 47) (42, 43)

(44, 45) (46, 48) (49, 53) (50, 52) (51, 54)

and

(1, 2, 4) (3, 9, 11) (5, 6, 17) (7, 15, 13) (8, 14, 12) (10, 27, 20) (16, 26, 23)

(18, 24, 25) (19, 21, 22) (29, 32, 34) (30, 31, 35) (33, 47, 39) (36, 45, 42)

(37, 43, 44) (38, 40, 41) (46, 52, 54) (48, 51, 50),

and then the faces of the orientable embedding come from the orbits of S containing the
8-cycle

(3, 29, 8, 42, 23, 46, 10, 33),

the 12-cycles

(1, 29, 3, 36, 14, 41, 5, 37, 15, 31, 2, 28),

(1, 30, 5, 41, 22, 51, 27, 52, 21, 40, 8, 29),

and the 14-cycle

(3, 33, 15, 37, 18, 53, 25, 51, 22, 54, 26, 49, 16, 36),

while those of the non-orientable embedding come from the orbits of S containing the
8-cycles

(1, 28, 2, 31, 15, 33, 3, 29), (3, 33, 10, 46, 23, 49, 16, 36),

the 12-cycles

(5, 37, 18, 50, 19, 38, 12, 45, 26, 54, 22, 41),

(10, 48, 21, 52, 27, 51, 22, 54, 20, 50, 19, 46),

and the 14-cycle
(1, 29, 8, 42, 11, 34, 12, 38, 6, 31, 15, 37, 5, 30).



20 Ars Math. Contemp. 17 (2019) 1–35

The above orientable embedding is reflexible, since the 12-cycle

(1, 29, 3, 36, 14, 41, 5, 37, 15, 31, 2, 28)

is inverted by conjugation by the first generator of S.

Thus we have the following improvement of what was found in [30].

Theorem 4.2. The minimum orientable genus of the Gray graph is 7, attainable by a
reflexible embedding with 15 faces, of which six have length 8, six have length 12, and
three have length 14, and with dihedral automorphism group of order 6. The minimum
non-orientable genus of the Gray graph is 13, attainable by an embedding with 16 faces,
in which nine have length 8, four have length 12, and three have length 14, and with the
same automorphism group of order 6 as in the orientable case above.

Example 4.3. The Ljubljana graph.

This is the third smallest semi-symmetric cubic graph. It is believed to have been first
found by R. M. Foster in the 1970s, and first mentioned in [3]. It was later rediscovered
in [5], as well as in the computations that produced the list of all small semi-symmetric
3-valent graphs published in [8]. It is bipartite with order 112, diameter 8 and girth 10, and
has soluble automorphism group of order 168. Other properties of this graph are described
in [7].

The upper bound on the number of faces of any embedding given by Lemma 3.1 is
b336/10c = 33, but we can reduce this to 32 using our independence number approach.

If we take C as the set of all unoriented 10-cycles in the graph (of which there are 168),
then the auxiliary graphXC has independence number 24, and so F10 ≤ 24. Next, since the
graph is bipartite, every other face has length 12 or more, and so counting incident edge-
face pairs gives 336 = 2|E| ≥ 10F10 + 12(|F | −F10) = 12|F | − 2F10 ≥ 12|F | − 48, and
it follows that |F | ≤ (336 + 48)/12 = 384/12 = 32. Also if there are exactly 32 faces,
with 24 of length 10, then the inequality becomes an equality, and then the other eight faces
must all have length 12.

Our subgroup orbit method provides an orientable embedding with exactly 32 faces,
and automorphism group of order 24, isomorphic toA4×C2. In particular, this embedding
has minimum orientable genus.

With a suitable labelling of the vertices, the automorphism group S can be generated
by the elements of orders 2 and 3 inducing the permutations

(1, 39) (2, 56) (3, 52) (4, 45) (5, 42) (6, 34) (7, 15) (8, 48) (9, 51) (10, 30) (11, 14)

(12, 46) (13, 33) (16, 43) (17, 47) (18, 54) (19, 31) (20, 24) (21, 44) (22, 41)

(23, 29) (25, 50) (26, 28) (27, 40) (32, 49) (35, 38) (36, 55) (37, 53) (57, 108)

(58, 83) (59, 89) (60, 110) (61, 112) (62, 104) (63, 100) (64, 106) (65, 75) (66, 71)

(67, 78) (68, 86) (69, 94) (70, 95) (72, 87) (73, 93) (74, 99) (76, 88) (77, 111)

(79, 82) (80, 102) (81, 109) (84, 98) (85, 101) (90, 105) (91, 107) (92, 96) (97, 103)
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and

(1, 50, 36) (2, 26, 13) (3, 18, 17) (4, 38, 37) (5, 21, 41) (6, 45, 46) (7, 19, 49)

(8, 10, 27) (9, 35, 31) (11, 51, 12) (14, 32, 20) (15, 53, 23) (16, 39, 55)

(22, 30, 56) (24, 34, 29) (28, 54, 44) (33, 40, 52) (42, 47, 48) (57, 103, 81)

(58, 85, 90) (59, 93, 80) (60, 75, 88) (61, 74, 64) (62, 91, 68) (63, 82, 77)

(65, 107, 92) (66, 96, 95) (67, 108, 102) (70, 100, 110) (71, 86, 111) (72, 78, 98)

(73, 97, 101) (76, 79, 104) (83, 109, 84) (87, 89, 105) (94, 99, 112),

and then the 32 faces of the orientable embedding come from the orbits of S containing the
10-cycle

(1, 57, 2, 61, 18, 91, 35, 79, 11, 59)

and the 12-cycle
(2, 57, 4, 63, 10, 78, 34, 95, 41, 80, 12, 60).

Also the first of the two generators above reverses orientation, so this embedding is reflex-
ible.

Next, by applying a ‘twist’ to a single edge that is common to the boundary of two
distinct faces, we can merge those two faces into one, and thereby obtain a non-orientable
embedding with 31 faces (with F10 = 22, F12 = 8 and F20 = 1, or F10 = 23, F12 = 7
and F22 = 1, or F10 = 24, F12 = 6 and F24 = 1). In all cases, the embedding has trivial
automorphism group, or in other words, is asymmetric.

It turns out that all of the latter embeddings have minimum non-orientable genus, be-
cause there is just one embedding with 32 faces, namely the orientable one described above.
To see this, we can use our independence number approach a slightly different way.

First, an easy MAGMA computation shows that the set C of all 168 cycles of length
10 in the Ljubljana graph forms a single orbit under the action of its automorphism group.
Now take any one of these 10-cycles as a representative of C, say C, and let I be the set of
all independent 24-sets in the auxiliary graph XC that contain C.

Next, partition the remaining 167 cycles from C into three subsets: forgettable 10-
cycles, which lie in no 24-set in I, standard 10-cycles, which lie in exactly one set in I,
and special 10-cycles, which lie in more than one set in I. An easy computation shows that
there are 82 forgettable 10-cycles, plus 63 standard 10-cycles, and just 167−(82+63) = 22
special 10-cycles. The forgettable 10-cycles can be ignored, as they cannot bound any face
in a 32-face embedding. and so we need only deal with the standard and special 10-cycles.

We do this by considering the ways in which a 2-subset of C can be extended to an
independent 24-set in the auxiliary graph XC . Note that every independent 24-set in I
must contain a standard 10-cycleD, since there are only 22 special 10-cycles. Furthermore,
there is just one set 24-set in I containing a given standard 10-cycle D, and hence just one
independent 24-set containing {C,D}. It follows that we can find all members of I by
letting D run through the set of 63 standard 10-cycles, and for each one, determining the
largest independent subset of the induced subgraph of XC on the set of 10-cycles in C that
are independent of C and D. When this subset has size 22, its union with {C,D} is a
member of I, and conversely, every member of I can be found in this way.

In fact, by a MAGMA computation we find that the set I has only five members, with
each standard 10-cycle lying on just one of them, as follows:

• one containing 3 standard 10-cycles and 20 special 10-cycles,
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• one containing 11 standard 10-cycles and 12 special 10-cycles,

• one containing 12 standard 10-cycles and 11 special 10-cycles,

• one containing 18 standard 10-cycles and 5 special 10-cycles, and

• one containing 19 standard 10-cycles and 4 special 10-cycles.

A further MAGMA computation shows that the first one gives rise to our known orientable
embedding of the Ljubljana graph (with 32 faces), while the other four are mutually equiv-
alent under the action of the full automorphism group of the graph, and give rise to em-
beddings with fewer than 31 faces. Further details are available if necessary from the first
author on request.

In particular, there is just one embedding of the Ljubljana graph with 32 faces, namely
the orientable embedding we described earlier, and therefore every non-orientable embed-
ding has at most 31 faces, and |F | = 31 gives the minimum non-orientable genus.

Hence we have answered the final question from [30], by proving the following.

Theorem 4.4. The minimum orientable genus of the Ljubljana graph is 13, attainable by
a reflexible embedding with 32 faces, of which 24 have length 10 and eight have length
12, and with automorphism group of order 24 isomorphic to A4 × C2. The minimum non-
orientable genus of the Ljubljana graph is 27, attainable by an embedding with 31 faces,
and trivial automorphism group.

5 Use of integer linear programming
5.1 Background and description

Our independence number approach can be regarded as a constraint satisfaction problem
on a subset of the cycles of the graph, in the sense that it finds the maximum number of
cycles from the given set C that can be considered as bounding cycles for the faces of
some embedding. This approach can also be modelled as an integer linear programming
(ILP) problem, by using variables xC for cycles C ∈ C, with xC = 1 if C is included
as a bounding cycle, or 0 if not, and then maximising

∑
C∈C xC subject to appropriate

constraints.
This ILP variant is related to the successful use of the Kramer-Mesner method in the

search for block designs, as shown in [28] for example. Incidentally, ILP has been used also
to find planar embeddings of graphs [33], and drawings with minimum crossing number
in the plane [6]. Also at about the same time as we were using ILP for graph embeddings
and beginning to write up this work, another method using ILP was developed by Beyer,
Chimani, Hedtke and Kotrbčı́k [1], but the latter method differs from our one, and we
consider our method (and its variants) to be simpler.

In fact we developed four different ILP methods. The first two are particularly easy to
describe, and are used to provide lower bounds on the minimum genus of a graph. The
other two are modifications of the first two, and are used to construct actual embeddings of
a graph in a surface.

In all of them, we will assume that the given connected graph X has no vertices of
degree 1 or 2, and that X is is bridgeless (or in other words, 2-edge-connected), so that in
any embedding of X , every edge lies in two different faces. Also we use the term 2-arc for
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an ordered triple (u, v, w) of vertices such that u and w are neighbours of v in X , and the
term 2-path for the same triple when the order of u and w is unimportant.

We now describe our first ILP method, for producing helpful information about the
faces of embeddings of a given graph X , whether orientable or not. For this, we let Ce be
the set of all cycles in the set C containing a given edge e, and Cp be the set of all cycles in
C containing a given 2-arc p = (u, v, w) or its reverse (w, v, u).

Step 1. Choose a suitable set C of unoriented cycles of interest in the given graph X , and
define a variable xC for each cycle C ∈ C, with xC to take the value 1 if C is
included as a bounding cycle of some face of the embedding, or 0 if not.

Step 2. Define the objective function as an linear combination of the variables xC with
appropriate integer coefficients.

Step 3. Set up the constraints as follows:

• xC ∈ {0, 1} for all C ∈ C,

•
∑
C ∈Ce

xC ≤ 2 for every edge e of X , and

•
∑
C ∈Cp

xC ≤ 1 for every 2-path p in X .

Step 4. Find the maximum value of the objective function subject to the given constraints.

This gives an upper bound on the number of faces that can be bounded by the cycles
in C in any embedding. For example, if the objective function is the sum

∑
C ∈C xC then

the algorithm will search for the maximum number of cycles in the graph satisfying the
constraints. Since the faces of any embedding must satisfy these constraints, this gives
a simple computational method for bounding the number of faces in an embedding from
above. Note that the objective function does not need to be the simple sum

∑
C ∈C xC ;

indeed in the first example below, we take it as a non-trivial weighted combination of the
variables xC for the cycles of interest in C. Also the bound obtained might be less than the
number of faces in a minimum genus embedding, for example when we are interested in
what is possible for a partial embedding.

Our second ILP method is a modification of the first one, for orientable embeddings
only, and the same comments as above apply to it. Steps 1, 2 and 4 are the same, except
that C is taken as a set of oriented cycles of interest, and Step 3 is similar to the one above,
but we let Ca be the set of all oriented cycles in the set C containing a given arc a = (v, w),
and then set up the constraints as

• xC ∈ {0, 1} for all C ∈ C,

•
∑
C ∈Ca

xC ≤ 1 for every arc a in X , and

•
∑
C ∈Cp

xC ≤ 1 for every 2-path p in X .
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Note that these two methods are designed to help provide good upper bounds on the
number of faces of an embedding, but are not designed to actually find a minimum genus
embedding. Some times they do find one, but as with the independence number approach,
it can happen that an optimum solution to the ILP problem does not produce even a par-
tial embedding, because the constraints are necessary but not sufficient. Nevertheless the
methods can be very helpful, as the examples in the next subsection will show.

Our other two ILP methods go further, by requiring that cycles are chosen in a way
that actually gives an embedding. These methods can be obtained from the first two by
modifying the constraints, as we explain below.

First, let S{v,k} be the set of subsets of size k of the neighbourhood X(v) of a vertex v,
and for any such subset S ∈ S{v,k}, let CS be the set of cycles in C that contain a 2-arc of
the form (a, v, b) such that a, b ∈ S.

We now alter the constraints in our first method (which does not distinguish between
non-orientable and orientable embeddings), to the following:

• xC ∈ {0, 1} for all C ∈ C,

•
∑
C ∈Ce

xC = 2 for every edge e of X , and

•
∑
C ∈CS

xC < k for every S ∈ S{v,k}, for every v ∈ V (X) and 2 ≤ k ≤
⌊

deg(v)

2

⌋
.

Similarly, we alter the constraints in our second method (for finding orientable embeddings
only), by considering arcs instead of edges in the second constraint. The following lemma
explains why these modifications help us find minimum genus embeddings.

Lemma 5.1. In the third and fourth ILP methods presented above, a feasible region con-
sists of the set of all embeddings and all orientable embeddings of X , respectively, and
every feasible solution that maximises the objective function

∑
C ∈C xC gives a minimum

genus embedding of X .

Proof. The constraint
∑
C ∈Ce xC = 2 ensures that every edge is used in the embedding

exactly twice. In particular, every edge lies in two faces, and so every vertex v occurs
deg(v) times among the set of faces in a feasible solution. Next, the constraints of the form∑
C ∈CS xC < k ensure that the faces around each vertex can be arranged into a rotation

system. For if that were not possible, then the faces around some vertex v would partition
into rotation sub-systems, and at least one of those sub-systems would consist of k faces
for some k ≤ bdeg(v)2 c, but the relevant constraint makes that impossible.

An arbitrary embedding of X is given by selection of cycles with the property that
each edge occurs twice, each vertex occurs deg(v) times, and there is a rotation system
around each vertex. Hence the feasible region consists of all possible embeddings. More-
over, replacing the constraint on edges with the corresponding constraint on arcs is exactly
what’s needed to reduce the feasible region to orientable embeddings. In particular, in the
orientable case only one orientation can be chosen for each cycle.

Note here that it is also possible to discard the objective function, and instead calculate
the feasible region after adding a further constraint of the form

∑
C ∈C xC = F , where F is

the expected number of faces. Similarly, we may separate this constraint into a number of
other constraints specifying the number of cycles that can bound faces of particular lengths.
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5.2 Some applications

Example 5.2. The Folkman graph.
This is the smallest semi-symmetric finite graph. It is bipartite of order 20, with valency,

diameter and girth 4, and its automorphism group has order 3840. An upper bound on the
number of faces of any embedding is 2|E|/4 = 80/4 = 20. An easy computation shows
there are 30 cycles of length 4, and 80 cycles of length 6.

Using our independence number approach with C taken as the set of all 4-cycles, we
find that any embedding (whether orientable or non-orientable) has at most 10 faces of
length 4. Then taking C as the set of all 4-cycles and all 6-cycles, the independence number
approach does not help, because the bound it gives is too large. (A reason for this is that it
can allow three cycles that are pairwise independent in the auxiliary graph XC but cannot
occur simultaneously as bounding cycles of faces of an embedding.)

On the other hand, the ILP method works very well, and tells us easily that any em-
bedding has at most 15 faces of length up to 6. Together these 15 faces would use up at
least (10 · 4 + 5 · 6)/2 = 35 of the 40 edges, and it then follows that the number of faces
is at most 16. But also our subgroup orbit method finds many embeddings with exactly 16
faces, which are therefore of minimum genus.

The most symmetric non-orientable embeddings of minimum genus have ten faces of
length 4, five of length 6 and one of length 10, with a dihedral automorphism group of order
10. With a suitable labelling of the vertices, one such group S is generated by the elements
that induce the permutations

(2, 3) (4, 5) (7, 8) (9, 10) (11, 19) (12, 16) (14, 18) (17, 20)

and
(1, 4, 2, 3, 5) (6, 9, 7, 8, 10) (11, 17, 13, 20, 19) (12, 14, 15, 18, 16),

and then the 16 faces come from the orbits of S containing the 4-cycle

(1, 11, 6, 14),

the 6-cycle
(1, 11, 9, 15, 10, 19)

and the 10-cycle
(1, 14, 3, 16, 4, 15, 5, 12, 2, 18).

The most symmetric orientable embeddings of minimum genus have ten faces of length
4, four of length 6 and two of length 8, with elementary abelian automorphism group of
order 8. With the same vertex-labelling as above, one such group S is generated by the
elements inducing the involutions

(1, 6) (2, 7) (3, 8) (4, 9) (5, 10),

(1, 2) (4, 5) (6, 7) (9, 10) (11, 12) (13, 14) (16, 20) (17, 19)

and

(1, 4) (2, 5) (6, 9) (7, 10) (13, 20) (14, 16) (15, 18) (17, 19),
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and then the 16 faces come from the orbits of S containing the 4-cycles

(1, 11, 6, 14), (1, 18, 6, 19), (3, 14, 8, 16),

the 6-cycle
(1, 14, 3, 13, 2, 18)

and the 8-cycle
(1, 19, 10, 12, 7, 17, 4, 11).

Also the three given generators of S all reverse orientation, so this embedding is reflexible.
Accordingly, we have the following theorem.

Theorem 5.3. The minimum orientable genus of the Folkman graph is 3, attainable by a
reflexible embedding with 16 faces, of which ten have length 4, four have length 6, and two
have length 8, and with elementary abelian automorphism group of order 8. The minimum
non-orientable genus of the Folkman graph is 6, attainable by an embedding with 16 faces,
in which ten have length 4, five have length 6, and one has length 10, and with dihedral
automorphism group of order 10.

Example 5.4. The Doyle-Holt graph.
The Doyle-Holt graph is the smallest finite graph that is half-arc-transitive, meaning

that it is vertex- and edge-transitive but not arc-transitive. It was discovered independently
by Doyle (and mentioned in his Harvard thesis in 1976) and Holt in 1981 (see [25]). This
graph has order 27, valency 4, diameter 3 and girth 5, and its automorphism group has
order 54. It is also isomorphic to a spanning subgraph of the Menger graph of the dual of
the Gray configuration, which we deal with in the next example.

An upper bound on the number of faces of any embedding is b108/5c = 21, and an
easy computation shows there are 54 cycles of length 5, and 63 cycles of length 6. Our
independence number method gives 27 as an upper bound on the number of faces of length
5, but our ILP method gives an upper bound of 18. Also if an embedding has 21 faces, with
F` of length greater than 5, we have 108 = 2|E| ≥ 5F5 + 6F` = 5(F5 + F`) + F` =
105 + F`, and so F` ≤ 3, and it follows that (F5, F`) = (18, 3).

Our orbit method gives such a non-orientable embedding with 21 faces, and automor-
phism group isomorphic to D3 × C3, of order 18. With a suitable labelling of the vertices,
this group can be generated by the elements inducing the permutations

(1, 2, 3) (4, 5, 6) (7, 8, 9) (10, 11, 12) (13, 14, 15)

(16, 17, 18) (19, 20, 21) (22, 23, 24) (25, 26, 27),

(2, 3) (5, 6) (8, 9) (10, 21) (11, 20) (12, 19) (13, 24)

(14, 23) (15, 22) (16, 27) (17, 26) (18, 25)

and

(1, 4, 7) (2, 5, 8) (3, 6, 9) (10, 13, 16) (11, 14, 17)

(12, 15, 18) (19, 22, 25) (20, 23, 26) (21, 24, 27),

and then the 21 faces of the embedding come from the orbits containing the 5-cycle

(1, 13, 8, 19, 18)
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and the 6-cycle
(10, 23, 16, 20, 13, 26).

For orientable embeddings on the other hand, the second version of our ILP method
(applied to oriented cycles of length 5) shows that the number of faces of length 5 is at
most 14. Similarly, the oriented version of our independence number method shows this
number is at most 15. In particular, it follows that an orientable embedding cannot have 21
faces (and characteristic −6), so the total number of its faces is no more than 19.

Using our orbit method, we found there exists an orientable embedding with 19 faces,
indeed with F5 = 14, F6 = 1 and F8 = 4. With the same vertex-labelling as previously, the
automorphism group of this embedding is the group of order 2 generated by the involutory
automorphism given for the non-orientable embedding above, and then the faces come from
the seven orbits of containing the 5-cycles

(1, 13, 20, 5, 25), (1, 18, 19, 8, 13), (2, 14, 21, 7, 22),

(2, 16, 20, 9, 14), (2, 22, 18, 6, 26), (2, 26, 10, 23, 16),

(4, 16, 23, 8, 19),

the 6-cycle
(12, 25, 15, 19, 18, 22),

and the orbits of the 8-cycles

(4, 12, 22, 7, 10, 5, 20, 16) and (5, 10, 26, 13, 8, 11, 24, 17).

Also the given generator preserves the face bounded by the 6-cycle

(12, 25, 15, 19, 18, 22)

as well as its orientation, and so this embedding is chiral.
In particular, we have found the minimum orientable genus of the Doyle-Holt graph,

thereby answering a question posed in [30] and taking it further, as follows:

Theorem 5.5. The minimum orientable genus of the Doyle-Holt graph is 5, attainable by a
chiral embedding with 19 faces, of which 14 have length 5, one has length 6, and four have
length 8, and automorphism group of order 2. The minimum non-orientable genus of the
Doyle-Holt graph is 8, attainable by an embedding with 21 faces, of which 18 have length
5 and three have length 6, and automorphism group of order 18 isomorphic to D3 × C3.

Example 5.6. The dual Menger graph of the Gray configuration.
The Gray configuration is a configuration of 27 points and 27 lines, which can be re-

alised in 3-dimensional Euclidean space via a 3 × 3 × 3 grid, with the lines as pairwise
intersections of 9 planes, partitioned into three triples, each being parallel to one of the
three planes with equations x = 0, y = 0 and z = 0.

The Gray graph is the Levi graph (or incidence graph) of this configuration, namely
the bipartite graph whose vertices are the points and lines and whose edges represent inci-
dence (between points and lines). Also the Menger graph of the Gray configuration, which
indicates collinearity of points, is isomorphic to the Cartesian product C3 �C3 �C3. On
the other hand, the Menger graph of the dual of the Gray configuration, which indicates
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copunctuality of lines, is another graph of order 27, valency 6, diameter 3 and girth 3, with
automorphism group of order 1296. It was studied in some detail in [30].

Let X be this dual Menger graph. As with C3 �C3 �C3, an upper bound on the
number of faces of an embedding of X is 162/3 = 54, but that bound is far from sharp.
By inspection (or an easy application of our ILP method) there can be at most 27 faces of
length 3, and from this it follows that the number of faces is bounded above by 47. Better
still, if we take Cj as the set of all cycles of length j for j ∈ {3, 4}, and then C = C3 ∪ C4,
our ILP method gives a maximum value for the objective function 2

∑
C ∈C3 +

∑
C ∈C4

as 66, and so 2F3 + F4 ≤ 66. Hence if F` denotes the number of faces of length greater
than 4, we have

162 = 2|E| ≥ 3F3 + 4F4 + 5F` = 5(F3 + F4 + F`)− (2F3 + F4) ≥ 5|F | − 66,

which gives |F | ≤ b(162 + 66)/5c = 45.
Our subgroup orbit method provides a non-orientable embedding with 45 faces, such

that (F3, F4) = (18, 27). Its automorphism group has order 108, and is isomorphic to
a semi-direct product of the non-abelian group of order 27 and exponent 3 by the Klein
4-group V4. With a suitable labelling of the vertices, this group can be generated by the
elements inducing the permutations

(1, 25) (2, 11) (4, 22) (5, 24) (6, 9) (7, 27) (8, 17) (10, 26) (12, 20)

(13, 21) (14, 15) (16, 19)

and

(1, 2, 15) (3, 14, 4, 5, 9, 10) (6, 19, 7, 11, 18, 8) (12, 13, 24, 26, 17, 16)

(20, 23, 21, 27, 25, 22),

and then the 18 + 27 = 45 faces of the embedding come from the orbits of the 3-cycle
(1, 4, 8) and 4-cycle (1, 2, 3, 7). The characteristic of this embedding is

χ = 27− 81 + 45 = −9.

Next, for orientable embeddings, there can be at most 44 faces (in order to have even
characteristic), and our orbit method produces one with (F3, F4, F6) = (26, 12, 6). With
the same vertex-labelling as previously, the automorphism group of this one is cyclic of
order 6, generated by the second of the two automorphisms given for the non-orientable
embedding above. The 44 faces come from the eight orbits containing the five 3-cycles

(1, 4, 8), (3, 8, 17), (3, 27, 7), (12, 23, 20), (12, 24, 17),

the two 4-cycles

(1, 8, 3, 2), (3, 17, 25, 27),

and the single 6-cycle
(4, 18, 26, 16, 20, 8).

Also the given generator reverses orientation, and so this embedding is reflexible.
In particular, we have found the minimum orientable genus of this graph, thereby an-

swering a question posed in [30], and taking it further, as follows:
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Theorem 5.7. The minimum orientable genus of the dual Menger graph of the Gray con-
figuration is 6, attainable by a reflexible embedding with 44 faces, of which 26 have length
3, and 12 have length 4, and 6 have length 6, with a cyclic automorphism group of order 6.
The minimum non-orientable genus of the same graph is 11, attainable by an embedding
with 45 faces, of which 18 have length 3, and 27 have length 4, and automorphism group
of order 108 isomorphic to a semi-direct product of the non-abelian group of order 27 and
exponent 3 by the Klein 4-group.

Also in [30] it was noted that if H and D are the Doyle-Holt graph and the Menger
graph of the dual Gray configuration, respectively, then 4 ≤ γ(H) ≤ γ(D) ≤ 7. We have
now shown that γ(H) = 5 and γ(D) = 6, so that in fact 4 < γ(H) < γ(D) < 7.

Moreover, it was shown in [30, Proposition 1] that if L is the Levi graph and M is the
Menger graph of any (v3) configuration, then γ(M) ≤ γ(L), and near the end of [30] the
authors asked about finding such a configuration for which that inequality in strict. Our
work provides an answer to this question as well, because the Levi graph of the dual of
the Gray configuration is the Gray graph (giving γ(L) = 7), while its Menger graph is the
above graph D, with γ(D) = 6 < 7. Hence we can strengthen Proposition 1 of [30] to the
following:

Theorem 5.8. If L is the Levi graph and M is the Menger graph of any (v3) configu-
ration, then γ(M) ≤ γ(L), and this inequality is strict for the dual of the Gray (273)
configuration.

Example 5.9. The second smallest semi-symmetric cubic graph.
This graph is also the smallest ‘Iofinova-Ivanov graph’, constructed in [26], and so we

will call it II 1. It was the most challenging of all the examples we considered in this work.
It is a bipartite graph of order 110, diameter 7 and girth 10, with automorphism group of
order 1320, isomorphic to PGL(2, 11); see [8] for more details.

The naive upper bound on the number of faces of any embedding of II 1 is 330/10 = 33,
but again this is not sharp. Using our ILP approach on cycles of length 10 and 12, it can
be shown that 2F10 + F12 is at most 48, and hence if F` is the number of faces of length
greater than 12, we have

330 = 2|E| ≥ 10F10 + 12F12 + 14F`

= 14(F10 + F12 + F`)− 2(2F10 + F12)

≥ 14|F | − 96,

and therefore |F | ≤ b426/14c = 30.
Now this improved upper bound is sharp, because our orbit method produces a non-

orientable embedding with exactly 30 faces, and F10 = F12 = 15. With a suitable labelling
of vertices, the automorphism group S of this embedding is cyclic of order 3, generated by
the automorphism inducing the permutation

(1, 33, 46) (2, 52, 18) (3, 10, 24) (4, 17, 13) (5, 15, 41) (6, 53, 32) (7, 31, 27)

(8, 26, 42) (9, 47, 22) (11, 38, 51) (12, 44, 16) (14, 34, 28) (19, 36, 43) (20, 40, 54)

(21, 45, 30) (23, 48, 35) (25, 39, 29) (49, 55, 50) (56, 91, 84) (57, 74, 93)

(58, 80, 103) (59, 110, 65) (60, 101, 94) (62, 86, 77) (64, 82, 92) (66, 102, 104)

(67, 95, 97) (68, 72, 99) (69, 73, 105) (70, 79, 78) (71, 90, 100) (75, 85, 106)

(76, 108, 88) (83, 87, 107) (89, 96, 98),
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and then the faces of the embedding come from the S-orbits of the five 10-cycles

(1, 56, 2, 59, 6, 66, 19, 68, 8, 57),

(2, 56, 4, 62, 11, 83, 29, 78, 14, 60),

(3, 64, 23, 96, 45, 73, 26, 74, 10, 61),

(5, 70, 25, 76, 12, 82, 48, 100, 32, 65),

(6, 71, 20, 88, 29, 83, 43, 104, 37, 66),

and the five 12-cycles

(1, 56, 4, 63, 13, 77, 16, 88, 20, 67, 7, 58),

(1, 57, 3, 64, 16, 77, 51, 106, 34, 70, 5, 58),

(2, 59, 15, 80, 31, 99, 42, 105, 47, 81, 9, 60),

(7, 67, 30, 98, 49, 109, 55, 106, 51, 107, 36, 72) and
(9, 60, 14, 85, 49, 98, 48, 100, 54, 97, 45, 73).

The characteristic is χ = 110− 165 + 30 = −25.
Our subgroup orbit method also produces an orientable embedding with 27 faces, in-

deed with (F10, F12, F14) = (6, 12, 9), from the same cyclic subgroup S of order 3. In
particular, this embedding is chiral, because S has odd order. Its faces come from the nine
S-orbits containing the two 10-cycles

(1, 56, 2, 60, 9, 73, 26, 72, 7, 58),

(11, 75, 50, 96, 23, 64, 16, 88, 29, 83),

the four 12-cycles

(1, 57, 8, 69, 21, 95, 40, 76, 12, 62, 4, 56),

(1, 58, 5, 70, 34, 106, 51, 77, 16, 64, 3, 57),

(2, 56, 4, 63, 17, 86, 38, 87, 19, 66, 6, 59),

(5, 65, 32, 100, 54, 97, 27, 68, 19, 87, 25, 70),

and the three 14-cycles

(2, 59, 15, 80, 31, 95, 21, 89, 55, 109, 49, 85, 14, 60),

(3, 64, 23, 90, 53, 102, 37, 104, 43, 99, 42, 93, 24, 61) and
(9, 60, 14, 78, 29, 88, 20, 71, 35, 89, 21, 69, 22, 81).

In turns out that this is an orientable embedding of minimum genus, because there exist
none with 29 faces (and characteristic 110− 165 + 29 = −26). We were not able to prove
that by using the standard forms of our independence number and ILP methods, because
the size and girth of the graph create too many cycles for consideration as face boundaries.
But we were still able to prove it by a slightly different approach, using restricted forms of
those methods, and we now give a brief outline of the proof.

Assume there exists an orientable embedding with 29 faces, and again let Fk denote
the number of faces of length k. Then an easy computation of weighted sums shows there
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are 435 possibilities for the sequence (F10, F12, F14, F16, F18, . . .), with the integer F10

ranging from 9 to 23. These possibilities can be dealt with in groups or individually, with
the aim of eliminating all of them.

For example, suppose F12 ≥ 1, and let C be the set of all directed 10- and 12-cycles in
II 1. Now let C and D be any directed 10-cycle and 12-cycle that are independent in the
auxiliary graphXC , and let C(CD) be the subset of C consisting of all directed 10-cycles that
are independent of both C andD inXC . We then compute the independence number of the
auxiliary graph XC(CD)

for all such pairs (C,D), up to equivalence in the automorphism
group of the graph. This computation shows that the maximum of these independence
numbers is 21, from which it follows that F10 ≤ 22 when F12 ≥ 1. This eliminates 70
possibilities for the sequence (F10, F12, F14, F16, F18, . . .).

Similarly, another 57 possibilities can be eliminated in the case where F12 ≥ 2, for in
that case the corresponding independence number computation shows that F10 ≤ 21, and
another 71 can be eliminated when F12 ≥ 4, for in that case F10 ≤ 19, and then another
30 when F12 ≥ 5, and another 42 when F14 ≥ 1 (with no assumption on F12). Other cases
that help eliminate possibilities include those where both F14 ≥ 1 and F16 ≥ 1, and so on.

This kind of approach reduced the problem to just six possibilities, namely those for
which

(F10, F12, F14, F16, F18) = (18, 6, 1, 4, 0), (18, 6, 2, 2, 1), (17, 7, 2, 3, 0),

(19, 4, 2, 4, 0), (16, 6, 7, 0, 0) and (20, 3, 1, 5, 0),

all but one of which could be eliminated by similar means. For some of them, we used the
ILP method in place of the independence method, when the independence method gave too
large a number.

The trickiest case was the last of the above six possibilities, namely the one where
(F10, F12, F14, F16) = (20, 3, 1, 5). For this, we took C be the set of all directed 10-, 12-,
14- and 16-cycles in II 1, and ran through all possibilities for a quintuple Q of independent
vertices in the auxiliary graph XC , consisting of three 12-cycles, one 14-cycle and one 16-
cycle, and for each one, determined the maximum size of a set T of 10-cycles for which
Q ∪ T is an independent set in XC . The maximum size found was 18, indicating that
if F12 = 3 and F14 = 1 and F16 ≥ 1, then F10 ≤ 18. In particular, this shows that
(F10, F12, F14, F16) cannot be (20, 3, 1, 5).

Hence the number of faces of an orientable embedding of II 1 cannot be 29, and we
have an answer to the penultimate open question in [30]. We state this the first part of the
following, to complete the paper:

Theorem 5.10. The minimum orientable genus of the second smallest semi-symmetric cu-
bic graph II 1 is 15, attainable by a chiral embedding with 27 faces, of which six have
length 10, twelve have length 12, and nine have length 14, and with cyclic automorphism
group of order 3. The minimum non-orientable genus of the same graph is 27, attainable
by an embedding with 30 faces, of which 15 have length 10, and 15 have length 12, and
with cyclic automorphism group of order 3 (acting in the same way on the graph).

6 Final remarks
In this paper we have presented four new methods that are helpful for determining the
minimum genus of embeddings of a graph on a surface. Also we have shown in some
detail how counting arguments can be of great use in solving this kind of problem.
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Our first one (the subgroup orbit method) considers possibilities for a group of au-
tomorphisms of the embedding, of suitable order, thereby reducing the search space. A
suitable set of candidate faces is formed from closed walks of appropriate lengths in the
graph, and then the faces are chosen from orbits of the chosen group on those walks.

The second one (the independence number method) uses the independence number of
an auxiliary graph to bound the maximum number of faces of given lengths. This method
can be very useful when taken in combination with other approaches. In particular, it can
be used to determine that no embedding of a given graph can have certain numbers of faces
of given lengths, even when counting arguments do not help.

Our third and the fourth methods translate the problem of choosing faces from a set
of candidate closed walks into a linear programming problem. The third method can help
find upper bounds on the number of faces of particular lengths that can be used in an
embedding, while the fourth method aims to find an actual embedding of the graph with
minimum genus. This is based on an approach that translates the conditions for a set of
closed walks of the graph to give an embedding into to a set of linear constraints and an
objective function for minimising the genus.

All of these methods use a set of closed walks of the graph (for bounding candidate
faces). Since the set of all closed walks of up to given length in the graph can be enormous,
it is best to use these methods in combination with counting arguments, to limit (or rule out)
the lengths of candidate faces. This is often easily done by hand, but can also be automated.
Also our methods can be used more generally to find embeddings of a graph with given face
lengths, and are not necessarily restricted to finding minimum genus embeddings.

Our linear programming method for calculating an explicit embedding provides a rel-
atively fast way of finding a minimum genus embedding of a graph, without considering
symmetries. It is possible to combine this with prescription of symmetries (indeed, this is a
standard trick in linear programming), but the obvious way of doing that involves reducing
the problem to finding an embedding of a quotient (voltage) graph. Also it can be difficult
to prescribe the lengths of faces of the latter embedding, as seen in Subsection 3.4). The
subgroup orbit method is better suited in many cases, because it provides complete control
over the lengths of the faces of the cover. Indeed, this has proven very successful in the
cases of vertex-, edge- or arc-transitive graphs.

Finally, we have demonstrated how to use these methods with several examples, in
which we determined the minimum genus of embeddings of several well-known inter-
esting graphs, either for the first time, or in a different (and sometimes better) way than
achieved previously. We have stored details of these minimum genus embeddings at the
AMC website associated with this article.
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Abstract

For any graph G = (V,E) with maximum degree ∆ and without isolated edges, and a
positive integer r, by χ′Σ,r(G) we denote the r-distant sum distinguishing index of G. This
is the least integer k for which a proper edge colouring c : E → {1, 2, . . . , k} exists such
that

∑
e3u c(e) 6=

∑
e3v c(e) for every pair of distinct vertices u, v at distance at most r in

G. It was conjectured that χ′Σ,r(G) ≤ (1 + o(1))∆r−1 for every r ≥ 3. Thus far it has
been in particular proved that χ′Σ,r(G) ≤ 6∆r−1 if r ≥ 4. Combining probabilistic and
constructive approach, we show that this can be improved to χ′Σ,r(G) ≤ (4 + o(1))∆r−1

if the minimum degree of G equals at least ln8 ∆.

Keywords: Distant sum distinguishing index of a graph, neighbour sum distinguishing index, adjacent
strong chromatic index, distant set distinguishing index.

Math. Subj. Class.: 05C15, 05C78

1 Introduction
Integer edge colourings were initiated in the paper of Chartrend et al. [8], where the graph
invariant irregularity strength, s(G), was introduced as a possible measure of the ‘level of
irregularity’ of a graph G. This referred to the well known phenomenon in graph theory
that there are no irregular graphs, understood as graphs whose all vertices have pairwise
distinct degrees (see also [7] for possible alternative definitions of irregularity in graphs),
except the trivial 1-vertex case. For a given graph G = (V,E), s(G) is defined as the least
k for which one is able to construct an irregular multigraph (defined analogously as in the

∗Financed within the program of the Polish Minister of Science and Higher Education named “Iuventus Plus”
in years 2015-2017, project no. IP2014 038873, and partially supported by the Faculty of Applied Mathematics
AGH UST statutory tasks within subsidy of Ministry of Science and Higher Education.

E-mail address: jakubprz@agh.edu.pl (Jakub Przybyło)

cb This work is licensed under https://creativecommons.org/licenses/by/4.0/



38 Ars Math. Contemp. 17 (2019) 37–49

case of graphs above) of G by multiplying some of its edges – each at most k times. In
terms of integer colourings, the same value is equivalently defined as the least k so that
an edge colouring c : E → {1, 2, . . . , k} exists attributing every vertex v ∈ V a distinct
weighted degree defined as:

dc(v) :=
∑
e3v

c(e).

This we shall also call the sum at v, see e.g. [3, 5, 9, 10, 12, 13, 15, 18, 21, 22, 24, 25, 26] for
a few out of a vastness of results concerning s(G), which also gave rise to a whole discipline
devoted to investigating this and other related problems. One of the most intriguing direct
descendants of the irregularity strength is its local correspondent, where we necessarily
require an inequality dc(u) 6= dc(v) to hold only for adjacent vertices u, v inG. The least k
admitting a colouring c : E → {1, 2, . . . , k} with such a feature we shall denote by s1(G).
In the first paper [19] concerning this the authors conjectured that k = 3 suffices for every
connected graph of order at least 3. This presumption is commonly referred to as the 1–2–3
Conjecture nowadays. This was investigated e.g. in [1, 2, 35]. The best thus far general
result is however the upper bound s1(G) ≤ 5 from [17]. A generalization of this concept,
forming a link between s1(G) and s(G), was introduced in [27]. Let d(u, v) denote the
distance of vertices u, v in G. We shall call u and v, r-neighbours if 1 ≤ d(u, v) ≤ r in
G, where r is a positive integer. For every vertex v in G, the set of its r-neighbours shall
be denoted by Nr(v), and we set dr(v) = |Nr(v)|. The least k so that an edge colouring
c : E → {1, 2, . . . , k} exists with dc(u) 6= dc(v) for every r-neighbours u, v ∈ V in G
is denoted by sr(G) (note it would be justified to set s∞(G) = s(G) in the same spirit),
see e.g. [27] and [30] for a few results concerning this concept, which refers to the known
distant chromatic numbers (see [20] for a survey of this topic in turn).

In this paper we shall investigate a related problem referring to distant chromatic num-
bers. Given a positive integer r and a graph G = (V,E) without isolated edges, the
r-distant sum distinguishing index of G, denoted by χ′Σ,r(G), is the least integer k such
that there exists a proper edge colouring c : E → {1, 2, . . . , k} which sum-distinguishes
r-neighbours in G, i.e. such that dc(u) 6= dc(v) for every u, v ∈ V with 1 ≤ d(u, v) ≤ r.
In [31] the following conjecture, approximating the investigated lower bounds discussed
e.g. in [27, 31], was posed.

Conjecture 1.1 ([31]). For every integer r ≥ 3 and each graph G without isolated edges
of maximum degree ∆, χ′Σ,r(G) ≤ (1 + o(1))∆r−1.

It was also conjectured under the same conditions, that χ′Σ,2(G) ≤ (2 + o(1))∆ [31],
and that χ′Σ(G) = χ′Σ,1(G) ≤ ∆ + 2 for every connected graph G of order at least 3
non-isomorphic to C5 [14]. Thus far for r ≥ 4, the following is known.

Theorem 1.2 ([31]). Let G be a graph without isolated edges and with maximum degree
∆ ≥ 2, and let r ≥ 4. Then χ′Σ,r(G) ≤ 6∆r−1.

Upper bounds of orders conjectured above are also known for r = 2, 3, but with
slightly worse multiplicative constants than in Theorem 1.2 above, see [31], while the
upper bound of the form χ′Σ(G) ≤ (1 + o(1))∆(G) was proved in [29] and [32], see
also [6, 11, 14, 28, 33, 34] for other results concerning the case r = 1. In this paper we
combine probabilistic approach with a special constructive algorithm in order to provide the
following improvements of the best known upper bounds for all r ≥ 4 from Theorem 1.2,
under assumption that the minimum degree of a graph is larger than some poly-logarithmic
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function of the maximum degree. (The value of this function, which seems unavoidable
within our approach, could still be optimized – we did not try to do this for the sake of
clarity of the presentation.)

Theorem 1.3. For every integer r ≥ 4 there exists a constant ∆0 such that for each graph
G with maximum degree ∆ ≥ ∆0 and minimum degree δ ≥ ln8 ∆,

χ′Σ,r(G) < 4∆r−1

(
1 +

3

2 ln ∆

)
+ 384,

hence χ′Σ,r(G) ≤ (4 + o(1))∆r−1 for all graphs with δ ≥ ln8 ∆ and without isolated
edges.

2 Probabilistic tools and preliminary lemmas
The following standard tools of the probabilistic method shall be applied: the Lovász Lo-
cal Lemma, see e.g. [4], the Chernoff Bound, see e.g. [16, Theorem 2.1, page 26] and
Talagrand’s Inequality, see e.g. [23]. Details follow.

Theorem 2.1 (The Local Lemma). Let A1, A2, . . . , An be events in an arbitrary proba-
bility space. Suppose that each event Ai is mutually independent of a set of all the other
events Aj but at most D, and that Pr(Ai) ≤ p for all 1 ≤ i ≤ n. If

ep(D + 1) ≤ 1,

then Pr
(⋂n

i=1Ai
)
> 0.

Theorem 2.2 (Chernoff Bound). For any 0 ≤ t ≤ np,

Pr(BIN(n, p) > np+ t) < e−
t2

3np and Pr(BIN(n, p) < np− t) < e−
t2

2np ≤ e−
t2

3np

where BIN(n, p) is the sum of n independent Bernoulli variables, each equal to 1 with
probability p and 0 otherwise.

Theorem 2.3 (Talagrand’s Inequality). Let X be a non-negative random variable deter-
mined by l independent trials T1, . . . , Tl. Suppose there exist constants c, k > 0 such that
for every set of possible outcomes of the trials, we have:

1. changing the outcome of any one trial can affect X by at most c, and

2. for each s > 0, if X ≥ s then there is a set of at most ks trials whose outcomes
certify that X ≥ s.

Then for any t ≥ 0, we have

Pr(|X −E(X)| > t+ 20c
√
kE(X) + 64c2k) ≤ 4e

− t2

8c2k(E(X)+t) . (2.1)

We note that knowing that E(X) ≤ h we may also apply Talagrand’s Inequality e.g.
to the variable Y = X + h − E(X), with E(Y ) = h to obtain the following counterpart
of (2.1) provided that the assumptions of Theorem 2.3 hold for X:

Pr(X > h+ t+ 20c
√
kh+ 64c2k) ≤ Pr(Y > h+ t+ 20c

√
kh+ 64c2k)

≤ 4e
− t2

8c2k(h+t) .
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Similarly, the Chernoff Bound can be applied e.g. when we know that X is a sum of n ≤ k
random independent Bernoulli variables, each equal to 1 with probability at most q, to
prove that

Pr(X > kq + t) < e−
t2

3kq

(if t ≤ bkcq).
In order to prove our main result we shall need the following observation.

Lemma 2.4. If ∆ is large enough, then for every graph G′ of maximum degree ∆′ ≤ ∆
and with minimum degree δ′ ≥ 1

2 ln5 ∆, there exists a spanning subgraph F ′ of G′ with
1 ≤ dF ′(v) ≤ dG′ (v)

ln3 ∆
for each v ∈ V (G′).

Proof. We assume that ∆ is large enough so that all inequalities within the proof below
hold. Independently for every vertex v ∈ V (G′) choose one of its incident edges, each
with equal probability, and denote the subgraph induced in G′ by the set of all the chosen
edges by F ′. We shall show that with positive probability such F ′ complies with our
requirements. For every v ∈ V (G′) denote by Xv the random variable representing the
number of all edges incident with v and chosen to E(F ′) by any of the neighbours of v
in G′, and note that dF ′(v) ≤ Xv + 1 (as at most one more edge incident with v in G′

might be chosen to E(F ′) by v itself). Note that for any given vertex v ∈ V (G′) and its
neighbour u ∈ NG′(v), the probability that uv was chosen by u equals 1

dG′ (u) ≤
2

ln5 ∆
,

hence

E(Xv) ≤
2dG′(v)

ln5 ∆
≤ dG′(v)

2 ln3 ∆
− 1

2
.

By the Chernoff Bound (with t = dG′ (v)
2 ln3 ∆

− 1
2 ≥

ln2 ∆
5 ) we thus obtain that

Pr(Xv >
dG′(v)

ln3 ∆
− 1) < e−

ln2 ∆
15 <

1

∆3
. (2.2)

As any eventXv >
dG′ (v)
ln3 ∆

−1 is mutually independent of all other eventsXv′ >
dG′ (v

′)
ln3 ∆

−1
with d(v, v′) > 2, i.e. all except at most (∆′)2 ≤ ∆2, by (2.2) and the Lovász Local Lemma
we may conclude that with positive probability for every v ∈ V (G′), Xv ≤ dG′ (v)

ln3 ∆
− 1,

hence dF ′(v) ≤ dG′ (v)
ln3 ∆

. A desired F ′ must thus exist.

We shall also need to guarantee a special ordering of the vertices of a graph G =
(V,E). For any linear ordering of V and a vertex v ∈ V , a neighbour or r-neighbour of
v which precedes it in the ordering shall be called a backward neighbour or r-neighbour,
resp., of v. The remaining ones in turn shall be referred to as forward neighbours or r-
neighbours, resp., of v, while the edges joining v with its forward or backward neighbours
shall be called forward or backward, resp., as well. For any subset S ⊂ V , let also N−(v),
Nr
−(v),NS(v),Nr

S(v) denote the sets of all backward neighbours, backward r-neighbours,
neighbours in S and r-neighbours in S of v, respectively. Set finally d−(v) = |N−(v)|,
dr−(v) = |Nr

−(v)|, dS(v) = |NS(v)|, drS(v) = |Nr
S(v)|, and for any subset of edges

E0 ⊆ E, dE0(v) = |{u ∈ N(v) : uv ∈ E0}|.
The following lemma was proved in [30]. Here we only outline the main ideas behind

its proof – the remaining part of the argument can however be reconstructed by an interested
reader, as in general it is based on a similar combination of the Chernoff Bound and Local
Lemma as the (less complex) proof of Lemma 2.4 above.
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Lemma 2.5 ([30]). There exists a constant ∆′0 such that for every graph G = (V,E)
with maximum degree ∆ ≥ ∆′0 and minimum degree δ ≥ ln8 ∆, there is an assignment
attributing every vertex v ∈ V a distinct real number Xv ∈ [0, 1] such that if we denote:

A =

{
v : Xv <

1

ln2 ∆

}
,

B =

{
v :

1

ln2 ∆
≤ Xv ≤ 1− 1

ln3 ∆

}
,

C =

{
v : Xv > 1− 1

ln3 ∆

}
and order the vertices in V into the sequence v1, v2, . . . , vn consistently with this assign-
ment, i.e. so that vi < vj whenever Xvi < Xvj , then for every vertex v in G:

(i) drA(v) ≤ 2d(v)∆r−1

ln2 ∆
,

(ii) drC(v) ≤ 2d(v)∆r−1

ln3 ∆
,

(iii) 1
2
d(v)
ln2 ∆

≤ dA(v) ≤ 2 d(v)
ln2 ∆

,

(iv) 1
2
d(v)
ln3 ∆

≤ dC(v) ≤ 2 d(v)
ln3 ∆

,

(v) if v ∈ B, then: d−(v) ≥ Xvd(v)−
√
Xvd(v) ln ∆,

(vi) if v ∈ B, then: dr−(v) ≤ Xvd(v)∆r−1 +
√
Xvd(v)∆r−1 ln ∆.

Proof. Independently for every v ∈ V we randomly and uniformly choose a real value
Xv ∈ [0, 1] (i.e., we associate with every v an independent random variable Xv ∼ U [0, 1]
having the uniform distribution on [0, 1]). With probability one, these values are pairwise
distinct for all vertices. It is also straightforward to note that for every vertex v ∈ V ,

E(drA(v)) ≤ d(v)∆r−1

ln2 ∆
,

E(drC(v)) ≤ d(v)∆r−1

ln3 ∆
,

E(dA(v)) =
d(v)

ln2 ∆
,

E(dC(v)) =
d(v)

ln3 ∆
,

E(d−(v)) = Xvd(v),

E(dr−(v)) ≤ Xvd(v)∆r−1.

Then one may prove a concentration of all the corresponding random variables using the
Chernoff Bound, which implies that the probability of a contradiction of each of the events
(i) – (vi) is bounded from above by ∆−3r. As each of the 6 events associated with v is
mutually independent of all other such events associated with vertices at distance exceeding
2r, analogously as in the previous proof, the thesis is implied by the Lovász Local Lemma,
see [30] for details.
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3 Proof of Theorem 1.3
Let r ≥ 4 be a fixed integer and let G = (V,E) be a graph with maximum degree ∆
and with minimum degree δ ≥ ln8 ∆. We shall assume that ∆ is large enough so that all
explicit inequalities below hold and ∆ ≥ ∆′0 (from Lemma 2.5), so we shall not specify its
value (but assume in particular that δ ≥ ln8 ∆ ≥ 2, i.e. there are no isolated edges in G).

Let q be the least integer divisible by 3 · 25 = 96 such that

∆r−1

ln ∆
≤ q < ∆r−1

ln ∆
+ 96, (3.1)

and let Q be the least integer divisible by q (thus also by 96) such that

2∆r−1 +
∆r−1

ln ∆
≤ Q < 2∆r−1 + 2

∆r−1

ln ∆
+ 96. (3.2)

Fix a vertex ordering v1, v2, . . . , vn of V consistent with Lemma 2.5 above. Our goal
shall be to show that χ′Σ,r(G) ≤ 2Q + 2q. For every vertex v ∈ A ∪ B we choose
one edge joining it with a vertex in C and denote this edge by ev – it exists by (iv) (from
Lemma 2.5). A desired colouring shall be constructed via algorithm developed consistently
with the fixed vertex ordering, starting from v1. Prior launching it we first fix an initial
proper edge colouring

c0 : E → {Q+ q −∆, Q+ q −∆ + 1, . . . , Q+ q}

of G, which exists due to the Vizing’s Theorem. Note that this is also a proper edge colour-
ing modulo q (thus also moduloQ), i.e. no two adjacent edges inG have colours congruent
modulo q. We shall require this feature within the process of constructing a desired edge
colouring from c0, admitting only temporary deviations from this rule or replacing q with
Q in the final part of our argument. While modifying our colouring, by c(e) we shall al-
ways mean the contemporary colour of an edge e (hence dc(v) shall stand for the up-to-date
weighted degree of a vertex v), and d(v) shall denote the degree of v in G. In step one of
our modifying procedure we shall analyze v1, in step two we analyze v2, and so on. In
general, in step i we shall be modifying only colours of the edges incident with vi (via
rules specified below). Every vertex vi, the moment it is analyzed (i.e. in step i), shall be
associated with a 2-element set, denoted by Svi , expressing its two admissible sums, and
belonging to the family (of pairwise disjoint sets):

S =
{
{l, l +Q} | l ∈ Z ∧

(
l ≡ 0 (mod 2Q) ∨
l ≡ 1 (mod 2Q) ∨ . . . ∨ l ≡ Q− 1 (mod 2Q)

)}
.

Starting from the end of step i, we shall require dc(vi) ∈ Svi till the end of the construction.
The key restriction concerning the choice of such set is so that

(∗) Svi is disjoint with Svj for every j < i such that vj ∈ Nr(vi).

This shall be strictly required for all vi ∈ A ∪B.
While modifying colours of the edges, we shall obey the following rules. Suppose a

vertex v is being analyzed in a given step. We allow:

(1◦) adding Q or subtracting Q (or doing nothing) from the colour of every backward
edge of v joining v with a neighbour u ∈ A ∪B (so that dc(u) ∈ Su afterwards);
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(2◦) adding 0 or q to the colour of every forward edge of v ∈ A ∪B except ev;

(3◦) switching the colour of ev to any integer in [Q+ q,Q+ 2q] for every v ∈ A ∪B, as
long as the edge colouring obtained remains proper modulo q.

Note that after introducing such changes we shall always have

q −∆ ≤ c(e) ≤ 2Q+ 2q (3.3)

for every e ∈ E (as desired). Special rules shall be applied to edges e with both ends in C.
These however shall be consistent with (3.3), see details below. Let us however note here
that by the bounds from (3.1), (3.2) and (3.3) above, since 2Q+2q

q−∆ < 5 ln ∆, we shall have
the following.

Remark 3.1. Any r-neighbours u, v with

d(u) ≥ d(v)5 ln ∆

shall certainly be sum-distinguished in G within our construction.

Suppose now we are about to analyze a consecutive vertex v ∈ A, whose degree we
denote by d, and thus far all our rules and requirements have been fulfilled. Note that using
admissible modifications (1◦), (2◦) and (3◦) of the colours of the backward and forward
edges of v (since less than 2∆ residues modulo q might be blocked for the colour of ev
due to the required properness of edge colouring modulo q), we may obtain more than
d(q − 2∆) integer sums at v. At least d( q3 − 2∆) of these are divisible by 3. The set of
these (at least) d( q3 − 2∆) integers contains elements (not necessarily both) from no less
than d( q6 −∆) > 2d∆r−1

ln2 ∆
pairs from S. On the other hand, by (i) (from Lemma 2.5), v has

at most 2d∆r−1

ln2 ∆
backward r-neighbours. We may thus perform admissible alterations of the

colours of some of the edges incident with v so that afterwards dc(v) belongs to some pair
in S with elements congruent to 0 modulo 3 which is disjoint with all Su associated with
backward r-neighbours u of v. We set this pair as Sv . We continue in the same manner
with all vertices in A.

Suppose now that we have reached a vertex v ∈ B of degree d, and thus far all our
rules and requirements have been fulfilled. Similarly as above, admissible modifications
(1◦), (2◦) and (3◦) of colours of the edges incident with v, due to (iv) and (v), provide us a
list of attainable sums at v of cardinality (where we in particular additionally use the fact
that (iv) implies that v has at least d

2 ln3 ∆
> Q

q forward edges):(
Q

q

(
Xvd−

√
Xvd ln ∆

)
+
[
d−

(
Xvd−

√
Xvd ln ∆

)])
(q − 2∆)

≥
[
2∆r−1

(
Xvd−

√
Xvd ln ∆

)
+ d

∆r−1

ln ∆

](
1− 2∆

q

)
≥
[
2∆r−1

(
Xvd−

√
Xvd ln ∆

)
+ d

∆r−1

ln ∆

]
− 2∆

q
2∆r−1Xvd−

2∆

q
d

∆r−1

ln ∆

≥
[
2∆r−1

(
Xvd−

√
Xvd ln ∆

)
+ d

∆r−1

ln ∆

]
− 4∆ ln ∆d− 1

2
d

∆r−1

ln ∆

≥ 2∆r−1
(
Xvd−

√
Xvd ln ∆

)
+

1

4
d

∆r−1

ln ∆
.
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These attainable sums for v contain representatives of at least ∆r−1(Xvd−
√
Xvd ln ∆) +

d∆r−1

8 ln ∆ pairs from S. On the other hand, (vi) implies that

|Nr
−(v)| ≤ Xvd∆r−1 +

√
Xvd∆r−1 ln ∆,

where

∆r−1(Xvd−
√
Xvd ln ∆) + d

∆r−1

8 ln ∆
> Xvd∆r−1 +

√
Xvd∆r−1 ln ∆.

Therefore there is a choice of admissible alterations of the colours of edges incident with v
so that afterwards dc(v) belongs to some set in S disjoint with Su for all u ∈ Nr

−(v). We
perform these alterations and set the corresponding set from S as Sv . We continue in the
same manner with all vertices in B.

We are thus left with the analysis of the vertices in C. Let G′ = G[C], hence for
the maximum degree ∆′ of G′ we have ∆′ ≤ ∆. Note also that by (iv), δ′ := δ(G′) ≥
1
2

δ
ln3 ∆

≥ 1
2 ln5 ∆. Therefore, by Lemma 2.4, for ∆ sufficiently large, there exists a span-

ning subgraph F ′ of G′ with dF ′(v) ≤ dG′ (v)
ln3 ∆

for every v ∈ V . Denote the edges of
F ′ by E′ (hence F ′ = (C,E′)), and note that for every v ∈ C, dC(v) − dE′(v) ≥
dG′(v)(1− 1

ln3 ∆
) ≥ 1 (for ∆ sufficiently large), hence the edges in E′′ := E(G′) \ E′ =

{e′′1 , e′′2 , . . . , e′′m} also induce a spanning subgraph of G′.
At this point our edge colouring of G is proper modulo q (hence also modulo Q). We

shall now admit a temporary deviation from this rule by setting c(e) = q for every e ∈ E′.
Next we analyze consecutively all edges e′′1 , . . . , e

′′
m in E′′ (note that their initial colours,

defined by c0, have not been yet altered within our construction, thus all are in the range
[q + Q −∆, q + Q]), and add to a colour of every such subsequent e′′i = uv an integer in
[0, 6∆], what is consistent with (3.3), so that the obtained sums at u and v are not congruent
to 0 modulo 3 and so that the colour of e′′i is not congruent to the colours of its adjacent
edges in G modulo q. This is always feasible, as the later requirement blocks at most
2(∆ − 1) of at least 2∆ available options in [0, 6∆] with an adequate residue modulo 3.
After analyzing all edges in E′′ (inducing a spanning subgraph of G[C]), for every vertex
v ∈ C we have dc(v) ≡ 1 (mod 3) or dc(v) ≡ 2 (mod 3) (contrary to the vertices
in A). Now we shall randomly adjust the colours of the edges in E′ (which are all set
to q) to guarantee relatively regular distributions of the sums residues modulo Q in the
r-neighbourhoods in C. In particular we shall show the following.

Lemma 3.2. We may add to the colour of every edge in E′ an integer divisible by 3 from
the set {0, 3, 6, . . . , Q − 3} so that the obtained edge colouring of G is proper modulo Q,
and for each vertex v ∈ C and every integer t ∈ [0, Q − 1] which is not congruent to 0
modulo 3, the number of vertices u in Nr

C(v) with (5 ln ∆)−1d(v) ≤ d(u) ≤ d(v)5 ln ∆

and with dc(u) ≡ t (mod Q) is upper-bounded by 6000 d(v)
ln3 ∆

.

Proof. We first partition the set {0, 3, 6, . . . , Q − 3} into 32-element sets of consecutive
integers congruent to 0 modulo 3: L1, L2, . . . , LQ/96 (hence e.g. L1 = {0, 3, 6, . . . , 93}).
For every e ∈ E′, as it has less than 2∆ adjacent edges in G (which might block at most
2∆ residues modulo Q for c(e)), i.e. less than 2∆ integers in [0, Q − 1] might not be
admissible as the additions to the colour of e (equal to q prior to this addition) due to
the required properness (modulo Q) of the randomly constructed edge colouring. Thus
out of L1, L2, . . . , LQ/96, at least Q/96 − 2∆ ≥ ∆r−1

48 lists (sets) are entirely available
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for e, where a set Li is called entirely available for e ∈ E′ if neither element of q + Li
is congruent modulo Q to the colour of an edge in E \ E′ adjacent to e in G (we shall
distinguish colours of adjacent edges in E′ within our construction below). Out of these
at least ∆r−1

48 entirely available lists for e we randomly and independently for every edge
in E′ choose one with uniform probability and denote it by Le. We also temporarily set
c(e) = minLe.

We claim that at the end of such random procedure, with positive probability, for every
v ∈ C the following event appears:

Rv: there are at most 31 edges incident with v (and with both ends in C) with a feature
that each such edge e is adjacent with an edge e′ (with both ends in C) such that
Le = Le′ .

For this goal we shall estimate the probability of the complement of the above for v ∈ C:

Rv: there exist 32 edges incident with v (and with both ends inC) with a feature that each
such edge e is adjacent with an edge e′ (with both ends in C) such that Le = Le′ .

Fix any v ∈ C and denote its degree by d. Note first that there are at most
(
d
32

)
≤
(

∆
32

)
ways of choosing 32 distinct edges incident with v. Now for a fixed choice of such 32
edges B = {e1, e2, . . . , e32}, each of them is supposed to have an adjacent edge coloured
the same (with the same list randomly chosen) as itself, so for each edge ej ∈ B we
choose its adjacent edge e′j which is supposed to have the same colour as ej , and estimate
the probability of e1, . . . , e32 being witnesses for Rv to appear, by examining all possible
configurations of the choices of their correspondents e′1, . . . , e

′
32, which we divide into 33

groups with respect to the number of the edges e′j belonging to B (note that e′j does not
have to be distinct from e′l for j 6= l). For every i = 0, . . . , 32 (and fixed B), there are at
most

(
32
i

)
31i(2∆)32−i choices of edges e′1, e

′
2, . . . , e

′
32 so that |{j : e′j ∈ B}| = i. Then for

each fixed choice of edges e′1, . . . , e
′
32 with this feature, denoteB′′ = B∪{e′1, e′2, . . . , e′32}

(hence 32 ≤ |B′′| ≤ 64 − i), and let us consider an auxiliary graph H with vertex set B′′

and the set of edges: {ele′l : l = 1, 2, . . . , 32}. Note that all its components have order
at least 2. Fix any subset B0 ⊂ B of minimal size such that each component of H has at
least one vertex in (B′′ \ B) ∪ B0, and note that |B0| ≤ b i2c, as there are 32 − i edges
el ∈ B (which are vertices of H) adjacent in H with e′l ∈ B′′ \ B, while among the
remaining at most i edges in B which do not belong to any component including a vertex
in B′′ \B (which induce the remaining components of H) it is sufficient to choose at most
half to form B0 (one for each of these remaining components of H). Note that edges of G
inducing (as vertices of H) any component in this auxiliary graph H must have the same
colours (lists) chosen to be witnesses for Rv to take place, hence if we fix colours (lists)
for all edges in (E′ \ B) ∪ B0, the probability that independent choices for the remaining
at least 32− b i2c edges in E′ (from B \B0) shall guarantee Rv is bounded from above by
( 48

∆r−1 )32−b i
2 c. By the law of total probability, we thus obtain that:

Pr(Rv) ≤
(

∆

32

) 32∑
i=0

(
32

i

)
31i(2∆)32−i

(
48

∆r−1

)32−b i
2 c

≤ 3132 · 232 · 4832∆32
32∑
i=0

∆(32−i)−(32−b i
2 c)(r−1)
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< 1048 · 1064∆32 · 33∆−16(r−1) < 10114∆−4r−12(r−4)

≤ 10114

∆4r
(3.4)

(for r ≥ 4).
Now for each vertex v ∈ C of degree d in G and every integer t ∈ [0, Q− 1] which is

not congruent to 0 modulo 3, let Xv,t denote (the random variable expressing) the number
of vertices u inNr

C(v) with dc(u) ∈ [t−31·93, t+31·93] (mod Q) (where c(e) = minLe
for every e ∈ E′) and (5 ln ∆)−1d ≤ d(u) ≤ d 5 ln ∆. In order to prove the thesis we shall
also need to guarantee (with non-zero probability) for every v ∈ C of degree d (in G) and
every integer t ∈ [0, Q− 1] which is not congruent to 0 modulo 3 the event:

Tv,t: Xv,t ≤ 6000 d
ln3 ∆

.

We thus upper-bound the probability of the complement of this. As to every edge e ∈ E′
we have assigned the colour being the minimal element minLe from the randomly chosen
list Le, which may differ by the multiplicity of 96 between distinct lists, there are at most
d(2 · 31 · 93 + 1)/96e = 61 distinct values in the interval [t− 31 · 93, t+ 31 · 93] the sum
at v may possibly attain within our random process. Therefore for every u ∈ Nr

C(v) with
(5 ln ∆)−1d ≤ d(u) ≤ d 5 ln ∆,

Pr
(
dc(u) ∈ [t− 31 · 93, t+ 31 · 93] (mod Q)

)
≤ 61

48

∆r−1

(what can be also easily proved by the law of total probability via analysis of the possible
at least ∆r−1

48 choices of lists, hence also additions to the colour, of ‘the last edge’ in E′

incident with u, at most 61 of which might assure that dc(u) ∈ [t − 31 · 93, t + 31 · 93]
(mod Q) regardless of any fixed choices for the remaining edges), by (ii) we thus obtain
that

E(Xv,t) ≤
61 · 48

∆r−1

2d∆r−1

ln3 ∆
= 5856

d

ln3 ∆
.

Note also that a change of choice for any edge in E′ may influence Xv,t by at most 2.
Moreover, for any s, the fact that Xv,t ≥ s can be certified by the outcomes of at most
s · 10d

ln5 ∆
trials, i.e. choices committed on the edges in E′ incident with some s r-neighbours

u of v in C with (5 ln ∆)−1d ≤ d(u) ≤ d 5 ln ∆, each of which has at most
2 d 5 ln ∆

ln3 ∆

ln3 ∆
=

10d
ln5 ∆

incident edges in E′ by (iv) and Lemma 2.4. Thus by Talagrand’s Inequality (and
comments below it),

Pr (Tv,t) ≤ Pr

(
Xv,t > 5856

d

ln3 ∆
+

d

ln3 ∆
+

+ 20 · 2
√

10d

ln5 ∆
5856

d

ln3 ∆
+ 64 · 22 10d

ln5 ∆

)

< 4e
−

( d
ln3 ∆

)
2

8·22 10d
ln5 ∆

·(5856 d
ln3 ∆

+ d
ln3 ∆

) <
10114

∆4r
. (3.5)

As any event Tv,t and Rv is mutually independent of all other events Tv′,t′ and Rv′ with
d(v, v′) > 2r + 1, i.e., all except at most ∆2r+1 · ( 2Q

3 + 1) < ∆3r+1 such events, by
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the Lovász Local Lemma, (3.4) and (3.5) we thus obtain that there is a choice of lists
(and additions to the colours) of the edges in E′ so that none of the events Tv,t and Rv
holds for any v ∈ C. This implies among others that each subgraph induced in G′ by
the edges associated with any fixed list Li has maximum degree at most 31. Thus by
Vizing’s Theorem we may arbitrarily recolour properly each such subgraph, if necessary,
using additions from its corresponding Li (where |Li| = 32) instead merely the addition
minLi. Note that then the obtained edge colouring ofG is proper moduloQ, while colours
of some edges could be increased – each by at most 93. As at he same time, every vertex
v is by Rv incident with at most 31 edges whose colours could be increased, by Tv,t with
v ∈ C and t ∈ {1, 2, 4, 5, 7, 8, . . . , Q− 2, Q− 1} we obtain the thesis.

We fix any additions to the colours of the edges in E′ consistent with the thesis of
Lemma 3.2. We shall not alter the colour of any edge with both ends in C anymore, while
the remaining ones might be modified byQ. Therefore the edge colouring ofG shall remain
proper moduloQ, while the sums at vertices inA shall remain distinguished from the sums
at vertices inC, as the first ones are congruent to 0 modulo 3, unlike the second ones. As by
(iv) every vertex inB has a neighbour in C, we may subtractQ if necessary (or do nothing)
from the colour of one such edge for every vertex inB so that the weighted degree for every
vertex v ∈ B is set on the smaller element of its associated two-element list Sv . (This is
feasible, as prior to these changes, every such edge had its colour between Q+ q −∆ and
Q+2q, since it has not been analyzed as a backward edge yet, and therefore (3.3) shall hold
for this edge after any of the described changes). The thesis of Lemma 3.2 above obviously
still holds afterwards. The sums at vertices in B shall not be altered anymore.

In the final stage of the construction we shall be subsequently analyzing the vertices in
C, and modifying colours of the edges joining them with A consistently with (1◦) in order
to dispose of all the remaining sum-conflicts between vertices in C and their r-neighbours
in B∪C. This time however we shall admit placing weighted degrees of two r-neighbours
in the same 2-element list from S, but in such a way that these weighted degrees are distinct.
Note that for every consecutive v ∈ C we have available dA(v) + 1 ≥ d(v)

2 ln2 ∆
+ 1 (by

(iii)) distinct sums, which form an arithmetic progression of difference Q, via admissible
changes on the edges joining v with A. These are all congruent to some t modulo Q (not
divisible by 3) and include at least d(v)

4 ln2 ∆
options which are not fixed as weighted degrees of

vertices in B, as these are all set to the smaller elements from their associated lists. So it is
sufficient to choose one of such options for v distinct from the contemporary sums at all r-
neighbours of v in C with (5 ln ∆)−1d(v) ≤ d(u) ≤ d(v) 5 ln ∆ (cf. Remark 3.1) and with
weighted degrees congruent to t modulo Q. This is however feasible, as by Lemma 3.2
above the number of such r-neighbours of v equals at most 6000 d(v)

ln3 ∆
< d(v)

4 ln2 ∆
. We

choose one of these and perform admissible changes on the edges joining v with A to set it
as the sum at v. After analyzing all vertices in C, the construction is completed, while the
obtained edge colouring c is proper (even modulo Q), uses colours in [q−∆, 2q+ 2Q] and
guarantees sum-distinction between r-neighbours in G.
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Abstract

We investigate the minimum number t0(G) of faces in a Hamiltonian triangulation
G so that any Hamiltonian cycle C of G has at least t0(G) faces that do not contain an
edge of C. We prove upper and lower bounds on the maximum of these numbers for all
triangulations with a fixed number of facial triangles. Such triangles play an important
role when Hamiltonian cycles in triangulations with 3-cuts are constructed from smaller
Hamiltonian cycles of 4-connected subgraphs. We also present results linking the number
of these triangles to the length of 3-walks in a class of triangulation and to the domination
number.

Keywords: Graph, Hamiltonian cycle, domination, 3-walk.

Math. Subj. Class.: 05C45, 05C10, 05C38

1 Introduction
In this article all triangulations are simple triangulations of the plane with at least 4 vertices.
A triangulation or a graph is said to be Hamiltonian if it contains a Hamiltonian cycle. For
a triangulation G with a Hamiltonian cycle C of G, a type-i triangle with i ∈ {0, 1, 2} is
defined as a facial triangle of G which shares exactly i edges with C. We define ti(G,C)
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as the number of type-i triangles. If the triangulation and Hamiltonian cycle are clear from
the context, we will also just write ti.

A triangulation G can be extended by inserting a 4-connected triangulation or poly-
hedron in a triangle T to obtain a larger graph G′. If there is a Hamiltonian cycle C in
G, then we can extend C to a Hamiltonian cycle of G′ – unless T is a type-0 triangle.
If there is a Hamiltonian cycle C without any type-0 triangles such as in a double wheel
or the majority of small 4-connected triangulations (e.g. more than 80% for 4-connected
triangulations on 20 vertices), then for the graph G′ obtained by inserting a 4-connected
triangulation or polyhedron in each triangle in a set of disjoint facial triangles we can ex-
tend C to a Hamiltonian cycle of G′. In [3] it is proven that the – still open – question
whether all triangulations with at most four 3-cuts are Hamiltonian can be reduced to the
question whether for each set of four disjoint triangles in a 4-connected triangulation there
is a Hamiltonian cycle so that none of them is a type-0 triangle. More properties of triangu-
lations with a Hamiltonian cycle with few or even without type-0 triangles are described in
Section 4. Investigating whether there always exists a Hamiltonian cycle with few type-0
triangles is the main target of this paper.

We denote the number of facial triangles of G by t(G). Euler’s formula implies that
(with |G| the number of vertices of G), t(G) = 2|G| − 4, so it is always an even number.
For i ∈ {0, 2} we further define

ti(G) = min{ti(G,C) | C is a Hamiltonian cycle of G},

and for even t ≥ 4

ti(t) = max{ti(G) | G is a Hamiltonian triangulation with exactly t facial triangles}.

In some cases we might want to restrict the class to 4- or 5-connected triangulations. Note
that there are no 4-connected triangulations G with t(G) < 8 and no 5-connected triangu-
lations G with t(G) < 20. So for j = 4 and even t ≥ 8, and for j = 5 and even t ≥ 20 we
define

tji (t) = max{ti(G) | G is a j-connected triangulation with exactly t facial triangles}.

In this paper, we show the following theorem.

Theorem 1.1. Let t be an integer. Then the following hold.

(i) For t ≥ 8 we have t0(t) ≤ t−8
3 , and for 4 ≤ t < 8 we have t0(t) = 0.

(ii) For t ≥ 10 we have t40(t) ≤ t−10
3 , and for t = 8 we have t40(t) = 0.

(iii) For t ≥ 20 we have t50(t) ≤ t−12
3 .

In Section 3, we discuss lower bounds on t0(t), t40(t) and t50(t).
As we will see in Section 4.1, also the number of type-i triangles on one side of a

Hamiltonian cycle is relevant, so we also define t̄i(G,C) as the number of type-i triangles
on that side of C with fewer type-i triangles. The numbers t̄i(G), t̄i(t), and t̄ji (t) are
defined correspondingly. By definition

t̄i(G,C) ≤ ti(G,C)/2, t̄i(G) ≤ ti(G)/2,

t̄i(t) ≤ ti(t)/2 and t̄ji (t) ≤ t
j
i (t)/2
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for i ∈ {0, 2} and j ∈ {4, 5}.
An outer plane graph is a plane graph in which all vertices are incident with the outer

face. In particular, an outer plane graph with maximal number of edges is called a maximal
outer plane graph, which is, in other words, an outer plane graph in which all inner faces
are triangles. For a triangulation G with a Hamiltonian cycle C, the inside as well as the
outside of C together with C form a maximal outer plane graph. For a 2-connected plane
graph G, the boundary of the outer face is called the boundary cycle of G. In particular,
vertices and edges in the boundary cycle of G are boundary vertices resp. boundary edges
in G. A cycle C in a plane graph such that the inside as well as the outside (not including
C) contain a vertex is called a separating cycle. Note that in a triangulation, any triangle
that is not facial is a separating cycle.

Let G be a triangulation with a Hamiltonian cycle C. If we take the dual of the max-
imal outer plane graph consisting of the inside of C together with C and delete the vertex
corresponding to the outer face, then we obtain a subcubic tree in which the vertices of
degree (3− i) correspond to type-i triangles of the triangulation. Using these relations, we
get the following proposition.

Proposition 1.2. Let G be a triangulation with a Hamiltonian cycle C. Then

t̄2(G,C) = t̄0(G,C) + 2 and t2(G,C) = t0(G,C) + 4.

Note that the number of facial triangles on the inside is equal to the number of facial
triangles on the outside. As t(G) = t0(G,C) + t1(G,C) + t2(G,C), we have

t1(G,C) = t(G)− 2t0(G,C)− 4.

So finding the minimum value for t0(G,C) is equivalent to finding the minimum value for
t2(G,C), and finding the maximum value for t1(G,C).

Let G be a triangulation and let C be a Hamiltonian cycle in G. We say that two facial
triangles are adjacent if they share an edge. An (i, j)-pair (i, j ∈ {1, 2}) is defined as a
pair of adjacent facial triangles consisting of a type-i triangle and a type-j triangle such
that the common edge is contained in C. Note that each type-1 triangle is contained in at
most one (1, 2)-pair.

2 Upper bounds for t0(t), t40(t) and t50(t)

To prove Theorem 1.1 in this section, we first show some lemmas. A vertex v in a graph G
is said to be dominating if v is adjacent to all other vertices in G.

If a type-2 triangle T is contained in two (2, 2)-pairs, we call the three triangles involved
a (2, 2, 2)-triple and T the central triangle of the triple.

Restricted to minimum degree 4 the first part of the following lemma was proven in
[13, Lemma 2.1].

Lemma 2.1. Let G be a triangulation with a Hamiltonian cycle C, but without a domi-
nating vertex. Then there exists a Hamiltonian cycle C ′ in G such that C ′ has no (2, 2, 2)-
triples.

If G has minimum degree 4, then C ′ can be chosen in a way that it also has at least as
many (1, 1)-pairs as C.
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Proof. Assume that there is a (2, 2, 2)-triple with central triangle T and let v denote the
vertex contained in all three triangles involved. As v is not dominating, there is a first
vertex v0 in counterclockwise orientation from T around v that has a neighbour on C that
is not a neighbour of v. Numbering the neighbours of v in clockwise orientation around
v as v0, v1, . . . , vdeg(v)−1, there is also a first vertex vk with k > 0 and a neighbour on C
that is not a neighbour of v. We can reroute the part of C containing v, v0, . . . , vk along the
path v0, v1, . . . , vk−1, v, vk. This operation is displayed in Figure 1. Of course the roles of
v0 and vk are symmetric and we could do the same with their roles interchanged.

v
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1 v
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v
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2

1

2 2

1

1

1

0
0

0

2

2

1

1
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1 1
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v
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0

1?

Figure 1: Rerouting a Hamiltonian cycle to remove a (2, 2, 2)-triple.

If all vertices have degree at least 4, any new type-2 triangle contains v and the number
of (2, 2, 2)-triples is decreased. Furthermore, no (1, 1)-pairs without a triangle containing
v can be destroyed and after rerouting at least the edges v1v2, v2v3, . . . , vk−3vk−2 are
common edges of a (1, 1)-pair. These are k − 3 (1, 1)-pairs, but note that k − 3 can be 0.
Depending on whether v0v1 is the common edge of a (1, 1)-pair in C, the triangles under
discussion can belong to k − 3 or k − 4 (1, 1)-pairs before rerouting – so the number of
(1, 1)-pairs does not decrease.

The vertices v0 and vk always have degree at least 4, but if one of v1, . . . , vk−2 has
degree 3, it is contained in a type-2 triangle not containing v. For v1, . . . , vk−3 (note that
this set of vertices can be empty) this type-2 triangle has type-1 triangles on the other side
of the edges in the Hamiltonian cycle and is therefore not contained in a (2, 2)-pair. If vk−2

has degree 3 we would produce a (2, 2, 2)-triple. If v2 has degree larger than 3, we can
apply the operation with the role of v0 and vk interchanged, so let us assume that v2 as well
as vk−2 have degree 3. As no two vertices of degree 3 can be neighbours in a triangulation
different from K4, this implies that k > 3.

Let i > 0 be minimal so that there is an edge vivk−1. Such an i is sure to exist, as k−3
is a candidate. We then reroute the cycle along v0, v1, . . . , vi, vk−1, vk−2, . . . , vi+1, v, vk
to obtain C ′. An example of this rerouting is given in Figure 2.

After rerouting, the only edges that can be the common edge of the two triangles in a
new (2, 2)-pair are vi+1vi+2 and vivk−1. As vivj is not in C ′ for any i < j < k − 1,
vivk−1 can only be in a (2, 2)-pair if vk−1vk−2 is contained in the same triangle, which
gives i = k−3, so vi+1vi+2 = vk−2vk−1 is the common edge of a (2, 2)-pair too and only
the case that vi+1vi+2 is the common edge of a (2, 2)-pair remains to be discussed.

Assume that vi+2vi+1 is contained in two type-2 triangles — vi+2vi+1v and T ′. If the
degree of vi+2 is 3, then T ′ = vi+1vi+2vi+3 and the second neighbour triangle of T ′ along
C ′ is a type-1 triangle, so in that case vi+2vi+1 is not part of a (2, 2, 2)-triple.
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Figure 2: Rerouting a Hamiltonian cycle to remove a (2, 2, 2)-triple if vk−2 has degree 3.

If the degree of vi+2 is at least 4, the other edge of T ′ in the Hamiltonian cycle must be
vi+2vi, which can only be contained in a type-2 triangle vi+2vi+1vi if i+ 2 = k − 1, that
is i = k − 3. In order to be contained in a second type-2 triangle, there must be an edge
vk−1vk−4. Due to the minimality of i we get k = 4, so we have the situation depicted in
Figure 3 on the left hand side. Rerouting the Hamiltonian cycle along v0, v, v2, v1, v3, v4

(right hand side of Figure 3) gives a Hamiltonian cycle with one (2, 2, 2)-triple less.
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Figure 3: Rerouting a Hamiltonian cycle to remove a (2, 2, 2)-triple if vk−2 has degree 3
and the default method produces a (2, 2, 2)-triple.

Using a result by Whitney [17], we can prove the existence of a Hamiltonian cycle with
at least one (1, 1)-pair in a 4-connected triangulation. Below we first give the lemma by
Whitney, but use a simplified version of the formulation from [7].

Lemma 2.2. Let G be a 4-connected triangulation. Consider a cycle D in G together with
the vertices and edges on one side of D (referred to as the outside of D). Let a and b be
two vertices of D dividing D into two paths P1 and P2 each of which contains both a and
b. If

• no two vertices of P1 are joined by an edge which lies outside of D and
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• there is a vertex z (distinct from a and b) dividing P2 into two paths P3 and P4 each
of which contains z such that no pair of vertices in P3 and no pair of vertices in P4

are joined by an edge which lies outside of D,

then there is a path from a to b using only edges on and outside of D which passes through
every vertex on and outside of D.

Using this lemma, we can give the following result. Note that for triangulations being
k-connected is equivalent to having no separating cycles of length shorter than k.

Lemma 2.3. Let G be a 4-connected triangulation which is not isomorphic to the octahe-
dron. There exists a Hamiltonian cycle C in G such that C has at least one (1, 1)-pair.

u v

z

xa b

u1

um

vn

v1

Figure 4: Construction of a Hamiltonian cycle with at least one (1, 1)-pair in a 4-connected
triangulation.

Proof. As a consequence of the Euler formula and the fact that G is not isomorphic to the
octahedron, there exists a vertex x of degree at least 5 inG. Let uvx be an arbitrary triangle
containing x. The edge uv is contained in a second triangle, say uvz. Let the vertices
adjacent to u (in counterclockwise order) be v, z, u1, . . . , um, a, x (note that there are no
ui vertices if u has degree 4), and let the vertices adjacent to v be u, x, b, v1, . . . , vn, z (note
that there are no vi vertices if v has degree 4) (see Figure 4).

As G is 4-connected, D = axbv1 · · · vnzu1 · · ·uma is a cycle in G. The vertices a
and b partition D into two paths satisfying the conditions of Lemma 2.2 with P1 = axb.
Indeed, the path P2 is divided into P3 and P4 by the vertex z. As x has degree at least 5, a
and b are not adjacent. All vertices of P3, resp. P4, are adjacent to u, resp. v, so any edge
which lies outside of D and joins two vertices of P3 or two vertices of P4 would be part of
a separating triangle.

Let P be the path from a to b described in Lemma 2.2. The Hamiltonian cycle C =
P ∪ auvb contains the (1, 1)-pair (uvx, uvz).

In the case of 5-connected triangulations, we can prove a slightly stronger result.

Lemma 2.4. Let G be a 5-connected triangulation. There exists a Hamiltonian cycle C in
G such that C has at least two (1, 1)-pairs.
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Figure 5: Construction of a Hamiltonian cycle with at least two (1, 1)-pairs in a 5-connected
triangulation.

Proof. Let v be a vertex of G which has degree 5, and let u and w be two neighbour-
ing vertices of v which are not adjacent to each other. Let the vertices adjacent to u be
v, z, u1, . . . , um, a, x, and let the vertices adjacent to w be v, y, b, w1, . . . , wn, z (see Fig-
ure 5).

As G is 5-connected, D = axybw1 · · ·wnzu1 · · ·uma is a cycle in G. The vertices a
and b partition D into two paths satisfying the conditions of Lemma 2.2 with P1 = axyb.
Indeed, the path P2 is divided into P3 and P4 by the vertex z. As all vertices have degree
at least 5, any edge outside of D connecting two vertices of P1 is contained in a separating
triangle or a separating quadrangle. All vertices of P3, resp. P4, are adjacent to u, resp. w,
so any edge which lies outside of D and joins two vertices of P3 or P4 would be part of a
separating triangle.

Let P be the path from a to b described in Lemma 2.2. The Hamiltonian cycle C =
P ∪ auvwb contains the (1, 1)-pairs (uvx, uvz) and (vwy, vwz).

Lemma 2.5. Let G be a triangulation with a dominating vertex v and t triangles. Then
t0(G) < t

4 − 1 if G is not K4 and t0(K4) = 0.

Proof. We can easily check K4 by hand, so assume that G is not K4.
G − {v} is an outer plane graph, so it has a vertex w of degree 2. Let w′ be a vertex

sharing a boundary edge of G − {v} with w and let C be the Hamiltonian cycle of G
containing {v, w}, {v, w′} and the boundary cycle of G − {v} without the edge {w,w′}.
Let t0,∆, t1,∆ and t2,∆ be the number of facial triangles of type 0, 1 and 2 on the side of
C containing the triangle v, w,w′. All triangles on the other side of C contain v and as
no type-0 triangle in G contains v, we have t0(G) = t0,∆. Since each side of C contains
exactly t(G)/2 facial triangles, we have t0,∆ + t1,∆ + t2,∆ = t(G)

2 . Furthermore (as G is
not K4) we have t1,∆ ≥ 1 (the unique triangle containing w but not v). So t0,∆ + t2,∆ <
t0,∆ + t1,∆ + t2,∆ = t

2 . By Proposition 1.2, we have t2,∆ = t0,∆ + 2, and hence we get
2t0,∆ + 2 = 2t0 + 2 < t

2 and finally t0(G) < t
4 − 1.

By combining the results above, we are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. For t < 20 the theorem was checked by testing all triangulations.
The triangulations were generated by the program plantri [2] and a straightforward ex-
haustive search for Hamiltonian cycles with the smallest number of type-0 triangles was
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performed. Thus, we may assume t ≥ 20. Let G be a Hamiltonian triangulation with
t ≥ 20 facial triangles.

Suppose that G has a dominating vertex v. Since G − {v} has a vertex of degree two,
G has a 3-cut, and hence G is not 4-connected. Since t

4 − 1 ≤ t−8
3 , Lemma 2.5 implies the

result.
Assume now that G has no dominating vertex. Suppose that G has a Hamiltonian cycle

with p (1, 1)-pairs. Lemmas 2.3 and 2.4 imply that p ≥ 1 if G is 4-connected, and p ≥ 2
if G is 5-connected. Due to Lemma 2.1, G contains a Hamiltonian cycle C ′ which has at
least p (1, 1)-pairs and in which each type-2 triangle is contained in at least one (1, 2)-pair.
A type-1 triangle is contained in a (1, 1)-pair or a (1, 2)-pair. There are at least 2p type-1
triangles in (1, 1)-pairs of C ′ and therefore at most (t1(G,C ′) − 2p) type-1 triangles in
(1, 2)-pairs. Since each type-2 triangle forms a (1, 2)-pair with at least one of the type-1
triangles in a (1, 2)-pair, we get

t2(G,C ′) ≤ t1(G,C ′)− 2p.

By Proposition 1.2, we have t2(G,C ′) = t0(G,C ′) + 4, and hence

t1(G,C ′) ≥ t0(G,C ′) + 4 + 2p.

Combining these results with t(G) = t0(G,C ′) + t1(G,C ′) + t2(G,C ′), we get

t(G) ≥ t0(G,C ′) + t0(G,C ′) + 4 + 2p+ t0(G,C ′) + 4.

This can be rewritten as

t0(G,C ′) ≤ t(G)− 8− 2p

3
,

and so we also have
t0(t) ≤ t− 8− 2p

3
.

Using the values for p from Lemma 2.3 and Lemma 2.4, we get the given bounds.

3 Lower bounds for t0(t), t40(t) and t50(t)

In order to prove lower bounds for t0(t), t40(t) and t50(t), we will construct families of
graphs in which each Hamiltonian cycle has at least a certain number of type-0 triangles.

Theorem 3.1.

• Let t ≥ 16 be even. Then t0(t) ≥ b t3c − 5 and t̄0(t) ≥ b t+2
6 c − 3.

We have t0(14) = 1 and t̄0(14) = 0. For t < 14 we have t0(t) = t̄0(t) = 0.

• Let t ≥ 18 be even. Then t40(t) ≥ 2(b t6c − 3) and t̄40(t) ≥ b t6c − 3.
For t < 18 we have t40(t) = t̄40(t) = 0.

• Let t ≥ 20 be even. Then t50(t) ≥ 2b t
12c − 20.

For t ≤ 66 we have that t̄50(t) = 0.

Proof. t40(t) and t̄40(t):
The results for t < 18 were determined by a computer using the program plantri [2] for

the generation of all 4-connected triangulations and a straightforward algorithm to compute
t0 and t̄0.



G. Brinkmann et al.: Types of triangle in plane Hamiltonian triangulations and applications . . . 59

First consider the case where t is a multiple of six, and let k = t
6 . Consider the fragment

B shown in the left part of Figure 6. Take k copies B0, . . . , Bk−1 of B and identify all
vertices labelled N and all vertices labelled S, respectively, (we call the resulting vertices
the poles) and for 0 ≤ i < k identify vertex y in Bi with vertex x in Bi+1 (mod k).
This graph has 6k facial triangles, and we denote it by Gk. It is easy to check that Gk is
4-connected.

N

S

N

S

x y

Figure 6: The fragment B used to construct a family of triangulations establishing a lower
bound on t40(t) and t̄40(t) and the most common way for a Hamiltonian cycle to pass through
this fragment.

We show t0(Gk) ≥ 2( t
6 −3) and t̄0(Gk, C) ≥ t

6 −3 by induction on k. Computational
results give that for 3 ≤ k ≤ 8 we have t0(Gk) = 2k − 6 and t̄0(Gk) = k − 3. Since Gk

contains 6k triangles, we can also write this as t0(Gk) = t
3 − 6 and t̄0(Gk) = t

6 − 3, and
we are done. So we may assume that k ≥ 9.

Let C be a Hamiltonian cycle in Gk. An edge of C which is incident to a pole is
contained in at most two fragments. Since there are two edges incident to each pole, there
are at most 8 fragments that contain an edge of C that is incident to a pole. Since k ≥ 9, we
may assume that C visits the fragment Bk−1 – up to symmetry – as shown in the right part
of Figure 6. This part of the Hamiltonian cycle C produces two type-0 triangles in Bk−1 –
one on each side of C. So, by removing two inner vertices of Bk−1, identifying the vertex
y in the copyBk−2 and the vertex x in the copyB0, we obtain a Hamiltonian cycle, say C ′,
in Gk−1. By the induction hypothesis, t0(Gk−1, C

′) ≥ 2( t−6
6 − 3) and t̄0(Gk−1, C

′) ≥
t−6

6 − 3. Since t0(Gk, C) = t0(Gk−1, C
′) + 2 and t̄0(Gk, C) = t̄0(Gk−1, C

′) + 1, we
obtain the desired inequality.

For the case where t is not a multiple of six, we let k =
⌊
t
6

⌋
. We apply the same

construction, but for a pair of neighbouring fragments we connect the x- and y-vertex by
an edge instead of identifying them – see the left part of Figure 7 – or with an extra vertex of
degree 4 that is also connected to the poles. This gives 2, resp. 4 extra triangles. Confirming
the formulas for these modified triangulations with 3 to 8 fragments with a computer, one
can apply the same argumentation as above to prove the equations in the lemma.

t0(t) and t̄0(t):
For t0(t) and t̄0(t), where 3-cuts are allowed, we use the same fragment and the same

constructions as for t40(t) and t̄40(t), but for two fragments we do not identify x and y but
instead connectN and S by an edge between these segments – see the right part of Figure 7.
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N

S

N

S

Figure 7: Modifications of the construction for the 4-connected case when t is not a multiple
of 6 and for the 3-connected case.

This construction with k fragments gives triangulations with 6k+2 facial triangles that can
be extended to triangulations with 6k+ 4 and 6(k+ 1) facial triangles by inserting vertices
of degree 3 in one or both triangles containing the edge between the poles.

Computational results for k ≤ 8 fragments combined with the same reduction argument
as before give that t0(t) ≥ b t3c − 5 and t̄0(t) ≥ b t+2

6 c − 3.

Remark. For small values of t a double wheel where triangles are subdivided with a vertex
of degree 3 alternatingly on both sides of the rim gives a larger result for t0(t) and t̄0(t),
but the linear factor is only 1

4 , so that the advantage compared to the sequence described is
only for small values.

t50(t) and t̄50(t):
For t ≤ 130 we have that t50(t) ≥ 0 ≥ 2b t

12c − 20. So assume that t is even and
t > 130.

For even t > 130 we can construct triangulations in a similar way as for the cases
t40(t) and t̄40(t), but use the fragments depicted in Figure 8. We use r = (t − 12b t

12c)/2
copies B′0, . . . , B

′
r−1 of the right fragment with 14 triangles and l = b t

12c − r copies
B′r, . . . , B

′
r+l−1 of the left fragment with 12 triangles.

We identify all vertices labelled N and all vertices labelled S, respectively, and for
0 ≤ i < r + l identify the vertices y, y′ in B′i with the vertices x, x′ in B′i+1 (mod (r+l))

respectively. It is easy to check that the resulting graph Gr,l is 5-connected.
Checking the different ways how a Hamiltonian cycle can pass the left fragment in

Figure 8 without using the poles and saturate the 4 interior vertices (some boundary vertices
can also be saturated from outside the segment), gives that each such segment contains at
least 2 type-2 triangles. As the fragment on the right hand side of Figure 8 contains the one
on the left hand side, the same is true for the fragment on the right hand side too.

So for t > 130 and consequently r+l ≥ 11 any Hamiltonian cycleC inGr,l has at least
r+l−8 fragments not containing an edge ofC incident with a pole and therefore containing
at least 2 type-2 triangles. So t2(Gr,l, C) ≥ 2(r + l − 8) and therefore t0(Gr,l, C) ≥
2(r + l − 8)− 4 = 2(r + l)− 20. As r + l = b t

12c we get t50(t) ≥ 2b t
12c − 20.

The result for t̄50(t) was proven by a computer search testing graphs constructed by the
program plantri [2]. All 5-connected triangulations G with up to 66 triangles were found
to have t̄0(G) = 0. It should also be noted that the graphs Gr,l constructed for the first part
all allow a Hamiltonian cycle C with t̄0(G,C) = 0.
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Figure 8: The fragments used for the 5-connected case.

Computational results for r = 0 and l ≤ 8 suggest that t50(t) ≥ 2b t
12c − 8, but a proof

similar to the one for t0(t) and t40(t) is out of reach on the computational side for the basic
step in the induction and would be very lengthy on the theoretical side.

For t0(t), t̄0(t), t40(t), and t̄40(t) the upper and lower bounds differ only by an additive
constant, so there is not much room for improvement. For t50(t), and especially t̄50(t) the
upper and lower bounds are far apart and have a different growth rate. In these cases there
is not only room, but also need for improvement.

4 Applications different from Hamiltonian cycles
Type-0 triangles are of their own interest in the context of Hamiltonicity of triangulations,
as they are the problematic case for the extendability of partial Hamiltonian cycles to the
inside of separating triangles (see e.g. [9]), but the number t0(G) has also an impact on
invariants that are not that obviously related to Hamiltonian cycles. In this section, we
describe two other topics in graph theory for which the value of t0(G) is relevant.

4.1 The domination number of a triangulation

A vertex subset S of a graph G is said to be dominating if every vertex in G − S has a
neighbour in S. The cardinality of a minimum dominating set ofG is called the domination
number of G and is denoted by γ(G). For a triangulation G, Matheson and Tarjan [11]
proved that γ(G) ≤ |G|

3 and they conjectured that γ(G) ≤ |G|
4 . This conjecture is still

open, even when restricted to 4- or 5-connected triangulations.
Plummer, Ye and Zha [13] proved that γ(G) ≤ min

{⌈ 2|G|
7

⌉
,
⌊ 5|G|

16

⌋}
for any

4-connected triangulation G. This is the currently best approach towards the Matheson-
Tarjan conjecture. The idea of their inductive proof is to find a Hamiltonian cycle with
certain properties of type-2 triangles and to use these for reduction of the graph.

If we can find a Hamiltonian cycle with few type-2 triangles, then (as implicitly used in
[13]) we can bound the size of a dominating set as follows: Let C be a Hamiltonian cycle.
By symmetry we can assume that the number of type-2 triangles on the inside of C is less
than or equal to that on the outside ofC. LetG′ be the maximal outer plane graph consisting
of the inside of C together with C. Note that G′ contains t̄2(G,C) type-2 triangles. It
is shown in [5, 16] that any maximal outer plane graph H satisfies γ(H) ≤ |H|+k(H)

4 ,
where k(H) denotes the number of vertices of degree 2 in H . Any vertex of degree two
in G′ is the common end vertex of two edges of C in a type-2 triangle. Thus, we have
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k(G′) = t̄2(G,C). Since t̄2(G,C) = t̄0(G,C) + 2, we obtain by Proposition 1.2

γ(G) ≤ γ(G′) ≤ |G|+ k(G′)

4
=
|G|+ t̄2(G,C)

4
=
|G|+ t̄0(G,C) + 2

4

≤ 2|G|+ t0(G,C) + 4

8
.

So for a given Hamiltonian triangulation, a Hamiltonian cycle C with few type-0 triangles
possibly gives a good upper bound on the domination number in that triangulation. In
general though, the impact of the values of t0(t) is a negative one: the lower bounds given
in Theorem 3.1 show that at least for 4-connected triangulations a direct application of this
method cannot lead to improved bounds for the domination number.

4.2 3-walks with few vertices visited more than once

A k-tree of a graphG is a spanning tree ofG in which every vertex has degree at most k. A
k-walk is a spanning closed walk that visits every vertex at most k times. It is well-known
that a graph that contains a k-walk also contains a (k + 1)-tree, see [8] (but the converse
does not hold in general). Furthermore, the vertices visited k times in a k-walk correspond
to vertices of degree k + 1 in the (k + 1)-tree that is constructed.

Every 3-connected planar graph admits a 3-tree [1] and a 2-walk [6]. The result about
3-trees was strengthened in [12] where it is shown that every 3-connected planar graph G
admits a 3-tree with at most |G|−7

3 vertices of degree 3.
As in the construction of 3-trees from 2-walks in [8], vertices visited twice in a 2-walk

correspond to vertices of degree 3 in the 3-tree, it was natural to consider the following
problem, which was already mentioned in [12].

Problem 4.1. Is there for every 3-connected planar graph G a 2-walk such that the number
of vertices visited twice is at most |G|3 − c for a constant c?

Note that for a 2-walk in a graph G, the number of vertices visited twice is at most t
if and only if its length is at most |G| + t. With this formulation of the problem in mind,
the result that every 3-connected planar graph G contains a spanning closed walk of length
at most 4|G|−4

3 (proven in [10]) can be considered as a first step towards the solution of
Problem 4.1. However, a spanning closed walk constructed in [10] may visit a vertex many
times, so Problem 4.1 is still open.

In this section we describe a different step towards the solution of Problem 4.1, by
limiting the number of times a vertex is visited to 3. The class for which the result is proven
is a subclass of all triangulations, but in fact a class containing cases for which Problem 4.1
would hold with equality. Type-0 triangles play an important role in the construction of the
walks.

In the language of [9] the triangulations in the class of graphs we will describe now are
those triangulations where the so-called decomposition tree is a star. In order not to refer
the reader to [9] and to fix notation, we will give an independent description of the class
here. To simplify notation, we consider K4 also as a 4-connected graph in this section.
Let K be the set of all graphs G that can be constructed as follows: Take any 4-connected
triangulation H and let F be a subset of facial triangles of H . For each facial triangle
f = xyz ∈ F , take a 4-connected plane graph Gf (not necessarily a triangulation) where
the outer face is a triangle and let xf , yf and zf be the three boundary vertices of Gf . Then
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G is obtained from H by adding Gf inside f for f ∈ F , so that x, y, z are identified with
xf , yf , zf , respectively. Except for the case when G is a triangulation with exactly one
separating triangle the graphH is uniquely defined for eachG ∈ K and we writeH(G) for
it. In the case of one separating triangle there are two possible candidates for H and H(G)
denotes an arbitrary one of them.

For example, the face subdivision of a 4-connected triangulation H belongs to K. In
the definition above, F is the set of all facial triangles of H and for any face f we have
Gf ' K4. As in [12, Section 2], the face subdivision of a 4-connected triangulation shows
that we cannot decrease the coefficient 1

3 of |G| in Problem 4.1. So, in this sense, some
graphs in K belong to the most difficult ones for Problem 4.1.

The following result shows that a Hamiltonian cycleC in a 4-connected triangulation T
with small t0(T,C) can be used to construct a 3-walk of short length for the graphs G ∈ K
with H(G) = T . Using Theorem 1.1, in Corollary 4.3 we obtain a general upper bound
depending only on the number of vertices in G.

Theorem 4.2. Let G ∈ K be given and C a Hamiltonian cycle in H = H(G). We write
t′0(H,C) (or short t′0) for the number of those type-0 triangles of H that are not faces in
G. Then G contains a 3-walk of length at most 4|G|+t′0−4

3 which visits each vertex not in H
exactly once.

Proof. Let F,H , and for each facial triangle f ∈ F also Gf , xf , yf , and zf be as in the
definition of K. We denote the length of a walk W by l(W ), and let |R|− = |R| − 3 for a
plane graph R. With this notation we have |G| = |H|+

∑
f∈F |Gf |−.

Claim 4.2.1. For a 4-connected plane graphR where the outer face is a triangle (including
K4) with vertices x, y, z in the boundary and a, b ∈ {x, y, z} (with possibly a = b), there
is a (possibly closed) walk PR,a,b of length |R|− + 1 from a to b in R visiting exactly all
vertices in R except those in {x, y, z} \ {a, b} and visiting vertices not in the boundary
exactly once.

Proof. The case G = K4 can be easily checked by hand, so assume that G is not K4.
If a = b (w.l.o.g. a = b = x) then according to [15, (3.4)] there exists a Hamiltonian

cycle in G − {y, z}, which is a closed walk with the given properties starting and ending
in a.

If a 6= b (w.l.o.g. a = x, b = y), due to [14, Corollary 2] there is a Hamiltonian cycle
C in G through {a, z} and {b, z}. C − {{a, z}, {b, z}} is the walk PG,a,b.

For a given cycle C with a fixed vertex c1 we define a linear order along one of the
directions of C starting from c1 as c1 < c2 < · · · < cn. For each facial triangle f of H we
fix the notation of xf , yf , zf so that xf < yf < zf .

With this notation we have:

Claim 4.2.2. For any two triangles f and f ′ that belong to the same side of C we have
yf 6= yf ′ .

Proof. Assume xf ≤ xf ′ . C is divided into three segments by the vertices xf , yf and zf
and – as xf ′ , yf ′ and zf ′ are all at least xf and smaller than cn, they occur in one of these
segments in the order xf ′ , yf ′ , zf ′ . This implies that only xf ′ and zf ′ can be one of the end
vertices of the segment and yf ′ is in fact different from each of xf , yf and zf .
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We consider the following spanning subgraph H∗C of the dual of H: The vertex set of
H∗C is the set of triangles of H , and two faces are adjacent in H∗C if and only if they share
an edge in C. Note that for i ∈ {0, 1, 2}, a type-i triangle has degree exactly i in H∗C .
In particular, each component of H∗C is an isolated vertex, a path or a cycle. We can give
an orientation to the edges of such a component P ∗, so that each vertex in P ∗, except for
isolated vertices and one of the end vertices when P ∗ is a path, has out-degree one. In
cases where only one end vertex v of such a path P ∗ belongs to F , we choose v to have
out-degree one.

Recall that F is the set of facial triangles of H into which a graph was inserted. We can
partition F into two sets F0 and F1. We define for i ∈ {0, 1}:

F− =
{
f ∈ F | f has out-degree exactly i

}
.

With t′1(H,C) (or short t′1) for the number of those type-1 triangles of H that are no
faces in G our construction gives |F0| ≤ t′0 +

t′1
2 .

Now we modify C using Claim 4.2.1 so that for each triangle f ∈ F it visits each
vertex inside Gf exactly once:

• Suppose that f ∈ F0. Then we add the walk PGf ,yf ,yf
to C. This increases the

length of C by |Gf |− + 1.

• Suppose that f ∈ F1. Let f ′ be the out-neighbour of f , and let {a, b} be the edge in
C that is shared by f and f ′.

Then we replace {a, b} in C by PGf ,a,b. This increases the length of C by only
|Gf |− as one edge in C is also deleted.

The resulting walkC ′ is a 3-walk because, by Claim 4.2.2, the number of times a vertex
is visited is increased by at most 1 for each side of C.

We will first give some equations we will use to compute the length of C ′. For the
given Hamiltonian cycle C we denote t0(H,C), t1(H,C) and t2(H,C), by t0, t1, t2, re-
spectively.

As t0 + t1 + t2 = t(H) = 2|H| − 4 and t2 = t0 + 4 (by Proposition 1.2), we get
|H| = 2t0+t1

2 + 4 ≥ 2t′0+t′1
2 + 4.

As in each face of F at least one vertex is inserted, we get |G| ≥ |H| + t′0 + t′1. So
together with the previous equation |G| ≥ 4t′0+3t′1

2 + 4 =
6t′0+3t′1

2 + 4 − t′0 which can be

rewritten as t′0 +
t′1
2 ≤

|G|+t′0−4
3 we get

l(C ′) = l(C) +
∑
f∈F1

|Gf |− +
∑
f∈F0

(|Gf |− + 1) = l(C) +
∑
f∈F

|Gf |− + |F0|

= |H|+
∑
f∈F

|Gf |− + |F0| = |G|+ |F0| ≤ |G|+ t′0 +
t′1
2

≤ |G|+ |G|+ t′0 − 4

3
=

4|G|+ t′0 − 4

3

This completes the proof of Theorem 4.2.

Using Theorem 1.1(ii) we obtain the following corollary.
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Corollary 4.3. Except for K4, any graph G ∈ K contains a 3-walk of length at most

22|G| − 34

15
.

Proof. Applying the construction of a walk from Theorem 4.2, we get that any graph G ∈
K with K4 = H(G) is Hamiltonian, so we just have to check whether |G| ≤ 22|G|−34

15 ,
which is the case for all graphs except K4 itself (that is if F = ∅).

Assume now that t(H(G)) = 8, so H(G) is the octahedron. If G is Hamiltonian, then
there is a walk of length |G| ≤ 22|G|−34

15 . Otherwise it follows directly from Theorem 16
in [4] that |F | ≥ 4. As that result is still unpublished, one can alternatively use our con-
struction of a walk from Theorem 4.2 together with Theorem 4.1 from [9] to obtain that
|F | ≥ 4. Furthermore one can easily find a Hamiltonian cycle with |F0| ≤ 2. With vi ≥ 4
the number of vertices added inside a triangle of the octahedron, the construction gives a
3-walk with length at most 6 + vi + 2 and 6 + vi + 2 ≤ 22(6+vi)−34

15 for vi ≥ 4. From now
on assume that H(G) has at least 10 faces.

Let C be a Hamiltonian cycle inH = H(G) with t0(H) type-0 triangles. Let t′0 denote
the number of type-0 triangles of C in H that are not faces in G. As each triangle in F
contains at least one vertex, we have that |G| ≥ |H| + t′0. By Theorem 1.1(ii), we get
t40(t(H)) ≤ t(H)−10

3 and

t′0 ≤ t40(t(H)) = t40(2|H| − 4) ≤ 2|H| − 14

3
≤ 2(|G| − t′0)− 14

3

which implies

t′0 ≤
2|G| − 14

5
.

Substituting this into the equation given in Theorem 4.2, we get Corollary 4.3.

5 Correctness of the computer programs used
The programs constructing Hamiltonian cycles and computing t0(·) and t̄0(·) are straight-
forward branch and bound programs that can be obtained from the authors or be down-
loaded from http://caagt.ugent.be/type0/ to check the source code, to check
the computational results in this paper, or to be used otherwise. Two independent programs
were developed and implemented and the results were compared for each of the around
150 000 000 triangulations with up to 30 triangles generated by plantri. There was full
agreement. The computation of t̄0(·) for 5-connected triangulations was done indepen-
dently up to 60 triangles and for larger values only by the faster of the two programs.

References
[1] D. Barnette, Trees in polyhedral graphs, Canad. J. Math. 18 (1966), 731–736, doi:10.4153/

cjm-1966-073-4.

[2] G. Brinkmann and B. D. McKay, Fast generation of planar graphs, MATCH Commun. Math.
Comput. Chem. 58 (2007), 323–357, http://match.pmf.kg.ac.rs/electronic_
versions/Match58/n2/match58n2_323-357.pdf, see also http://cs.anu.
edu.au/˜bdm/index.html.



66 Ars Math. Contemp. 17 (2019) 51–66

[3] G. Brinkmann, J. Souffriau and N. Van Cleemput, On the strongest form of a theorem of Whit-
ney for Hamiltonian cycles in plane triangulations, J. Graph Theory 83 (2016), 78–91, doi:
10.1002/jgt.21915.

[4] G. Brinkmann and C. T. Zamfirescu, Polyhedra with few 3-cuts are hamiltonian, Electron.
J. Combin. 26 (2019), #P1.39 (16 pages), https://www.combinatorics.org/ojs/
index.php/eljc/article/view/v26i1p39.

[5] C. N. Campos and Y. Wakabayashi, On dominating sets of maximal outerplanar graphs, Dis-
crete Appl. Math. 161 (2013), 330–335, doi:10.1016/j.dam.2012.08.023.

[6] Z. Gao and R. B. Richter, 2-walks in circuit graphs, J. Comb. Theory Ser. B 62 (1994), 259–267,
doi:10.1006/jctb.1994.1068.

[7] S. L. Hakimi, E. F. Schmeichel and C. Thomassen, On the number of Hamiltonian cycles in a
maximal planar graph, J. Graph Theory 3 (1979), 365–370, doi:10.1002/jgt.3190030407.

[8] B. Jackson and N. C. Wormald, k-walks of graphs, Australas. J. Combin. 2 (1990), 135–146,
https://ajc.maths.uq.edu.au/pdf/2/ocr-ajc-v2-p135.pdf.

[9] B. Jackson and X. Yu, Hamilton cycles in plane triangulations, J. Graph Theory 41 (2002),
138–150, doi:10.1002/jgt.10057.

[10] K.-i. Kawarabayashi and K. Ozeki, Spanning closed walks and TSP in 3-connected planar
graphs, J. Comb. Theory Ser. B 109 (2014), 1–33, doi:10.1016/j.jctb.2014.04.002.

[11] L. R. Matheson and R. E. Tarjan, Dominating sets in planar graphs, European J. Combin. 17
(1996), 565–568, doi:10.1006/eujc.1996.0048.

[12] A. Nakamoto, Y. Oda and K. Ota, 3-trees with few vertices of degree 3 in circuit graphs,
Discrete Math. 309 (2009), 666–672, doi:10.1016/j.disc.2008.01.002.

[13] M. D. Plummer, D. Ye and X. Zha, Dominating plane triangulations, Discrete Appl. Math. 211
(2016), 175–182, doi:10.1016/j.dam.2016.04.011.

[14] D. P. Sanders, On paths in planar graphs, J. Graph Theory 24 (1997), 341–345, doi:10.1002/
(sici)1097-0118(199704)24:4〈341::aid-jgt6〉3.0.co;2-o.

[15] R. Thomas and X. Yu, 4-connected projective-planar graphs are Hamiltonian, J. Comb. Theory
Ser. B 62 (1994), 114–132, doi:10.1006/jctb.1994.1058.

[16] S.-i. Tokunaga, Dominating sets of maximal outerplanar graphs, Discrete Appl. Math. 161
(2013), 3097–3099, doi:10.1016/j.dam.2013.06.025.

[17] H. Whitney, A theorem on graphs, Ann. of Math. 32 (1931), 378–390, doi:10.2307/1968197.



ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 17 (2019) 67–78
https://doi.org/10.26493/1855-3974.1426.212

(Also available at http://amc-journal.eu)

On the generalized Oberwolfach problem

Andrea C. Burgess ∗

Department of Mathematics and Statistics, University of New Brunswick,
100 Tucker Park Rd., Saint John, NB E2L 4L5, Canada

Peter Danziger †

Department of Mathematics, Ryerson University,
350 Victoria St., Toronto, ON M5B 2K3, Canada

Tommaso Traetta ‡

DICATAM, University of Brescia, via Branze 43, 25123 Brescia, Italy

Received 19 June 2017, accepted 22 April 2019, published online 20 June 2019

Abstract

The generalized Oberwolfach problem OPt(2w + 1;N1, N2, . . . , Nt;α1, α2, . . . , αt)
asks for a factorization of K2w+1 into αi CNi -factors (where a CNi -factor of K2w+1 is a
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Necessarily, N = lcm(N1, N2, . . . , Nt) is a divisor of 2w + 1 and w =
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i=1 αi.

For t = 1 we have the classic Oberwolfach problem. For t = 2 this is the well-studied
Hamilton-Waterloo problem, whereas for t ≥ 3 very little is known.

In this paper, we show, among other things, that the above necessary conditions are
sufficient whenever 2w + 1 ≥ (t + 1)N , αi > 1 for every i ∈ {1, 2, . . . , t}, and
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1 Introduction
We denote by V (G) and E(G) the vertex set and the edge set of a simple graph G, respec-
tively. Also, we denote by tG the vertex-disjoint union of t > 0 copies of G.

A factor F of G is a spanning subgraph of G, namely, a subgraph of G such that
V (F ) = V (G); also, if F is i-regular, we call F an i-factor. In particular, a 1-factor of G
(also called a perfect matching) is the vertex-disjoint union of edges of G whose vertices
partition V (G), while a 2-factor of G is the vertex-disjoint union of cycles whose vertices
span V (G). A 2-factor of G containing only one cycle is usually called a Hamiltonian
cycle. We say that a factor is uniform when its components are pairwise isomorphic. Hence,
a 1-factor is uniform, whereas a 2-factor might not be.

As usual, we denote byKv the complete graph on v vertices; also, we useK∗v to denote
the graph Kv when v is odd and Kv − I , where I is a 1-factor of Kv , when v is even.
Further, we denote by Ks[z] the complete equipartite graph with s parts of size z. Note
that, K∗v ' Kv[1] or Kv/2[2], according to whether v is odd or even, respectively. Finally,
we denote by C` a cycle of length ` ≥ 3 (briefly, an `-cycle), and by (x0, x1 . . . , x`−1)
the `-cycle with edges x0x1, x1x2, . . . , x`−1x0. A uniform 2-factor whose cycles have all
length ` is referred to as a C`-factor.

A 2-factorization of a simple graph G is a set F of 2-factors of G whose edge sets
partition E(G). If F contains only C`-factors, we speak of a C`-factorization of G. It is
well known that a regular graph has a 2-factorization if and only if every vertex has even
degree. However, if we specify t 2-factors, say F1, F2, . . . , Ft, and ask for the factorization
F to contain αi factors isomorphic to Fi, then the problem becomes much harder. Much
attention has been given to the cases where t ∈ {1, 2} and either G = K∗v or G = Ks[z].

For t = 1, we have the “classic” Oberwolfach problem, which is well known to be
hard. A survey of the most relevant results on this problem, updated to 2006, can be found
in [15, Section VI.12]. For more recent results we refer the reader to [6, 9, 11, 29].

Although the Oberwolfach problem is still open, it has been completely solved for
uniform factors when G = K∗v [2, 3, 22] or when G is the complete equipartite graph [24].
We recall these results below.

Theorem 1.1 ([2, 3, 22, 24]). Let `, s and z be positive integers with ` ≥ 3. There exists
a C`-factorization of Ks[z] if and only if ` | sz, (s − 1)z is even, further ` is even when
s = 2, and (`, s, z) 6∈ {(3, 3, 2), (3, 6, 2), (3, 3, 6), (6, 2, 6)}.

For t ≥ 1, we refer to this problem as the generalized Oberwolfach problem. More
precisely, given a simple graph G, given t 2-factors of G, say F1, F2, . . . , Ft, and given
t non-negative integers α1, α2, . . . , αt, the generalized Oberwolfach problem, denoted by
OPt(G;F1, F2, . . . , Ft;α1, α2, . . . , αt), or briefly by OPt(G; (Fi); (αi)), asks for a fac-
torization of G into αi Fi-factors for i ∈ {1, 2, . . . , t}. In the case where each Fi is
uniform, namely, Fi is a CNi -factor, we denote the problem by OPt(G;N1, N2, . . . , Nt;
α1, α2, . . . , αt), or briefly by OPt(G; (Ni); (αi)). Further, we use v in place of G when
G = K∗v . The following necessary conditions are trivial.

Theorem 1.2. If there exists a solution to OPt(G; (Ni); (αi)), then the following condi-
tions hold:

(1) G is regular of degree 2 ·
∑t
i=1 αi,

(2) lcm(N1, N2, . . . , Nt) is a divisor of the order of G.
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The case in which t = 2 is known as the Hamilton-Waterloo problem. Although it
has received much interest recently, it is still open even in the uniform case. Some of the
most important results up to 2006 can be found in [15, Section VI.12]. More recent results
can be found in [4, 7, 8, 10, 12, 13, 16, 23, 25]. For more details and some history on the
problem, we refer the reader to [12, 13].

Much less is known on OPt(v; (Fi); (αi)) when t > 2. In [1, 18, 19] the problem is
solved for odd orders v up to 17, and even orders v up to 10 (see also [15, Sections VI.12.4
and VII.5.4]). In [6] the problem is settled whenever v is even, each Fi is bipartite (namely,
Fi contains only cycles of even length), α1 ≥ 3 is odd, and the remaining αi are even. In
[14, 17] the problem is solved whenever v = pn with p a prime number, t = n, and Fi is a
Cpi -factor, except possibly when p is odd and the first non-zero integer of (α1, α2, . . . , αn)
is 1. A partial asymptotic existence result has recently been given in [20], provided that v
is sufficiently large and α1 scales linearly with v. Further results covering specific cases
can be found in [5, 26, 28].

In this paper, we focus on the “uniform” generalized Oberwolfach problem OPt(v;
(Ni); (αi)). In view of Theorem 1.2, for such a problem to be solvable v must be a multiple
of each Ni and b v−1

2 c =
∑t
i=1 αi; clearly, 1 ≤ t ≤ v−1

2 . Since OPt(v; (Ni); (αi)) has
been solved for t = 1 (Theorem 1.1), from now on we assume that t > 1. Also, we denote
by [a, b] the set of integers from a to b inclusive; clearly, [a, b] is empty when a > b.

The main result of this paper is the following.

Theorem 1.3. Let v ≥ 3 be odd, let 3 ≤ N1 < N2 < · · · < Nt and set N =
lcm(N1, N2, . . . , Nt) and g = gcd(N1, N2, . . . , Nt); also, let α1, α2, . . . , αt be positive
integers. Then, OPt(v; (Ni); (αi)) has a solution if and only if N is a divisor of v and∑t
i=1 αi = v−1

2 except possibly when t > 1 and at least one of the following conditions is
satisfied:

(I) αi = 1 for some i ∈ [1, t];

(II) αi ∈ [2, N−3
2 ] ∪ {N+1

2 } for every i ∈ [1, t];

(III) g = 1;

(IV) v = N .

Given a graph G, G[n] denotes the lexicographic product of G with the complement of
Kn, namely, G[n] is the graph whose vertex set is V (G)× Zn, and two vertices (x, j) and
(y, j′) are adjacent if and only if x and y are adjacent in G.

The proof of the main theorem relies on the solvability of OPt(Cg[n]; (gni); (αi)).
More precisely, we prove the following result.

Theorem 1.4. Let t ≥ 1 and let 1 ≤ n1 < n2 < · · · < nt ≤ n be odd integers such that ni
is a divisor of n for each i ∈ [1, t]. Then OPt(Cg[n]; (gni); (αi)) has a solution whenever
g ≥ 3,

∑t
i=1 αi = n, and αi ≥ 2 for every i ∈ [1, t].

In the next section we introduce some tools and provide some powerful methods which
we use in Section 3 where we prove Theorem 1.4. In Section 4 we prove the main results.

2 Preliminary results
We will make use of the notion of a Cayley graph on an additive group Γ, not necessarily
abelian. Given Ω ⊆ Γ \ {0}, the Cayley graph Cay(Γ,Ω) is a graph with vertex set
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Γ and edge set {γ(ω + γ) | γ ∈ Γ, ω ∈ Ω}. When Γ = Zn this graph is known as
a circulant graph. We note that the edges generated by ω ∈ Ω are the same as those
generated by −ω ∈ −Ω, so that Cay(Γ,Ω) = Cay(Γ,±Ω), and that the degree of each
point is |Ω ∪ (−Ω)|.

Given a subgraph G of Cay(Γ,Ω) and an element γ ∈ Γ, we denote by G + γ the
translate of G by γ, that is, the graph obtained from G by replacing each of its vertices,
say x, with x+ γ. It is not difficult to check that G+ γ is a subgraph of Cay(Γ,Ω). For a
subgroup Σ of Γ, the orbit of G under Σ (briefly, the Σ-orbit of G) is the set OrbΣ(G) of
all distinct translates of G by an element of Σ, that is, OrbΣ(G) = {G+ σ | σ ∈ Σ}. The
Σ-stabilizer of G is the set StabΣ(G) of the elements σ ∈ Σ such that G + σ = G. By
the well-known orbit-stabilizer theorem (see [27, Theorem 5.7]), StabΣ(G) is a subgroup
of Σ of index OrbΣ(G), and therefore |OrbΣ(G)| · | StabΣ(G)| = |Σ|.

Given a set Ω ⊆ Γ, we denote by C`[Ω] (` ≥ 3) the graph with point set Z` × Γ and
edges (j, γ)(1 + j, ω + γ), with j ∈ Z`, γ ∈ Γ and ω ∈ Ω. In other words, C`[Ω] =
Cay(Z` × Γ, {1} × Ω); hence, it is 2|Ω|-regular. It is straightforward to see that if Γ has
order n, then C`[n] ∼= C`[Γ]; hence, C`[Ω] is a subgraph of C`[n]. We call the elements of
Ω (mixed) differences.

Finally, given a set of cycle factors, C, of C`[n], and a set Ω ⊆ Γ we say that C exactly
covers Ω, or C`[Ω], if C is a factorization of C`[Ω].

The following result, which generalizes Theorem 2.11 of [13], provides sufficient con-
ditions for the existence of a solution to OPt(C`[Ω]; (`ni); (αi)), where Ω is a subset of an
arbitrary group Γ of order n and each ni is a positive divisor of n.

Theorem 2.1. Let Γ be an additive group of order n not necessarily abelian, and let 1 ≤
n1 < n2 < · · · < nt ≤ n be odd integers such that ni is a divisor of n for each i ∈
[1, t]; also, let Ω be a subset of Γ, and let α1, α2, . . . αt be non-negative integers such that∑t
i=1 αi = |Ω|. If there exists an |Ω| × ` matrix A with ` ≥ 3 and entries in Ω satisfying

the following properties:

(1) for each i ∈ [1, t] there are αi rows of A whose right-to-left sum is an element of
order ni in Γ,

(2) each column of A is a permutation of Ω,

then OPt(C`[Ω]; (`ni); (αi)) has a solution. Moreover, if we also have that

(3) Ω is closed under taking negatives,

then OPt(Cg[Ω]; (gni); (αi)) has a solution for any g ≥ ` with g ≡ ` (mod 2).

Proof. Let A = [ahk] be an |Ω| × ` matrix with entries from Ω ⊆ Γ and satisfying condi-
tions (1) and (2); also, set σ0 = 0, σi =

∑i
j=1 αj and letRi = [σi−1 + 1, σi] for i ∈ [1, t].

Note that the Ris partition the interval [1, |Ω|] since by assumption σt =
∑t
j=1 αj = |Ω|.

By condition (1) and reordering rows if necessary, we can index the rows ofA whose right-
to-left sum is an element of order ni by the elements ofRi. Thus, we may assume that the
right-to-left sum of the h-th row of A is an element of order ni if and only if h ∈ Ri.

For 1 ≤ h ≤ |Ω| and 1 ≤ k ≤ `, set sh,0 = 0 and sh,k = ah,k + ah,k−1 + · · ·+ ah,1.
Note that sh,` is the right-to-left sum of the h-th row of A and, by the above, sh,` has order
ni if and only if h ∈ Ri; in this case, nish,` = 0 and µsh,` 6= 0 for any µ ∈ [1, ni − 1].
Therefore, for each i ∈ [1, t] and h ∈ Ri, the following `ni-cycle is well defined:
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Ch = (ch0 , c
h
1 , . . . , c

h
ni`−1), where chu+µ` = (u, sh,u + µsh,`), for

u ∈ [0, `− 1], µ ∈ [0, ni − 1].

We start by showing that OrbΓ(Ch), where Γ = {0} × Γ, is a Cni`-factor of C`[n]. First,
note that Ch + (0, sh,`) = Ch; in fact, chw + (0, sh,`) = chw+`, for each w ∈ [0, ni` − 1],
where the subscript w + ` is taken modulo ni`. In other words, addition by (0, sh,`) is
equivalent to a rotation of Ch by `. This means that (0, sh,`) lies in StabΓ(Ch). Since the
order of (0, sh,`) coincides with the order of sh,`, which by assumption is ni, we have that
|StabΓ(Ch)| ≥ ni. Therefore,

|OrbΓ(Ch)| = |Γ|/|StabΓ(Ch)| ≤ n/ni.

Hence, OrbΓ(Ch) contains at most n/ni Cni`-cycles. To show that OrbΓ(Ch) is actually
aCni`-factor ofC`[n], it is then enough to check that it contains all vertices ofC`[n] at least
once. Given the point (u, z) ∈ Z` × Γ, we have that z = sh,u + xu, for a suitable xu ∈ Γ.
Therefore, (u, z) = chu + (0, xu); hence, (u, z) is a vertex of Ch + (0, xu) ∈ OrbΓ(Ch).

We claim thatF = {OrbΓ(Ch) | h = 1, 2, . . . , |Ω|} is a 2-factorization of C`[Ω]. Note
that the factors of F contain between them at most `n|Ω| = |E(C`[Ω])| edges, counted
with their multiplicity. Therefore, it is enough to show that every edge of C`[Ω] lies in
some translate of Ch, for a suitable h. First recall that each edge of C`[Ω] has the form
(u, x)(1 + u, ω + x) for some (u, x) ∈ Z` × Γ and ω ∈ Ω. Since, by assumption, any
column of A = [ahk] is a permutation of Ω, there is an integer h such that ah,u+1 = ω.
Note that (u, sh,u)(1 + u, sh,u+1) ∈ E(Ch) and sh,u+1 − sh,u = ah,u+1 = ω. Therefore,
(u, x)(1 + u, ω + x) is an edge of Ch + (0,−sh,u + x) and the assertion follows.

In order to prove the second part, let g = ` + 2q, Ω = {ω1, ω2, . . . , ω|Ω|}, and let A′

be the |Ω| × 2q matrix defined below:

A′ =


ω1 −ω1 . . . ω1 −ω1

ω2 −ω2 . . . ω2 −ω2

...
...

...
...

ω|Ω| −ω|Ω| . . . ω|Ω| −ω|Ω|

 .
Since Ω = −Ω (condition (3)), it is easy to check that the matrix

[
A A′

]
is an |Ω| × g

matrix satisfying conditions (1) – (2), and this completes the proof.

We point out that while the above theorem is proved for an arbitrary group Γ, in this
paper it is always used when Γ ∼= Zn. Also, note that if t = 1, then Theorem 2.1 constructs
a C`n1

-factorization of C`[T ] or a Cgn1
-factorization of Cg[T ].

The following corollary is a straightforward consequence of the above theorem by tak-
ing Ω = Γ = Zn.

Corollary 2.2. Let t ≥ 1 and let 1 ≤ n1 < n2 < · · · < nt ≤ n be odd integers such
that ni is a divisor of n for any i ∈ [1, t]; also, let α1, α2, . . . , αt be non-negative integers
such that

∑t
i=1 αi = n. If there exists an n × ` matrix A with ` ≥ 3 and entries from Zn

satisfying the following properties:

(1) for each i ∈ [1, t],A has αi rows each of which sums to an element of order ni in Zn,

(2) each column of A is a permutation of Zn,
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then OPt(Cg[n]; (gni); (αi)) has a solution for any g ≥ ` with g ≡ ` (mod 2).

We end this section by recalling the following result proven in [21] which is here stated
in a slightly different, but equivalent, form.

Lemma 2.3 ([21]). Let Γ = {γ1, γ2, . . . , γn} be an additive abelian group of order n,
and let δ1, δ2, . . . , δn be elements of Γ, not necessarily distinct, such that

∑n
i=1 δi = 0.

Then there exist a permutation Ψ of Γ and a permutation π of the interval [1, n] such that
Ψ(γi)− γi = δπ(i) for every i ∈ [1, n].

3 Solving OPt(Cg[n]; (gni); (αi))

In this section, by exploiting our preliminary results, we provide sufficient conditions for
OPt(Cg[n]; (gni); (αi)) to be solvable.

Theorem 1.4. Let t ≥ 1 and let 1 ≤ n1 < n2 < · · · < nt ≤ n be odd integers such that ni
is a divisor of n for each i ∈ [1, t]. Then OPt(Cg[n]; (gni); (αi)) has a solution whenever
g ≥ 3,

∑t
i=1 αi = n, and αi ≥ 2 for every i ∈ [1, t].

Proof. Let αi ≥ 2 for i ∈ [1, t] be integers such that
∑t
i=1 αi = n. Also, let ∆ =

{δ1, δ2, . . . , δn} be the list of elements of Zn defined as follows: set s0 = 0, si =
∑i
j=1 αj

for every i ∈ [1, t], and let

(δsi−1+1, δsi−1+2, . . . , δsi) =


(
n
ni
,− n

ni
, . . . , nni

,− n
ni

)
if αi is even,(

n
ni
,− n

ni
, . . . , nni

,− n
ni︸ ︷︷ ︸

αi−3

, nni
, nni

,− 2n
ni

)
if αi is odd,

for every i ∈ [1, t]. By recalling that n is odd, we have that δsi−1+1, δsi−1+2, . . . , δsi are
all elements of Zn of order ni, and they sum to 0. It follows that the elements of ∆ sum to
0, and Lemma 2.3 guarantees the existence of two permutations Ψ and π of Zn such that
Ψ(i)− i = δπ(i) for every i ∈ Zn.

Now for each ` ∈ {3, 4}, let A` be the n× ` matrix whose i-th row is either[
Ψ(i) − i

2 − i
2

]
or

[
Ψ(i) i −i −i

]
according to whether ` = 3, or 4, respectively. It is not difficult to check that A3 and A4

satisfy the following conditions:

(i) for each i ∈ [1, t], A3 (resp., A4) has αi rows each of which sums to an element of
order ni,

(ii) each column of A3 (resp., A4) is a permutation of Zn.

In other words, A3 and A4 satisfy the assumptions of Corollary 2.2 which guarantees the
solvability of OPt(Cg[n]; (gni); (αi)) whenever g ≥ 3.

We point out that Theorem 1.4 holds also when g = 2. In this case, C2[n] is taken
to be the complete bipartite graph with parts of size n whose edges are taken with multi-
plicity two. This can be seen by following the proof of Theorem 1.4 but using the matrix[
Ψ(i) −i

]
.
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4 Solving OPt(v; (Ni); (αi))

We say that OPt(G; (Ni); (αi)) and OPu(G; (Mj); (βj)) are equivalent if
∑
Ni=x

αi =∑
Mj=x βj for any x ≥ 3. For example, OP4(G; 4, 4, 5, 7; 4, 6, 8, 2) is equivalent to

OP5(G; 4, 4, 4, 5, 7; 2, 3, 5, 8, 2).
Moreover, for any non-negative integer α we define the integer f(α) as follows:

f(α) =
α− ρ

3
, where {0, 2, 4} 3 ρ ≡ α (mod 3).

Clearly, α = 3f(α) + ρ and f(α) ≡ α (mod 2).
The following result provides sufficient conditions for the existence of a solution to

OPt(G; (gni); (αi)) for an arbitrary graph G.

Theorem 4.1. Let t ≥ 2, and let 1 ≤ n1 < n2 < · · · < nt ≤ n be odd integers such
that ni is a divisor of n for each i ∈ [1, t]. Also, let G be a graph having a factorization
into r Cg[n]-factors with g ≥ 3. Then, OPt(G; (gni); (αi)) has a solution whenever the
following conditions simultaneously hold:

(1)
∑t
i=1 αi = rn;

(2) 0 ≤ αi 6= 1 for every i ∈ [1, t];

(3)
∑t
i=1 f(αi) ≥ r;

(4) |{i ∈ [1, t] | αi is odd }| ≤ r
(
2bn−2

6 c+ 1
)
.

Proof. Let n = 6q+ρwhere ρ ∈ {3, 5, 7} and letF = {F1, F2, . . . , Fr} be a factorization
of G into r Cg[n]-factors. We proceed by induction on r. If r = 1, the assertion follows
from Theorem 1.4. Now, let r ≥ 2 and assume that the assertion holds for any graph having
a factorization into r − 1 Cg[n]-factors. It is enough to show that OPt(G; (gni); (αi)) is
equivalent to a problem of the following form:

OPu(G; (Nj); (βj)), where βj ∈ {2, 3} and
r ≤ δ = |{j ∈ [1, u] | βj = 3}| ≤ r(2q + 1).

(4.1)

In fact, assuming this equivalence, we only need define βjs so that OPu(F1; (Nj); (βj))
and OPu(G − F1; (Nj); (βj − βj)) are solvable; it follows that the problem in (4.1), and
hence, the original problem has a solution. We first assume (without loss of generality) that
βj = 3 if and only if j ∈ [1, δ] and consider the following two cases:

1. if δ ∈ [r, r + 2q], set

βj =

{
βj if j ∈ {1} ∪ [δ + 1, δ + n−3

2 ];

0 otherwise;

2. if δ ∈ [r + 2q + 1, r(2q + 1)], we define βj as follows,

βj =

{
βj if j = [1, 2q + 1] ∪ [δ + 1, δ + ρ−3

2 ];

0 otherwise.
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By Theorem 1.4, there exists a solution to OPu(F1; (Nj); (βj)). It is not difficult to check
that OPu(G− F1; (Nj); (βj − βj)) satisfies all the assumption of this theorem, therefore,
by the induction hypothesis, it is solvable.

We now show that OPt(G; (gni); (αi)) is equivalent to a problem of the form (4.1).
We reorder the αis so that the even αis appear first. For every i ∈ [1, t] we define the
quadruple of integers (γ2i−1, γ2i, N2i−1, N2i) as follows:

(γ2i−1, γ2i) =

{
(αi − 3, 3) if αi is odd;

(αi, 0) if αi is even;
N2i−1 = N2i = gni.

It follows that γ1, γ2, . . . , γ2t−d are even, whereas γi = 3 for any i ∈ [2t − d + 1, 2t],
where d = |{i ∈ [1, t] | αi is odd}| is the number of odd αis. We point out that
OPt(G; (gni); (αi)) is equivalent to OP2t(G; (Ni); (γi)); also, since by assumption∑t
i=1 f(αi) ≥ r, it follows that

∑2t
i=1 f(γi) ≥ r.

We first assume that d < r. Now, let k ∈ [1, 2t − d] be the greatest integer such that∑2t
i=k f(γi) ≥ r, and set r′ =

∑2t
i=k+1 f(γi). Clearly, r′ < r; also, r − r′ is even, since:

r ≡ rn =

k∑
i=1

γi +

2t∑
i=k+1

γi ≡
2t∑

i=k+1

γi ≡
2t∑

i=k+1

f(γi) = r′ (mod 2).

We proceed by defining a suitable partition (γi1, γi2, . . . , γi,ti) of the integer γi such that
γij ∈ {0, 2, 3}. First, for each i ∈ [k, 2t] set (qi, ρi) = (f(γi), γi − 3f(γi)) and note that
ρi ∈ {0, 2, 4}. Recall now that γk = 3qk + ρk is even, hence qk is even; also, r − r′ is
even and qk ≥ r− r′. Therefore, γk = 3(r− r′) + 2y where y = 3(qk−r+r′)+ρk

2 . We now
define a partition (γi1, γi2, . . . , γi,ti) of γi as follows:

• if i ∈ [1, k − 1], set ti = γi/2 and γij = 2 for any j ∈ [1, ti];

• if i = k, set ti = r − r′ + y and γij =

{
3 if j ∈ [1, r − r′];
2 otherwise.

• if i ∈ [k + 1, 2t], set ti = qi + 2 and

γij =


3 if j ∈ [1, qi];

0 if (j, ρi) ∈ {(qi + 1, 0), (qi + 2, 0), (qi + 2, 2)};
2 otherwise.

Finally, for any i ∈ [1, 2t] and j ∈ [1, ti] set Nij = Ni and u =
∑2t
i=1 ti. Clearly, the

original problem OP2t(G; (Ni); (γi)) is equivalent to OPu(G; (Nij); (γij)) where γij ∈
{0, 2, 3} and there are exactly r γijs equal to 3. By removing all pairs (Nij , γij) with
γij = 0, we obtain a problem of the form (4.1).

We finally consider the case where d ≥ r. As before, we define a partition
(γi1, γi2, . . . , γi,ti) of the integer γi as follows:

(ti, γij) =

{
(γi2 , 2) if i ∈ [1, 2t− d] and j ∈ [1, γi2 ];

(1, 3) otherwise;
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and set Nij = Ni for any j ∈ [1, ti], and u =
∑2t
i=1 ti. Clearly, the original problem

OP2t(G; (Ni); (γi)) is equivalent to OPu(G; (Nij); (γij)) where γij ∈ {2, 3} and there
are exactly d γijs equal to 3. Since, d ≤ r(2q+1) by assumption, then OPu(G; (Nij); (γij))
is of the form (4.1), and this completes the proof.

We now provide a result for the complete equipartite graph.

Theorem 4.2. Let s, w ≥ 3 be odd integers, let 3 ≤ N1 < N2 < · · · < Nt, and let
α1, α2, . . . , αt be positive integers. If

∑t
i=1 αi = (s−1)w

2 and each Ni is a divisor of w,
then OPt(Ks[w]; (Ni); (αi)) is solvable, except possibly when t > 1 and at least one of
the following conditions is satisfied:

(A) αi = 1 for some i ∈ [1, t];

(B) gcd(N1, N2, . . . , Nt) = 1.

Proof. We assume that t ≥ 2, since the case t = 1 is solved in Theorem 1.1.
Now, set N = lcm(N1, N2, . . . , Nt) and g = gcd(N1, N2, . . . , Nt); also, let ni =

Ni/g, set n = lcm(n1, n2, . . . , nt) and note that N = gn. By assumption, we have that
each Ni is a divisor of w, that is, N is a divisor of w, hence w = gnw for some integer
w > 0. By Theorem 1.1, there exists a Cg-factorization of Ks[gw] with r Cg-factors,
where r = gw(s − 1)/2. By expanding each vertex of this factorization by n, we get a
Cg[n]-factorization F of Ks[gw][n] ∼= Ks[w] with r Cg[n]-factors.

We first assume that n ≥ 7. In this case, to solve OPt(Ks[w]; (Ni); (αi)) it is enough
to show that conditions (1) – (4) of Theorem 4.1 are satisfied. By assumption

∑t
i=1 αi =

(s−1)w
2 = rn, and by exception (A) we have that αi ≥ 2 for every i ∈ [1, t]. Further,

r

(
2

⌊
n− 2

6

⌋
+ 1

)
≥ r(n− 4)

3
=
gw(s− 1)

6
(n− 4) ≥ n− 4 ≥ n

3
,

and since n has at most
⌊
n
3

⌋
distinct divisors, we have that n3 ≥ t, hence r

(
2
⌊
n−2

6

⌋
+ 1
)
≥

t. Finally, we have that

rn =

t∑
i=1

αi ≤
t∑
i=1

(3f(αi) + 4) = 4t+ 3

t∑
i=1

f(αi) < 4r + 3

t∑
i=1

f(αi),

and since n ≥ 7, it follows that
∑t
i=1 f(αi) > r(n − 4)/3 ≥ r. Therefore, all conditions

of Theorem 4.1 are satisfied, hence OPt(Ks[w]; (Ni); (αi)) is solvable.
It is left to consider the cases where n ∈ {3, 5}. Since Ni is a multiple of g and a

divisor of gn, then Ni ∈ {g, gn} for any i. By recalling that N1 < N2 < · · · < Nt and
t ≥ 2, we have that t = 2 and (N1, N2) = (g, gn). Now, let α2 = xn+y where x ≥ 0 and
y ∈ [0, n− 1], and since α2 ≥ 2 (exception (A)), then (x, y) 6= (0, 1). If y 6= 1, we apply
Theorem 1.4 to fill x Cg[n]-factors of F with a solution of OP2(Cg[n]; g, gn; 0, n), one
Cg[n]-factor with a solution of OP2(Cg[n]; g, gn;n − y, y), and the remaining r − x − 1
factors of F with a solution of OP2(Cg[n]; g, gn;n, 0). Similarly, if y = 1, since x > 0
and r ≥ g ≥ 3 (exception (B)), we again apply Theorem 1.4 and fill x − 1 Cg[n]-
factors of F with a solution of OP2(Cg[n]; g, gn; 0, n), one Cg[n]-factor with a solu-
tion of OP2(Cg[n]; g, gn; 1, n− 1), one Cg[n]-factor with a solution of OP2(Cg[n]; g, gn;
n−2, 2), and the remaining r−x−1 factors ofF with a solution of OP2(Cg[n]; g, gn;n, 0).
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We are now ready to prove the main result of this paper.

Theorem 1.3. Let v ≥ 3 be odd, let 3 ≤ N1 < N2 < · · · < Nt and set N =
lcm(N1, N2, . . . , Nt) and g = gcd(N1, N2, . . . , Nt); also, let α1, α2, . . . , αt be positive
integers. Then, OPt(v; (Ni); (αi)) has a solution if and only if N is a divisor of v and∑t
i=1 αi = v−1

2 except possibly when t > 1 and at least one of the following conditions is
satisfied:

(I) αi = 1 for some i ∈ [1, t];

(II) αi ∈ [2, N−3
2 ] ∪ {N+1

2 } for every i ∈ [1, t];

(III) g = 1;

(IV) v = N .

Proof. By Theorem 1.2, if OPt(v; (Ni); (αi)) has a solution, then N is a divisor of v and∑t
i=1 αi = v−1

2 . We now show sufficiency and assume that t ≥ 2, since the case t = 1
is solved in Theorem 1.1. Let v = Ns for a suitable odd integer s. By exception (IV), we
have that s ≥ 3.

We first factorize Kv into G0 = sKN and G1 = Ks[N ]. By exception (II), there exists
k ∈ [1, t] such that either αk = N−1

2 or αi ≥ N+3
2 . Then, we apply Theorem 1.1 to fill G0

with a CNk
-factorization. It remains to solve OPt(G1; (Ni); (αi)) where αi = αi − N−1

2
if i = k, and αi = αi otherwise. By taking into account exceptions (I) and (III), we have
that:

(a) αi 6= 1 for any i ∈ [1, t], and

(b) g ≥ 3.

Therefore, Theorem 4.2 guarantees the solvability of OPt(G1; (Ni); (αi)) and the assertion
is proven.

Corollary 4.3. Let v ≥ 3 be odd, let 3 ≤ N1 < N2 < · · · < Nt, set N = lcm(N1,
N2, . . . , Nt), and let α1, α2, . . . , αt be positive integers. Then, OPt(v; (Ni); (αi)) has a
solution whenever N is a divisor of v,

∑t
i=1 αi = v−1

2 , and the following conditions are
satisfied:

(1) αi 6= 1 for any i ∈ [1, t];

(2) gcd(N1, N2, . . . , Nt) ≥ 3;

(3) v ≥ (t+ 1)N .

Proof. The case t = 1 is solved in Theorem 1.1, therefore, we let t ≥ 2. By condition
(3) and considering that

∑t
i=1 αi = v−1

2 , it follows that there exists k ∈ [1, t] such that
αk ≥ N+3

2 . If we also take into account conditions (1) and (2), we have that all assumptions
of Theorem 1.3 are satisfied, and the assertion follows.

5 Conclusions
This paper deals with the generalized Oberwolfach problem, denoted by OPt(v;N1, N2,
. . . , Nt;α1, α2, . . . , αt), which asks for a 2-factorization of the complete graph Kv into αi
copies of a CNi

-factor, for i ∈ {1, 2, . . . , t}. For a solution of this problem to exist, v must
be odd, each Ni must be a divisor of v, and

∑
i αi = v−1

2 (Theorem 1.2).
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This problem has been widely studied when t = 1 or 2. The case t = 1 represents
the ‘uniform’ Oberwolfach problem which has been solved in 1989 [3]. When t = 2, this
problem is known as the Hamilton-Waterloo problem. Although this version of the problem
is still open, by using techniques similar to those adopted in this paper, the current authors
were able to make significant progress in the challenging case where the cycle lengths are
odd [12, 13].

This paper makes significant progress (Theorem 1.3) on the generalized Oberwolfach
problem by showing that the above necessary conditions suffice whenever v > (t + 1)N ,
each αi is greater than 1, and g ≥ 3, where g = gcd(N1, N2, . . . , Nt) (Corollary 4.3).
This result and its stronger version (Theorem 1.3) rely on Theorem 1.4 which concerns
the existence of a factorization of Cg[n] into αi Cgni -factors for i ∈ {1, 2, . . . , t} (that
is, the generalized Oberwolfach problem over Cg[n]). Theorem 1.4 shows that the trivial
necessary conditions suffice whenever g ≥ 3, and αi > 1 for each i. Clearly, removing
this last condition from Theorem 1.4 would automatically yield a similar improvement of
our main theorem.

More generally, we provide sufficient conditions (Theorem 4.1) for the solvability of
the generalized Oberwolfach problem over an arbitrary graph G. As a consequence, we
provide, with Theorem 4.2, a result for the complete equipartite graph, similar to those
mentioned above.
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Abstract

An H-packing of G is a collection of vertex-disjoint subgraphs of G such that each
component is isomorphic to H . An H-packing of G is maximal if it cannot be extended
to a larger H-packing of G. In this paper we consider problem of random allocation of
a sequential resource into blocks of m consecutive units and show how it can be success-
fully modeled in terms of maximal Pm-packings. We enumerate maximal Pm-packings
of Pn of a given cardinality and determine the asymptotic behavior of the enumerating se-
quences. We also compute the expected size of m-packings and provide a lower bound on
the efficiency of block-allocation.

Keywords: Maximal matching, maximal packing.

Math. Subj. Class.: 05C70, 05A15, 05A16

1 Matchings and packings
A matching M in a graph G is a collection of edges of G such that no two edges from M
have a vertex in common. The number of edges of M is called the size of the matching.
Small matchings are not interesting – they are easy to find and enumerate. Hence, we are
mostly interested in matchings that are as large as possible. There are two ways to quantify
the idea of “large” matchings, one of them based on their cardinality, the other based on
the set inclusion.

A matching M is maximum if there is no matching in G with more edges than M .
The cardinality of any maximum matching in G is called the matching number of G and
denoted by ν(G). The matching number of a graph on n vertices, obviously, cannot exceed
bn/2c, since each edge saturates two vertices. A matching that saturates all vertices of G
is called a perfect matching.
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A matching M in G is maximal if it cannot be extended to a larger matching in G,
i.e., if no other matching in G contains it as a proper subset. Obviously, every maximum
matching is also maximal, but the opposite is generally not true. The cardinality of any
smallest maximal matching in G, denoted by s(G), is the saturation number of G; the
largest size of a maximal matching is, of course, ν(G).

Matchings are natural models for many problems in natural, technical and social sci-
ences. Worth mentioning are applications of perfect matchings in organic chemistry and
solid state physics. For a general background on matching theory and terminology we refer
the reader to the classical monograph by Lovász and Plummer [14]. For graph theory terms
not defined here we also recommend [3, 19].

A closely related concept of packing is a generalization of matching. There are several
varieties of packing; we consider here only the simplest case. An H-packing of G is a
collection of vertex-disjoint subgraphs of G such that each component is isomorphic to H
[3]. Hence, a matching of G is a P2-packing in G, where P2 denotes a path on 2 vertices.
Again, we are interested only in large packings. If a packing is a spanning subgraph, we
say that the packing is perfect; if no other H-packing has more components, the packing is
maximum; finally, if an H-packing cannot be extended to a valid H-packing, we say that it
is a maximal H-packing. The H-packing number and H-saturation number are defined in
the same way as for matchings. When H = Pm we denote these two quantities by νm(G)
and sm(G) and call them the m-packing number and m-saturation number, respectively.
We refer the reader to [12, 13] for some aspects of P3-packings in claw-free and in subcubic
graphs and to [15] for similar problems in directed graphs.

Maximal matchings and packings can serve as models of several physical and technical
problems such as the block-allocation of a sequential resource or adsorption of dimers
and/or polymers on a structured substrate or a molecule. When that process is random, it
is clear that the substrate can become saturated by a number of units much smaller than
the theoretical maximum. The respective saturation numbers provide an information on
the worst possible case of clogging; they measure how inefficient the adsorption or the
allocation process can be. However, in order to assess its efficiency, we also need to know
how likely it is that a given number of units will saturate the substrate. Hence, we must
study the enumerative aspects of the problem.

For the matching case, the question has been answered in [7]. The main goal of this
paper is to contribute to the corpus of knowledge about the enumerative aspects of max-
imal Pm-packings in paths and cycles. Specifically, we compute the efficiency of block-
allocation of length m of a sequential linear or cyclic resource. In some cases we provide
explicit formulas for the number of maximal m-packings of a given cardinality, while in
other cases we establish the recurrences for the enumerating sequences and then use their
uni- and bivariate generating functions to determine their asymptotic behavior.

Finally, in the concluding section we discuss some open problems and indicate some
directions of possible future research.

2 Paths and cycles
2.1 Paths

We remind the reader that throughout this paper Pn denotes the path on n vertices, hence of
length n− 1. As a motivation, we consider a parking lot made of n parallel concrete strips
such that a car can be parked on any two neighboring strips. In ideal situation, when all
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drivers take care and park responsibly, the lot can accommodate bn/2c cars. However, if
the drivers are careless, the lot can become saturated by a smaller number of cars, as shown
in Figure 1. In the worst possible case, it can become saturated by as few as b(n + 1)/3c

Figure 1: A saturated parking lot and the corresponding maximal matching.

cars. Hence, it is of interest to find out how likely is this to happen, and what is the expected
number of cars under the random regime.

In the continuous setting, this problem is known as the random car-parking problem
of Rényi [16, 17], while in discrete setting it has a natural representation as a problem of
maximal matching in Pn, as shown in Figure 1; it was considered in detail in [7], where
its full solution was obtained, including the explicit formulas for the number of different
configurations accommodating a given number of cars. Also, the expected number of cars
under the random regime was computed, and the asymptotic behavior of the sequence
enumerating all possible parking arrangement was determined.

But what happens if we wish to park trucks such that each of them is twice as wide as
a car? Each truck will then consume three consecutive strips, as shown in Figure 2, and the
corresponding graph-theoretical model will not be a matching, but a packing of copies of

Figure 2: A parking lot saturated with trucks.

P3 in Pn. Obviously, the structure of the problem remains the same if instead of parking
lots and cars and trucks we consider any sequential resource of length n which is allocated
in blocks of m ≥ 2 consecutive units. All such situations can be studied as problems of
packing copies of Pm in Pn. We call such a packing an m-packing. In this subsection we
consider the enumerative aspects of m-packings in paths. Before counting them, we state
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(without proof) two results about the smallest and the largest possible size of m-packings
in Pn.

Proposition 2.1. Let Pn be a path on n vertices. Then

sm(Pn) =

⌊
n+m− 1

2m− 1

⌋
and νm(Pn) =

⌊ n
m

⌋
.

We now start counting all maximalm-packings in Pn. Letψ(m)
n,k denote the total number

of maximal m-packings in Pn with exactly k copies of Pm.

Proposition 2.2. The sequence ψ(m)
n,k is given by the recurrence

ψ
(m)
n,k =

2m−1∑
l=m

ψ
(m)
n−l,k−1

for n ≥ 2m− 1 and with the initial conditions

ψ
(m)
0,0 = ψ

(m)
1,0 = · · · = ψ

(m)
m−1,0 = 1

and ψ(m)
l,0 = 0 for all other values of l.

Proof. Let us label the vertices of Pn by v1, . . . , vn. Let vl be the vertex with the highest
label that is covered by a copy of Pm in a maximal m-packing of size k. Clearly, vl ∈
{vn−m+1, . . . , vn} (otherwise there would be enough place to pack one more copy of Pm,
contrary to the assumption of maximality), and the remaining k − 1 copies of Pm must
form a valid maximal packing of Pm of size k − 1 in the remaining portion of Pn, i.e., in
Pl−m+1. The initial conditions count trivial packings of size zero.

From the above recurrence one can immediately compute the bivariate generating func-
tion for the numbers ψ(m)

n,k by multiplying them throughout by xnyk and summing over all
n ≥ 2m− 1, k ≥ 1. We state the result omitting the computational details.

Theorem 2.3. Let Fm(x, y) =
∑
n,k≥0 ψ

(m)
n,k x

nyk be the bivariate generating function of

ψ
(m)
n,k . Then

Fm(x, y) =
pm(x)

1− yqm(x)
,

where pm(x) = 1−xm
1−x and qm(x) = xmpm(x).

Corollary 2.4. The bivariate generating function of ψ(m)
n,k is given by

Fm(x, y) =
1− xm

1− x− xm(1− xm)y
.

The generating function Fm(x) =
∑
n≥0 ψ

(m)
n xn for the sequence enumerating the

total number ofm-packings in Pn is now obtained by substituting y = 1 into the expression
for Fm(x, y).
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Corollary 2.5. The generating function of the sequence enumerating the total number of
maximal m-packings in Pn is given by

Fm(x) =
1− xm

1− x− xm + x2m
.

From the above result we can deduce the recurrence satisfied by ψ(m)
n .

Corollary 2.6. The numbers ψ(m)
n satisfy the recurrence

ψ(m)
n = ψ

(m)
n−m + · · ·+ ψ

(m)
n−2m+1

for n ≥ 2m− 1 with the initial conditions ψ(m)
0 = · · · = ψ

(m)
m = 1 and ψ(m)

m+i = i+ 1 for
1 ≤ i ≤ m− 2.

The numbers ψ(m)
n,k form a triangular array with rows indexed by n and columns indexed

by k. It can be deduced from the form of the bivariate generating function that the columns
are, in fact, shifted rows of the triangle of multinomial (m-nomial) coefficients. Recall that
the (p, q)-th m-nomial coefficient

t(m)
p,q =

bq/mc∑
i=0

(−1)i
(
p

i

)(
p+ q − 1− im

p− 1

)
is the coefficient of xq in (1 + x+ · · ·+ xm−1)p. (See, for example, sequence A035343
in [18] for m = 5.) The observation can be formally stated in the following way.

Corollary 2.7.
ψ

(m)
n,k = t

(m)
k+1,n−mk.

As a consequence, we can obtain formulas for ψ(m)
n,k and ψ(m)

n . We refer the reader
to the On-Line Encyclopedia of Integer Sequences for more details on multinomial coeffi-
cients [18].

Corollary 2.8.

ψ
(m)
n,k =

b nm−kc∑
i=0

(−1)i
(
k + 1

i

)(
n+ k −m(i+ k)

k

)
;

ψ(m)
n =

b nmc∑
k=0

b nm−kc∑
i=0

(−1)i
(
k + 1

i

)(
n+ k −m(i+ k)

k

)
.

Whenm = 2, the above formulas reduce to known results about the number of maximal
matchings [7].

As a further consequence, we note that the number of all maximal m-packings of size
k in all paths is given by mk+1.

Our next goal is to determine the asymptotic behavior of the enumerating sequences
and then use it to compute the expected size of a maximal m-packing in Pn. We rely on
the following version of Darboux’s theorem [2].
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Theorem A. If the generating function f(x) =
∑
n≥0 anx

n of a sequence (an) can be
written in the form f(x) =

(
1− x

w

)α
h(x), where w is the smallest modulus singularity of

f and h is analytic in w, then an ∼ h(w)n−α−1

Γ(−α)wn , where Γ denotes the gamma function.

As a consequence, the expected size of a maximal m-packing in Pn, πm(Pn), can be
computed as

πm(Pn) =
[xn]∂Fm(x,y)

∂y |y=1

[xn]Fm(x, y) |y=1
,

where [xn]F (x) denotes the coefficient of xn in the expansion of F (x).
We refer the reader to [2, 20] for more information on obtaining the asymptotics of a

sequence from its generating function.
We start by observing that Fm(x) = Fm(x, y) |y=1 and ∂Fm(x,y)

∂y |y=1 can be repre-
sented as

Fm(x) =

(
1− x

wm

)−1
pm(x)

wm
1−qm(x)
wm−x

=

(
1− x

wm

)−1

gm(x)

and

∂Fm(x, y)

∂y

∣∣∣
y=1

=

(
1− x

wm

)−2
pm(x)qm(x)[
wm

1−qm(x)
wm−x

]2 =

(
1− x

wm

)−2

hm(x).

Here wm denotes the smallest (and the only) real solution of the equation qm(x) = 1. By
plugging this into Theorem A we obtain following results.

Theorem 2.9. The asymptotics of the number of m-packings in Pn is given by

ψ(m)
n ∼ gm(wm) · w−nm .

Theorem 2.10. The expected size of a maximal m-packing in Pn is given by

πm(Pn) =
1

wmq′m(wm)
n,

where wm is the only real solution of qm(x) = 1.

Now we can define the efficiency of random m-packing in Pn as the quotient of the
expected and the optimal size of an m-packing. Since the size of any largest possible
m-packing in Pn is bn/mc, the efficiency is given by

ε(m) =
m

wmq′m(wm)
.

It is, hence, of interest to investigate the behavior of the above quotient for large values of
n and m. (We will assume that n � m, since the opposite case is not very interesting.)
Numerical computations indicate that it initially decreases from 0.823 for m = 2 and
achieves the minimum value of 0.758317 for m = 9, and then increases slowly (apparently
monotonously) so that for m = 100 it has the value of approximately 0.796. In the rest of
this subsection we show that ε(m) remains bounded from below for all values of m.
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For the beginning, we transform the expression for q′m(x) as follows:

q′m(x) =
mxm−1

1− x
(1− 2xm) +

xm(1− xm)

1− x

=
xm(1− xm)

1− x

[
2m

x
+

1

1− x
− m

x

1

1− xm

]
By plugging in x = wm, the first term on the right-hand side becomes 1, and by multiplying
the resulting equation through by wm, we obtain

wmq
′

m(wm) =

(
2− 1

1− wmm

)
m+

wm
1− wm

.

We would like to estimate the right-hand side and give some upper bound. The first term
never exceeds m; it is enough to note that wm > 1/2 for all m ≥ 2, and from there it
follows 2 − 1

1−wmm
< 2 − 1

1−2−m < 1. In order to bound the second term, we notice that
for large enough values of m we must have wm < 1− 3

m . Indeed, this is equivalent to(
1− 3

m

)m
−
(

1− 3

m

)2m

>
3

m
,

and this is true, since the left-hand side tends to e−3 − e−6 ≈ 0.047308, while the right-
hand side tends to zero. Numerical computations show that “large enough” here means
m = 68. By plugging in the upper bound wn < 1 − 3

m into the second term, we obtain
wm

1−wm < m
3 . Now the right-hand side can be bounded from above by 4m

3 . This gives us a
lower bound on the efficiency.

Proposition 2.11. The efficiency of m-packings is bounded from below. For all m ≥ 2,

ε(m) >
3

4
.

The same argument as above could be used to show that for large enough values of m
and for any real a > 0, an expression of the type 1 − a

m will be an upper bound on wm.
This implies that the right-hand side of the expression for wmq′m(wm) can be bounded
from above by a+1

a m, and consequently, that limm→∞ ε(m) = 1.
Our results indicate that longer blocks achieve better efficiency of random block allo-

cation of a sequential resource. The dependency is rather mild, and the growth is slow. For
example, a hundredfold increase of the block length from m = 1000 to m = 100 000 re-
sults in the moderate increase of efficiency from ε(1000) = 0.844 to ε(100 000) = 0.903.
Still, the block length of nine seems to be a bad choice.

Before we move to the cycles, we mention that our analysis assumes that all packings
are equally probable. It is known for maximal matchings that the efficiency is slightly better
if instead one considers dynamics, i.e., the situation where the dimers arrive sequentially
and try to bind to the substrate [9]. It would be interesting to see how such approach would
affect the efficiency here.

2.2 Cycles

Let us now consider the number of maximal m-packings in a cycle Cn of length n ≥ 3,
n ≥ m. We denote it by ϕ(m)

n , and the number of maximal m-packings in Cn of size k
by ϕ(m)

n,k .
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Proposition 2.12. The numbers ϕ(m)
n,k are given by

ϕ
(m)
n,k = mψ

(m)
n−m,k−1 +

m−1∑
i=1

iψ
(m)
n−2m−1,k−2

for n ≥ 3, k ≥ 2, where ψ(m)
n,k count maximal m-packings of size k in Pn.

Proof. Let us consider vertex vn in Cn. If it is not covered by a copy of Pm in an m-
packing, then it must be in a “hole” of size i for some 1 ≤ i ≤ m − 1. At each side of
the hole there must be a copy of Pm. Hence the remaining k − 2 copies of Pm must form
a valid m-packing in Pn−2m−1, and those are counted by ψ(m)

n−2m−1,k−2. As there are i
holes of size i containing vertex vn, the second term in the right-hand side of the above
expression counts all of them. The first term counts the m-packings in Cn that cover vn by
a copy of Pm.

Proposition 2.13. The numbers ϕ(m)
n satisfy the same recurrence as the numbers ψ(m)

n ,
i.e.,

ϕ(m)
n = ϕ

(m)
n−m + · · ·+ ϕ

(m)
n−2m+1

with the initial conditions
ϕ

(m)
3 = · · · = ϕ

(m)
m−1 = 1

and ϕ(m)
m+i = m+ i for 0 ≤ i ≤ m− 1.

Hence, the asymptotic behavior, the expected size and the efficiency of m-packings in
Cn are the same as in Pn.

3 Future developments
This manuscript presents a systematic attempt to address enumerative aspects of maximal
Pm-packings in some classes of graphs with simple connectivity patterns. It continues the
line of research of a recent paper concerned with maximal matchings [7]. As this is, to the
best of my knowledge, the first paper of this type, it leaves unanswered many questions that
arise in the course of research. In this last section we outline some of the open problems
and suggest some possible directions for future research.

The most natural thing would be to count m-packings in some other families of graphs
with repetitive structure that have low connectivity. Examples of such graphs are cactus
chains, such as those considered in [5, 6, 7]. Due to their simple structure, it is reasonable
to expect that the enumerating sequences will satisfy (rather short) linear recurrences with
constant coefficients, yielding thus to the same type of asymptotic analysis as obtained
here. Besides finding the asymptotics, an interesting problem would be to find the extremal
chains. For maximal matchings (m = 2) the problem is solved for hexagonal cacti and it
would be interesting to see if the pattern persists for larger values of m.

Another promising class could be the so-called thorny graphs. From a given graph G
one obtains the t-thorny graph Tt(G) by appending t pendent vertices to every vertex of
G. When G has a simple structure, the methods of this paper could be employed to obtain
the recurrences for the number of m-packings in Tt(G). As an example, we consider 3-
packings in Tt(Pn).
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Proposition 3.1. Let p(3)
n denote the number of 3-packings in Tt(Pn). Then

p(3)
n =

(
t

2

)
p

(3)
n−1 + 2tp

(3)
n−2 + p

(3)
n−3

for n ≥ 3 with the initial conditions than can be verified by direct computation.

The next step could be to consider linear polymers of connectivity 2. Among them,
the most interesting are without doubt the benzenoid chains. Again, there are some results
for maximal matchings [6, 7] for benzenoid and polyomino chains, but for other classes of
fascia- and rota-graphs [11] not even that case is investigated.

Another direction could be to consider structural and enumerative problems of m-
packings in composite graphs, i.e., in graphs that arise from simpler building blocks via
various binary operations known as graph products. We have considered here one such ex-
ample of low connectivity (the thorny graph, that could be thought of as the corona product
of G and Kt). However, many interesting operations such as, e.g., the Cartesian product,
actually increase the connectivity. It would be too optimistic to expect that complete results
of the type presented here could be obtained in general cases, but we believe that the cases
when one component is a path or a cycle should be feasible. Another interesting problem
would be to determine the m-saturation number of such graphs, in particular for the finite
portions of grids and lattices. Also, nanostructures and fullerenes are natural candidates for
investigation of structural properties related to m-packings. The results would generalize
those for maximal matchings [1, 4].

A graphG is equimatchable [10, 14] if every maximal matching inG is also maximum,
i.e., if all maximal matchings are of the same size. What can be said about equipackable
graphs in which every maximal m-packing is also maximum m-packing?

Finally, it would be interesting to see if packing polynomials and maximal packing
polynomials, modelled after their matching counterparts [7, 8, 14], would be useful in the
study of packing enumeration.
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wyb. Wyspiańskiego 27, 50-370 Wrocław, Poland

Łukasz Jan Wojakowski ‡

Nokia Networks, ul. Lotnicza 12, 54-155 Wrocław, Poland

Received 5 October 2017, accepted 24 January 2019, published online 22 June 2019

Abstract

We study the direct product of automorphism groups of digraphs, where automorphism
groups are considered as permutation groups acting on the sets of vertices. By a direct
product of permutation groups (A, V ) × (B,W ) we mean the group (A × B, V × W )
acting on the Cartesian product of the respective sets of vertices. We show that, except
for the infinite family of permutation groups Sn × Sn, n ≥ 2, and four other permutation
groups, namely D4 × S2, D4 × D4, S4 × S2 × S2, and C3 × C3, the direct product of
automorphism groups of two digraphs is itself the automorphism group of a digraph. In the
course of the proof, for each set of conditions on the groups A and B that we consider, we
indicate or build a specific digraph product that, when applied to the digraphs representing
A and B, yields a digraph whose automorphism group is the direct product of A and B.
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The original problem of Kőnig [20], to describe finite abstract groups that are isomor-
phic to automorphism groups of simple graphs, quickly found an answer due to Frucht [5],
namely, each finite group is isomorphic to the automorphism group of some simple graph.
A related question, asking which permutation groups on a given set are automorphism
groups of graphs on that set of vertices, proved to be much more difficult.

The simplest example of a permutation group that has no graph representation in this
sense is the trivial group on two elements. Both simple graphs on two vertices admit the
full permutation group S2 as automorphisms.

In the present paper, we deal with a generalization of the original problem. We study
permutation group representability on directed simple graphs (digraphs). Note that the
trivial group of the above example, while having no graph representation, obviously does
have a digraph representation.

There are, however, groups that have neither graph nor digraph representations. The
smallest example is the Klein four group S2 × S2 (even symmetries of a square), and that
is despite the fact that both factors do have graph representations. This observation led us
to study the representability of direct products of representable groups.

Our main result is Theorem 2.1 that says that, given two permutation groups (A, V )
and (B,W ) that have digraph representations, their direct product (A × B, V ×W ) also
has a digraph representation, unless A×B is one of the four exceptional groups D4 × S2,
D4×D4, S4×S2×S2,C3×C3, or a member of the infinite family of groups Sn×Sn, n ≥ 2.
It is a digraph counterpart of Theorem 2.10 of [8] by Grech for undirected graphs.

Although it might seem that this generalization should be straightforward, it turns out
that we are in need, in addition to the conclusions of the aforementioned paper, of a whole
collection of new techniques. The reason is that, as we have already seen in the intro-
duction, there are plenty of permutation groups that are not the automorphism groups of a
graph but are the automorphism groups of a digraph with at least one directed edge.

Research on the problem of representability of a permutation group A = (A, V ) as the
full automorphism group of a digraph (graph) G = (V,E) started with studies of regular
permutation groups (see [15, 16, 18, 23, 24, 25, 29, 30], for instance). In particular, it was
established that abelian groups and generalized dihedral groups have no simple graph rep-
resentation. Moreover, 13 other groups with this property were found. The solution of the
problem for undirected graphs was completed by Godsil [7] in 1979. He proved that with
the exception of the groups mentioned above, all other regular permutation groups are au-
tomorphism groups of graphs. For digraphs, L. Babai [1] in 1980 used the result of Godsil,
and proved that, except for the groups S2

2 , S3
2 , S4

2 , C2
3 and the eight element quaternion

group Q, each regular permutation group is the automorphism group of a digraph.
The fact that all digraphs and graphs can be interpreted as complete digraphs (graphs)

in which the edges and non-edges are distinguished by assigning them one of two col-
ors provides motivation for working with edge-colored digraphs (or graphs) rather than
with plain digraphs (graphs). This subject was introduced by H. Wielandt in [32], where
permutation groups that are automorphism groups of edge-colored digraphs were called
2-closed, and those that are automorphism groups of edge-colored graphs were referred to
as 2∗-closed. In [19] Kisielewicz introduced the notion of graphical complexity of permu-
tation groups and suggested studying products of permutation groups in this context. We

E-mail addresses: mariusz.grech@math.uni.wroc.pl (Mariusz Grech), imrich@unileoben.ac.at (Wilfried
Imrich), anna.krystek@pwr.edu.pl (Anna Dorota Krystek), lukasz.wojakowski@nokia.com (Łukasz Jan
Wojakowski)
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denote by DGR(k) (GR(k)) the class of automorphism groups of k-edge-colored digraphs
(graphs), and by DGR (GR), the union of all classes DGR(k) (GR(k)). A k-edge-colored
digraph (graph) is a complete digraph (graph) with every edge colored in one of k colors.
It is obvious that GR(k) ⊆ DGR(k), for every k. Note that the class DGR(2) (GR(2)) is
the class of automorphism groups of digraphs (graphs).

The most general open question in this field is to find all permutation groups that be-
long to the class DGR. Another problem is to describe all the classes DGR(k). Several
results on DGR(k) membership for basic classes of permutation groups are known, see for
instance [1, 12, 34].

A closely connected topic is research on factorization of digraphs, see [3, 6, 22] and the
bibliography given there. The same problem as before is considered, but from a slightly dif-
ferent point of view. Special attention is devoted to homogeneous factorization of complete
digraphs [12, 21].

Also, various products of automorphism groups of digraphs were considered, see for
instance [10, 11, 14, 28, 31]. In particular, in [10], the direct product of automorphism
groups of edge-colored digraphs was studied. One of the results, worked out there, is that,
for k ≥ 2, the direct product (A × B, V × W ) of two permutation groups (A, V ) and
(B,W ) from the class DGR(k) belongs to the class DGR(k + 1).

In [9] the study of the direct product was carried on and gave an improvement of the re-
sult from [10]. It was shown that for k ≥ 3, the direct product of two groups from DGR(k)
is either in DGR(k) or is equal to S3

2 . The same holds for the case of automorphism groups
of edge-colored graphs. The result of the present paper can be seen as an extension of the
above result for the case k = 2.

1 Preliminaries
We assume that the reader has basic knowledge in the areas of graphs and permutation
groups, so we omit an introduction to standard terminology. If necessary, additional details
can be found in [2, 11, 33].

We recall the most important definitions. A digraph G is a pair (V,E), where V is the
set of vertices. The set of oriented edges, E, is a subset of V × V \ {(v, v) : v ∈ V } (the
set of ordered pairs of different elements of V ). By G we denote the complement of G. A
complete digraph with n vertices is denoted by Kn.

An undirected edge is a pair {v, w} such that both (v, w) and (w, v) belong to E. By
d1G(v) we mean the number of undirected edges of the form {v, w}, w ∈ V in a digraph G
(the number of 1-neighbors of the vertex v). We define the number of non-neighbors (or 0-
neighbors) of a vertex v by d0G(v) = d1

G
(v). If a digraph G is regular, then we denote these

numbers d1(G) and d0(G), respectively. A directed edge is an edge (v, w) ∈ E such that
(w, v) 6∈ E. For every v ∈ V , by dfG(v), we denote the number of its forward-neighbors,
that is, of directed edges of the form (v, w), w ∈ V (with (w, v) /∈ E).

In the case when a digraph G has no directed edges, we say that G is an undirected
graph (a graph). For a digraph G we let s(G) denote the undirected graph (shadow graph)
that is obtained from G by replacing all directed edges by undirected ones. We will also
use the notion of weak neighbors of a vertex v in a digraph G, that is, of vertices that
are neighbors of v in s(G). Similarly, a digraph is said to be weakly connected if s(G) is
connected.

We define two products of digraphs G1 = (V1, E1) and G2 = (V2, E2). Their
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Cartesian product G1 �G2 is a digraph G1 �G2 = (V,E), where V = V1 × V2, and
((v1, v2), (w1, w2)) ∈ E if either (v1, w1) ∈ E1 and v2 = w2, or v1 = w1 and (v2, w2) ∈
E2. We say that a digraph is prime if it is not the Cartesian product of two nontrivial
digraphs. It is not hard to show that Cartesian multiplication of graphs is commutative,
associative, and that K1 is a unit.

The second productG1∗G2 = (V,E), first studied by Watkins [28], is a digraph where
V = V1 × V2 and ((v1, v2), (w1, w2)) ∈ E if and only if either (v1, w1) ∈ E1 and v2 =
w2, or v1 6= w1 and (v2, w2) ∈ E2.

For a digraph G with vertex set V ×W , the subdigraphs of G induced by sets V ×{w}
will be called rows, and the subdigraphs induced by sets {v} ×W will be called columns.
An edge that belongs neither to a row nor to a column will be called a slant edge. When
G = G1 �G2, for given v ∈ V (G) and i ∈ {1, 2} we will use the notation layer for the
row or column (image of Gi) containing v and denote it Gv

i .
A permutation σ of the set V is an automorphism of a digraph G = (V,E) (σ ∈

Aut (G)) if, for v, w ∈ V, a pair (v, w) ∈ E if and only if (σ(v), σ(w)) ∈ E. It is obvious
that Aut (G) is a group and that Aut (G) = Aut

(
G
)
.

All groups considered here are groups of permutations. They are considered up to
permutation group isomorphism. Sn denotes the full group of permutations of an n-element
set. By Cn, n > 2, we denote the cyclic group on n elements (i.e. the group generated
by the cycle (1, 2, . . . , n)). And finally, by Dn, n > 2, we denote the dihedral group
acting on an n-element set (i.e. the group generated by (1, 2, . . . , n) and (1, n)(2, n−1) . . .
([n/2], n− [n/2] + 1)).

We define two kinds of products of permutation groups. Let A and B be permutation
groups acting on the sets V and W, respectively. The direct product A × B is the permu-
tation group consisting of the elements {(a, b) : a ∈ A, b ∈ B} acting on the set V ×W
as follows: (a, b)((v, w)) = (a(v), b(w)), for v ∈ V,w ∈W . The group A×A is denoted
A2. A wreath product AwrB acting imprimitively on the set V ×W is the permutation
group consisting of the elements {(a, b1, . . . , bn) : a ∈ A, bi ∈ B,n = |V |} acting on the
set V ×W as follows: (a, b1, . . . , bn)(i, w) = (a(i), bi(w)), where i ∈ {1, . . . , n} = V,
w ∈W. (A acts on the set of columns, B acts on each column independently.)

The class of groups which are the automorphism groups of digraphs with at least one
directed edge will be denoted by EDGR.

Lemma 1.1. Let G be a digraph and v, w, x, y ∈ V (G), such that the only edges joining
any two of them are (v, w), (y, x) ∈ E (G) and {w, y}, {v, x} ∈ E (G). Then, for every
cartesian decomposition of the digraph G = G1 �G2, there is an i ∈ {1, 2} such that all
the arcs between v, w, x, y belong to Gv

i .

Proof. Without loss of generality assume that the layer Gv
1 contains w. Vertex y can now

be in the layer Gv
1 = Gw

1 or in the layer Gw
2 . Assume the latter. Then, x has to be at

the intersection of Gy
1 and Gv

2 , as there are no slant arcs in G, but then the orientations
of (v, w) and (y, x) are inconsistent with the definition of the cartesian product. Hence,
vertex y must be in the layer Gv

1 = Gw
1 . Since the vertex x is a weak neighbor of both

y and v which are in a single layer, it also must belong to that layer, because there are no
slant arcs.

In contrast to the undirected case, where Imrich [14] found a short list of exceptional
graphs for which both the graph and its complement are connected and not prime, for
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digraphs with at least one directed edge there are no exceptions, as the following theorem
shows:

Theorem 1.2. For every digraph G with at least one directed edge either G or G is weakly
connected and prime.

Proof. Assume the digraph G with at least one directed edge is not prime, that is G =
G1 �G2. We have to show that G is weakly connected and prime.

Let (v, w) = ((v1, v2), (w1, w2)) ∈ E (G) be one of the directed edges of G. Without
loss of generality, assume that (v1, w1) ∈ E (G1) and v2 = w2. Since the cartesian decom-
position is not trivial, there exists a vertex v′2 ∈ V (G2), v′2 6= v2. Then ((v1, v

′
2), (w1, v

′
2))

is also a directed edge in E(G). If between (v1, v
′
2) and (v1, v2) there is no edge or there

is a directed edge, then it is easy to see that the subdigraph of G induced by the vertices
(w1, v2), (v1, v2), (w1, v

′
2), (v1, v

′
2) contains edges (directed or undirected) between ev-

ery pair of vertices, and therefore belongs to a single layer of G. If there is an undirected
edge between (v1, v

′
2) and (v1, v2) then the same holds by Lemma 1.1. Now, all other

vertices of G can be split into three categories according to their adjacence in G to the ver-
tices (w1, v2), (v1, v2), (w1, v

′
2), (v1, v

′
2). First, those in Gv

1 are neighbors of both (v1, v
′
2)

and (w1, v
′
2), and those in G(v1,v

′
2)

1 are neighbors of both (v1, v2) and (w1, v2). Second,
those in Gv

2 are neighbors of both w and (w1, v
′
2) and those in Gw

2 are neighbors of both v
and (v1, v

′
2). Third, all other vertices are neighbors of all four vertices (w1, v2), (v1, v2),

(w1, v
′
2), (v1, v

′
2).

Because a vertex can be a neighbor of two vertices in one and the same layer only if it
also belongs to that layer, we conclude that all vertices in G belong to a single layer, so G
is prime. It is easy to see that it also is weakly connected.

Assume now thatG is prime and not weakly connected. Its complementG is connected.
If G were not prime, then, by the previous paragraph, G = G would have to be weakly
connected, contrary to assumption. Thus G is weakly connected and prime.

In what follows we need a result analogous to the Sabidussi-Vizing [26, 27] theorem
about the automorphism group of the Cartesian product of connected coprime graphs. To
prove it, we use a result on unique prime factorization of digraphs with respect to the
Cartesian product. This result can be traced back to Feigenbaum [4], but for an easy proof
in a more general setting we refer to the recent paper by Imrich and Peterin [17]:

Theorem 1.3. Every weakly connected digraph has a unique prime factor decomposition
with respect to the Cartesian product.

We can now state our two simplified versions of the Sabidussi-Vizing theorem for
digraphs.

Theorem 1.4. Let G,H be non-isomorphic weakly connected digraphs, where |V (G)| ≥
|V (H)| and G is prime. Then Aut (G�H) = Aut (G)×Aut (H).

Proof. It is clear that Aut (G)×Aut (H) ⊂ Aut (G�H). We shall prove the opposite
inclusion. To that end, it suffices to show that every a ∈ Aut (G�H) maps G-layers to
G-layers and H-layers to H-layers in G�H .

We know that Aut (G�H) ⊂ Aut (s (G�H)) and, in general, the factors of the
shadow graph s(G�H) = s(G)� s(H) need not be prime. Take a ∈ Aut (G�H).
A G-layer in G�H has the form G� {h} for h ∈ V (H). Consider s (G� {h}), a
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cartesian product of subgraphs of s (G) and s (H). Using the terms defined in Chapter 6
of [13], it is a convex subgraph of the shadow graph s (G�H), and so, by a corollary
that leverages the convexity preserving property of automorphisms, obtained as a step in
the proof of Theorem 6.8 therein (first paragraph on page 69), the image of s (G� {h})
under the automorphism a is again a cartesian product of subgraphs of s (G) and s (H),
that is, a(s (G� {h})) = s (G1)� s (H1), where G1 ⊂ G and H1 ⊂ H . But, since
the vertex sets of the shadows are the same as those of the digraphs, we also have that
a(G� {h}) = G1 �H1. Suppose |V (G1)| = 1, that would imply that H1 = H with
|V (H)| = |V (G)| and that G is isomorphic to H , which is contrary to assumption. Now
suppose that 1 < |V (G1)| < |V (G)|. This would imply that the digraphG has a nontrivial
cartesian product decomposition, which is also contrary to assumption. We are, thus, left
with the case |V (G1)| = |V (G)|, which proves that a maps G-layers to G-layers.

Because we have no slant arcs and H is weakly conected this means that a maps H-
layers into H-layers.

Theorem 1.5. LetG be a weakly connected, prime digraph with at least one directed edge.
Let H be an undirected and connected graph. Then Aut (G�H) = Aut (G)×Aut (H).

Proof. Similarly as above, we get that a(s (G� {h})) = s (G1)� s (H1). We do not
assume that the digraph G has at least as many vertices as H , so we need to exclude the
case |V (G1)| = 1 differently. Here this would imply that G is a subgraph of H , but this
is not possible as G has a directed edge while H does not. The conclusion follows as
above.

The following proposition is modelled on an observation made in the proof of Theo-
rem 6 of Watkins [28]:

Proposition 1.6. Let G1 = (V1, E1) and G2 = (V2, E2) be digraphs where G2 is weakly
connected. Suppose that every automorphism a of the digraph G = G1 ∗ G2 maps rows
onto rows. Then Aut (G) = Aut (G1)×Aut (G2).

Proof. Let w1 and w2 be weak neighbors in G2 and let v ∈ V1 be arbitrarily chosen. Write
a(v, wi) = (a1(v, wi), a2(v, wi)). Since rows are mapped onto rows, a2 does not depend
on v. Hence, a2 ∈ Aut (G2).

By the definition of the ∗-product, (v, w2) is the only vertex in G
(v,w2)
1 that is not

weakly adjacent to (v, w1). Hence a(v, w2) = (a1(v, w2), a2(w2)) is the only vertex in
G

a(v,w2)
1 that is not weakly adjacent to (a1(v, w1), a2(w1)), so a1(v, w1) must be equal

to a1(v, w2). By the weak connectivity of G2 this means that a1 only depends on v. It is
easily seen that it is an automorphism of G1. Thus, for any (v, w) ∈ V (G) we conclude
that a(v, w) = (a1(v), a2(w)), where a1, a2 are a automorphisms of G1, resp. G2.

2 Main result
The following theorem settles the problem when the direct product of automorphism groups
of digraphs is an automorphism group of a digraph.

Theorem 2.1. Let A,B ∈ DGR(2). Then A× B ∈ DGR(2), unless A× B is D4 × S2,
D4 ×D4, S4 × S2 × S2, C3 × C3, or one of the groups Sn × Sn, n ≥ 2.
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The proof is broken up into a series of lemmas. Let us note first that we are given
permutation groups A = (A, VA), B = (B, VB) and graphs GA = (VA, EA), GB =
(VB , EB), where Aut (GA) = A and Aut (GB) = B. Since Aut (G) = Aut

(
G
)

for any
G we may assume without loss of generality that both GA and GB are weakly connected.
Moreover, by Theorem 1.2 we may also assume that they are prime if they have at least one
directed edge.

We begin by extending Theorem 2.10 of [8] by Grech for undirected graphs to directed
graphs.

Lemma 2.2. Let A,B ∈ GR(2). Then A×B ∈ DGR(2) if and only if A×B ∈ GR(2).

Proof. By Theorem 2.10 of [8], A × B ∈ GR(2), unless A × B is D4 × S2, D4 × D4,
S4×S2×S2 or Sn×Sn, for n ≥ 2. In the exceptional cases the pair (v2, v1) belongs to the
orbit of the pair (v1, v2) in the natural action of the group (A×B, V ) on pairs of elements
of V . Thus, every digraph G such that A × B ⊆ Aut (G) has to be an undirected graph.
Hence, in all the cases, A × B ∈ DGR(2) would imply A × B ∈ GR(2). Consequently,
in the exceptional cases, A×B 6∈ DGR(2).

Notice that this takes care of all exceptional groups of Theorem 2.1 that are different
from C3 × C3. The proof also shows that in what follows it suffices to consider only the
cases where either A or B admits a digraph representation with at least one directed edge.
We can thus assume without loss of generality that A ∈ EDGR.

Lemma 2.3. Assume that A,B are non-isomorphic groups, where A ∈ EDGR and B ∈
DGR(2). Then Aut (GA �GB) = Aut (GA)×Aut (GB)

Proof. As noted above, GA and GB can be chosen to be weakly connected, the comple-
ment being taken if necessary, with GA being prime. Then, if B ∈ EDGR so that GB can
also be chosen to be prime, the proof follows from Theorem 1.4, and from Theorem 1.5
otherwise.

This means that we can assume that B ∼= A. Moreover, if we are able to find two
non-isomorphic weakly connected digraphs, at least one of which is prime, with the same
automorphism group A, then Theorem 1.4 also gives us a positive answer.

It therefore remains to consider the case A×A, where A is the automorphism group of
a weakly connected prime digraph GA with at least one directed edge. In other words, we
can assume that A ∈ EDGR and that GA is prime.

Lemma 2.4. Let A ∈ EDGR with prime GA. If A is intransitive, then A×A ∈ DGR(2).

Proof. We consider two copies Gr = (Vr, Er) and Gc = (Vc, Ec) of GA and will define a
digraph G = (Vr × Vc, E) such that Aut (G) = A × A. We call Gr the row copy and Gc

the column copy of GA.
SinceA is intransitive, GA 6= K|VA|. LetW ⊂ Vc be one of the orbits ofA in its action

on Gc. The edge set E of the digraph G = (Vr × Vc, E) is then defined as the set of all
pairs ((vr, vc), (wr, wc)) satisfying one of the following conditions:

(a) (vc, wc) ∈ Ec and vr = wr;

(b) vc = wc and

• either vc ∈W
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• or vc 6∈W , and (vr, wr) ∈ Er.

Notice that there are no slant edges and that the subgraphs induced by the columns
{vr} × Vc are isomorphic toGA, whereas the the subgraphs induced by the rows Vr×{vc}
are isomorphic to K|VA| if vc ∈W , otherwise they are isomorphic to GA.

In other words, Vr ×W induces the Cartesian product K|VA|� 〈W 〉, where 〈W 〉 de-
notes the subgraph of GA induced by W , and Vr × {Vc \W} induces GA � 〈Vc \W 〉.

It is easy to see that A × A ⊆ Aut (G). We have to prove the converse. To that end it
suffices to show that Aut (G) maps rows onto rows and columns onto columns.

Consider a row Vr × {vc}, where vc ∈ W . The row induces a complete subgraph.
Because we have no slant edges, automorphisms can only map it into rows or columns. As
all rows and columns have the same number of vertices and since GA 6= K|VA|, it can only
be mapped onto a Vr × {wc}, where wc ∈W .

We will now prove that automorphisms of G map columns onto columns. Pick a vc ∈
W to single out one of the rows of W , and let (wr, wc) be any vertex of G. As there are
no slant edges in G, the paths realizing the weak distance of (wr, wc) to points (vr, vc) in
the chosen row will be built of column edges and row edges. By analogy to the reasoning
behind the distance formula for the cartesian product, the column edges of any such path
projected onto the column graph Gc will form a weak path from wc to vc in Gc, just as in
a cartesian product, but the row edges can go through regular rows or through K|VA| rows.
When vr equals wr, row edges are eliminated. That means that given a vertex (wr, wc)
there is a unique vertex in the chosen row Vr × {vc}, to which weak distance ρ in G is
minimal, this unique vertex (wr, vc) is in the same column as (wr, wc) and is unique in the
above sense for all vertices (wr, wc) of that column.

Consider now an automorphism a ∈ Aut (G). We already know that it will map the
row Vr × {vc} onto some other row Vr × {xc}. If the vertices (xr, xc) = a(wr, vc) and
(yr, yc) = a(wr, wc) were in different columns, that is if xr 6= yr, there would be a vertex
(yr, xc) in row xc closest to (yr, yc) and different than (xr, xc):

ρ ((xr, xc), (yr, yc)) > ρ ((yr, xc), (yr, yc)) ,

while after having applied a−1 on both sides we would get

ρ ((wr, vc), (wr, wc)) > ρ ((w′r, vc), (wr, wc)) ,

withw′r 6= wr because of xr 6= yr, but that cannot be true. Hence, any automorphism maps
columns onto columns, as vertices of G follow their closest vertices in the chosen row.

Since column edges are mapped by automorphisms onto column edges, row edges are
mapped only to row edges, thus, the only way the image of a row can preserve its weak
connectedness is for automorphisms to map entire rows onto entire rows.

Lemma 2.5. Let A ∈ EDGR with prime GA. If A is transitive and |VA| ≤ 4, then
A×A ∈ EDGR unless A = C3.

Proof. The group A is one of C3 and C4. By a result of Babai [1], C3 × C3 /∈ EDGR.
C4 × C4 ∈ EDGR by Theorem 1.4 for GC4 and GC4 .

Observe that this takes care of the last exceptional case of Theorem 2.1.

Lemma 2.6. Let A ∈ EDGR with prime GA, where A is transitive and |VA| > 4. If GA

is weakly connected, then A×A ∈ EDGR.
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Proof. Denote n = |VA|. Since the graph GA is weakly connected, we only need to
consider the case GA

∼= GA (otherwise the conclusion follows from Theorem 1.4). This
implies that d0(GA) = d1(GA). Because GA is not undirected, we infer that 2df (GA) >
1. Then d0(GA) + d1(GA) + 2df (GA) = n− 1 implies 2d1(GA) = 2d0(GA) < n− 2.

We shall now prove that the graph G = Gr ∗ Gc, where Gr = (Vr, Er) and Gc =
(Vc, Ec) are copies of GA, has the property Aut (G) = A × A. To this end, we will
show that every undirected edge that is contained in a row is mapped, under the action of
Aut (G), onto an undirected edge which is contained in a row, and that the same is true for
directed edges.

Let us compare the numbers of the common 1-neighbors of the ends of an undirected
edge which is contained in a row, with the same number for the ends of an undirected slant
edge. Denote the ends of the edge e by (vr, vc) and (wr, wc). If e is contained in a row
(vc = wc), then the common 1-neighbors of (vr, vc) and (wr, wc) are those contained in
that row, together with all but two vertices in rows corresponding to 1-neighbors of vc = wc

in Gc, hence their number is equal to

N1
Gr

(vr, wr) + (n− 2)d1(Gc), (2.1)

where N1
Gr

(vr, wr) is the number of common 1-neighbors of the vertices vr and wr (in
Gr). If e is a slant edge, the common 1-neighbors of (vr, vc) and (wr, wc) are the 1-
neighbors contained in both rows (excluding the vertex directly in front of the other end
if it also is such a 1-neighbor), together with all but two vertices in rows corresponding to
common 1-neighbors of both vc and wc in Gc. Thus, their number is

(n− 2)N1
Gc

(vc, wc) + 2d1(Gr)− 2δ, (2.2)

where N1
Gc

(vc, wc) is the number of common 1-neighbors of the vertices vc and wc (in
Gc), and δ ∈ {0, 1}.

The assumption that the numbers (2.1) and (2.2) are equal, implies

(n− 2)(d1(Gc)−N1
Gc

(vc, wc)) +N1
Gr

(vr, wr)− 2d1(Gr) + 2δ = 0.

Since d1(Gc) > N1
Gc

(vc, wc) and 2d1(Gr) < n−2, it cannot be true. Hence, an undirected
edge which is contained in a row cannot be mapped onto a slant undirected edge. Since
there are no undirected edges in columns of a ∗-product, the set of the undirected edges
that are contained in the rows is preserved by automorphisms.

We continue with a similar calculation for directed edges. Let e be a directed edge with
ends as above. If e is contained in a row, then by similar reasoning as in the undirected
case, the number of common forward-neighbors of (vr, vc) and (wr, wc) equals

Nf
Gr

(vr, wr) + (n− 2)df (Gc), (2.3)

where Nf
Gr

(vr, wr) is the number of common forward-neighbors of the vertices vr and wr

(in Gr). If e is a slant edge, then this number is

(n− 2)Nf
Gc

(vc, wc) + df (Gr)− δ, (2.4)

where Nf
Gc

(vc, wc) is the number of common forward-neighbors of the vertices vc and wc

(in Gc), and δ ∈ {0, 1}.
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If it were possible for an automorphism from Aut (G) to map a directed slant edge onto
a directed row edge, the numbers (2.3) and (2.4) would need to be the same, which would
imply

(n− 2)(df (Gc)−Nf
Gc

(vc, wc)) +Nf
Gr

(vr, wr)− df (Gr) + δ = 0. (2.5)

If e = ((vr, vc), (wr, wc)) is a directed slant edge, then (vc, wc) is a directed edge of Gc.
The equality df (Gc) = Nf

Gc
(vc, wc) would then imply that the set of forward-neighbors

of each of the vertices vc and wc be identical, but this cannot be true, since wc is a forward-
neighbor of vc but not of itself. Hence, df (Gc) > Nf

Gc
(vc, wc). Note that since A is

transitive, every vertex has as many backward neighbours as forward neighbours. Therefore
since n > 4, we infer df (Gr) < n − 2. Thus, equation (2.5) cannot be true and the set of
directed edges that are contained in rows is preserved by automorphisms also in this case.
BecauseGA is weakly connected, it follows by Proposition 1.6 that Aut (G) = A×A.

Lemma 2.7. Let A ∈ EDGR, with prime GA, be transitive. If GA is disconnected, then
A×A ∈ EDGR.

Proof. We first consider the structure of GA. Because A is transitive, the subgraphs of
GA induced by the vertices belonging to common weakly connected components of GA

are isomorphic, so VA = W ′ ×W , where the weakly connected components of GA are
grouped as columns, with column size s = |W | = n/t, where t = |W ′| ≥ 2 is the number
of weakly connected components of GA. Thus, the group A acts on the set of columns
as St, and on every column independently as some A1, hence A = St wrA1. Since there
are no edges between columns of GA we infer that (v, w) ∈ E(GA) if v and w belong
to different columns. Because A is transitive, and GA is not undirected, we conclude that
either s ≥ 4 or A1 = C3.

In the latter case, we define G = Gr ∗ Gc, where both Gr and Gc are isomorphic to
GA. Then, it is easy to see that the ends of the undirected edges in the rows have common
forward-neighbors, and the ends of the undirected slant edges do not. Since the undirected
edges in rows form spanning connected subgraphs of the rows, Aut (G) maps rows onto
rows. By Proposition 1.6 we conclude that Aut (G) = A×B.

In the case s ≥ 4, we define a graph G = (Vr × Vc, E) such that ((vr, vc), (wr, wc))
is in E if either vc = wc and (vr, wr) ∈ E(Gr) or (vc, wc) ∈ E(Gc), vr 6= wr, and the
vertices vr and wr belong to the same weakly connected component in Gr.

If a connected graph H has a disconnected complement, then the subgraphs of H that
are induced by the vertices of the weakly connected components ofH are sometimes called
Zykov components of H . Our graph G thus consists of t copies of the R ∗Gc, where R is a
Zykov-component of Gr, and the row-edges that are not in a copy of R ∗Gc. We say these
row-edges are of type Q.

We wish to show that Aut (G) = A × A. It is easy to check that A × A ⊆ Aut (G).
We have to prove that the converse also holds. To this end, we count the common weak
neighbors of the ends of the edges that are contained in a row. These edges have the form
{(vr, vc), (wr, wc)}, where vc = wc. If vr and wr do not belong to the same Zykov
component in Gr, then these edges are of type Q. The number of common weak neighbors
of the endpoints of edges of type Q is

x = (t− 2)s+ 2dW , (2.6)



M. Grech et al.: Direct product of automorphism groups of digraphs 99

where dW is the number of those weak neighbors of a vertex in Gr that belong to the same
Zykov component of Gr. (The notation dW is chosen, because all Zykov components are
isomorphic to W as defined in the beginning of the proof.) For row-edges that are not of
type Q the number of common weak neighbors of their endpoints is

y = (t− 1)s+NW (vr, wr) + (s− 2) ((t− 1)s+ dW ) , (2.7)

where NW (vr, wr) is the number of the common weak neighbors of the vertices vr and wr

in their Zykov component. Since x < (t− 1)s+ dW , it is obvious that x < y.
Moreover, the number of common weak neighbors of the ends of the slant edges of G

is
2(dW − ε) + (s− 2)NW (vc, wc) + (s− 2)(t− 1)s

for some ε ∈ {0, 1} if the endpoints of {vc, wc} ∈ E(Gc) belong to the same Zykov
component of Gc, and

2(dW − ε) + 2(s− 2)dW + (s− 2)(t− 2)s

for some ε ∈ {0, 1} if the endpoints of {vc, wc} ∈ E(Gc) belong to different Zykov
components of Gc. It is easy to see that under our assumptions both numbers are strictly
greater than x. Observe that the graph G has no edges that are contained in its columns.

This calculation implies that Aut (G) preserves the set of edges of type Q. Since these
edges form spanning subgraphs for all graphs induced by the rows ofG, every a ∈ Aut (G)
maps rows of G onto rows. Moreover, a maps any copy of a Zykov component of Gr that
is contained in a row in G onto a copy of a Zykov component of Gr that is contained in the
image of that row.

To complete the proof, we have to show that each column of G is mapped onto a
column. If we remove edges of typeQ we are left with t identical subgraphsRi ∗Gc where
i = 1, . . . , t. As any automorphim a of G maps rows into rows, it also maps subrows of
the form Ri × {vc} into subrows of the same form Rj × {a(vc)}.

Note that by assumptionR has s ≥ 4 vertices. Thus, everyRi∗Gc is weakly connected.
From this we infer that automorphisms of G map entire subgraphs Ri ∗ Gc onto entire
subgraphs Rj ∗Gc, as in G there are no slant edges between vertices belonging to different
Zykov components.

Call subrowsRi×{vc} andRj×{wc} ofG adjacent if there is an edge or directed edge
between some vertices of them, that is, when there is an edge or a directed edge between
vc and wc in Gc and i = j.

If Ri × {vc} and Ri × {wc} are adjacent, so are Rj × {a(vc)} and Rj × {a(wc)} and
the non-edges between vertices of the subrows are mapped to non-edges between vertices
of the images of the subrows. But the non-edges of adjacent subrows span subgraphs that
are isomorphic to copies of Gc and whose vertex sets are the columns. Therefore, columns
of G are mapped onto columns.

This also completes the proof of the main theorem.
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Abstract

A signed graph is called integral if its spectrum consists entirely of integers, it is
r-regular if its underlying graph is regular of degree r, and it is net-balanced if the dif-
ference between positive and negative vertex degree is a constant on the vertex set (this
constant is called the net-balance and denoted %). We determine all the connected integral
3-regular net-balanced signed graphs. In the next natural step, for r = 4, we consider only
those whose net-balance is a simple eigenvalue. There, we complete the list of feasible
spectra in bipartite case for % 6= 0 and prove the non-existence for % = 0. Certain ex-
istence conditions are established and the existence of some 4-regular (simple) graphs is
confirmed. In this study we transferred some results from the theory of graph spectra; in
particular, we give a counterpart to the Hoffman polynomial.

Keywords: Signed graph, switching equivalent signed graphs, adjacency matrix, net-balanced signed
graph.
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1 Introduction
A signed graph Ġ is obtained from a (simple) graph G by accompanying each edge e
by the sign σ(e) ∈ {1,−1} (chosen in any way for any edge). The (multiplicative) sign
group {1,−1} can also be written {+,−}. We say that G is the underlying graph of Ġ.
The set of vertices of Ġ is denoted V (Ġ). The number of vertices and the number of edges
of Ġ are denoted n and m, respectively. Clearly, every graph can be interpreted as a signed
graph.
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The n × n adjacency matrix AĠ of Ġ is obtained from the standard (0, 1)-adjacency
matrix of G by reversing the sign of all 1’s which correspond to negative edges. The
eigenvalues of AĠ are real and form the spectrum of Ġ. A detailed introduction to spectra
of signed graphs can be found in [7, 10].

A graph is integral if its spectrum consists entirely of integers. The problem of identi-
fying such graphs was posed by Harary and Schwenk [3] in 1974. Since then, a number of
results concerning integral graphs have appeared in various references, including research
articles, thesis and book chapters (not listed here).

Integral signed graphs are defined in the same way. Transferring the problem to the
domain of signed graphs – to the author’s knowledge, no one has considered this problem
for signed graphs – results in various solutions, some of them having interesting and, at
first glance, interesting properties. For example, the signed graph illustrated in Figure 1
is integral and has only two eigenvalues: 2 and −2 (both with multiplicity 3). Moreover,
every switching equivalent signed graph is also integral (since it has the same spectrum;
see the next section for the details).

Figure 1: An integral signed graph. (Here and following, negative edges are dashed.)

Our results are announced in the abstract. In Section 2 we introduce the terminology
and notation, and give some preliminary results. Sections 3 and 4 are devoted to integral
signed graphs which are 3-regular and 4-regular, respectively. An existence condition and
certain integral 4-regular (simple) graphs are established in Section 5.

2 Preliminaries
We write d+i and d−i for the positive and negative vertex degree (i.e., the number of posi-
tive and negative edges incident with i). The existence of a positive (resp. negative) edge
between the vertices i and j is designated by i +∼ j (resp. i −∼ j).

A walk in a signed graph is a sequence of alternate vertices and edges such that the
consecutive vertices are endpoints of the corresponding edge. A walk is positive if the
number of its negative edges (with possible repetitions) is not odd. Otherwise, it is negative.
Since every cycle in a signed graph is a walk, we may talk about positive or negative cycles,
as well.

We say that a signed graph is bipartite or regular (of degree r) if the same holds for its
underlying graph. (There is a different approach for regularity in [10].) The spectrum of a
bipartite signed graph is symmetric with respect to the origin. The net-balance of a vertex



Z. Stanić: Integral regular net-balanced signed graphs with vertex degree at most four 105

i is defined by d+i − d
−
i . We also say that a signed graph is net-balanced if the net-balance

is a constant on the vertex set; in that case the net-balance is denoted %.
For U ⊂ V (Ġ), let ĠU be the signed graph obtained from Ġ by reversing the sign of

each edge between a vertex in U and a vertex in V (Ġ) \U . The signed graph ĠU is said to
be switching equivalent to Ġ. Switching equivalent signed graphs share the same spectrum.

The reverse rev(Ġ) of Ġ is obtained by reversing the sign of all edges of Ġ.
We use the following facts without proofs (for details, see [8, 10]):

• The eigenvalues of rev(Ġ) (with repetitions) are obtained by reversing the sign of
the eigenvalues of Ġ.

• Signed graphs Ġ and rev(Ġ) are switching equivalent if and only if Ġ is bipartite.

• A signed graph Ġ is switching equivalent to G (the underlying graph) if and only if
the vertices of Ġ can be divided into two sets (one of them possibly empty) in such a
way that an edge is negative if and only if it joins vertices from different sets.

• The spectrum of every net-balanced signed graph contains its net-balance.

It is known that the largest eigenvalue ρ of a signed graph does not exceed the largest
eigenvalue of its underlying graph. The proof follows by the next chain of (in)equalities
derived on the basis of the Rayleigh principle:

ρ(Ġ) = 2

∑
i
+∼j

xixj −
∑
i
−∼j

xixj

 ≤ 2

∑
i
+∼j

|xixj |+
∑
i
−∼j

|xixj |

 ≤ ρ(G), (2.1)

where x = (x1, x2, . . . , xn)
T is a unit eigenvector associated with ρ(Ġ). What we need

here is the opposite implication.

Lemma 2.1. For a connected signed graph Ġ, if ρ(Ġ) = ρ(G) then Ġ andG are switching
equivalent.

Proof. Since ρ(Ġ) = ρ(G), all the inequalities in (2.1) reduce to equalities. This, in
particular, means that |x| is an eigenvector associated with ρ(G), and so it holds xi 6= 0,
for all i. Applying switching with respect to the set of vertices that correspond to negative
coordinates of x, we arrive at the signed graph, say Ḣ , such that |x| is associated with
ρ(Ḣ), as well. (The matrix transformation is realized by AḢ = D−1AĠD, D being the
diagonal matrix of ±1 where the sign of a diagonal entry is determined by the sign of the
corresponding coordinate of x. Then, |x| = Dx.)

Since ρ(Ḣ) = ρ(G), it follows (by (2.1), with Ḣ and |x| in the roles of Ġ and x) that Ḣ
does not contain negative edges, i.e., Ḣ is a graph isomorphic to G, and we are done.

Connected integral regular net-balanced signed graphs of vertex degree 0, 1 or 2 are
easily determined. In what follows, we move up to r = 3 and r = 4.

Obviously, if Ġ is an integral net-balanced signed graph with % ≥ 0, then the re-
verse rev(Ġ) is also integral net-balanced with % ≤ 0, and vice versa. Thus, it is sufficient
to consider only those with % ≥ 0.
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3 Case r = 3

Recall that connected 3-regular graphs are determined in [2, 4]; there are 13 such graphs.
In what follows, we refer to the notation of the latter reference.

By Lemma 2.1, if an r-regular signed graph Ġ has r as an eigenvalue, then Ġ is switch-
ing equivalent to its underlying graph. If r does not belong to the spectrum of Ġ, but −r
does, then rev(Ġ) is switching equivalent to its underlying graph. This observation leads
to the following result.

Theorem 3.1. If a connected 3-regular net-balanced signed graph Ġ of non-negative
net-balance % is integral and at least one of the numbers 3 or −3 is its eigenvalue, then Ġ
is determined in the following way.

(a) If 3 is an eigenvalue of Ġ, then

(i) for % = 3, Ġ is one of the 13 connected 3-regular graphsG1, . . . , G13 obtained
in [4];

(ii) for % = 1, Ġ is switching equivalent to one of the graphs G2, G4, G5, G7, G10

or G12 of [4].

(b) If 3 is not an eigenvalue of Ġ, then

(i) case % = 3 cannot occur;

(ii) for % = 1, Ġ is switching equivalent to G9 or G13 of [4].

Proof. (a): By Lemma 2.1, Ġ is switching equivalent to its underlying graph, and then (a.i)
follows directly by the result of the corresponding reference.

(a.ii): Here, Ġ is obtained by identifying a perfect matching in one of G1, . . . , G13 and
reversing the sign of all edges in the matching. In addition, this reversing must produce a
switching equivalent graph. In particular, this means that the vertex set can be partitioned
into two sets such that an edge is negative if and only if it joins vertices from different sets.
Inspecting all 13 graphs, we conclude that such an action can be performed for the 6 graphs
listed. (The procedure is simplified by excluding the signed graphs which do not have the
net-balance as an eigenvalue.)

(b): Case (b.i) follows directly.
(b.ii): Here, Ġ is non-bipartite and 3 is an eigenvalue of rev(Ġ). Considering

G9, . . . , G13 as candidates for a graph which is switching equivalent to rev(Ġ), we arrive
at the 2 solutions: G9 and G13.

A transfer of a result from the domain of simple graphs is needed. For signed graphs Ġ1

and Ġ2, the (tensor) product Ġ1 × Ġ2 is the signed graph with the vertex set
V (Ġ1) × V (Ġ2) in which two vertices (u1, u2) and (v1, v2) are adjacent if and only if
ui and vi are adjacent in Ġi, for 1 ≤ i ≤ 2. The sign of an edge of Ġ1 × Ġ2 is equal
to the product of signs of the corresponding edges of Ġ1 and Ġ2. The adjacency matrix
of Ġ1 × Ġ2 is then identified with the Kronecker product AĠ1

⊗AĠ2
. Accordingly, if

λ1, λ2, . . . , λn are the eigenvalues of Ġ1 and µ1, µ2, . . . , µm are the eigenvalues of Ġ2,
then the eigenvalues of their product are λiµj (1 ≤ i ≤ n, 1 ≤ j ≤ m). In particular, if
Ġ is a connected integral non-bipartite signed graph, then Ġ ×K2 is a connected integral
bipartite signed graph, since the eigenvalues ofK2 are 1 and−1. The signed graph Ġ×K2

is called a bipartite double (of Ġ).
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Ġ2 Ġ4
Ġ5 Ġ7

Ġ9 Ġ12 Ġ13Ġ10

Figure 2: Representatives of signed graphs of Theorem 3.1(a.ii)&(b.ii).

Therefore, any non-bipartite signed graph Ġ can be extracted from the decompositions
of bipartite ones having the form Ġ×K2, and so the essential part in determining connected
integral signed graphs consists of searching for those that are bipartite. If, in addition, a
signed graph is regular then it has the same number of vertices in each colour class, and we
may assume that the number of its vertices is 2n.

Returning to connected integral 3-regular net-balanced signed graphs, it remains to
determine those that avoid ±3 in the spectrum. According to the previous observation, we
may consider the bipartite ones, so those with 2n vertices and the spectrum[

2m2 , 1m1, 02m0 , (−1)m1 , (−2)m2
]
,

where the exponents stand for the multiplicities.
Counting the difference between the numbers of positive and negative closed walks

and considering the spectral moments, we get m2 +m1 +m0 = n, 4m2 +m1 = 3n and
16m2 +m1 = 15n + 4q, where q is the difference between the numbers of positive and
negative quadrangles contained.

At this point, one could continue by the spectral moments of higher order to obtain the
feasible spectra, but this situation can easily be resolved in a different way. Solving the
previous system, we get m1 = −(n+ 4

3q) (and certain parametrizations of other multiplic-
ities which are not important). The last equality implies that q must be negative, that is our
signed graph, say Ġ, must contain a negative quadrangle. If every vertex is at distance at
most 1 from such a quadrangle, then Ġ has at most 8 vertices. Otherwise, if there exists a
vertex at distance 2 from a fixed negative quadrangle, then the vertex between them is ad-
jacent to only one vertex of the quadrangle (otherwise, the largest eigenvalue of that signed
subgraph would be greater than 2, and then the same would hold for Ġ as follows by the
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interlacing argument). So, Ġ contains a negative quadrangle with a pendant path of length
2. Considering the possible neighbourhoods of the vertices of such a subgraph and bearing
in mind the other conditions (3-regularity and net-balancedness), we conclude by hand that
the largest eigenvalue of Ġ must be greater than 2.

Therefore, it remains to consider connected signed graphs with at most 8 vertices.
This is easily performed by reversing the signs of edges of connected bipartite 3-regular
graphs with 4, 6 and 8 vertices (in each case, there is only one such graph). Obviously, the
net-balance cannot be equal to 3, and since Ġ is bipartite, it cannot be equal to −3, either.
The result is summarized in the next theorem.

Theorem 3.2. If Ġ is a connected integral bipartite 3-regular net-balanced signed graph
avoiding ±3 in the spectrum, then Ġ is the signed graph illustrated in Figure 3 or its
reverse.

Clearly, signed graphs obtained in the previous theorem are switching equivalent and
none of them is a bipartite double.

Figure 3: Integral signed graph from Theorem 3.2.

4 Case r = 4

The next natural case is made up of connected integral 4-regular net-balanced signed
graphs. We first recall that connected integral 4-regular graphs (so, signed graphs with
net-balance equal to 4) are not fully determined. What we do know are the feasible spectra
of such bipartite graphs, and [9] lists 828 such spectra (in the future this number could be
decreased). The existence of the corresponding graphs is confirmed for a small number of
those spectra – by the same reference, in 19 cases; in the next section we confirm 2 more.

Accordingly, it would be illusory to expect all the integral bipartite 4-regular signed
graphs to be identified, even if we impose that they are net-balanced. Considering the fea-
sible spectra, if ±4 is an eigenvalue, then they are the same as those listed in [9]. For
an integral 4-regular graph, the corresponding signed graphs can be obtained as in Theo-
rem 3.1. This will not be performed here; instead, we determine the feasible spectra of our
signed graphs that avoid ±4 in the spectrum, but with the additional condition that they
contain the net-balance as a simple eigenvalue. It occurs that there is a comparatively small
number of such spectra. Before that, we prove a ‘signed’ variant of the result concerning
the Hoffman polynomial of a graph [6, Theorem 2.1.6].
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Theorem 4.1. For a signed graph Ġ, if there exists a polynomial P such that P (AĠ) = J

(J being an all-1 matrix), then Ġ is a connected net-balanced signed graph.
Conversely, if in addition the net-balance % is a simple eigenvalue of Ġ, then the poly-

nomial exists and has the form

P (x) = n
∏ x− λ

%− λ
, (4.1)

where n is the number of vertices and the product goes over all distinct eigenvalues, ex-
cluding %.

Proof. The proof is similar to that of the original result, along with certain adaptations
tailored for signed graphs. For the sake of completeness, we give all the details. Denote
A = AĠ. The existence of P implies the identity AJ = JA. Since the (i, j)-entry of AJ
is d+i − d

−
i and the same entry of JA is d+j − d

−
j , we have that d+i − d

−
i is a constant on

the vertex set.
Clearly, Ġ cannot be disconnected, since for i and j belonging to different components

the (i, j)-entry of any power of A would be zero, giving P (A) 6= J .
DenoteW (x) = µ(x)

x−% , where µ stands for the minimal polynomial ofA. As µ(A) = O,
it follows (A − %I)W (A) = O, giving AW (A) = %W (A). Now, the unit vector j is an
eigenvector associated with %, but since this is the simple eigenvalue, the dimension of its
eigenspace is 1, and by the last identity, every column ofW (A) is a multiple of j. Moreover,
the symmetry of W (A) implies

W (A) = cJ, (4.2)

for some c 6= 0. Thus, the polynomial exists and, so far, has the form P (x) = 1
cW (x).

Further, the identity akAkj = ak%
kj (for a real ak) yields W (A)j = W (%)j, which

together with (4.2) gives cJj =W (%)j, i.e., nc =W (%), which finally gives (4.1).

This result covers net-balanced signed graphs which need not be regular. The converse
statement requires the multiplicity of % to be 1, which will be an essential condition in our
further considerations. Another consequence of (4.1), when Ġ is additionally integral, is
that n divides the product

∏
(% − λ); this condition was exploited in many searches for

integral regular graphs.
Let [

3m3 , 2m2 , 1m1 , 02m0 , (−1)m1 , (−2)m2 , (−3)m3
]

denote the spectrum of our connected bipartite signed graph that avoids the eigenvalues 4
and −4.

Theorem 4.2. If Ġ is a connected integral bipartite 4-regular signed graph with 2n ver-
tices, then the multiplicities of its eigenvalues are parametrized by

m3 =
1

180
(54n+ 26q + 3h), m2 =

1

30
(6n− 16q − 3h),

m1 =
1

4
(2n+ h) +

5

6
q, m0 = − 1

18
(8q + 3h),

where q and h respectively denote the difference between the numbers of positive and
negative quadrangles and hexagons contained.
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Proof. Considering the spectral moments up to the 6th order and counting the differences
between the numbers of positive and negative closed walks, we arrive at the following
Diophantine system:

3∑
i=−3

m|i|i
0 = 2n,

3∑
i=−3

m|i|i
2 = 8n,

3∑
i=−3

m|i|i
4 = 56n+ 8q,

3∑
i=−3

m|i|i
6 = 464n+ 144q + 12h.

(4.3)

where, say for the 3rd equation, the first term on the right-hand side counts closed walks
of length 4 traversing along at most 2 distinct edges. Observe that such walks are positive
independently of the edge signature. Similarly, the second term counts the same walks
traversing along quadrangles.

Solving this system for m3, . . . ,m0, we get the result.

Table 1: Feasible parameters of signed graphs described in Theorem 4.3.

n m m3 m2 m1 m0 q h

6 24 2 1 2 1 3 −14
10 40 4 1 0 5 15 −70
15 60 6 1 2 6 21 −92
20 80 8 1 4 7 27 −114
30 120 11 1 17 1 21 −62
30 120 12 1 8 9 39 −158
60 240 23 1 29 7 57 −194
60 240 24 1 20 15 75 −290
60 240 25 1 11 23 93 −386
60 240 26 1 2 31 111 −482

Include now the announced condition.

Theorem 4.3. A connected integral bipartite 4-regular net-balanced signed graph
whose net-balance is 2 and appears as a simple eigenvalue has one of the spectra shown
in Table 1. Each row contains one half of the number of vertices, the number of edges,
the multiplicities of positive eigenvalues, one half of the multiplicity of 0 and previously
defined parameters q and h.

Proof. Solving the system (4.3) for m2 = 1, we get

m3 =
1

18
(6n+ q − 3), m1 =

1

2
(2n− q − 5),

m0 =
1

9
(−3n+ 4q + 15) and h = 2n− 16

3
q − 10.
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Now, since the net-balance is a simple eigenvalue, it follows that 2n divides

3∏
i6=2, i=−3

(2− i) = 120,

giving a finite number of possibilities for n. Observing the expressions of m1 and m0, we
conclude that q satisfies

3

4
(n− 5) ≤ q ≤ 2n− 5,

giving a finite range for this parameter. Concerning the possible values for n and using the
previous inequalities, we arrive at solutions listed in the table.

The existence of the signed graph with data as in the first row is confirmed by hand.
Namely, we have considered connected bipartite 4-regular graphs with 12 vertices (there
are 4) and arguing as in the proof of Theorem 3.1(a.ii). The resulting solution is illustrated
in Figure 4.

Figure 4: Integral signed graph with spectrum [32, 2, 12, 02, (−1)2,−2, (−3)2].

Remark 4.4. What about non-bipartite signed graphs? Let Ġ be such a signed graph (with
all the remaining conditions as in Theorem 4.3). Although the multiplicity of 2 in the
spectrum of Ġ is 1, the same eigenvalue does not need to be simple in Ġ×K2. Therefore,
the feasible parameters of the bipartite double are given by Theorem 4.2. The number
of vertices (of Ġ × K2) now divides 240, and the numbers of quadrangles and hexagons
are bounded in terms of n (see [1]) giving the magnitudes for our parameters q and h.
Therefore, the sets of feasible spectra can be obtained, but there are many, and we skip
their presentation. Alternatively, one may consider the spectra of Ġ directly, and include
the odd spectral moments, but again, there are many.

Set now % = 0.

Theorem 4.5. There is no connected integral 4-regular net-balanced signed graph avoid-
ing ±4 in the spectrum whose net-balance is 0 and appears as a simple eigenvalue.
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Proof. First, such a signed graph cannot be bipartite (see the multiplicity of 0). Let Ġ be
a non-bipartite signed graph described in this theorem (if any). Then the number of its
vertices (denoted n) divides

3∏
i6=0, i=−3

(0− i) = 36,

i.e., the number of vertices of its bipartite double divides 72. In addition, 0 is an eigenvalue
of Ġ×K2 of multiplicity 2. Solving the system (4.3) for m0 = 2 and every possible n, we
arrive at exactly 9 solutions: one for n = 6, one for n = 9, one for n = 12, 2 for n = 18
and 4 for n = 36.

There is another condition to be included: the parameter q of Ġ ×K2 cannot be odd.
Indeed, by definition of the product, every quadrangle of Ġ produces its two copies in
Ġ × K2, and vice versa, every quadrangle of Ġ × K2 has a copy and both of them arise
from the isomorphic quadrangle of Ġ. Therefore, the parameter q of Ġ ×K2 is twice the
same parameter of Ġ, i.e., it cannot be odd.

Now, only the solution for n = 9 passes this test for q (with q = −6), which means
that Ġ could only have 9 vertices. Since for Ġ, q = −3, the number of quadrangles
in the underlying graph G must be odd, and this is not satisfied in the case of 6 (out of
16) connected 4-regular graphs with 9 vertices. For the remaining 10, one may choose
between a computation by hand (which reduces to searching for cyclic decompositions and
checking the spectra) or brute force performed by computer. In any case, there are no
solutions (note that some of those underlying graphs produce signed graphs satisfying all
but the last condition of the theorem – regarding the simplicity of 0).

Remark 4.6. In this section we restricted ourselves to net-balanced signed graphs whose
net-balance appears as a simple eigenvalue. Of course, there are examples of those that are
connected integral 4-regular and net-balanced, yet the net-balance is not a simple eigen-
value; at the end of the proof of Theorem 4.5, we mentioned that we met some of them.
Another example is a net-balanced 4-dimensional cube with negative quadrangles. Indeed,
its adjacency matrix can be written as (

A A∗

A∗ A

)
,

where A is the adjacency matrix of the cycle C8 and A∗ is obtained from A by reversing
the sign of all the entries corresponding to 4 non-adjacent edges. We have % = 2, and the
spectrum is given by [28, (−2)8].

5 An existence condition for bipartite regular graphs
Following our idea of [5], we establish an existence condition for bipartite r-regular graphs
with q = 0. Namely, the adjacency matrix of such a graph can be written in the form

AG =

(
O BT

B O

)
,

and then the top-left block BTB − rIn of A2
G − rI2n represents the adjacency matrix of

an r(r − 1)-regular graph, say H . Moreover, if r, λ2, . . . , λk are (distinct) non-negative
eigenvalues of G, then the eigenvalues of H belong to {r2 − r, λ22 − r, . . . , λ2k − r}.
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Therefore, in the search forG, we may check whetherH exists or not, and if it does not
then G does not exist, either. Conversely, if H exists then G can be reconstructed from it.

Accordingly, we confirm the existence of bipartite 4-regular graphs with 2 spectra listed
in [9].

Theorem 5.1. There exists a connected bipartite 4-regular graph with data

(15, 0, 10, 4, 0, 0, 210) and (16, 0, 12, 0, 3, 0, 192)

(both given in the form (n,m3,m2,m1, m0, q, h), where the parameters are defined in
Theorem 4.3).

Proof. Considering the first data for our graph, say G, we arrive at a putative 12-regular
graphH with 15 vertices and whose eigenvalues belong to {12, 0,−3}. Thus,H is strongly
regular (see [6, Theorem 3.4.7]). Moreover, since 0 is one of the eigenvalues, it must
be complete multipartite [6, Theorem 3.4.9]. This graph is unique, and we can use it to
construct G by obeying the following rules:

• the vertices of H correspond to the vertices of one colour class of G;

• the vertices from the same colour class of H do not have common neighbours in G;

• every two vertices from different colour classes of H have exactly one common
neighbour in G.

Finally, G is the incidence graph of a block design with points 1, 2, . . . , 15 arranged
into the following 15 blocks:

4 7 10 13

5 8 11 14

6 9 12 15

1 8 12 13

2 9 10 14

3 7 11 15

1 5 10 15

2 6 11 13

3 4 12 14

1 6 7 14

2 4 8 15

3 5 9 13

1 4 9 11

2 5 7 12

3 6 8 10

The second data is considered in the same way. Now, H has 16 vertices, its eigenvalues
belong to {12, 0,−4}, and thusH is again a unique complete multipartite graph. Using the
same method, we arrive at G determined by the following blocking:

1 5 9 13

2 6 10 14

3 7 11 15

4 8 12 16

1 2 7 8

3 4 5 6

9 10 15 16

11 12 13 14

1 3 10 12

2 4 9 11

5 7 14 16

6 8 13 15

1 4 14 15

2 3 13 16

5 8 10 11

6 7 9 12

The proof is complete.
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Abstract

Given a proper edge-coloring of a loopless multigraph, the palette of a vertex is defined
as the set of colors of the edges which are incident with it. The palette index of a multigraph
is defined as the minimum number of distinct palettes occurring among the vertices, taken
over all proper edge-colorings of the multigraph itself. In this framework, the palette pseu-
dograph of an edge-colored multigraph is defined in this paper and some of its properties
are investigated. We show that these properties can be applied in a natural way in order to
produce the first known family of multigraphs whose palette index is expressed in terms of
the maximum degree by a quadratic polynomial. We also attempt an analysis of our result
in connection with some related questions.

Keywords: Palette index, edge-coloring, interval edge-coloring.

Math. Subj. Class.: 05C15

1 Introduction
Generally speaking, as soon as a chromatic parameter for graphs is introduced, the first
piece of information that is retrieved is whether some universal meaningful upper or lower
bound holds for it. This circumstance is probably best exemplified by mentioning, say,
Brooks’ theorem for the chromatic number and Vizing’s theorem for the chromatic index.
In either instance the maximum degree ∆ is involved and that probably explains the trend
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to consider ∆ as a somewhat natural parameter, in terms of which bounds for other chro-
matic parameters should be expressed. In the current paper we make no exception to this
trend and use the maximum degree ∆ as a reference value for the recently introduced chro-
matic parameter known as the palette index. To this purpose we introduce an additional
tool, that we call the palette pseudograph, which can be defined from a given multigraph
with a proper edge-coloring. Some properties of the palette pseudograph are investigated
in Section 2 and we feel they might be of interest in their own right. In the current con-
text, we use these properties in connection with an attempt of finding a polynomial upper
bound in terms of ∆ for the palette index of a multigraph with maximum degree ∆. As a
consequence of our main construction in Section 3, we can assert that if such a polynomial
bound exists at all then it must be at least quadratic.

Throughout the paper, following a standard terminology (see for instance [7]), we use
the term multigraph to denote an undirected graph with multiple edges but no loops, while
we use the term pseudograph for a graph admitting both multiple edges and loops. For any
given multigraph G, we always denote by V (G) and E(G) the set of vertices and the set
of edges of G, respectively. We further denote by Gs the underlying graph of G, that is
the simple graph obtained from G by shrinking to a single edge any set of multiple edges
joining two given vertices.

By a coloring of a multigraph G we always mean a proper edge-coloring of G. A
coloring of G is thus a mapping c : E(G)→ C, where C is a finite set whose elements are
designated as colors, with the property that adjacent edges always receive distinct colors.
We shall often say that (G, c) is a colored multigraph, meaning that c is a coloring of the
multigraph G.

Given a colored multigraph (G, c), the palette Pc(x) of a vertex x of G is the set of
colors that c assigns to the edges which are incident with x.

The palette index š(G) of a simple graphG is defined in [9] as the minimum number of
distinct palettes occurring among the vertices, taken over all proper edge-colorings of the
graph G. The definition can be extended verbatim to multigraphs. The exact value of the
palette index is known for some classes of simple graphs.

• A graph has palette index 1 if and only if it is a class 1 regular graph [9, Proposi-
tion 1].

• A connected class 2 cubic graph has palette index 3 or 4 according as it does or it
does not possess a perfect matching, respectively [9, Theorem 9].

• If n is odd, n ≥ 3 then š(Kn) is 3 or 4 depending on n ≡ 3 or 1 (mod 4), respec-
tively [9, Theorem 4].

• The palette index of complete bipartite graphs was determined in [8] in many in-
stances.

The quoted result for complete graphs shows that it is possible to find a family of
graphs, for which the maximum degree can become arbitrarily large, and yet the palette
index admits a constant upper bound, namely 4 in this case.

As it was remarked in [4], the fact that a class 2 regular graph of degree ∆ always
admits a (∆ + 1)-coloring forces ∆ + 1 to be an upper bound for the palette index of such
a graph (namely, ∆ + 1 is the number of ∆-subsets of a (∆ + 1)-set of colors).

That is definitely not the case for non-regular graphs: it was shown in [3] that for each
positive integer ∆ there exists a tree with maximum degree ∆ whose palette index grows
asymptotically as ∆ ln(∆).
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Consequently, one cannot expect for the palette index any analogue of, say, Vizing’s
theorem for the chromatic index: the palette index of graphs of maximum degree ∆ cannot
admit a linear polynomial in ∆ as a universal upper bound.

It is the main purpose of the present paper to produce an infinite family of multigraphs,
whose palette index grows asymptotically as ∆2, see Section 3. Our method relies essen-
tially on a tool that we define in Section 2, namely the palette pseudograph of a colored
multigraph. This concept is strictly related to the notion of palette index and it appears to
yield a somewhat natural approach to the study of this chromatic parameter.

2 The palette pseudograph of a colored multigraph
For any given finite set X and positive integer t we denote by t ·X the multiset in which
each element of X is repeated t times.

The next definition will play a crucial role for our construction in Section 3. Given a
colored multigraph (G, c), we define its palette pseudograph Γc(G) as follows.

The vertex-set of Γc(G) is V (Γc(G)) = {Pc(v) : v ∈ V (G)}. In other words the
vertices of Γc(G) are all pairwise distinct palettes of (G, c).

For any given pair of adjacent vertices x and y of G, we declare the (not necessarily
distinct) palettes Pc(x) and Pc(y) to be adjacent and define the corresponding edge in the
palette pseudograph Γc(G).

More precisely, if x and y are adjacent vertices in G such that their palettes Pc(x)
and Pc(y) are distinct, then Pc(x) and Pc(y) yield two distinct vertices connected by an
ordinary edge in the palette pseudograph Γc(G), see vertices x1 and x2 in Figure 1. If,
instead, x and y are adjacent vertices in G with equal palettes Pc(x) and Pc(y), these form
a single vertex with a loop in the palette pseudograph Γc(G), see vertices x2 and x3 in
Figure 1.

If two (equal or unequal) palettes appear on several pairs of adjacent vertices ofG, then
each such pair yields one edge in Γc(G) (either a loop or an ordinary edge). It is thus quite
possible that the palette pseudograph Γc(G) presents multiple (ordinary) edges between
two given distinct vertices as well as multiple loops at a given vertex.

An example of a pair (G, c) and the corresponding palette pseudograph Γc(G) is pre-
sented in Figure 1.

The number of vertices of the palette pseudograph Γc(G) is thus equal to the number
of distinct palettes in the colored multigraph (G, c), while the number of edges (loops
and ordinary edges) in Γc(G) is equal to the number of edges in the underlying simple
graph Gs.

The following proposition is also an easy consequence of the definition of the palette
pseudograph: note that each loop in Γc(G) contributes 2 to the degree of its vertex.

Proposition 2.1. For any given colored multigraph (G, c), the degree of a vertex Pc(x) in
the palette pseudograph Γc(G) is equal to the sum of the degrees in the underlying simple
graph Gs of all vertices whose palettes in (G, c) are equal to Pc(x).

3 The main construction
The main purpose of this Section is the construction of a multigraph G∆ with maximum
degree ∆, whose palette index is expressed by a quadratic polynomial in ∆.

For the sake of brevity we shall assume ∆ even, ∆ ≥ 2: a slight modification of our
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Figure 1: A multigraph G with a proper edge-colouring and the associated palette pseudo-
graph.

construction yields the same result for odd values of ∆. Even though our graph G∆ is not
connected, a connected example can easily be obtained from G∆ as follows. Introduce a
new vertex ∞ which is declared to be adjacent to each vertex of degree ∆ in G∆. The
resulting multigraph G̃∆ is connected with maximum degree ∆ + 1. The palette index of
the multigraphs G̃∆ is again bounded from below by a quadratic polynomial in ∆. We feel
appropriate at this stage to stress a peculiar property of the palette index, in comparison with
other chromatic parameters: it is not true in general that the palette index of a multigraph is
equal to the maximum of the palette indices of its connected components (see Proposition
3 in [4]). This says that there is no particular reason to prefer connected examples to
disconnected ones in this context.

The multigraph G∆ is obtained as the disjoint union of multigraphs H∆
t , for t =

1, 2, . . . ,∆− 2, which are defined as follows.
Let H∆ be the simple graph with vertices u, v0, v1, . . . , v∆−1 and edges uv0, uv1, . . . ,

uv∆−1, v0v1, v2v3, . . . , v∆−2v∆−1. The graph H∆ is sometimes called a windmill graph
[6] and can also be described as being obtained from the wheel W∆ (see [2]) by alternately
deleting edges on the outer cycle.

The multigraph H∆
t is obtained by replacing each edge vjvj+1 which is not incident

with the central vertex u with t parallel edges between the same vertices vj and vj+1.
In detail, define for t = 1, 2, . . . ,∆− 2

V (H∆
t ) = {ut, v0

t , v
1
t , . . . , v

∆−1
t }

E(H∆
t ) = t · {vjt vj+1

t : j ∈ {0, 2, 4, . . . ,∆− 2}} ∪ {utvjt : j ∈ {0, 1, 2, . . . ,∆− 1}}
H∆

t =
(
V (H∆

t ), E(H∆
t )
)

For j = 0, 1, . . . ,∆−1 we denote the edge utv
j
t by ejt or simply by ej once t is understood.

Furthermore, for any index j ∈ {0, 1, . . . ,∆ − 1} there is a uniquely determined index
j′ ∈ {0, 1, . . . ,∆ − 1}, j 6= j′ such that vj

′

t is the unique vertex, other than ut, which is
adjacent to vjt in H∆

t .
The submultigraph of H∆

t which is induced by the vertices ut, v
j
t , v

j′

t will be denoted
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by L j . The edges of L j are ej , ej
′

and the t repeated edges having vjt and vj
′

t as endver-
tices. By definition, we have L j = L j′ .

v2

v3

v4v5

v0 v1

v7

v6

u

Figure 2: The graph H8
2 .

We now assume that a k-edge-coloring c : E(H∆
t )→ C = {c0, c1, . . . , ck−1} is given

and study some properties of the palette pseudograph Γc(H
∆
t ). Since the central vertex

ut has degree ∆ in H∆
t we have ∆ ≤ k and may assume, with no loss of generality,

that c(ej) = cj holds for j = 0, 1, . . . ,∆ − 1. The inequality t ≤ ∆ − 2 yields in turn
t + 1 < ∆. Consequently, since each non central vertex vjt has degree t + 1, we see
that the palette Pc(ut) = {0, 1, . . . ,∆ − 1} is distinct from every other palette Pc(v

j
t ).

For that reason, rather than looking at the palette pseudograph Γc(H
∆
t ) we consider the

subpseudograph Γ−c (H∆
t ) = Γc(H

∆
t ) \ Pc(ut) obtained by removing the palette Pc(ut)

(as a vertex of the palette pseudograph).

Lemma 3.1. The pseudograph Γ−c (H∆
t ) is a simple graph and is a forest.

Proof. We prove first of all that Γ−c (H∆
t ) has no loop, that is Pc(v

j
t ) 6= Pc(v

j′

t ) for all j.
Consider the two adjacent vertices vjt and vj

′

t . The corresponding edges ej and ej
′

have
distinct colors cj and cj′ in {0, . . . ,∆ − 1}, respectively. The color cj cannot appear on
one of the edges between vjt and vj

′

t , since c is a proper coloring. Hence, cj belongs to
Pc(v

j
t ) and does not belong to Pc(v

j′

t ), and the two palettes are distinct, as claimed.
Next, we prove that Γ−c (H∆

t ) has no multiple edges, by showing that if Pc(v
j
t ) =

Pc(v
h
t ) for h 6= j, j′, then Pc(v

j′

t ) 6= Pc(v
h′

t ). Suppose the vertices vjt and vht share the
same palette. The edges ej and eh are colored with colors cj and ch, respectively. Hence
{cj , ch} ⊂ Pc(v

j
t ) (= Pc(v

h
t )). In particular, one of the edges between vht and vh

′

t has
color cj and so we have cj ∈ Pc(v

h′

t ). On the other hand, cj does not belong to Pc(v
j′

t )
because c is a proper coloring, and the claim follows.

In order to complete our proof, we need to prove that Γ−c (H∆
t ) has no cycle and is thus

a forest.
Assume, by contradiction, that Γ−c (H∆

t ) has a cycle Γ. Without loss of generality, we
may assume that Γ contains the vertices Pc(v

0
t ) and Pc(v

1
t ) of Γ−c (H∆

t ). Since Pc(v
0
t ) has

degree at least two in Γ−c (H∆
t ), there exists h 6= 0 such that Pc(v

0
t ) = Pc(v

h
t ) and Pc(v

h′

t )
belongs to Γ. Recall that e0 has colour c0 in c. Therefore, the colour c0 belongs to both
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palettes Pc(v
0
t ) and Pc(v

h
t ), since they are the same palette. Furthermore, the edge eh has

colour ch, different from c0. Then c0 is the colour of one of the edges between vht and vh
′

t .
Hence, the colour c0 also belongs to the palette Pc(v

h′

t ). Repeating the same argument, we
obtain that c0 belongs to each palette of the cycle Γ. That is a contradiction, since c0 does
not belong to the palette Pc(v

1
t ).

Lemma 3.2. The degree of a vertex Pc(v
j
t ) in Γ−c (H∆

t ) is exactly equal to the number of
vertices of H∆

t having the same palette Pc(v
j
t ) in the colouring c.

Proof. The underlying simple graph of H∆
t \ {ut} is the disjoint union of isolated edges,

that is every vertex has degree exactly 1 in the underlying simple graph. It follows from
Proposition 2.1 that when a given palette P is viewed as a vertex in Γ−c (H∆

t ), then its
degree is equal to the number of vertices in H∆

t sharing the palette P .

The next Proposition states a well-known property of forests.

Proposition 3.3. The average degree of a forest is strictly less than 2.

Proof. Suppose that the forest F has n vertices. Then F has at most n− 1 edges and∑
v∈V (F )

d(v) = 2|E(F )| ≤ 2(n− 1)

so that the average degree is

1

n

∑
v∈V (F )

d(v) ≤ 2(n− 1)

n
< 2.

By the previous proposition and Lemma 3.2, the average number of vertices in H∆
t

sharing the same palette is less than 2 and that implies the following lower bound for the
palette index of H∆

t :

š(H∆
t ) >

∆

2
+ 1.

Theorem 3.4.
∆

2
(∆− 2) < š(G∆) < (∆ + 1) (∆− 2) (3.1)

Proof. The second inequality is an immediate consequence of the fact that the number of
vertices in G∆ is (∆ + 1) (∆− 2).

For the first inequality, it is sufficient to observe that all vertices of degree t+ 1 in G∆

belong to the subgraph H∆
t , so they cannot share the same palette with a vertex in another

subgraphH∆
t′ , with t′ 6= t. On the other hand, the vertex ut of degree ∆ inH∆

t could share
the same palette with every other vertex of degree ∆, one in each subgraph H∆

t . We obtain

š(G∆) ≥
∑
t

(š(H∆
t )− 1) > (∆− 2)

∆

2
.
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4 Some considerations on a related parameter
We introduce a new natural parameter related to the palette index of a multigraph. Consider
an edge-coloring c of G which minimizes the number of palettes, that is the number of
palettes is exactly š(G): how many colors does c require? More precisely, we consider
the minimum k such that there exists a k-edge-coloring of G with š(G) palettes. We will
denote such a minimum by χ′š(G). Obviously, χ′š(G) ≥ χ′(G) because we need at least
the number of colors in a proper edge-coloring. In [9], the authors remark that in some
cases this number is strictly larger than the chromatic index of the graph. How much larger
could it be?

An upper bound for the value of χ′š(G) for some classes of graphs can be deduced from
an analysis of the proofs of the corresponding results for the palette index.

• [9] Let Kn be a complete graph with n > 1 vertices. Then,

χ′š(Kn) = ∆ if n ≡ 0 (mod 2)

χ′š(Kn) ≤ 3∆

2
if n ≡ 1 (mod 2)

In particular, if n = 4k+3 then it is proved that the palette index is equal to 3 and the
proof is obtained by using three sets of colors of cardinality 2k+1. If n = 4k+5, the
proof works by using three sets of colors of cardinality 2k + 1 and three additional
colors, that is 6(k + 1) colors. The number of colors is exactly 3∆

2 in both cases.

• [9] Let G be a cubic graph. Then,

χ′š(G) ≤ 5.

In particular, five colors are necessary ifG is not 3-edge-colorable and has no perfect
matching.

• [4] Let G be a 4-regular graph. Then,

χ′š(G) ≤ 6.

In particular, six colors are used in some examples with palette index 3 (see the proof
of Proposition 11 in [4]).

• [3] Let G be a forest. Then,
χ′š(G) = ∆.

• [8] Let Km,n be a complete bipartite graph with 1 ≤ m ≤ n. This situation is a
little more involved, in the sense that we cannot always obtain a good upper bound
for χ′š(Km,n) using the proofs of the results in [8]. In some cases, see for instance
Proposition 11 in [8], the number of colors is twice the maximum degree ∆ (recall
that minimizing the number of colors was not important in that context). Never-
theless, we analyze some small cases and obtain the same number of palettes (the
minimum) by using a smaller number of colors.

One such example is obtained by considering the graph K5,6 (i.e. case k = 3 in
Proposition 11 of [8]). Denote by {u1, . . . , u5} and {v1, . . . , v6} the bipartition of
the vertex-set of K5,6. The proof of Proposition 11 in [8] furnishes an edge-coloring
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with 12 colors and 6 palettes. Following the notation used in [8] we represent the
coloring with a matrix, where the element in position (i, j) is the color of the edge
uivj .

M5,6 =


1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
7 8 9 10 11 12
8 7 12 11 10 9


The following coloring has only 8 colors and again 6 palettes.

M ′5,6 =


1 2 3 4 5 6
3 1 2 6 4 5
2 3 1 5 6 4
4 5 7 8 1 2
5 4 8 7 2 1


We would like to stress that, even if we can obtain similar colorings for some other
sporadic cases, we are not able to generalize our results to all infinite families con-
sidered in [8].

All previous results and the study of some sporadic cases suggest that χ′š(G) cannot be
too large with respect to ∆. In particular, we believe there exists a linear upper bound for
χ′š(G) in terms of ∆. The following is thus an even stronger conjecture.

Conjecture 4.1. Let G be a (simple) graph. Then,

χ′š(G) ≤ d3
2

∆e.

As far as we know, this conjecture is new and completely open. We believe any progress
in that direction could be useful for a deeper understanding of the behavior of the palette
index of general graphs.

5 Concluding remarks and open problems
In this final Section we propose some further open questions and indicate a few connections
with other known problems.

In Section 3, we have presented a family of multigraphs whose palette index is ex-
pressed by a quadratic polynomial in ∆. We were not able to find a family of simple
graphs with such a property and so we leave the existence of such a family as an open
problem.

Problem 5.1. For ∆ = 3, 4, . . . , does there exist a simple graph with maximum degree ∆
whose palette index is quadratic in ∆?

As far as we know, the best general upper bound in terms of ∆ for the palette index of
a simple graph G is the trivial one, which is obtained from a (∆ + 1)-edge-colouring c of
G: in principle, each non-empty proper subset of the set of colours could occur as a palette
of (G, c), whence š(G) ≤ 2∆+1 − 2. On the other hand, all known examples suggest
that this upper bound is far from being tight. In particular, we raise the question whether a
polynomial upper bound holding for general multigraphs may exist at all.
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Problem 5.2. Prove the existence of a polynomial p(∆) such that š(G) ≤ p(∆) for every
multigraph G with maximum degree ∆.

We slightly suspect that if a polynomial p solving Problem 5.2 can be found at all, then
some quadratic polynomial will do as well.

Finally, we would like to stress how this kind of problems on the palette index is some-
how related to another well-known type of edge-colorings, namely interval edge-colorings,
introduced by Asratian and Kamalian in [1].

Definition 5.3. A proper edge-coloring c of a graph with colors {c1, c2, . . . , ct} is called
an interval edge-colouring if all colours are actually used, and the palette of each vertex is
an interval of consecutive colors.

The following relaxed version of the previous concept was first studied in [10] and then
explicitly introduced in [5].

Definition 5.4. A proper edge-colouring c of a graph with colors {c1, c2, . . . , ct} is called
an interval cyclic edge-colouring if all colours are used and the palette of each vertex is
either an interval of consecutive colors or its complement.

Both interval and interval cyclic edge-colorings are thus proper edge-colourings with
severe restrictions on the set of admissible palettes.

There are many more results on interval edge-colourings (see among others [12]). In
particular, it is known that not all graphs admit an interval edge-colouring. Furthermore,
it is proved in [11] that if a multigraph of maximum degree ∆ admits an interval edge-
colouring then it also admits an interval cyclic ∆-edge-colouring.

The following holds:

Proposition 5.5. Let G be a multigraph of maximum degree ∆ admitting an interval edge-
colouring. Then, š(G) ≤ ∆2 −∆ + 1.

Proof. Since G admits an interval edge-colouring, then it also admits an interval cyclic
∆-edge-colouring c (see [11]). Each palette of (G, c) is thus an interval of colors in the set
{c1, c2, . . . , c∆} or its complement is one such interval. For t = 1, . . . ,∆ − 1, there are
exactly ∆ such subsets of cardinality t, and a unique one for t = ∆. We have thus at most
∆(∆− 1) + 1 distinct palettes in (G, c), that is š(G) ≤ ∆2 −∆ + 1.

In other words, the previous Proposition assures that a putative example of a family of
multigraphs whose palette index grows more than quadratically in ∆ should be searched
for within the class of multigraphs without an interval edge-colouring.

In this paper, we also introduce the palette pseudograph of a colored multigraph (G, c).
A precise characterization of the palette pseudograph of the family introduced in Section 3
is the key point of our main proof. It suggests that a study of palette pseudographs in a
general setting could increase our knowledge of the palette index. Possibly, it could also
help in the search for an answer to some of the previous problems. Hence, we conclude our
paper with the following:

Problem 5.6. Let H be a pseudograph. Determine whether a colored multigraph (G, c)
exists, such that H is the palette pseudograph of (G, c).
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[8] M. Horňák and J. Hudák, On the palette index of complete bipartite graphs, Discuss. Math.
Graph Theory 38 (2018), 463–476, doi:10.7151/dmgt.2015.
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Abstract

We present a new class of totally positive Toeplitz matrices composed of recently in-
troduced hyperfibonacci numbers of the r-th generation. As a consequence, we obtain that
all sequences F (r)
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and large enough n.

Keywords: Total positivity, totally positive matrix, Toeplitz matrix, Hankel matrix, hyperfibonacci
sequence, log-concavity.

Math. Subj. Class.: 15B36, 15A45

1 Introduction and preliminary results
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Pólya frequency sequences, oscillatory motion, symmetric functions and quantum groups
among these areas [1, 2, 12, 13, 18]. The notion of total positivity is closely related with
log-concavity and more on this one can find in a paper by Stanley [21]. A classical result by
Whitney, Loewer and Cryer [8] says that any totally non-negative matrixM can be factored
as a product of totally non-negative matrices M = L1 · · ·LmDU1 · · ·Um, where D is a
diagonal matrix with non-negative elements, Li is a matrix of the form I + cEj+1,j , Ui is
a matrix of the form I + cEj,j+1 and Ek,l is the matrix which has a 1 on the k, l position
and zeros elsewhere. There is also a connection between totally non-negative matrices and
planar networks proved by Karlin and McGregor [15], and Lindström [16]. The famous
Lindström lemma gives combinatorial interpretation of a minor through the weights of
collections of vertex-disjoint paths in a planar network.

An important notion when testing a matrix on total positivity is initial minor. We let
I, J denote column set and row set, respectively. A minor ∆I,J where both I and J consist
of several consecutive indices and where I ∪ J contain 1, is called initial. Thus, each
matrix entry is the lower-right corner of exactly one initial minor. In this work we use
Theorem 1.1, which is proved by Gasca and Pen̈a [14].

Theorem 1.1. A square matrix is totally positive if and only if all its initial minors are
positive.

The notion of total positivity can be refined as follows. A matrix M is said to be totally
positive of order p (or TPp, in short) if all its minors of all orders ≤ p are positive.

The concept of total positivity extends in a straightforward manner also to (semi)infinite
matrices. It turns out that many such triangular matrices appearing in combinatorics are
indeed TP [3]. Recently, Wang and Wang proved total positivity of Catalan triangle via
Aissen-Schonberg-Whitney theorem [22]. Further general results on triangular matrices
and Riordan array have been obtained by Chen, Liang and Wang [5, 6] as well as Zhao and
Yan [23], while Pan and Zeng give combinatorial interpretation of results on total positivity
of Catalan-Stieltjes matrices [20].

A Toeplitz matrix T = [ti,j ] is a (finite or infinite) matrix whose entries satisfy ti,j =
ti+1,j+1. In finite case,

T =


t0 t−1 · · · t−n+1

t1 t0 · · · t−n+2

...
...

. . .
...

tn−1 tn−2 · · · t0

 .

In words, elements of a Toeplitz matrix are constant along diagonals descending from left
to right. If the elements of a matrix are constant along diagonals ascending from left to
right, the matrix is called a Hankel matrix. An example is given here,

H =


t0 t1 · · · tn−1
t1 t2 · · · tn−2
...

...
. . .

...
tn−1 tn−2 · · · t2n−2

 .

Obviously, each Toeplitz (or Hankel) matrix of order n gives rise to a unique sequence (of
length 2n− 1 in the finite case) of its elements. The connection also works the other way:
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Given an (infinite) sequence (an) and given integers n0 and m, we can construct a Toeplitz
(or a Hankel) matrix of order m having an0

in the upper left corner. In what follows we
present a class of totally positive Toeplitz matrices whose entries are hyperfibonacci num-
bers [4, 17, 24]. These sequences of numbers were recently introduced by Dil and Mező in
a study of a symmetric algorithm for hyperharmonic and some other integer sequences [9].

Definition 1.2. The hyperfibonacci sequence of the r-th generation (F
(r)
n )n≥0 is a se-

quence arising from the recurrence relation

F (r)
n =

n∑
k=0

F
(r−1)
k , F (0)

n = Fn, F
(r)
0 = 0, F

(r)
1 = 1, (1.1)

where r ∈ N and Fn is the n-th term of the Fibonacci sequence, Fn = Fn−1 + Fn−2,
F0 = 0, F1 = 1.

Proposition 1.3 gives some basic identities for hyperfibonacci sequences [7].

Proposition 1.3. For hyperfibonacci sequence (F
(r)
n )n≥0 we have

(i)
F (r)
n = F

(r)
n−1 + F (r−1)

n (1.2)

(ii)

F (1)
n

2
− F (1)

n−1F
(1)
n+1 = F

(1)
n−3 + 1 + (−1)n+1

(iii)
F (1)
n F

(1)
n+1 − F

(1)
n−1F

(1)
n+2 = F

(1)
n−2 + 1− (−1)n+1

(iv)

F (r)
n = Fn+2r −

r−1∑
k=0

(
n+ r + k

r − 1− k

)
. (1.3)

Explicit formula for determinant of the Hankel matrix of hyperfibonacci sequence of
r-th generation

Ar,n =


F

(r)
n F

(r)
n+1 · · · F

(r)
n+r+1

F
(r)
n+1 F

(r)
n+2 · · · F

(r)
n+r+2

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r+2 · · · F

(r)
n+2r+2


has been obtained in [19] and here we state it in Theorem 1.4. We will find it useful in
establishing our main result, the total positivity of the Toeplitz matrix of the same sequence
with odd-indexed hyperfibonacci number in the upper left corner.

Theorem 1.4. For the sequence (F
(r)
k )k≥0, r ∈ N and n ∈ N a determinant of a matrix

Ar,n takes values ±1,

det(Ar,n) = (−1)n+
⌊

r+3
2

⌋
.
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The TP2 property of Toeplitz and Hankel matrices is closely related to log-concavity
and log-convexity, respectively, of the associated sequences. Recall that a sequence (an) of
positive numbers is log-concave if a2n ≥ an−1an+1 holds for all n ≥ n0 for some n0 ∈ N.
If the inequality is reversed, the sequence is log-convex. The literature on log-concavity
and log-convexity is vast. Besides already mentioned classical papers by Stanley [21] and
Brenti [3], we refer the reader also to [10, 11, 20, 22] for some recently developed tech-
niques. In particular, the log-concavity of hyperfibonacci numbers of all generations r ≥ 1
has been established in [24] by using recurrence relations. Here we proceed to prove more
general claims that will imply the log-concavity results of reference [24].

2 Positivity of hyperfibonacci determinant

We let B(r)
m,n = [bi,j ] denote the matrix of order m consisting of hyperfibonacci numbers

of the r-th generation,

B(r)
m,n :=


F

(r)
n F

(r)
n−1 · · · F

(r)
n−m+1

F
(r)
n+1 F

(r)
n · · · F

(r)
n−m+2

...
...

. . .
...

F
(r)
n+m−1 F

(r)
n+m−2 · · · F

(r)
n


with the constraint r ≥ m−1. In what follows we will show that there exist q(r) ∈ N such
that det(B

(r)
m,n) is positive for n ≥ q(r).

From the elementary properties of the Fibonacci sequence known as Cassini identity
we immediately have that the matrix

M =

(
F2n+1 F2n+2

F2n+2 F2n+3

)
is positive for n ∈ N0 and the matrix

M ′ =

(
F2n+1 F2n

F2n+2 F2n+1

)
is positive for n ∈ N. In Proposition 2.1 we extend the property of positivity to matrices of
order 2 consisting from first generation of hyperfibonacci numbers while a general result,
involving r-th generation of hyperfibonacci numbers is given in Theorem 3.5.

Proposition 2.1. For n, r ∈ N determinant of the matrix B(1)
2,n is positive,

det(B
(1)
2,n) = det

(
F

(1)
n F

(1)
n−1

F
(1)
n+1 F

(1)
n

)
> 0.

Proof. We apply relations presented in Proposition 1.3 to get F (1)
n −F (1)

n−1 = Fn. Now, by
the properties of determinant (column subtraction and then row subtraction) we obtain

det

(
F

(1)
n F

(1)
n−1

F
(1)
n+1 F

(1)
n

)
= det

(
Fn F

(1)
n−1

Fn+1 F
(1)
n

)
= det

(
Fn F

(1)
n−1

Fn−1 Fn

)
= det

(
Fn Fn+1 − 1
Fn−1 Fn

)
> 0.
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Theorem 2.2. Let m ∈ N. Then there is nm ∈ N such that det
(
B

(m−1)
m,n

)
> 0 for

all n ≥ nm.

Proof. Employing elementary transformation on matrices and using relation (1.2) we get

det
(
B(m−1)

m,n

)
= det


Fn F

(1)
n−1 F

(2)
n−2 · · · F

(m−1)
n−m+1

Fn+1 F
(1)
n F

(2)
n−1 · · · F

(m−1)
n−m+2

...
...

...
...

Fn+m−1 F
(1)
n+m−2 F

(2)
n+m−3 · · · F

(m−1)
n



= det


Fn F

(1)
n−1 F

(2)
n−2 · · · F

(m−1)
n−m+1

Fn−1 Fn F
(1)
n−1 · · · F

(m−2)
n−m+2

...
...

...
...

Fn−m+2 Fn−m+3 Fn−m+4 · · · F
(1)
n−1

Fn−m+1 Fn−m+2 Fn−m+3 · · · Fn

 . (2.1)

Having in mind relation (1.3) we immediately obtain

F
(r)
n−r = Fn+r −

r−1∑
k=0

(
n+ k

r − 1− k

)

and furthermore

F
(r)
n−r = Fn+r − Sr, (2.2)

where

Sr :=

r−1∑
k=0

(
n+ k

r − 1− k

)
.

Thus, S1 = 1, S2 = n + 1, S3 = n(n−1)
2 + n + 2, S4 = n3+5n

6 + n + 3, etc. Now, we
substitute entries in (2.1) according to (2.2) to get

det
(
B(m−1)

m,n

)
= det


Fn Fn+1 − S1 Fn+2 − S2 · · · Fn+m−1 − Sm−1
Fn−1 Fn Fn+1 − S1 · · · Fn+m−2 − Sm−2

...
...

...
...

Fn−m+1 Fn−m+2 Fn−m+3 · · · Fn

 . (2.3)

In the following steps of this proof we let ∆1, ∆2, ∆3 denote matrices we deal with.
We will show that determinants of these matrices are equal to each other. In order to make
the proof more readable, the elements of the last two columns of ∆1, ∆2, ∆3 are denoted
by ci,j , c′i,j , c′′i,j , respectively. On the other hand, the elements of the first m − 2 columns
of these matrices are denoted by bi,j and they do not change their values under performed
transformation.
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When performing elementary transformations on matrix columns of (2.3) we obtain

det
(
B(m−1)

m,n

)
= det



S2 − S1 S3 − S2 − S1 · · · Fn+m−2 − Sm−2 Fn+m−1 − Sm−1
S1 S2 − S1 · · · Fn+m−3 − Sm−3 Fn+m−2 − Sm−2
0 S1 · · · Fn+m−4 − Sm−4 Fn+m−3 − Sm−3
...

...
...

...
0 0 · · · Fn Fn+1 − S1

0 0 · · · Fn−1 Fn


= det(∆1)

where we get ∆1 = [bi,j ] by similar transformation on rows,

∆1 =



S2 − 2S1 S3 − 2S2 − S1 · · · −Sm−1 + Sm−2 + Sm−3
S1 S2 − 2S1 · · · −Sm−2 + Sm−3 + Sm−4
0 S1 · · · −Sm−3 + Sm−4 + Sm−5
...

...
...

0 0 · · · S2 − S1

0 0 · · · Fn+1 − S1

0 0 · · · Fn


,

bi,j = bi+1,j+1, i = 1, . . . ,m− 1, j = 1, . . . ,m− 3,

bi,j = ci,j , i = 1, . . . ,m, j = m− 1,m,

ci,m−1 = ci+1,m, i = 1, . . . ,m− 3

and where entries bi,j get values

b1,1 = S2 − 2S1

b1,2 = S3 − 2S2 − S1

b1,3 = S4 − 2S3 − S2 + 2S1

b1,4 = S5 − 2S4 − S3 + 2S2 + S1

b1,5 = S6 − 2S5 − S4 + 2S3 + S2

...
b1,m−2 = Sm−1 − 2Sm−2 − Sm−3 + 2Sm−4 + Sm−5,

while for entries ci,j we have

c1,m−1 = −Sm−2 + Sm−3 + Sm−4

c2,m−1 = −Sm−3 + Sm−4 + Sm−5

...
cm−3,m−1 = −S2 + S1

cm−2,m−1 = −S1

cm−1,m−1 = Fn

cm,m−1 = Fn+1,
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and

cm−1,m = Fn+1 − S1

cm,m = Fn.

Furthermore, we form matrix ∆2 = [bi,j ] with bi,j = c′i,j , i = 1, . . . ,m, j = m− 1,m,
by performing row transformations

c′i,m−1 = ci,m−1 +

m−3∑
j=1

bi,j , i = 1, . . . ,m

c′i,m = ci,m +

m−2∑
j=1

bi,j , i = 1, . . . ,m.

As a consequence of these two operations for the last two columns of ∆2 we obtain

−Sm−4 + Sm−6 + Sm−7 + · · ·+ S2 −Sm−3 + Sm−5 + Sm−6 + · · ·+ S2

...
...

−S4 + S2 −S5 + S3 + S2

−S3 −S4 + S2

−S2 −S3

−S1 −S2

0 −S1

0 0
Fn Fn+1

Fn−1 Fn


.

(while the other entries of ∆2 are equal to those of ∆1). Clearly, det(∆1) = det(∆2).
Furthermore, we perform row transformations

c′′i,m−1 = c′i,m−1 + bi,m−5 + 2bi,m−6 + 4bi,m−7 + · · ·+ (Fm−3 − 1)bi,1

c′′i,m = c′i,m−1 + bi,m−4 + 2bi,m−5 + 4bi,m−6 + · · ·+ (Fm−2 − 1)bi,1

to get matrix ∆3 = [bi,j ] where bi,j = c′′i,j , i = 1, . . . ,m, j = m− 1,m. Then, the last
two columns of ∆3 are 

−Fm−2 −Fm−1
0 0
...

...
0 0
Fn Fn+1

Fn−1 Fn


.

Namely, a straighforward but tedious algebraic manipulation give us a nice value for c′′1,m−1,

c′′1,m−1 = (Fm−6 − 1)S1 + (Fm−5 − 1)2S1 − (Fm−4 − 1)S1 − (Fm−3 − 1)2S1

= −Fm−2.
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In the same fashion one can prove that c′′1,m = −Fm−1 and c′′i,j = 0, i = 2, . . . ,m − 2,
j = m− 1,m. Again, determinant is not affected under these transformations, det(∆3) =
det(∆2).

We shall now separately treat the matrix ∆3, for even and odd n. Using the Fibonacci
recurrence relation, for even n we immediately obtain

det
(
B(m−1)

m,n

)
= det



b1,1 b1,2 · · · b1,m−2 −Fm−2 −Fm−1
b2,1 b2,2 · · · b2,m−2 0 0
0 b3,2 · · · b3,m−2 0 0
...

...
...

...
...

0 0 · · · bm−2,m−2 0 0
0 0 · · · Fn−1 0 1
0 0 · · · −Fn−2 1 1



= −det



b1,1 b1,2 · · · b′1,m−2 −Fm−3 −Fm−2
b2,1 b2,2 · · · b2,m−2 0 0
0 b3,2 · · · b3,m−2 0 0
...

...
...

...
...

0 0 · · · bm−2,m−2 0 0
0 0 · · · 0 1 0
0 0 · · · 0 0 1


where b′1,n−2 = b1,m−2 + Fm−3Fn−1 − Fm−2Fn−2. This determinant can be represented
as the sum of the upper triangular determinants. Now we use the fact that there is q ∈ N
such that the Fibonacci number Fq is bigger that the value P (q), Fq > P (q), where P (n)
is a polynomial of any degree. The only element in the matrix above containing Fibonacci
numbers is b′1,m−2. The fact that the term Fn−1Fm−3 has a positive contribution in the
determinant completes the proof for case when n is even.

When n is odd we have

det
(
B(m−1)

m,n

)
= det



b1,1 b1,2 · · · b1,m−2 −Fm−2 −Fm−1
b2,1 b2,2 · · · b2,m−2 0 0
0 b3,2 · · · b3,m−2 0 0
...

...
...

...
...

0 0 · · · bm−2,m−2 0 0
0 0 · · · Fn−2 1 1
0 0 · · · −Fn−1 0 1


.

Now, analogue arguments as when n is even completes the proof.

In particular, when m = 4 we have

det
(
B

(3)
4,n

)
= det


S2 − 2 S3 − 2S2 − 1 −1 −2

1 S2 − 2 0 0
0 1 Fn Fn+1

0 0 Fn−1 Fn

 .
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When n is even then

det
(
B

(3)
4,n

)
= det


S2 − 2 S3 − 2S2 − 1 −1 −2

1 S2 − 2 0 0
0 Fn−1 0 1
0 −Fn−2 1 1



= det


S2 − 2 S3 − 2S2 − 1− Fn−2 + Fn−1 −1 −1

1 S2 − 2 0 0
0 0 0 1
0 0 1 0


= −(S2 − 2)

S2 − 2 0 0
0 1 0
0 0 1


+

S3 − 2S2 − 1− Fn−2 + Fn−1 −1 −1
0 1 0
0 0 1


= −(n− 1)2 +

n(n− 1)

2
− n− 1 + Fn−3.

The inequality

Fn−3 > (n− 1)2 − n(n− 1)

2
+ n+ 1

holds true for n ≥ 15 and consequently det
(
B

(3)
4,n

)
> 0 for n ≥ 15 when n is even.

Similarly, when n is odd

det
(
B

(3)
4,n

)
= (S2 − 2)

S2 − 2 0 0
0 1 0
0 0 1

−
S3 − 2S2 − 1− Fn−3 −1 −1

0 1 0
0 0 1


= (n− 1)2 − n(n− 1)

2
+ n+ 1 + Fn−3.

Thus, it follows from these two cases that det
(
B

(3)
4,n

)
> 0 for n ≥ 15.

Note that the proof of Theorem 2.2 can be used to efficient calculation of determinants
of matrices B(m−1)

m,n . We will illustrate this on the example for m = 4 and n = 5. In that
case, when applying the proof of Theorem 2.2 we have

det
(
B

(3)
4,5

)
= det


51 25 11 4
97 51 25 11
176 97 51 25
309 176 97 51

 = det


6 11 −1 −1
1 4 0 0
0 0 1 0
0 0 0 1


= 24− 11 = 13.

Corollary 2.3. Let m,n, r ∈ N and r ≥ m− 1. Then there is q ∈ N such that determinant
of the matrix B(r)

m,n is positive for all n ≥ q,

det
(
B(r)

m,n

)
> 0.
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Proof. We proceed by induction on r. The base case, r = m − 1, is provided by Theo-
rem 2.2. Let us now assume that the claim is true for m − 1 ≤ p ≤ r − 1. Our task is to
show that the determinant

det(B(r)
m,n) = det


F

(r)
n F

(r)
n−1 · · · F

(r)
n−m+1

F
(r)
n+1 F

(r)
n · · · F

(r)
n−m+2

...
...

. . .
...

F
(r)
n+m−1 F

(r)
n+m−2 · · · F

(r)
n


is also positive. We first recall (1.2) and then start subtracting rows of B(r)

m,n. We subtract
(m−1)-st row fromm-th, then (m−2)-nd from (m−1)-st, and continue all the way down
till we subtract the first row from the second. Since the determinant remains unchanged,
we obtain

det(B(r)
m,n) = det


F

(r)
n F

(r)
n−1 · · · F

(r)
n−m+1

F
(r−1)
n+1 F

(r−1)
n · · · F

(r−1)
n−m+2

...
...

. . .
...

F
(r−1)
n+m−1 F

(r−1)
n+m−2 · · · F

(r−1)
n

 .

We expand the determinant on the right hand side over the elements of the first row.

det(B(r)
m,n) = F (r)

n ∆1 + · · ·+ F
(r)
n−m+1∆m

=
F

(r)
n

F
(r−1)
n

F (r−1)
n ∆1 + · · ·+

F
(r)
n−m+1

F
(r−1)
n−m+1

F
(r−1)
n−m+1∆m,

where ∆i denotes the determinant obtained from det(B
(r)
m,n) by omitting the first row and

i-th column for 1 ≤ i ≤ m. Let us denote xi =
F

(r)
n−i+1

F
(r−1)
n−i+1

and define a function f : Rm → R
by

f(x1, . . . , xm) =

m∑
i=0

xi+1F
(r−1)
n−i ∆i.

Obviously, f(1, . . . , 1) = det(B
(r−1)
m,n ) > 0, and hence f(c, . . . , c) = c · det(B

(r−1)
m,n ) > 0,

for any positive constant c. In particular, f(φ2, . . . , φ2) > 0, where φ2 = 3+
√
5

2 .
Since f is continuous, there must exist a neighborhood

W = (φ2 − δ1, φ2 + δ1)× · · · × (φ2 − δm, φ2 + δm)

such that f is positive on W . Now we use the explicit expression

F (r)
n = Fn+2r −

r−1∑
k=0

(
n+ r + k

r − 1− k

)
from Proposition 1.3. By dividing it through by analogous expression for F (r−1)

n and
passing to limit when n→∞, one readily obtains

lim
n→∞

F
(r)
n

F
(r−1)
n

= φ2.
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That further implies that, for large enough n, the coefficient xi =
F

(r)
n−i+1

F
(r−1)
n−i+1

falls into

(φ2 − δi, φ2 + δi) for all i, and hence

f

(
F

(r)
n

F
(r−1)
n

, . . . ,
F

(r)
n−m+1

F
(r−1)
n−m+1

)
= det(B(r)

m,n) > 0.

That completes the proof.

3 Main results
We let Tr,n denote the matrix of order r + 2 consisting of hyperfibonacci numbers of the
r-th generation,

Tr,n :=


F

(r)
2n+1 F

(r)
2n · · · F

(r)
2n−r

F
(r)
2n+2 F

(r)
2n+1 · · · F

(r)
2n−r+1

...
...

. . .
...

F
(r)
2n+r+2 F

(r)
2n+r+1 · · · F

(r)
2n+1

 .

Lemma 3.1. For n ∈ N and the hyperfibonacci sequence
(
F

(1)
n

)
n≥0 the matrix

T1,n =

F
(1)
2n+1 F

(1)
2n F

(1)
2n−1

F
(1)
2n+2 F

(1)
2n+1 F

(1)
2n

F
(1)
2n+3 F

(1)
2n+2 F

(1)
2n+1


is totally positive.

Proof. According to Proposition 2.1 the three initial minors of order 2 of T1,n are positive.
It is immediately seen from Theorem 1.4 that determinant det(T1,n) is positive. These facts
complete the proof.

Note that the matrix T1,n = [ti,j ] is a Toeplitz matrix, with the element t1,1 being
hyperfibonacci number of the first generation having odd index. If we allow both even and
odd indices for t1,1 then the property of total positivity is lost. Such determinant of order 3
in not positive for even indices (by Theorem 1.4), while it keeps the positivity of minors of
order 2. We express this fact, that follows from the proof of Lemma 3.1, in Corollary 3.2.

Corollary 3.2. For n ∈ N and the hyperfibonacci sequence
(
F

(1)
n

)
n≥0 the matrix

T ′1,n =

F
(1)
n F

(1)
n−1 F

(1)
n−2

F
(1)
n+1 F

(1)
n F

(1)
n−1

F
(1)
n+2 F

(1)
n+1 F

(1)
n


is TP2.

Lemma 3.3. For n ≥ 4 and the hyperfibonacci sequence
(
F

(2)
n

)
n≥0 the matrix

T2,n =


F

(2)
2n+1 F

(2)
2n F

(2)
2n−1 F

(2)
2n−2

F
(2)
2n+2 F

(2)
2n+1 F

(2)
2n F

(2)
2n−1

F
(2)
2n+3 F

(2)
2n+2 F

(2)
2n+1 F

(2)
2n

F
(2)
2n+4 F

(2)
2n+3 F

(2)
2n+2 F

(2)
2n+1
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is totally positive.

Proof. According to Proposition 2.1 the five initial minors of order 2 of T2,n are positive.
Furthermore, the three initial minors of order 3 are positive when n ≥ 3 by Corollary 2.3.
However, when n = 3 determinant det(T2,n) is negative (by Theorem 1.4) so the matrix
T2,n is totally positive for n ≥ 4.

Having in mind Proposition 2.1 and the fact that the matrix B(2)
3,n has positive determi-

nant for n ≥ 7 we immediately derive Corollary 3.4.

Corollary 3.4. For n ≥ 8 and the hyperfibonacci sequence
(
F

(2)
n

)
n≥0 the matrix

T ′2,n =


F

(2)
n F

(2)
n−1 F

(2)
n−2 F

(2)
n−3

F
(2)
n+1 F

(2)
n F

(2)
n−1 F

(2)
n−2

F
(2)
n+2 F

(2)
2n+1 F

(2)
n F

(2)
n−1

F
(2)
n+3 F

(2)
2n+2 F

(2)
2n+1 F

(2)
n


is TP3.

Furthermore, it holds true that

det(B
(3)
4,n) > 0, n ≥ 15

det(B
(4)
4,n) > 0, n ≥ 5.

When r ≥ 5 there is no constraint on the value of nwhen asking for positivity of det(B
(r)
4,n).

Theorem 3.5. For the hyperfibonacci sequence
(
F

(r)
n

)
n≥0 there is q ∈ N such that the

matrix Tr,n of order r + 2

Tr,n =


F

(r)
2n+1 F

(r)
2n · · · F

(r)
2n−r

F
(r)
2n+2 F

(r)
2n+1 · · · F

(r)
n−r+1

...
...

. . .
...

F
(r)
n+r+2 F

(r)
2n+r+1 · · · F

(r)
2n+1


is totally positive for n ≥ q.

Proof. First we prove that 2n+ 1 initial minors of order 2 are positive. These submatrices
are of the form B

(r)
2,m2

where m2 > 2n − r, so there they have positive determinant for
r ≥ 1 and n ≥ 1, according to Corollary 2.3. Obviously, another initial minors are of the
form

B
(r)
3,m3

, B
(r)
4,m4

, . . . , B
(r)
r+1,mr+1

.

According to Corollary 2.3 there exist numbers q3, q4, . . . , qr+1 ∈ N such that

det(B
(r)
3,m3

) > 0, m3 ≥ q3
det(B

(r)
4,m4

) > 0, m4 ≥ q4
...

det(B
(r)
r+1,mr+1

) > 0, mr+1 ≥ qr+1.



T. Došlić et al.: Total positivity of Toeplitz matrices of recursive hypersequences 137

It remains to show that det(Tr,n) is itself positive. We start by noticing that Tr,n can
be obtained from Ar,2n−r by reversing the order of columns. That corresponds to right
multiplication of Ar,2n−r by Ur+2, where Ur+2 is a square matrix of order r + 2 whose
elements are (Ur+2)i,j = 1 if i + j = r + 3 and zero otherwise. It is immediately seen
that det(Ur+2) = (−1)b(r+2)/2c. Now we have det(Tr,n) = det(Ar,2n−r) det(Ur+2),
and Theorem 1.4 implies

det(Tr,n) = (−1)
2n−r+b(r+3)/2c+b(r+2)/2c

= (−1)2 = 1,

for all r. That completes the proof.

We conclude the section with another result that follows directly from Corollary 3.4.

Corollary 3.6. For the hyperfibonacci sequence
(
F

(r)
n

)
n≥0 there is q ∈ N such that the

matrix T ′r,n of order r + 2

T ′r,n =


F

(r)
n F

(r)
n−1 · · · F

(r)
n−r−1

F
(r)
n+1 F

(r)
n · · · F

(r)
n−r

...
...

. . .
...

F
(r)
n+r+1 F

(r)
n+r · · · F

(r)
n


is TPr+1 for n ≥ q.

4 Concluding remarks
In this paper we have considered several classes of Toeplitz matrices associated to se-
quences of hyperfibonacci numbers of given generation. We have established various pos-
itivity results for such matrices. In particular, we showed that such matrices with odd-
indexed hyperfibonacci numbers on the main diagonal are totally positive for large enough
values of index n. When the restriction to odd-valued indices is omitted, the total positivity
is not preserved, but we established that those matrices are TPr+1 for a given generation r
and large enough n. That implies (at least asymptotical) log-concavity of hyperfibonacci
numbers of all generations r ≥ 1. Our results thus extend and strengthen results of refer-
ence [24] established by a different approach. It would be interesting to have combinatorial
proofs of log-concavity of F (r)

n for r ≥ 1; at the moment, we are not aware of any.
We have also tried to explore the form of dependence of qr on r. The numerical evi-

dence, collected in Table 1, suggests that 2qr +1, the index in the upper left corner, behaves
as 7r − 5 for even r and 7r − 4 for r odd. It would be interesting to examine whether the

Table 1: Some values of parameter qr in Theorem 3.5.

r 1 2 3 4 5 6 7 8 9 10 11

2qr + 1 5 9 17 23 31 37 45 51 59 65 73

pattern (or at least a linear dependence) persists for larger r, and if it does, to find some
explanation.

We are fairly confident that the methods and results presented here could be extended
so as to encompass also other sequences defined by two-term recurrences and their iterated
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partial sums. It would be worthwhile to explore whether the same approach could be appli-
cable to the sequences defined by longer linear recurrences with constant coefficients, such
as the sequence of tribonacci numbers.
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Abstract

Let A be a (0, 1)-matrix such that PA is indecomposable for every permutation matrix
P and there are 2n + 3 positive entries in A. Assume that A is also nonconvertible in a
sense that no change of signs of matrix entries, satisfies the condition that the permanent of
A equals to the determinant of the changed matrix.

We characterized all matrices with the above properties in terms of bipartite graphs.
Here 2n + 3 is known to be the smallest integer for which nonconvertible fully indecom-
posable matrices do exist. So, our result provides the complete characterization of extremal
matrices in this class.
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1 Introduction
Let Mm,n(Σ) denote the set of matrices of size m×n with entries from a certain algebraic
set Σ. Unless explicitly stated otherwise, Σ ⊆ Z is a subset of integers. Typically Σ =
{0, 1} or Σ = {−1, 1} and in these two cases we will write Mm,n(0, 1) or Mm,n(±1),
and if m = n, then we write shortly Mn,n(Σ) = Mn(Σ). We consider two well known
functions of matrices, permanent and determinant, which are defined by formulas:

perA =
∑
σ∈Sn

n∏
i=1

aiσ(i), detA =
∑
σ∈Sn

n∏
i=1

sgn(σ)aiσ(i),

where Sn is the group of permutations of order n and sgn(σ) is a sign of permutation σ.
Permanent is a good counting function in combinatorics and applications, but there is

no fast algorithms known for computing the permanent function itself on arbitrary matrices.
Ryser formula which requires O(n2n−1) multiplication operations is still one of the best
known algorithms, for details see [1] or [9]. Moreover, Valiant proved that computing
even a permanent of (0, 1)-matrix is #P-complete problem ([12]). Recent investigations of
permanents of (0, 1) and (−1, 1) matrices can be found in [6] and [3], correspondingly,
and references therein. In comparison, the determinant which is very similar to permanent
can be easily computed by Gauss elimination algorithm. One of the possible approaches
to compute permanent is to convert it by a certain transformation to the determinant. The
sign-conversion is one of the classical possibilities to construct such a transformation.

We say that matrixA ∈Mn(0, 1) is sign convertible or just convertible if there is matrix
X ∈ Mn(±1) such that perA = det(A ◦ X), where operation ◦ is the Hadamard, i.e.,
entrywise product. The notion of convertibility was presented by Pólya in [10] and studied
by different mathematicians (for details see [4, 5, 9]). Convertibility of (0, 1)-matrices is
equivalent to many problems in graph theory (for details see [7, 8, 11, 13]). Thus the class
of (0, 1)-matrices is particularly important.

In [4] different notions of bounds of convertibility were presented. We say that integer
Ωn is an upper bound for convertibility if for any A ∈ Mn(0, 1) with perA > 0 and with
more than Ωn nonzero entries it follows thatA is not convertible. We say that ωn is a lower
bound for convertibility if any matrix A ∈ Mn(0, 1) with less than ωn positive entries is
convertible. It is known that Ωn = n2+3n−2

2 (see [5]) and ωn = n+ 6 (see [4]).
In [2] lower bounds for convertibility were found under additional assumption that ma-

trices are indecomposable or fully indecomposable. Note that instead of indecomposable
some authors use other terminology like irreducible, see a book by Brualdi and Ryser [1].
Since the present paper is a continuation of our previous work [2] we use the same ter-
minology as in [2]. Notice that the term ”fully indecomposable” is also used in the same
monograph (see [1, page 112]). Let us state the corresponding definitions below.

E-mail addresses: mbudrevich@yandex.ru (Mikhail Budrevich), gregor.dolinar@fe.uni-lj.si (Gregor
Dolinar), guterman@list.ru (Alexander Guterman), bojan.kuzma@famnit.upr.si (Bojan Kuzma)
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Definition 1.1. A matrix A ∈Mn(0, 1) is called decomposable if there exists permutation
matrix P ∈Mn(0, 1) such that

A = P

(
B 0
C D

)
P t,

where B,D are square matrices and C is possibly a rectangular matrix. If A is not decom-
posable, it is called indecomposable.

Definition 1.2. A matrix A ∈ Mn(0, 1) is called partially decomposable if there exist
permutation matrices P,Q ∈Mn(0, 1) such that

A = P

(
B 0
C D

)
Q,

whereB,D are square matrices and C is possibly a rectangular matrix. IfA is not partially
decomposable, it is called fully indecomposable.

Remark 1.3. One observes easily that A ∈ Mn(0, 1) is not fully indecomposable if and
only if for some integer p ∈ {1, . . . , n − 1} there exists a zero block of size p × (n − p)
in A.

Remark 1.4. We note that a fully indecomposable matrix is always indecomposable, but
the converse may not be true. Observe that in each row and in each column of a fully
indecomposable matrix there are at least 2 positive entries.

In [2, Example 4.3] we showed that lower bound for indecomposable matrices equals
n+ 6 and can not be improved. For fully indecomposable matrices better lower bound was
found in the same paper.

Theorem 1.5 ([2]). Let A ∈ Mn(0, 1) be a fully indecomposable matrix with less than
2n+ 3 positive entries. Then matrix A is convertible.

Our aim is to describe extremal case of Theorem 1.5. Namely, we classify all fully
indecomposable matrices with 2n+ 3 positive entries which are nonconvertible. Our paper
is organized as follows. In Section 2 we reformulate the notion of convolution (introduced
in [2]) in terms of bipartite graphs and describe the properties of this operation. In Section 3
we prove our main result Theorem 3.13 on the characterization of the extremal case using
the language of the graph theory.

2 Convolution via bipartite graphs
The following notion of convolution was presented in [2].

Definition 2.1. Let A ∈ Mn(0, 1) and let the first row of A has exactly two non-zero
entries a11, a12. Then the convolution ofA by the first row is the following matrix S1(A) ∈
Mn−1(0, 1),

S1(A) =


max(a21, a22) a23 · · · a2n
max(a31, a32) a33 · · · a3n

...
...

. . .
...

max(an1, an2) an3 · · · ann

 .
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Here we delete the first row and take the maximum between the corresponding elements in
the first and second columns.

Similarly, if the i-th row of A has exactly two nonzero entries aij , aik, j < k, the
convolution Si(A) ∈ Mn−1(0, 1) of A by the i-th row is defined as the matrix obtained
from A by deleting the i-th row and k-th column and exchanging the j-th column by the
maximum of j-th and k-th columns.

Notation 2.2. Let A ∈ Mm,n(Σ), α ⊆ {1, . . . ,m} and β ⊆ {1, . . . , n}. By A(α|β) we
denote the matrix obtained from A by removing rows with indexes from α and columns
with indexes from β. By A[α|β] we denote the submatrix of A located on intersection of
rows with indexes from α and columns with indexes from β. We will write shortlyA(|1, 2)
instead of A({}|{1, 2}) etc.

Our main goal in this section is to present the notion of convolution with the help of
graphs. Let Γ = Γ(V,W,E) be a simple bipartite graph with V ∪W as the set of vertices
and E as the set of edges. Write V = {v1, . . . , vm} and W = {w1, . . . , wn}. We say
that matrix A ∈ Mm,n(0, 1) is biadjacency matrix of Γ if the following holds: aij = 1 if
and only if {vi, wj} ∈ E. Thus |V | is equal to the number of rows in A and |W | is equal
to the number of columns in A. The number of edges of a vertex v is a valency of this
vertex. Since we study square (0, 1)-matrices we will consider only bipartite graphs with
|V | = |W |.

Remark 2.3. Let Γ = Γ(V,W,E) be a simple bipartite graph and A ∈Mn(0, 1) its biad-
jacency matrix. Then permutation of rows of A corresponds to renumbering of vertices in
V , permutation of columns of A corresponds to renumbering of vertices in W and transpo-
sition of A corresponds to exchange of sets V and W . Thus these transformations do not
change the structure of the graph.

Suppose that convolution can be applied to a matrix A ∈ Mn(0, 1), i.e., suppose A
has a row with exactly two nonzero entries. By Remark 2.3 we can assume that A has
two positive elements a11 and a12 in the first row and S1(A) is a convolution of A by the
first row. Let A be biadjacency matrix of Γ = Γ(V,W,E), see Figure 1(a), and S1(A) be
biadjacency matrix of Γ1, see Figure 1(b).
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(b) the result of convolution

Figure 1: Convolution.
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Lemma 2.4. Let A ∈ Mn(0, 1). Let the first row of A has exactly two non-zero entries
a11, a12, and let S1(A) be the convolution of A. Then bipartite graph Γ1 with biadja-
cency matrix S1(A) is constructed from bipartite graph Γ with biadjacency matrix A by
the following steps:

(1) Vertices v1 and w1 are removed.

(2) Every edge in Γ of the form {x,w1} for x ∈ {v2, . . . , vn} is replaced by an edge in
Γ1 of the form {x,w2} .

Proof. To obtain S1(A) from A the following transformations are done.

1. The first row and the first column of A are removed. Thus vertices v1 ∈ V and
w1 ∈W are removed from Γ.

2. Since A(1|1, 2) = S1(A)(|1) the corresponding subgraphs in Γ and Γ1 coincide.

3. In S1(A) elements of the first column are represented by max(ai1, ai2), where i =
2, . . . , n. Since we consider (0, 1)-matrices there are four possible options.

3.1. Suppose ai1 = ai2 = 0. Then max(ai1, ai2) = 0 and no edges in Γ and Γ1

correspond to these entries of A and S1(A).

3.2. Suppose ai1 = 1 and ai2 = 0. Then there is an edge {vi, w1} in Γ. Since
max(ai1, ai2) = 1 this edge in Γ1 is replaced by {vi, w2}. For i = 2 this case
is represented in Figure 1(a) for Γ and in Figure 1(b) for Γ1 by dash-dotted
edges.

3.3. Suppose ai1 = 0 and ai2 = 1. Then there is an edge {vi, w2} in Γ. Since
max(ai1, ai2) = 1 this edge remains also in Γ1. For i = 4 this case is repre-
sented in Figure 1(a) for Γ and in Figure 1(b) for Γ1 by dotted edges.

3.4. Suppose ai1 = ai2 = 1. Then there are edges {vi, w1} and {vi, w2} in Γ.
Since max(ai1, ai2) = 1 these edges are replaced by the edge {vi, w2} in Γ1.
For i = 3 this case is represented in Figure 1(a) for Γ and in Figure 1(b) for Γ1

by dashed edges. In this case we will say that edges are merged.

3 Main result
We will use the following results obtained in [2].

Theorem 3.1 ([2, Theorem 3.6]). LetA ∈Mn(0, 1). Let the first row ofA have exactly two
nonzero entries a11 and a12, and let S1(A) be the convolution of A. Then A is convertible
if and only if S1(A) is convertible.

Theorem 3.2 ([2, Theorem 3.8]). LetA ∈Mn(0, 1) be a fully indecomposable matrix with
at most 2n+ 2 positive entries. Then A is convertible.

Now we prove that the convolution of a fully indecomposable matrix is fully indecom-
posable.

Lemma 3.3. Let A ∈ Mn(0, 1). Let the first row of A have exactly two nonzero entries
a11 and a12, and let S1(A) be the convolution of A. Let A be fully indecomposable. Then
S1(A) is fully indecomposable.
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Proof. Assume on the contrary that S1(A) is partially decomposable. Then there exists a
k × (n− k − 1) zero submatrix B = S1(A)[i1, . . . , ik|j1, . . . , jn−k−1] for some 1 ≤ k ≤
n− 2 and some i1 < · · · < ik and j1 < · · · < jn−k−1. We consider two cases depending
on whether B includes the first column of S1(A) or not.

1. Suppose j1 > 1. Since A(1|1, 2) = S1(A)(|1) then B is a submatrix of A as well,
i.e., B = A[i1 + 1, . . . , ik + 1|j1 + 1, . . . , jn−k−1 + 1]. Since a1,l = 0 for l > 2 and
since j1 + 1 > 2 it follows that A[1, i1 + 1, . . . , ik + 1|j1 + 1, . . . , jn−k−1 + 1] is a
(k+1)×(n−k−1) zero submatrix. SoA is partially decomposable, a contradiction.

2. Suppose j1 = 1. Let S1(A) = (sij). Since 0 = sil,1 = max(ail+1,1, ail+1,2) for
any l = 1, . . . , k it follows that A[i1 + 1, . . . , ik + 1|1, j1 + 1, . . . , jn−k−1 + 1] is a
k × (n− k) zero submatrix. So A is partially decomposable, a contradiction.

The following example shows that the converse does not hold, i.e., if S1(A) is fully
indecomposable, then A is not necessarily a fully indecomposable.

Example 3.4. The matrixA, defined below, is partially decomposable while S1(A) is fully
indecomposable.

A =


1 1 0 0
0 1 1 1
0 1 1 1
0 1 1 1


Notation 3.5. Let A ∈Mn(0, 1). By ν(A) we denote the number of positive entries of A.
By Jk ∈Mk(0, 1) we denote the k-by-k matrix with all entries equal to 1.

Lemma 3.6. Let A ∈ Mn(0, 1), n > 3, be a fully indecomposable nonconvertible matrix
with ν(A) = 2n+3. Then the convolution can be applied recursively to obtain J3. On step
k of the process we obtain fully indecomposable, nonconvertible matrix of order (n − k)
with 2(n− k) + 3 positive entries.

Proof. By Remark 1.4 in each row of A there are at least two positive elements. Since
ν(A) = 2n+ 3 by Pigeonhole principle there is a row in A with exactly 2 positive entries.
With no loss of generality these entries are a11 and a12. Since the convolution S1 removes
the first row of A it follows that ν(S1(A)) ≤ 2(n − 1) + 3. By Theorem 3.1, S1(A) is
nonconvertible and by Lemma 3.3, S1(A) is fully indecomposable. Thus by Theorem 3.2,
ν(S1(A)) ≥ 2(n− 1) + 3.

Combining both inequalities we obtain ν(S1(A)) = 2(n − 1) + 3 and matrix S1(A)
meets all the conditions of this lemma. Repeating the arguments n− 3 times we obtain J3.

Lemma 3.7. Let A ∈ Mn(0, 1), n > 3, be a fully indecomposable nonconvertible matrix
with ν(A) = 2n + 3 and with exactly two positive entries a11 = a12 = 1 in the first row.
Let A and S1(A) be the biadjacency matrices of bipartite graphs Γ and Γ1, respectively.
Then Γ1 is constructed from Γ without merging edges.

Proof. Suppose the edges {x,w1} and {x,w2} of Γ are merged by convolution. It means
that there is i > 1 such that ai1 = ai2 = 1. These two positive entries are replaced by
one in matrix S1(A). Thus ν(S1(A)) ≤ 2n + 3 − 3 = 2(n − 1) + 2, which contradicts
Lemma 3.6.
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Lemma 3.8. Let A ∈ Mn(0, 1), n ≥ 3, be a fully indecomposable nonconvertible matrix
with ν(A) = 2n + 3. Then in A there are n − 3 columns (rows) with exactly two positive
entries and 3 columns (rows) with exactly three positive entries.

Proof. By Remark 1.4 in each row of A there are at least two positive entries. By Lem-
ma 3.6 we can construct sequence of n−3 convolutions to obtain matrix J3. By Lemma 3.7
there are no merges of edges, hence after applying a convolution the number of positive
entries in non-deleted rows does not change.

To prove the statement for columns we transpose the matrix and repeat our arguments.

A chain of three edges is any sequence of edges of the form {a, v1}, {v1, v2}, {v2, b}
which constitute a path of length 3 for some vertices a, v1, v2, b.

Lemma 3.9. Let A ∈ Mn(0, 1), n > 3, be a fully indecomposable nonconvertible matrix
with ν(A) = 2n + 3 and with exactly two positive entries a11 = a12 = 1 in the first
row. Then the first or the second column (or both) contains exactly two nonzero entries.
Moreover, suppose the first column ofA contains exactly two nonzero entries and letA and
S1(A) be the biadjacency matrices of bipartite graphs Γ and Γ1, respectively. Then Γ1 is
obtained from Γ by replacing a chain of three edges by a single edge and deleting the two
intermediate vertices of this chain.

Remark 3.10. No generality is lost in assuming that first column contains exactly two
nonzero entries — we can always swap the first two columns to achieve this.

Remark 3.11. Conversely, under the assumptions and notations of Lemma 3.9, Γ is ob-
tained from Γ1 by subdividing an edge with two additional vertices. Note that this proce-
dure preserves bipartiteness of graphs.

Proof of Lemma 3.9. By Lemma 3.8 in each column ofA there are either 2 or 3 positive en-
tries. Since permutation of columns does not change the structure of the graph we consider
three cases.

1. Suppose that in the first and in the second columns of A there are three positive en-
tries. By Lemma 3.7 no edges were merged in S1(A). Thus there are four positive
entries in the first column of S1(A). Note that by Lemma 3.6, S1(A) is fully inde-
composable nonconvertible matrix of order n − 1 and ν(S1(A)) = 2(n − 1) + 3,
so by Lemma 3.8 in each column of S1(A) there are at most three positive entries, a
contradiction.

2. Suppose there are two and three positive entries in the first and in the second column
of the matrix. With no loss of generality we can permute columns of the matrix to
obtain two positive entries in the first column and three positive entries in the second
column. By Lemma 3.7 no edges are merged thus ai1ai2 = 0 for any i ≥ 2. We
may assume that a11 = a21 = 1 in the first column and a12 = a32 = a42 =
1 in the second column. The structure of the graph is represented in Figure 2(a).
By Lemma 2.4 convolution S1(A) remove vertices v1 and w1 and edges {v1, w1}
and {v1, w2} and the edge {v2, w1} is replaced by the edge {v2, w2}. The resulted
graph is represented in Figure 2(b). The removed elements of Γ are represented by
dotted edges (Figure 2(a)) the added element of Γ1 are represented by dashed edge
(Figure 2(b)). Thus the chain {w2, v1}, {v1, w1}, {w1, v2} is replaced by the edge
{w2, v2} to obtain graph Γ1. The lemma is proved in this case.



148 Ars Math. Contemp. 17 (2019) 141–151

w1 w2

v1 v2 v3 v4ppppppppppppppppppppppppppppppppppppppppppppppppppp
ppppppppppp
ppppppppppp
ppppppp

ppppppppppp
ppppppppppp

ppppppppppp
ppppppp

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

u

u u u u

u r r r r r r r r r r

r r rp p p p pp p p p pp p p p p ppppp pppppp p p p p ppppp pppppp p p p p

(a) the chain before convolution is marked by the
dotted edges

w2

v2 v3 v4

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

u u u

u r r r r r r r r r r

r r rp p p p pp p p p pp p p p p ppppp pppppp p p p p ppppp pppppp p p p p

(b) the same chain after convolution
is the dashed edge

Figure 2: Convolution of matrix with 3 positive entries in 1st column and 2 positive entries
in 2nd column.

3. Suppose there are two positive entries in the first column and two positive entries in
the second column. By Lemma 3.7 no edges are merged thus ai1ai2 = 0 for any
i ≥ 2. We may assume that a11 = a21 = 1 in the first column and a12 = a32 = 1
in the second column. The structure of the graph is represented in Figure 3(a). By
Lemma 2.4 convolution S1(A) remove vertices v1 and w1 and edges {v1, w1} and
{v1, w2} and the edge {v2, w1} is replaced by the edge {v2, w2}. The resulted graph
is represented in Figure 3(b). Thus the chain {w2, v1}, {v1, w1}, {w1, v2} (dotted
edges, Figure 3(a)) is replaced by the edge {w2, v2} (dashed edge, Figure 3(b)) to
obtain graph Γ1. The lemma is proved.
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is the dashed edge

Figure 3: Convolution of matrix with 2 positive entries in 1st column and 2 positive entries
in 2nd column.

Lemma 3.12. Let Γ be a graph obtained from the bipartite graph Γ1 by subdividing one
or more its edges with even number of points. Let A(Γ1) and A(Γ) be the corresponding
biadjancency matrices. If A(Γ1) is fully indecomposable then same holds for A(Γ).

Proof. We use the notation from the proof of Remark 3.11. It suffices, by induction, to
consider the case when Γ is obtained from Γ1 by subdividing only one of its edges with two
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vertices. Without loss of generality we may assume that the subdivided edge is {v1, w1}
and that we are adding vertices v0, w0. Then, the matrix corresponding to Γ has the form

A(Γ) =



v0 v1 v2 ... vn

w0 1 1 0 . . . 0
w1 1 0 F . . . F
w2 0 F F . . . F
...

...
...

...
. . .

...
wn 0 F F . . . F


where F denote the entries of the biadjacency matrix A(Γ1). It follows from Remark 1.3
that A(Γ) is fully indecomposable if and only if it does not contain a zero block of size
p × (n + 1 − p) for some p = 1, . . . , n where n + 1 is the size of A(Γ). Now, by the
induction, the n × n matrix A(Γ1) is fully indecomposable so it does not contain a zero
block of size 1 × (n − 1). It follows that the (n + 1) × (n + 1) matrix A(Γ) has at least
two ones in each row, i.e. has no zero block of size 1 × n. The first row of A(Γ) contains
n−1 zeros. However, at the corresponding columns (2)–(n+1) (the starting column being
indexed by 0), the other rows of A(Γ) consists of elements of A(Γ1) so cannot have n− 1
zero entries. That is, A(Γ) does not contain a zero block of size 2 × (n − 1). Likewise
we see that inside columns (3)–(n) the matrix A(Γ1) does not contain a zero 2 × (n − 2)
which implies that A(Γ) contains no 3× (n− 2) block. Proceed inductively to deduce that
A(Γ) contains no zero p× (n+ 1− p) block. Hence, A(Γ) is fully indecomposable.

Theorem 3.13. Let A ∈ Mn(0, 1), n ≥ 3, be a fully indecomposable nonconvertible
matrix with ν(A) = 2n + 3. Let Γ = Γ(V,W,E) be a simple bipartite graph with A
as its biadjacency matrix. Then up to renumbering of vertices, Γ has the following three
properties.

(1) Vertices vi, wj , where i, j ∈ {1, 2, 3}, have valency 3, and every other vertex has
valency 2.

(2) If i, j ∈ {1, 2, 3} and {vi, wj} /∈ E, then there is a unique path connecting vi to wj
whose intermediate vertices are all of valency 2.

(3) The graph is connected.

Remark 3.14. The disjoint union of a complete bipartite graph and an even cycle K3,3 +
C2n−6 satisfies all the assumptions of Theorem 3.13 except the third item. This graph is
not a biadjacency graph of fully indecomposable n-by-n matrix with 2n+ 3 units.

Proof. By Lemma 3.6 there is a sequence of n − 3 convolutions to obtain matrix J3 from
A. Matrix J3 is a biadjacency matrix of a complete bipartite graphK3,3. This graph fulfills
the conditions of the theorem. Let us reverse these convolutions to obtain graph Γ. Note
that by Remark 3.11 on each reverse step the resulted graph is bipartite.

By Lemma 3.9 each convolution replaces a chain of three edges by a single edge. Thus
the reverse operation will add two vertices with valency 2 and replace a single edge by a
chain of three edges, hence the valencies of vertices which were added on the previous steps
do not change. Thus Condition (1) of the theorem is satisfied after each reverse operation.

All edges in the graph K3,3 can be represented as a chain of length 1 from vertex
vi to vertex wj . Thus each reverse operation replaces a single edge by a chain of three
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edges whose both intermediate vertices are of valency 2 in some chain of edges. Obviously
this operation preserves chains of edges from vi to wj , where i, j ∈ {1, 2, 3}, possibly
extending a length of one of these chains by 2. Thus Conditions (2) and (3) are satisfied.

Remark 3.15. With the help of Remark 3.11 and Lemma 3.12 we can formulate Theo-
rem 3.13 also in the following way. A bipartite graph Γ corresponds to a fully indecompos-
able nonconvertible biadjacency matrix A with ν(A) = 2n+ 3 if and only if Γ is obtained
from K3,3 by subdividing each edge with an even number of vertices (possibly 0).

Recall that if two matrices are the same modulo permutations of rows/columns and
transposition, then their biadjacency graphs are isomorphic. Conversely, assume the bi-
adjacency graphs Γ1 and Γ2 of two fully indecomposable nonconvertible n-by-n matrices
A1, A2 ∈Mn(0, 1) with 2n+ 3 units are isomorphic. The two graphs are bipartite having
two maximum sets of independent vertices Vi and Wi. Their graph isomorphism must ei-
ther map V1 bijectively onto V2 and W1 bijectively onto W2, or it maps V1 bijectively onto
W2 and W1 bijectively onto V2. The first case corresponds to permuting rows/columns of
matrix A1 to obtain A2, while the second case composes this with transposition.

Therefore, the cardinality of the set Ω of equivalent classes of fully indecomposable
nonconvertible matricesA ∈Mn(0, 1) with v(A) = 2n+3, modulo permutations of rows,
columns, and transposition, equals the number of pairwise nonisomorphic graphs, obtained
from K3,3 by subdividing each edge with an even number of vertices (possibly 0) such that
in total we place additional 2(n− 3) vertices.

Theorem 3.16. Up to a permutation of rows and columns and up to a transposition, any
fully indecomposable nonconvertible matrix A ∈ Mn(0, 1) with ν(A) = 2n + 3 can be
described by a matrix C ∈M3(Z+), such that the sum of elements of C is n− 3.

Proof. In the proof of Theorem 3.13 it is was shown that any bipartite graph Γ with a fully
indecomposable nonconvertible biadjacency matrix A ∈Mn(0, 1), ν(A) = 2n+ 3, can be
constructed by a sequence of n−3 replacements of a single edge by a chain of three edges.
Thus for a full description of Γ we must define lengths of chains from vi to wj , where
i, j ∈ {1, 2, 3}. Each chain has length 2k + 1, where k ≥ 0 is a number of times when an
edge from this chain was replaced by a chain of three edges. Equivalently, it is a number of
convolutions that modified this chain. By Lemma 3.6 total number of convolutions to obtain
K3,3 from Γ is n − 3. It follows that Γ can be described by 9 numbers ki, i ∈ {1, . . . , 9},
such that

∑9
i=1 ki = n− 3.

Let us arrange these numbers in a matrix C = (cij) ∈ M3(Z+) such that cij is equal
to a number of convolutions corresponding to a chain from vi to wj . Permutation of rows
(columns) is equivalent to renumbering of vertices vi, i ∈ {1, 2, 3} (wi, i ∈ {1, 2, 3}).
Transposition of C is equivalent to a permutation of sets of vertices V and W of a graph Γ.
Thus the structure of Γ does not change and the theorem is proved.

Example 3.17. For n = 7 there are 16 not equivalent nonconvertible (0, 1)-matrices with
2n + 3 ones. They are described by the following nonnegative integer matrices with the
sum of elements equal to 4.4 0 0

0 0 0
0 0 0

 3 1 0
0 0 0
0 0 0

 3 0 0
0 1 0
0 0 0

 2 2 0
0 0 0
0 0 0
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2 0 0
0 2 0
0 0 0

 2 1 1
0 0 0
0 0 0

 2 1 0
0 0 1
0 0 0

 2 1 0
0 1 0
0 0 0


2 1 0

1 0 0
0 0 0

 2 0 0
0 1 1
0 0 0

 2 0 0
0 1 0
0 0 1

 1 1 1
1 0 0
0 0 0


1 1 0

0 1 1
0 0 0

 1 1 0
1 1 0
0 0 0

 1 1 0
0 1 0
0 0 1

 1 1 0
0 0 1
0 0 1
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Abstract

We determine the 26 families of irreducible polyhedral quadrangulations of the projec-
tive plane under three reductions called a face-contraction, a 4-cycle removal and a 23-path
shrink, which were first given by Batagelj in 1989. Every polyhedral quadrangulation of the
projective plane can be obtained from one of them by a sequence of the inverse operations
of the reductions.

Keywords: Quadrangulation, projective plane, generating theorem.

Math. Subj. Class.: 05C10

1 Introduction
A quadrangulation (resp., triangulation) of a closed surface is a simple graph cellularly
embedded on the surface so that each face is quadrilateral (resp., triangular); in particular,
a 2-path on the sphere is not a quadrangulation in this paper. It is known that every quadran-
gulation G of any closed surface is 2-connected and hence the minimum degree of G is at
least 2. For quadrangulations of closed surfaces, we introduce typical three reductional op-
erations called a face-contraction, a 4-cycle removal and a 23-path shrink, which were first
given by Batagelj [2]. (See Figure 1. For a formal definition, see the next section.) In this
paper, we call the above three operations P-reductions, while call the inverse operations
P-expansions.

A quadrangulation of a closed surface is irreducible if no face-contraction is applicable
without making a loop or multiple edges. In [20], it was proved that a 4-cycle is the unique
irreducible quadrangulation of the sphere, and that there exist precisely two irreducible
quadrangulations of the projective plane which are the unique quadrangular embeddings

∗This work was supported by JSPS KAKENHI Grant Number 16K05250.
E-mail address: y-suzuki@math.sc.niigata-u.ac.jp (Yusuke Suzuki)
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Figure 1: P-reductions.

of K4 and K3,4 on the projective plane, respectively (see Figure 2). The irreducible quad-
rangulations of the torus and the Klein bottle had also been determined in [15] and [14],
respectively.

Figure 2: Irreducible quadrangulations of the projective plane where antipodal points of
the hexagon and the octagon are identified respectively.

There are some results of quadrangulations of closed surfaces with some conditions.
Batagelj [2] proved that any 3-connected quadrangulation on the sphere can be deformed
into a cube by a sequence of P-reductions preserving 3-connectedness. However his proof
contained a small mistake, and Brinkmann et al. [3] pointed out it and gave a corrected
proof. Observe that a 3-connected quadrangulation of the sphere corresponds to a 4-regular
3-connected graph on the same surface by taking its dual. Broersma et al. [4] considered
the same problem of the dual version with weaker conditions than Brinkmann et al. [3].
Nakamoto [17] discussed quadrangulations with minimum degree 3 and proved that any
quadrangulation of the sphere (resp., the projective plane) with minimum degree 3 can be
deformed into a pseudo double wheel (resp., a Möbius wheel or the unique quadrangular
embedding of K3,4 on the projective plane) by a sequence of face-contractions and 4-cycle
removals, preserving the minimum degree at least 3. Brinkmann et al. [3] also proved the
same result only on the sphere using a restricted face-contraction. Furthermore, the results
in [13] implies that every 3-connected quadrangulation of a closed surface F 2 except the
sphere can be reduced into one of irreducible quadrangulations of F 2 by P-reductions,
preserving the 3-connectedness. In addition, the recent study [25] discussed another reduc-
tional operation defined for 3-connected quadrangulations of closed surfaces.
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Let G be a graph embedded on a non-spherical closed surface F 2. The representativity
of G, denoted by r(G), is the minimum number of intersecting points of G and γ, where γ
ranges over all essential simple closed curves on the surface. A graph G embedded on F 2

is r-representative if r(G) ≥ r (see [22] for the details). A graph G embedded on a closed
surface F 2 is polyhedral if G is 3-connected and 3-representative. For example, each of
two quadrangulations in Figure 2 is 3-connected but not polyhedral since these embeddings
have representativity 2. Observe that all facial walks in a polyhedral embedded graph G
are cycles, and any two of them are either disjoint, intersect in one vertex, or intersect in
one edge. From such a point of view, polyhedral embedded graphs are frequently regarded
as “good” embeddings in topological graph theory (see e.g., [8, 9, 10, 11]); note that ev-
ery simple triangulation of a closed surface is polyhedral, while simple quadrangulations
are not necessarily so. Furthermore, it is known that there is one to one correspondence
between the set of polyhedral quadrangulations of a nonspherical closed surface F 2 (resp.,
3-connected quadrangulations of the sphere) and the set of optimal 1-embeddings of F 2

(resp., optimal 1-planar graphs of the sphere, see [5, 6, 12, 21, 23, 24] for definitions and
some results).

A face f = v0v1v2v3 of a polyhedral quadrangulation G of F 2 is P-contractible (or
simply contractible) if a face-contraction at either {v0, v2} or {v1, v3} results in another
polyhedral quadrangulation of the same surface. Similarly, we define “P-removable (or
simply removable)” and “P-shrinkable (or simply shrinkable)” for a 4-cycle C and a 2-
path P , both of which are induced by vertices of degree 3, respectively. A polyhedral
quadrangulation G of F 2 is P-irreducible if G has none of a contractible face, a removable
4-cycle and a shrinkable 2-path. The following is our main theorem in this paper. In the
figures, to obtain the projective plane, identify antipodal pairs of points of each hexagon or
octagon.

Theorem 1.1. There are precisely 26 families of P-irreducible quadrangulations of the
projective plane presented in Figures 8, 11 and 16. Every polyhedral quadrangulation of
the projective plane can be obtained from one of them by a sequence of P-expansions.

This paper is organized as follows. In the next section, we define basic terminology and
reductional operations for quadrangulations. In Section 3, we show some lemmas to prove
Theorem 1.1. In Section 4, we determine inner structures of 2-cell regions bounded by 4,
5 or 6-cycles of P-irreducible quadrangulations. Furthermore in Section 5, we consider
ones bounded by several 6 or 8-walks. Before proving the main theorem, we classify P-
irreducible quadrangulations with attached cubes into five types in Section 6. The last
section is devoted to prove Theorem 1.1.

2 Basic definitions
We denote the vertex set and the edge set of a graph G by V (G) and E(G), respectively.
A k-path (resp., k-cycle) in a graph G means a path (resp., cycle) of length k. (We define
the length of a path (or cycle) by the number of its edges.) We say that S ⊂ V (G) is a cut
of a connected graph G if G− S is disconnected. In particular, S is called a k-cut if S is a
cut with |S| = k. A cycle C of G is separating if V (C) is a cut.

Let G be a graph 2-cell embedded on a closed surface F 2. That is, each connected
component of F 2−G is homeomorphic to an open 2-cell (or an open disc), which is called
a face of G. We denote the face set of G by F (G). A facial cycle C of a face f is a cycle
bounding f in G; i.e., C = ∂f . Furthermore in our argument, we often discuss the interior
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of a 2-cell regionD bounded by a closed walkW ofG, i.e.,W = ∂D, which contains some
vertices and edges. (Note that a 2-cell region implies an “open” 2-cell region in this paper.)
Then, D̄ (resp., f̄ ) denotes a closure ofD (resp., f ), i.e., D̄ = D∪∂D (resp., f̄ = f ∪∂f ).
Let f1, . . . , fk denote the faces of G incident to v ∈ V (G) where deg(v) = k. Then, the
boundary walk of f̄1 ∪ · · · ∪ f̄k is the link walk of v and denoted by lw(v). Clearly, lw(v)
bounds a 2-cell region containing a unique vertex v.

A simple closed curve γ on a closed surface F 2 is trivial if γ bounds a 2-cell on F 2, and
γ is essential otherwise. Furthermore, γ is surface separating if F 2 − γ is disconnected.
Clearly, a trivial closed curve on F 2 is always separating, whereas an essential one is either
separating or not. We apply these definitions to cycles of graphs embedded in the surface,
regarding them as simple closed curves. It is an important property of the projective plane
that any two essential simple closed curves are homotopic to each other.

Let G be a quadrangulation of a closed surface F 2 and let f be a face of G bounded
by a cycle v0v1v2v3. (For brevity, we also use the notation like f = v0v1v2v3.) The
face-contraction of f at {v0, v2} in G is to identify v0 and v2, and replace the two pairs
of multiple edges {v0v1, v2v1} and {v0v3, v2v3} with two single edges respectively. In
the resulting graph, let [v0v2] denote the vertex arisen by the identification of v0 and v2.
See the left-hand side of Figure 1. The inverse operation of a face-contraction is called a
vertex-splitting. If the graph obtained from G by a face-contraction is not simple, then we
do not apply it.

Let G be a quadrangulation of a closed surface F 2, and let f be a face of G bounded
by v0v1v2v3. A 4-cycle addition to f is to put a 4-cycle C = u0u1u2u3 inside f in G
and join vi and ui for each i ∈ {0, 1, 2, 3}. The inverse operation of a 4-cycle addition is
called a 4-cycle removal (of C), as shown in the center of Figure 1. We call the subgraph
H isomorphic to a cube with eight vertices ui, vi for i ∈ {0, 1, 2, 3} an attached cube. We
denote ∂(H) = v0v1v2v3, and we call C an attached 4-cycle of H .

As mentioned in the introduction, there exist some results of 3-connected quadrangu-
lations (or quadrangulations with minimum degree 3) of closed surfaces; see [2, 3, 13, 17]
for example. In those results, the 4-cycle removal is necessary by the following reason: Let
G̃ denote the resulting graph obtained from a 3-connected quadrangulation G of a closed
surface by applying 4-cycle additions to all faces of G. Clearly G̃ is 3-connected, however
we cannot apply any face-contraction to G̃ without making a vertex of degree 2.

In [3, 17], pseudo double wheelsW2k (k ≥ 3) and a Möbius wheels W̃2k−1 (k ≥ 2) are
treated as minimal quadrangulations of the sphere and the projective plane, respectively;
for their formal definitions, see [17]. However, the following third reduction can reduce a
pseudo double wheelW2k (k ≥ 4) intoW2(k−1). That is, W2k can be deformed into a cube
by k − 3 such reductions.

Assume that a polyhedral quadrangulation G of a closed surface F 2 has a vertex u of
degree 3. (Every 3-connected quadrangulation of either the sphere or the projective plane
has such a vertex of degree 3, by Euler’s formula.) Let v0v1 · · · v5 be a 6-cycle bounding a
2-cell region D on F 2, which contains a unique vertex u and we assume that v1, v3 and v5
are neighbors of u. The 23-vertex splitting of u is the expansion of G, defined as follows:

(i) Delete u and the three edges incident to u.

(ii) Put a 2-path u0u1u2 into the interior of D and add edges u0v1, u0v3, u1v0, u2v3 and
u2v5.
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Note that each of u0, u1 and u2 has degree 3 in the resulting graph. The inverse operation of
a 23-vertex splitting is called a 23-path shrink, as shown in the right-hand side of Figure 1.

Similarly to the case of 4-cycle removals, it is not difficult to see that 23-path shrinks
are necessary, when considering P-irreducible quadrangulations; replace an attached cube
with a graph having a long path consisting of vertices of degree 3 under some conditions.
Now, we have defined all the operations in the paper. Note that all of them preserve the
bipartiteness of quadrangulations of closed surfaces.

3 Lemmas
To prove our main theorem, we show some lemmas which state properties of polyhedral
(P-irreducible) quadrangulations of closed surfaces. We first give the following proposition
which is however clear by the definition of polyhedral quadrangulations.

Proposition 3.1. A polyhedral quadrangulation has no vertex of degree 2.

The following holds not only for quadrangulations but also for even embeddings of
closed surfaces F 2, that is, a graph on F 2 with each face bounded by a cycle of even
length. Taking a dual of an even embedding and using the odd point theorem, it is easy to
show the following.

Lemma 3.2. An even embedding of a closed surface has no separating closed walk of odd
length.

The length of two cycles in an even embedding of a closed surface F 2 have the same
parity if they are homotopic to each other on F 2 (see [1, 7, 16]). Furthermore, it is well-
known that any two essential closed curves on the projective plane are homotopic to each
other, and hence the following holds.

Lemma 3.3. The length of two essential cycles in an even embedding of the projective
plane have the same parity.

When classifying P-irreducible quadrangulations in the latter half of the paper, we
focus on whether such a quadrangulation is bipartite or non-bipartite.

Lemma 3.4. If a quadrangulation G of the projective plane admits an essential cycle of
even (resp., odd) length, then G is bipartite (resp., non-bipartite).

Proof. If G admits an essential cycle of even length, then every essential cycle of G has
even length by the previous lemma. Of course, all trivial cycles of G is separating and
hence have even length by Lemma 3.2. Therefore, G is bipartite.

We denote the set of vertices of a graph G with degree i by Vi(G) (or simply Vi). In
this paper, we often focus on the subgraph of G induced by V3, and denote it by 〈V3〉G. In
[17], the following lemma was proved.

Lemma 3.5. Let G be a quadrangulation of a closed surface F 2 with minimum degree at
least 3 and assume that 〈V3〉G contains a cycle C of length k. Then k ≥ 3 and one of the
followings holds;

(i) if k = 4, then G is a cube on the sphere or C is an attached 4-cycle of an attached
cube in G,
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(ii) if k is odd, then G is a Möbius wheel W̃k on the projective plane,

(iii) if k is even and at least 6, then G is a pseudo double wheel Wk on the sphere.

Let G be a quadrangulation of a closed surface F 2 and let f = v0v1v2v3 be a face
of G. Then a pair {vi, vi+2} is called a diagonal pair of f in G for each i ∈ {0, 1}.
A closed curve γ on F 2 is a diagonal k-curve for G if γ passes only through distinct k
faces f0, . . . , fk−1 and distinct k vertices x0, . . . , xk−1 of G such that for each i, fi and
fi+1 share xi, and that for each i, {xi−1, xi} forms a diagonal pair of fi of G, where the
subscripts are taken modulo k. Furthermore, we call a simple closed curve γ on F 2 a semi-
diagonal k-curve if in the above definition {xi−1, xi} is not a diagonal pair for exactly one
i; note that xi−1xi is an edge of ∂fi in this case.

Lemma 3.6. Let G be a quadrangulation of a closed surface F 2 with a 2-cut {x, y}. Then
there exists a surface separating diagonal 2-curve for G only through x and y.

Proof. Observe that every quadrangulation of any closed surface F 2 is 2-connected and
admits no such closed curve on F 2 crossing G at most once. Thus there exists a surface
separating simple closed curve γ on F 2 crossing only x and y, since {x, y} is a cut of G.

We shall show that γ is a diagonal 2-curve. Suppose that γ passes through two faces
f1 and f2 meeting at two vertices x and y. If γ is not a diagonal 2-curve, then x and y are
adjacent on ∂f1 or ∂f2. Since G has no multiple edges between x and y, and since {x, y}
is a 2-cut of G, we may suppose that x and y are adjacent in ∂f1, but not in ∂f2. Here we
can take a separating 3-cycle of G along γ. This contradicts Lemma 3.2.

Lemma 3.7. Let G be a 3-connected quadrangulation of a closed surface F 2, and let
f = v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2} violates the 3-
connectedness of the graph but preserves the simplicity, then G has a separating diagonal
3-curve passing through v0, v2 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. Let G′ be the quadrangulation of F 2 obtained from G by the face-contraction of
f at {v0, v2}. Since G′ has connectivity 2, G′ has a 2-cut. By Lemma 3.6, G′ has a
separating diagonal 2-curve γ′ passing through two vertices of the 2-cut. Clearly, one of
the two vertices must be [v0v2] of G′, which is the image of v0 and v2 by the contraction
of f ; otherwise, G would not be 3-connected, a contradiction. Let x be another vertex of
G′ on γ′ other than [v0v2]. Note that x is not a neighbor of [v0v2] in G′.

Now apply the vertex-splitting of [v0v2] to G′ to recover G. Then a diagonal 3-curve
for G passing through only v0, v2 and x arises from γ′ for G′.

Lemma 3.8. Let G be a 3-representative quadrangulation of a non-spherical closed sur-
face F 2 and let f = v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2} yields
another quadrangulation with representativity at most 2 but preserves the simplicity, then
G has either an essential diagonal 3-curve or an essential semi-diagonal 3-curve, which
passes through v0, v2 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. LetG′ be the quadrangulation of the non-spherical closed surface F 2 obtained from
G by a face-contraction of f at {v0, v2}. If the representativity of G′ is at most 1, then G
would have an essential simple closed curve crossing with G at most twice, contrary to
G being 3-representative. Thus G′ has representativity 2 and hence G′ admits either an
essential diagonal 2-curve or an essential semi-diagonal 2-curve. Similarly to Lemma 3.7,
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one of the two vertices passed by the curve must be [v0v2] of G′ and G has an essential
diagonal (resp., semi-diagonal) 3-curve when the former (resp., the latter) case happens.

The following lemmas show properties of P-irreducible quadrangulations of non-sphe-
rical closed surfaces. To simplify our statements, we suppose that G represents a P-
irreducible quadrangulation of a non-spherical closed surface F 2 hereafter in this section.

Lemma 3.9. If G has a 4-cycle C = v0v1v2v3 bounding a 2-cell region D, then there is
no face f of G in D such that one of the diagonal pairs of f is {v0, v2} or {v1, v3}.

Proof. Suppose, for a contradiction, that G has a 4-cycle C = v0v1v2v3 bounding a 2-cell
regionD and a face f bounded by av1cv3 inD. We assume thatD contains as few vertices
of G as possible. We denote the subgraph of G in D̄ by H; note that H can be regarded as
a quadrangulation of the sphere.

Since C is separating, we have ∂f 6= C. Furthermore, G is P-irreducible and hence f
is not P-contractible at {a, c}. If the face-contraction at {a, c} breaks the simplicity of the
graph, then G has edges {ax, cx} for x ∈ V (G) − {v1, v3}. (Clearly, it does not have a
loop.) If x ∈ V (G) − V (H), we would have ∂f = C, contrary to our assumption. Thus,
we may assume that x is either v0 or v2, now say v0; observe that v0 6= a, c in this case.
Now G would have an edge av0 (or cv0) and it contradicts Lemma 3.2.

By the above argument, the face-contraction at {a, c} does not break the simplicity,
hence it breaks the 3-connectedness or the property of representativity at least 3. That is,
we find either a surface separating diagonal 3-curve or an essential diagonal 3-curve (or an
essential semi-diagonal 3-curve) passing through f and {a, c} by Lemmas 3.7 and 3.8. In
each case, if {a, c} ∩ {v0, v2} = ∅, then f could not be passed by such a diagonal curve.
Therefore we may suppose that a = v0 and c 6= v2.

By Lemma 3.2 again, there is not an edge joining c and v2. Thus, we can find a face
f ′ of H one of whose diagonal pairs is {c, v2}. Let C ′ be the 4-cycle v1v2v3c of G. Since
deg(c) ≥ 3, we have ∂f ′ 6= C ′. Therefore, C ′ and f ′ are a 4-cycle and a face which satisfy
the assumption of the lemma, and moreover, C ′ can cut a strictly smaller graph than H
from G. Thus, this contradicts the choice of C.

Lemma 3.10. Let f = v0v1v2v3 be a face of G. If the face-contraction of f at {v0, v2}
breaks the simplicity of the graph, then there is a vertex x ∈ V (G)− {v1, v3} adjacent to
both of v0 and v2 such that v0v1v2x is an essential 4-cycle in G. In particular, if F 2 is the
projective plane, then G is bipartite.

Proof. First, assume that the face-contraction yields a loop. Then, we have v0v2 ∈ E(G).
By Lemma 3.2, v0v1v2 should be an essential 3-cycle. However, we would find an essential
simple closed curve intersecting G at only v0 and v2, contrary to G being 3-representative.

Therefore, we may assume that the face-contraction yields multiple edges. Under the
conditions, there should be a vertex x ∈ V (G)− {v0, v1, v2, v3} which is adjacent to both
of v0 and v2. If a 4-cycle v0v1v2x is trivial and bounds a 2-cell region D, then D and f
would satisfy the conditions of Lemma 3.9, a contradiction. Therefore v0v1v2x should be
essential. If F 2 is the projective plane, then G is bipartite by Lemma 3.4.

Lemma 3.11. If G has a trivial diagonal 3-curve γ, then the disc bounded by γ contains
the unique vertex, which has degree 3.
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Proof. Suppose that γ passes through three vertices {v0, v1, v2} and three faces {f0, f1, f2}
where each fi is bounded by viaivi+1bi so that the 6-cycle v0b0v1b1v2b2 bounds a 2-cell
region D including fi and ai for i ∈ {0, 1, 2} (v3 = v0). Suppose, for a contradiction, that
D contains at least two vertices. That is, this implies that a0, a1 and a2 could not be iden-
tified to one vertex. Thus, we can find a vertex ai 6= ai+1, ai+2, now say a0 (a0 6= a1, a2).

If there is an edge joining a0 and v2, then we can find a 2-cell region D′ bounded by
a0v2b2v0. Since a0 6= a2, D′ is not a face of G. Furthermore we have deg(a2) ≥ 3 and
hence the region bounded by a0v2a2v0 is not a face of G and includes at least one vertex.
This means that D′ satisfies the conditions of Lemma 3.9, a contradiction. Therefore, we
conclude that a0v2 /∈ E(G).

Now consider the face-contraction of f0 at {a0, b0}. Since G is P-irreducible, G
should have a diagonal 3-curve or a semi-diagonal 3-curve passing through three vertices
{a0, b0, x} for x ∈ V (G)− {a0, b0}. (Note that the face-contraction clearly preserves the
simplicity of the graph by the above argument, i.e., a0v2 /∈ E(G).) Since a0 is an inner
vertex of D, x must be a vertex of ∂D.

However, since a0 6= a1, a2, x must coincide with v2. Since a0v2 /∈ E(G) again, there
should be a face whose diagonal pair is {a0, v2}, but it contradicts Lemma 3.2. Hence, we
can conclude that D contains exactly one vertex a0 (= a1 = a2) and the lemma follows.

Lemma 3.12. Let f = v0v1v2v3 be a face of G with deg(v0),deg(v2) ≥ 4.

(i) If F 2 is the projective plane, then a face-contraction of f at {v1, v3} preserves the
3-connectedness.

(ii) If F 2 is not the projective plane and if a face-contraction of f at {v1, v3} breaks
the 3-connectedness, then G has an essential separating diagonal 3-curve γ passing
through v1, v3 and another vertex x ∈ V (G)− {v0, v1, v2, v3}.

Proof. The statement (ii) immediately follows from Lemmas 3.7 and 3.11. In the projective-
planar case, we cannot take such an essential separating diagonal 3-curve γ.

Lemma 3.13. The induced subgraph 〈V3〉G has no vertex of degree 3.

Proof. Suppose, for a contradiction, that G has a vertex v with deg(v) = 3 and each of
its three neighbors also has degree 3 (see the left-hand side of Figure 3). Note that the
boundary of the hexagon is a cycle of G; otherwise, it would disturb the simplicity of G,
Lemma 3.2, Lemma 3.9 or the property of representativity at least 3. We can easily find a
trivial separating diagonal 3-curve passing through {v0, v1, v2} and that the 3-cut cuts off
the four vertices, contrary to Lemma 3.11.

Suppose that the induced subgraph 〈V3〉G of a P-irreducible quadrangulation G has a
path P = u0u1u2 of length 2. Then the configuration around P becomes the center of
Figure 3. The following lemma refers to the non-shrinkability of P .

Lemma 3.14. Let P = u0u1u2 be a 2-path in G induced by vertices of degree 3 (as shown
in the center of Figure 3) and assume that deg(v4) ≥ 4. Then, there is an essential diagonal
3-curve or an essential semi-diagonal 3-curve passing through {v0, u1, v2}.
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Figure 3: Partial structures of P-irreducible quadrangulations.

Proof. Apply the 23-path shrink to P and denote G′ be the resulting graph. Let u be a
vertex of G′ which is the shrunk image of P ; note that u is adjacent to v0, v2 and v4. Since
G is P-irreducible, G′ is not a polyhedral quadrangulation. If G′ is not simple, uv0 and
uv2 must be multiple edges. This implies that v0 = v2, however this also implies that G is
not simple or v1 has degree 2 in G, a contradiction.

Next, we assume that G′ has a 2-cut. By Lemma 3.6, G′ has a separating diagonal
2-curve γ′ passing through {v0, v2}; otherwise, G would have a 2-cut. Now we can find
a separating diagonal 3-curve γ in G corresponding to γ′ naturally. Note that γ is not a
semi-diagonal 3-curve by Lemma 3.2. Let f = v0xv2y be the third face passed by γ,
which lies outside of the hexagon bounded by v0v1v2v3v4v5. If γ is essential, then we are
done. Therefore, we assume that γ is trivial. If neither of x and y corresponds to v1, then
we have got a contradiction by Lemma 3.9. Thus, one of x and y, say x, corresponds to v1.
This means that deg(v1) = 3, however, it contradicts Lemma 3.13.

Finally, assume that G′ has representativity at most 2. Similarly, G′ has an essential
diagonal 2-curve or an essential semi-diagonal 2-curve passing through {v0, v2}. We can
easily find our required essential curve passing through {v0, u1, v2} of G.

Lemma 3.15. The induced subgraph 〈V3〉G has no path of length at least 3.

Proof. Suppose to the contrary that G has such a path P = u0u1u2v2 (see the right-hand
side of Figure 3). By the above lemma, z should coincide with v0. However, v1z would
become multiple edges, a contradiction.

Lemma 3.16. Assume thatG has an attached cubeH with ∂(H) = v0v1v2v3, an attached
4-cycle C = u0u1u2u3 and uivi ∈ E(G) for each i ∈ {0, 1, 2, 3}. Then there is an essen-
tial diagonal (or semi-diagonal) 3-curve γ passing through {v0, u1, v2} or {v1, u2, v3}.
Proof. Apply the 4-cycle removal ofC toG and letG′ denote the resulting graph. It is clear
that the 4-cycle removal clearly preserves the simplicity of the graph. Thus, first suppose
that G′ is not 3-connected. By Lemma 3.6, we can find a separating diagonal 2-curve γ′ in
G′ passing through {v0, v2} or {v1, v3}. If γ′ is trivial, then it contradicts Lemma 3.9. If
γ′ is essential, we can find our requied diagonal 3-curve γ in G.

Therefore, we may assume that G′ has representativity at most 2 and has an essential
diagonal (or semi-diagonal) k-curve γ′ where k is at most 2. If γ′ does not pass through a
face f = v0v1v2v3, then G also has representativity at most 2, contrary to our assumption.
Thus, γ′ passes through f and two vertices {v0, v2} or {v1, v3} and we got our conclusion.
(Note that γ′ does not pass through two neighboring vertices of v0v1v2v3. Otherwise, γ′

would be an essential semi-diagonal 2-curve also in G.)
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For an attached cubeH with ∂(H) = v0v1v2v3, we call a pair of two vertices {vi, vi+2}
a cube diagonal pair of H for each i ∈ {0, 1}. In particular, a cube diagonal pair is facing
if they are on a boundary cycle of a face f ofG outside the 2-cell region bounded by ∂(H).
According to the above argument, an essential diagonal (or semi-diagonal) 3-curve passes
through f .

4 Regions bounded by 4-, 6- or 8-cycles
Consider a disk D bounded by a cycle C = v0v1 · · · v2m−1 of length 2m. Put a vertex x
into the center of D and join it to v2i for each i ∈ {0, . . . ,m− 1}. Then, the resulting disk
quadrangulation is a pseudo wheel and denoted by W−2m.

Lemma 4.1. Let G be a quadrangulation of a closed surface F 2 and let D be a 2-cell
region bounded by a closed walk C of length 4, 6 or 8 such that

(i) there is at least one vertex inside D,

(ii) all vertices inside D have degree at least 3 and

(iii) D does not have a unique vertex x of degree 4 such that lw(x) = C (when |C| = 8).

Then, there exists a vertex of degree 3 inside D.

Proof. Let H be a graph contained in D̄. It suffices to prove the case when C is a cycle.
(Even if C is not a cycle, i.e., there exists a vertex appearing twice on C, the analogous
proof works.) We use induction on |V (H)|. Let v0, . . . , vm−1 be vertices lying onC in this
order for some m ∈ {4, 6, 8}. The initial step of the induction is the case that |V (H)| = 7.
In this case, H must be isomorphic to W−6 and its center vertex has degree 3. (When the
length of C equals 4, it is not difficult to list up all the (disc) quadrangulations with at
most 7 vertices, e.g., see [19]. Every such graph has a vertex of degree 2 not lying on any
specified outer cycle.) Thus, we suppose that |V (H)| ≥ 8 in the following argument.

First, assume that there is a diagonal of C. Since at least one of the two regions sepa-
rated by the diagonal satisfies Conditions (i) – (iii), there is a vertex of degree 3 inside the
region by the induction hypothesis. Thus, we suppose that there is no diagonal in D.

Furthermore, suppose that there is a vertex x joining two vertices vi and vi+2. Then, the
2-path vixvi+2 separates D into a quadrilateral region D′ and the other region D′′. If D′

contains a vertex, then the induction hypothesis works immediately. Thus, we may assume
that D′ contains no vertex. Further, if D′′ contains at least one vertex and G ∩ D̄′′ is not
isomorphic to W−8 , then we can also apply the induction hypothesis. When the case that
G∩ D̄′′ is isomorphic to W−8 , the unique inner vertex y of D′′ should be adjacent to x, and
hence x has degree 3; otherwise, the degree of x would become 2.

Therefore, we suppose that D′′ contains no vertex. Under the condition, there should
be edges joining x and alternate vertices on C so that H becomes disc quadrangulation
since C has no diagonal. Then, H is isomorphic to W−8 since |V (H)| ≥ 8. However, it
contradicts (iii).

By the above arguments, we may assume that D contains no diagonal and no 2-path
joining vi and vi+2. This implies that all vertices vi of C have degree at least 3. When |C|
is equal to 6 or 8, add an extra vertex x̂ outsideD and join it to alternate vertices to obtain a
quadrangulation Ĥ of the sphere; if |C| = 4, then we do nothing and let Ĥ = H . Observe
that Ĥ has minimum degree at least 3.
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By Euler’s formula, we have |V3(Ĥ)| ≥ 8. Even if |C| = 8, the number of vertices of
degree 3 on C is at most 4 by our construction of Ĥ . Therefore, the lemma follows.

The following lemma is important to determine the inner structures of 2-cell regions of
P-irreducible quadrangulations bounded by closed walks of length 4, 6 or 8.

Lemma 4.2. Let G be a P-irreducible quadrangulation of a non-spherical closed surface
and let D be a 2-cell region bounded by a closed walk W = w0w1 · · ·wk−1 for some
k ∈ {4, 6, 8}. Suppose thatW does not bound a face ofG and thatG∩D̄ is not isomorphic
to an attached cube. Then G ∩ D̄ includes;

(i) a diagonal edge (when k ∈ {6, 8}),

(ii) a 2-path wixwi+2,

(iii) a 2-path wixwi+4 (when k = 8 and wi 6= wi+4),

(iv) a 3-path (or a 3-cycle if wi = wi+3) wixywi+3 (when k ∈ {6, 8}) or

(v) a 4-cycle wixyzwi+4 (when k = 8 and wi = wi+4),

where x, y and z are distinct inner vertices of D and the indices are taken modulo k.

Proof. In this proof, we call a path (or a cycle) in the statement a short path ofD. Suppose,
for a contradiction, that D includes no short path. By Lemma 4.1, D contains a vertex of
degree 3 as an inner vertex; since if D has a unique vertex, then it clearly includes a short
path of type (ii). First, assume that D contains a vertex ui of degree 3 of an attached
cube Q; where Q consists of a 4-cycle C = u0u1u2u3 induced by vertices of degree 3
and ∂(Q) = v0v1v2v3 with an edge uivi for each i ∈ {0, 1, 2, 3}. We consider the cases
depending on the order of V (C) ∩ V (W ).

Case I. |V (C) ∩ V (W )| = 1 (assume w0 = u0): Then u0 would have a vertex of degree
at least 4, contrary to the assumption.

Case II. |V (C) ∩ V (W )| = 2: If such vertices are diagonal vertices of C, say u0 and
u2, then we have deg(u0) ≥ 4, as well as the above case. Thus, we suppose that such
two vertices are adjacent on both of C and W , say w0 = u0 and w1 = u1. Note that
u2 and u3 are inner vertices in this case. Since deg(w0) = deg(w1) = 3, v0 (resp., v1)
should coincide with wk−1 (resp., w2). In this case, v2 and v3 are inner vertices of D;
otherwise D would contain a short path (ii) or (iii). However, w2v2v3wk−1 would become
(iv) if k ∈ {6, 8}; note that if k = 4, then wk−1w2 would form multiple edges since
deg(w0) = deg(w1) = 3.

Case III. |V (C) ∩ V (W )| = 3: We can easily exclude this case, since the unique inner
vertex of C is adjacent to two vertices of W and it would form either (ii) or (iii).

Case IV. V (C) ∩ V (W ) = ∅: By Lemma 3.16, at least one of cube diagonal pairs, say
{v0, v2}, should be facing. We further divide this case into the following subcases.

Case IV-a. W is a cycle of G: Then both of v0 and v2 should be vertices of W . Note that
by Lemma 3.2, {v0, v2} coincides with {wi, wi+2} or {wi, wi+4}. If one of v1 and v3 is
an inner vertex of D, then D clearly would contain a 2-path of (ii) or (iii) in the lemma.
Therefore, they also should be vertices of W . However, if k equals 6 or 8, then D would
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have a diagonal edge (i), on the other hand, if k = 4, then it corresponds to an attached
cube, contrary to our assumption.

Case IV-b. W is not a cycle: Note that we only have to consider the case of k ∈ {6, 8}.
This case is further divided into the following subcases.

Case IV-b-1. wi = wi+3 (say w0 = w3): Note that G is nonbipartite since it includes an
essential cycle of odd length. Now we may suppose that an essential simple closed curve
of Lemma 3.16 passes through such a vertex w0 = w3. We may suppose that v0 = w0

in this case and there should be the edge v2w3 (see (a) in Figure 4). In the figure, we find
a hexagonal region bounded by W ′ = w0w1w2w3v2v1. If there is no identification of
vertices of W ′, then we would have a short path w0v1v2w3 of type (iv). Even if there is
such an identification, we find either a short path (i) or (ii), a contradiction.

Case IV-b-2. wi = wi+4 (assumew0 = w4): Similarly to the above arguments, we assume
that v0 = w0 and there is a face bounded by v2sw4t in G where s, t ∈ V (G). If there is no
identification of vertices of closed walkW ′′ = w0w1w2w3w4sv2v1 bounding an octagonal
region, there would be a short path of type (v). When there is identification of vertices of
W ′′, we pay attention to the simplicity and the representativity of the whole graph; e.g., if
v1 = s, we would have multiple edges w0v1. In any case, we find our required short path.
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w2

w3

v1

v2

v3

(a)

w1

w2

w3

w4

v5
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v4
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(c)

v0 x
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v0 x
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Figure 4: Inside of a region bounded by closed walks of length 4, 6 or 8.

Therefore after this, we may assume that D does not contain a vertex of a 4-cycle
induced by vertices of degree 3, that is, each inner vertex of degree 3 is on the path of
〈V3〉G with length at most 2, by Lemmas 3.5, 3.13 and 3.15; note that a Möbius wheel in
Lemma 3.5 is not polyhedral. We can take an inner vertex x of degree 3 so as to be an
endpoint of a path of 〈V3〉G; otherwise, each path of 〈V3〉G would join two vertices of W ,
contrary to our assumption and Lemmas 3.2 and 3.15.

Let lw(x) = v0v1v2v3v4v5 be the link walk of x and assume that v0, v2 and v4 are ad-
jacent to x and that deg(v0),deg(v2) ≥ 4. Now we apply the face-contraction of xv0v1v2
at {x, v1}, and denote the resulting graph by G′.

We first assume that G′ is not simple. By Lemma 3.10, there is an edge joining v1
and v4 in G such that a cycle v1v2xv4 of G is essential. Suppose that the edge v1v4 is in
D. Clearly, W is not a cycle, and we may assume that k = 8 and that w0 = w4 = v4.
However, it easily follows that there exists a short path passing through x. Also in the case
that v1v4 runs outside of D, v1 and v4 should be vertices of W and hence we can find a
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short path. Then, assume that G′ is simple in the following argument.
Next, we assume that either the representativity or connectivity of G′ is at most 2. In

each case, G has an essential diagonal (or semi-diagonal) 3-curve γ passing through x and
v1 by Lemmas 3.8 and 3.12. In fact, there are some cases depending on the positions and
identifications of vertices in D. However, in each case, the similar argument holds and
hence we prove only one substantial case below, for the sake of brevity.

Here, we consider the case that γ passes through {v1, x, v3} and that v1 = w1 and
v3 = w3 (see (b) in Figure 4). In this case, if v2 6= w2, D would contain a 2-path w1v2w3

of type (ii) in the lemma. Therefore we suppose v2 = w2. Note that each of v0, v4 and
v5 is an inner vertex of D and that there is no edge vlw for l ∈ {0, 4, 5} and w ∈ V (W );
otherwise, there would be a short path.

Next, we assume deg(v4) ≥ 4 and consider the face-contraction of v0xv4v5 at {v5, x}.
By the above argument, v5 has no adjacent vertex of W and hence we do not have to care
about the simplicity of the resulting graph. Thus, similarly to the above argument, we can
find a face v5yw5z in D by Lemmas 3.8 and 3.12, where either w1 = w5 or w2 = w5, i.e.,
W is not a cycle of G. We assume w1 = w5 here. (The case when w2 = w5 can be shown
in a similar way.) See (c) in Figure 4. Actually, k 6= 4 in this case. Note that y and z are
inner vertices of D and further note that {y, z} ∩ {v0, v4} = ∅ by the above argument. It
also implies that deg(v5) ≥ 4 and deg(w5) ≥ 4.

By Lemmas 3.8 and 3.12 again and by Lemma 3.2, there should be diagonal 3-curve γ′′

passing z, y and w ∈ V (W ); note that semi-diagonal 3-curve is not suitable since each of
y and z is not adjacent to a vertex of V (W ). In this case, we have k = 8 and w = w0 = w4

since if w = w4 = w6, w4w5 and w5w6 become multiple edges. However in this case, we
find a short path (iv) of length 3 linking w0 and w5 (or a short path (iii) of length 2 linking
w5 and w7).

Therefore, suppose that deg(v4) = 3 and there is a face w3v4v5p where p is an inner
vertex of D; otherwise we would find a short path. Observe that deg(w3) ≥ 4 in this case.
Furthermore, if deg(v5) ≥ 4, then we consider the face-contraction of w3v4v5p at {p, v4}.
Similarly to the above argument, there must be a face psw6t where w2 = w6 since x and
v0 are inner vertices of D and hence there is an essential diagonal 3-curve passing through
{w2, v4, p}. However, we find a short 3-path w3psw6 in this case.

Hence, we may assume that deg(v5) = 3 and there is a face v0v5pq (see (d) in Figure 4).
Then there is a 2-path xv4v5 induced by vertices of degree 3. By Lemma 3.14, there should
be an essential diagonal (or semi-diagonal) 3-curve passing through {w2, v4, p}. Similarly,
we can find a short path around it. (For example, if w2 = w5 and the edge pw5 ∈ E(G)
exists, then we find a short path w3pw5 of type (ii).) Thus, the lemma follows.

Figure 5 shows some partial structures of polyhedral quadrangulations of closed sur-
faces, each of which is bounded by a trivial 4-cycle v0v1v2v3. The center graph in the
figure has a 4-cycle u0u1u2u3 induced by vertices of degree 3 and hence this partial struc-
ture is an attached cube. Recall that if a polyhedral quadrangulation is P-irreducible and
has an attached cube, then one of two cube diagonal pairs is facing by Lemma 3.16. Next,
see the right-hand side of Figure 5. For a natural number n, Q(n)

2 represents the graph
having the following structure: There are n+ 1 internally vertex-disjoint paths of length 2
between v0 and v2, including v0v1v2 and v0v3v2, so that they divide the region bounded by
v0v1v2v3 into n quadrilateral regions each of which has the structure Q2 having a facing
cube diagonal pair {v0, v2}. Note that Q(1)

2 corresponds to Q2.
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Figure 5: Inside a quadrilateral region.

Lemma 4.3. Let C = v0v1v2v3 be a cycle of length 4 bounding a 2-cell region D in a
P-irreducible quadrangulation G of a non-spherical closed surface. Then, the interior of
D has one of the structures Q1 and Q(n)

2 (n ≥ 1), as shown in Figure 5.

Proof. Use induction on the number of faces in D, say F ≥ 1. If F = 1, then it is clear
thatD corresponds to a face ofG and it has the structureQ1. Hence we suppose that F ≥ 2
below.

If G ∩ D̄ is not an attached cube Q2, then there is a vertex x which is adjacent to both
v0 and v2 (or v1 and v3) by Lemma 4.2. By the inductive hypothesis and Lemma 3.9, two
quadrilateral regions bounded by v0v1v2x and v2v3v0x are filled with Q(l)

2 and Q(m)
2 for

n,m ≥ 1. As a result, we obtain Q(n)
2 with n = l+m and the induction is completed.

Note that replacing Q2 with Q(n)
2 having the same facing cube diagonal pair preserves

the property being a P-irreducible quadrangulation for any n ≥ 2. Hence, there exist
infinitely many P-irreducible quadrangulations of a non-spherical closed surface F 2 if F 2

admits one with an attached cube. To avoid the complexity in figures, we use simply Q2 to
represent any Q(n)

2 after this.
In the following lemmas, we discuss inside structures of regions bounded by 6- and

8-cycles. For brevity, we shall omit routines in the proofs.

Lemma 4.4. Let C = v0v1v2v3v4v5 be a trivial cycle of length 6 bounding a 2-cell region
D in a P-irreducible quadrangulation G of a non-spherical closed surface. Then, the
interior of D has one of the structures H1, H2, . . . ,H17, as shown in Figure 6.

Proof. As well as the previous lemma, we use induction on the number of faces in D, say
F ≥ 2. If F = 2, then D has the structure H1. Hence we suppose that F ≥ 3. Observe
that the existence of a short path of (i), (ii) or (iv) is guaranteed by Lemma 4.2. We fill the
divided regions with pieces as follows.

If C has a diagonal, then we apply Lemma 4.3 and obtain H1, H6 and H10 in Figure 6.
Further, if there is an inner vertex x which is adjacent to both v0 and v2, then the quadri-
lateral region bounded by xv0v1v2 is filled with Q1 or Q(n)

2 (n ≥ 1), and the hexagonal
region bounded by v0xv2v3v4v5 is filled withHi for some i ∈ {1, . . . , 17} by the inductive
hypothesis. Checking the whole cases is a routine, so we omit it, however, most cases are
excluded by lemmas in Section 3.

Furthermore, assume thatD contains two inner vertices x and y such that 3-path v0xyv3
runs acrossD. Also in this case, we apply the inductive hypothesis to two separated hexag-
onal regions and obtain Hi’s in Figure 6.
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Figure 6: Inside a hexagonal region.

Lemma 4.5. Let C = v0v1v2v3v4v5v6v7 be a trivial cycle of length 8 bounding a 2-cell
region D in a P-irreducible quadrangulation G of a non-spherical closed surface. If D
has no diagonal edge and no attached cube, then the interior ofD has one of the structures
O1, O2, . . . , O8, as shown in Figure 7.

O1 O2 O3 O4

O5 O6 O7 O8

Figure 7: Inside an octagonal region.

Proof. In this proof, all subscripts of vertices are taken modulo 8. We also use induction on
the number of faces in D, say F . If F is at most 3, then D has a diagonal, contrary to the
assumption of the lemma. If F = 4, thenD includes a single vertex by Euler’s formula and
it should be adjacent to vi, vi+2, vi+4 and vi+6; for otherwise, D would contain a diagonal.
This is clearly O1 in Figure 7. Therefore, we assume F ≥ 5 hereafter. Observe that D
contains a short path of type (ii), (iii) or (iv) by Lemma 4.2.
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First, we assume that D includes an inner vertex x which is adjacent to both v0 and
v4. Then there are two hexagonal regions D′ and D′′ bounded by xv0v1v2v3v4 and
xv4v5v6v7v0 respectively. Note that each of D′ and D′′ contains no attached cube. Then
by the previous lemma, we fill them with H1, H2, H3, H4 and H5 in Figure 6 so that the
whole configuration satisfies the condition of this lemma. By considering lemmas in Sec-
tion 3, most cases are excluded and we obtain O1, O2, O3, O4, O5, O6 and O8 in Figure 7.
Therefore, after this, we suppose that D contains no such vertex.

Secondly we assume that there is an inner vertex x in D which is adjacent to both
v0 and v2. Then, there are a quadrilateral region D′ and an octagonal region D′′ divided
by the 2-path v0xv2. By the assumption and Lemma 4.3, D′ bounds a face of G. If D′′

contains a diagonal edge, then it should be xv4 or xv6 by Lemma 3.2. However, in each
case, there would be a forbidden 2-path; e.g., v0xv4 if the diagonal xv4 exists. Hence, we
may assume that D′′ contains no diagonal. Now we apply the inductive hypothesis and fill
D′′ with O1, . . . , O8 in Figure 7; note that most cases would contain a contractible face or
a shrinkable 2-path by lemmas in Section 3. As a result, we obtain O1, . . . , O8. Then we
also assume that D does not include such a 2-path.

Finally, we assume that D has a short path of type (iv) in Lemma 4.2. Actually, this
3-path divides D into a hexagonal region and an octagonal one. As well as the above case,
we use the inductive hypothesis and Lemma 4.4, and obtain our conclusion.

Lemma 4.6. Let G be a P-irreducible quadrangulation of the projective plane. If G
has a hexagonal 2-cell region D such that G ∩ D̄ is isomorphic to either H13 or H15

in Lemma 4.4, then G is one of I1, I2 and I3 shown in Figure 8.

Proof. LetC = v0v1v2v3v4v5 be a 6-cycle bounding a hexagonal regionD such thatG∩D̄
is isomorphic to either H13 or H15. We may assume that each of v0v1v2x and v3v4v5y
bounds Q2 where x and y are distinct inner vertices of D. Now, cube diagonal pairs
{v0, v2} and {v3, v5} are facing and there are such faces f1 = v0pv2q and f2 = v3sv5t
outside of D by Lemma 3.16, where p, q, s, t ∈ V (G).

However, if f1 6= f2, the two essential diagonal (or semi-diagonal) curves in Lem-
ma 3.16 do not exist together on the projective plane. Therefore, we have f1 = f2, that
is, v0v3, v2v5 ∈ E(G) and f1 = f2 is bounded by v0v3v2v5. Under the conditions, the
6-cycle v0xv2v5yv3 bounds a 2-cell region and it should be filled with either H13 or H15

by Lemma 4.4. Actually we have three ways to take a pair {Hi, Hj} for i, j ∈ {13, 15}
and the lemma follows; for example, if we fill those hexagonal regions with twoH13’s then
we obtain I1.

5 Regions bounded by 6- or 8-walks
A boundary walk of a hexagonal region of a P-irreducible quadrangulation is not always
a cycle, and the same vertex often appears twice along it. Such a hexagonal region can
contain the following structure that generates an infinite series of P-irreducible quadran-
gulations of a non-spherical closed surface.

Let h1, h2 and h3 be three pieces with two terminals x1 and x2 shown in the first three
configurations of Figure 9, and let [s1, . . . , sm] be a given sequence of 1, 2 and 3 of any
length such that each of 2 and 3 does not continue; i.e., we do not permit a sequence
like [. . . , 2, 2, . . .]. Put hs1 to hsm in a hexagon a1b1ca2b2d so that each xi coincides
with ai for i ∈ {1, 2}, and identify paths between x1 and x2 in each neighboring pair
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I16 I17I15

I12 I14I13

I11I10I9

I8I7I6I5

I4I2 I3I1

Figure 8: The 17 families of bipartite P-irreducible quadrangulations with attached cubes.
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of pieces. (See the rightmost configuration of Figure 9.) We denote the resulting graph
by H18[s1, . . . , sm]; note that we implicitly exclude H18[2] and H18[3] since they can-
not fill the hexagonal region solely. If H18[s1, . . . , sm] is contained in a P-irreducible
quadrangulation G so that a1 = a2, then each attached cube is not removable and each
face is not contractible in this configuration; note that G is nonbipartite. We often denote
H18[s1, . . . , sm] simply by H18.

h1 h2 h3

a1

a2

b1

cb2

d

H18[1, 2, 3]

x1

x2

x1

x2

x1

x2

Figure 9: Inside a hexagonal region including an infinite series H18.

H−1

a1

a2

H19

a1

a2

b

cd

eb

cd

e

a1

a2

b

cd

e

dc

Figure 10: Inside a hexagonal region bounded by a closed walk (1).

See H19 in Figure 10. Note that the hexagonal region is bounded by a closed walk
W = a1bca2de where a1 = a2 (= a) and the other four vertices b, c, d and e are distinct.
Actually, H19 is appeared as a partial structure in P-irreducible quadrangulations of the
projective plane. (In Lemma 5.3, it will be mentioned.) However, the following lemma can
exclude H19 from the later arguments.

In the following three lemmas (Lemmas 5.1, 5.2 and 5.3), we let D be a hexagonal
region bounded by a closed walk W = a1bca2de in a P-irreducible quadrangulation G
of the projective plane where a1 = a2 (= a) and the other four vertices b, c, d and e are
distinct.

Lemma 5.1. If G ∩ D̄ ∼= H19, then G is isomorphic to I20 in Figure 11.

Proof. Note that G is nonbipartite since G contains an essential cycle of length 3. There-
fore, G has an edge be outside of D by Lemma 3.16. Then there are two quadrilateral
regions bounded by abed and aebc. By Lemma 4.3, each of these regions is filled with
either Q1 or Q2. However, if Q1 is used, that is, it corresponds to a face of G, then we can
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I19I18[s0; s1, . . . , sn] (s0 = 1, 2) I20

Figure 11: The 3 families of nonbipartite P-irreducible quadrangulations.

easily find an essential simple closed curve intersecting G at only two vertices, a contra-
diction. Hence, we fill each of those regions with Q2 and obtain I20 in Figure 11.

Lemma 5.2. G ∩ D̄ cannot be isomorphic to H−1 in Figure 10.

Proof. Similarly to Lemma 5.1, G has an edge cd in this case by Lemma 3.14, and both
of two quadrilateral regions outside of D are filled with Q2 (see the right-hand side of
Figure 10). However in this case, we would find a contractible face at {e, b} by Lemmas 3.8
and 3.12. Therefore the lemma follows.

Lemma 5.3. G ∩ D̄ is isomorphic to either H18 or H19.

Proof. We use induction on the number of faces in D, say F . If F is at most 3, then D
includes at most one inner vertex by Euler’s formula. In this case, although ∂(D) is not a
cycle, G ∩ D̄ forms a structure like either H1 or H2 in Figure 6; we have to identify the
top and the bottom vertices of Hi for i ∈ {1, 2}. However, G would have representativity
at most 2, a contradiction. (Such an essential simple closed curve passes through a.) If
F = 4, D includes exactly two vertices and we have G ∩ D̄ ∼= H18[1]. Therefore, we
assume that F ≥ 5 after this. Similarly to the former lemmas, we discuss inner structures
of divided regions by a short path; we have to consider (i), (ii) and (iv) in Lemma 4.2.

First, we assume that D contains a diagonal edge. By Lemma 3.2 and the simplicity
of G, it should be ce or bd, now say ce, up to symmetry. Then each of two quadrilateral
regions bounded by a1bce and da2ce should be filled with Q2; otherwise at least one of
those regions forms a face of G, but we can easily find an essential simple closed curve
passing through only two vertices of G. Therefore, we obtain H18[3, 2] from this case.
Then, we assume that D contains no diagonal hereafter.

Secondly, we assume that D includes an inner vertex x which is adjacent to a1 and
c. Then the quadrilateral region D′ bounded by a1bcx is filled with either Q1 or Q2. If
we have the former, that is, a1bcx bounds a face of G, then we would find an essential
simple closed curve intersecting G only at a and c, contrary to the assumption. Therefore,
we assume the latter case. In this case, the hexagonal region D′′ bounded by a 6-walk
a1xca2de satisfies the assumption of this lemma. Thus, we use the inductive hypothesis
and fill the region with either H18 or H19. If we use H19, then the configuration becomes a
part of I20 by Lemma 5.1. However, this is not the case since b corresponds to d. Hence we
fill D′′ with H18 and obtain our desired conclusion. Then after this, we assume that there
is no such inner vertex like x. (We also exclude similar paths a1xd, a2xb and a2xe.)



172 Ars Math. Contemp. 17 (2019) 153–183

Thirdly, we assume that there is an inner vertex x which is adjacent to b and e (or c
and d). Then, there are a quadrilateral region bounded by a1bxe and a hexagonal region
bounded by a 6-cycle bca2dex. We fill these regions by using the results of Lemmas 4.3
and 4.4 respectively. Most cases are excluded by lemmas in Section 3, but we obtain
H18[1], H18[3, 2, 3] and H19 by filling them with {Q1, H2}, {Q2, H10} and {Q2, H2},
respectively. (For reference, when we use {Q1, H4}, we obtain H−1 in Figure 10, but it
had already been excluded by Lemma 5.2.)

Next, we consider the existence of an essential 3-cycle a1xya2 where x and y are inner
vertices of D. In this case, we can apply the inductive hypothesis and fill two hexag-
onal regions with H18’s and obtain our conclusion; we do not have to consider H19 by
Lemma 5.1.

Finally we assume that there is a 3-path bxyd (or cxye) where both x and y are inner
vertices ofD. Then the boundary of each hexagonal region divided by the 3-path is a cycle,
and we fill them by using Lemma 4.4. We only have to check Hi for i ∈ {3, 4, 5}, since
the existence of an attached cube, a diagonal edge and a single vertex of degree 3 clearly
yields a short path discussed above. However, there is no pair to satisfy the conditions from
this case. Hence, the induction is completed.

In the following lemma, we discuss a hexagonal region bounded by a 6-walk in which
two vertices each appear twice.

Lemma 5.4. Let D be a hexagonal region bounded by a closed walk W = a1b1ca2b2d in
a P-irreducible quadrangulationG of the projective plane with a1 = a2 (= a) and b1 = b2
(= b). Then G ∩ D̄ is isomorphic to one of H18, H20 and H21.

Proof. Since almost the same argument of the previous proof holds, we omit the proof of
this lemma. However, we should pay attention to the following points:

(1) When assuming that there is a 3-path cxyd where x and y are inner vertices of D,
we obtain H20 in Figure 12; note that such a configuration was excluded in the
previous lemma, since at least one of shaded faces in the right-hand side of Figure 12
is contractible by Lemma 3.8.

(2) If there is an essential 3-cycle a1xya2 (or b1xyb2), then we apply Lemma 5.3 to each
of two hexagonal regions divided by the cycle.

(3) Using Q2 and H19, we can construct H21 in Figure 12.

H20

a

a

b

b

a1

a2

H21

a

a

b

b

b

cd

e

c

d d

c

Figure 12: Inside a hexagonal region bounded by a closed walk (2).
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Figure 13: Octagonal structure generating infinite series.

See the graph denoted by O9(2) shown in the left-hand side of Figure 13. Observe
that the octagonal region D is bounded by a closed walk W = a1bcda2p1q2p2 where
a1 = a2 (= a) and the other vertices are distinct. Now add two vertices p3 and q3 so
that q2p1a2p3 and p2q2p3q3 are quadrilateral faces. The resulting graph is denoted by
O9(3). We inductively define the general form O9(m) from O9(m − 1) by adding two
vertices pm and qm so that qm−1pm−2a2pm and pm−1qm−1pmqm (resp., a1pm−2qm−1pm
and pmqm−1pm−1qm) are quadrilateral faces if m is odd (resp., even); note that we define
O9(m) for m ≥ 2. This O9(m) satisfies the followings:

(a) deg(qi) = 3 for each i ∈ {0, . . . ,m − 1}, while deg(pi) = 4 for each i ∈
{1, . . . ,m− 2} if m ≥ 3.

(b) If m is odd, then degD(b) = 2, degD(c) = 0, degD(d) = 1, degD(pm) = 1,
degD(qm) = 0 and degD(pm−1) = 2.

(c) If m is even, then degD(b) = 2, degD(c) = 0, degD(d) = 1, degD(pm−1) = 2,
degD(qm) = 0 and degD(pm) = 1.

Lemma 5.5. Let D be an octagonal region bounded by a closed walk W = a1bcda2efg
in a P-irreducible quadrangulation G of the projective plane such that a1 = a2 (= a) and
the other vertices are distinct. Suppose the following conditions hold:

(α) Each of degD(b),degD(d),degD(e) and degD(g) is at least 1.

(β) No two vertices of degree 3 in D are adjacent.

Then G ∩ D̄ is isomorphic to either O9(m) or O10 in Figure 13.

Proof. First of all, we show that D contains no diagonal edge. Suppose to the contrary that
there is a diagonal edge in D, say bf ; note that a diagonal edge like a1d is immediately
excluded since it yields multiple edges. Then, there is a quadrilateral region D′ bounded
by a 4-cycle a1bfg. By Lemma 4.3 and the condition (β) in the lemma, D′ should be filled
with Q1, that is D′ corresponds to a face of G. However, it contradicts (α) in the lemma.
Therefore, we conclude that D has no diagonal.

Now, we use induction on the number of faces in D, say F as well as previous lemmas.
If F is at most 4, then D includes at most one inner vertex x by Euler’s formula. Since D
has no diagonal, G ∩ D̄ is a graph obtained from O1 in Figure 7 by identifying a pair of



174 Ars Math. Contemp. 17 (2019) 153–183

antipodal vertices. However in this case, we would find an essential simple closed curve
intersecting G at only {a, x}, a contradiction. By careful observation, we have the unique
configuration O9(2) with F = 5 faces in D; D includes exactly two inner vertices of
degree 3. Therefore, the first step of the induction holds.

Similarly to the former lemmas, we divide the following argument along Lemma 4.2;
other than (i) which is already excluded. Note that we shall implicitly exclude a short path
already discussed in the former arguments.

Case I. There exists a short 2-path (ii) or (iii): First, such a vertex x adjacent to a1 and
c violates condition (α) in the lemma, since D does not contain an attached cube by (β).
(We also exclude such 2-paths a1xf, a2xc and a2xf .) Therefore, we assume that there
is such a vertex x adjacent to b and d. Then the 2-path bxd divides D into an octagonal
region D′ and a quadrilateral region D′′; note that D′′ corresponds to a face of G. If
degD′(b),degD′(d) ≥ 1, then we can apply the inductive hypothesis. However, if we use
O9(m), then x would become degree 2. On the other hand, if we fill D′ with O10, then
the face-contraction of bcdx at {c, x} can be applied by Lemma 3.8. If degD′(b) = 0 and
degD′(d) = 0, then we can easily find an essential simple closed curve intersecting G at
only a and x; we can take such a curve along a1bxda2.

Therefore, we assume that one of degD′(b) and degD′(d) is equal to 0 and the other is
at least 1. We may assume that degD′(b) = 0 and degD′(d) ≥ 1 without loss of generality.
Under the condition, there is a face of G in D′ bounded by a1bxy for y ∈ V (G). If y
is a vertex of W , then we have either y = e or y = g by Lemma 3.2. If we assume the
former, then there would be multiple edges ae, contrary to our assumption. On the other
hand, if the latter holds, there is a hexagonal region D′′′ bounded by a cycle da2efgx of
G. By Lemma 4.4 and the condition (β), D′′′ is filled only with H2 and we obtain O9(2);
the unique inner vertex of degree 3 in D′′′ must have neighbors {d, e, g}, otherwise, (α)
cannot be held.

Therefore we may suppose that y is an inner vertex of D′. In this case, the octagonal
region D∗ bounded by a1yxda2efg satisfies the conditions of this lemma and hence we
can apply the inductive hypothesis to D∗; observe that degD∗(y) ≥ 1. Under our assump-
tions, we fill D∗ with O9(m) so as not to have adjacent vertices of degree 3, and obtain
O9(m+ 1); O10 is inappropriate since it yields two adjacent vertices of degree 3 in D.

Next, we assume that there is an inner vertex x of D adjacent to both of b and g. Let
D′ be an octagonal region bounded by bcda2efgx; note that the 4-cycle a1bxg bounds a
face of G. If D′ has a diagonal edge, then the one end should be x since D admits no
diagonal. However, if there is such a diagonal, say xd, then there would be a forbidden
2-path bxd, which was already discussed above. Thus D′ has no diagonal edge and we can
apply Lemma 4.5 to the region. In fact, most cases are excluded by some conditions but
we obtain O9(3) and O10 by using O4 and O2, respectively. By the similar argument as
above, we obtain O9(2) (resp., O10) if we assume that there is a 2-path bxe (resp., cxf ) for
an inner vertex x of D.

Case II. There exists a short 3-path (iii): First, assume that such a short 3-path is a1xyd
where x and y are inner vertices ofD. In this case, the hexagonal 2-cell regionD′ bounded
by a1xydcb should be filled with either H1 or H2 by Lemma 4.4 and the condition (β)
in this lemma. However in each case, D would contain a diagonal or a forbidden 2-path
excluded by the above arguments. By the same reason, we do not have to consider a 3-path
like bxyf . (Of course, we exclude the paths of the same type, considering the symmetry;
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e.g., a2xyg.)

Case III. There exists a short 4-cycle (iv): We assume that there exists an essential 4-cycle
a1xyza2 for inner vertices x, y and z of D. Then, D is divided into two octagonal regions
D′ and D′′ and they are bounded by a1xyza2dcb and a1xyza2efg, respectively. Here, we
consider degrees of x and z and first, suppose that degD′(x) = 0. In this case, D′ contains
a face bounded by a1xyw for w ∈ V (G). (Note that degD′(z) ≥ 1 and degD′′(z) ≥ 1;
otherwise there would be an essential simple closed curve passing through only a and y.
Also, degD′′(x) is clearly at least 1.) The vertex w is an inner vertex of D′ since if not,
D would have a diagonal or a forbidden 3-path by the above argument. Let D′′′ be the
octagonal region bounded by a1wyza2dcb; note that degD′′′(w) ≥ 1. Then both of D′′

and D′′′ satisfy the inductive hypothesis and we fill them with O9(m) or O10 so as not to
make two adjacent vertices of degree 3 in D. Under the conditions, we only obtain O9(l)
if D′′ and D′′′ are filled with O9(l′′) and O9(l′′′) respectively, where l = l′′ + l′′′ + 1.

Therefore, we may assume that each of degD′(x), degD′′(x), degD′(z) and degD′′(z)
is at least 1. Then we also use the inductive hypothesis into D′ and D′′. However, every
case is inappropriate, since using O10 yields contractible face by Lemmas 3.8 and 3.12 and
using two O9(m)’s makes y to have degree 2. Thus, the lemma follows.

6 Classification by attached cubes
Let G be a P-irreducible quadrangulation of the projective plane. Assume that G has an
attached cube H with ∂(H) = v0v1v2v3 and an attached 4-cycle C = u0u1u2u3 such
that uivi ∈ E(G) for each i ∈ {0, 1, 2, 3}. Now, observe that any essential cycle of
bipartite quadrangulations of the projective plane has even length while that of nonbipartite
quadrangulations has odd length. This means that

(I) G has an essential diagonal 3-curve γ if G is bipartite or

(II) G has an essential semi-diagonal 3-curve γ if G is nonbipartite, such that γ passes
through {v0, u1, v2} by Lemma 3.16.

First, we consider the case (I). In this case, γ is passing through three faces f1 =
v0u0u1v1, f2 = v1u1u2v2 and f = v0av2b for a, b ∈ V (G). Since G is P-irreducible,
applying the face-contraction of f at {a, b} breaks the property. However, each of deg(v0)
and deg(v2) is clearly at least four and hence we do not have to consider the 3-connectedness
of the graph by Lemma 3.12. Thus, we further divide it into the following two cases:

(I-a) The face-contraction of f disturbs the simplicity of the graph.

(I-b) The face-contraction of f yields a quadrangulation with representativity at most 2.

In (I-a), there exists a vertex x adjacent to both a and b such that the 4-cycleC ′ = v0axb
is essential on the projective plane by Lemma 3.10. In this case, we cut the projective plane
along C ′ and obtain (A) in Figure 14. In (I-b), G has a diagonal 3-curve passing through
{a, b, x} and three faces f, f ′ = acxd and f ′′ = bc′xd′ by Lemma 3.8. Considering
the identification of vertices except ui for i ∈ {1, . . . , 4}, we obtain (B), (C) and (D) in
Figure 14 up to symmetry; we have to pay attention to the simplicity, the degree conditions
of the graph and Lemma 4.3, further and that it does not have the structure of (I-a). (For
example, if d′ = v2 in (B), then we have (C). Furthermore, if x = v3 in (B), then d′ (resp.,
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Figure 14: Around an attached cube.

d) must also coincide with v2 (resp., c) by Lemma 4.3 and hence we obtain (D) in the
figure. It is not so difficult to confirm that they are all.)

Secondly, we assume the case (II). In this case, G has an essential semi-diagonal 3-
curve passing through {v0, u1, v2}, that is, there is an edge joining v0 and v2. We cut open
the projective plane along the essential 3-cycle v0v1v2 and obtain (E) in the figure.

In the first half of the next section, we determine P-irreducible quadrangulations of the
projective plane with attached cubes by filling each blank non-quadrilateral region of (A)
to (E) with results in Sections 4 and 5.

7 Proof of the main theorem
We shall classify P-irreducible quadrangulations of the projective plane in this section to
prove Theorem 1.1, using the lemmas proved in the former sections. For our purpose, we
divide our main result into the following four theorems, depending on the existence of an
attached cube and bipartiteness.

Theorem 7.1. Let G be a bipartite P-irreducible quadrangulation of the projective plane.
If G has an attached cube, then G is one of the graphs shown in Figure 8.

Proof. By the argument in the previous section, we first fill the two non-quadrilateral re-
gions of (A) shown in Figure 14 with H1, . . . ,H17 so as to form a P-irreducible quad-
rangulation. (However, we implicitly exclude H13 and H15 by Lemma 4.6.) In fact, we
consider the hexagonal regions bounded by v0v1v2axb and v0v3v2bxa and fill them with
H7, H8, H9, H11, H12, H14, H16 and H17 since we have {v1, v3} ∩ {a, b} = ∅; otherwise,
G would have multiple edges. When putting a pair of such pieces, we have to check the
polyhedrality of G, and the absence of contractible face, removable 4-cycle and shrinkable
2-path, by using Proposition 3.1 and Lemmas 3.8, 3.9, 3.12 – 3.16.

Checking all the cases is a routine, and hence we present two bad examples below.
First, see (i) of Figure 15, which is filled with a pair (H7, H9). However, it is easy to see
that this graph has representativity 2. Secondly, see (ii) in the figure with a pair (H11, H12).
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In this case, we can easily find a removable 4-cycle by Lemma 3.16, which is presented
as the shaded region in the figure. Similarly to the above two bad cases, we can exclude
almost pairs.

(i) (ii) (iii)

x x

c

c

a

a

d

p r
sv2

b

v1

v0

v1

b

v2

c′

x

c
a

v′3

(iv)

Figure 15: Configurations in the proof of Theorem 7.1.

As a result, 8 pairs (H7, H11), (H7, H14), (H7, H16), (H7, H17), (H9, H9), (H9, H12),
(H9, H14) and (H12, H12) are available and we obtain I4, I5, I6, I7, I8, I9, I10 and I11 in
Figure 8, respectively.

Next, we consider (B) in Figure 14. Consider the face-contraction of the face bounded
by xdac at {c, d}. Observe that we have no identification of vertices c, d, c′ and d′ to
other white vertices. (It was already done in the previous section.) Thus, we have that
deg(x),deg(a) ≥ 4. By Lemma 3.12, the face-contraction breaks the simplicity or the
property of representativity at least 3. It is easy to see that the former does not happen
and hence we suppose the latter. That is, there is a diagonal 3-curve passing through either
{c, d, v2} or {c, d, v0}.

Assume that the curve passes the {c, d, v2} and other two faces f1 and f2 are bounded
by dpv2q and v2rcs respectively, for p, q, r, s ∈ V (G). (Actually, by Lemma 4.3, one of p
and q, say q, coincides with a. See (iii) in Figure 15.) If s = x in the figure, then it would
yield the configuration (C) in the Figure 14; we discuss (C) next. Further, if s = b, then
the vertex c is adjacent to both of a and b and hence it would become (A); it was already
discussed. Moreover, if r = a, we would have multiple edges v2a. Therefore, we can
conclude that the unique possibility of the identification of such vertices is that r = v1;
note that we have considered all the possibility around f2, since G is bipartite and both of
r and s should be black vertices. However, regardless of the unique identification, we can
apply the face-contraction of f2 at {r, s} since there is no diagonal 3-curve passing through
r and s. This is contrary to G being P-irreducible. By the similar argument, we can find a
contractible face when assuming that the diagonal 3-curve passes through {c, d, v0}. As a
result, (B) cannot be extended to any P-irreducible quadrangulation.

As the third case, we consider (C) in Figure 14. By Lemma 3.16, there is no at-
tached cube in the hexagonal region D bounded by v0acxv2v1. Therefore, we try to put
H1, . . . ,H5 into D. However, by Proposition 3.1 and Lemmas 3.9, 3.15 and 4.3, it is easy
to confirm (but routine) that only H1 is available and we have edge v1c in D.

Next, we consider the octagonal region D′ bounded by v0v3v2adxc′b. Assume that D′

contains another attached cube A such that ∂(A) = v′0v
′
1v
′
2v
′
3. Then its one cube diagonal

pair, now say {v′0, v′2}, coincides with either {a, b} or {c′, v2} since it should be facing by
Lemma 3.16. If the former occurs, then it clearly causes I1, I2 or I3 by Lemmas 4.4 and 4.6.
Thus, we suppose the latter (see (iv) of Figure 15). Now we fill the two hexagonal regions
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H and H ′ bounded by v0v1v2v′3c
′b and v2acxc′v′1, respectively. However, H admits only

H12 and H14, and H ′ does only H8 by considering their partial structures. Therefore, we
obtain I12 and I13 in Figure 8 in this case.

Then, we consider the possibility of existence of diagonal edges in the octagonal region
D′ and conclude that either v3c′ or v3d is available by some lemmas and P-irreducibility.
If both of diagonals are taken as edges of G, then G becomes I14. If one of two diagonals,
say v3c′, is used, then we find the hexagonal region H bounded by c′v3v2acx; note that
H does not contain its diagonal. We put H2, H3, H4 and H5 into H , however each of the
resulting graphs has a contractible face; it is actually reducible into I14. Furthermore, the
same argument works when we use the diagonal v3d.

Therefore we may assume that D′ in (C) contains no attached cube and no diagonal,
that is, it satisfies the condition of Lemma 4.5. Now, we try to put Oj for j ∈ {1, . . . , 8}
into D′. Considering some lemmas in Section 3, we have only I15 from this case by filling
it with O2 in Figure 7.

Similarly to (C), we consider the inside of octagonal region O bounded by cycle
v0v3v2adv1c

′b in the case (D). However, the argument is almost the same as the previ-
ous one and just a routine and hence we omit it here. (We first discuss the existence of an
attached cube and diagonals inO. Next, we put the configurations of Figure 7.) As a result,
we obtain I16 I17 from (D). Therefore, the theorem follows.

We define I18[2; s1, . . . , sn] as a graph obtained from (E) in Figure 14 by putting
H18[s1, . . . , sn] inside the hexagonal region. Recall that we forbid I18[2; . . . , 2, 2, . . .],
I18[2; . . . , 3, 3, . . .], I18[2; 2, . . .] and I18[2; . . . , 3], since we make it a rule to unify consec-
utive Q2’s to one.

Theorem 7.2. Let G be a nonbipartite P-irreducible quadrangulation of the projective
plane. If G has an attached cube, then G is one of I18[2; s1, . . . , sn], I19 and I20 shown in
Figure 11.

Proof. By the argument in the previous section, we have (E) in Figure 14 in this case.
There is the unique blank hexagonal regionD which satisfies the conditions of Lemma 5.4.
Hence, we fill D with H18[s1, . . . , sn] (resp., H20) and obtain I18[2; s1, . . . , sn] (resp.,
I19); note that H21 was already discussed in Lemma 5.1 and we obtained I20.

In fact, some of I18[2; s1, . . . , sn] with short sequences cannot satisfy the polyhedrality,
hence we should exclude such “bad” sequences, which are listed in Table 1. It is not
difficult to confirm that if n ≥ 4, then any I18[2; s1, . . . , sn] satisfying the above rule
is acceptable. (Observe that there are different sequences [s1, . . . , sn] 6= [s′1, . . . , s

′
n] such

that I18[2; s1, . . . , sn] ∼= I18[2; s′1, . . . , s
′
n]; e.g., I18[2; 1, 1, 2] ∼= I18[2; 3, 1, 1] in the table.)

Figure 16 presents six bipartite P-irreducible quadrangulations of the projective plane
without attached cubes. In the figure, I26(2n + 1) (n ≥ 2) represents an infinite series of
such graphs. The center white vertex of I26(2n+ 1) has degree 2n+ 1 and each its black
neighbors has degree 4. Furthermore, it has 2n + 1 vertices of degree 3 on the essential
simple closed curve drawn by dotted circle. (We obtain the projective plane by identifying
all pairs of antipodal points of the dotted circle.) In fact, the figure represents I26(7) with
15 vertices.

Theorem 7.3. Let G be a bipartite P-irreducible quadrangulation of the projective plane.
If G has no attached cube, then G is one of the graphs shown in Figure 16.
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Table 1: Good and bad sequences for [s1, . . . , sn] (n ≤ 3).

[s1, . . . , sn] (n ≤ 3)

[1] bad (rep. 2)
[1, 1], [3, 2] good
[1, 2], [3, 1] bad (rep. 2)
[1, 1, 1], [1, 1, 2], [1, 2, 1], [1, 3, 1], [1, 3, 2], [3, 1, 1], [3, 1, 2], [3, 2, 1] good

Proof. For brevity, we write only the outline of the proof. We divide the proof into the
following three cases by Lemmas 3.5, 3.13 and 3.15. Note that we prove those cases in this
order, that is, we implicitly exclude a graph already appeared in the former cases.

Case I.G has a 2-path u0u1u2 induced by three vertices of degree 3: See (i) in Figure 17. In
the figure, each antipodal pair of points of the dotted circle should be identified to obtain the
projective plane. Note that v0v1v2v3v4v5 is a cycle ofG since if v3 = v5, then deg(v4) = 3
and G would contain an attached cube.

The 2-path u0u1u2 is not shrinkable and hence we have a face v0bv2b′ by Lemma 3.14.
Furthermore, we consider the face-contraction of the face v2v3v4u2 at {v3, u2}. Since
deg(v2),deg(v4) ≥ 4, we do not have to pay attention to the connectivity of the resulting
graph by Lemma 3.12. Also, since u1 is an inner vertex of the hexagon, the face-contraction
preserves the simplicity of the graph. Hence, by Lemma 3.8, we have a face v3cv1c′. By
the same way, we find a face v5av1a′ (see the figure again).

Similarly to the argument in Section 6 and the previous theorem, we consider the possi-
bility of identification of vertices and fill blank non-quadrilateral regions with H1, . . . ,H5

in Lemma 4.4. As a result, we obtain I21, I22 and I23 from this case.

I26(2n+ 1) (n ≥ 2)I24 I25

I21 I22 I23

Figure 16: The 6 families of bipartite P-irreducible quadrangulations without an attached
cube.
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Figure 17: Structures of bipartite P-irreducible quadrangulations with no attached cube.

Case II. G has two adjacent vertices x and y of degree 3: See the inside of the hexagon
in (ii) of Figure 17. Note that each of deg(v0),deg(v2),deg(v3) and deg(v5) is at least 4
since there is no 2-path induced by vertices of degree 3 by the previous argument. As well
as Case I, we consider face-contractions of v1v2xv0 at {v1, x} and v3v4v5y at {v4, y}. By
Lemma 3.8, we have two diagonal 3-curves γ and γ′ passing through {v1, x} and {v4, y},
respectively. We may assume that γ passes v3 as the third vertex, up to symmetry.

If γ′ passes v2, then it (resp., γ) goes through v2av4a′ (resp., v1bv3b′) in (ii) of Fig-
ure 17. We consider the identification of vertices and further fill the blank non-quadrilateral
regions, and obtain I24 and I25. On the other hand, if γ′ passes v0 as the third vertex, then
both of γ and γ′ pass a common face v0v1v4v3 (see (iii) in the figure). However, we can
fill the unique hexagonal region with neither H1, H2 nor H3 in Figure 6.

Case III. All vertices of degree 3 are independent: Let x be a vertex of degree 3 having
neighbors {v0, v2, v4} and v0v1v2v3v4v5 as its link walk. By the assumption, each of
deg(v0),deg(v2) and deg(v4) is at least 4. We consider face-contractions of three faces
incident to x and have some cases depending on the forbidden structure of the resulting
graph. (For example, if each operation yields multiple edges, we have (iv) in Figure 17, but
it is immediately excluded since we can find a simple closed curve intersecting G at only
{v0, v2}.) Further, we try to identify vertices as well as the previous cases but most cases
are not suited other than the following one case.

See (v) in Figure 17 that has the unique blank octagonal region D bounded by a closed
walk v1v2v3av5v4v3b. Note that each of degD(v2),degD(v4),degD(a) and degD(b) is
at least 1, since G has no vertex of degree 2 and no two adjacent vertices of degree 3.
Therefore, D satisfies the conditions of Lemma 5.5. However, putting either O9(2l + 1)
(l ≥ 1) or O10 in Figure 13 into D would yield two adjacent vertices of degree 3. Actually,
when filling D with O9(2l) (l ≥ 1), we obtain I26(2l + 3) = I26(2(l + 1) + 1). Then, we
got the conclusion of the theorem.
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As well as I18[2; s1, . . . , sn], we can naturally define I18[1; s1, . . . , sn] by using (iii) of
Figure 18 which also has the unique hexagonal region.

v1
v0 v2

v3

v4

v5
u0 u1 u2

v1

v0 v2

v3

v4

v1

v0 v2

v3

v4

v5 v5

(i) (ii) (iii)

x

y

x

y

Figure 18: Structures of nonbipartite P-irreducible quadrangulations with no attached
cube.

Theorem 7.4. Let G be a nonbipartite P-irreducible quadrangulation of the projective
plane. If G has no attached cube, then G is isomorphic to I18[1; 1, . . . , 1].

Proof. As well as the proof of Theorem 7.3, we divide our argument into the following
three cases.

Case I. G has a 2-path u0u1u2 induced by three vertices of degree 3: See (i) in Fig-
ure 18. Since G is nonbipartite, we have three semi-diagonal 3-curves passing through
{v0, u1, v2}, {v1, u2, u3} and {v1, u0, v5}, respectively. (Consider the 23-path shrink
u0u1u2 and face-contractions of v2v3v4u2 and v4v5v0u0.) Under the conditions, there
should be three edges v0v2, v1v3 and v1v5 since v0v1v2v3v4v5 forms a cycle of G. By
Lemma 4.3, the quadrilateral region v1v2v0v5 corresponds to a face of G. However, there
is an essential simple closed curve passing through only v0 and v1, a contradiction.

Case II. G has two adjacent vertices x and y of degree 3: See (ii) in Figure 18. Note that
each of deg(v0), deg(v2), deg(v3) and deg(v5) is at least 4. Suppose that v0v1v2v3v4v5 is a
cycle of G. We consider the face-contraction of v0v1v2x (resp., v3v4v5y) at {v1, x} (resp.,
{v4, y}). Then, there are two semi-diagonal 3-curves and hence we have v1v3, v2v4 ∈
E(G), up to symmetry. Clearly, we find an essential simple closed curve intersecting G at
only {v2, v3}, a contradiction.

Therefore, we assume that v0v1v2v3v4v5 is not a cycle of G. Under the conditions,
v1 and v4 must coincide and the other vertices of the closed walk are distinct (see (iii) in
Figure 18). Then the configuration contains a blank hexagonal region v1v2v3v4(= v1)v0v5
and it satisfies the conditions of Lemma 5.3. Now, we apply the result of the lemma. But,
H19 is excluded immediately since it contains an attached cube. In this case, H18[1, . . . , 1]
only fits the region. The resulting graph is clearly I18[1; 1, . . . , 1].

Case III. All vertices of degree 3 are independent: Do the same procedure as in the previous
theorem. (Begin with considering face-contractions of three faces incident to a vertex of
degree 3.) However, we obtain no P-irreducible quadrangulation from this case; since two
adjacent vertices of degree 3 often appear. Therefore, the theorem follows.
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Abstract

In this paper we consider a distance-regular graph Γ. Fix a vertex x of Γ and consider
the corresponding subconstituent algebra T = T (x). The algebra T is the C-algebra gener-
ated by the Bose-Mesner algebra M of Γ and the dual Bose-Mesner algebra M∗ of Γ with
respect to x. We consider the subspaces M,M∗,MM∗,M∗M,MM∗M,M∗MM∗, . . .
along with their intersections and sums. In our notation, MM∗ means Span{RS | R ∈
M,S ∈ M∗}, and so on. We introduce a diagram that describes how these subspaces are
related. We describe in detail that part of the diagram up to MM∗ + M∗M . For each
subspace U shown in this part of the diagram, we display an orthogonal basis for U along
with the dimension of U . For an edge U ⊆ W from this part of the diagram, we display
an orthogonal basis for the orthogonal complement of U in W along with the dimension of
this orthogonal complement.

Keywords: Subconstituent algebra, Terwilliger algebra, distance-regular graph.

Math. Subj. Class.: 05E30

1 Introduction
In this paper we consider a distance-regular graph Γ. Fix a vertex x of Γ and consider
the corresponding subconstituent algebra (or Terwilliger algebra) T = T (x) [32]. The
algebra T is the C-algebra generated by the Bose-Mesner algebra M of Γ and the dual
Bose-Mesner algebra M∗ of Γ with respect to x. The algebra T is finite-dimensional and
semisimple [32]. So it is natural to study the irreducible T -modules. These modules are
used in the study of hypercubes [14, 26], dual polar graphs [20, 38], spin models [6, 10],
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codes [13, 28], the bipartite property [4, 5, 9, 16, 21, 22, 23, 25, 27], the almost-bipartite
property [3, 8, 17], the Q-polynomial property [5, 7, 11, 12, 18, 19, 27, 35], and the thin
property [15, 24, 30, 31, 33, 34, 36, 37].

In this paper we discuss the algebra T using a different approach. We consider the
subspaces M,M∗,MM∗,M∗M,MM∗M,M∗MM∗, . . . along with their intersections
and sums; see Figure 1. We describe the diagram of Figure 1 up toMM∗+M∗M . For each
subspace U shown in this part of the diagram, we display an orthogonal basis for U along
with the dimension of U . For an edge U ⊆ W from this part of the diagram, we display
an orthogonal basis for the orthogonal complement of U in W along with the dimension
of this orthogonal complement. Our main results are summarized in Theorems 6.1 and 6.2.
In the last part of the paper we summarize what is known about the part of diagram above
MM∗ +M∗M , and we give some open problems.

2 Preliminaries
In this section we recall some facts about distance-regular graphs. We will use the fol-
lowing notation. Let X denote a nonempty finite set. Let MatX(C) denote the C-algebra
consisting of the matrices whose rows and columns are indexed by X and whose entries
are in C. For B ∈ MatX(C) let B, Bt, and tr(B) denote the complex conjugate, the
transpose, and the trace of B, respectively. We endow MatX(C) with the Hermitean inner
product 〈 , 〉 such that 〈R,S〉 = tr(RtS) for all R,S ∈ MatX(C). The inner product
〈 , 〉 is positive definite. Let U, V denote subspaces of MatX(C) such that U ⊆ V . The
orthogonal complement of U in V is defined by U⊥ = {v ∈ V | 〈v, u〉 = 0 for all u ∈ U}.

Let Γ = (X, E) denote a finite, undirected, connected graph, without loops or multiple
edges, with vertex set X and edge set E . Let ∂ denote the shortest path-length distance
function for Γ. Define the diameter D := max{∂(x, y) | x, y ∈ X}. For a vertex x ∈ X
and an integer i ≥ 0 define Γi(x) = {y ∈ X | ∂(x, y) = i}. For notational convenience
abbreviate Γ(x) = Γ1(x). For an integer k ≥ 0, we say that Γ is regular with valency k
whenever |Γ(x)| = k for all x ∈ X . We say that Γ is distance-regular whenever for all
integers h, i, j (0 ≤ h, i, j ≤ D) and x, y ∈ X with ∂(x, y) = h, the number

phij := |Γi(x) ∩ Γj(y)|

is independent of x and y. The integers phij are called the intersection numbers of Γ. From
now on assume that Γ is distance-regular with diameter D ≥ 3. We abbreviate ki := p0ii
(0 ≤ i ≤ D). For 0 ≤ i ≤ D let Ai denote the matrix in MatX(C) with (x, y)-entry

(Ai)xy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i,
x, y ∈ X.

We call Ai the i-th distance matrix of Γ. We call A = A1 the adjacency matrix of Γ. Ob-
serve that Ai is real and symmetric for 0 ≤ i ≤ D. Note that A0 = I is the identity matrix
in MatX(C). Observe that

∑D
i=0Ai = J , where J is the all-ones matrix in MatX(C).

Observe that for 0 ≤ i, j ≤ D,

AiAj =

D∑
h=0

phijAh. (2.1)
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For integers h, i, j (0 ≤ h, i, j ≤ D) we have

ph0j = δhj , (2.2)

p0ij = δijki. (2.3)

Let M denote the subalgebra of MatX(C) generated by A. By [2, p. 44] the matrices
A0, A1, . . . , AD form a basis for M . We call M the Bose-Mesner algebra of Γ. By [1,
p. 59, 64], M has a basis E0, E1, . . . , ED such that

(i) E0 = |X|−1J ;

(ii)
∑D

i=0Ei = I;

(iii) Et
i = Ei (0 ≤ i ≤ D);

(iv) Ei = Ei (0 ≤ i ≤ D);

(v) EiEj = δijEi (0 ≤ i, j ≤ D).

The matrices E0, E1, . . . , ED are called the primitive idempotents of Γ, and E0 is called
the trivial idempotent. For 0 ≤ i ≤ D let mi denote the rank of Ei. For 0 ≤ i ≤ D let
θi denote an eigenvalue of A associated with Ei. Let λ denote an indeterminate. Define
polynomials {ui}Di=0 in C[λ] by u0 = 1, u1 = λ/k, and

λui = ciui−1 + aiui + biui+1 (1 ≤ i ≤ D − 1).

By [2, p. 131, 132],

Aj = kj

D∑
i=0

uj(θi)Ei (0 ≤ j ≤ D), (2.4)

Ej = |X|−1mj

D∑
i=0

ui(θj)Ai (0 ≤ j ≤ D). (2.5)

Since EiEj = δijEi and by (2.4) we have AjEi = kjuj(θi)Ei = EiAj (0 ≤ i, j ≤ D).
By [1, Theorem 3.5] we have the orthogonality relations

D∑
i=0

ui(θr)ui(θs)ki = δrsm
−1
r |X| (0 ≤ r, s ≤ D), (2.6)

D∑
r=0

ui(θr)uj(θr)mr = δijk
−1
i |X| (0 ≤ i, j ≤ D). (2.7)

We recall the Krein parameters of Γ. Let ◦ denote the entry-wise multiplication in
MatX(C). Note that Ai ◦ Aj = δijAi for 0 ≤ i, j ≤ D. So M is closed under ◦. By [2,
p. 48], there exist scalars qhij ∈ C such that

Ei ◦ Ej = |X|−1
D∑

h=0

qhijEh (0 ≤ i, j ≤ D). (2.8)
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We call the qhij the Krein parameters of Γ. By [2, Proposition 4.1.5], these parameters are
real and nonnegative for 0 ≤ h, i, j ≤ D.

We recall the dual Bose-Mesner algebra of Γ. Fix a vertex x ∈ X . For 0 ≤ i ≤ D let
E∗i = E∗i (x) denote the diagonal matrix in MatX(C) with (y, y)-entry

(E∗i )yy =

{
1 if ∂(x, y) = i,

0 if ∂(x, y) 6= i,
y ∈ X.

We call E∗i the i-th dual idempotent of Γ with respect to x. Observe that

(i)
∑D

i=0E
∗
i = I;

(ii) E∗ti = E∗i (0 ≤ i ≤ D);

(iii) E∗i = E∗i (0 ≤ i ≤ D);

(iv) E∗i E
∗
j = δijE

∗
i (0 ≤ i, j ≤ D).

By construction E∗0 , E
∗
1 , . . . , E

∗
D are linearly independent. Let M∗ = M∗(x) denote the

subalgebra of MatX(C) with basis E∗0 , E
∗
1 , . . . , E

∗
D. We call M∗ the dual Bose-Mesner

algebra of Γ with respect to x.
We now recall the dual distance matrices of Γ. For 0 ≤ i ≤ D let A∗i = A∗i (x) denote

the diagonal matrix in MatX(C) with (y, y)-entry

(A∗i )yy = |X|(Ei)xy y ∈ X. (2.9)

We call A∗i the dual distance matrix of Γ with respect to x and Ei. By [32, p. 379], the
matrices A∗0, A

∗
1, . . . , A

∗
D form a basis for M∗. Observe that

(i) A∗0 = I;

(ii)
∑D

i=0A
∗
i = |X|E∗0 ;

(iii) A∗ti = A∗i (0 ≤ i ≤ D);

(iv) A∗i = A∗i (0 ≤ i ≤ D);

(v) A∗iA
∗
j =

∑D
h=0 q

h
ijA
∗
h (0 ≤ i, j ≤ D).

From (2.4) and (2.5) we have

A∗j = mj

D∑
i=0

ui(θj)E
∗
i (0 ≤ j ≤ D), (2.10)

E∗j = |X|−1kj
D∑
i=0

uj(θi)A
∗
i (0 ≤ j ≤ D). (2.11)
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3 The subconstituent algebra T

In this section we study the subconstituent algebra of a distance-regular graph. For the
rest of the paper, fix a distance-regular graph Γ and a vertex x of Γ. Let T = T (x)
denote the subalgebra of MatX(C) generated by M,M∗. The algebra T is called the
subconstituent algebra (or Terwilliger algebra) [32]. In order to describe T , we consider
how M,M∗ are related. We will use the following notation. For any two subspaces R,S
of MatX(C) we define RS = Span{RS | R ∈ R, S ∈ S}. Consider the subspaces
M,M∗,MM∗,M∗M,MM∗M,M∗MM∗, . . . along with their intersections and sums.
To describe the inclusions among the resulting subspaces we draw a diagram; see Figure 1.
In this diagram, a line segment that goes upward from U to W means that W contains U .

Consider the diagram in Figure 1. For each subspace U shown in the diagram, we seek
an orthogonal basis for U and the dimension of U . Also, for each edge U ⊆ W shown in
the diagram, we seek an orthogonal basis for the orthogonal complement of U in W along
with the dimension of this orthogonal complement. We accomplish these goals for that part
of the diagram up to MM∗ + M∗M . Our main results are summarized in Theorems 6.1
and 6.2. Before we get started, we recall a few inner product formulas.

Lemma 3.1 ([11, Lemma 3.1, Lemma 4.1]). For 0 ≤ h, i, j, r, s, t ≤ D,

(i) 〈E∗i AjE
∗
h, E

∗
rAsE

∗
t 〉 = δirδjsδhtkhp

h
ij ,

(ii) 〈EiA
∗
jEh, ErA

∗
sEt〉 = δirδjsδhtmhq

h
ij .

The following result is well-known.

Lemma 3.2 ([32, Lemma 3.2]). For 0 ≤ h, i, j ≤ D,

(i) E∗i AhE
∗
j = 0 if and only if phij = 0,

(ii) EiA
∗
hEj = 0 if and only if qhij = 0.

Lemma 3.3 ([29, Lemma 10]). For 0 ≤ h, i, j, r, s, t ≤ D,

〈AiE
∗
jAh, ArE

∗
sAt〉 =

D∑
`=0

k`p
`
irp

`
jsp

`
ht.

4 The subspace M + M∗

Our goal in this section is to analyze the inclusion diagram up to M +M∗. We begin with
the trace of elements in M and M∗.

Lemma 4.1. For 0 ≤ i ≤ D,

(i) tr(Ai) = δ0i|X|,

(ii) tr(Ei) = mi,

(iii) tr(E∗i ) = ki,

(iv) tr(A∗i ) = δ0i|X|.
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M∗MM∗MM∗M

MM∗M ∩M∗MM∗

MM∗M +M∗MM∗

T

CI

MM∗ +M∗M

M∗MMM∗

MM∗ ∩M∗M

M +M∗

M∗M

M ∩M∗

Figure 1: Inclusion diagram.
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Proof. (i): Follows from the definition of Ai.
(ii): Since Ei is diagonalizable, we have tr(Ei) = rank(Ei) = mi.
(iii): Follows from the definition of E∗i .
(iv): By (2.5) and since

E0 = |X|−1J = |X|−1
D∑
i=0

Ai,

we have
D∑
i=0

(1− ui(θ0))Ai = 0.

Since {Ai}Di=0 are linearly independent, we obtain ui(θ0) = 1 for 0 ≤ i ≤ D. By (2.6),
(2.10) and (iii), we have

tr(A∗i ) = mi

D∑
j=0

uj(θi) tr(E∗j ) = mi

D∑
j=0

uj(θi)uj(θ0)kj = δ0i|X|.

Next we obtain some inner products.

Lemma 4.2. For 0 ≤ i, j ≤ D,

(i) 〈Ai, Aj〉 = δijki|X|,

(ii) 〈Ei, Ej〉 = δijmi,

(iii) 〈E∗i , E∗j 〉 = δijki,

(iv) 〈A∗i , A∗j 〉 = δijmi|X|.

Proof. (i): Use (2.1) and Lemma 4.1.
(ii): By Lemma 4.1 and since EiEj = δijEi.
(iii): Since E∗i E

∗
j = δijE

∗
i (0 ≤ i, j ≤ D) and by Lemma 4.1 (iii).

(iv): By (2.10) and (iii), we obtain

〈A∗i , A∗j 〉 = 〈mi

D∑
h=0

uh(θi)E
∗
h,mj

D∑
`=0

u`(θj)E
∗
` 〉 = mimj

D∑
h=0

uh(θi)uh(θj)kh.

By (2.6), we have 〈A∗i , A∗j 〉 = mimjδijm
−1
j |X| = δijmi|X|.

The algebra M has two bases {Ai}Di=0 and {Ei}Di=0. The algebra M∗ has two bases
{A∗i }Di=0 and {E∗i }Di=0. Next we show that these bases are orthogonal.

Lemma 4.3. Each of the following is an orthogonal basis for M :

{Ai}Di=0, {Ei}Di=0.

Moreover, each of the following is an orthogonal basis for M∗:

{A∗i }Di=0, {E∗i }Di=0.
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Proof. By Lemma 4.2 and the comment below it.

Recall that A0 = I = A∗0. Next we compute some inner products between M and M∗.

Lemma 4.4. For 0 ≤ i, j ≤ D,

〈Ai, A
∗
j 〉 = δi0δ0j |X|ki.

Proof. Observe that 〈Ai, A
∗
j 〉 = 〈AiA

∗
0A0, A0A

∗
jA0〉. By Lemma 3.3 and (2.2), (2.6) and

(2.10), the result follows.

The next results describe orthogonal bases for M +M∗ and M ∩M∗.

Lemma 4.5. The following is an orthogonal basis for M +M∗:

AD, . . . , A1, I, A
∗
1 . . . , A

∗
D.

Proof. Immediate from Lemmas 4.2 and 4.4.

Lemma 4.6.
dim(M +M∗) = 2D + 1.

Proof. Immediate from Lemma 4.5.

Lemma 4.7. We have

M ∩M∗ = CI and dim(M ∩M∗) = 1.

Proof. Observe that I ∈M ∩M∗. By linear algebra, we have

dim(M ∩M∗) = dim(M) + dim(M∗)− dim(M +M∗).

By construction dim(M) = D + 1, dim(M∗) = D + 1. By this and Lemma 4.6,
dim(M ∩M∗) = 1. The result follows.

Lemma 4.8. The following statements hold:

(i) The matrices {Ai}Di=1 form an orthogonal basis for the orthogonal complement of
M ∩M∗ in M .

(ii) The matrices {A∗i }Di=1 form an orthogonal basis for the orthogonal complement of
M ∩M∗ in M∗.

(iii) The matrices {Ai}Di=1 form an orthogonal basis for the orthogonal complement of
M∗ in M +M∗.

(iv) The matrices {A∗i }Di=1 form an orthogonal basis for the orthogonal complement of
M in M +M∗.

Proof. Follows from definitions of M,M∗ along with Lemmas 4.5 and 4.7.

Lemma 4.9. Each of the following subspaces has dimension D:

(M ∩M∗)⊥ ∩M, (M ∩M∗)⊥ ∩M∗,
(M∗)⊥ ∩ (M +M∗), M⊥ ∩ (M +M∗).

Proof. Immediate from Lemma 4.8.
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5 The subspace MM∗ + M∗M

Our goal in this section is to analyze the inclusion diagram from M + M∗ up to
MM∗ +M∗M . We begin with a few inner product formulas.

Lemma 5.1. For 0 ≤ i, j, r, s ≤ D,

(i) 〈AiA
∗
j , A

∗
rAs〉 = δisδjr|X|kimjui(θj),

(ii) 〈AiA
∗
j , ArA

∗
s〉 = δirδjs|X|kimj ,

(iii) 〈A∗iAj , A
∗
rAs〉 = δirδjs|X|kimj .

Proof. (i): Since

〈AiA
∗
j , A

∗
rAs〉 = tr(A∗jAiA

∗
rAs) =

∑
y∈X

∑
z∈X

(A∗j )yy(Ai)yz(A∗r)zz(As)zy

and by (2.9), it follows that

〈AiA
∗
j , A

∗
rAs〉 = |X|2

∑
y∈X

∑
z∈X

(Ej)xy(Ai)yz(Er)xz(As)zy

= |X|2
∑
y∈X

∑
z∈X

(Ej)xy(Ai ◦As)yz(Er)zx.

Since Ai ◦As = δisAi (0 ≤ i, s ≤ D), we get

〈AiA
∗
j , A

∗
rAs〉 = |X|2δis

∑
y∈X

∑
z∈X

(Ej)xy(Ai)yz(Er)zx.

Since ∑
y∈X

∑
z∈X

(Ej)xy(Ai)yz(Er)zx = |X|−1 tr(EjAiEr),

we have
〈AiA

∗
j , A

∗
rAs〉 = |X|δis tr(EjAiEr) = |X|δis tr(ErEjAi).

Since EiEj = δijEi (0 ≤ i, j ≤ D), we obtain

〈AiA
∗
j , A

∗
rAs〉 = |X|δisδjr tr(EjAi) = |X|δisδjr〈Ej , Ai〉.

By (2.5) and Lemma 4.2 (i), we get 〈Ej , Ai〉 = mjui(θj)ki. Hence

〈AiA
∗
j , A

∗
rAs〉 = δisδjr|X|kimjui(θj).

(ii): Since A0 = I , we get 〈AiA
∗
j , ArA

∗
s〉 = 〈AiA

∗
jA0, ArA

∗
sA0〉. By (2.10), we

obtain

〈AiA
∗
j , ArA

∗
s〉 = mjms

D∑
h=0

uh(θj)

D∑
`=0

u`(θs)〈AiE
∗
hA0, ArE

∗
`A0〉.

From Lemma 3.3 we have

〈AiE
∗
hA0, ArE

∗
`A0〉 =

D∑
t=0

ktp
t
irp

t
h`p

t
00.
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By (2.2) and (2.3), we obtain

〈AiA
∗
j , ArA

∗
s〉 = mjms

D∑
h=0

uh(θj)

D∑
`=0

u`(θs)k0p
0
irp

0
h`

= δirkimjms

D∑
h=0

uh(θj)uh(θs)kh.

By (2.6), we get

〈AiA
∗
j , ArA

∗
s〉 = δirkimjmsδjsm

−1
s |X| = δirδjs|X|kimj .

(iii): Since

〈A∗iAj , A
∗
rAs〉 = tr((A∗iAj)

t(A∗rAs)) = tr(AjA
∗
iA
∗
rAs) = tr(A∗iA

∗
rAsAj)

and

A∗iA
∗
r =

D∑
h=0

qhirA
∗
h

and by (2.1), we get

〈A∗iAj , A
∗
rAs〉 =

D∑
h=0

D∑
`=0

qhirp
`
js tr(A∗hA`) =

D∑
h=0

D∑
`=0

qhirp
`
js tr(A`A

∗
h)

=

D∑
h=0

D∑
`=0

qhirp
`
js tr(At

`A
∗
h) =

D∑
h=0

D∑
`=0

qhirp
`
js〈A`, A

∗
h〉.

From Lemma 4.4, we have

D∑
h=0

D∑
`=0

qhirp
`
js〈A`, A

∗
h〉 = |X|

D∑
h=0

D∑
`=0

qhirp
`
jsδ`0δh0k` = |X|q0irp0jsk0 = |X|q0irp0js.

By (2.3) and since q0ir = δirmi, we obtain

〈A∗iAj , A
∗
rAs〉 = δirδjs|X|kjmi.

Next we obtain orthogonal bases for MM∗ and M∗M .

Lemma 5.2. The following statements hold:

(i) The matrices {AiA
∗
j | 0 ≤ i, j ≤ D} form an orthogonal basis for MM∗.

(ii) The matrices {A∗jAi | 0 ≤ i, j ≤ D} form an orthogonal basis for M∗M .

Proof. Immediate from Lemma 5.1.

Lemma 5.3. Each of the following subspaces has dimension (D + 1)2:

MM∗, M∗M.



S. Sumalroj: A diagram associated with the subconstituent algebra of a distance-regular graph 195

Proof. Immediate from Lemma 5.2.

Our next goal is to obtain an orthogonal basis for MM∗ +M∗M .

Lemma 5.4. We have

MM∗ +M∗M =

D∑
i=0

D∑
j=0

Span{AiA
∗
j , A

∗
jAi} (orthogonal direct sum).

Proof. Immediate from Lemma 5.1.

Corollary 5.5. We have

dim(MM∗ +M∗M) =

D∑
i=0

D∑
j=0

dim(Span{AiA
∗
j , A

∗
jAi}).

Proof. Immediate from Lemma 5.4.

Definition 5.6. For 0 ≤ i, j ≤ D let Hi,j denote the 2 × 2 matrix of inner products for
AiA

∗
j , A

∗
jAi.

Lemma 5.7. For 0 ≤ i, j ≤ D,

Hi,j = |X|kimj

(
1 ui(θj)

ui(θj) 1

)
.

Proof. Immediate from Lemma 5.1 and Definition 5.6.

Lemma 5.8. For 0 ≤ i, j ≤ D we have

det(Hi,j) = |X|2k2im2
j (1− (ui(θj))

2).

Proof. Immediate from Lemma 5.7.

Corollary 5.9. For 0 ≤ i, j ≤ D, det(Hi,j) = 0 if and only if ui(θj) = ±1.

Proof. Immediate from Lemma 5.8.

Lemma 5.10. The following elements are orthogonal for 0 ≤ i, j ≤ D:

AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi.

Moreover

||AiA
∗
j +A∗jAi||2 = 2|X|kimj(1 + ui(θj)),

||AiA
∗
j −A∗jAi||2 = 2|X|kimj(1− ui(θj)).

Proof. Immediate from Lemma 5.7.

Lemma 5.11. The following statements hold for 0 ≤ i, j ≤ D:

(i) Assume ui(θj) = 1. Then AiA
∗
j = A∗jAi and this common value is nonzero.
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(ii) Assume ui(θj) = −1. Then AiA
∗
j = −A∗jAi and this common value is nonzero.

(iii) Assume ui(θj) 6= ±1. Then AiA
∗
j , A

∗
jAi are linearly independent.

Proof. (i), (ii): Immediate from Lemma 5.10.
(iii): Immediate from Lemma 5.8.

Lemma 5.12. For 0 ≤ i, j ≤ D we give an orthogonal basis for Span{AiA
∗
j , A

∗
jAi} in

Table 1.

Table 1: An orthogonal basis for Span{AiA
∗
j , A

∗
jAi}.

Case Orthogonal basis Dimension

ui(θj) = ±1 AiA
∗
j 1

ui(θj) 6= ±1 AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi 2

Proof. Follows from Definition 5.6 and Lemmas 5.7 and 5.11.

Corollary 5.13. The following is an orthogonal basis for MM∗ +M∗M :

{AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi | 0 ≤ i, j ≤ D, ui(θj) 6= ±1}

∪ {AiA
∗
j | 0 ≤ i, j ≤ D, ui(θj) = ±1}.

Proof. Immediate from Lemmas 5.4 and 5.12.

Our next goal is to find the dimension of MM∗ +M∗M .

Definition 5.14. Define an integer P as follows:

P = |{(i, j) | 1 ≤ i, j ≤ D,ui(θj) = ±1}|.

Remark 5.15. Recall that u0(θj) = 1 and ui(θ0) = 1 for 0 ≤ i, j ≤ D. By [2, A.5], the
graph Γ is primitive if and only if Γi is connected for 1 ≤ i ≤ D. From Definition 5.14
and [2, Proposition 4.4.7] we have P = 0 if and only if Γ is primitive.

Lemma 5.16.
dim(MM∗ +M∗M) = 2D2 + 2D + 1− P.

Proof. Immediate from Corollary 5.13 and Definition 5.14.

Our next goal is to obtain an orthogonal basis for MM∗ ∩M∗M .

Lemma 5.17.
dim(MM∗ ∩M∗M) = 2D + 1 + P.

Proof. By linear algebra, we have

dim(MM∗ ∩M∗M) = dim(MM∗) + dim(M∗M)− dim(MM∗ +M∗M).

By Lemmas 5.3 and 5.16, the result follows.
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Lemma 5.18. The following is an orthogonal basis for MM∗ ∩M∗M :

{AiA
∗
j | 0 ≤ i, j ≤ D, ui(θj) = ±1}.

Proof. Immediate from Lemmas 5.11 and 5.17.

We now have orthogonal bases forMM∗, M∗M , MM∗∩M∗M andMM∗+M∗M .
The next results establish an orthogonal basis for certain orthogonal complements along
with the dimension for these orthogonal complements.

Lemma 5.19. The matrices {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) = ±1} form an orthogonal

basis for the orthogonal complement of M +M∗ in MM∗ ∩M∗M .

Proof. Follows from Lemmas 4.5 and 5.18.

Lemma 5.20. The following statements hold:

(i) The matrices {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogonal basis for the

orthogonal complement of MM∗ ∩M∗M in MM∗.

(ii) The matrices {A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogonal basis for the
orthogonal complement of MM∗ ∩M∗M in M∗M .

Proof. Follows from Lemmas 5.2 and 5.18.

Lemma 5.21. The following statements hold:

(i) The matrices {ui(θj)AiA
∗
j −A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogo-

nal basis for the orthogonal complement of MM∗ in MM∗ +M∗M .

(ii) The matrices {AiA
∗
j − ui(θj)A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} form an orthogo-

nal basis for the orthogonal complement of M∗M in MM∗ +M∗M .

Proof. (i): By Lemma 5.1, for 0 ≤ i, j, r, s ≤ D

〈ArA
∗
s +A∗sAr, ui(θj)AiA

∗
j −A∗jAi〉

= ui(θj)〈ArA
∗
s, AiA

∗
j 〉 − 〈ArA

∗
s, A

∗
jAi〉+ ui(θj)〈A∗sAr, AiA

∗
j 〉 − 〈A∗sAr, A

∗
jAi〉

= δirδjs|X|kimjui(θj)− δirδjs|X|kimjui(θj)

+ δirδjs|X|kimj(ui(θj))
2 − δirδjs|X|kimj

= δirδjs|X|kimj((ui(θj))
2 − 1).

By similar arguments,

〈ArA
∗
s −A∗sAr, ui(θj)AiA

∗
j −A∗jAi〉 = δirδjs|X|kimj(1− (ui(θj))

2)

for 0 ≤ i, j, r, s ≤ D. By Lemma 5.1, for 0 ≤ i, j, r, s ≤ D

〈ArA
∗
s, ui(θj)AiA

∗
j −A∗jAi〉 = ui(θj)〈ArA

∗
s, AiA

∗
j 〉 − 〈ArA

∗
s, A

∗
jAi〉

= δirδjs|X|kimjui(θj)− δirδjs|X|kimjui(θj)

= 0.

By Lemma 5.2 and Corollary 5.13, the result follows.
(ii): Similar to the proof of (i).
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Lemma 5.22. The following subspace has dimension P :

(M +M∗)⊥ ∩ (MM∗ ∩M∗M).

Proof. Immediate from Definition 5.14 and Lemma 5.19.

Lemma 5.23. Each of the following subspaces has dimension D2 − P :

(MM∗ ∩M∗M)⊥ ∩MM∗, (MM∗ ∩M∗M)⊥ ∩M∗M,

(MM∗)⊥ ∩ (MM∗ +M∗M), (M∗M)⊥ ∩ (MM∗ +M∗M).

Proof. Immediate from Definition 5.14 and Lemmas 5.20 and 5.21.

6 Summary of main results
In Sections 4 and 5 we obtained an orthogonal basis and the dimension for each subspace
U in the diagram of Figure 1 up to MM∗ + M∗M . Also, for each edge U ⊆ W shown
in this part of the diagram of Figure 1, we obtained an orthogonal basis for the orthogonal
complement of U in W along with the dimension of this orthogonal complement. The
results are summarized in this section.

Theorem 6.1. In each row of Table 2 we describe a subspace U in the diagram of Figure 1.
We give an orthogonal basis for U along with the dimension of U .

Table 2: An orthogonal basis for each subspace U in the diagram of Figure 1 along with its
dimension.

Subspace U Orthogonal basis for U Dimension of U

M ∩M∗ I 1

M {Ai}Di=0 D + 1

M∗ {A∗i }Di=0 D + 1

M +M∗ {AD, . . . , A1, I, A
∗
1, . . . , A

∗
D} 2D + 1

MM∗ ∩M∗M {AiA
∗
j | 0 ≤ i, j ≤ D,ui(θj) = ±1} 2D + 1 + P

MM∗ {AiA
∗
j | 0 ≤ i, j ≤ D} (D + 1)2

M∗M {A∗jAi | 0 ≤ i, j ≤ D} (D + 1)2

MM∗ +M∗M

{AiA
∗
j +A∗jAi, AiA

∗
j −A∗jAi |

0 ≤ i, j ≤ D,ui(θj) 6= ±1}
∪ {AiA

∗
j | 0 ≤ i, j ≤ D,ui(θj) = ±1}

2D2 + 2D + 1− P
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Theorem 6.2. In each row of Table 3 we describe an edge U ⊆ W from the diagram of
Figure 1. We give an orthogonal basis for the orthogonal complement of U in W along
with the dimension of this orthogonal complement.

Table 3: An orthogonal basis for the orthogonal complement of U in W in the diagram of
Figure 1 along with the dimension of this orthogonal complement.

Orthogonal basis Dimension
U W for U⊥ ∩W of U⊥ ∩W

M ∩M∗ M {Ai}Di=1 D

M ∩M∗ M∗ {A∗i }Di=1 D

M M +M∗ {A∗i }Di=1 D

M∗ M +M∗ {Ai}Di=1 D

M +M∗ MM∗ ∩M∗M {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) = ±1} P

MM∗ ∩M∗M MM∗ {AiA
∗
j | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} D2 − P

MM∗ ∩M∗M M∗M {A∗jAi | 1 ≤ i, j ≤ D,ui(θj) 6= ±1} D2 − P

MM∗ MM∗ +M∗M
{ui(θj)AiA

∗
j −A∗jAi |

1 ≤ i, j ≤ D, ui(θj) 6= ±1} D2 − P

M∗M MM∗ +M∗M
{AiA

∗
j − ui(θj)A∗jAi |

1 ≤ i, j ≤ D, ui(θj) 6= ±1} D2 − P

7 Open problems

In this section, we give some open problems and suggestions for future research. Earlier in
the paper we discussed the diagram of Figure 1. In this discussion we analyzed the diagram
up to MM∗ + M∗M . The remaining part of the diagram is not completely understood.
We mention what is known. By Lemma 3.1 the subspace M∗MM∗ has an orthogonal
basis {E∗i AjE

∗
h | 0 ≤ h, i, j ≤ D, phij 6= 0}. Similarly, the subspace MM∗M has an

orthogonal basis {EiA
∗
jEh | 0 ≤ h, i, j ≤ D, qhij 6= 0}.

Problem 7.1. Find an orthogonal basis for the following subspaces:

(i) MM∗M ∩M∗MM∗,

(ii) MM∗M +M∗MM∗.

Problem 7.2. In each row of Table 4 we give an edgeU ⊆W from the diagram of Figure 1.
Find an orthogonal basis for the orthogonal complement of U inW for the following cases.
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Table 4: Subspaces U and W from the diagram of Figure 1.

U W

MM∗ +M∗M MM∗M ∩M∗MM∗

MM∗M ∩M∗MM∗ MM∗M

MM∗M ∩M∗MM∗ M∗MM∗

MM∗M MM∗M +M∗MM∗

M∗MM∗ MM∗M +M∗MM∗

References
[1] E. Bannai and T. Ito, Algebraic Combinatorics I: Association Schemes, The Ben-

jamin/Cummings Publishing Company, Menlo Park, California, 1984.

[2] A. E. Brouwer, A. M. Cohen and A. Neumaier, Distance-Regular Graphs, volume 18 of Ergeb-
nisse der Mathematik und ihrer Grenzgebiete, 3. Folge, Springer-Verlag, Berlin, 1989, doi:
10.1007/978-3-642-74341-2.

[3] J. S. Caughman, M. S. MacLean and P. M. Terwilliger, The Terwilliger algebra of an almost-
bipartite P - and Q-polynomial association scheme, Discrete Math. 292 (2005), 17–44, doi:
10.1016/j.disc.2004.12.001.

[4] J. S. Caughman, IV, The Terwilliger algebras of bipartite P - and Q-polynomial schemes, Dis-
crete Math. 196 (1999), 65–95, doi:10.1016/s0012-365x(98)00196-4.

[5] J. S. Caughman, IV, Bipartite Q-polynomial distance-regular graphs, Graphs Combin. 20
(2004), 47–57, doi:10.1007/s00373-003-0538-8.

[6] J. S. Caughman, IV and N. Wolff, The Terwilliger algebra of a distance-regular graph
that supports a spin model, J. Algebraic Combin. 21 (2005), 289–310, doi:10.1007/
s10801-005-6913-1.

[7] D. R. Cerzo, Structure of thin irreducible modules of a Q-polynomial distance-regular graph,
Linear Algebra Appl. 433 (2010), 1573–1613, doi:10.1016/j.laa.2010.06.005.

[8] B. V. C. Collins, The Terwilliger algebra of an almost-bipartite distance-regular graph and its
antipodal 2-cover, Discrete Math. 216 (2000), 35–69, doi:10.1016/s0012-365x(99)00296-4.

[9] B. Curtin, The Terwilliger algebra of a 2-homogeneous bipartite distance-regular graph, J.
Comb. Theory Ser. B 81 (2001), 125–141, doi:10.1006/jctb.2000.2002.

[10] B. Curtin and K. Nomura, Spin models and strongly hyper-self-dual Bose-Mesner algebras, J.
Algebraic Combin. 13 (2001), 173–186, doi:10.1023/a:1011297515395.

[11] G. A. Dickie and P. M. Terwilliger, A note on thin P -polynomial and dual-thin Q-
polynomial symmetric association schemes, J. Algebraic Combin. 7 (1998), 5–15, doi:10.1023/
a:1008690026999.

[12] A. L. Gavrilyuk and J. H. Koolen, The Terwilliger polynomial of a Q-polynomial distance-
regular graph and its application to pseudo-partition graphs, Linear Algebra Appl. 466 (2015),
117–140, doi:10.1016/j.laa.2014.09.048.

[13] D. Gijswijt, A. Schrijver and H. Tanaka, New upper bounds for nonbinary codes based on the
Terwilliger algebra and semidefinite programming, J. Comb. Theory Ser. A 113 (2006), 1719–
1731, doi:10.1016/j.jcta.2006.03.010.

[14] J. T. Go, The Terwilliger algebra of the hypercube, European J. Combin. 23 (2002), 399–429,
doi:10.1006/eujc.2000.0514.



S. Sumalroj: A diagram associated with the subconstituent algebra of a distance-regular graph 201

[15] J. T. Go and P. Terwilliger, Tight distance-regular graphs and the subconstituent algebra, Euro-
pean J. Combin. 23 (2002), 793–816, doi:10.1006/eujc.2002.0597.

[16] M. S. Lang, Bipartite distance-regular graphs: the Q-polynomial property and pseudo primitive
idempotents, Discrete Math. 331 (2014), 27–35, doi:10.1016/j.disc.2014.04.025.

[17] M. S. Lang and P. M. Terwilliger, Almost-bipartite distance-regular graphs with the Q-
polynomial property, European J. Combin. 28 (2007), 258–265, doi:10.1016/j.ejc.2005.07.004.

[18] J.-H. Lee, Q-polynomial distance-regular graphs and a double affine Hecke algebra of rank
one, Linear Algebra Appl. 439 (2013), 3184–3240, doi:10.1016/j.laa.2013.08.015.

[19] J.-H. Lee, Nonsymmetric Askey-Wilson polynomials and Q-polynomial distance-regular
graphs, J. Comb. Theory Ser. A 147 (2017), 75–118, doi:10.1016/j.jcta.2016.11.006.

[20] J.-H. Lee and H. Tanaka, Dual polar graphs, a nil-DAHA of rank one, and non-symmetric dual
q-Krawtchouk polynomials, Sém. Lothar. Combin. 78B (2017), Art. 42, 12.
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1 Introduction
The classification of distance-regular Cayley graphs is an open problem in the area of al-
gebraic graph theory [28, Problem 71-(ii)]. Partial results have been obtained by Abdollahi
and the authors [2], Miklavič and Potočnik [20, 21], and Miklavič and Šparl [22], among
others.

Here we focus on distance-regular graphs with small valency. It is known that there
are finitely many distance-regular graphs with fixed valency at least 3 [7]. In addition,
all distance-regular graphs with valency 3 are known (see [11, Theorem 7.5.1]), as are
all intersection arrays for distance-regular graphs with valency 4 [13]. There is however
no complete classification of distance-regular graphs with fixed valency at least 5. It is
believed though that every distance-regular graph with valency 5 has intersection array as
in Table 3. Besides these results, all intersection arrays for distance-regular graphs with
girth 3 and valency 6 or 7 have been determined. We therefore study the problem of which
of these distance-regular graphs with small valency are Cayley graphs.

After some preliminaries in Section 2, we study several families of distance-regular
graphs that have members with small valency. Several of the results in this section are
standard. Besides these standard results, we obtain in Proposition 3.2 that the incidence
graphs of the Desarguesian affine planes minus a parallel class of lines are Cayley graphs.
In Section 3.7, we study generalized polygons. By extending a known method for general-
ized quadrangles, we are able to prove (among other results) that the incidence graphs of
all known generalized hexagons are not Cayley graphs; see Proposition 3.6. Moreover, we
show that neither are some other distance-regular graphs that come from small generalized
quadrangles or hexagons.

We then determine all distance-regular Cayley graphs with valency 3 and 4 in Sec-
tions 4 and 5, respectively. Next, we characterize in Section 6 the Cayley graphs among
the distance-regular graphs with valency 5 with one of the known putative intersection ar-
rays. Most of our new results (besides the above mentioned ones) are negative, in the sense
that we prove that certain distance-regular graphs are not Cayley graphs. However, we sur-
prisingly do find that the Armanios-Wells graph is a Cayley graph. This gives additional,
previously unknown, information about the structure of this distance-transitive graph on 36
vertices, as we remark after Proposition 6.1.

In the final section, we consider distance-regular graphs with girth 3 and valency 6 or
7. Most of these graphs have been discussed in earlier sections. As another exception, we
obtain that the Klein graph on 24 vertices is a Cayley graph.

2 Preliminaries
All graphs in this paper are undirected and simple, i.e., there are no loops or multiple edges.
A connected graph Γ is called distance-regular with diameter d and intersection array

{b0, b1, . . . , bd−1; c1, c2, . . . , cd}

whenever for every pair of vertices x and y at distance i, the number of neighbors of y at
distance i− 1 from x is ci and the number of neighbors of y at distance i+ 1 from x is bi,
for all i = 0, . . . , d. It follows that a distance-regular graph is regular with valency k = b0.
The number of neighbors of y at distance i from x is denoted by ai, and ai = k − bi − ci.
The girth of a distance-regular graph follows from the intersection array. The odd-girth (of
a non-bipartite graph) equals the smallest i for which ai > 0; the even-girth equals the
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smallest i for which ci > 1. A distance-regular graph is called antipodal if its distance-d
graph is a disjoint union of complete graphs. This property follows from the intersection
array.

A distance-regular graph with diameter 2 is called strongly regular. A strongly regular
graph with parameters (n, k, λ, µ) is a k-regular graph with n vertices such that every pair
of adjacent vertices has λ common neighbors and every pair of non-adjacent vertices has µ
common neighbours. Thus, λ = a1, µ = c2, and the intersection array is {k, k − 1 − λ;
1, µ}. For more background on distance-regular graphs, we refer to the monograph [11] or
the recent survey [28].

Let G be a finite group and S be an inverse-closed subset of G not containing the
identity element e of G. Then the (undirected) Cayley graph Cay(G,S) is a graph with
vertex set G such that two vertices a and b are adjacent whenever ab−1 ∈ S. Recall that
all Cayley graphs are vertex-transitive and a Cayley graph Cay(G,S) is connected if and
only if the subgroup generated by S, which is denoted by 〈S〉, is equal to G. Following
Alspach [3], the subset S in Cay(G,S) is called the connection set. It is well-known that
a graph Γ is a Cayley graph if and only if it has a group of automorphisms G that acts
regularly on the vertices of Γ.

The commutator of two elements a and b in a groupG is denoted by [a, b]. Furthermore,
the center of G is denoted by Z(G).

2.1 Halved graphs

The following observation is straightforward but very useful. Let Γ be a Cayley graph
Cay(G,S) with diameter d. Define sets Si recursively by Si+1 = SSi \ (Si ∪ Si−1) for
i = 2, . . . , d, where S1 = S and S0 = {e}. Then the distance-i graph Γi of Γ is again
a Cayley graph, Cay(G,Si). In particular, when Γ is bipartite, then its halved graphs (the
components of Γ2) are Cayley graphs.

Lemma 2.1. The distance-i graph of a Cayley graph Γ with diameter d is again a Cayley
graph, for i = 2, . . . , d. Also the halved graphs of Γ are Cayley graphs.

Clearly, also the complement Γ of a Cayley graph Γ is a Cayley graph.

2.2 Large girth

In the later sections we will see many distance-regular graphs with large girth. The follow-
ing lemmas will then turn out to be useful.

Lemma 2.2. Let Γ be a Cayley graph Cay(G,S) with girth g, where |S| > 2. If G is
abelian, then g ≤ 4 and Γ contains a — not necessarily induced — 4-cycle.

Proof. Let a and b be in S such that a 6= b−1. Then e ∼ a ∼ ba = ab ∼ b ∼ e, so Γ
contains a 4-cycle, and hence g ≤ 4.

Lemma 2.3. Let Γ be a Cayley graph Cay(G,S) with girth g > 4. Suppose that S contains
an element of order m, with m > 2. Then g ≤ m and the vertices of Γ can be partitioned
into induced m-cycles.

Proof. Suppose a ∈ S has order m > 2. Then b ∼ ab ∼ a2b ∼ · · · ∼ am−1b ∼ b, for
every b ∈ G. Now suppose that this m-cycle is not induced. Then it follows that there is
an i, with 1 < i < m − 1, such that ai ∈ S. But then b ∼ aib ∼ ai+1b ∼ ab ∼ b, which
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contradicts the assumption that g > 4. So every vertex is in an induced m-cycle, and the
result follows.

Note that the above partition of vertices into m-cycles is the same as the partition of G
into the right cosets of the cyclic subgroup H generated by a.

In general, if Γ is a Cayley graph Cay(G,S), and H is a subgroup of G, then the
induced subgraph on each of the right cosets of H is regular, and all these subgraphs are
isomorphic to each other.

2.3 Normal subgroups and equitable partitions

If Γ is a Cayley graph Cay(G,S) and H is a normal subgroup of G, then the partition
into the (distinct) cosets Hc is equitable, in the sense that each vertex in Hc has the
same number of neighbors in Hb, for each c and b. This number is easily shown to be
|S ∩Hcb−1|. The quotient matrix Q of the equitable partition contains these numbers, i.e.
QHc,Hb = |S ∩Hcb−1|. It is well-known and easy to show (by “blowing up” eigenvectors
[12, Lemma 2.3.1]) that each eigenvalue of Q is also an eigenvalue of Γ. We will use this
fact in some of the later proofs, for example to show that the Biggs-Smith graph is not a
Cayley graph.

Note also that the quotient matrix is in fact the adjacency matrix of a Cayley multigraph
on the quotient group G/H , with connection multiset S/H = {Hs | s ∈ S}. When Γ is
an antipodal distance-regular (Cayley) graph with diameter d, then it is easy to show that
Nd = Sd ∪ {e} is a subgroup of G. If this group is normal, then it follows that there is
a Cayley graph over the quotient group G/Nd with connection set {Nds | s ∈ S} (cf.
[21, Lemma 2.2]). This quotient graph is the folded graph of Γ, and it is well-known to be
distance-regular, too.

2.4 Dihedral groups

Miklavič and Potočnik [20, 21] classified the distance-regular Cayley graphs over a cyclic
or dihedral group. They already observed in [20] that a primitive distance-regular graph
over a dihedral group must be a complete graph. In [21], they moreover showed the fol-
lowing.

Proposition 2.4 ([21]). A distance-regular Cayley graph over a dihedral group must be a
cycle, complete graph, complete multipartite graph, or the bipartite incidence graph of a
symmetric design.

We will see these graphs also in Section 3. More importantly, we will use this classifi-
cation in some of the results in the later sections.

2.5 Erratum

In [2], we claimed that in the distance-regular line graph Γ of the incidence graph of a
generalized d-gon of order (q, q), any induced cycle is either a triangle or a 2d-cycle. This
is not correct however. Instead, every induced cycle in Γ is either a 3-cycle or an even cycle
of length at least 2d. Consequently, Theorem 3.1 in [2] may not be correct. Instead, we
have the following result.

Theorem 2.5. Let d ≥ 2, let Γ be the line graph of the incidence graph of a generalized
d-gon of order (q, q), and suppose that Γ is a Cayley graph Cay(G,S). Then there exist
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two subgroups H and K of G such that S = (H ∪K) \ {e}, with |H| = |K| = q + 1 and
H ∩K = {e} if and only if 〈a〉 ⊆ S ∪{e} for every element a of order 2i in S, with i ≥ d.

The correction of the above result has no impact on the validity of the following result
in [2, Proposition 3.4]. In fact, by Lemma 2.2, the proof can do without the above theorem.

Proposition 2.6. The line graph of Tutte’s 8-cage is not a Cayley graph.

Proof. Let Γ be the line graph of Tutte’s 8-cage, and suppose that it is a Cayley graph
Cay(G,S). Then |G| = 45 and |S| = 4. By Lemma 2.2, G cannot be abelian because Γ
has no 4-cycles. But all groups of order 45 are abelian, so we have a contradiction.

3 Some families of distance-regular graphs
It is clear that the cycle Cn is a distance-regular Cayley graph over the cyclic group. Thus,
every distance-regular graph with valency 2 is a Cayley graph. Here we mention some
other relevant families of distance-regular graphs with members of small valency.

3.1 Complete graphs, complete multipartite graphs, and complete bipartite graphs
minus a matching

The complete graph Kn and the regular complete multipartite graph Km×n are distance-
regular Cayley graphs (with diameters 1 and 2, respectively). Indeed, Kn is a Cayley graph
over any group of order n, whereas Km×n (with m parts of size n) is a Cayley graph over
the cyclic group Zmn, with connection set S = Zmn \ mZmn. Note that the complete
bipartite graph K2×n is usually denoted by Kn,n.

A complete bipartite graph Kn,n minus a complete matching, which is denoted by
K∗n,n, is distance-regular with valency n − 1 and diameter 3. Even though it may be
clear that this is also a Cayley graph, we will describe it as such explicitly. Indeed, let
D2n = 〈a, b | an = b2 = 1, bab = a−1〉. Then the Cayley graph Cay(D2n, S), where
S = {bai | 1 ≤ i ≤ n − 1} is the complete bipartite graph Kn,n minus a complete
matching, with two bipartite parts 〈a〉 and b〈a〉. This graph can also be described as the
incidence graph of a symmetric design; see Section 3.5.

3.2 Paley graphs

The Paley graphs are defined as Cayley graphs. Let q be a prime power such that q ≡ 1
(mod 4). Let G be the additive group of GF(q) and let S be the set of nonzero squares
in GF(q). Then the Paley graph P (q) is defined as the Cayley graph Cay(G,S). It is
distance-regular with diameter 2 and valency (q − 1)/2.

3.3 Hamming graphs, cubes, and folded cubes

The Hamming graph H(d, q) is the d-fold Cartesian product of Kq . It can therefore be
described as a Cayley graph over (for example) Zdq with the set of vectors of (Hamming)
weight one as connection set. It is distance-regular with valency d(q − 1) and diameter d.

The Hamming graph H(2, q) is also known as the lattice graph L2(q). The Shrikhande
graph is a distance-regular graph with the same intersection array as L2(4), and it is a
Cayley graph Cay(Z4 × Z4, {±(0, 1),±(1, 0),±(1, 1)}). A Doob graph is a Cartesian
product of Shrikhande graphs and K4’s. These Doob graphs are thereby distance-regular
Cayley graphs as well.
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The Hamming graph H(d, 2) is also known as the d-dimensional (hyper)cube graph
Qd. The folded d-cube can be obtained from Qd−1 by adding a perfect matching con-
necting its so-called antipodal vertices. This implies that it is a Cayley graph over Zd−12

with connection set the set of unit vectors and the all-ones vector. The folded d-cube is
distance-regular with valency d and diameter bd/2c.

3.4 Odd and doubled Odd graphs

The Odd graphOn is the Kneser graphK(2n−1, n−1). It is distance-regular with valency
n and diameter n−1. Godsil [15] determined which Kneser graphs are Cayley graphs, and
it follows that the Odd graph is not a Cayley graph.

The doubled Odd graph DOn is the bipartite double of the Odd graphOn. It is distance-
regular with valency n and diameter d = 2n − 1. It is easy to see that if a graph Γ is a
Cayley graph Cay(G,S), then its bipartite double is again a Cayley graph over the group
G×Z2 with connection set S = {(s, 1) | s ∈ S}. But the Odd graph is not a Cayley graph,
so we cannot apply this argument. Indeed, it turns out that the doubled Odd graph is also
not a Cayley graph.

Proposition 3.1. The doubled Odd graph is not a Cayley graph.

Proof. The distance-(d−1) graph of a doubled Odd graph DOn (with diameter d = 2n−1)
is a disjoint union of two Odd graphs On. If this graph is a Cayley graph, then its distance-
(d − 1) graph is again a Cayley graph, by Lemma 2.1. But an Odd graph is not a Cayley
graph [15], so neither is the doubled Odd graph.

Godsil’s results [15] also imply the classification by Sabidussi [25] of Cayley graphs
among the triangular graphs T (n); these are Cayley graphs if and only if n = 2, 3, 4 or
n ≡ 3 (mod 4) and n is a prime power.

3.5 Incidence graphs of symmetric designs

Miklavič and Potočnik [21] showed that there is a correspondence between difference sets
and connection sets for the incidence graphs of a symmetric design. Recall that a k-subset
D of a group G of order n is called an (n, k, λ) difference set if every nonidentity element
g ∈ G occurs λ times among all possible differences d1d−12 (we prefer to use multiplicative
notation) of distinct elements d1 and d2 of D. The development {Dg | g ∈ G} of such a
difference set is a symmetric 2-(n, k, λ) design.

IfD is a difference set in an abelian groupG, then we can easily construct the incidence
graph of its development as a Cayley graph for the group G o Z2. The elements of this
group can be (identified and) partitioned as G ∪ Gc, where c2 = 1 and cgc = g−1 for all
g ∈ G. As a connection set, we take S = Dc. It follows that S is inverse closed, and that
the corresponding Cayley graph is indeed the incidence graph of the development (a block
Dg corresponds to the group element g−1c).

Because the Desarguesian projective plane (over GF(q)) is a symmetric 2-(q2 + q+ 1,
q + 1, 1) design, and can be obtained from a (Singer) difference set in the cyclic group, it
follows that the incidence graph of a Desarguesian projective plane is a Cayley graph. It
was shown by Loz et al. [18] that this Cayley graph is 4-arc-transitive. We note that all
projective planes of order at most 8 are Desarguesian, and hence all incidence graphs of
projective planes with valency at most 9 are Cayley graphs.
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We also note that if D is a difference set in G, then the complement G \ D is also a
difference set in G, and its development is the complementary design of the development
of D. This implies that also the incidence graph of the 2-(7, 4, 2) design is a Cayley graph.
Also the 2-(11, 5, 2) biplane comes from a difference set (the set of nonzero squares in
Z11), so its incidence graph is a Cayley graph. Note that also the (trivial) 2-(n, n−1, n−2)
design comes from a difference set (D = G \ {e}), which gives an alternative proof that
K∗n,n is a Cayley graph (see Section 3.1).

We denote the incidence graph of a 2-(n, k, λ) design by IG(n, k, λ). Such a graph is
distance-regular with valency k and diameter 3.

3.6 Incidence graphs of affine planes minus a parallel class of lines

Similar to the case of symmetric designs, there is a correspondence between certain relative
difference sets and connection sets for the incidence graph of an affine plane minus a par-
allel class of lines. A k-subset R of a group G of order mn is called a relative (m,n, k, λ)
difference set relative to a subgroup N of order n of G if every element of G \N occurs λ
times among all possible differences r1r−12 of elements r1 and r2 of R. The development
of such a relative difference set is a so-called (m,n, k, λ) divisible design. We will not go
into the details of the definition of such a divisible design, but restrict to the remark that an
(n, n, n, 1) divisible design is the same as an affine plane of order n minus a parallel class
of lines (for details, see [24]). Similar as in Section 3.5, if such a divisible design comes
from a relative difference set in an abelian group, then its incidence graph is a Cayley graph.

It is known that all Desarguesian planes correspond to relative difference sets, so the
incidence graphs of the Desarguesian affine planes minus a parallel class are all Cayley
graphs. These include all such distance-regular graphs with valency at most 8. In particular,
for odd prime powers q, the set {(x, x2) | x ∈ GF(q)} is a relative difference set in
GF(q)2. To include even prime powers, we need a more involved construction of a relative
difference set that actually works also for semifields (see [24, Theorem 4.1]). Indeed, if S is
a semifield of order q, then we define a group on S2 using the addition (x1, x2)+(y1, y2) =
(x1 + y1, x2 + y2 + x1y1). In this group, the set {(x, x2) | x ∈ S} is a relative (q, q, q, 1)
difference set. We note that if S is the field on 2n vertices, then the constructed group is
isomorphic to Zn4 .

We denote the incidence graph of a the Desarguesian affine plane of order q minus a
parallel class of lines (pc) by IG(AG(2, q) \ pc). Such a graph is distance-regular with
valency q and diameter 4. We conclude the following.

Proposition 3.2. For every prime power q, the incidence graph of the Desarguesian affine
plane of order q minus a parallel class of lines, IG(AG(2, q) \ pc), is a Cayley graph.

3.7 Generalized polygons

The incidence graph of a generalized quadrangle or generalized hexagon of order (q, q) is
distance-regular with valency q + 1 and girth 8 and 12, respectively. These graphs thus
arise in the tables in the following sections. In this section, we will first show, among other
results, that for q ≤ 4, none of these is a Cayley graph. Next to that, we will consider some
of the distance-regular line graphs and halved graphs (point graphs) of these graphs.

Indeed, first suppose that the incidence graph Γ of generalized polygon of order (s, s)
is a Cayley graph. Then its automorphism group contains a subgroup that acts regularly on
the vertices of Γ. It follows that there is an index 2 subgroup G that acts regularly on both
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the point set and on the line set, as an automorphism group of the generalized polygon.
This situation has been studied by Swartz [26] for generalized quadrangles. Using results
by Yoshiara [29] (who exploited an idea of Benson [9]; cf. [23, 1.9.1]), Swartz [26] showed
that s+ 1 must be coprime to 2 and 3. Consequently, we have the following result.

Proposition 3.3. If the incidence graph of a generalized quadrangle of order (s, s) is a
Cayley graph, then s+ 1 is not divisible by 2 or 3.

In particular, it shows that the incidence graphs of generalized quadrangles of orders
(2, 2) and (3, 3) are not Cayley graphs.

We will next derive a similar result for generalized hexagons. The line of proof is the
same as for generalized quadrangles. By extracting the main ideas and fine-tuning them,
we are able to give a self-contained proof, which in the end even leads to a somewhat
stronger result. We note that similar more general techniques and results on generalized
hexagons (but not our main results) have also been obtained by Temmermans, Thas, and
Van Maldeghem [27].

As in the above, we assume that the generalized hexagon of order (s, s) has an auto-
morphism group G that acts regularly on points as well as on lines. Thus, the order of G is
(s+ 1)(s4 + s2 + 1). We start with a lemma.

Lemma 3.4. Let p = 2, 3, or 5, and let g ∈ G be of order p. Then xg 6= x and xg is not
collinear to x, for every point x.

Proof. Let x be an arbitrary point. BecauseG is regular, g fixes no points, and also no lines
(otherwise g = e) so xg 6= x. In order to show that xg is not collinear to x, we assume that
` is a line through x and xg , and show that this leads to a contradiction.

If g has order 2, then `g is a line through xg and xg
2

= x, so `g = `, which is indeed a
contradiction.

If g has order 3, then x, xg , and xg
2

are pairwise collinear. Similar as in the previous
case (order 2), these three points cannot all be on the line `, and it follows that they “gener-
ate” three lines `, `g , and `g

2

. This however gives a 6-cycle in the incidence graph, which
is a contradiction, because its girth is 12.

Similarly, if g has order 5, then this gives rise to a 10-cycle in the incidence graph,
which is again a contradiction.

Note that the case p = 5 seems specific for generalized hexagons, whereas the cases
2 and 3 clearly also apply to generalized quadrangles, because their incidence graphs have
girth “only” 8.

Next, we consider the adjacency matrixA of the point graph of the generalized hexagon,
and let M = A+ I . Note that this matrix could also be used to obtain the results for gener-
alized quadrangles. Our matrixM has eigenvalue s2+s+1 with multiplicity one (from the
constant eigenvector), 2s, 0, and−s. From an automorphism g we make a permutation ma-
trixQ, whereQx,y = 1 if y = xg . Because g is an automorphism, we have thatQA = AQ,
and hence that QM = MQ. Using the eigenvalues of M , we obtain the following lemma.

Lemma 3.5.
trQM ≡ 1 (mod s).

Proof. If g has order n, then (QM)n = QnMn = Mn. It follows that QM has the
same eigenvalues as M , possibly multiplied by a root of unity. It has the same eigenvalue
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s2 + s + 1 with multiplicity one (from the constant eigenvector) as M . For each other
eigenvalue, also its conjugates are eigenvalues, and the sum of these is a multiple of the
“original” eigenvalue θ of M (because the sum of the relevant roots of unity is integer; for
details, see the similar proof for generalized quadrangles by Benson [9]). It follows that
the sum of all eigenvalues equals s2 + s+ 1 plus integer multiples of 2s, 0, and −s. Hence
trQM ≡ 1 (mod s).

We can now prove the following.

Proposition 3.6. If the incidence graph of a generalized hexagon of order (s, s) is a Cayley
graph, then s is a multiple of 6 and s+ 1 is not divisible by 5.

Proof. Suppose that the incidence graph is a Cayley graph, and that (s + 1)(s4 + s2 + 1)
is divisible by 2, 3, or 5. Then the generalized hexagon has a regular group G of automor-
phisms, acting regularly on both the point set and the line set. Because the order of this
group is divisible by 2, 3, or 5, there is an automorphism g ∈ G of order 2, 3, or 5. By
Lemma 3.4, xg 6= x and xg is not collinear to x, for every point x. It follows that both
Q and QA have zero diagonal, hence trQM = 0. But this contradicts Lemma 3.5, hence
(s+ 1)(s4 + s2 + 1) is not divisible by 2, 3, or 5, and this implies that s is a multiple of 6
and s+ 1 is not divisible by 5.

Because generalized hexagons of order (s, s) are only known for prime powers s, it
follows that all the incidence graphs of the known generalized hexagons are not Cayley
graphs. Note that automorphisms of a putative generalized hexagon of order (6, 6) have
been studied by Belousov [8].

Similarly, generalized quadrangles of order (s, s) are only known for prime powers s.
Among these known ones, Proposition 3.3 thus rules out all s except s = 4i (for i ∈ N).
Among the distance-regular incidence graphs of generalized polygons with valency at most
5, we still need to consider the incidence graph of the generalized quadrangle of order
(4, 4). For this, we also consider one of the halved graphs, i.e., the collinearity (or point)
graph.

Proposition 3.7. The incidence graph of the generalized quadrangle GQ(4, 4) is not a
Cayley graph.

Proof. Suppose that this bipartite graph Γ is a Cayley graph. By Lemma 2.1, its halved
graphs are also Cayley graphs. These halved graphs (one of them being the collinearity
graph of the generalized quadrangle) are again distance-regular, with intersection array
{20, 16; 1, 5} [11, Proposition 4.2.2]. In other words, it is a strongly regular graph with
parameters (85, 20, 3, 5). By Sylow’s theorem, the only group of order 85 is the cyclic
group Z85. Using the properties of a generalized quadrangle and that the cyclic group is
abelian, it is easy to show that each line (a 5-clique) through e forms a subgroup of Z85,
but there is only one such subgroup, which gives a contradiction, because there are 5 lines
through each point.

We note that this result also follows from more extensive results by Bamberg and Giu-
dici [5, Theorem 1.1] and by Swartz [26, Theorem 1.3]. We remark that also the result that
Tutte’s 8-cage — the incidence graph of the unique generalized quadrangle of order (2, 2)
— is not a Cayley graph, can be obtained using the point graph. The latter is the comple-
ment of the triangular graph T (6). Sabidussi [25] determined the Cayley graphs among the
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triangular graphs (see also Section 3.4), and T (6) is not one of them. Thus, Tutte’s 8-cage,
also known as the Tutte-Coxeter graph, is not a Cayley graph.

Also Tutte’s 12-cage — the unique incidence graph of a generalized hexagon of order
(2, 2) — is not a Cayley graph for an elementary reason, i.e., because it is not vertex-
transitive. Note that there are two generalized hexagons of order (2, 2), and these are dual,
but not isomorphic, to each other. Thus, there are two orbits of vertices in the incidence
graph.

We note that similarly there are precisely two generalized quadrangles of order (3, 3),
and these are dual to each other. This implies that the corresponding incidence graph is not
vertex-transitive, and hence this gives another argument for why this graph is not a Cayley
graph.

Another argument for why Tutte’s 12-cage is not a Cayley graph is obtained by con-
sidering the point graphs of the two generalized hexagons of order (2, 2). These distance-
regular graphs have intersection array {6, 4, 4; 1, 1, 3} and automorphism group PSU(3, 3)
oZ2 [4]. If such a graph would be a Cayley graph Cay(G,S), then G must be a subgroup
of order 63 of the above group. Moreover, because the graph has no 4-cycles, the group
must be nonabelian by Lemma 2.2. However, we checked with GAP [14] that there are
no such subgroups, so we conclude that these graphs are not Cayley graphs. A similar
argument applies to the line graph of Tutte’s 12-cage, the unique distance-regular graph
with intersection array {4, 2, 2, 2, 2, 2; 1, 1, 1, 1, 1, 2}. Also this graph has automorphism
group PSU(3, 3) o Z2 [4] and no 4-cycles. Thus, after having checked that there are no
nonabelian subgroups of order 189, we conclude the following.

Proposition 3.8. The line graph of Tutte’s 12-cage and the point graphs of the two gener-
alized hexagons of order (2, 2) are not Cayley graphs.

Similarly, we can show that the unique distance-regular graph with intersection array
{6, 3, 3; 1, 1, 2}, the line graph of the incidence graph of the projective plane (generalized
3-gon) of order 3 is not a Cayley graph. Indeed, the automorphism group of the incidence
graph (and hence of its line graph) is PSL(3, 3)oZ2, and we checked again with GAP [14]
that it has no subgroups of order 52. We recall from Section 3.5 that the incidence graph
itself is a Cayley graph. We had already observed in [2, Theorem 5.8] that if the line graph
of the incidence graph of a projective plane of small odd order is a Cayley graph, then it
should come from a group of both collineations and correlations of the projective plane.

Proposition 3.9. The line graph of the incidence graph of the projective plane of order 3
is not a Cayley graph.

We next consider the line graph of the incidence graph of the generalized quadrangle
of order (3, 3).

Proposition 3.10. The line graph of the incidence graph of the generalized quadrangle of
order (3, 3) is not a Cayley graph.

Proof. Suppose that this graph Γ is a Cayley graph Cay(G,S). Then G is a subgroup
of the automorphism group of the incidence graph of the generalized quadrangle that acts
regularly on its 160 flags. It follows that G acts transitively on the point set P and on the
line set L. Hence |Gx| = |G`| = 4 for every x ∈ P and ` ∈ L. This implies that for every
point (and similarly, for every line), there is an involution in G that fixes it. On the other



E. R. van Dam and M. Jazaeri: Distance-regular Cayley graphs with small valency 213

hand, it is not hard to show that every involution in G fixes either a point or a line, using
Benson’s results [9] or the approach as in Lemma 3.5 (see also [6, Lemma 3.4]).

Now let H be a Sylow 2-subgroup of G. We claim that the intersection of Z(G) and H
is trivial. To show this, assume that it is not. Then H ∩Z(G) contains an involution σ, say,
and suppose without loss of generality that σ fixes a point x, say. Let ` be a line through x
and let θ be an involution that fixes `. If y = xθ, then it is easy to see that σ also fixes y,
and hence `. But then it fixes a flag (x, `), which is a contradiction.

Because Z(G) is normal in G, it follows that HZ(G) is a subgroup of G such that
|HZ(G)| = |H||Z(G)|. This implies that |Z(G)| = 1 or 5. We checked with GAP [14]
that there is no group of order 160 with |Z(G)| = 5 and there exists only one group G of
order 160 such that |Z(G)| = 1; this group is (Z4

2 o Z5) o Z2.
Now G has a normal subgroup N = Z4

2 o Z5 of index 2, and this group does not have
any dihedral subgroup, except the ones of order 2 and 4. Moreover, the two cosets of N
induce an equitable partition of the graph, with quotient matrix of the form[

m 6−m
6−m m

]
,

withm = |S∩N |. This implies that Γ must have an eigenvalue 2m−6 (besides eigenvalue
6) and because the integer eigenvalues of Γ are 6, 2, and −2, it follows that m = 2 or
m = 4.

By Theorem 2.5 and the fact thatG only has elements of orders 1, 2, 4, and 5, it follows
that S = (K1 ∪ K2) \ {e}, where K1 and K2 are subgroups of G of order 4 such that
K1 ∩K2 = {e}.

In both the casesm = 2 andm = 4, it follows that S∩N contains involutions s1 ∈ K1

and s2 ∈ K2. These two involutions generate a dihedral subgroup ofN , which implies that
this must be the dihedral group of order 4. But then s1 and s2 commute, and it is clear that
e and s1s2 have at least two common neighbors, while being at distance 2, and we have a
contradiction.

The last case we will handle in this section is that of the line graph of the incidence
graph of a generalized hexagon of order (3, 3). Note that it is currently unknown how
many such generalized hexagons there are.

Proposition 3.11. The line graph of the incidence graph of a generalized hexagon of order
(3, 3) is not a Cayley graph.

Proof. Suppose that this graph Γ is a Cayley graph Cay(G,S). Then by the same approach
as in the proof of Proposition 3.10, it follows that G = (Z3

2 o Z7) × D26. Again, G has
a normal subgroup N = (Z3

2 o Z7) × Z13 of index 2, and from the eigenvalues of Γ, we
obtain that m = 2 or m = 4, where m = |S ∩N |.

Observe that N contains seven involutions, which generate an abelian subgroup Z3
2.

Because S ∩ N contains an even number of elements, it also contains an even number of
involutions. But these involutions commute and there are no induced 4-cycles in Γ, so it
easily follows that S ∩ N contains no involutions. Because N only has elements of order
1, 2, 7, 13, 26, and 91, and Γ contains no induces odd-cycles besides triangles, it follows
that S ∩N only contains elements of order 26. Thus, the connection set S has at least two
elements of order 26.
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Next, we consider the normal subgroup K = Z3
2 × D26, with quotient group G/K

isomorphic to Z7. Note that all elements of order 26 in G are in K, so it follows that S∩K
contains at least two elements. Because the quotient matrix corresponding to the equitable
partition of the cosets of K is symmetric and cyclic, it follows that there are essentially
only three options; the first row of the quotient matrix must be[

4 1 0 0 0 0 1
]
,
[
2 2 0 0 0 0 2

]
, or

[
2 0 1 1 1 1 0

]
.

All three matrices have eigenvalues of degree 3 (related to eigenvalues of the 7-cycle; the
roots of x3 +x2− 2x− 1). But Γ has no such eigenvalues, so we have a contradiction.

Finally, we note that Bamberg and Giudici [5] claim that none of the classical gener-
alized hexagons and octagons have a group of automorphisms that acts regularly on the
points. This implies that none of the point graphs of the known generalized hexagons and
octagons are Cayley graphs.

4 Distance-regular graphs with valency 3

All distance-regular graphs with valency 3 are known; see [11, Theorem 7.5.1]. In Table 1,
we give an overview of all possible intersection arrays and corresponding graphs, and indi-
cate which of these is a Cayley graph. The latter will follow from the results in the previous
section, and the investigations in the current section, as commented in the table. Note that
for each intersection array in Table 1 there is a unique distance-regular graph. By n, d, and
g, we denote the number of vertices, diameter, and girth, respectively. The first graph in

Table 1: Distance-regular graphs with valency 3.

Intersection array n d g Name Cayley Comments

{3; 1} 4 1 3 K4 Yes Sec. 3.1
{3, 2; 1, 3} 6 2 4 K3,3 Yes Sec. 3.1
{3, 2, 1; 1, 2, 3} 8 3 4 Cube ∼ K∗3,3 Yes Sec. 3.1
{3, 2; 1, 1} 10 2 5 Petersen ∼ O3 No Sec. 3.4
{3, 2, 2; 1, 1, 3} 14 3 6 Heawood ∼ IG(7, 3, 1) Yes Sec. 3.5
{3, 2, 2, 1; 1, 1, 2, 3} 18 4 6 Pappus ∼ Yes Prop. 3.2

IG(AG(2, 3) \ pc)
{3, 2, 2, 1, 1; 1, 1, 2, 2, 3} 20 5 6 Desargues ∼ DO3 No Prop. 3.1
{3, 2, 1, 1, 1; 1, 1, 1, 2, 3} 20 5 5 Dodecahedron No Folklore
{3, 2, 2, 1; 1, 1, 1, 2} 28 4 7 Coxeter No Prop. 4.1
{3, 2, 2, 2; 1, 1, 1, 3} 30 4 8 Tutte’s 8-cage ∼ No Prop. 3.3

IG(GQ(2, 2))

{3, 2, 2, 2, 2, 1, 1, 1; 90 8 10 Foster No Prop. 4.2
1, 1, 1, 1, 2, 2, 2, 3}

{3, 2, 2, 2, 1, 1, 1; 102 7 9 Biggs-Smith No Prop. 4.4
1, 1, 1, 1, 1, 1, 3}

{3, 2, 2, 2, 2, 2; 126 6 12 Tutte’s 12-cage ∼ No Prop. 3.6
1, 1, 1, 1, 1, 3} IG(GH (2, 2))
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the table that does not occur in the previous section is the dodecahedron. It is however well
known that this graph is not a Cayley graph; see for example [19], where it is shown that
the only fullerene Cayley graph is the football (or buckyball) graph.

Also the fact that the Coxeter graph is not a Cayley graph is folklore. In the literature,
e.g., [17], it is mentioned as one of the four non-Hamiltonian vertex-transitive graphs on
more than two vertices, and it is noted that none of these four is a Cayley graph. Indeed, the
automorphism group of the Coxeter graph is PGL(2, 7), and this group has no subgroups
of order 28.

Proposition 4.1. The Coxeter graph is not a Cayley graph.

The Foster graph is a bipartite distance-regular graph that can be described as the inci-
dence graph of a partial linear space that can be considered as a 3-cover of the generalized
quadrangle of order (2, 2). Its halved graphs are distance-regular with intersection array
{6, 4, 2, 1; 1, 1, 4, 6} (e.g., see [11, Proposition 4.2.2]). The halved graph on the points is
the collinearity graph of this partial linear space.

Proposition 4.2. The Foster graph is not a Cayley graph.

Proof. Suppose that the Foster graph is a Cayley graph. By Lemma 2.1, its halved graphs
are also Cayley graphs, and these are distance-regular with intersection array {6, 4, 2, 1;
1, 1, 4, 6} on 45 vertices. So suppose that this halved graph is a Cayley graph Cay(G,S),
withG of order 45 and S of size 6. By Sylow’s theorem,Gmust be abelian. By Lemma 2.2,
it follows that Γ contains a 4-cycle, which contradicts the fact that both the intersection
numbers a1 and c2 are equal to 1. Thus, a distance-regular graph with intersection array
{6, 4, 2, 1; 1, 1, 4, 6} cannot be a Cayley graph, and hence neither can the Foster graph.

As a side result, we have thus obtained the following.

Corollary 4.3. The collinearity graph of the 3-cover of the generalized quadrangle
GQ(2, 2), the unique distance-regular graph with intersection array {6, 4, 2, 1; 1, 1, 4, 6},
is not a Cayley graph.

What remains is to consider the Biggs-Smith graph. The eigenvalues of this graph are
very exceptional for a distance-regular graph. It has five distinct irrational eigenvalues, and
distinct rational eigenvalues 3, 2, and 0.

Proposition 4.4. The Biggs-Smith graph is not a Cayley graph.

Proof. Suppose that the Biggs-Smith graph Γ is a Cayley graph Cay(G,S). Then |G| =
102, so G has a subgroup H of order 51. It follows that the two cosets of H induce an
equitable partition for Γ. Because Γ is connected and not bipartite, the quotient matrix is
of the form [

m 3−m
3−m m

]
,

where m = 1 or m = 2. This implies that Γ has an eigenvalue −1 or 1, which is a
contradiction.

Now we can conclude this section by the following result.

Theorem 4.5. Let Γ be a distance-regular Cayley graph with valency 3. Then Γ is isomor-
phic to one of the following graphs:
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• the complete graph K4,

• the complete bipartite graph K3,3,

• the cube Q3,

• the Heawood graph IG(7, 3, 1),

• the Pappus graph IG(AG(2, 3) \ pc).

5 Distance-regular graphs with valency 4

The feasible intersection arrays for distance-regular graphs with valency four were deter-
mined by Brouwer and Koolen [13]. In Table 2, we give an overview of these intersection
arrays and corresponding graphs, and indicate which of these is a Cayley graph, like in the
previous section. Note that for each intersection array in the table there is a unique distance-
regular graph, except possibly for the last array, which corresponds to the incidence graph
of a generalized hexagon of order (3, 3).

Table 2: Distance-regular graphs with valency 4.

Intersection array n d g Name Cayley Reference

{4; 1} 5 1 3 K5 Yes Sec. 3.1
{4, 1; 1, 4} 6 2 3 K2,2,2 Yes Sec. 3.1
{4, 3; 1, 4} 8 2 4 K4,4 Yes Sec. 3.1
{4, 2; 1, 2} 9 2 3 P (9) ∼ H(2, 3) Yes Sec. 3.2
{4, 3, 1; 1, 3, 4} 10 3 4 K∗5,5 Yes Sec. 3.1
{4, 3, 2; 1, 2, 4} 14 3 4 IG(7, 4, 2) Yes Sec. 3.5
{4, 2, 1; 1, 1, 4} 15 3 3 L(Petersen) No [2, Prop. 5.1]
{4, 3, 2, 1; 1, 2, 3, 4} 16 4 4 Q4 Yes Sec. 3.3
{4, 2, 2; 1, 1, 2} 21 3 3 L(Heawood) Yes [2, Ex. 5.7]
{4, 3, 3; 1, 1, 4} 26 3 6 IG(13, 4, 1) Yes Sec. 3.5
{4, 3, 3, 1; 1, 1, 3, 4} 32 4 6 IG(A(2, 4) \ pc) Yes Prop. 3.2
{4, 3, 3; 1, 1, 2} 35 3 6 O4 No Sec. 3.4
{4, 2, 2, 2; 1, 1, 1, 2} 45 4 3 L(Tutte’s 8-cage) No Prop. 2.6
{4, 3, 3, 2, 2, 1, 1; 70 7 6 DO4 No Prop. 3.1

1, 1, 2, 2, 3, 3, 4}
{4, 3, 3, 3; 1, 1, 1, 4} 80 4 8 IG(GQ(3, 3)) No Prop. 3.3
{4, 2, 2, 2, 2, 2; 189 6 3 L(Tutte’s 12-cage) No Prop. 3.8

1, 1, 1, 1, 1, 2}
{4, 3, 3, 3, 3, 3; 728 6 12 IG(GH (3, 3)) No Prop. 3.6

1, 1, 1, 1, 1, 4}

In [2], distance-regular Cayley graphs with least eigenvalue −2 were studied. It was,
among others, shown that the line graph of the Petersen graph is not a Cayley graph (see
[2, Proposition 5.1]), and that the line graph of Tutte’s 8-cage is not a Cayley graph (see
Section 2.5). On the other hand, it was shown that the line graph of the Heawood graph
is a Cayley graph, over Z7 o Z3 (see [2, Example 5.7]). In Proposition 3.8, we obtained
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that the line graph of Tutte’s 12-cage is not a Cayley graph. We can therefore conclude this
section with the following result.

Theorem 5.1. Let Γ be a distance-regular Cayley graph with valency 4. Then Γ is isomor-
phic to one of the following graphs:

• the complete graph K5,

• the octahedron graph K2,2,2,

• the complete bipartite graph K4,4,

• the Paley graph P (9),

• the complete bipartite graph K5,5 minus a complete matching,

• the incidence graph of the 2-(7, 4, 2) design,

• the cube graph Q4,

• the line graph of the Heawood graph,

• the incidence graph of the projective plane over GF(3),

• the incidence graph of the affine plane over GF(4) minus a parallel class of lines.

6 Distance-regular graphs with valency 5

In Table 3, we list all known putative intersection arrays for distance-regular graphs with
valency 5. We expect that this list is complete, but there is no proof for this. It contains
all intersection arrays with diameter at most 7. This can be derived from the tables in [10]
and [28]. All of the graphs in the table are unique, given their intersection arrays, except
possibly the incidence graph of a generalized hexagon of order (4, 4) (the last case).

It is well-known that the icosahedron is a Cayley graph. By using GAP [14] and similar
codes as in [1, p. 3], we checked that we can indeed describe the icosahedron as a Cayley
graph over the alternating group Alt(4), with connection set S = {(123), (132), (12)(34),
(134), (143)}. According to Miklavič and Potočnik [21], the icosahedron is the small-
est distance-regular Cayley graph over a non-abelian group, if we exclude cycles and the
graphs from Section 3.1.

Also the Armanios-Wells graph is a Cayley graph. As far as we know, this was not
known before.

Indeed, let G be the group generated by elements gi, with i = 1, 2, 3, 4, each of order
2, such that [gi, gj ] is the same element, a say, for all i 6= j. This group is isomorphic to
(Z2 × Q8) o Z2, where Q8 is the group of quaternions. Now let S = {g1, g2, g3, g4,
g1g2g3g4}. Then it is not hard to check that the Cayley graph Cay(G,S) is distance-
regular with the same intersection array as the Armanios-Wells graph Γ, and hence that it
must be the latter. In order to indeed check this, it is useful to know that Γ is an antipodal
double cover with diameter 4, and that in this case S4 = {a}, and consequently S3 = Sa
(see Section 2.3). We double-checked this with GAP [14], and thus we have the following.

Proposition 6.1. The Armanios-Wells graph is a Cayley graph over (Z2 ×Q8) o Z2.

A few more observations that we should make are the following. The center ofG equals
〈a〉, which is of order 2. The quotient G/〈a〉 is isomorphic to the elementary abelian 2-
group Z4

2, which leads to the well-known description of the quotient graph — the folded
5-cube — as a Cayley graph (see Section 3.3).
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Table 3: Distance-regular graphs with valency 5.

Intersection array n d g Name Cayley Reference

{5; 1} 6 1 3 K6 Yes Sec. 3.1
{5, 4; 1, 5} 10 2 4 K5,5 Yes Sec. 3.1
{5, 2, 1; 1, 2, 5} 12 3 3 Icosahedron Yes Folklore
{5, 4, 1; 1, 4, 5} 12 3 4 K∗6,6 Yes Sec. 3.1
{5, 4; 1, 2} 16 2 4 Folded 5-cube Yes Sec. 3.3
{5, 4, 3; 1, 2, 5} 22 3 4 IG(11, 5, 2) Yes Sec. 3.5
{5, 4, 3, 2, 1; 1, 2, 3, 4, 5} 32 5 4 Q5 Yes Sec. 3.3
{5, 4, 1, 1; 1, 1, 4, 5} 32 4 5 Armanios-Wells Yes Prop. 6.1
{5, 4, 2; 1, 1, 4} 36 3 5 Sylvester No Prop. 6.2
{5, 4, 4; 1, 1, 5} 42 3 6 IG(21, 5, 1) Yes Sec. 3.5
{5, 4, 4, 1; 1, 1, 4, 5} 50 4 6 IG(A(2, 5) \ pc) Yes Prop. 3.2
{5, 4, 4, 3; 1, 1, 2, 2} 126 4 6 O5 No Sec. 3.4
{5, 4, 4, 4; 1, 1, 1, 5} 170 4 8 IG(GQ(4, 4)) No Prop. 3.7
{5, 4, 4, 3, 3, 2, 2, 1, 1; 252 9 6 DO5 No Prop. 3.1

1, 1, 2, 2, 3, 3, 4, 4, 5}
{5, 4, 4, 4, 4, 4; 2730 6 12 IG(GH (4, 4)) No Prop. 3.6

1, 1, 1, 1, 1, 5}

The group G has a normal subgroup 〈g1g2, g2g3, g3g1〉, which is isomorphic to Q8.
This gives rise to an equitable partition of Γ into 4 cocliques of size 8.

In addition, the normal subgroup 〈g1g2, g2g3, g3g1, g4〉 is isomorphic to Z2×Q8, which
gives an equitable partition of Γ into two 1-regular induced subgraphs. Together these form
a matching, and removing the edges of this matching results in a bipartite 4-regular graph.
This turns out to be the incidence graph of the affine plane of order 4 minus a parallel class
(see Section 3.6 and Table 2). Alternatively, we obtain that the latter is isomorphic to the
Cayley graph Cay(G, {g1, g2, g3, g4}).

The remaining intersection array in Table 3 is that of the Sylvester graph. This graph
has distinct eigenvalues 5, 2,−1, and −3 and full automorphism group Sym(6) o Z2 [11,
p. 394].

Proposition 6.2. The Sylvester graph is not a Cayley graph.

Proof. Suppose that the Sylvester graph Γ is a Cayley graph Cay(G,S), then |G| = 36 and
|S| = 5. Because Γ has girth 5, the group G is non-abelian by Lemma 2.2. It is known that
there are 10 non-abelian groups of order 36, of which two do not have a normal subgroup
of order 9; these are Z3 ×Alt(4) and (Z2 × Z2) o Z9.

IfG is the latter group (and contains elements of order 9), then it has automorphisms of
order 9. This contradicts the fact that the full automorphism group of Γ equals Sym(6)oZ2.

Next, we will also show that G cannot be Z3 × Alt(4), and hence that G must have a
normal subgroup of order 9. Indeed, suppose that G equals Z3×Alt(4). The center of this
group is isomorphic to Z3, say Z(G) = 〈c〉, with c of order 3. Moreover, G has a normal
subgroupH isomorphic to Alt(4) (with cosetsH,Hc,Hc2 that form an equitable partition
of Γ).
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Now suppose that hci ∈ S for some h ∈ H and i = 0, 1, 2. Then the order of h must
be 2, for if it were 3 (or 1, the only other options), then e ∼ hci ∼ (hci)2 ∼ (hci)3 = e,
which contradicts the fact that Γ has girth 5. Moreover, if h ∈ S, then hc and hc2 = (hc)−1

are not in S because that would imply that e ∼ hc ∼ c ∼ hc2 ∼ e, which again gives a
contradiction.

Because Alt(4) has only three involutions, there are also only three involutions h1, h2,
and h3, say, in H . Thus, it follows without loss of generality that S = {h1, h2c, h2c2, h3c,
h3c

2}. However, now e ∼ h2c ∼ h3h2 ∼ h2c
2 ∼ e, which gives the final contradiction,

and hence G cannot be Z3 ×Alt(4).
Thus, the group G has a normal subgroup N of order 9. The four cosets of N form an

equitable partition of Γ with quotient matrix
n1 n2 n3 n4
n2 n1 n4 n3
n3 n4 n1 n2
n4 n3 n2 n1

 ,
for certain n1, n2, n3, n4 summing to 5, and because Γ is connected, at most one of n2, n3,
n4 can be 0. Now the quotient matrix has eigenvalues n1+n2+n3+n4, n1+n2−n3−n4,
n1 − n2 + n3 − n4, and n1 − n2 − n3 + n4. Because Γ has no eigenvalues 3 and 1, it
follows that n1 = 0, n2 = 1, n3 = 2, and n4 = 2, up to reordering of the latter three (we
omit the easy but technical details).

So there is one coset that intersects S in n2 = 1 element. Let us call this element a,
then clearly O(a) = 2, and the subgroup N〈a〉 is a normal subgroup (of index 2). Given
the quotient matrix, it follows easily that every vertex in the coset Na except a itself is at
distance 2 from e.

Now we claim that a is the only involution in N〈a〉. Clearly there are no involutions
in N because it has order 9. Every other element in Na is at distance 2 from e, and hence
can be written as s1s2 for some s1, s2 ∈ S. Suppose now that O(s1s2) = 2. Then
e ∼ s2 ∼ s1s2 ∼ s2s1s2 ∼ e, a contradiction since the girth of Γ is 5, and we proved our
claim.

Now suppose that s ∈ S, with s 6= a. Then s−1as ∈ N〈a〉 since N〈a〉 is a normal
subgroup. Because O(s−1as) = 2, it follows from our above claim that s−1as = a. Thus,
sa = as and e ∼ a ∼ sa = as ∼ s ∼ e, which is again a contradiction to the girth of Γ,
and which completes the proof.

Now we can conclude this section with the following proposition.

Proposition 6.3. Let Γ be a distance-regular Cayley graph with valency 5, with one of the
intersection arrays in Table 31. Then Γ is isomorphic to one of the following graphs:

• the complete graph K6,

• the complete bipartite graph K5,5,

• the icosahedron,

• the complete bipartite graph K6,6 minus a complete matching,

• the folded 5-cube,

1Currently, these are the only known putative intersection arrays for distance-regular graphs with valency 5.
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• the incidence graph of the 2-(11, 5, 2) design,

• the cube graph Q5,

• the Armanios-Wells graph,

• the incidence graph of the projective plane over GF(4),

• the incidence graph of the affine plane over GF(5) minus a parallel class of lines.

7 Distance-regular graphs with girth 3 and valency 6 or 7

Hiraki, Nomura, and Suzuki [16] determined the feasible intersection arrays of all distance-
regular graphs with valency at most 7 and girth 3 (i.e., with triangles). Besides the ones
with valency at most 5 that we have encountered in the previous sections, these are listed
in Table 4. For each of the intersection arrays {6, 3; 1, 2} and {6, 4, 4; 1, 1, 3}, there are
exactly two distance-regular graphs (as mentioned in the table). For all others, except pos-
sibly the last one with valency 6, the graphs in the table are unique, given their intersection
arrays. For this last case, it is unknown whether the generalized hexagon of order (3, 3) is
unique.

Table 4: Distance-regular graphs with girth 3 and valency 6 or 7.

Intersection array n d g Name Cayley Reference

{6; 1} 7 1 3 K7 Yes Sec. 3.1
{6, 1; 1, 6} 8 2 3 K2,2,2,2 Yes Sec. 3.1
{6, 2; 1, 6} 9 2 3 K3,3,3 Yes Sec. 3.1
{6, 2; 1, 4} 10 2 3 T (5) No Sec. 3.4
{6, 3; 1, 3} 13 2 3 P (13) Yes Sec. 3.2
{6, 4; 1, 3} 15 2 3 T (6) ∼ GQ(2, 2) No Sec. 3.4
{6, 3; 1, 2} 16 2 3 L2(4), Shrikhande Yes Sec. 3.3
{6, 4, 2; 1, 2, 3} 27 3 3 H(3, 3) Yes Sec. 3.3
{6, 4, 2, 1; 1, 1, 4, 6} 45 4 3 halved Foster No Cor. 4.3
{6, 3, 3; 1, 1, 2} 52 3 3 L(IG(13, 4, 1)) No Prop. 3.9
{6, 4, 4; 1, 1, 3} 63 4 3 GH (2, 2) (2×) No Prop. 3.8
{6, 3, 3, 3; 1, 1, 1, 2} 160 4 3 L(IG(GQ(3, 3))) No Prop. 3.10
{6, 3, 3, 3, 3, 3; 1456 6 3 L(IG(GH (3, 3))) No Prop. 3.11

1, 1, 1, 1, 1, 2}
{7; 1} 8 1 3 K8 Yes Sec. 3.1
{7, 4, 1; 1, 2, 7} 24 3 3 Klein Yes Prop. 7.1

What remains is to consider the Klein graph. We observe that this is a Cayley graph on
the symmetric group Sym(4). Indeed, one can check2 that with

S = {(123), (132), (12)(34), (13), (14), (1234), (1432)},

the Cayley graph Cay(Sym(4), S) is a distance-regular antipodal 3-cover ofK8, and hence
it must be the Klein graph. We note that in this case the set S3 = {(124), (142)}, and de-

2We double-checked this with GAP [14].
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spite the fact thatN3 = S3∪{e} is not a normal subgroup, its right cosets form an equitable
partition (with quotient K8, of course); cf. Section 2.3. We thus have the following.

Proposition 7.1. The Klein graph is a Cayley graph over Sym(4).

We also note that the normal subgroup {e, (12)(34), (13)(24), (14)(23)} gives an eq-
uitable partition into 6 parts, with each coset inducing a matching (which together gives
a perfect matching). More interesting is the (normal) alternating subgroup Alt(4), which
gives an equitable partition into two parts. On each part, the induced subgraph is the trun-
cated tetrahedron, which is thus a Cayley graph Cay(Alt(4), {(123), (132), (12)(34)}).
This is also the line graph of a bipartite biregular graph on 4 +

(
4
2

)
vertices with valen-

cies 3 and 2, respectively (the Pasch configuration), and a subgraph of the icosahedron;
cf. Section 6.

We conclude with the following proposition.

Proposition 7.2. Let Γ be a distance-regular Cayley graph with girth 3 and valency 6 or
7. Then Γ is isomorphic to one of the following graphs:

• the complete graph K7,

• the complete graph K8,

• the complete multipartite graph K2,2,2,2,

• the complete multipartite graph K3,3,3,

• the Paley graph P (13),

• the lattice graph L2(4),

• the Shrikhande graph,

• the Hamming graphs H(3, 3),

• the Klein graph.
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Abstract

Let m and n be two integers. In the paper we show that the orientable genus of the join
of a cycle Cm and a complete graph Kn is d (m−2)(n−2)4 e if n = 4 and m ≥ 12, or n ≥ 5
and m ≥ 6n− 13.
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1 Introduction
Let G and H be two disjoint graphs. The join of G with H , denoted by G + H , is the
graph obtained from the union of G and H by adding edges joining every vertex of G to
every vertex of H . A cycle with m vertices is denoted by Cm, and a complete graph with
n vertices denoted by Kn.

Our investigation of the orientable genus of Cm +Kn is inspired by the problem of the
critical graphs on surfaces. A graph G is k-critical if χ(G) = k but χ(G′) < k for every
proper subgraph of G, where χ(H) denotes the chromatic number of a graph H . If G1 is
k-critical and G2 is l-critical, it is known that G1 + G2 is (k + l)-critical. Since an odd
cycle is 3-critical and Kn is n-critical, the join of an odd cycle and Kn is (n+ 3)-critical.
Also, there are only finite many k-critical graphs on a surface if k ≥ 7 ([4, 6, 7, 13]). So
it is an interesting problem to explore the orientable genus of the join of an odd cycle (or a
cycle) and Kn.
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Let us look back the history of studying the orientable genus of the join of two graphs.
Let K̄t be the compliment graph ofKt. The complete bipartite graphKm,n andKn (n ≥ 2)
can be viewed as K̄m + K̄n and K1 +Kn−1, respectively. It is cheerful that the orietable
genera of Kn and Km,n have been determined ([10, 11]). Upon the orientable genus of
K̄m +Kn there are some results. Craft [3] verified that K̄m +Kn has the same orientable
genus as that of Km,n, when n is even and m ≥ 2n − 4. Ellingham and Stephens [5]
determined the orientable genus of K̄m + Kn if n is even and m ≥ n, or n = 2p + 2 for
p ≥ 3 and m ≥ n − 1, or n = 2p + 1 for p ≥ 3 and m ≥ n + 1. Korzhik [8] contributed
many results on the orientable genus of K̄m +Kn with m ≤ n− 2.

Let m ≥ 3 and n ≥ 1 be two integers. If n = 1, then Cm + Kn is a planar graph. If
n = 2, then Cm +Kn has a minor isomorphic to K5. So the orientable genus of Cm +K2

is at least one. Since Cm + K2 can be embedded on the torus, the orientable genus of
Cm + K2 is one. If n = 3, then Kn is exactly the cycle C3. Craft [2] has proved that
the orientable genus of Cm + C3 is dm−24 e. What is the orientable genus of Cm + Kn if
n ≥ 4? In the paper we shall show that the orientable genus of Cm +Kn is d (m−2)(n−2)4 e
if n = 4 and m ≥ 12, or n ≥ 5 and m ≥ 6n− 13.

Since Km,n is a spanning subgraph of Cm + Kn, a lower bound of the oreintable
genus of Cm + Kn is that of Km,n, which is d (m−2)(n−2)4 e. The key to determine the
orientable genus of Cm + Kn is the construction of an embedding of Cm + Kn on the
orientable surface of genus d (m−2)(n−2)4 e. We mainly use two methods of adding tubes to
construct an embedding of Cm + Kn. Our general strategy of constructing an embedding
is as follows. First, we construct an embedding of a spanning subgraph of Cm +Kn which
contains Cm, a spanning subgraph of Kn, and some edges between Cm and Kn on some
orientable surface. Second, we apply the first method of adding tubes described in Section 2
to attach all the rest edges inKn and some edges between Cm andKn. Third, we apply the
second method of adding tubes described in Section 2 to attach all the rest edges between
Cm and Kn.

The remainder of the section is contributed for some terms. The other undefined terms
can be found in [1, 9], or [14].

A surface is a compact connected 2-dimensional manifold without boundary. The ori-
entable surface Sg (g ≥ 0) can be obtained from a sphere with g handles attached, where g
is called the genus of Sg . A graph G is able to embed in a surface S if it can be drawn in
the surface such that any edge does not pass through any vertex and any two edges do not
cross each other. The orientable genus of a connected graph G, denoted by γ(G), is the
smallest nonnegative integer g such that G can be embedded in the orientable surface Sg .

An embedding Π of a connected graph in a surface S is called 2-cell embedding if any
connected component of S−Π, called a face, is homeomorphic to an open disc. In a 2-cell
embedding of a connected graph G, the boundary of a face in Π is a closed walk of G,
which is called the facial walk. If a facial walk is a cycle, then it is called a facial cycle.
Let v be a vertex of a graph G embedded on a surface. A local rotation πv at the vertex v
is a cyclic permutation of the edges incident with v. Suppose that v is incident with edges
vu1, vu2, . . . , vun in this order. Then πv can be written by u1, u2, . . . , un. Furthermore,
if i1, i2, . . . , ik are k continuous numbers in {1, 2, . . . , n}, where 2 ≤ k ≤ n, then we call
ui1 , ui2 , . . . , uik a segment of the local rotation at v.

A graphH is a supergraph ofG ifG is a subgraph ofH . If a cycle with n (≥ 3) vertices
v1, v2, . . . , vn in this order, then it is written by v1v2 . . . vnv1 and it is always oriented by
this order.
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2 Two methods of constructing embeddings
Let D1 and D2 be two facial cycles of a 2-cell embedding on a surface S such that the
orientation of D1 is the reverse of that of D2. By adding a tube T to the surface S between
D1 and D2, we mean that we cut two holes ∆1 and ∆2 in S such that ∆i is in the interior
of Di and orient the boundary of ∆i as that of Di, then the tube T welds ∆1 with ∆2 in
such a way that the rim of one of the ends of T coincides with the boundary of ∆1 and the
rim of the other end of T coincides with the boundary of ∆2.

Lemma 2.1. Suppose that G is a graph which has a vertex subset

{w0, z1, z2, . . . , zt} ∪ {xi | i = 1, 2, . . . , 2t} ∪ {yj | j = 1, 2, . . . , 4t},

where z1, z2, . . . , zt need not be different, and suppose that G contains no edges in the set

E′ = {w0xi | i = 1, 2, . . . , 2t} ∪ {xiyj | i = 1, 2, . . . , 2t; j = 1, 2, . . . , 4t}
∪ ({xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}).

Suppose that Π is a 2-cell embedding of G on the orientable surface Sg with the following
properties:

(i) For i = 1, 2, . . . , t, R0,i = w0y4i−3y4i−2w0 and R′0,i = w0y4i−1y4iw0 are facial
cycles of Π.

(ii) For i = 1, 2, . . . , t, Q0,i = zix2i−1x2izi is a facial cycle of Π such that Q0,i has not
any common vertex with each of R0,1, . . . , R0,t, R

′
0,1, . . . , R

′
0,t.

Then there is a supergraph H of G satisfying the following conditions:

(i) E′ is an edge subset of E(H).

(ii) H has an embedding on the orientable surface of genus g+ 2t2 such that it has a set
of t facial 3-cycles {Qt,i | Qt,i = ylix2i−1x2iyli , i = 1, 2, . . . , t}, where yli is some
vertex in {y4i−3, y4i−2, y4i−1, y4i | i = 1, 2, . . . , t}.

x1

x2

z1

x2t−1

x2t zt

y1
y2

y3

y4

y4t−1

y4t
w0

Figure 1: A local structure in Π.

Remark 2.2.
(1) A local structure of Π is shown in Figure 1.

(2) An application of Lemma 2.1 to the construction of an embedding of Cm +Kn is as
follows. After an embedding of a spanning subgraph ofCm+Kn on some orientable
surface has been constructed, all the rest edges of Kn and some edges between Cm
and Kn can be attached by applying Lemma 2.1.
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Proof. We shall construct an embedding on the surface of genus g + 2t2 from the embed-
ding Π by applying the operation of adding tubes t times. Every time 2t tubes are added to
the present surface.

For i = 1, 2, . . . , t, the tube T0,i is added between Q0,i and R0,i. Next, the five edges
w0x2i, x2i−1y4i−3, x2i−1y4i−2, x2iy4i−3 and x2iy4i−2 are drawn on T0,i in the way shown
in (1) of Figure 2. For i = 1, 2, . . . , t, let Q′0,i = y4i−2x2i−1x2iy4i−2.

w0

zi

y4i−3

x2i−1 x2i

y4i−2 w0

y4i−2 x2i−1

y4i−1

x2i

y4i

(2)(1)

Figure 2: Two drawings of five edges on a tube.

For i = 1, 2, . . . , t, the tube T ′0,i is added between Q′0,i and R′0,i. Next, the five edges
w0x2i−1, x2i−1y4i−1, x2i−1y4i, x2iy4i−1 and x2iy4i are drawn on T ′0,i in the way shown
in (2) of Figure 2.

Need to say that the rectangle represents a tube and that the two dot curves are identified
with each other in Figure 2. In the rest of the paper we always use a rectangle to represent
a tube and the two dot curves in the rectangle are always identified with each other.

For the convenience of argument, the way of drawing edges shown in (i) of Figure 2 is
called the drawing of Type-i for i = 1, 2. To help the readers to understand how those 2t
tubes are added and how five edges are drawn on each tube, we give an example that t = 5
which is shown in Figure 3. The diagrams in Figure 3 are partitioned into four columns
from left to right. The three rectangles in the first column respectively represent T0,1, T0,2
and T0,3 from top to bottom, and the two rectangles in the third column respectively repre-
sent T0,4 and T0,5 from top to bottom. Similarly, the three rectangles in the second column
respectively represent T ′0,1, T

′
0,2 and T ′0,3, and the two rectangles in the fourth column re-

spectively represent T ′0,4 and T ′0,5.
After those 2t tubes have been added, there are three sets of facial 3-cycles which are

X1 = {Q1,i | Q1,i = y4i−1x2i−1x2iy4i−1, i = 1, 2, . . . , t},
Y1 = {R1,i | R1,i = x2i−1y4i−3y4i−2x2i−1, i = 1, 2, . . . , t}, and
Y ′1 = {R′1,i | R′1,i = x2iy4i−1y4ix2i, i = 1, 2, . . . , t}.

For the convenience of argument, we now define t permutations. For k = 0, 1, . . . , t−1,
we define the permutation τk on the set {1, 2, . . . , t} as follows. For i = 1, 2, . . . , t,

τk(i) ≡ i+ (−1)k+1k (mod t),

where 0 ≤ i+ (−1)k+1k ≤ t− 1.
Obviously, τ0 is the identity mapping on {1, 2, . . . , t}. For 0 ≤ k ≤ t− 1, we define

τ ′k(i) ≡

{
τk(i) (mod t), if k = 0,

τ0τ1 · · · τk(i) (mod t), if 1 ≤ k ≤ t− 1,
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Figure 3: The first operation of adding 2t tubes when t = 5.

where 0 ≤ τ ′k(i) ≤ t − 1 and τ0τ1 · · · τk is the product of τ0, τ1, . . . , τk in this order. For
example, τ0τ1(1) = τ1(τ0(1)) = 2.

Thus, Q1,i, R1,i and R′1,i can be alternately expressed as follows:

Q1,i = y4τ ′0(i)−1x2i−1x2iy4τ ′0(i)−1,

R1,i = x2i−1y4τ ′0(i)−3y4τ ′0(i)−2x2i−1, and

R′1,i = x2iy4τ ′0(i)−1y4τ ′0(i)x2i.

We continue to add tubes, and consider two cases.

Case 1: t ≡ 1 (mod 2). In this case we firstly add t tubes T1,1, . . . , T1,t to the present
surface such that T1,i is between Q1,i and R1,τ1(i). Note that

R1,τ1(i) = x2τ1(i)−1y4τ0τ1(i)−3y4τ0τ1(i)−2x2τ1(i)−1, i.e.,
R1,τ1(i) = x2τ1(i)−1y4τ ′1(i)−3y4τ ′1(i)−2x2τ1(i)−1.

For i = 1, 2, . . . , t, the five edges x2i−1y4τ ′1(i)−3, x2i−1y4τ ′1(i)−2, x2iy4τ ′1(i)−3, x2iy4τ ′1(i)−2
and x2ix2τ1(i)−1 are drawn on T1,i in the way of the drawing of Type-1. Thus, there is a
set X ′1 of t facial 3-cycles, where

X ′1 = {Q′1,i | Q′1,i = y4τ ′1(i)−2x2i−1x2iy4τ ′1(i)−2, i = 1, 2, . . . , t}.

Next, the t tubes T ′1,1, . . . , T
′
1,t are added to the present surface such that T ′1,i is between

Q′1,i andR′1,τ1(i). Then the five edges x2i−1y4τ ′1(i)−1, x2i−1y4τ ′1(i), x2iy4τ ′1(i)−1, x2iy4τ ′1(i)
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Figure 4: The second operation of adding 2t tubes when t = 5.

and x2ix2τ1(i) are drawn on T ′1,i in the way of the drawing of Type-2. For example, if
t = 5, the above operation of adding 2t tubes is shown in Figure 4. The order of diagrams
in Figure 4 is as that in Figure 3.

After those 2t tubes have been added, there are three sets X2, Y2, and Y ′2 of facial
3-cycles which are

X2 = {Q2,i | Q2,i = y4τ ′1(i)−1x2i−1x2iy4τ ′1(i)−1, i = 1, 2, . . . , t},
Y2 = {R2,i | R2,i = x2i−1y4τ ′1(i)−3y4τ ′1(i)−2x2i−1, i = 1, 2, . . . , t}, and

Y ′2 = {R′2,i | R′2,i = x2iy4τ ′1(i)−1y4τ ′1(i)x2i, i = 1, 2, . . . , t}.

In general, if the s-th operation (s ≥ 1) of adding 2t tubes has been applied, then there
are three sets of facial 3-cycles, i.e.,

Xs = {Qs,i | i = 1, 2, . . . , t}, Ys = {Rs,i | i = 1, 2, . . . , t}, and
Y ′s = {R′s,i | i = 1, 2, . . . , t}.

Next, we apply the (s+1)-th of adding 2t tubes Ts,1, . . . , Ts,t, T ′s,1, . . . , T
′
s,t to the present

surface satisfying the following conditions.

(1) If 1 ≤ s ≤ t−1
2 , then the tube Ts,i is added between Qs,i and Rs,τs(i), where

i = 1, 2, . . . , t. In this case Rs,τs(i) = x2τs(i)−1y4τ ′s(i)−3y4τ ′s(i)−2x2τs(i)−1. Next,
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the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)−1

are drawn on Ts,i in the way of the drawing of Type-1. After those t tubes have been
added, there is a set X ′s of t facial 3-cycles, where

X ′s = {Q′s,i | Q′s,i = y4τ ′s(i)−2x2i−1x2iy4τ ′s(i)−2, i = 1, 2, . . . , t}.

For i = 1, 2, . . . , t, the tube T ′s,i is added between Q′s,i and R′s,τs(i). Note that
R′s,τs(i) = x2τs(i)y4τ ′s(i)−1y4τ ′s(i)x2τs(i). Next, the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2i−1x2τs(i)

are drawn on T ′s,i in the way of the drawing of Type-2.

After the (s + 1)-th operation of adding 2t tubes has been applied, there are three
sets Xs+1, Ys+1, and Y ′s+1 of facial 3-cycles which are

Xs+1 = {Qs+1,i | Qs+1,i = y4τ ′s(i)−1x2i−1x2iy4τ ′s(i)−1, i = 1, 2, . . . , t},
Ys+1 = {Rs+1,i | Rs+1,i = x2i−1y4τ ′s(i)−3y4τ ′s(i)−2x2i−1, i = 1, 2, . . . , t}, and

Y ′s+1 = {R′s+1,i | R′s+1,i = x2iy4τ ′s(i)−1y4τ ′s(i)x2i, i = 1, 2, . . . , t}.

(2) If t+1
2 ≤ s ≤ t − 1, suppose that k and k′ are the maximum even and odd numbers

which are not more than t−1
2 , respectively. There are two cases to consider.

If s = t+1
2 , t+1

2 + 2, . . . , t+1
2 + k, then the tube Ts,i is added between Qs,i and

R′s,τs(i). Next, the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-1. After those t tubes have been
added, there is a set X ′s of t facial 3-cycles, where

X ′s = {Q′s,i | Q′s,i = y4τ ′s(i)x2i−1x2iy4τ ′s(i), i = 1, 2, . . . , t}.

For i = 1, 2, . . . , t, the tube T ′s,i is added between Q′s,i and Rs,τs(i). Then the five
edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2i−1x2τs(i)−1

are drawn on T ′s,i in the way of the drawing of Type-2. In this case there are three
sets Xs+1, Ys+1, and Y ′s+1 of facial 3-cycles which are

Xs+1 = {Qs+1,i | Qs+1,i = y4τ ′s(i)−3x2i−1x2iy4τ ′s(i)−3, i = 1, 2, . . . , t},
Ys+1 = {Rs+1,i | Rs+1,i = x2iy4τ ′s(i)−3y4τ ′s(i)−2x2i, i = 1, 2, . . . , t}, and

Y ′s+1 = {R′s+1,i | Rs+1,i = x2i−1y4τ ′s(i)−1y4τ ′s(i)x2i−1, i = 1, 2, . . . , t}.
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If s = t+1
2 + 1, t+1

2 + 3, . . . , t+1
2 + k′, then the tube Ts,i is added between Qs,i and

Rs,τs(i). Next, the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-1. After those t tubes have been
added, there is a set X ′s of t facial 3-cycles, where X ′s is the same as in (1). For
i = 1, 2, . . . , t, the tube T ′s,i is added between Q′s,i and R′s,τs(i). Then the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2i−1x2τs(i)−1

are drawn on T ′s,i in the way of the drawing of Type-2. In this case there are three sets
Xs+1, Ys+1, and Y ′s+1 of facial 3-cycles which are the same as in (1), respectively.

Need to say that x2i and x2i−1 are connected with x2τs(i) and x2τs(i)−1 in (2), respec-
tively. However, x2i and x2i−1 are connected with x2τs(i)−1 and x2τs(i) in (1), respectively.

The above operation of adding 2t tubes is not stopped until the t-th operation of adding
2t tubes has been applied. Let Π′ be the obtained embedding. Then Π′ has a set Xt of t
facial 3-cycles, where

Xt = {Qt,i | Qt,i = y4τ ′t(i)−3x2i−1x2iy4τ ′t(i)−3, if t = t+1
2 + k, or

Qt,i = y4τ ′t(i)−1x2i−1x2iy4τ ′t(i)−1, if t = t+1
2 + k′}.

Since there are 2t × t (= 2t2) tubes being used all together, Π′ is an embedding on the
orientable surface of genus g + 2t2.

Let H be the graph corresponding to Π′. We need to show that H satisfies the demands
of the theorem. Before the proof, we give an example that t = 5 to illustrate how all
50 tubes are added and how all desired edges are attached. The former two operations
of adding 10 tubes are shown in Figure 3 and Figure 4, respectively. The latter three
operations of adding 10 tubes are shown in Figure 5. Need to say that the five rectangles
in the first column upon (3) respectively represent T2,1, . . . , T2,5, and the five rectangles in
the second column upon (3) respectively represent T ′2,1, . . . , T

′
2,5 in Figure 5. Similarly, the

first column upon (4) respectively represent T3,1, . . . , T3,5, and the second column upon (4)
respectively represent T ′3,1, . . . , T

′
3,5 in Figure 5. The order in (5) in Figure 5 is the same

as that in Figure 3.
We now show that H satisfies all demands of the theorem.

Claim 2.3. w0 is connected with each of x1, x2, . . . , x2t.

According to the first operation of adding 2t tubes, Claim 2.3 is obvious.

Claim 2.4. For i = 1, 2, . . . , 2t and j = 1, 2, . . . , 4t, xi is connected with yj in H .

For i = 1, 2, . . . , 2t, each of x2i−1 and x2i is connected with y4τ ′s(i)−3, y4τ ′s(i)−2,
y4τ ′s(i)−1, and y4τ ′s(i) after the (s + 1)-th operation of adding 2t-tubes has been applied,
where 1 ≤ s ≤ t − 1. Considering that any two of y4τ ′s(i)−3, y4τ ′s(i)−2, y4τ ′s(i)−1, and
y4τ ′s(i) are distinct, it is sufficient to show the following proposition.
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Figure 5: The latter three operations of adding 2t tubes when t = 5.
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Proposition 2.5. For i = 1, 2, . . . , t, τ ′s1(i) 6= τ ′s2(i) if 1 ≤ s1, s2 ≤ t− 1 and s1 6= s2.

Assume for the sake of contradiction that there are two distinct number s1 and s2 such
that τ ′s1(i) = τ ′s2(i) for some i. Without loss of generality, suppose that s1 > s2. Since
τ ′s(i) ≡ τ0τ1 · · · τs(i) (mod t) and τj(i) ≡ i+ (−1)j+1j (mod t), we have that

τ ′s1(i) ≡ i+
∑s1

k=0
(−1)k+1k ≡ τ ′s2(i) ≡ i+

∑s2

l=0
(−1)l+1l(mod t).

Hence ∑s1

k=0
(−1)k+1k ≡

∑s2

l=0
(−1)l+1l (mod t).

Thus, ∑s1

k=s2+1
(−1)k+1k ≡ 0 (mod t).

Since 1 ≤ s1 ≤ t− 1, we have that∑s1

k=s2+1
(−1)k+1k 6≡ 0 (mod t).

Then there is a contradiction. Thus, the proposition is verified.

Claim 2.6. H contains the edge set

{xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}.

In fact, there are 2t edges being added such that each has the form xkxj (k 6= j) except
for the form x2i−1x2i after the (s + 1)-th operation of adding 2t tubes has been applied,
where 1 ≤ s ≤ t− 1. So there are 2t(t− 1) edges of the form xixj being added after the
t-th operation of adding tubes has been applied. We now show that any two edges in those
2t(t− 1) edges are different. We need the following proposition.

Proposition 2.7. Suppose that s1 and s2 are two distinct integers such that 1 ≤ s1, s2 ≤
t− 1. If s1 + s2 ≡ 0 (mod t), then τs1(i) = τs2(i).

In fact,

τs1(i) ≡ i+ (−1)s1+1s1 ≡ i+ (−1)t−s2+1(t− s2) ≡ i+ (−1)t−s2s2 (mod t).

Since t ≡ 1 (mod 2), (−1)t−s2 = (−1)s2+1. So τs1(i) ≡ i + (−1)s2+1s2 (mod t). In
other words, τs1(i) = τs2(i).

According to the rule of the (s+ 1)-th operation of adding 2t tubes, x2i and x2i−1 are
respectively connected with x2τs(i)−1 and x2τs(i) if 1 ≤ s ≤ t−1

2 , and x2i and x2i−1 are
respectively connected with x2τs(i) and x2τs(i)−1 if t+1

2 ≤ s ≤ t− 1. By Proposition 2.7,
the pair of vertices connected with the pair of x2i−1 and x2i in the s2-th operation of
adding 2t tubes is the same as the pair connected with the pair of x2i−1 and x2i in the s1-th
operation of adding 2t tubes if s1 + s2 ≡ 0 (mod t) and 1 ≤ s1, s2 ≤ t − 1. But the
methods of two connections are different.

We now view the pair of x2i−1 and x2i as a vertex ui, where i ∈ {1, 2, . . . , t}. In
order to show Claim 2.6, it is sufficient to show that up is connected with uq , where p, q ∈
{1, 2, . . . , t} and p 6= q. For the purpose, it is sufficient to show that there exists some k
such that τk(p) = q or τk(q) = p. By Proposition 2.7, it is sufficient to show that for any
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two distinct number i, j ∈ {1, 2, . . . , t}, there exists some k ∈ {1, 2, . . . , t−12 } such that
τk(i) ≡ j (mod t) or τk(j) ≡ i (mod t).

Without loss of generality, suppose that j > i. If j − i ≡ 1 (mod 2), there are two
cases to consider. If j − i ≤ t−1

2 , let k = j − i. Then

τk(i) ≡ i+ (−1)k+1k ≡ i+ (j − i) ≡ j (mod t).

So τk(i) = j. If j − i > t+1
2 , let k = t− (j − i). Then

τk(i) ≡ i+ (−1)k+1k ≡ i− t+ j − i ≡ j (mod t).

So τk(i) = j. If j − i ≡ 0 (mod 2), there are two cases to consider. If j − i ≤ t−1
2 , let

k = j − i. Then

τk(j) ≡ j + (−1)k+1k ≡ j − (j − i) ≡ i (mod t).

Thus, τk(j) = i. If j − i > t+1
2 , let k = t− (j − i). Then

τk(j) ≡ j + (−1)k+1k ≡ j + t− j + i ≡ i (mod t).

So τk(j) = i.
Therefore, up is connected with uq , where p 6= q. Thus, Claim 2.6 has been proved.

Case 2: t ≡ 0 (mod 2). We proceed the similar argument to that in Case 1. Let Xs,
Ys, and Y ′s be the sets of facial 3-cycles defined in Case 1. When the (s + 1)-th operation
of adding 2t tubes Ts,1, . . . , Ts,t, T ′s,1, . . . , T

′
s,t will be applied, it satisfies the following

conditions.

(1) If 1 ≤ s ≤ t
2 − 1, then the ways of adding 2t tubes and drawing the five edges are

similar to that in (1) of Case 1.

(2) If s = t
2 , we consider two cases. If 1 ≤ i ≤ t

2 , then the tube T t
2 ,i

is added between
Q t

2 ,i
and R t

2 ,τ t
2
(i), and the five edges

x2i−1y4τ ′t
2

(i)−3, x2i−1y4τ ′t
2

(i)−2, x2iy4τ ′t
2

(i)−3,

x2iy4τ ′t
2

(i)−2, and x2i−1x2τ t
2
(i)−1

are drawn on T t
2 ,i

in the way of the drawing of Type-1.

If t
2 + 1 ≤ i ≤ t, then the tube T t

2 ,i
is added between Q t

2 ,i
and R′t

2 ,τ t
2
(i)

, and the

five edges

x2i−1y4τ ′t
2

(i)−1, x2i−1y4τ ′t
2

(i), x2iy4τ ′t
2

(i)−1,

x2iy4τ ′t
2

(i), and x2ix2τ t
2
(i)

are drawn on T t
2 ,i

in the way of the drawing of Type-1.

After those t tubes have been added, there is a set X ′t
2

of t facial 3-cycles, where

X ′t
2

= {Q′t
2 ,i
| Q′t

2 ,i
= y4τ ′t

2

(i)−2x2i−1x2iy4τ ′t
2

(i)−2, if i = 1, 2, . . . , t2 , or

Q′t
2 ,i

= y4τ ′t
2

(i)x2i−1x2iy4τ ′t
2

(i), if i = t
2 + 1, t2 + 2, . . . , t− 1}.
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Next, if 1 ≤ i ≤ t
2 , then the tube T ′t

2 ,i
is added between Q′t

2 ,i
and R′t

2 ,τ t
2
(i)

, and the

five edges

x2i−1y4τ ′t
2

(i)−1, x2i−1y4τ ′t
2

(i), x2iy4τ ′t
2

(i)−1,

x2iy4τ ′t
2

(i), and x2i−1x2τ t
2
(i)

are drawn on T ′t
2 ,i

in the way of the drawing of Type-2. If t
2 + 1 ≤ i ≤ t, then the

tube T ′t
2 ,i

is added between Q′t
2 ,i

and R t
2 ,τ t

2
(i), and the five edges

x2i−1y4τ ′t
2

(i)−3, x2i−1y4τ ′t
2

(i)−2, x2iy4τ ′t
2

(i)−3,

x2iy4τ ′t
2

(i)−2, and x2i−1x2τ t
2
(i)−1

are drawn on T ′t
2 ,i

in the way of the drawing of Type-2. There are three sets X t
2+1,

Y t
2+1, and Y ′t

2+1
of facial 3-cycles, where

X t
2+1 = {Q t

2+1,i | Q t
2+1,i = y4τ ′t

2

(i)−1x2i−1x2iy4τ ′t
2

(i)−1, if i = 1, . . . , t2 , or

Q t
2+1,i = y4τ ′t

2

(i)−3x2i−1x2iy4τ ′t
2

(i)−3, if i = t
2 + 1, . . . , t},

Y t
2+1 = {R t

2+1,i | R t
2+1,i = x2i−1y4τ ′t

2

(i)−3y4τ ′t
2

(i)−2x2i−1, if i = 1, . . . , t2 , or

R t
2+1,i = x2i−1y4τ ′t

2

(i)−1y4τ ′t
2

(i)x2i−1 if i = t
2 + 1, . . . , t},

Y ′t
2+1 = {R′t

2+1,i | R
′
t
2+1,i = x2iy4τ ′t

2

(i)−1y4τ ′t
2

(i)x2i, if i = 1, . . . , t2 , or

R′t
2+1,i = x2iy4τ ′t

2

(i)−3y4τ ′t
2

(i)−2x2i if i = t
2 + 1, . . . , t}.

(3) If t
2 + 1 ≤ s ≤ t − 1, then the tube Ts,i is added between Qs,i and R′s,τs(i). Since

R′s,τs(i) has two forms, we say that

• R′s,τs(i) is of Class 1 if R′s,τs(i) has the form x2iy4τ ′s(i)−1y4τ ′s(i)x2i, and
• R′s,τs(i) is of Class 2 if R′s,τs(i) has the form x2iy4τ ′s(i)−3y4τ ′s(i)−2x2i.

Similarly, we say that

• Rs,τs(i) is of Class 1 if Rs,τs(i) has the form x2i−1y4τ ′s(i)−1y4τ ′s(i)x2i−1, and
• Rs,τs(i) is of Class 2 if Rs,τs(i) has the form x2i−1y4τ ′s(i)−3y4τ ′s(i)−2x2i−1.

If R′s,τs(i) is of Class 1, then the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-1. If R′s,τs(i) is of Class 2, then
the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)



D. Ma and H. Ren: The orientable genus of the join of a cycle and a complete graph 235

are drawn on Ts,i in the way of the drawing of Type-1. Then there is a set X ′s of t
facial cycles, where

X ′s = {Q′s,i | Qs,i = y4τ ′s(i)−2x2i−1x2iy4τ ′s(i)−2, if R′s,τs(i) is of Class 1, or

Q′s,i = y4τ ′s(i)x2i−1x2iy4τ ′s(i), if R′s,τs(i) is of Class 2}.

Next, the tube T ′s,i is added between Q′s,i and Rs,τs(i). If Rs,τs(i) is of Class 1, then
the five edges

x2i−1y4τ ′s(i)−1, x2i−1y4τ ′s(i), x2iy4τ ′s(i)−1,

x2iy4τ ′s(i), and x2ix2τs(i)

are drawn on T ′s,i in the way of the drawing of Type-2. If Rs,τs(i) is of Class 2, then
the five edges

x2i−1y4τ ′s(i)−3, x2i−1y4τ ′s(i)−2, x2iy4τ ′s(i)−3,

x2iy4τ ′s(i)−2, and x2ix2τs(i)

are drawn on Ts,i in the way of the drawing of Type-2. Then there are three sets
Xs+1, Ys+1 and Y ′s+1 of t facial cycles, where

Xs+1 = {Qs+1,i | Qs+1,i = y4τ ′s(i)−2x2i−1x2iy4τ ′s(i)−2, if R′s,τs(i) is of Class 1,

or Qs+1,i = y4τ ′s(i)x2i−1x2iy4τ ′s(i), if R′s,τs(i) is of Class 2},
Ys+1 = {Rs+1,i | Rs+1,i = x2i−1y4τ ′s(i)−3y4τ ′s(i)−2x2i−1, if Rs,τs(i) is of Class 1,

or Rs+1,i = x2i−1y4τ ′s(i)−1y4τ ′s(i)x2i−1, if Rs,τs(i) is of Class 2},
Y ′s+1 = {R′s+1,i | R′s+1,i = x2iy4τ ′s(i)−3y4τ ′s(i)−2x2i, if R′s,τs(i) is of Class 1,

or R′s+1,i = x2iy4τ ′s(i)−1y4τ ′s(i)x2i, if R′s,τs(i) is of Class 2}.

The above operation of adding 2t tubes is not stopped until the t-th operation of adding
2t tubes has been applied. Let Π′ be the obtained embedding and let H the graph corre-
sponding to Π′. Clearly, Π′ is an embedding on the orientable surface of genus g + 2t2,
and Π′ has a set Xt of t facial 3-cycles in which each has the form Qt,i = ylix2i−1x2iyli ,
where yli ∈ {y4j−3, y4j−2, y4j−1, y4j | j = 1, 2, . . . , t}.

In order to help readers to understand the procedure of adding tubes in this case, we give
an example that t = 4 which is shown in Figure 6. For i = 1, 2, 3, 4, the four rectangles
in the first column of (i) respectively represent Ti,1, . . . , Ti,4 from top to bottom, and the
four rectangles the second column of (i) respectively represent T ′i,1, . . . , T

′
i,4 from top to

bottom.
We need to show that H satisfies the demands of the theorem. Obviously, w0 is con-

nected with each of x1, x2, . . . , x2t in H . By the similar argument as in Case 1, one can
show that for i = 1, 2, . . . , 2t and j = 1, 2, . . . , 4t, xi is connected with yj in H .

Claim 2.8. H contains the edge set

{xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}.
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Figure 6: The operations of adding 2t tubes when t = 4.
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We proceed the similar argument to that in Claim 2.6. Obviously, there are 2t(t − 1)
edges of the form xkxj (k 6= j) except for the form x2i−1x2i after the t-th operation of
adding 2t tubes has been applied. According to the rule of the (s + 1)-th operation of
adding 2t tubes, x2i and x2i−1 are connected with x2τs(i)−1 and x2τs(i), respectively, if
1 ≤ s ≤ t

2 − 1 or s = t
2 and i = 1, 2, . . . , t2 , and x2i and x2i−1 are connected with x2τs(i)

and x2τs(i)−1, respectively, if t
2 + 1 ≤ s ≤ t − 1 or s = t

2 and i = t
2 + 1, t2 + 2, . . . , t.

We now consider the relation between τs1(i) and τs2(i), where 1 ≤ s1, s2 ≤ t − 1 and
s1 + s2 ≡ 0 (mod t). We have the following proposition.

Proposition 2.9. Suppose that s1 and s2 are two integers such that 1 ≤ s1, s2 ≤ t− 1. If
s1 + s2 ≡ 0 (mod t), then τs1(t− i) = t− τs2(i) or τs2(i) = t− τs1(t− i).

In fact,

τs1(t− i) ≡ t− i+ (−1)s1+1s1 ≡ t− i+ (−1)t−s2+1(t− s2)

≡ t− i+ (−1)t−s2s2 (mod t).

Since t ≡ 0 (mod 2), (−1)t−s2 = (−1)s2 . So

τs1(t− i) ≡ t− i+ (−1)s2s2 ≡ t− (i+ (−1)s2+1s2) ≡ t− τs2(i) (mod t).

In other words, τs1(t− i) = t− τs2(i), or τs2(i) = t− τs1(t− i).
Thus, the pair of vertices of the form x2τs2 (i)−1 and x2τs2 (i) connected with the pair

of x2i−1 and x2i in the (s2 + 1)-th operation of adding 2t tubes is the same as the pair of
vertices of the form x2(t−τs1 (t−i))−1 and x2(t−τs1 (t−i)) connected with the pair of x2i−1
and x2i in the (s1+1)-th operation of adding 2t tubes if 0 ≤ s1, s2 ≤ t−1 and s1+s2 ≡ 0
(mod t). But the methods of two connections are different. We now view the pair of
x2i−1 and x2i as a vertex ui, where i ∈ {1, 2, . . . , t}. In order to show Claim 2.8, it is
sufficient to show that up is connected with uq , where p, q ∈ {1, 2, . . . , t} and p 6= q.
For the purpose, it is sufficient to show that there exists some k such that τk(p) = q or
τk(q) = p. By Proposition 2.9, it is sufficient to show that for any two distinct numbers
i, j ∈ {1, 2, . . . , t2}, there exists some k ∈ {1, 2, . . . , t} such that τk(i) = j or τk(j) = i.

Without loss of generality, suppose that j > i. If j − i ≡ 1 (mod 2), let k = j − i.
Then

τk(i) ≡ i+ (−1)k+1k ≡ i+ (j − i) ≡ j (mod t).

So τk(i) = j. If j − i ≡ 0 (mod 2), let k = j − i. Then

τk(j) ≡ j + (−1)k+1k ≡ j − (j − i) ≡ i (mod t).

So τk(j) = i. Hence up is connected with uq for p 6= q. Thus, Claim 2.8 has been proved.
Therefore, the obtained embedding is as required.

In the proof of Lemma 2.1, we apply the operation of adding 2t tubes t times starting
from X0, Y0 and Y ′0 to construct an embedding of H , where X0 = {Q0,i | i = 1, 2, . . . , t},
Y0 = {R0,i | i = 1, 2, . . . , t}, Y ′0 = {R′0,i | i = 1, 2, . . . , t}. We call the above procedure
the operation of adding 2t2 tubes starting from X0, Y0 and Y ′0. Lemma 2.10 below is an
analogue of Lemma 2.1. The vertex w0 in Lemma 2.1 is replaced with two vertices w′0, w′′0
in Lemma 2.10, and the others are not changed. The proof is similar to that in the proof of
Lemma 2.1, which is omitted here.
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Lemma 2.10. Suppose that G is a graph which has a vertex subset

{w′0, w′′0 , z1, z2, . . . , zt} ∪ {xi | i = 1, 2, . . . , 2t} ∪ {yj | j = 1, 2, . . . , 4t},

where z1, z2, . . . , zt need not be different, and suppose that G contains no edges in the set

E′ = {w′0x2i−1, w′′0x2i | i = 1, 2, . . . , t} ∪ {xiyj | i = 1, 2, . . . , 2t; j = 1, 2, . . . , 4t}
∪ ({xixi+1, . . . , xix2t | i = 1, 2, . . . , 2t− 1} \ {x2i−1x2i | i = 1, 2, . . . , t}).

Suppose that Π is a 2-cell embedding of G on the orientable surface Sg with the following
properties:

(i) For i = 1, 2, . . . , t, R0,i = w′0y4i−3y4i−2w0 and R′0,i = w′′0y4i−1y4iw0 are facial
cycles of Π.

(ii) For i = 1, 2, . . . , t, Q0,i = zix2i−1x2izi is a facial cycle of Π such that Q0,i has not
any common vertex with each of R0,1, . . . , R0,t, R

′
0,1, . . . , R

′
0,t.

Then there is a supergraph H of G satisfying the following conditions:

(i) E′ is an edge subset of E(H).

(ii) H has an embedding on the orientable surface of genus g+ 2t2 such that it has a set
of t facial 3-cycles {Qt,i | Qt,i = ylix2i−1x2iyli , i = 1, 2, . . . , t}, where yli is some
vertex in {y4i−3, y4i−2, y4i−1, y4i | i = 1, 2, . . . , t}.

We now introduce another method of constructing an embedding, which is used in the
proof of Lemma 2.11.

Lemma 2.11. Let k and l be two positive integers. Suppose that G has a vertex subset

{w, z} ∪ {xi, yj | i = 1, 2, . . . , 2l, j = 1, 2, . . . , 2k},

and suppose that G contains no edges in

E′ = {xiyj | i = 1, 2, . . . , 2l, j = 1, 2, . . . , 2k}.

If G has a 2-cell embedding Π on the orientable surface Sg such that Fi = wx2i−1x2iw
and F ′j = zy2j−1y2jz are facial cycles in Π for i = 1, 2, . . . , l and j = 1, 2, . . . , k, then
there is a supergraph H of G with the following properties:

(i) E′ is an edge subset of H .

(ii) H has an embedding on the orientable surface of genus g + kl such that it has a
set of l facial 3-cycles in which each has the form yhi

x2i−1x2iyhi
, where yhi

∈
{y1, y2, . . . , y2k}.

Proof. We construct an embedding from Π as follows.

(1) Let D1,1 = F1. Then the tube T1,1 is added between D1,1 and F ′1. Next, the four
edges x1y1, x1y2, x2y1 and x2y2 are drawn on T1,1 in the way shown in Figure 7.
Let D1,2 = y1x1x2y1, and let Q1,1 = x2y1y2x2. The tube T1,2 is now added
between D1,2 and F ′2, and the four edges x1y3, x1y4, x2y3 and x2y4 are drawn on
it in the similar way as in Figure 7. Let D1,3 = y3x1x2y3 and Q1,2 = x2y3y4x2.
Then D1,3 and F ′3 are dealt with as D1,2 and F ′2, and so on. The procedure is not
stopped until F ′k has been dealt with. Thus, we obtain k facial cyclesQ1,1, . . . , Q1,k,
where Q1,i = x2y2i−1y2ix2. Moreover, both x1 and x2 are connected with each of
y1, y2, . . . , y2k.
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y1

x1

y2

x2

z

w

Figure 7: The drawing of the four edges in T1,1.

(2) Let Q1 = {Q1,1, Q1,2, . . . , Q1,k}. Then the tube T2,1 is added between F2 and
Q1,1, and the four edges x3y1, x3y2, x4y1 and x4y2 are drawn on it in the similar
way as in Figure 7, and so on. The procedure is stopped tillQ1,k has been dealt with.
Then we obtain a set of facial walks Q2 = {Q2,1, Q2,2, . . . , Q2,k} such that Q2,i =
x4y2i−1y2ix4. Moreover, both x3 and x4 are connected with each of y1, y2, . . . , y2k.

(3) Q2 and F3 are dealt with in the similar way to that of Q1 and F2, and so on. The
procedure is stopped till Fl has been dealt with. Then xi is connected with each of
y1, y2, . . . , y2k for i = 1, 2, . . . , 2l, and there is a set of l facial 3-cycles in which
each has the form yhi

x2i−1x2iyhi
. Moreover, there are kl tubes to be added to the

primitive surface all together. So the obtained embedding Π′ is one on the orientable
surface of genus g + kl. Let H be the graph corresponding to Π′. It is easy to find
that E′ is an edge set of H .

Let F1 = {F1, F2, . . . , Fl}, and let F2 = {F ′1, F ′2, . . . , F ′k}. We call the procedure of
constructing an embedding in the proof of Lemma 2.11 the operation of adding tubes with
respect to F1 and F2.

3 An upper bound for γ(Cm +Kn) ifm is odd
From now on we always suppose that m ≥ 3 and n ≥ 4, that Cm = u1u2 . . . umu1, and
that the vertex set of Kn is {v1, v2, . . . , vn}. If no confusion occur, a face and its boundary
in an embedding are not distinguished in the rest of the paper.

Lemma 3.1. Suppose that m ≡ 1 (mod 2) and n ≡ 0 (mod 4). If m ≥ 4n− 5, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We shall construct an embedding of Cm + Kn on the oreintable surface of genus
d (m−2)(n−2)4 e in the following steps.

(1) In the step we shall construct an embedding on a sphere in which each of v1 and v2
is connected with each of u1, u2, . . . , um, and each of u1 and u2 is connected with
each of v1, v2, . . . , vn.

First, Cm is placed in the equator of the sphere, and both v1 and v2 are situated at the
northern pole and the southern pole, respectively. Second, each of v1 and v2 joins to
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each of u1, u2, . . . , um, and the path P = v3v4 . . . vn is placed in the interior of the
face v1u1u2v1 such that v3 is near to v1. Third, v3 joins to v1, and each of u1 and
u2 joins to each of v3, v4, . . . , vn. Thus, we obtain an embedding Π1 on the sphere,
which is shown in Figure 8.

um u3

v2

v4

v3

v1

vnu1 u2

Figure 8: The embedding Π1.

(2) In the step we shall add n
4 tubes to the sphere such that u3 is connected with each of

v3, v4, . . . , vn, and v1 joins to v2.

The tube T1 is now added between the facial cycles u2v3v4u2 and v2u2u3v2. Next,
the edge u2v3 is redrawn such that it is on T1 and a segment of local rotation at u2 in
clockwise is that v4, v1, u3, v3. Then there is a facial walk W1 = u3v2u2v3v1u2v4
v3u2u3. Let Z1 = u3v2u2v3v1u2v4v3. Then W1 = Z1u2u3.

The tube T2 is added between the facial cycle u2v8v7u2 andW1. Then the two edges
u2v7 and u2v6 are redrawn on T2 such that a segment of local rotation at u2 in clock-
wise is that u3, v7, v6, v3. Thus, there is a facial walk W2 = Z1u2v6v5u2v8v7u2u3.
Let Z2 = u2v6v5u2v8v7. Thus, W2 = Z1Z2u2u3.

For i = 3, 4, . . . , n4 , the tube Ti is added between the facial cycle u2v4iv4i−1u2
and Wi−1. Next, both edges u2v4i−1 and u2v4i−2 are redrawn on Ti such that a
segment of local rotation at u2 in clockwise is that u3, v4i−1, v4i−2 and v4i−5. Then
there is a facial walk Wi = Z1Z2 . . . Zi−1u2v4i−2v4i−3u2v4iv4i−1u2u3. Let Zi =
u2v4i−2v4i−3u2v4iv4i−1. Thus, Wi = Z1Z2 . . . Ziu2u3.

After the tube Tn
4

has been added, there is a facial walkWn
4

= Z1Z2 . . . Zn
4−1u2u3.

For i = 2, 3, . . . , n4 , each of v4i−3, v4i−2, v4i−1 and v4i appears in Zi once, but it
does not appear in Zj if i 6= j. Also, v4 appears in Z1 once, but it does not appear
in Zj if j 6= 1. In the interior of the face Wn

4
, u3 joins to each of v4, v5, . . . , vn,

and v1 joins to v2. For example, if n = 8, W2 and all added edges in the interior of
W2 are shown in Figure 9. Let Π2 be the embedding obtained from Π1 by the above
operation of adding tubes. Then Π2 is an embedding on the surface of genus n

4 .

(3) In the step we shall add 2(n2−1)2 tubes to the present surface satisfying the following
conditions:

(i) v1 is connected with each of v3, v4, . . . , vn,
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Figure 9: W2 and all edges added in the interior of W2.

(ii) for i = 3, 4, . . . , n and j = 4, 5, . . . , 2n− 1, vi is connected with uj , and
(iii) all edges in the set

{vivi+1, . . . , vivn | i = 3, . . . , n− 1} \ {v2i+1v2i+2 | i = 1, . . . , n−22 }

are added.

For the above purpose, let

X0 = {Q0,i | Q0,i = u1v2i+1v2i+2u1, i = 1, 2, . . . , n2 − 1},
Y0 = {R0,i | R0,i = v1u4iu4i+1v1, i = 1, 2, . . . , n2 − 1}, and
Y ′0 = {R′0,i | R′0,i = v1u4i+2u4i+3v1, i = 1, 2, . . . , n2 − 1}.

Then we apply the operation of adding 2(n2 − 1)2 tubes starting from X0, Y0, and
Y ′0. By Lemma 2.1, an embedding Π3 is obtained which satisfies all the requirements
and contains a set A0 = {A0,1, A0,2, . . . , A0,n2−1} of facial 3-cycles such that A0,i

has the form ukiv2i+1v2iuki , where uki ∈ {uj | j = 4, 5, . . . , 2n− 1}.
(4) In the step we shall add 2(n2 − 1)2 tubes to present surface satisfying the following

conditions:

(i) v2 is connected with v3, v4, . . . , vn,
(ii) for i = 3, 4, . . . , n and j = 2n, 2n+ 1, . . . , 4n− 5, vi is connected with uj .

For the above purpose, let

B0 = {B0,i | B0,i = v2u2n+4i−4u2n+4i−3v2, i = 1, 2, . . . , n2 − 1}, and
B′0 = {B′0,i | B′0,i = v2u2n+4i−2u2n+4i−1v2, i = 1, 2, . . . , n2 − 1}.

We now apply the operation of adding 2(n2 −1)2 tubes starting fromA0, B0, and B′0.
By Lemma 2.1, an embedding Π4 is obtained which satisfies all the requirements
and contains a set F = {F1, F2, . . . , Fn

2−1} of facial 3-cycles such that Fi has the
form uliv2i+1v2i+2uli , where uli ∈ {uj | j = 2n, 2n+ 1, . . . , 4n− 5}. At last, all
edges of the form vivj added in the above operations are deleted, since these edges
have been existed. Note that the deletion of these edges does not affect each cycle
in F .
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(5) If m = 4n − 5, then there is nothing to do. If m > 4n − 5, then we shall add
tubes to the present surface such that vi is connected with each of u4n−4, . . . , um for
i = 3, 4, . . . , n.

Let
D = {Di | Di = v1u4n+2i−6u4n+2i−5v1, i = 1, 2, . . . , m−4n+5

2 }.

We now use the operation of adding tubes respect to F and D. By Lemma 2.11,
there are (n−2)(m−4n+5)

4 tubes being used, and vi is connected with uj , where
i ∈ {3, 4, . . . , n} and j ∈ {4n− 4, 4n− 3, . . . ,m}. Let Π5 be the obtained embed-
ding. Then it is an embedding of Cm +Kn on the surface of genus

n

4
+

(n− 2)2

2
+

(n− 2)2

2
+

(n− 2)(m− 4n+ 5)

4
.

By simple counting, we have that

n

4
+

(n− 2)2

2
+

(n− 2)2

2
+

(n− 2)(m− 4n+ 5)

4
=
n

4
+

(n− 2)(m− 3)

4
.

Since n ≡ 0 (mod 4),⌈
(m− 2)(n− 2)

4

⌉
=

⌈
n− 2

4

⌉
+

(n− 2)(m− 3)

4
=
n

4
+

(n− 2)(m− 3)

4
.

So

n

4
+

(n− 2)2

2
+

(n− 2)2

2
+

(n− 2)(m− 4n+ 5)

4
=

⌈
(m− 2)(n− 2)

4

⌉
.

Hence, γ(Cm +Kn) ≤ d (m−2)(n−2)4 e.

Lemma 3.2. Suppose that m ≡ 1 (mod 2) and n ≡ 2 (mod 4). If m ≥ 4n− 3, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We construct an embedding of Cm + Kn in the similar way to that in the proof of
Lemma 3.1.

(1) First, place Cm, v1, and v2 on a sphere and add edges as (1) in the proof of Lem-
ma 3.1. Let F1 = v1u1u2v1, F2 = v1u2u3v1, and F3 = v1u4u5v1. The path
P = v7v8 . . . vn is now placed in the interior of F1, and each of u1 and u2 joins
to each of v7, v8, . . . , vn. Next, both v3 and v5 are placed in the interior of F2, and
they join to each of u2 and u3, respectively. Similarly, both v4 and v6 are placed in
the interior of F3, and they join to each of u4 and u5, respectively. Let Π1 be the
obtained embedding on the sphere, which is shown in Figure 10.

The edge u3u4 is now deleted from Π1. Then the face v1u3u4v1 and the face
v2u3u4v2 are merged into a face F4 = v1u3v2u4v1. Next, the edge v1v2 is drawn
in the interior of F4. Let F5 = u2v3u3v5u2 and F6 = u4v4u5v6u4. The tube T1 is
added between F5 and F6. Then the five edges are drawn on T1 in the way shown in
(1) in Figure 11. Let F7 = u2v3u4v6u2 and F8 = u3v4u5v5u3. Next, the tube T2 is
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Figure 10: The embedding Π1.
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Figure 11: The drawing of edges on T1 or T2.

added between F7 and F8. Then the five edges are drawn on T2 in the way shown in
(2) in Figure 11.

We observe that the local rotation at u2 in clockwise is that u1, vn, . . . , v1, v3, v4, v6,
v5, u3, v2. Let F9 = u2v6u3v4u2, which is a facial cycle (refer to (2) in Fig-
ure 11). Let F10 = u1vnu2u1 (refer to Figure 10) if n > 6, or F10 = u1v1u2u1
if n = 6. The tube T3 is now added between F9 and F10. Then the edges u2v5
and u2v4 are redrawn on T3 such that a segment of the local rotation at u2 is that
u1, v6, v4, vn, v3, v5. Thus, there is a facial walk W ′1 = u1u2v4v3u2v5u5v6u2vnu1.
Next, u1 joins to each of v3, v4, v5, v6, and v5 joins to v6. Then there are two facial
cycles Q0,1 = u1v4v3u1 and Q0,2 = u1v5v6u1.

(2) If n = 6, there is nothing to do. If n > 6, then we shall add 3(n−2)
4 tubes to the

present surface such that ui is connected with each of v3, v4, . . . , vn for i = 3, 4, 5.

Let F11 = v1u3v3u2v1 (refer to Figure 10). For i = 1, 2, . . . , n−64 , let F ′i =
u2v4i+4v4i+5u2. The tube T ′1 is added between F ′1 and F11. Then two edges u2v4i+4

and u2v4i+5 are redrawn on T ′1. There is a facial walk W1 = u2v3u3v1u2v9v10u2
v7v8u2. For i = 2, . . . , n−64 , the tube T ′i is added between F ′i and Wi−1, where
Wi−1 is a facial walk which contains v7, . . . , v4i+2 after T ′i−1 has added. Next,
both u2v4i+4 and u2v4i+5 are redrawn on T ′i and a segment in the local rotation
at u2 in clockwise is that u4(i−1)+5, u4i+4, u4i+5, and u3. After the tube T ′n−6

4

has been added, there is a facial walk Wn−6
4

which contains u3, v7, v8, . . . , vn.
Moreover, each of v7, v8, . . . , vn appears in Wn−6

4
once. Next, u3 joins to each
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of v7, v8, . . . , vn. There are n−6
2 facial 3-cycles D1, D2, . . . , Dn−6

2
, where Di =

u3v2i+5v2i+6u3.

LetF12 = u4v4u5u4 (refer to Figure 10). LetF = {F12}, and letD = {D1, D2, . . . ,
Dn−6

2
}. Using the operation of adding tubes with respect toD and F , each of u4 and

u5 is connected with each of v7, v8, . . . , vn. By Lemma 2.11, there are n−6
2 tubes

being used. Also, there are n−6
2 facial cyclesQ0,3, . . . , Q0,n−2

2
in whichQ0,i has the

form uliv2i+1v2i+2uli , where uli ∈ {u4, u5}. Let Π2 be the embedding obtained
from Π1 by the above procedures. Then Π2 is an embedding on the surface of genus
3 + n−6

4 + n−6
2 (= 3(n−2)

4 ). Moreover, ui is connected with each of v1, v2, . . . , vn
for i = 1, 2, . . . , 5.

(3) For i = 1, 2, . . . , n−62 , let R0,i = v1u4i+2u4i+3v1, and let R′0,i = v1u4i+4u4i+5v1.
Let X0 = {Q0,i+2 | i = 1, 2, . . . , n−62 }, Y0 = {R0,i | i = 1, 2, . . . , n−62 }, and
Y ′0 = {R′0,i | i = 1, 2, . . . , n−62 }. Next procedures are similar to that in (4) and

(5) in the proof of Lemma 3.1. Note that (m−5)(n−2)
4 tubes are added to the present

surface such that vi is connected with uj for i = 3, 4, . . . , n and j = 6, 7, . . . ,m.
Thus, an embedding Π3 of Cm+Kn on the surface of genus 3(n−2)

4 + (m−5)(n−2)
4 is

obtained. Since n ≡ 2 (mod 4), d (m−2)(n−2)4 e = 3(n−2)
4 + (m−5)(n−2)

4 . Thus, Π3

is the desired embedding. Since the operation of adding n− 2 tubes is used twice, m
is at least 5 + 4(n− 2) (= 4n− 3).

Lemma 3.3. Suppose that m ≡ 1 (mod 2) and n ≡ 1 (mod 2). If m ≥ 6n− 13, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We consider two cases.

Case 1: m ≡ 1 (mod 4). In this case we construct an embedding of Cm + Kn in the
following steps.

(1) The path Pm = u1u2 . . . um is placed in the equator of a sphere. The edge v1v2
is situated in the northern pole and the vertex v3 placed at the southern pole. Next,
each of v1 and v3 joins to each of u1, u2, . . . , um+1

2
, and each of v1 and v2 joins to

each of um+3
2
, um+5

2
, . . . , um. Also, v1 joins to v3, and v2 joins to um+1

2
. Thus, an

embedding Π1 on the sphere is obtained. For example, the embedding Π1 is shown
in Figure 12 if m = 17.

(2) In this step we shall construct an embedding on the surface of genus m−1
4 such that

v2 is connected with u1, u2, . . . , um−1
2

, v3 connected with um+3
2
, um+5

2
, . . . , um, and

u1 connected with um.

For i = 1, 2, . . . , m−14 , let Fi = v3u2i−1u2iv3 and F ′i = v2um+1−2ium+2−2iv2.
The tube T1 is added between F1 and F ′1, and the five edges are drawn on T1 in the
way shown in (1) in Figure 13. The tube T2 is added between F2 and F ′2, and the five
edges are drawn on T1 in the way shown in (2) of Figure 13.

For i = 3, 4, . . . , m−14 , the tube Ti is added between Fi and F ′i . Then the four
edges v3um+2−2i,v3um+1−2i, v2u2i−1, and v2u2i are drawn on Ti in the way shown
in (2) of Figure 13, but v2v3 is not added. Thus, v3 is connected with each of
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Figure 12: The embedding Π1.
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Figure 13: The drawing of edges on T1 or T2.

um+3
2
, um+5

2
, . . . , um, v2. Next, v2 connected with each of u1, u2, . . . , um−1

2
. Let

Π2 be the obtained embedding. Note that there are two sets Z0 and Z ′0 in Π2, where

Z0 = {Z0,i | Z0,i = v2u2i−1u2iv2, i = 1, 2, . . . , m−14 } and

Z ′0 = {Z ′0,i | Z ′0,i = v3um+1−2ium+2−2iv3, i = 1, 2, . . . , m−14 }.

(3) In this step dn−24 e tubes will be added to the present surface such that vi is connected
with um+1

2
, um+3

2
, um+5

2
for i = 4, 5, . . . , n.

The path P = v4v5 . . . vn is now placed in the interior of Z ′
0,m−1

4

such that v4
is near to v3. Then each of um+3

2
and um+5

2
joins to each of v4, v5, . . . , vn. For

i = 1, 2, . . . , dn−14 e, let Di = um+3
2
v4iv4i+1um+3

2
.

If n ≡ 1 (mod 4), then dn−44 e = n−1
4 . The tube T ′1 is now added between D′ =

v2um+1
2
um+3

2
v2 and D1. Next, the edge um+3

2
v4 is redrawn on T ′1. Then we obtain

a facial walk W1 which contains um+1
2

and v4. For i = 2, 3, . . . , n−14 , the tube T ′i is
added between Di and Wi−1, where Wi−1 is a facial walk which contains um+1

2
and

um+3
2

obtained by adding the tube Ti−1. Then two edges um+3
2
v4i−1 and um+3

2
v4i

are redrawn on T ′i . After the tube T ′n−1
4

has been added, there is a facial walk Wn−1
4

which contains um+1
2
, v4, . . . , vn. Next, um+1

2
joins to vi if vi appears once inWn−1

4

or a copy of vi if it appears more than once in Wn−1
4

.

If n ≡ 3 (mod 4), then dn−44 e = n−3
4 . We add n−3

4 tubes in the similar way to that
in the above paragraph. The difference is that two edge um+3

2
v4i+1 and um+3

2
v4i+2
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are redrawn on T ′i for i = 1, 2, . . . , n−34 .

Let Π3 be the embedding obtained from Π2 by the above operation of adding tubes.
Clearly, um+1

2
, um+3

2
, and um+5

2
are connected with each of v1, v2, . . . , vn.

(4) In the step we proceed the similar argument as in (3) and (4) of the proof of Lem-
ma 3.1. Let

X0 = {Q0,i | Q0,i = um+5
2
v2i+2v2i+3um+5

2
, i = 1, 2, . . . , n−32 },

Y0 = {Z0,i | i = 1, 2, . . . , n−32 }, and

Y ′0 = {Z ′0,i | i = 1, 2, . . . , n−32 }.

Then we apply the operation of adding 2(n−32 )2 tubes starting from X0, Y0, and Y ′0.
By Lemma 2.10, we have the following results:

(i) v2 is connected with each of v4, v6, . . . , vn−1, and v3 connected with each of
v5, v7, . . . , vn.

(ii) For i = 4, 5, . . . , n and j = 1, 2, . . . , n−32 , vi is connected with u2j−1, u2j ,
um+1−2j , um+2−2j .

(iii) There is a set

{vivi+1, . . . , vivn | i = 1, 2, . . . , n− 1} \ {v4v5, v6v7, . . . , vn−1vn}.

(iv) There is a set
A0 = {A0,1, A0,2, . . . , A0,n−3

2
}

of facial cycles such that A0,i has the form uliv2i+1v2iuli , where uli ∈
{u1, . . . , un−3} ∪ {um−n+4, . . . , um}.

Unfortunately, v2 is not connected with each of v5, v7, . . . , vn and v3 is not con-
nected with each of v4, v6, . . . , vn−1. In order to attach the edges v2v5, . . . , v2vn,
v3v4, . . . , v3vn−1, we apply the operation of adding 2(n−32 )2 tubes again. Let

B0 = {B0,i | B0,i = v3um−n+4−2ium−n+5−2iv3, i = 1, 2, . . . , n−32 } and

B′0 = {B′0,i | B′0,i = v2un−4+2iun−3+2iv2, i = 1, 2, . . . , n−32 }.

We now apply the operation of adding 2(n−32 )2 tubes starting from A0, B0 and B′0.
By Lemma 2.10, we have the following results:

(i) v2 is connected with each of v5, v7, . . . , vn, and v3 connected with each of
v4, v6, . . . , vn−1.

(ii) For i = 4, 5, . . . , n and j = 1, 2, . . . , n−32 , vi is connected with un−4+2j ,
un−3+2j , um−n+4−2j , um−n+5−2j .

(iii) There is a set
L0 = {L0,1, L0,2, . . . , L0,n−3

2
}

of n−3
2 facial cycles such that L0,i has the form uhi

v2i+1v2iuhi
, where uhi

∈
{un−4+2j , un−3+2j , um−n+6−2j , um−n+5−2j | j = 1, . . . , n−32 }.
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Need to say that all edges of the form vkvl added in the above operations are deleted,
since they have been existed.

For i = 1, 2, . . . , n−32 , letF0,i = v1u2n−7+2iu2n−6+2iv1 andF ′0,i = v1um−2n+7−2i
um−2n+8−2iv1. Let F0 = {F0,i | i = 1, 2, . . . , n−32 }, and let F ′0 = {F ′0,i |
i = 1, 2, . . . , n−32 }. We apply the operation of adding 2(n−32 )2 tubes starting from
L0, F0, and F ′0. By Lemma 2.1, v1 is connected with each of v4, v5, . . . , vn, and
there is a setN0 = {N0,1, N0,2, . . . , N0,n−3

2
} of n−32 facial cycles such thatN0,i has

the form ukiv2i+1v2iuki , where uki ∈ {u2n−7+2j , u2n−6+2jum−2n+7−2j ,
um−2n+8−2j | j = 1, . . . , n−32 }. Next, all added edges of the form vivj (i, j 6= 1)
are deleted, since they have been existed.

(5) In this step we proceed the similar argument to (5) in the proof of Lemma 3.1.
For i = 1, . . . , 12 (m−12 − 3n + 9), let Mi = v1u3n−10+2iu3n−9+2iv1, and M ′i =
v1um−3n+10−2ium−3n+11+2iv1. Clearly, M ′1

2 (
m−1

2 −3n+9)
is exactly the cycle

v1um+3
2
um+5

2
v1. Since um+3

2
and um+5

2
are connected with each of v1, . . . , vn,

M ′1
2 (

m−1
2 −3n+9)

should be neglected. Let

M = {Mi,M
′
i | i = 1, . . . , 12 (m−12 − 3n+ 9)} \ {M ′1

2 (
m−1

2 −3n+9)
}.

Next, we apply the operation of adding tubes with respect toM and N0. There are
[m−6(n−3)−3](n−3)

4 tubes being added to the present surface. Since m ≡ 1 (mod 2)
and n ≡ 1 (mod 4), we have that⌈

(m− 2)(n− 2)

4

⌉
=

(m− 3)(n− 3)

4
+
m− 1

4
+

⌈
n− 4

4

⌉
and

[m− 6(n− 3)− 3](n− 3)

4
+
m− 1

4
+

⌈
n− 4

4

⌉
+ 6

(
n− 3

2

)2
=

(m− 3)(n− 3)

4
+
m− 1

4
+

⌈
n− 4

4

⌉
.

Hence an embedding of Cm+Kn on the surface of genus d (m−2)(n−2)4 e is obtained.

Need to say that the operations of adding 2(n−32 )2 tubes are used three times, m
is at least 6(n − 3) (= 6n − 18). If um+1

2
, um+3

2
, um+5

2
and M 1

2 (
m−1

2 −3n+9) are
considered, m is at least 6n− 18 + 5 (= 6n− 13).

Case 2: m ≡ 3 (mod 4). In this case we shall construct an embedding of Cm +Kn in
the similar way to that in Case 1.

(1) Pm, v1, v2, and v3 are placed in a sphere as in Case 1. Next, each of v1 and v3 is
connected with each of u1, u2, . . . , um+1

2
, and each of v1 and v2 is connected with

each of um+3
2
, um+5

2
, . . . , um. Also, v2 is connected with um+1

2
, and v3 is connected

with um+3
2

. Then we obtain an embedding Π1 on the sphere. For example, Π1 is
shown in Figure 14 if m = 15.
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Figure 14: The embedding Π1.

(2) As in (2) in Case 1, m−3
4 tubes are added to the sphere satisfying the following

conditions:

(i) u1 is connected with um,

(ii) v2 is connected with each of u1, u2, . . . , um−3
2

,

(iii) v3 is connected with each of um+5
2
, um+7

2
, . . . , um.

Let Π2 be the obtained embedding. Then it is an embedding on the surface of the
genus m−3

4 .

(3) The path P = v4v5 . . . vn is now placed in the interior of v2um+1
2
um+3

2
v2. Then

each of um+1
2

and um+3
2

joins to each of v4, v5, . . . , vn. For j = 1, 2, . . . , dn−24 e,
let Dj = um+1

2
v4iv4i+1um+1

2
. If n ≡ 1 (mod 4), then n−1

4 (= dn−24 e) tubes
T ′1, T

′
2, . . . , T

′
n−1
4

are added to the present surface one by one such that um+1
2
v5 is re-

drawn on T ′1, and um+1
2
v4i and um+1

2
v4i+1 are redrawn on T ′i for i = 2, 3, . . . , n−14 .

If n ≡ 3 (mod 4), then n+1
4 (= dn−24 e) tubes T ′1, T

′
2, . . . , T

′
n+1
4

are added to the

present surface one by one such that um+1
2
v4 is drawn on T ′1, and um+1

2
v4i+3 and

um+1
2
v4i are redrawn on T ′i for i = 2, 3, . . . , n+1

4 . As in Case 1, there is a facial
walk Wdn−2

4 e
which contains um−1

2
, v4, . . . , vn and v2. Next, um−1

2
joins to vj if

it appears once in Wdn−2
4 e

or a copy of vj if it appears more than once in Wdn−2
4 e

,
where vj is a vertex in v4, v5, . . . , vn and v2. Let Π3 be the obtained embedding.
Then it is an embedding on the surface of the genus m−3

4 + dn−24 e.

(4) In this step we proceed the similar argument as in (4) and (5) in Case 1. There are
(m−3)(n−3)

4 tubes being added to the present surface. The detail is omitted here. Let
Π4 be the obtained embedding. Then it is an embedding of Cm +Kn on the surface
of genus m−3

4 + dn−24 e + (m−3)(n−3)
4 . Need to say that for the purpose that each

of v1, v2 and v3 is connected with v4, . . . , vn, we need add at least 6(n−32 )2 tubes.
Since each of um−1

2
, um+1

2
and um+3

2
has been connected with each of v4, . . . , vn,

m is at least 3 + 6(n− 3) (= 6n− 15).
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Since m ≡ 3 (mod 4) and n ≡ 1 (mod 2), we have that d (m−2)(n−2)4 e = m−3
4 +

dn−24 e+ (m−3)(n−3)
4 . So Π4 is an embedding of Cm +Kn on the surface of genus

d (m−2)(n−2)4 e.

4 An upper bound for γ(Cm +Kn) ifm is even
In the section we shall study the orientable genus of Cm +Kn if m is even.

Lemma 4.1. Suppose that m ≡ 0 (mod 2). If m ≥ 8, then

γ(Cm +K4) ≤
⌈
m− 2

2

⌉
.

Proof. We firstly construct an embedding on a sphere. Cm, v1, and v2 are placed in the
sphere as in the proof of Lemma 3.1, and each of v1 and v2 joins to u1, u2, . . . , un. Let
F1 = v1u1u2v1 and F2 = v2u3u4v2. Next, the vertex v3 is placed in the interior of F1

and is connected with to u1, u2, and v1, and the vertex v4 is placed in the interior of F2

and is connected with u3, u4, and v2. At last, the tube T1 is added between the facial cycle
v3u1u2v3 and the facial cycle v4u3u4v4. Then six edges are drawn on T1 in the way shown
in (1) of Figure 15.

v4

v3

u3

u1 u2

u4 v1

u1 v3

u6

v4

u5

(1) (2)

Figure 15: Two drawings of edges on T1 or T2.

Note that there are two edges connecting u2 and u3. Let F3 = v1u2u3v1 and F4 =
v2u2u3v2. We now delete the edge u2u3 which is a common edge of F3 and F4. Then F3

and F4 are merged into a facial cycle F5 = v1u2v2u3v1. Next, the edge v1v2 is drawn in
the interior of F5.

Let F6 = u1v3v4u1 (refer to (1) of Figure 15), and let F7 = v1u5u6v1. The tube T2 is
now added between F6 and F7. Then the five edges are drawn on T2 in the way shown in
(2) in Figure 15. Let F8 = u5v3v4u5 (refer to (2) of Figure 15), and let F9 = v2u8u7v2.
Then the tube T3 is added between F8 and F9. Next, the five edges v3u8, v3u7, v4u7,
v4u8 and v4v2 are drawn on T3 in the similar way to that in (2) in Figure 15. Thus, vi is
connected with vj if i 6= j. If m = 8, there is nothing to do. If m > 8, let F = {F ′ |
F ′ = u7v3v4u7}, and let Q = {Qi | Qi = v1u7+2iu8+2iv1, i = 1, 2, . . . , m−82 }. We
apply the operation of adding m−8

2 tubes with respect to F and Q to realize an embedding
of Cm +K4. Thus, there are m−8

2 + 3 (= m−2
2 ) tubes being used. Hence, γ(Cm +K4) ≤

dm−22 e.

Lemma 4.2. Suppose that m ≡ 0 (mod 2) and n ≡ 0 (mod 2). If n ≥ 6 and
m ≥ 4n− 4, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.
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Proof. We construct an embedding of Cm +Kn in the following steps.

(1) The cycle Cm and vertices v1,v2 are placed in a sphere as in the proof of Lemma 3.1.
Next, each of v1 and v2 joins to u1, u2, . . . , um. Let F1 = v1u1u2v1 and F2 =
v1u3u4v1. The two vertices v4 and v6 are placed in the interior of F1, and each of
u1 and u2 joins to each of v4 and v6 such that there are two facial 4-cycles F ′1 =
u1v4u2v6u1 and F ′2 = v1u1v6u2v1. The two vertices v3 and v5 are placed in the
interior of F2, and each of u3 and u4 joins to each of v3 and v5 such that there are two
facial 4-cycle F ′3 = u3v3u4v5u3 and D′1 = u3u4v5u3. The path P = v7v8 . . . vn is
placed in the interior of F ′2 such that v7 is near to v6. Next, each of u1 and u2 joins
to each of v7, v8, . . . , vn. The obtained embedding is denoted by Π1.

(2) In the step each of u1, u2, u3 and u4 will be connected with each of v3, v4, . . . , vn,
and v1 is connected with v2. For the above purpose, the tube T1 is firstly added
between F ′1 and F ′3, and the five edges u1v5, u2v3, u3v4, u4v6 and u2u3 are drawn
on T1 in the way shown in (1) of Figure 16. Thus, there are two edges connecting
u2 and u3. The edge u2u3 which is the common edge of facial cycles v1u2u3v1
and v2u2u3v2 is deleted. Then there is a facial cycle F3 = v1u2v2u3v1. Next,
v1 joins to v2 in the interior of F3. The tube T2 is now added between the facial
cycles u1v4u3v5u1 and u2v3u4v6u2 (refer to (1) in Figure 16), and the six edges
u1v3, u2v5, u3v6, u4v4, v3v4 and v5v6 are drawn on T2 in the way shown in (2) of
Figure 16.

u3

u1

v3

v4

u4

u2 v6

v5

(1) (2)

u2

u1 v4

v3

u3

u4

v5

v6

Figure 16: Two drawings of edges on T1 or T2.

For i = 1, 2, . . . , n−62 , letDi = u2v2i+5v2i+6u2. LetD = {Di | i = 1, 2, . . . , n−62 }
and D′ = {D′1}. We apply the operation of adding tubes with respect to D and D′
such that both u3 and u4 are connected with each of v7, v8, . . . , vn. By Lemma 2.11,
there are n−6

2 tubes being used. Let Π2 be the obtained embedding.

(3) We proceed a similar argument to that in (3) in the proof of Lemma 3.2. We shall add
(m−4)(n−2)

4 tubes to the present surface to realize an embedding Π3 of Cm + Kn.
The detail is omitted here. For the purpose that each of v1 and v2 joins to each of
v3, . . . , vn, 2(n−22 )2 tubes will be used by Lemma 2.1. So m is at least 4 + 4× n−2

2
(= 4n− 4).

Obviously, Π3 is an embedding of Cm + Kn on the surface of genus 2 + n−6
2 +

(m−4)(n−2)
4 . Since m ≡ 0 (mod 2) and n ≡ 0 (mod 2), we have that⌈

(m− 2)(n− 2)

4

⌉
= 2 +

n− 6

2
+

(m− 4)(n− 2)

4
.

So γ(Cm +Kn) ≤ d (m−2)(n−2)4 e.
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Lemma 4.3. Suppose that m ≡ 0 (mod 2) and n ≡ 1 (mod 2). If m ≥ 6n − 14 and
n ≥ 5, then

γ(Cm +Kn) ≤
⌈

(m− 2)(n− 2)

4

⌉
.

Proof. We proceed a similar argument to that in the proof of Lemma 3.3.

(1) Let Pm = u1u2 . . . um. Then Pm, v1, v2, and v3 are placed in a sphere as in (1) in
the proof of Lemma 3.3. If m ≡ 0 (mod 4), then each of v1 and v3 joins to each of
u1, u2, . . . , um

2
such that v1ui and v3ui are in the upper side and lower side of Pm,

respectively. Next, each of v2 and v1 joins to each of um+2
2
, um+4

2
, . . . , um such that

v2ui and v1ui are in the upper side and lower side of Pm, respectively. Also, v1 joins
to v3. If m ≡ 2 (mod 4), then each of v1 and v3 joins to each of u1, u2, . . . , um

2

such that v1ui and v3ui are in the upper side and lower side of Pm, respectively.
Next, each of v2 and v1 joins to each of um+2

2
, um+4

2
, . . . , um such that v2ui and

v1ui are in the upper side and lower side of Pm, respectively. Also, v1 joins to v3, v2
joins to um

2
, and v3 joins to um+2

2
. Let Π1 be the obtained embedding on the sphere.

(2) As in (2) in the proof of Lemma 3.3, there are m
4 tubes being added to the sphere

if m ≡ 0 (mod 4), or there are m−2
4 tubes being added to the sphere if m ≡ 2

(mod 4), such that each of v2 and v3 is connected with all rest vertices in u1, u2, . . . ,
um. Also, u1 is connected with um, and v2 is connected with v3. Need to say that
dm−24 e = m

4 if m ≡ 0 (mod 4), or dm−24 e = m−2
4 if m ≡ 2 (mod 4). Thus, there

are dm−24 e tubes being used in the above procedure.

(3) Let P ′ = v4v5 . . . vn. If m ≡ 0 (mod 4), then P ′ is placed in the facial cy-
cle v1u1u2v1, and each of u1 and u2 is connected with v4, v5, . . . , vn. If m ≡ 2
(mod 4), then P ′ is placed in the facial cycle v1um

2
um

2 +1v1, and each of um
2

and
um

2 +1 is connected with v4, v5, . . . , vn.

Let

X0 = {Q0,i | Q0,i = u2v2i+2v2i+3u2, i = 1, 2, . . . , n−32 } if m ≡ 0 (mod 4), or

X0 = {Q0,i | Q0,i = um
2
v2i+2v2i+3um

2
, i = 1, 2, . . . , n−32 } if m ≡ 2 (mod 4).

Let

Y0 = {R0,i | R0,i = v2u2i+1u2iv2, i = 1, 2, . . . , n−32 }, and

Y ′0 = {R′0,i | R′0,i = v3um+1−2ium+2−2iv3, i = 1, 2, . . . , n−32 }.

We apply the operation of adding 2(n−32 )2 tubes starting from X0, Y0 and Y ′0. Next
procedures are similar to that in (4) in the proof of Lemma 3.3. Eventually, we obtain
an embedding of Cm + Kn by adding (m−2)(n−3)

4 tubes. Note that for the purpose
that each of v1, v2 and v3 is connected with each of v4, v5, . . . , vn, we need to add at
least 3× 2× n−3

2 tubes by Lemma 2.10. Thus, m ≥ 6(n− 3) + 2 + 2 = 6n− 14 if
m ≡ 0 (mod 4), or m ≥ 6(n− 3) + 2 = 6n− 16 if m ≡ 2 (mod 4).

Sincem ≡ 0 (mod 2) and n ≡ 1 (mod 2), d (m−2)(n−2)4 e = (m−2)(n−3)
4 +dm−24 e.

Since m
4 = dm−24 e if m ≡ 0 (mod 4), or m−2

4 = dm−24 e if m ≡ 2 (mod 4),
the obtained embedding is an embedding of Cm + Kn on the surface of genus
d (m−2)(n−2)4 e.
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5 Conclusions
Lemma 5.1 ([10]). If m ≥ 2 and n ≥ 2, then

γ(Km,n) =

⌈
(m− 2)(n− 2)

4

⌉
.

Considering that Km,n is a subgraph of Cm + Kn, Theorem 5.2 follows from Lem-
mas 3.1, 3.2, and 3.3, Lemmas 4.1, 4.2, and 4.3, and Lemma 5.1.

Theorem 5.2. Suppose that m and n are two integers. Then

γ(Cm +Kn) =

⌈
(m− 2)(n− 2)

4

⌉
if n ≥ 4 and m,n satisfy one of the following conditions:

(1) m ≡ 1 (mod 2), n ≡ 0 (mod 2), and m ≥ 4n− 5,

(2) m ≡ 1 (mod 2), n ≡ 1 (mod 2), and m ≥ 6n− 13,

(3) m ≡ 0 (mod 2), n ≡ 0 (mod 2), and m ≥ 4n− 4,

(4) m ≡ 0 (mod 2), n ≡ 1 (mod 2), and m ≥ 6n− 14.

Obviously, the maximal value in 4n − 5, 4n − 4, 6n − 13 and 6n − 14 is 12 if n = 4,
or 6n− 13 if n ≥ 5. The result below follows from Lemma 5.1 and Theorem 5.2 directly.

Corollary 5.3. Suppose that m and n are two integers. Let G1 be a spanning subgraph
of Cm, and let G2 be a spanning subgraph of Kn. If n = 4 and m ≥ 12, or n ≥ 5 and
m ≥ 6n− 13, then

γ(G1 +G2) =

⌈
(m− 2)(n− 2)

4

⌉
.

Since Kr,s,t (r ≥ s ≥ t ≥ 3) is a spanning subgraph of Cr + Ks+t, we have the
following result by Theorem 5.2.

Corollary 5.4. If r ≥ s ≥ t ≥ 3 and r ≥ 6(s+ t)− 13, then

γ(Kr,s,t) =

⌈
(r − 2)(s+ t− 2)

4

⌉
.

Therefore, Stahl and White’s conjecture ([12]) on the orientable genus of the complete
tripartite graph Kr,s,t holds if r ≥ s ≥ t ≥ 3 and r ≥ 6(s+ t)− 13.
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Abstract

This paper is about cages for compact convex sets. A cage is the 1-skeleton of a convex
polytope in R3. A cage is said to hold a set if the set cannot be continuously moved to a
distant location, remaining congruent to itself and disjoint from the cage.

In how many “truly different” positions can (compact 2-dimensional) discs be held
by a cage? We completely answer this question for all tetrahedra. Moreover, we present
pentahedral cages holding discs in a large number (57) of positions.

Keywords: Tetrahedral cages, pentahedral cages, discs.

Math. Subj. Class.: 52B10

1 Introduction
A cage is the 1-skeleton of a (convex) polytope in R3. If P is the polytope, the cage is
denoted by cage(P ). A cage G is said to hold a compact set K with G ∩ intK = ∅, if no
rigid continuous motion can bring K in a position far away without intK meeting G on
its way. (Here, intK means the interior of K in its affine hull.) A compact 2-dimensional
ball in R3 will be called a disc.
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Not that long ago, the subject of holding (3-dimensional) balls in cages has been treated
by Coxeter [6], Besicovitch [4], Aberth [1] and Valette [12].

In this paper we hold discs instead of balls. The question we ask is about the number
of positions of the discs held.

We investigate the capability of the 1-skeleton of the regular tetrahedron as a cage to
hold discs. Then, we consider the capability of the 1-skeleton of an arbitrary tetrahedron
to hold discs, and discuss in detail the dependence on the shape of the tetrahedron. Finally,
we also consider the two combinatorial types of pentahedral cages.

The related phenomenon of holding a convex body using a circle was investigated in
[2, 3, 13]. For other related results, see [9, 10, 14, 15].

For distinct x, y ∈ R3, let xy be the line through x, y and xy the line-segment from
x to y. We denote by Πxy the plane through x orthogonal to xy, and by Π+

xy the closed
half-space not containing y, determined by Πxy .

For M ⊂ R3, M denotes its affine hull, intM and bdM denote its interior and bound-
ary in the topology of M , and diamM = supx,y∈M ‖x − y‖. A line-segment xy with
{x, y} ⊂M and ‖x− y‖ = diamM is called a diameter of M . Also, convM denotes the
intersection of all convex sets including M .

For x1, x2, . . . , xk ∈ R3, x1x2 · · ·xk means conv{x1, x2, . . . , xk}. For non-collinear
elements x, y, z ∈ R3, let C(xyz) ⊂ xyz be the circle passing through x, y, z, and let oxyz
be its centre. Put D(xyz) = convC(xyz). We denote by x̂yz the angle of xyz at y, and
by ∠xyz its measure.

A face of a cage G is a 2-dimensional face of the polytope convG.
The d-dimensional compact unit ball (centred at 0) is Bd, and bdBd = Sd−1 (d ≥ 2).
Also, we denote by λ the 1-dimensional Hausdorff measure (length).

Problem 1.1. Let G(K) be the space of all cages in R3 holding the compact set K. Deter-
mine

L(K) = inf
G∈G(K)

λG,

for various sets K.

This problem, in line with the work of Coxeter, Besicovitch, Aberth and Valette, will
not be addressed in this paper, but in [8].

For any cage G, let D(G) be the space of all discs held by G, endowed with the
Pompeiu-Hausdorff metric.

Let Dr(G) be the set of all discs in D(G) of radius at least r. (Notice that the term
“radius” is used for both the distance and the line-segment from the centre to a point of the
relative boundary.) Assume that, for some component E of Dr(G) and any number s > r,
Ds(G)∩E is connected or empty. We call such a component E an end-component ofD(G).
If n is the maximal number of pairwise disjoint end-components of D(G), we say that G
holds n discs.

In fact, intuitively, G does not hold n pairwise disjoint discs simultaneously; merely
there are n different positions at which, separately, a disc can be held.

Let the component E of Dr(G) be an end-component of D(G). Put σ(E) = sup{s :
Ds(G) ∩ E 6= ∅}. Choose an increasing sequence {sn}∞n=1 of real numbers satisfying
sn > r and limn→∞ sn = σ(E). Consider a disc Dn ∈ Dsn(G) for each n.

If {Dn}∞n=1 converges to some disc D(E) independent of the choice of the numbers
sn and discs Dn, we call D(E) the limit disc of E . Several end-components may have the
same limit disc.



L. Yuan and T. Zamfirescu: Tetrahedral and pentahedral cages for discs 257

If the limit disc of an end-component E lies in the plane of a face F of convG, we say
that G holds a disc at the face F . For each end-component, we have a disc held, even if the
limit discs coincide. So, a cage may hold several discs at the same face. Also, if a face F
is not triangular, several distinct limit discs can be coplanar with F .

Inspired by an earlier version of the present paper, Montejano and Zamfirescu [11]
raised the following questions.

Problem 1.2. Does a cage holding 7 discs exist?

Problem 1.3. How many discs can be held by a pentahedral cage?

We give here an affirmative answer to Problem 1.2, establish the precise minimum and
find a lower bound for the maximum number of discs that a pentahedral cage can hold.

For a cage which is not tetrahedral it is possible that a disc is held, but not at a face. Such
a case we shall meet for a pentahedral cage admitting a limit disc (of some end-component)
circumscribed to a triangle which is not a face of the pentahedron, but has vertices among
those of the cage. For arbitrary polyhedral cages even the following is possible.

Proposition 1.4. There exist cages G admitting a limit disc not coplanar with any vertex
of convG.

Proof. Consider a regular icosagon ∆ = a1a2 · · · a20 ⊂ H inscribed in S1, where H =
{(x, y, z) : z = 0} and S1 is the unit circle in H . Let ε > 0 and τ = (0, 0, ε). Let ν > 0.

Put

bi =

{
(1 + ν)ai + τ for i 6≡ 3 (mod 4)

(1− ν)ai + τ for i ≡ 3 (mod 4)

and

ci =

{
(1 + ν)ai − τ for i 6≡ 1 (mod 4)

(1− ν)ai − τ for i ≡ 1 (mod 4).

For ν small enough, ∆b = b1b2 · · · b20 and ∆c = c1c2 · · · c20 are convex icosagons.
The polytope P = conv(∆b ∪∆c) has 42 faces including ∆b and ∆c. We claim that B2 is
a limit disc of cage(P ).

Indeed, note that the circle S1 meets cage(P ) at the vertices a1, a3, . . . , a19 of ∆ only.
Assume that some unit disc D distinct from B2 but close to it satisfies cage(P )∩ intD =
∅. Let the ellipse E be the orthogonal projection of D onto H and let xy be the long axis
of E (or any diameter if E is a circle). Since ‖x − y‖ = 2, one of these end-points, say
x, is on S1 or outside B2. Let x′, y′ be the points of D with projections x, y, respectively.
Since x′y′ is parallel to H , it is included in (at least) one of the half-spaces

H+ = {(x, y, z) : z ≥ 0}, H− = {(x, y, z) : z ≤ 0}.

Suppose without loss of generality that x′y′ ⊂ H−. Then, at least one of the half-discs of
D determined by x′y′, say D′, entirely lies in H−.

The intersection {x∗} = 0x ∩ S1 lies on S1 between two consecutive vertices of the
regular pentagon a1a5a9a13a17, or coincides with one of them, say x∗ ∈ â1a5. Therefore,
since D 6= B2, D′ cuts either a1c1 or a5c5, which yields intD ∩ cage(P ) 6= ∅, and this
contradicts our assumption.
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2 Tetrahedral cages
Consider a regular tetrahedron. If its edge-length is 1, then the circle circumscribed to a face
has radius 1/

√
3. So, a slightly enlarged tetrahedral cage T will hold the disc (1/

√
3)B2.

Clearly, at each face there is such a disc.
In fact there are many discs close to (1/

√
3)B2, held by T, lying in the same component

of D(1/
√
3)(T ). The space D(1/

√
3)(T ) has 4 components analogous to the component of

(1/
√

3)B2, one corresponding to each face of T . The limit disc of each component is the
disc circumscribed to the respective face.

The following lemma is easily verified by the reader.

Lemma 2.1. If a polytopal cage holds a disc at some triangular face, then that triangle is
acute.

A face being an acute triangle is, however, no guarantee that the disc described above
(lying over the face) is held there. Whether it can move away from that face or not, obvi-
ously depends on the angle between the edges of the polytope adjacent but not belonging
to that face and the corresponding radii of the circumscribed circle of the face.

Lemma 2.2. If a face of a tetrahedral cage is an acute triangle, then at least one disc is
held at that face.

Proof. Let abc be the given acute face, and o the centre ofC(abc). Consider the half-spaces
Π+
ao, Π+

bo, Π+
co. As the intersection of these half-spaces is void, there is no point x ∈ R3

for which all angles x̂ao, x̂bo, x̂co are non-acute. Assume ∠dao < π/2. Now take a disc
(slightly smaller thanD(abc)) over ab and ac, but below bc (see Figure 1). This disc is held
by the cage.

�

�

�

�

�

Figure 1: Cage holding a disc.

Lemma 2.3. If a tetrahedral cage has an acute face, then it has one, two, or four discs
held at that face.

Proof. Keep the notation of the preceding proof. The kind of disc held by the cage in the
previous proof requires an angle like d̂ao to be acute. The existence of a second such angle,
say d̂bo, provides a second such disc. If at least one such angle, say d̂co, is not acute, then
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any disc lying over the face abc can move away from the face. If all three angles d̂ao,
d̂bo, d̂co are acute, then not only the three discs partly lying below some edge of abc are
held, but also the disc lying completely over the face abc, whence the conclusion of the
lemma.

Theorem 2.4. The regular tetrahedral cage holds 16 discs.

Proof. The last case of the proof of Lemma 2.3 applies at all faces. By Proposition 2.5
below, there is no other disc held by the cage.

Tetrahedral cages cannot display the situation in Proposition 1.4.

Proposition 2.5 (Fruchard [7]). In any tetrahedral cage, each limit disc is at some face.

With the author’s permission, we reproduce here his proof, for the reader’s convenience.

Proof. Let abcd be a non-degenerate tetrahedron, G = cage(abcd), and assume D is a
limit disc which is not at a face. To fix ideas, we assume that D is the unit disc B2 in the
horizontal plane H = {(x, y, z) : z = 0} of R3.

It is an easy task to exclude that some vertex of G lies in the plane of D. Furthermore,
it is easily seen that D meets four edges of G, say ab, bc, cd, and da, with a and c above
D, and b and d below D. Two of these edges have to pass above D and two below, and
they must alternate, say ab and cd above, bc and da below. Let e ∈ ab ∩D, f ∈ bc ∩D,
g ∈ cd ∩D, and h ∈ da ∩D, see Figure 2.
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Figure 2: Proof of Proposition 2.5.

Let a′, b′, c′ and d′ be the orthogonal projections of a, b, c, d on H . Then, we have

‖a′ − e‖
‖b′ − e‖

=
‖a− e‖
‖b− e‖

=
za
|zb|

,

where za is the third coordinate of a. Using the analogous formulae for the other three
sides of the quadrilateral a′b′c′d′, we obtain

‖a′ − e‖
‖b′ − e‖

‖b′ − f‖
‖c′ − f‖

‖c′ − g‖
‖d′ − g‖

‖d′ − h‖
‖a′ − h‖

=
za
|zb|
|zb|
zc

zc
|zd|
|zd|
za

= 1. (2.1)



260 Ars Math. Contemp. 17 (2019) 255–270

As we show below, this is impossible. From a′, draw the two tangent lines to D, T
toward b and T ′ toward d. Let e′ ∈ T ∩D (hence on the same side as e) and h′ ∈ T ′ ∩D.
Because ab is above D, we have ‖a− e‖ > ‖a′ − e′‖; in the same manner, da is below D,
hence ‖a′ − h‖ < ‖a′ − h′‖. Then, ‖a′ − e′‖ = ‖a′ − h′‖ implies ‖a

′−e‖
‖a′−h‖ > 1. Similarly,

one has ‖b
′−f‖
‖b′−e‖ , ‖c

′−g‖
‖c′−f‖ and ‖d

′−h‖
‖d′−g‖ all larger than 1, contradicting equation (2.1).

Lemma 2.6. If, for a, b, c, x, o ∈ R3, ∠axb ≤ π/2, ∠cxa < π/2 and o lies in the relative
interior of bxc, then ∠axo < π/2.

The proof (using for example the basic properties of the scalar product) is left to the
reader.

Theorem 2.7. There are tetrahedral cages holding exactly n discs, for every n ≤ 16 except
for n ∈ {7, 9, 11, 13, 14, 15}, and there is no such cage for any other n.

Proof. Separately, every number n of held discs can be realized at a face, if n ∈ {0, 1, 2, 4},
by Lemma 2.3. We have to show that a global realization is possible, for each of the n’s
from the statement. Moreover, we must show the impossibility of a realization in all other
cases.

We keep in mind that limit discs can only be at faces, by Proposition 2.5.
Throughout this proof, o will denote the centre of C(abc).

Case n = 0: Take the face abc to have an obtuse angle at a, take a point d′ in the relative
interior of its height at a, and consider a point d close to d′ and having d′ as orthogonal
projection on abc. Then the tetrahedral cage cage(abcd) has all faces obtuse. Now use
Lemma 2.1.

Case n = 1: Take now the face abc to be an acute triangle and consider o. For any point

d ∈ Π+
ao ∩Π+

ba \ abc,

the triangles abd, bcd, cad are obtuse or right. See Figure 3.

Figure 3: Case n = 1.

Moreover, only one of the angles ôad, ôbd, ôcd is acute, namely the latter. Thus,
cage(abcd) holds exactly one disc (at the face abc), as described in the proof of Lemma 2.2.

Case n = 2: Let again abc be acute, and choose

d ∈ Π+
ac ∩Π+

ba \ (Π+
ao ∪ abc).
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In this way abd, bcd, cad are still non-acute, but now precisely two of the angles ôad, ôbd,
ôcd are acute, namely the first and the last (see Figure 4). Thus, two discs are held, both at
the face abc.

Figure 4: Case n = 2.

Case n = 3: Take abc acute, as before. Choose

d ∈ Π+
ac ∩Π+

bo \ (Π+
ba ∪Π+

ao ∪ abc).

Now, the triangles bcd and cad are non-acute, while the triangles abc and abd are acute.
See Figure 5.

Figure 5: Case n = 3.

Regarding abc, ∠oad < π/2, ∠obd ≥ π/2, ∠ocd < π/2, whence two discs are held
at abc.

Regarding abd, let {d′} = Πao ∩ Πba ∩ abc, and denote by m the midpoint of ad′.
Then ∠oam = ∠obm = π/2. Hence, ∠cam > π/2 and ∠cbm > π/2. If d is chosen close
to d′ (and in the already assigned region), then the centre o′ of C(abd) is close to m, and
we also have ∠cao′ > π/2 and ∠cbo′ > π/2. Doubtlessly ∠cdo′ < π/2, whence there is
precisely one disc held by cage(abcd) at abd.

Case n = 4: Let the face abc be an equilateral triangle of centre o. Choose d /∈ abc close
to o. Thus, the triangles dab, dbc and dca are obtuse. See Figure 6. By Lemma 2.1, no disc
is held at any of the faces dab, dbc, dca.

Since ∠oad, ∠obd and ∠ocd are close to 0, cage(abcd) holds exactly 4 discs at abc (see
the proof of Lemma 2.3).
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cb

o

a

Figure 6: Case n = 4.

Case n = 5: Let a′bec be a square. Choose a, d′ ∈ a′e such that a, a′, e, d′ lie in this
order on their line, with ‖a− a′‖ small and ‖e− d′‖ = ‖b− e‖. See Figure 7. Then

∠abe = ∠ace > π/2 and ∠obd′ = ∠ocd′ < π/2.

d'

a'

e

cb

a

o

Figure 7: Case n = 5.

Rotate slightly d′ about bc up to a new position d. Then still

∠abo′ = ∠aco′ > π/2 and ∠obd = ∠ocd < π/2,

where o′ is the centre of C(bcd).
Also, notice that ∠ado′ and ∠oad are small.
The triangles abc and bcd are acute, abd and acd obtuse. The inequalities above imply

that one disc is held by cage(abcd) at bcd, and four discs at abc.

Case n = 6: Take an equilateral triangle abc, and choose a′ ∈ ao such that ∠ba′c < π/2.
Let d ∈ R3 \ abc be close to a′, such that a′ is its orthogonal projection on abc. Then 4
discs are held at abc and 2 discs at bcd (see the proof of Lemma 2.3).

Case n ∈ {7, 9, 11, 13}: By Lemma 2.3, in order to obtain exactly 7 discs held by
cage(abcd), there are 3 possibilities for the number of discs held at each face: 2, 2, 2, 1,
or 4, 1, 1, 1, or 4, 2, 1, 0.
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To obtain exactly 9 discs held by cage(abcd), there are 2 possibilities for the number
of discs held at each face: 4, 2, 2, 1, or 4, 4, 1, 0.

To obtain exactly 11 discs held, there is just one possibility for the number of discs held
at each face: 4, 4, 2, 1.

Similarly for 13 discs held: 4, 4, 4, 1.
In each of these 7 scenarios, there exists a face at which exactly one disc is held and at

most one face at which no disc is held. We prove this to be impossible to realize.
Suppose it is realized. Then at most one of the 12 angles (of the 4 triangles), say âcd, is

non-acute. Consequently, the triangles abc, bcd and abd are acute, and all angles at a, b, d
are acute, too.

By Lemma 2.6, ∠oad < π/2 and ∠obd < π/2; thus, at least two discs are held at abc.
Similarly, at least two discs are held at bcd. At abd exactly four discs are held, as all cage
angles at a, b, d are acute.

Now, if acd is not acute, no disc is held there. If acd is acute, then each face behaves
like abd, i.e. 4 discs are held at each face. Hence, at no face exactly one disc is held.

Case n = 8: Take two coplanar equilateral triangles abc and bcd′, and then slightly rotate
the latter about bc to reach a new position bcd. Then the angles oad, obd and ocd are acute,
whence cage(abcd) holds 4 discs at abc. By symmetry, it also holds 4 discs at bcd. As abd
and acd are obtuse triangles, there are no further discs held by cage(abcd).

Case n = 10: Let the triangle abc be equilateral, and d′ be close to a, such that ‖a− c‖ =
‖c − d′‖ and ac ∩ od′ 6= ∅. Let o′ be the centre of C(bcd′), and o′′ the centre of C(acd′).
(See Figure 8.)

��

��
�

���

��
�

Figure 8: Case n = 10.

Clearly,

∠d′ao > π/2, ∠d′bo < π/2, ∠d′co < π/2.

Also,

∠ad′o′ < π/2, ∠abo′ < π/2, ∠aco′ < π/2

and

∠bao′′ < π/2, ∠bco′′ < π/2, ∠bd′o′′ < π/2.

By rotating a little d′ about ac, the above angles don’t change much, and the inequalities
remain valid. Let d be the new position of d′. So, there are 4 discs held at bcd, 4 at acd,
just 2 at abc, and none at abd, as ∠bad > π/2.
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Case n = 12: Let cage(abcd) have three acute triangular faces and a right triangle abc as
fourth face, with ∠bac = π/2. By Lemma 2.6,

∠bao < π/2, ∠bco < π/2, ∠bdo < π/2,

whence 4 discs are held at cda. Analogously, abcd holds 4 discs at each of the faces dab,
bcd. Of course, no disc is held at abc.

Case n = 14: Suppose cage(abcd) holds 4, 4, 4, 2 discs at the four faces, which is the only
possibility of reaching the total number of 14. Then all triangles are acute. By Lemma 2.6,
∠oad < π/2, ∠obd < π/2, ∠ocd < π/2, whence there are 4 discs held at abc. This
applies to every face. Hence, at no face the number of discs held is 2.

Case n = 15: Impossible as sum of four integers from {0, 1, 2, 4}.

Case n = 16: The regular tetrahedron realizes this, see Theorem 2.4.

If we briefly say that the cage G holds n unit discs, this means that G holds n discs, i.e.
the maximal number of pairwise disjoint end-components is n, and σ(E) does not depend
on the chosen end-component E .

One may ask the question: how many unit discs can a tetrahedral cage hold? We shall
not deepen this question here, only make some remarks.

Trivially, by Theorem 2.7, there is a cage holding 1 unit disc.
In the proof for n = 2, both discs held by the cage were at the same face, so they had

the same size. Similarly, Theorem 2.4 shows that the regular tetrahedral cage holds 16 unit
discs.

The proof for n = 3 provides two discs of same size, and a third disc of a possibly
different size. A more concrete construction is needed. We do this here, using the notation
from the proof of Theorem 2.7, case n = 3.

The acute triangle abc will be taken such that ∠acb = π
4 , which implies ∠oab =

∠oba = π/4. Now, the two circles C(abc) and C(abd′) are congruent.
Let Θ be the torus obtained by rotating C(abd′) about ab. By choosing d ∈ Θ \ (Π+

ba ∪
Π+
ao ∪ abc), still close to d′, we get C(abd) and C(abc) congruent.

For the regular tetrahedral cage T of unit side-length, any disc held has radius at
least 1/2.

Altogether T holds 16 discs, by Theorem 2.7. In fact, for any r ∈ [3
√

2/8,
√

3/3],
Dr(T ) has 16 components. What happens for smaller r?

Theorem 2.8. Let T be the regular tetrahedral cage of unit side-length. For any r ∈
[1/2, 3

√
2/8], Dr(T ) has 4 components.

Proof. A disc D in Dr(T ) above abc can be rotated about an axis parallel and close to ab
without meeting cd until it reaches a position close to abd, above ad and bd, but below ab
(seeing now abd as horizontal, with T above it).

The rotation of the discD can also be performed about an axis close to bc, or bd, and so
we obtain a third and a fourth disc in the same component as D. This means that a group
of 4 discs held by T among the 16 analogous to those mentioned in Theorem 2.4 belong to
the same component of Dr(T ). As we have 4 such groups, the conclusion of the theorem
follows.

Theorem 2.8 provides illuminating examples of components which are not end-compo-
nents of D(T ).
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3 Pentahedral cages
The convex pentahedra are of two combinatorial types: the pyramid over a quadrilateral
and the triangular prism. We do not aim at finding all possible numbers of discs which can
be held by pentahedral cages, as we did for tetrahedra. We restrict the otherwise lengthy
analysis to the most interesting problem about the maximal number of discs which can be
held.

We start with the question: How many discs can a pentahedral cage hold at a face? We
know the answer if the face is triangular by adapting the analysis from the tetrahedral case
to this new situation: 0, 1, 2, or 4. This is seen like in Lemma 2.3, with the difference that
the case of 0 discs may now occur, even if the triangle is acute. For our pentahedra we need
the answer for quadrilateral faces, too.

Let Q = abcd be a quadrilateral (bottom) face of a polytope P , and assume that each
vertex of Q has degree 3 in P . (This is so in pentahedra.) Each diagonal of Q divides it
into two triangles. These four triangles cannot all be acute, at least one must be non-acute.
Let a′ be the vertex of P , neighbour of a, different from b, d. Also, consider the analogous
vertices b′, c′, d′. (Some of these vertices may coincide.)

An exhaustive investigation would have to consider several cases. But this is not our
intention. As an example, we treat the case when a, b, c, d are cocyclic. Assume abc and
abd are acute. Obviously, both d ∈ D(abc), c ∈ D(abd). Moreover, the inequalities
∠daoabc < π/2, ∠dboabc < π/2 and ∠dcoabc < π/2 are satisfied. Thus, if all inequalities
∠a′aoabc < π/2, ∠b′boabc < π/2, ∠c′coabc < π/2 are valid, then a disc can be held over
ab, bc, cd, and da, or over 3 of them and under the fourth, or over ab, bc and under cd, da,
or over da, ab and under bc, cd, which gives 7 possibilities in total.

In case a, b, c, d are not cocyclic, more discs can be held at Q.

Lemma 3.1. If the triangles abc, abd, bcd and the angles

âdobcd, ĉdoabd, â′aoabd, â′aoabc, b̂′boabd,

b̂′bobcd, ĉ′coabc, ĉ′cobcd, d̂′doabd, d̂′dobcd,

are all acute, then 13 discs are held at Q = abcd.

Proof. First of all, by Lemma 2.6, ∠b′boabd < π/2 and ∠b′bobcd < π/2 imply
∠b′boabc < π/2.

Now, considering abd, a disc is held above all four edges, another one is held under
ab and above the other three, yet another disc under ad and above all others, a fourth disc
under bc and cd and above ab and da, a fifth under bc and above all others, and a sixth
under cd and above the remaining edges.

Analogously, considering bcd, we find other six discs held.
Moreover, considering abc, one more disc is held, namely under cd and da and above

ab and bc.

Lemma 3.2. There are maximally 13 discs held at abcd.

Proof. It is quickly seen that, in all other cases concerning the angles mentioned at Lem-
ma 3.1, the number of discs held is smaller than 13.

In conclusion, at any quadrilateral face of a polytopal cage, at most 13 discs can be
held, and this only if several angle inequalities are satisfied. If the polytope is a prism, the
following holds.
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Lemma 3.3. Let abca∗b∗c∗ be a prism. If abb∗a∗ has three acute angles close to π/2,
and if, moreover, the angles ̂caoaba∗ , ĉboaba∗ , ̂c∗a∗oaba∗ , regarding aba∗, are acute, and
all analogous angles regarding bb∗a∗, aa∗b∗, abb∗, are also acute, then the prism holds 13
discs at abb∗a∗.

Proof. Indeed, all angle conditions required in Lemma 3.1 are satisfied. The condition that
the angles of abb∗a∗ be close to π/2 is needed since it implies that abb∗a∗ is close to a
rectangle, from which ∠b∗boabb∗ < π/2 and all other analogous inequalities follow.

A pentahedral cage, in contrast to a tetrahedral one, can hold discs not only at faces.
Consider the pyramid P = abcde with apex e and a quadrilateral face abcd. If the

triangle ace is acute, the capability of cage(P ) to hold a disc there depends on the angles
∠baoace, ∠daoace, ∠bcoace, ∠dcoace, ∠beoace, ∠deoace. If all of them are smaller than
π/2, then the pyramid holds 4 discs at ace, one on each side of ace, and two crossing ace.
Here, holding a disc at ace means, in analogy to holding a disc at a face, that a certain limit
disc lies in ace (and is, in fact, circumscribed to ace). If ace is not acute, cage(P ) cannot
hold any disc there.

Adding the at most 4 discs held at bde, we obtain a maximum of 8 held discs, which
traverse the pyramid.

A (combinatorial) prism abca∗b∗c∗ with faces abc, a∗b∗c∗, abb∗a∗, bcc∗b∗, caa∗c∗,
may also hold discs at abc∗ and at the other 5 analogous triangles. In order to hold any disc
at abc∗, we must have ∠cc∗oabc∗ < π/2 and at least one of the inequalities ∠a∗coab∗ <
π/2, ∠b∗coabc∗ < π/2. Now, if this happens, we have a held disc “separating” ab from c if
∠caoabc∗ < π/2 and ∠cboabc∗ < π/2, and a similar held disc “separating” ab from a∗b∗

if ∠a∗aoabc∗ < π/2 and ∠b∗boabc∗ < π/2. This amounts to a maximum of 2 discs held
at abc∗.

In particular, the following holds.

Lemma 3.4. If the prism P is close to a long right regular one, then cage(P ) holds 2 discs
at abc∗ and at each of the other 5 analogous places.

Moreover, Proposition 1.4 warns that there might exist limit discs not coplanar with any
three vertices of the cage. Consequently, let us say that a cage G holds n standard discs if
all corresponding end-components have limit discs coplanar with at least three vertices of
convG.

Thus, if P is a pyramid, the total number of standard discs held by cage(P ) would
become at most 37, and if it is a prism at most 59. Can these numbers be realized? Is it 59
the true maximum for all pentahedra?

But, first, let us solve Problem 1.2.

Theorem 3.5. There exists a pentahedral cage holding exactly 7 discs.

Proof. Let Q = abcd be a rectangle, of centre o, such that the triangles abo and cdo be
equilateral. Let m be the centre of abo. Close to m choose a point e /∈ abc, whose
orthogonal projection on abc is m. Put o′ = ocde. See Figure 9.

We show that, for the pyramid P = eabcd, cage(P ) holds 7 discs.
Indeed, notice that the triangles abm, bcm, and dam are obtuse. So, besides the rect-

angle Q, P has four triangular faces, of which only cde is acute. Since ∠aeo′ > π/2,
∠beo′ > π/2, ∠bco′ < π/2, ∠ado′ < π/2, P holds 2 discs at cde.
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Figure 9: Cage holding 7 discs.

For the face Q, the relevant angles satisfy ∠eao = ∠ebo < π/2 and ∠eco = ∠edo <
π/2. Hence, above all edges of Q our cage holds 1 disc, while above any three of its edges
and under the fourth it also holds a disc. Above any two consecutive edges of Q, but under
the remaining two, cage(P ) holds no disc. Hence, it holds 5 discs at Q.

The two triangles eac and ebd traversing P are both obtuse, so no disc can be held at
any of them. Clearly, there are no non-standard discs held.

In conclusion, altogether cage(P ) holds 7 discs, as stated.

We now establish the exact minimum for the number of discs and the exact maximum
for the number of standard discs that a pentahedral cage can hold.

Three parallel lines in R3 determine an unbounded closed prism P having 3 strips as
sides. If a triangle ∆ ⊂ R3 has its vertices on the sides of P , we say that P is associated
with ∆.

We shall make use of the following simple, but powerful, result.

Proposition 3.6 (Chevallier, Fruchard [5]). For any (bounded) combinatorial prism with
triangular faces ∆ and ∆′, it is impossible that ∆ lies in the interior of a prism associated
with ∆′, and ∆′ lies in the interior of a prism associated with ∆.

For the reader’s convenience, we give here a short proof.

Proof. Assume that ∆ = abc lies in the interior of a prism P associated with ∆′ = a′b′c′.
As ∆∩∆′ = ∅, the triangle ∆ entirely lies in one component P+ of P \ a′b′c′. Thus, aa′,
bb′, cc′ meet in some point z ∈ P+. This determines the order z, a, a′ on aa′. Analogously,
the assumption that ∆′ lies in the interior of a prism associated with ∆ implies the order
z, a′, a on aa′. But both orders cannot coexist.

Lemma 3.7. For no prism P , cage(P ) can hold more than 6 discs at its triangular faces
together.

Proof. Take the prism P = abca∗b∗c∗. We use Lemma 2.3 and its proof. We have
∠a∗aoabc < π/2 if and only if a∗ /∈ H+

aoabc
, Hence, â∗aoabc, b̂∗boabc, ĉ∗coabc are all

acute if and only if a∗ belongs to the complement of H+
aoabc

∪ H+
boabc

∪ H+
coabc

, which is
the interior of a certain prism associated with abc. In order for cage(abca∗b∗c∗) to hold 4
discs at each of its two triangular faces, all vertices of each of them must lie in the inte-
rior of a prism associated with the other. But this is forbidden by Proposition 3.6. So, by
Lemma 2.3 (adapted to our needs), cage(P ) cannot hold more than 6 discs at its triangular
faces together.
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Theorem 3.8. A pentahedral cage can hold at least 0 and at most 57 standard discs. Both
bounds are attained.

Proof. To prove that a pentahedral cage may hold no standard disc, take a trapezoid having
all four triangles determined by their diagonals obtuse. A prism with such trapezoids as
quadrilateral faces and with two obtuse triangles as remaining faces holds no disc, see
Figure 10.

Figure 10: Cage holding no discs.

We now build a prism the cage of which holds 57 standard discs. Consider a long right
regular prism abca∗b∗c∗ (with aa∗, bb∗, cc∗ parallel).

Choose a1 ∈ aa∗ close to a and c1 ∈ cc∗ close to c, satisfying

2‖a− a1‖ < ‖c− c1‖.

Choose a∗1 close to a∗, b∗1 close to b∗ and c∗1 close to c∗, such that a∗ ∈ a∗1oa∗b∗c∗ ,
b∗ ∈ b∗1oa∗b∗c∗ , c∗ ∈ c∗1oa∗b∗c∗ , and

‖a∗ − a∗1‖ = ‖b∗ − b∗1‖ = ‖c∗ − c∗1‖ = ε.

See Figure 11. Also, put {a′} = aa∗1 ∩ a1bc1 and {c′} = cc∗1 ∩ a1bc1.
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Figure 11: Cage holding 57 discs.
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If ε is small enough, then the three quadrilateral faces a′bb∗1a
∗
1, bc′c∗1b

∗
1, c′a′a∗1c

∗
1, have

obtuse angles at a′, c′, c′, respectively, and acute angles at all other vertices.
All angles analogous to ̂abobb∗c∗ are acute, so they remain acute after the small changes

done to abca∗b∗c∗. Thus, by Lemma 3.3, there are 13 discs held at each quadrilateral face.
Passing now to the two triangular faces, we immediately see that all angles ̂a′a∗1oa∗1b∗1c∗1 ,

̂bb∗1oa∗1b∗1c∗1 , ̂c′c∗1oa∗1b∗1c∗1 , are acute.
Concerning a′bc′, ∠b∗ba1 < π/2 and ∠b∗bc1 < π/2 imply ∠b∗boa1bc1 < π/2. There-

fore, the next moves being gentle enough, ∠b∗1boa′bc′ < π/2 too.
The inequality 2‖a − a1‖ < ‖c − c1‖ yields ∠a∗a1oa1bc1 < π/2. Again, this can be

preserved, and ∠a∗1a
′oa′bc′ < π/2. Now, adapting part of the proof of Lemma 2.3, we

see that at least two discs are held at a′bc′. Hence, by Lemma 2.3 (see its proof) and by
Lemma 3.7, our cage holds 13 discs at each of its quadrilateral faces, 4 discs at a∗1b

∗
1c
∗
1, and

2 discs at a′bc′.
Concerning the discs traversing the prism, the maximum number (of 12) is reached, by

Lemma 3.4.
Thus, our cage holds 57 standard discs. By Lemmas 3.2 and 3.7, it cannot hold more

than these 57. The proof is finished.

Theorem 3.8 does not prove that 57 is the maximal number of discs that a pentahedral
cage can hold. We miss an analogue of Proposition 2.5 for pentahedra. Examples that the
referee kindly provided suggest that such an analogue may not exist. Thus, we remain with
the following.

Problem 3.9. What is the maximal number of discs that a pentahedral cage can hold?
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Abstract

The p-th power of the logarithm of the Catalan generating function is computed using
the Stirling cycle numbers. Instead of Stirling numbers, one may write this generating
function in terms of higher order harmonic numbers.
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1 Introduction
Knuth [6, 7] proposed the exciting formula

(logC(z))2 =
∑
n≥1

(
2n

n

)
(H2n−1 −Hn)

zn

n
,

where

C(z) =
1−
√
1− 4z

2z
=
∑
n≥0

1

n+ 1

(
2n

n

)
zn (1.1)

and
Hn =

∑
1≤k≤n

1

k

with the generating function of Catalan numbers and harmonic numbers.
This formula was recently extended by Chu [1] to general exponents p. Chu’s approach

is based on the use of (exponential) Bell polynomials. Note that Knuth talked about the
exponent 1 in his Christmas lecture from 2014 [5].

E-mail address: hproding@sun.ac.za (Helmut Prodinger)
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We present here a very simple approach to this question using Stirling cycle numbers;
recall [3] that they transform falling powers into ordinary powers viz.

xn =
∑

0≤k≤n

[
n

k

]
(−1)n−kxk.

For the readers’ convenience it is mentioned that the numbers
[
n
k

]
(−1)n−k appear often in

the older literature as s(n, k) and are then denoted as Stirling numbers of the first kind.

2 The expansion of the p-th power
The substitution z = u

(1+u)2 was presented in [2] and it is extremely useful when dealing
with Catalan numbers and Catalan statistics. Using it in (1.1), we get C(z) = 1 + u, and,
by the Lagrange inversion formula [8],

um =
∑
n≥m

m

n

(
2n

n−m

)
zn

for m ≥ 1. For m = 0 the formula is still true when taking a limit. We now consider the
bivariate generating function

F (z, α) =
∑
p≥0

αp

p!
(logC(z))p = exp(α logC(z))

= Cα(z) = (1 + u)α =
∑
m≥0

(
α

m

)
um.

But (
α

m

)
=

1

m!
αm =

1

m!

∑
0≤k≤m

(−1)m−k
[
m

k

]
αk.

Therefore

F (z, α) =
∑

0≤k≤m≤n

1

m!
(−1)m−k

[
m

k

]
αk
m

n

(
2n

n−m

)
zn.

The desired formula follows from reading off coefficients of αp:

(logC(z))p = p![αp]F (z, α) =
∑

p≤m≤n

p!

m!
(−1)m−p

[
m

p

]
m

n

(
2n

n−m

)
zn. (2.1)

3 Special cases
For p = 1 in equation (2.1), we get the instance of the Christmas lecture:

logC(z) = [α1]F (z, α) =
∑

1≤m≤n

1

m!
(−1)m−1

[
m

1

]
m

n

(
2n

n−m

)
zn.

Since
[
m
1

]
= (m− 1)!, this leads to

logC(z) = [α1]F (z, α) =
1

2

∑
n≥1

1

n

(
2n

n

)
zn.
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Now we turn to the instance p = 2 from [6, 7]. (Note that
[
m
2

]
= (m − 1)!Hm−1.)

Equation (2.1) leads to

2[α2]F (z, α) =
∑

2≤m≤n

2

m!
(−1)m

[
m

2

]
m

n

(
2n

n−m

)
zn

= 2
∑

2≤m≤n

Hm−1(−1)m
1

n

(
2n

n−m

)
zn

= 2
∑

1≤j<m≤n

1

j
(−1)m 1

n

(
2n

n−m

)
zn

= 2
∑

1≤j<n

1

j
(−1)j−1 1

n

(
2n− 1

n− j − 1

)
zn.

In the last step we used the formula

∑
j<m≤n

(−1)m
(

2n

n−m

)
= (−1)j−1

(
2n− 1

n− j − 1

)
,

which is a standard summation for binomial coefficients [3].
To obtain the form proposed by Knuth, we still need to prove that(

2n

n

)
(H2n−1 −Hn) = 2

∑
1≤j<n

(−1)j−1

j

(
2n− 1

n− j − 1

)
.

Modern computer algebra systems readily simplify the difference of these two sides to 0,
as expected.

4 Connection with harmonic numbers — the general case
In [4], there is the general formula

1

n!

[
n+ 1

r + 1

]
= (−1)r

∑
{r}

l∏
j=1

(−1)ij
ij !

(
H

(rj)
n

rj

)ij
.

Here, the sum is over all partitions of r:

r = i1r1 + · · ·+ ilrl,

with parts r1 > · · · > rl ≥ 1 and positive integers i1, . . . , il. As an example, the partitions
of r = 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, written alternatively as 1 ·4, 1 ·3+1 ·1,
2 · 2, 1 · 2 + 2 · 1, 4 · 1.

There appear higher order harmonic numbers as well:

H(i)
n =

∑
1≤k≤n

1

ki
.
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Here are the first few instances:

1

n!

[
n+ 1

2

]
= Hn,

1

n!

[
n+ 1

3

]
= −1

2
H(2)
n +

1

2
H2
n,

1

n!

[
n+ 1

4

]
=

1

3
H(3)
n −

1

2
H(2)
n Hn +

1

6
H3
n,

1

n!

[
n+ 1

5

]
= −1

4
H(4)
n +

1

3
H(3)
n Hn +

1

8

(
H(2)
n

)2 − 1

4
H(2)
n H2

n +
1

24
H4
n.

This allows to replace 1
(m−1)!

[
m
p

]
in

(logC(z))p =
∑

p≤m≤n

1

(m− 1)!

[
m

p

]
(−1)m−p p!

n

(
2n

n−m

)
zn

by an expression involving H(1)
m−1, . . . ,H

(p−1)
m−1 .

5 Extension
If instead of u = z(1+u)2 we work with u = z(1+u)λ, then we deal with the generating
function of extended (generalized) Catalan numbers

Cλ(z) =
∑
n≥0

(
1 + nλ

n

)
zn

1 + nλ
.

From [3], we infer that

um =
∑
n≥m

(
λn+m

n

)
m

λn+m
zn.

So

F (z, α) =
∑
p≥0

αp

p!
(logCλ(z))

p = exp(α logCλ(z)) = Cαλ (z)

= (1 + u)α =
∑
m≥0

(
α

m

)
um

=
∑

0≤k≤m≤n

1

m!
(−1)m−k

[
m

k

]
αk
(
λn+m

n

)
m

λn+m
zn.

The desired formula follows from reading off coefficients of αp:

(logCλ(z))
p = p![αp]F (z, α) =

∑
p≤m≤n

p!

m!
(−1)m−p

[
m

p

](
λn+m

n

)
m

λn+m
zn.
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Abstract

We prove several identities of the type α(n) =
∑∞
k=0 β

(
n−k(k+1)/2

2

)
. Here, the func-

tions α(n) and β(n) count partitions with certain restrictions or the number of parts in
certain partitions. Since Watson proved the identity for α(n) = Q(n), the number of parti-
tions of n into distinct parts, and β(n) = p(n), Euler’s partition function, we refer to these
identities as Watson type identities. Our work is motivated by results of G. E. Andrews
and the second author who recently discovered and proved new Euler type identities. We
provide analytic proofs and explain how one could construct bijective proofs of our results.

Keywords: Partitions, combinatorial identities, bijective combinatorics.

Math. Subj. Class.: 05C15, 05A17, 11P81, 11P84

1 Introduction
Any positive integer n can be written as a sum of one or more positive integers, i.e.,

n = λ1 + λ2 + · · ·+ λk. (1.1)

When the order of integers λi does not matter, this representation is known as an integer
partition [1] and can be rewritten as

n = m1 + 2m2 + · · ·+ nmn,

where each positive integer i appears mi times. If the order of integers λi is important,
then the representation (1.1) is known as a composition. For

λ1 > λ2 > · · · > λk,

E-mail addresses: cballant@holycross.edu (Cristina Ballantine), mircea.merca@profinfo.edu.ro (Mircea
Merca)
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we have a descending composition. In the literature, partitions are often defined as de-
scending compositions and this is also the convention used in this paper. We refer to
λ1, λ2, . . . , λk as the parts of λ and use the notation λ ` n to denote a partition of n,
i.e., a partition whose parts add up to n. We denote by `(λ) the number of parts of λ, i.e.,

`(λ) = k or `(λ) =

n∑
j=1

mj .

As usual, for a positive integer n, we denote by p(n) the number of partitions of n and we
set p(0) = 1.

In 1936, Watson [24] computed tables of the number of partitions of n into distinct parts
Q(n) and the number of partitions of n into distinct odd parts Qodd(n) up to n = 400. He
notes that his “computations were considerably simplified by the use of certain formulae
of elliptic functions in conjunction with the existing table of values of p(n), the number
of unrestricted partitions of n, up to n = 200 which was constructed by MacMahon and
published by Hardy and Ramanujan” [13] in 1918. Watson [24, p. 551] stated two identities
whose developments lead to

Q(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

2

)
(1.2)

and

Qodd(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

4

)
, (1.3)

where p(x) = 0 when x is not a nonnegative integer.
In 2016, the second author [17, Theorem 1] considered the identity (1.2) and obtained

a method to compute the values of the partition function p(n) that requires only the values
of p(k) with k 6 n/2, namely

p(n) =

bn/2c∑
k=0

∞∑
j=0

p(k)p

(
n− j(j + 1)/2

2
− k
)
. (1.4)

One year later, the identity (1.2) was used by the authors [6, Theorem 2.7] to prove the
following parity result related to sums of partition numbers and squares in arithmetic pro-
gressions. For n > 0, ∑

16k+1 square

p(n− k) ≡ 1 (mod 2)

if and only if 48n+ 1 is a square.
Recently, Fu and Tang [10] generalized Vandervelde’s bijection [23] and gave a com-

binatorial proof of the identity (1.2). A combinatorial proof of (1.3) can be found in [25]
where the author uses abacus displays which were first introduced in [14]. We remark that
[25] also refers to [16, Proposition 5.2] for a combinatorial proof of (1.2).

In this paper, motivated by these results, we investigate other identities of Watson type
(1.2). To begin, we consider a recent paper [2] in which Andrews solved a problem of Beck
and provided the following result: For all n > 1,

a1(n) = b1(n) = c1(n),

where:
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• a1(n) is the number of partitions of n in which the set of even parts has only one
element;

• b1(n) is the difference between the number of parts in all partitions of n into odd
parts and the number of parts in all partitions of n into distinct parts;

• c1(n) is the number of partitions of n in which exactly one part is repeated.

Shortly after that, inspired by Andrews’s proof of this result, the second author [19] dis-
covered and proved analytically an analogue of the identity (1.2) involving the number of
parts in partitions.

Theorem 1.1. For n > 0,

b1(n) =

∞∑
k=0

S

(
n− k(k + 1)/2

2

)
, (1.5)

where S(n) denotes the total number of parts in all partitions of n, with S(x) = 0 if x is
not a positive integer.

We remark that combinatorial proofs of a1(n) = b1(n) and c1(n) = b1(n) are given in
[4] and, as a result of a generalization, in [26]. A combinatorial proof of a generalization
of a1(n) = c1(n) was initially given in [11]. Thus, a purely combinatorial proof of Theo-
rem 1.1 follows from the combinatorial proof of either of the next two theorems which we
present in Section 3.

Theorem 1.2. Let αj(n) denote the number of partitions of n whose set of even parts
consists of the single element 2j and let Sj(n) be the number of parts equal to j in all
partitions of n. Then, for n > 0, we have

αj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
. (1.6)

Theorem 1.3. Let γj(n) denote the number of partitions of n in which exactly one part is
repeated and the repeated part is j. Then, for n > 0, we have

γj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
. (1.7)

Very recently, Andrews and the second author [3] proved that for all n > 1,

a2(n) = (−1)nb2(n) = c2(n),

where:

• a2(n) is the number of even parts in all partitions of n into distinct parts;

• b2(n) is the difference between the number of partitions of n into an odd number of
parts in which the set of even parts has only one element and the number of partitions
of n into an even number of parts in which the set of even parts has only one element;

• c2(n) is the difference between the number of partitions of n in which exactly one
part is repeated and this part is odd and the number of partitions of n in which exactly
one part is repeated and this part is even.
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Combinatorial proofs of a2(n) = c2(n) and (−1)nb2(n) = c2(n) are given by the authors
in [5]. We obtain a new analogue of the identity (1.2) which we prove both analytically and
combinatorially in Section 4.

Theorem 1.4. For n > 0,

a2(n) =

∞∑
k=0

So−e

(
n− k(k + 1)/2

2

)
, (1.8)

where So−e(n) denotes the difference between the number of odd parts and the number of
even parts in all partitions of n, with So−e(x) = 0 if x is not a positive integer.

Let S′(n) be the number of parts that appear at least once in a given partition of n,
summed over all partitions of n, i.e., S′(n) equals the number of different parts in all
partitions of n. For example, S′(5) = 12 since the number of different parts in (5), (4, 1),
(3, 2), (3, 1, 1), (2, 2, 1), (2, 1, 1, 1) and (1, 1, 1, 1, 1) is 1 + 2 + 2 + 2 + 2 + 2 + 1 =
12. The following result in partition theory has been widely attributed to Richard Stanley,
although it is a particular case of a more general result that had been established by Nathan
Fine fifteen years earlier [12]: The number of parts equal to 1 in the partitions of n is
equal to S′(n). Recently, the second author and Schmidt [20] provided a new identity
for the number of parts equal to 1 in the partitions of n involving a well-known object in
multiplicative number theory: Euler’s totient φ(n). We have the following analogue of the
identity (1.2) which we prove both analytically and combinatorially in Section 5.

Theorem 1.5. For n > 0,

E(n) =

∞∑
k=0

S′
(
n− k(k + 1)/2

2

)
,

where E(n) counts the partitions of n with exactly one even part and S′(x) = 0 if x is not
a positive integer.

Related to Theorem 1.5, we have the following result which we prove combinatorially
in Section 6.

Theorem 1.6. For n > 0,
E(n) =

∑
λ∈O(n)

l2(λ),

where O(n) is the set of all integer partitions of n into odd parts and

l2(λ) =

n∑
k=1
mk>0

blog2(mk)c.

Let S′2(n) be the number of parts equal to 2 in all partitions of n that do not contain
1 as a part. We have the following analogue of the identity (1.2) which we prove both
analytically and combinatorially in Section 7.
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Theorem 1.7. For n > 5,

Q2(n− 4) =

∞∑
k=0

S′2

(
n− k(k + 1)/2

2

)
,

where Q2(n) is the number of partitions of n into distinct parts, none being 2 and S′2(x) =
0 if x is not a positive integer.

2 Review of a combinatorial proof of (1.2)
The combinatorial proof of (1.2) is key to the combinatorial proofs of all our statements.
In [10], Fu and Tang give a beautiful bijective proof of (1.2). In this section we reformulate
their bijection in a way that is much shorter and easier to convey.

Recall that Dyson [9] defined the rank of a partition λ by r(λ) = λ1 − `(λ). The BG-
rank of λ = (λ1, λ2, . . . , λ`(λ)), denoted by rbg(λ), is defined in [7] as the excess in the
number of odd-indexed odd parts over the number of even-indexed odd parts of λ, i.e.,

rbg(λ) =

`(λ)∑
j=1

(−1)j+1 par(λj),

where par(m) = 1 if m is odd and 0, otherwise.
Start with a partition λ with distinct parts and consider the shifted Young diagram of λ,

i.e., the Young diagram in which row i is shifted i boxes to the right, i = 1, 2, . . . , `(λ).
Remove the first `(λ) columns of the shifted diagram and denote the conjugate of the
resulting partition by ν. We have `(ν) = r(λ). Suppose rbg(λ) = j ∈ Z. Recall [8] that
the 2-core of a partition λ is the partition whose Young diagram is obtained from the Young
diagram of λ by repeatedly removing removing pairs of adjacent squares. At each step, the
resulting diagram must be a valid Young diagram. Then the 2-core of λ is the staircase
partition of size j(2j − 1).

Let a equal the height of the 2-core. It is equal to 2j − 1 if j > 0 and to −2j if j ≤ 0.
Let b = `(λ)− a. Define a partition µ via its Young diagram as follows.

(i) If b = 0, all parts of ν have even multiplicity. Then µ is the partition obtained from
ν by removing half the parts of each size.

(ii) If b 6= 0, set

d0 =

{
b
2 if b is even
a+ d b2e if b is odd

and define recursively di = νi − di−1 for i = 1, 2, . . . , r(λ). To obtain the Young
diagram of µ, begin with a rectangle of size d b2e × (a + d b2e) (i.e., d b2e rows and
a+d b2e columns). If b is odd (respectively, even), for i = 1, 2, . . . append columns of
length d2i−1 (respectively, d2(i−1)) to the right of the rectangle and rows of length d2i
(respectively, d2i−1) below the rectangle. In [10], it is shown that this is a bijection
from the set of partitions with distinct parts and BG-rank j to the set of partitions of
n−j(2j−1)

2 . Summing over all j ∈ Z gives (1.2).

Example 2.1. Let λ = (13, 9, 8, 7, 6, 4, 2) ` 49. We have λ1 = 13 and `(λ) = 7. Then
r(λ) = 13 − 7 = 6. Since the odd parts are the first, second and fourth parts, we have
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rbg(λ) = −1 and a = 2. Then, b = `(λ)− 2 = 7− 2 = 5. The shifted Young diagram of
λ is given below.

After removing the first `(λ) = 7 columns and conjugating, we obtain the partition
ν = (7, 6, 5, 1, 1, 1). Since b = 5 is odd, d0 = a+ d b2e = 5. We calculate recursively

d1 = ν1 − d0 = 7− 5 = 2,

d2 = ν2 − d1 = 6− 2 = 4,

d3 = ν3 − d2 = 5− 4 = 1,

d4 = ν4 − d3 = 1− 1 = 0,

d5 = ν5 − d4 = 1− 0 = 1,

d6 = ν6 − d5 = 1− 1 = 0.

We start with a rectangle of size d b2e × (a + d b2e) = 3 × 5 and append columns of size
d1, d3, and d5 (i.e., columns of size 2, 1, and 1) to the right of the rectangle and rows of
size d2, d4, and d6 (i.e., rows of size 4, 0, and 0) below the rectangle to obtain the Young
diagram of the partition µ = (8, 6, 5, 4) ` 49−(−1)(−2−1)

2 = 23.

3 Combinatorial proofs of Theorems 1.2 and 1.3
In this section we use the combinatorial proof of (1.2) reviewed in the previous section
to derive combinatorial proofs of Theorems 1.2 and 1.3. Then, summing over j > 1
and using the combinatorial proofs of b1(n) = a1(n) and b1(n) = c1(n), we obtain two
slightly different combinatorial proofs of Theorem 1.1. For the combinatorial proofs of
b1(n) = a1(n) and b1(n) = c1(n), which are fairly straight forward, we refer the reader to
[4] or [26]. We do not repeat the argument here.

First, we introduce some notation. For any partition λ and any positive integer j we
denote by mj the multiplicity of j in λ. We denote by p(n, j, t) the number of partitions of
n such that mj > t. Removing t parts equal to j from a partition of n with mj > t gives
a partition of n − jt. Conversely, adding t parts equal to j to a partition of n − jt gives a
partition of n with mj > t, Thus,

p(n, j, t) = p(n− jt).

As noted in the introduction, we denote by Sj(n) the number of parts equal to j in all
partitions of n. Then

S(n) =
∑
j>1

Sj(n).

Let A(n) be the set of partitions of n such that the set of even parts has exactly one
element and let C(n) be the set of partitions of n in which exactly one part is repeated.
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Proof of Theorem 1.2. Recall thatαj(n) denotes the number of partitions inA(n) in which
the even part is 2j. Let α(t)

j (n) be the number of partitions in A(n) with m2j = t.

The above argument using removing/adding t parts equal to 2j shows that α(t)
j (n) =

Q(n− 2jt). Therefore,

αj(n) =
∑
t>1

α
(t)
j (n) =

∑
t>1

Q(n− 2jt).

From (1.2), we have

Q(n− 2jt) =

∞∑
k=0

p

(
n− k(k + 1)/2

2
− jt

)
.

For any n > 0, to determine Sj(n) we count, in order, the first appearance of j in all
partitions of n, then the second appearance of j in all partitions of n, and so on. The
number of the tth appearance of j in all partitions of n equals p(n, j, t). Thus,

Sj(n) =
∑
t>1

p(n, j, t) =
∑
t>1

p(n− jt). (3.1)

Then,

αj(n) =
∑
t>1

Q(n− 2jt) =
∑
t>1

∞∑
k=0

p

(
n− k(k + 1)/2

2
− jt

)
and thus

αj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
.

Summing (1.6) for j > 1, we obtain

a1(n) =

∞∑
k=0

S

(
n− k(k + 1)/2

2

)
.

Since there are purely combinatorial proofs of (1.2) and a1(n) = b1(n), this gives a com-
binatorial proof of Theorem 1.1.

Proof of Theorem 1.3. Recall that γj(n) denotes the number of partitions in C(n) in which
the repeated part is j and, for t > 1 we denote by γ(t)j (n) the number of partitions in C(n)
such thatmj = t. Then, γ(t)j (n) equals the number of partitions of n− tj into distinct parts
such that j does not appear as a part. To any partition of n − (2t + 1)j into distinct parts
such that j does not appear as a part, add a part equal to j to obtain a partition of n − 2tj
into distinct parts such that j appears as a part. Therefore,

γ
(2t)
j (n) + γ

(2t+1)
j (n) = Q(n− 2tj)

and
γj(n) =

∑
t>1

Q(n− 2tj).
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Then, the proof of Theorem 1.2 gives a combinatorial argument for

γj(n) =

∞∑
k=0

Sj

(
n− k(k + 1)/2

2

)
.

Summing (1.7) over j > 1, we have

c1(n) =

∞∑
k=0

S

(
n− k(k + 1)/2

2

)
.

Using the combinatorial proof for c1(n) = b1(n) in [4], this gives a second combinatorial
proof of Theorem 1.1.

4 Proofs of Theorem 1.4
4.1 An analytic proof

We consider the following factorization for a special case of Lambert series [18]:

∞∑
n=1

qn

1 + qn
= (q; q)∞

∞∑
n=1

So−e(n)q
n.

According to [3], we have

∞∑
n=0

a2(n)q
n = (−q; q)∞

∞∑
n=1

q2n

1 + q2n

= (−q; q)∞(q2; q2)∞

∞∑
n=1

So−e(n)q
2n

=
(q2; q2)∞
(q; q2)∞

∞∑
n=1

So−e(n)q
2n.

Considering the theta identity [1, p. 23, Eq. (2.2.13)]

(q2; q2)∞
(q; q2)∞

=

∞∑
n=0

qn(n+1)/2,

the proof follows by equating the coefficients of qn in

∞∑
n=0

a2(n)q
n =

( ∞∑
n=0

qn(n+1)/2

)( ∞∑
n=1

So−e(n)q
2n

)
.

4.2 A combinatorial proof

Recall that [5] provides a combinatorial proof for a2(n) = c2(n). Using the notation of
Theorem 1.3, we have

c2(n) =
∑
j>1

(γ2j−1(n)− γ2j(n))
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and the proof of Theorem 1.3 provides a combinatorial argument for

c2(n) =
∑
j>1

∞∑
k=0

(
S2j−1

(
n− k(k + 1)/2

2

)
− S2j

(
n− k(k + 1)/2

2

))

=

∞∑
k=0

So−e

(
n− k(k + 1)/2

2

)
.

Using the combinatorial proof for c2(n) = a2(n) in [5], this gives a combinatorial proof of
Theorem 1.4.

5 Proofs of Theorem 1.5
5.1 An analytic proof

We remark that the sequence E(n) is known as sequence A038348 [21] and can be found
in the On-Line Encyclopedia of Integer Sequence [22]. The generating function function
for E(n) is given by

∞∑
n=0

E(n)qn =
q2

1− q2
· 1

(q; q2)∞
.

On the other hand, according to [20], the generating function for S′(n) is given by
∞∑
n=0

S′(n)qn =
q

1− q
· 1

(q; q)∞
.

Thus we can write
∞∑
n=0

E(n)qn =
(q2; q2)∞
(q; q2)∞

· q2

1− q2
· 1

(q2; q2)∞

=

( ∞∑
n=0

qn(n+1)/2

)( ∞∑
n=0

S′(n)q2n

)
and the proof of the theorem follows by equating the coefficients of qn.

5.2 A combinatorial proof

We first follow [11] to prove the following Euler type identity.

Proposition 5.1. Let n > 1. Then, the number of partitions with exactly one even part
equals the number of partitions in which exactly one part is repeated with multiplicity 2
or 3.

Before we prove the proposition, we introduce some notation. Recall that we denote by
O(n) the set of partitions of n into odd parts. We denote by D(n) the set of partitions of
n into distinct parts. In Section 3 we defined C(n) to be the set of partitions of n in which
exactly one part is repeated. Let T (n) be the subset of C(n) consisting of partitions of n
in which the repeated part has multiplicity 2 and let T ′(n) be the subset of C(n) consisting
of partitions of n in which the repeated part has multiplicity 3. Let c3(n) = |T (n)| and
c4(n) = |T ′(n)|. Moreover, let E(n) be the set of partitions of n with exactly one even
part.
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Proof of Proposition 5.1. Consider the following transformation

ψ : E(n)→ T (n) ∪ T ′(n).

Let µ ∈ E(n) and suppose the even part is 2km with k > 1 and m odd. Denote by µ the
partition consisting of the single part 2km and by µ̃ the partition consisting of the remaining
parts of µ. Thus µ̃ is a partition into odd parts. Let λ = (2k−1m, 2k−1m) and λ̃ be the
partition with distinct parts obtained from µ̃ after applying Glaisher’s bijection (i.e., after
merging equal parts repeatedly). Define ψ(µ) = λ ∪ λ̃, the partition obtained by listing
the parts of λ and λ̃ in non-increasing order. Then, in ψ(µ), the part 2k−1m is the only
repeated part and its multiplicity is 2 or 3. Thus, ψ(µ) ∈ T (n) ∪ T ′(n).

Conversely, if λ ∈ T (n) ∪ T ′(n) suppose the repeated part is t. Then the multiplicity
of t in λ is 2 or 3. Let λ = (t, t) and λ̃ be the partition consisting of the remaining parts of
λ (one of which could be t). Let µ = (2t), a partition consisting of a single even part, and
µ̃ be the partition obtained from λ̃ after applying the inverse of Glaisher’s bijection (i.e.,
split even parts repeatedly until all parts are odd). Then, ψ−1(λ) = µ ∪ µ̃ is a partition in
E(n).

Thus, ψ is a bijection and E(n) = c3(n) + c4(n).

Next we complete the proof of Theorem 1.5.

Combinatorial Proof of Theorem 1.5. Let dj(n) denote the number of partitions in
T (n) ∪ T ′(n) with mj > 1. Then mj = 2 or 3. We have c3(n) + c4(n) =

∑
j>1 dj(n).

From the proof of Theorem 1.3, we have

dj(n) = Q(n− 2j) =

∞∑
k=0

p

(
n− k(k + 1)/2

2
− j
)
.

Recall that p
(
n−k(k+1)/2)

2 − j
)

counts the number of first appearances of j in all partition

of n−k(k+1)/2
2 . Since E(n) = c3(n) + c4(n), summing over j > 1, gives a combinatorial

proof of the theorem when S′(n) equals the number of different parts in all partitions of n.
On the other hand, from (3.1), we have that the number of parts equal to 1 in all parti-

tions of n is S1(n) =
∑
t>1 p(n − t). This gives the combinatorial proof of the theorem

when S′(n) is viewed as the number of parts equal to 1 in all partitions of n.

6 Combinatorial proof of Theorem 1.6
Let b3(n) be the difference between the total number of parts in the partitions of n into
distinct parts and the total number of different parts in the partitions of n into odd parts.
Thus, b3(n) is the difference between the number of parts in all partitions in D(n) and the
number of different parts in all partitions in O(n) (i.e., parts counted without multiplicity).

Definition 6.1. Given a partition λ ∈ O(n), suppose the multiplicity of i in λ is mi. If i
appears in λ, we define the binary order of magnitude of the multiplicity of i in λ, denoted
bommλ(i), to be the number of digits in the binary representation of mi.

Note that, if mi > 0, then bommλ(i) = blog2(mi)c+ 1.

Example 6.2. If λ = (5, 3, 3, 3, 3, 3, 1) ` 21, we have m3(λ) = 5. Since the binary
representation of 5 is 101, we have bommλ(3) = 3.
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Let b4(n) denote the difference between the number of parts in all partitions in O(n),
each counted as many times as its bomm, and the number of parts in all partitions inD(n).
Since the number of parts in all partitions in D(n) equals the number of 1 in all binary
representations of all multiplicities in all partitions of O(n), it follows that b4(n) equals
the number of 0 in all binary representations of all multiplicities in all partitions of O(n).

Example 6.3. Let n = 7. We have D(7) = {(7), (6, 1), (5, 2), (4, 3), (4, 2, 1)} and the
number of parts in D(7) equals 10. Denote by zi(λ) the number of 0 in the binary repre-
sentation ofmi(λ). In Table 1 we list the partitions inO(n) with the relevant data (omitting
the subscript λ).

Table 1: Partitions in O(7) and their multiplicity statistics.

λ mi(λ) in binary bommλ(i) zi(λ)

(7) m7 = 1 bomm(7) = 1 z7 = 0
(5, 1, 1) m5 = 1, m1 = 10 bomm(5) = 1, bomm(1) = 2 z5 = 0, z1 = 1
(3, 3, 1) m3 = 10, m1 = 1 bomm(3) = 2, bomm(1) = 1 z3 = 1, z1 = 0

(3, 1, 1, 1, 1) m3 = 1, m1 = 100 bomm(3) = 1, bomm(1) = 3 z3 = 0, z1 = 2
(1, 1, 1, 1, 1, 1, 1) m1 = 111 bomm(1) = 3 z1 = 0

Thus b4(7) = 1 + 1 + 2 + 2 + 1 + 1 + 3 + 3− 10 = 4, which equals the sum of z in
the right column of the table above.

As shown in [4] combinatorially, we have c3(n) = b3(n) and c4(n) = b4(n). Together
with the combinatorial proof of Theorem 1.5, this gives a combinatorial argument for the
identity

b3(n) + b4(n) =

∞∑
k=0

S′
(
n− k(k + 1)/2

2

)
, ∀n > 0. (6.1)

It follows directly from the definition of b3(n) and b4(n) that b3(n) + b4(n) equals the
number of parts in all partitions in O(n), where each part i is counted with multiplicity
bommλ(i)− 1 = blog2(mi)c in each partition λ in which it appears.

Example 6.4. The total number of distinct parts in all partitions in O(7) equals 8. Then
b3(7) = 10−8 = 2 and b3(7)+b4(7) = 2+4 = 6 which equals 0+0+1+1+0+0+2+2,
the number of parts in all partitions in O(7), where each part i is counted with multiplicity
bommλ(i)− 1 in each partition λ in which it appears.

Therefore, we have a combinatorial proof of Theorem 1.6.

7 Proofs of Theorem 1.7
7.1 An analytic proof

The sequence Q2(n) is known as sequence A015744 [15] and can be found in the On-
Line Encyclopedia of Integer Sequences [22]. Since (−q; q)∞ = 1

(q;q2)∞
, the generating

function for Q2(n) can be written as

∞∑
n=0

Q2(n)q
n =

1

1 + q2
· 1

(q; q2)∞
.
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On the other hand, according to [20], the generating function for S′2(n) is given by

∞∑
n=0

S′2(n)q
n =

q2

1− q2
· 1

(q2; q)∞
.

We can write
∞∑
n=0

Q2(n− 4)qn =
(q2; q2)∞
(q; q2)∞

· q4

1 + q2
· 1

(q2; q2)∞

=
(q2; q2)∞
(q; q2)∞

· q4

1− q4
· 1

(q4; q2)∞

=

( ∞∑
n=0

qn(n+1)/2

)( ∞∑
n=0

S′2(n)q
2n

)

and the proof follows by equating the coefficients of qn.

7.2 A combinatorial proof

Let Q′2(n) denote the number of partitions of n into distinct parts containing 2 as a part.
If λ ∈ D(n) has 2 as a part, removing 2 we obtain a partition counted by Q2(n − 2).
Conversely, if µ ∈ D(n− 2) does not have 2 as a part, adding a part equal to 2 we obtain a
partition counted by Q′2(n). Thus, Q′2(n) = Q2(n− 2). Since Q(n) = Q2(n) +Q′2(n), it
follows that Q2(n) = Q(n)−Q2(n− 2). Recursively, we have

Q2(n) =
∑
j>0

(−1)jQ(n− 2j). (7.1)

Here, Q(x) = 0 if x is negative. We rewrite (7.1) as

Q2(n− 4) =
∑
t>1

Q(n− 4t)−
∑
t>1

Q(n− 2− 4t).

From the proof of Theorem 1.2, we have

Q2(n− 4) = α2(n)− α2(n− 2)

=

∞∑
k=0

S2

(
n− k(k + 1)/2

2

)
−
∞∑
k=0

S2

(
n− k(k + 1)/2

2
− 1

)
.

If λ ` m− 1, adding a part equal to 1, we obtain a partition µ of m containing 1. The
number of parts equal to 2 is the same in λ and in µ. Therefore, S2(m) − S2(m − 1) =
S′2(m). This completes the proof of the theorem.

8 Concluding remarks
We presented several Watson type identities of the same shape as identity (1.2)

Q(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

2

)
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and provided both analytic and combinatorial proofs for our results. Since the identity
above has the companion identity (1.3) given by

Qodd(n) =

∞∑
k=0

p

(
n− k(k + 1)/2

4

)
it would be interesting to find Watson type identities of this shape. Because there is a
combinatorial proof for identity (1.3), there is hope that such new identities can be proved
combinatorially.
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Abstract

We prove that for any integer n ≥ 12, and for every r in the interval [3, . . . , bn−1
2 c], the

group An has a string C-group representation of rank r, and hence that the only alternating
group whose set of such ranks is not an interval is A11.
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1 Introduction
String C-group representations have gained much attention in recent years as they are in
one-to-one correspondence with abstract regular polytopes. More precisely, given an ab-
stract regular polytope and a base flag of the polytope, one can construct a string C-group
representation whose group G is the automorphism group of the polytope that is generated
by the set of involutory automorphisms sending the base flag to its adjacent flags [32, Sec-
tion 2E]. Hence the study of string C-group representations has interest not only for group
theory, but also for geometry.
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Classifications of string C-group representations received a big impetus thanks to ex-
perimental work of Leemans and Vauthier [31] and also Hartley [20]. These were pushed
further for instance in [11, 15, 21, 27]. The results obtained in [31] quickly led to the deter-
mination of the highest rank of a string C-group representation of Suzuki groups [26]. Other
families of almost simple groups were then investigated: the almost simple groups with so-
cle PSL(2, q) [14, 28, 29], groups PSL(3, q) and PGL(3, q) [5], groups PSL(4, q) [3],
small Ree groups [30], orthogonal and symplectic groups in characteristic 2, and finally,
symmetric groups [16] and alternating groups [17, 18]. In particular, only the last four fam-
ilies gave rise to string C-group representations of arbitrary large rank. In [2], it is shown
that, for all integersm ≥ 2, and all integers k ≥ 2, the orthogonal groups O±(2m,F2k) act
on abstract regular polytopes of rank 2m, and the symplectic groups Sp(2m,F2k) act on
abstract regular polytopes of rank 2m+ 1. A symmetric group Sn is known to have string
C-group representations of highest rank n− 1 [6] and an alternating group An is known to
have string C-group representations of highest rank bn−1

2 c when n ≥ 12 [8]. It is worth
noting that not only almost simple groups have been investigated. For instance, Cameron,
Fernandes, Leemans and Mixer determined the maximal rank of a string C-group represen-
tation of a transitive permutation group in [7]. Conder determined in [9] the smallest string
C-group representations of rank r. It turns out that when r is at least 9, all such groups are
2-groups. Further studies on string C-group representations of 2-groups are available for
instance in [23, 24].

The authors looked at the symmetric groups in [16] and proved three important facts.
Firstly, when n ≥ 5, the (n− 1)-simplex is, up to isomorphism, the unique string C-group
representation of Sn with rank n − 1. Secondly, they showed that when n ≥ 7, there is
also, up to isomorphism, a unique string C-group representation of rank n− 2. And finally,
they showed that for every n ≥ 4, and for every integer r in the interval [3, . . . , n − 1], a
symmetric group Sn has at least one string C-group representation of rank r. Therefore, the
symmetric groups have no gaps in their set of ranks. The first and second theorems have
been extended in [19] where the authors of this paper, together with Mark Mixer, classified
string C-group representations of rank n − 3 (for n ≥ 9) and n − 4 (for n ≥ 11) of the
symmetric group Sn.

Also with Mixer, the authors produced in [17, 18] string C-group representations of
rank b(n− 1)/2c of the alternating groups, with n ≥ 12. In the process of obtaining these
results, they computed all string C-group representations of An with n ≤ 12. They found
that the set of ranks for the alternating groups of small degree were as given in Table 1. The

Table 1: Set of ranks for small alternating groups.

Group Set of ranks

A5 {3}
A6 ∅
A7 ∅
A8 ∅
A9 {3, 4}
A10 {3, 4, 5}
A11 {3, 6}
A12 {3, 4, 5}
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case n = 11 turned out to be special in the sense that it was the only example encountered
so far of a group whose set of ranks presented gaps. In this paper, we prove a similar result
as the third theorem of [16]. Our main result is stated as follows.

Theorem 1.1. For n ≥ 12 and for every 3 ≤ r ≤ b(n− 1)/2c, the group An has at least
one string C-group representation of rank r.

This theorem shows indeed that the case n = 11 is special among the alternating
groups. The main tool in the proof of our main theorem is to find good permutation repre-
sentation graphs that turn out to be CPR graphs, for every rank 3 ≤ r ≤ b(n− 1)/2c once
n is fixed. We use a proof similar to that of the third theorem of [16] to tackle most cases
and are just left dealing with finding string C-group representations of ranks four and five
for An when n is even, and ranks four, five and six, when n ≡ 3 (mod 4).

The paper is organised as follows. In Section 2, we recall the basic definitions about
string C-groups. In Section 3, we recall the definitions of permutation representation graphs
and CPR-graphs and give some results that will be useful in proving Theorem 1.1. In
Section 4, we prove Theorem 1.1. In Section 5, we give some final remarks.

As to notation for groups, we denote a cyclic group of order n by Cn, a dihedral group
of degree n and order 2n by Dn, and by pn an elementary abelian group of order pn. Also,
if G is a permutation group, the group G+ is the subgroup of G generated by the even
permutations in G, and if G+ = G (so that all elements of G are even) then we call G an
even permutation group.

2 String C-groups
An abstract polytope is a combinatorial object which generalizes a classical convex poly-
tope in Euclidean space. When the automorphism group of an abstract polytope acts reg-
ularly on its set of flags, the polytope is called regular, and in that case, its automorphism
group admits a string C-group representation. Additionally, each abstract regular polytope
can be constructed from a string C-group representation, and thus abstract regular poly-
topes and string C-groups representations are basically the same objects. For more details
on the subject see [32, Section 2E].

A Coxeter group is a group with generators ρ0, . . . , ρr−1 and presentation

〈ρi | (ρiρj)mi,j = ε for all i, j ∈ {0, . . . , r − 1}〉

where ε is the identity element of the group, each mi,j is a positive integer or infinity,
mi,i = 1, and mi,j = mj,i > 1 for i 6= j. It follows from the definition, that a Coxeter
group satisfies the next condition called the intersection property.

∀J,K ⊆ {0, . . . , r − 1}, 〈ρj | j ∈ J〉 ∩ 〈ρk | k ∈ K〉 = 〈ρj | j ∈ J ∩K〉

A Coxeter group G can be represented by a Coxeter diagram D. This Coxeter diagram D
is a labelled graph which represents the set of relations of G. More precisely, the vertices
of the graph correspond to the generators ρi of G, and for each i and j, an edge with label
mi,j joins the ith and the jth vertices; conventionally, edges of label 2 are omitted. By
a string (Coxeter) diagram we mean a Coxeter diagram with each connected component
linear. A Coxeter group with a string diagram is called a string Coxeter group.
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More generally, we define a string group generated by involutions, or sggi for short, as
a pair (G,S) where G is a group, S := {ρ0, . . . , ρr−1} is a finite set of involutions of G
that generate G and that satisfy the following property, called the commuting property.

∀i, j ∈ {0, . . . , r − 1}, |i− j| > 1⇒ (ρiρj)
2 = 1

Finally, a string C-group representation of a group G is a pair (G,S) that is a sggi and
that satisfies the intersection property. In this case the underlying “Coxeter” diagram for
(G,S) is a string diagram. The (Schläfli) type of (G,S) is {p1, . . . , pr−1} where pi is the
order of ρi−1ρi, i ∈ {1, . . . , r − 1}, and the rank of a string C-group representation (or
of a sggi) (G,S) is the size of S. When the context is clear, we sometimes do not specify
the set of generators S and we talk about a string C-group G instead of a string C-group
representation (G,S).

The set of ranks of a group G is the largest set of integers I such that for each r ∈ I ,
there exists at least one string C-group representation of G with rank r.

Let Γ := (G,S) be a sggi with S := {ρ0, . . . , ρr−1}. We denote by GI with I ⊆
{0, . . . , r − 1} the subgroup of G generated by the involutions with indices that are not
in I and let ΓI := (GI , {ρj : j 6∈ I}); it follows from the definition that if Γ is a string
C-group representation of G, each ΓI is itself a string C-group representation of GI . Also,
for i, j ∈ {0, . . . , r − 1}, we denote Gi = 〈ρj | j 6= i〉 and Gi,j := (Gi)j . The following
two results show that when Γ0 and Γr−1 are string C-group representations, the intersection
property for (G,S) is verified by checking only one condition.

Proposition 2.1 ([32, Proposition 2E16]). Let Γ := (G,S) be a sggi with S := {ρ0, . . . ,
ρr−1}. Suppose that Γ0 and Γr−1 are string C-group representations. If G0 ∩ Gr−1 =
G0,r−1, then Γ is a string C-group representation of G.

We point out that the inclusion G0 ∩ Gr−1 ≥ G0,r−1 is immediate, and thus we only
need to check that G0 ∩Gr−1 ≤ G0,r−1. The following proposition makes it even simpler
to check if a pair (G,S) is a string C-group representation when G0,r−1 is a maximal
subgroup of either G0 or Gr−1 (or both).

Proposition 2.2 ([18, Lemma 2.2]). Let Γ = (G,S) be a sggi with S := {ρ0, . . . , ρr−1}
and G := 〈S〉. Suppose that Γ0 and Γr−1, are string C-group representations of G0 and
Gr−1 respectively. If ρr−1 6∈ Gr−1 and G0,r−1 is maximal in G0, then Γ is a string
C-group representation of G.

3 Permutation representation graphs and CPR graphs
Let G be a group of permutations acting on a set {1, . . . , n}. Let S := {ρ0, . . . , ρr−1}
be a set of r involutions of G that generate G. We define the permutation representation
graph G of G, as the r-edge-labeled multigraph with n vertices and with an i-edge {a, b}
whenever aρi = b with a 6= b.

The pair (G,S) is a sggi if and only if G satisfies the following properties:

1. The graph induced by edges of label i is a matching;

2. Each connected component of the graph induced by edges of labels i and j, for
|i−j| ≥ 2, is a single vertex, a single edge, a double edge, or a square with alternating
labels.
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When (G,S) is a string C-group representation, the permutation representation graph
G is called a CPR graph, as defined in [33]. In rank 3, there are a couple of known results
to determine if a 3-edge-labeled multigraph is a CPR graph. For higher ranks, no such
arguments were accomplished.

One simple example of a CPR graph is the one corresponding to the (n − 1)-simplex
as follows:

0 1 2 3 n−2 n−1

In [16], for each rank 3 ≤ r ≤ n − 2, a string C-group representation of rank r of Sn
was found. In [18], the authors constructed a string C-group representation of rank r ≥ 4
of An for some n. This is summarized in the following two theorems, and the associated
CPR graphs are given in Table 2.

Theorem 3.1 ([16, Theorem 3]). For n ≥ 5 and 3 ≤ r ≤ n− 2, there is a string C-group
representation of rank r and type {n− r + 2, 6, 3r−3} of Sn.

Theorem 3.2 ([18, Theorem 1.1]). For each rank k ≥ 3, there is a string C-group repre-
sentation of rank k of An for some n. In particular, for each even rank r ≥ 4, there is a
string C-group representation of A2r+1 of type {10, 3r−2}, and for each odd rank q ≥ 5,
there is a string C-group representation of A2q+3 of type {10, 3q−4, 6, 4}.

Table 2: String C-group representations of Sn and An.

Group Schläfli type CPR graph

Sn {n− r + 2, 6, 3r−3} 0 1 0 1 2 3 r−2 r−1

(3 ≤ r ≤ n− 2)

A2r+1 {10, 3r−2}
1 2 3 r−2 r−1

0 1

0

2

0

3

0 0

r−2

0

r−1

0(r even and ≥ 4)

A2r+3 {10, 3r−4, 6, 4}
1 2 3 r−2 r−1 r−2

0 1

0

2

0

3

0 0

r−2

0

r−1

0

r−2

0(r odd and ≥ 5)

Permutation representation graphs are a very useful tool for the construction of string
groups generated by involutions. We will use them in the proof of our main theorem.

The term sesqui-extension was first introduced in [18]. Let us recall its meaning. Let
Φ = 〈α0, . . . , αd−1〉 be a sggi, and let τ be an involution in a supergroup of Φ such
that τ 6∈ Φ and τ centralizes Φ. For fixed k, we define the group Φ∗ = 〈αiτηi | i ∈
{0, . . . , d − 1}〉 where ηi = 1 if i = k and 0 otherwise, and call this the sesqui-extension
of Φ with respect to αk and τ . In particular, a permutation representation graph having two
connected components, one of which is a single k-edge and the other contains at least one
k-edge, represents a sesqui-extention of a group (the group corresponding to the biggest
component) with respect to the generator k.
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Proposition 3.3 ([17, Proposition 5.4]). If Φ = 〈αi | i = 0, . . . , d− 1〉 and

Φ∗ = 〈αiτηi | i ∈ {0, . . . , d− 1}〉

is a sesqui-extension of Φ with respect to αk, then (Φ, {αi | i = 0, . . . , d− 1}) is a string
C-group representation if and only if (Φ∗, {αiτηi | i ∈ {0, . . . , d−1}}) is a string C-group
representation. Moreover one of the following situations occur.

(1) τ ∈ Φ∗, in which case Φ∗ is isomorphic to Φ× 〈τ〉 ∼= Φ× C2; or

(2) τ /∈ Φ∗, in which case Φ∗ is isomorphic to Φ.

Sesqui-extensions will be used later to check the intersection condition on the permu-
tation representations of the groups of our main theorem.

We also apply the techniques used in the proof of Theorem 3.1 based on a construction
of Hartley and Leemans available in [22]. The key of the proof of Theorem 3.1 was to start
from the CPR graph of the (n − 1)-simplex with generators ρ1, . . . , ρn−1 where ρi is the
transposition (i, i + 1) in Sn. Let d = n− 1. At each step, we start with a string C-group
representation of rank d and generators ρ1, . . . , ρd. We replace ρd−2 by ρd−2ρd and we
drop ρd. As proved in [16], we get in this way a new string C-group representation with
generators ρ1, . . . , ρd−1. We can repeat this until d = 3. We give in Table 3 an example of
this process for S7.

Table 3: The induction process used on S7.

Generators CPR graph Schläfli type

(1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)
1 2 3 4 5 6 {3, 3, 3, 3, 3}

(1, 2), (2, 3), (3, 4), (4, 5)(6, 7), (5, 6)
1 2 3 4 5 4 {3, 3, 6, 4}

(1, 2), (2, 3), (3, 4)(5, 6), (4, 5)(6, 7)
1 2 3 4 3 4 {3, 6, 5}

(1, 2), (2, 3)(4, 5)(6, 7), (3, 4)(5, 6)
1 2 3 2 3 2 {6, 6}

In order to prove that the permutation groups of our main theorem are isomorphic to
alternating groups we use the following results.

Theorem 3.4 ([25]). Let G be a primitive permutation group of finite degree n, containing
a cycle of prime length fixing at least three points. Then G ≥ An.

Proposition 3.5 ([17, Proposition 3.3]). Let G = 〈ρ0, . . . , ρr−1〉 be a transitive permuta-
tion group acting on the points {1, . . . , n}with n ≥ 5, and letG∗ = 〈ρ0, . . . , ρr−1, ρr, ρr+1〉,
where

ρr = (i, n+ 1)(n+ 2, n+ 3) for some i ∈ {1, . . . , n}
ρr+1 = (n+ 1, n+ 2)(n+ 3, n+ 4).

Then G∗ = An+4 or Sn+4, depending on whether or not G is even.
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Proposition 3.6. The following graph, with n ≥ 8 vertices, n even and r ∈ {3, . . . , n−2
2 },

is a CPR graph for
(
Sn−4

2
× Sn+4

2

)+
.

0 1 0 1 0 1 0 1 2 r−2 r−1

0 1 0 1 2 r−2 r−1

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. Let us first consider r = 3.

0 1 0 1 0 1 0
3

1
2

2
1

0 1 0
4

1
5

2
6

We see that Γ0 and Γ2 are string C-group representations and asG0∩G2 = G0,2
∼= C2,

Γ is itself a string C-group representation by Proposition 2.1.
Let us prove thatG is isomorphic to

(
Sn−4

2
×Sn+4

2

)+
. We first prove thatG contains the

3-cycles (1, 2, 3) and (4, 5, 6) (the vertices of the above graph on the right). Let l be the least
integer such that (ρ0ρ1)l fixes all the vertices of the component of the graph on the bottom.
We see that (ρ1ρ2)2 = (1, 2, 3)(4, 5, 6). The latter element conjugated by (ρ0ρ1)l is equal
to α = (a, b, c)(4, 5, 6) with {a, b, c} ∩ {1, 2, 3} = {1}. Hence (α(ρ1ρ2)2)5 = (4, 6, 5)
and (1, 2, 3) = (4, 6, 5)(ρ1ρ2)2.

Now by transitivity in each of the two components of the graph we find that G has a
subgroup isomorphic to An−4

2
× An+4

2
. As in addition ρ2 /∈ An−4

2
× An+4

2
and G is a

group of even permutations, the group G is isomorphic to
(
Sn−4

2
× Sn+4

2

)+
.

Now let r > 3. We may assume by induction that Γr−1 is a string C-group represen-
tation and Gr−1 is isomorphic to

(
Sn−6

2
× Sn+2

2

)+
. In addition Γ0 is a string C-group

representation with group G0 isomorphic to Sr−1. By the intersection of the orbits of G0

and Gr−1 we conclude that G0 ∩ Gr−1 and G0,r−1 are both isomorphic to Sr−2. There-
fore Γ is a string C-group representation of G. Moreover it is clear that G is isomorphic to(
Sn−4

2
× Sn+4

2

)+
.

Proposition 3.7. The following graph, with n ≥ 10 vertices, n even and r ∈ {5, . . . , n−2
2 },

is a CPR graph for Sn.

0 1 0 1 0 1 0 1 2 r−2 r−1

0 1 0 1 2 r−2 r−1

r−2

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. The permutation representation graph is connected, hence G is
transitive. Let x be the first point on the left of the graph. The stabilizer of x has at most
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the same orbits as G0. Consider the vertices y and z as in the following graph.

x
0 1 0 1 0 1 y 0 1 2

z
r−2 r−1

0 1 0 1 2 r−2 r−1

r−2

We see that yρρ1ρ02 = z and ρρ1ρ02 fixes x. More generally the appropriate conjugations
of ρ2 by powers of ρ0ρ1 fuse the orbits of G0 while fixing x. Hence G is 2-transitive
and therefore primitive. Moreover, it contains a 3-cycle (explicitly given in the proof of
Proposition 3.6) and an odd permutation. Hence, by Theorem 3.4, it is isomorphic to
Sn−1. By Proposition 3.3 and [17, Table 2] we may conclude that Γ0 is a string C-group
representation of the group C2 × (C2 o Sr−1). By Proposition 3.6, the sggi Γr−1 is a string
C-group representation of

(
Sn−6

2
× Sn+2

2

)+
. From the intersection of the orbits of G0 and

Gr−1 we also conclude that G0 ∩Gr−1 = G0,r−1
∼= C2 ×

(
Sn−7

2
× Sn+1

2

)+
. Hence Γ is

a string C-group representation.

Proposition 3.8. The following graph, with n ≥ 10 vertices, n even and r ∈ {3, . . . , n−2
2 },

is a CPR graph for
(
Sn−4

2
× Sn+4

2

)+
.

1 0 1 0 1 0 1 2 r−2 r−1

1 0 1 2 r−2 r−1

Proof. Similar to that of Proposition 3.6.

Proposition 3.9. The following graph, with n ≥ 12 vertices, n even and r ∈ {5, . . . , n−2
2 },

is a CPR graph for Sn.

1 0 1 0 1 0 1 2 r−2 r−1

1 0 1 2 r−2 r−1

r−2

Proof. Similar to that of Proposition 3.7.

Proposition 3.10. The following graph, with n ≥ 8 vertices, n even and r = n/2, is a
CPR graph for Sn.

0 1 2 r−2 r−1

2 r−2 r−1

r−2

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. Removing the 0-edge from the graph we get a CPR graph for
a symmetric group of degree n − 1 (see Table 2 of [17]). Hence Γ0 is a string C-group
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representation. Now consider the sggi Φ := (H,T ) with the following permutation repre-
sentation graph.

0 1 2 r−2

2 r−2

For r = 4, Φ is a string C-group representation with H isomorphic to C2 × S4. Assume
by induction that Φr−2 is a string C-group representation with Hr−2 isomorphic to Sr−1×
Sr−3. As Φ0 is a string C-group representation and H0∩Hr−2 ≤ Sr−2×Sr−3

∼= H0,r−2,
Φ is a string C-group representation. Moreover H is isomorphic to Sr−1 × Sr−3. Now by
Proposition 3.3 the sggi Γr−1 is a string C-group representation and Gr−1 is isomorphic
to C2 × Sr−1 × Sr−3. By the intersection of the orbits of G0 and Gr−1 we find that
G0 ∩Gr−1 = G0,r−1 Hence Γ is a string C-group representation. As G0 is isomorphic to
Sn−1 and stabilizes the first vertex on the left, we conclude thatG is isomorphic to Sn.

Proposition 3.11. The following graph with n vertices, n ≡ 3 (mod 4) and n ≥ 11, is a
CPR graph for Sn.

0 1 0

2

1 0 1 1 2 3

Proof. Let Γ := (G,S) be the sggi having the permutation representation given by the
graph of this proposition. The group G3 is an even transitive group containing a 3-cycle,
namely (ρ1ρ2)4, and the stabilizer of a point in G3 is transitive on the remaining points.
Hence by Theorem 3.4 the groupG3 is isomorphic toAn−1. ConsequentlyG is isomorphic
to Sn. Moreover as G3 is a simple group generated by three independent involution, the
sggi Γ3 is string C-group representation. It is also easy to check that Γ0 is string C-group
representation and that G3 ∩ G0 = G0,3, as it is sufficient to consider the case n = 11.
Hence Γ is a string C-group representation and G is isomorphic to Sn as wanted.

4 Proof of Theorem 1.1

For each n ≥ 12, the group An has at least one string C-group representation of rank three.
Indeed, we can rely on [12, 13] which covers all but a small number of small cases that can
be easily dealt with MAGMA [1], or [34]. Hence we have to construct examples of rank 4
and above. Also, the case where n = 12 is done in [18], hence we may assume n > 12.

We divide the rest of the proof is a series of theorems depending on the values of n and
r as described in Table 4. Theorem 4.1 comes from [17], and we use it in Theorem 4.2 to
construct string C-group representations of rank 6 ≤ r ≤ (n− 2)/2 for n even.

4.1 The even case

We will construct a family of CPR graphs of even ranks “reducing” the rank of a CPR graph
having highest possible rank. Let us consider the graph given in the following theorem.

Theorem 4.1 ([17]). If n ≥ 14 is even and r = n−2
2 ≥ 6, then the following graph is a
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CPR graph for An.

0 1 0 1 2 3 r−3 r−2 r−1

2 3 r−3 r−2 r−1

r−3 r−3

Moreover the corresponding string C-group representation has type {5, 6, 3r−6, 6, 6, 3}.

Theorem 4.2. If n is an even integer, n ≥ 14 and 6 ≤ r ≤ n−2
2 , then the group An admits

a string C-group representation of rank r, with Schläfli type {lcm(4 + i, i), 6, 3r−6, 6, 6, 3}
where i = (n− 2)/2− r + 1, and with the following CPR graph

0 1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

0 1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

for (n ≡ 2 (mod 4) and n− r even) or (n ≡ 0 (mod 4) and n− r odd) and the following
CPR-graph

1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

for (n ≡ 2 (mod 4) and n− r odd) or (n ≡ 0 (mod 4) and n− r even).

Proof. From the graph of Theorem 4.1 we construct a family of graphs with n vertices
and r ∈ {6, . . . , n−2

2 } adding, on the top and on the bottom of the graph, two sequences

Table 4: The structure of the proof depending on n and r.

n r Reference

n even 6 ≤ r ≤ (n− 2)/2 Theorem 4.2
n ≡ 0 (mod 4) r = 5 Theorem 4.6

r = 4 Theorem 4.5
n ≡ 2 (mod 4) r = 5 Theorem 4.4

r = 4 Theorem 4.3
n ≡ 1 (mod 4) 4 ≤ r ≤ (n− 1)/2 Theorem 4.7
n ≡ 3 (mod 4) r = (n− 1)/2 Theorem 4.8

7 ≤ r < (n− 1)/2 and r odd Theorem 4.9
r = (n− 1)/2− 1 Theorem 4.10

8 ≤ r < (n− 1)/2 and r even Theorem 4.11
r = 4 Theorem 4.12
r = 5 Theorems 4.13 and 4.15
r = 6 Theorem 4.14
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of edges, of the same size, with alternate labels 0 and 1. So we have the following two
possibilities.

0 1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

0 1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

1 0 1 0 1 0 1 2 3 r−3 r−2 r−1

1 0 1 2 3 r−3 r−2 r−1

r−3 r−3

Let Γ := (G,S) be the sggi having the permutation representation graph above. The
statement holds for n = 14 and r = 6 by Theorem 4.1. Assume n > 14.

The involution ρ1 can be decomposed as ρ1 = τα1 where α1 is the restriction of ρ1 to
the biggest G0-orbit and τ is the restriction of ρ1 to the union of G0-orbits of size 2. The
following CPR graph has group isomorphic to (2r : Sr)

+ as shown in [17, Lemma 6.6]. It
is exactly the graph we obtain by replacing ρ1 by α1 and forgetting about the points fixed
by G0.

1 2 3 r−3 r−2 r−1

1 2 3 r−3 r−2 r−1

r−3 r−3

We find that α1 = ρ2ρ1ρ2ρ1ρ2 ∈ G0, then also τ ∈ G0 and therefore by Propo-
sition 3.3, G0 is a sesqui-extension of the group (2r : Sr)

+ and G0 is isomorphic to
C2 × (2r : Sr)

+ ∼= 2r : Sr as τ ∈ G0. Moreover, Γ0 is a string C-group representation.
We use a similar argument to prove that Γr−1 is a string C-group, starting from the CPR

graph given in Proposition 3.7 when (n ≡ 2 (mod 4) and n− r even) or (n ≡ 0 (mod 4)
and n−r odd), and from the CPR graph given in Proposition 3.9 when (n ≡ 2 (mod 4) and
n− r odd) or (n ≡ 0 (mod 4) and n− r even). In that case, however, since the restriction
of ρr−2ρr−3 to the biggest orbit ofGr−1 is an element of even order, Gr−1

∼= Sn−2. Since
An acts primitively on the set of unordered pairs of points, the stabilizer in An of a fixed
pair is maximal in An, and such stabilizers have precisely the structure of Gr−1. As Gr−1

is a maximal subgroup of An and ρr−1 6∈ Gr−1, it follows that G is isomorphic to An. Let
us now prove that G0,r−1 = G0 ∩Gr−1. The orbits of G0 ∩Gr−1 have to be suborbits of
G0 and of Gr−1, hence G0 ∩Gr−1 ≤ (C2 × (2r−1 : Sr−1)×C2)+ ∼= G0,r−1. Hence, by
Proposition 2.1, Γ is a string C-group representation of An.

Let i = (n− 2)/2− r + 1. Then it is easy to see from the CPR-graph that the Schläfli
type of the string C-group representation of An of rank r obtained by this construction is
{lcm(4+ i, i), 6, 3r−6, 6, 6, 3}. The first entry of the symbol comes from the fact that there
are 0-1-components on the upper side of the graph and on the lower side of the graph and
the upper one has 4 more vertices than the lower one.

It remains to construct examples in rank 4 and 5 for n even. We split the discussion in
two cases, namely the case where n ≡ 0 (mod 4) and the case where n ≡ 2 (mod 4).
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Theorem 4.3. If n ≡ 2 (mod 4) with n ≥ 10, then the group An admits a string C-group
representation of rank 4, with Schläfli type {5, 6, n− 4}, with the following CPR-graph.

2

0

1 0 1 2 3 2 3 2 3 2 3 2 (F1)

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
In this case G3 is a sesqui-extension of a string C-group representation of A5, hence by
Proposition 3.3, G3

∼= C2 × A5 and Γ3 is a string C-group representation of rank 3.
Moreover, G0,3 is isomorphic to C2 ×D3

∼= D6 and therefore G0,3 is maximal in G3. So,
by Proposition 2.2, it remains to prove that Γ0 is also a string C-group representation. Now,
Γ0,3 and Γ0,1 are obviously string C-group representations of dihedral groups. The group
G0,1,3 is a cyclic group of order 2 and the subgroups G0,3 and G0,1 will have the same
intersection no matter what the value of n is. We can thus assume n = 10 and check by
hand or using MAGMA that G0 ∩G3 = G0,3. Hence Γ0 is a string C-group representation.
This concludes the proof that a sggi with permutation representation graph (F1) is a string
C-group representation. It remains to show that the four generators generate An. The
element ρ0ρ1 is a 5-cycle and G is primitive, as for instance ρ0 cannot preserve any block
system. Hence, by Theorem 3.4, G is isomorphic to An.

The Schläfli type is obvious from the permutation representation graph.

Theorem 4.4. If n ≡ 2 (mod 4) with n ≥ 10, then the group An admits a string C-group
representation of rank 5, with Schläfli type {5, 5, 6, n− 5}, with the following CPR-graph.

0 1 2

0

1 2 3 4 3 4 3 4 3 4 (F2)

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
In this case, G4 is a sesqui-extension of a group isomorphic to (S7 × C2)+ ∼= S7 whose
CPR graph is given in Table 2 of [17]. Hence Γ4 is a string C-group representation. By
Proposition 3.5 the group G0 is isomorphic to An−1. The subgroup G0,4 is isomorphic
to S6, in addition G0,1,4

∼= D6 and G0,1
∼= Sn−4. Increasing n will not change the

intersection betweenG0,1 andG0,4. Hence we can check with MAGMA thatG0,1∩G0,4 =
G0,1,4 for n = 10. Thus Γ0,1 is a string C-group representation and so is Γ0 and so is Γ, as
G0
∼= An−1 and G is transitive. Moreover G is isomorphic to An since it is transitive on n

points and the stabilizer of a point in G contains G0
∼= An−1.

The Schläfli type is obvious from the permutation representation graph.

Theorem 4.5. If n ≡ 0 (mod 4) with n ≥ 16, then the group An admits a string C-
group representation of rank 4, with Schläfli type {3, 12, lcm(n−8, 6)}, with the following
CPR-graph.

g 3
a

2
d

h
3

0

c
2

0

e

0,1,3

l
0
p

1
m

2
i

3

1

b
2

1

j
3
k

2
f

3 2

(F3)



M. E. Fernandes and D. Leemans: String C-group representations of alternating groups 303

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above. In
this case,G3 is isomorphic to 22 : S3×S3 andG0,3 is isomorphic toD12 no matter what the
value of n is, thanks to the shape of the graph. Observe that the left connected component
of the graph, obtained when removing the 3-edges, gives the CPR graph of the octahedron.
Thus it can easily be checked with MAGMA that Γ3 is a string C-group representation with
type {3, 12}. The group G0 is transitive on n − 1 points, namely all vertices of the graph
except l. Moreover, the stabilizer of l and p in G has at most two more orbits thanks to
the connected components of the permutation representation graph obtained by removing
edges labelled 0 and 1. The element (ρ1ρ2ρ3ρ2)3 moves point i to point dwhile fixing both
l and p. Hence G0 is 2-transitive on n − 1 vertices (all but l). Therefore G0 is primitive
on these points. Now the element (ρ1ρ2ρ3ρ2) = (l)(p, j,m)(i, e, g, d, h)(a, c, f, b) . . . has
the property that the cycles we did not write are transpositions. Indeed, ρ1 does not do
anything on these points and so the action on these points is given by ρ2ρ3ρ2 = ρρ23 which
is an involution. Hence (ρ1ρ2ρ3ρ2)12 ∈ G0 is a 5-cycle fixing more than three points.
By Theorem 3.4, we can therefore conclude that G0 is isomorphic to An−1. As G0 is a
simple group, since it is generated by three involutions (namely ρ1, ρ2, ρ3), two of which
commute, Γ0 is a string C-group representation by [10, Theorem 4.1]. It remains to check
that G0,3 = G0∩G3 to prove that these graphs give indeed string C-group representations.
This can be checked with MAGMA for n = 12 and the result can be extended for any n.

The Schläfli type is obvious from the permutation representation graph.

Theorem 4.6. If n ≡ 0 (mod 4) with n ≥ 12, then the group An admits a string C-group
representation of rank 5, with Schläfli type {3, 4, 6, n− 7}, with the following CPR-graph.

2 1 2 3 4 3 4 3 4 3 4

2 1 2

0 0

(F4)

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
In this case, G4 is a sesqui-extension of the group of a string C-group representation of
S9, that can be found for instance in the atlas [31]. The sggi Γ0,1 is a string C-group
representation of Sn−6 and G0,4 is isomorphic to S5 × D4. Now ρ2ρ3 has order 6, so
G0,1,4 is isomorphic toD6 and it is obvious from the permutation representation graph that
G0,4 ∩ G0,1 = G0,1,4 and G0,4 ∩ G1,4 = G0,1,4. Hence Γ0 and Γ4 are string C-group
representations by Proposition 2.1. As G0∩G4 must have orbits that are suborbits of those
of G0 and of those of G4, we readily see that G0 ∩ G4 = G0,4. This concludes the proof
that every graph of shape (F4) gives a string C-group representation. As G is a primitive
group generated by even permutations and (ρ2ρ3)2 is a 3-cycle, we see thatG is isomorphic
to An by Theorem 3.4.

The Schläfli type is obvious from the permutation representation graph.

4.2 The odd case

Theorem 4.7. If n and r are integers with n ≥ 13, n ≡ 1 (mod 4) and 4 ≤ r ≤ (n−1)/2,
then the group An admits a string C-group representation of rank r, with Schläfli type
{10, 3

n−1
2 −2} when r = n−1

2 and {10, 3r−4, 6, n−1
2 − r+ 3} when r < n−1

2 , and with the
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following CPR graph.

1 2 3 r−2 r−1 r−2 r−2 r−1 r−2

0 1

0

2

0

3

0 0

r−2

0

r−1

0

r−2

0 0

r−2

0

r−1

0

r−2

0

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
Clearly G is a group of even permutations and it must be primitive as ρ0 cannot preserve a
non-trivial block system. Let us prove that G is isomorphic to An. We see that (ρ0ρ1)2 is a
5-cycle, hence by Theorem 3.4, the groupG is isomorphic toAn. It remains to prove that Γ
satisfies the intersection property. We know that for n = 13, the sggi Γ is a string C-group
representation of rank 6 and Schläfli type {10, 3, 3, 3, 3}. It can be checked with MAGMA
that Γ is also a string C-group representation for n = 13 and r ∈ {4, 5}. By induction we
may assume that Gr−1 is a sesqui-extension of the group of a string C-group representa-
tion. Hence by Proposition 3.3, the sggi Γr−1 satisfies the intersection property. By the
first line of Table 2, it is easy to see that Γ0 is a string C-group representation. Finally,
G0,r−1 = G0 ∩ Gr−1

∼= Sr−1 × C2. By Proposition 2.1, we conclude that Γ is a string
C-group representation. Using this technique, we have just constructed string C-group rep-
resentations of rank r for every 4 ≤ r ≤ n−1

2 . Their Schläfli types are {10, 3
n−1
2 −2} when

r = n−1
2 and {10, 3r−4, 6, n−1

2 − r + 3} when r < n−1
2 .

The following theorem gives the string C-group representations of rank r = (n− 1)/2
in the case where n ≡ 3 (mod 4).

Theorem 4.8 ([17]). If n and r are integers with n ≥ 15, n ≡ 3 (mod 4) and r =
(n−1)/2, then the groupAn admits a string C-group representation of rank r, with Schläfli
type {5, 5, 6, 3r−7, 6, 6, 3}, and with the following CPR graph.

0 1 0

2

1 2 3 r−3 r−2 r−1

3 r−3 r−2 r−1

r−3 r−3

From these examples, we construct examples of the same rank but for groups of degree
n+ 4k where k is an integer, by adding a sequence of alternating 0- and 1-edges of length
4k between the first and the second 2-edge (counting from the left).

Theorem 4.9. If n and r are integers with n ≥ 15, n ≡ 3 (mod 4) and 7 ≤ r < (n−1)/2,
r odd, then the group An admits a string C-group representation of rank r, with Schläfli
type {n− 2(r − 2), 12, 6, 3r−7, 6, 6, 3}, and with the following CPR graph.

0 1 0

2

1 0 1 1 2 3 r−3 r−2 r−1

3 r−3 r−2 r−1

r−3 r−3

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
The group G0 is acting as S2(r−1) on the orbit of size 2(r − 1) and as D4 on the orbit of
size 4, making G0 isomorphic to A2(r−1) : D4. Observe that G0 has a structure that only
depends on the rank, not on the degree of G.
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The group G0,r−1 is isomorphic to S2(r−2) : D4. It is a maximal subgroup of G0.
Hence G0 ∩Gr−1 = G0,r−1.

Let us now prove that Γ0 and Γr−1 are string C-group representations. We start with
Γ0. The groupG0,1 is the same (up to removing the fixed points) as the one of Theorem 4.8.
Hence Γ0 is a string C-group representation. The sggi Γ0,r−1 has the following permutation
representation graph, where there might be more than one 1-edge disconnected from the
rest of the graph.

1 2 1 1 1 2 3 r−3 r−2

3 r−3 r−2

r−3 r−3

If we prove that the sggi corresponding to the following permutation representation
graph is a string C-group representation, we may then apply Proposition 3.3 in order to
show that Γ0,r−1 is also a string C-group representation.

1 2 1 1 2 3 r−3 r−2

3 r−3 r−2

r−3

Let us call Φ := (H,T ) the sggi having this permutation representation graph. By
Proposition 3.10 the connected component on the right of the graph above gives a string C-
group representation. By Proposition 3.3 the graph that we obtain from the graph pictured
above by removing the 2-edge on the left is a CPR graph. Since removing the 2-edge on
the left does not change the order of the group H1, by [32, Proposition 2E17] we find that
Φ is a string C-group representation. Hence Γ0 is a string C-group representation.

Let us now prove that Γr−1 is a string C-group representation.
The group Gr−2,r−1 is a sesqui-extension of the group K of the sggi Ψ := (K,U)

having the following permutation representation graph.

0 1 0

2

1 0 1 1 2 3 r−3

3 r−3

Let a and b be the sizes of the connected components of the graph above. For r = 6, K
is a sesqui-extension of the group of the string C-group representation of Proposition 3.11,
hence by Proposition 3.3, K is isomorphic to Sa ∼= (Sa × 2)+. By induction we may
assume that Ψr−3 is a string C-group representation and Kr−3 is isomorphic to (Sa−1 ×
Sb−1)+. As Ψ0 is a string C-group representation andK0∩Kr−3 = K0,r−3 we find that Ψ
is itself a string C-group representation. Moreover K is clearly isomorphic to (Sa × Sb)+.
With this, using Proposition 3.3, we see that Γr−2,r−1 is a string C-group representation.
Finally G0,r−1 ∩Gr−2,r−1 ≤ (D4 × S2(r−3) × 2)+ ∼= G0,r−2,r−1.

Hence we have proved that Γr−1 is a string C-group representation and therefore G
itself is a string C-group.

It is easy to see from the permutation representation graph in the theorem that the
Schläfli type of the string C-group representation of rank r of An obtained by this con-
struction is {n− 2(r − 2), 12, 6, 3r−7, 6, 6, 3}.
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The previous two theorems enable us to construct examples of all possible odd ranks
at least 7 for An with n ≡ 3 (mod 4) and n ≥ 15. We now construct an example of rank
(n − 3)/2 for An from the example of rank (n − 1)/2, that we will use to construct all
examples of even rank at least 8.

Theorem 4.10. If n and r are integers are such that n ≥ 19, n ≡ 3 (mod 4) and r =
(n − 1)/2 − 1, then the group An admits a string C-group representation of rank r, with
Schläfli type {5, 5, 6, 3r−8, 6, 6, 6, 4}, and with the following CPR graph.

0 1 0

2

1 2 3 r−4 r−3 r−2 r−1 r−2

3 r−4 r−3 r−2

r−4

r−1

r−4

r−2

r−4 r−4

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
The group Gr−1 is a sesqui-extension of the group given in Theorem 4.8. Hence Γr−1

is a string C-group representation. The sggi Γ0 can be proved to be a string C-group
representation using similar techniques to those the proof of the previous theorem. The
fact that G0 ∩Gr−1 = G0,r−1 follows from the fact that Gr−1 is a sesqui-extension of the
group given in Theorem 4.8 and the orbits of the respective subgroups.

As in the case of odd ranks, from these examples we construct examples of the same
rank but for groups of degree n + 4k where k is an integer, by adding a sequence of
alternating 0- and 1-edges of length 4k between the 1-edge and the second 2-edge (counting
from the left).

Theorem 4.11. If n and r are integers such that n ≡ 3 (mod 4), n ≥ 19 and 8 ≤ r <
(n− 1)/2− 1, r even, then the group An admits a string C-group representation of rank r,
with Schläfli type {n− 2(r− 1), 12, 6, 3r−8, 6, 6, 6, 4}, and with the following CPR graph.

0 1 0

2

1 0 1 1 2 3 r−4 r−3 r−2 r−1 r−2

3 r−4 r−3 r−2

r−4

r−1

r−4

r−2

r−4 r−4

There are two ways to prove this theorem, either by a proof similar to that of Theo-
rem 4.9 or by a proof similar to that of Theorem 4.10. We leave the details to the interested
reader.

Theorem 4.12. If n ≡ 3 (mod 4) with n ≥ 15, then the groupAn admits a string C-group
representation of rank 4, with Schläfli type {10, 7, 4} for n = 15 and {2(n − 10), 14, 4}
for n > 15, with the following CPR-graph.

0 1 0 1 0 1 0

2

1 2 1 2

2 1

3

2

3

1 2 1

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above.
The group G0 is isomorphic to 26 : A7 : C2 for n = 15 and 26 : A7 : C2 ×C2 for n ≥ 19,
no matter how big n is. It can easily be checked with MAGMA that Γ0 is a string C-group
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representation for n = 15 and n = 19 and since adding more points to the graph will not
change the structure of G0, we can conclude that Γ0 is a string C-group representation for
every n ≥ 15. The groupG3 acts as Sn−7 on the vertices of the top of the graph and acts as
D7 on the remaining vertices, and is a subgroup of (An−7 ×D7)+. We can thus conclude
that G3 is An−7×D7. The group G0,3 is isomorphic to D7 for n = 15 and C2×D7 when
n ≥ 19 (as there are extra 1-edges in the graph). The group G2,3 is isomorphic to D(n−10).
It is obvious from the permutation representation graph that G0,3 ∩ G2,3 is isomorphic to
C2. Hence, by Proposition 2.1, the sggi Γ3 is a string C-group representation. Now, the
intersection G0∩G3 = G0,3 need only to be checked in the cases n ∈ {15, 19}, which can
be done with MAGMA. Hence, again, by Proposition 2.1, we see that Γ is a string C-group
representation.

It remains to show that G is isomorphic to An. The structure of G3 shows that the
action of G3 on the (n − 7) vertices at the top of the graph is An−7. Hence there exists
a cycle of order 3 in G0 acting on those vertices. This cycle necessarily fixes the 7 other
vertices, so it is a cycle of G. Moreover, that action is (n−9)-transitive on the top vertices.
Hence the stabilizer, in G, of the leftmost vertex of the graph must be transitive on the
remaining vertices and G is 2-transitive, therefore primitive. Then, by Theorem 3.4, we
can conclude that G ≥ An. Since all generators of G are even permutations, we conclude
that G is isomorphic to An.

The Schläfli type follows immediately from the permutation representation graph.

Theorem 4.13. If n ≡ 3 (mod 4) with n ≥ 15, then the groupAn admits a string C-group
representation of rank 5, with Schläfli type {n−10, 6, 6, 5}, with the following CPR-graph.

0 1 0 1 0 1 0 1 2 3 4 3 4

3 4

2

3 4

2 2

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above. The
groupG0 is isomorphic to S12 no matter how large n is. One can easily check with MAGMA
that the permutation representation graph corresponding to Γ0 is a CPR graph. The group
G0,4 is isomorphic to 23 : S3×S3 no matter how large n is. G3,4 is isomorphic to Sn−9 by
Theorem 3.4, as it contains a cycle of length 3, namely (ρ1ρ2)2 and is obviously 2-transitive
on n−9 vertices. Moreover, by [10, Theorem 4.1], Γ3,4 is a string C-group representation as
it is generated by three involutions, two of which commute. The groupG0,3,4 is isomorphic
toD6. Looking at the respective orbits ofG0,4 andG3,4 we can conclude thatG0,4∩G3,4 =
G034 and therefore Γ4 is a string C-group representation. Moreover, one can check that the
group G4 is isomorphic to An−8 × C2 : S3 but this is not needed to finish the proof. Now,
it is easy to check with MAGMA thatG0∩G4 = G0,4 for n = 15 and this intersection does
not depend on the degree of G. Therefore, by Proposition 2.1, we may conclude that Γ is
a string C-group representation with the given permutation representation graph. A similar
argument as in the proof of Theorem 4.12 shows that G is isomorphic to An. The Schläfli
type follows immediately from the permutation representation graph.

Theorem 4.14. If n ≡ 3 (mod 4) with n ≥ 15, then the group An admits a string C-
group representation of rank 6, with Schläfli type {n − 10, 6, 3, 5, 3}, with the following
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CPR-graph.

0 1 0 1 0 1 0 1 2 3 4 5

3

5

3

4
24

5

2

4

2 3,5

Proof. Let Γ := (G,S) be the sggi having the permutation representation graph above. The
group G0 is isomorphic to S12 no matter how big n is. One can easily check with MAGMA
that the permutation representation graph corresponding to Γ0 is a CPR graph. We have
G0,5

∼= S7 × A5 no matter how big n is. Here G3,4,5
∼= Sn−9 as proven in the previous

theorem (for G34 in the previous theorem is the same group as G3,4,5 here). Similarly, we
have G0,4,5

∼= 22 : S3 × S3. As G3,4,5 ∩G0,4,5 = G0,3,4,5 independently on how big n is,
we can conclude by Proposition 2.1 that Γ4,5 is a string C-group representation. Similarly,
as G0,5 ∩ G4,5 = G0,4,5 no matter how big n is, we can conclude by Proposition 2.1 that
Γ5 is a string C-group representation. Finally, as G0 ∩G5 = G0,5 no matter how big n is,
we conclude that Γ is a string C-group representation.

It remains to show that G is isomorphic to An. Similar arguments as in the proof of the
previous two theorems lead to that conclusion. The Schläfli type follows immediately from
the permutation representation graph.

Observe that this last family of string C-group representations of rank 6 gives, using the
same general construction we used in Theorems 4.2 and 4.7, a family of string C-groups of
rank 5 with Schläfli type {n− 10, 6, 5, 3}.

Theorem 4.15. If n ≡ 3 (mod 4) with n ≥ 15, then the groupAn admits a string C-group
representation of rank 5, with Schläfli type {n− 9, 6, 5, 3}, with the following CPR-graph.

2 1 2 1 2 1 2 1 2 3 4 5

3

5

3

4
24

5

2

4

2 3,5

We leave the proof of this last theorem to the interested reader as it is very similar to
the previous proofs.

5 Concluding remarks
Mark Mixer mentioned a similar result in 2015 at the AMS Fall Eastern Sectional Meeting
in Rutgers (talk 1115-20-283).

The techniques we developed in this paper inspired Brooksbank and the second author
to develop a general rank reduction technique, now available in [4].
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Abstract

For a graph G and a positive integer k, a vertex labelling f : V (G) → {1, 2, . . . , k} is
said to be k-distinguishing if no non-trivial automorphism of G preserves the sets f−1(i)
for each i ∈ {1, . . . , k}. The distinguishing chromatic number of a graph G, denoted
χD(G), is defined as the minimum k such that there is a k-distinguishing labelling of
V (G) which is also a proper coloring of the vertices of G. In this paper, we prove the
following theorem: Given k ∈ N, there exists an infinite sequence of vertex-transitive
graphs Gi = (Vi, Ei) such that

1. χD(Gi) > χ(Gi) > k,

2. |Aut(Gi)| < 2k|Vi|, where Aut(Gi) denotes the full automorphism group of Gi.

In particular, this answers a question posed by the first and second authors of this paper.
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1 Introduction
Let G be a graph. An automorphism of G is a permutation ϕ of the vertex set V (G) of G
such that, for any x, y ∈ V (G), ϕ(x), ϕ(y) are adjacent if and only x, y are adjacent. The
automorphism group of a graph G, denoted by Aut(G), is the group of all automorphisms
of G. A graph G is said to be vertex transitive if, for any u, v ∈ V (G), there exists
ϕ ∈ Aut(G) such that ϕ(u) = v.

Given a positive integer r, an r-coloring of G is a map f : V (G) → {1, 2, . . . , r} and
the sets f−1(i), for i ∈ {1, 2 . . . , r}, are the color classes of f . An automorphism ϕ ∈
Aut(G) is said to fix a color class C of f if ϕ(C) = C, where ϕ(C) = {ϕ(v) : v ∈ C}.
A coloring of G, with the property that no non-trivial automorphism of G fixes every color
class, is called a distinguishing coloring of G.

Collins and Trenk in [5] introduced the notion of the distinguishing chromatic number
of a graph G, which is defined as the minimum number of colors needed to color the ver-
tices of G so that the coloring is both proper and distinguishing. Thus, the distinguishing
chromatic number of G is the least integer r such that the vertex set can be partitioned
into sets V1, V2, . . . , Vr such that each Vi is independent in G, and for every non-trivial
ϕ ∈ Aut(G) there exists some color class Vi with ϕ(Vi) 6= Vi. The distinguishing chro-
matic number of a graph G, denoted by χD(G), has been the topic of considerable interest
recently (see, for instance, [1, 2, 3, 4]).

One of the many questions of interest regarding the distinguishing chromatic number
concerns the contrast between χD(G) and the cardinality of Aut(G). For instance, the
Kneser graphs K(n, r) have very large automorphism groups and yet, χD(K(n, r)) =
χ(K(n, r)) for n ≥ 2r + 1, and r ≥ 3 (see [2]). The converse question is compelling:
Are there infinitely many graphs Gn with ‘small’ automorphism groups and satisfying
χD(Gn) > χ(Gn)?

The question as posed above is not actually interesting for two reasons. First, for all
even n, χD(Cn) > χ(Cn) = 2 and |Aut(Cn)| = 2n, where Cn is the cycle of length n.
Second, if one stipulates that G also has arbitrarily large chromatic number, then here is a
construction for such a graph. Start with a rigid graph G with a leaf vertex x and having
large chromatic number (one can obtain this by minor modifications to a random graph, for
instance); then, blow up the leaf vertex x to a new disjoint setX whose neighbor in the new
graph G̃ is the same as the neighbor of x in G. In fact one can arrange for χD(G̃)− χ(G̃)

to be as large as one desires. Furthermore, since |Aut(G̃)| = |X|!, this provides examples
of graphs for which the automorphism groups are relatively ‘small’ in terms of the order of
the graph.

In the example above, the fact that χD(G) is larger than χ(G) is accounted for by
a ‘local’ reason, and that is what makes the problem stated above not very interesting.
However, if one further stipulates that the graph is vertex-transitive, then the same question
is highly non-trivial. In [1], the first and second authors constructed families of vertex-
transitive graphs with χD(G) > χ(G) > k and |Aut(G)| = O(|V (G)|3/2), for any given
k. In this paper, we improve upon that result:

Theorem 1.1. Given k ∈ N, there exists an infinite family of graphs Gn = (Vn, En)
satisfying:

1. χD(Gn) > χ(Gn) > k,

2. Gn is vertex transitive and |Aut(Gn)| < 2k|Vn|.
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Our family of graphs consists of Cayley graphs. To recall the definition, letA be a group
and let S be an inverse-closed subset of A, i.e., S = S−1, where S−1 := {s−1 : s ∈ S}.
The Cayley graph Cay(A,S) is the graph with vertex set A and the vertices u and v are
adjacent in Cay(A,S) if and only if uv−1 ∈ S.

We start with a brief description of the graphs of our construction. For q, an odd prime,
let Fnq denote the n-dimensional vector space over Fq . Our graphs shall be Cayley graphs
Cay(Fnq , S) for some suitable inverse-closed set S ⊂ Fnq which is obtained by taking
a union of a certain collection of lines in Fnq and then deleting the zero element of Fnq .
More precisely, let H0 := {(x1, x2, . . . , xn−1, 0) : xi ∈ Fq, 1 ≤ i ≤ n − 1} and let
0 denote the element (0, . . . , 0) ∈ Fnq . For each line (1-dimensional subspace of Fnq )
` ⊂ Fnq satisfying ` ∩ H0 = {0}, pick ` independently with probability 1/2 to form
the random set S̃. Our connection set S for the Cayley graph Cay(Fnq , S) is defined by
S := {v ∈ Fnq : v ∈ ` for some ` ∈ S̃} \ {0}. Our main theorem states that with high
probability, Gn,S := Cay(Fnq , S) satisfies the conditions of Theorem 1.1.

To show that these graphs have ‘small’ automorphism groups, we prove a stronger
version of Theorem 4.3 of [6] in this particular context, which is also a result of independent
interest.

Theorem 1.2. Let q be a prime power, let n be a positive integer with n ≥ 2 and let
G be the additive group of the n-dimensional vector space Fnq over the finite field Fq of
cardinality q, and let F∗q := Fq \ {0} be the multiplicative group of the field Fq with its
natural group action on G by scalar multiplication, and write K := Fnq o F∗q . If S is an
inverse-closed subset of G with K ≤ Aut(Cay(G,S)), then either

(i) Aut(Cay(G,S)) = K, or

(ii) there exists ϕ ∈ Aut(Cay(G,S)) \K with ϕ normalizing G.

Remark 1.3. Theorem 1.2 is valid even though the connection set S is not inverse-closed.
Since we deal with Cayley graphs the phrase inverse-closed subset is used in the statement
of the theorem.

The rest of the paper is organized as follows. We start with some preliminaries in
Section 2 and then include the proofs of Theorems 1.1 and 1.2 in the next section. We
conclude with some remarks and some open questions.

2 Preliminaries
We begin with a few definitions from finite geometry. For more details, one may see [13,
14]. By PG(n, q) we mean the Desarguesian projective space obtained from the affine
space AG(n+ 1, q).

Definition 2.1. A cone with vertex A ⊂ PG(k, q) and base B ⊂ PG(n− k− 1, q), where
PG(k, q) ∩ PG(n− k − 1, q) = ∅, is the set of points lying on the lines connecting points
of A and B.

Definition 2.2. Let V be an (n + 1)-dimensional vector space over a finite field F. A
subset S of PG(V ) is called an Fq-linear set if there exists a subset U of V that forms an
Fq-vector space, for some Fq ⊂ F, such that S = B(U), where

B(U) := {〈u〉F : u ∈ U \ {0}}
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and where 〈u〉F denotes the projective point of PG(V ), corresponding to the vector u of
U ⊂ V .

Further details about Fq-linear sets can be found in [14], for instance.
The projective space PG(n, q) can be partitioned into an affine space AG(n, q) and a

hyperplane at infinity, denoted by H∞.

Definition 2.3. Following [13], we say that a set of points U ⊂ AG(n, q) determines the
direction d ∈ H∞, if there is an affine line through d meeting U in at least two points.

We now state the main theorem of [13] which will be relevant in our setting.

Theorem 2.4. Let U ⊂ AG(n,Fq), n ≥ 3, |U | = qk. Suppose that U determines at
most q+3

2 qk−1 + qk−2 + · · · + q2 + q directions and suppose that U is an Fp-linear set
of points, where q = ph, p > 3 prime. If n − 1 ≥ (n − k)h, then U is a cone with an
(n−1−h(n−k))-dimensional vertex at H∞ and with base a Fq-linear point set U(n−k)h
of size q(n−k)(h−1), contained in some affine (n− k)h-dimensional subspace of AG(n, q).

We end this section by recalling another result that appears in [6] as Theorem 4.2.

Theorem 2.5. Let G be a permutation group on Ω with a proper self-normalizing abelian
regular subgroup. Then |Ω| is not a prime power.

3 Proofs of the Theorems
In this section we prove Theorems 1.1 and 1.2 starting with the proof of Theorem 1.2. We
believe that this result is only the tip of an iceberg: its current statement has been tailored
to the context of our setting, and uses some ideas that appear in [6, Section 3] and [9].

Proof of Theorem 1.2. We suppose that (i) does not hold, that is, K is a proper subgroup
of Aut(Cay(G,S)); we show that (ii) holds. Write Γ := Cay(G,S).

Let B be a subgroup of Aut(Γ) with K < B and with K maximal in B. Suppose that
KCB. As G is characteristic in K, we get GCB. In particular, every element ϕ in B \K
satisfies (ii).

Suppose then that K is not normal in B. Since K is maximal in B and G C K, we
have NB(G) = K. Suppose that there exists b ∈ B \ K such that L := 〈G,Gb〉 (the
smallest subgroup of B containing G and Gb) satisfies L ∩K = G. We claim that we are
now in the position to apply Theorem 2.5 (and implicitly some ideas from [9]). Indeed, as
NL(G) = NB(G)∩L = K∩L = G, L is a transitive permutation group on the vertices of
Γ with a proper regular self-normalizing abelian subgroup G. (Observe that G is a proper
subgroup of L because b /∈ NB(G) = K.) By Theorem 2.5, |G| is not a prime power,
which is a contradiction because |G| = qn. This proves that, for every b ∈ B \K, we have
〈G,Gb〉 ∩K > G.

Fix b ∈ B \K. Now, G andGb are abelian and henceG∩Gb is centralized by 〈G,Gb〉.
From the preceding paragraph, there exists k ∈ 〈G,Gb〉∩K with k /∈ G. Observe now that
K = Fnq o F∗q is a Frobenius group with kernel G = Fnq and complement F∗q . Therefore,
k acts by conjugation fixed-point-freely on G \ {0}. As k centralizes G ∩ Gb, we deduce
|G ∩Gb| = 1.

Let C :=
⋂
x∈BK

x be the core of K in B. As G∩Gb = 1 for all b ∈ B \K, K ∩Kb

has no non-identity q-elements. Therefore C ∩ G = 1. As C C B and C ≤ K, C is
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a normal subgroup of the Frobenius group K intersecting its kernel on the identity. This
yields C = 1.

Let Ω be the set of right cosets of K in B. From the paragraph above, B acts faithfully
on Ω. Moreover, as K is maximal in B, the action of B on Ω is primitive. Therefore B
is a finite primitive group with a solvable point stabilizer K. In [11], Li and Zhang have
explicitly determined such primitive groups: these are classified in [11, Theorem 1.1] and
[11, Tables I–VII]. Now, using the terminology in [11], a careful (but not very difficult)
case-by-case analysis on the tables in [11] shows that B is a primitive group of affine type,
that is, B contains an elementary abelian normal r-subgroup V , for some prime r. For
this analysis it is important to keep in mind that the stabilizer K is a Frobenius group with
kernel the elementary abelian group G ∼= Fnq and n ≥ 2.

Let |V | = rt. Now, the action of B on Ω is permutation equivalent to the natural action
of B = V o K on V , with V acting via its regular representation and with K acting by
conjugation. Observe that q 6= r, because K acts faithfully and irreducibly as a linear
group on V and hence K contains no non-identity normal r-subgroups. Observe further
that |B| = |V ||K| = rt · qn · (q − 1).

We are finally ready to reach a contradiction and to do so, we go back studying the
action of B on the vertices of Γ. Observe that B is solvable because V is solvable and so is
B/V ∼= K. We writeB0 for the stabilizer inB of the vertex 0 of Γ. AsG acts regularly on
the vertices of Γ, we obtain B = B0G and B0 ∩G = 1. In particular, |B0| = rt · (q − 1).
Observe that B0 is a Hall Π-subgroup of the solvable group B, where Π is the set of all
the prime divisors of q − 1 together with the prime r. As V is a Π-subgroup, from the
theory of Hall subgroups (see for instance [7], Theorem 3.3), V has a conjugate contained
in B0. Since V CB, we have V ≤ B0. This is clearly a contradiction because V is normal
in B, but B0 is core-free in B, being the stabilizer of a point in a transitive permutation
group.

For the next lemma, recall that

H0 := {(x1, x2, . . . , xn−1, 0) : xi ∈ Fq, 1 ≤ i ≤ n− 1}.

In what follows, Gn,S will denote the Cayley graph Cay(Fnq , S) and S = S̃ \ {0} for
some set S̃ =

⋃
`∈L `, where L is a collection of lines in Fnq with each ` ∈ L satisfying

` ∩H0 = {0}.

Lemma 3.1. If L 6= ∅, then χ(Gn,S) = q.

Proof. Observe that each line that belongs to the set S gives rise to a clique of size q in the
graph Gn,S . Therefore χ(Gn,S) ≥ q. On the other hand, for a fixed v ∈ S, the partition
(Cλ)λ∈Fq , where Cλ := {w + λv : w ∈ H0}, of the vertex set Fnq is a proper coloring
of the graph Gn,S . Indeed, for any distinct x = w1 + λv, y = w2 + λv in Cλ, we have
x− y = w1 −w2 /∈ S because w1 −w2 ∈ H0 and S ∩H0 = ∅. Therefore the sets Cλ are
independent in Gn,S for each λ ∈ Fq .

Lemma 3.2. Assume that q is prime. Let S̃ be the random set corresponding to a union
of lines ` in Fnq with ` ∩ H0 = {0} and where each ` ∈ Fnq is chosen independently with
probability 1

2 ; and let S = S̃ \ {0}. Then

P (χD(Gn,S) > q) ≥ 1− exp

(
−q

n−3

4

)
.
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Proof. First, note that E(|S|) = qn−1

2 , so taking δ = 1
q and µ = E(|S|) in the Chernoff

bound (see (2.6) on page 26 of [10]) we obtain

P
(
|S| < qn−1 − qn−2

2

)
≤ exp

(
−q

n−3

4

)
.

In particular, with probability at least 1 − exp(−qn−3/4), we have |S| > qn−1−qn−2

2 . We

may thus assume |S| > qn−1−qn−2

2 in what follows.
We claim that every color class in a proper q-coloring ofGn,S is an affine hyperplane of

Fnq . To see why, let C1, . . . , Cq be independent sets in Gn,S witnessing a proper q-coloring
of Gn,S . Fix v ∈ S and consider the line `v := {λv : λ ∈ Fq} along with its translates
`v + w := {λv + w : λ ∈ Fq}, for w ∈ H0. Each set `v + w is a clique of size q in
Gn,S , and these cliques partition the vertex set of Gn,S , so in particular each Ci contains
at most one vertex from each of these translates `v +w. Consequently, |Ci| ≤ qn−1 for all
i ∈ {1, . . . , q}. By size considerations, it follows that |Ci| = qn−1 for each i ∈ {1, . . . , q}.

Consider a color class C. Suppose C determines at least q+3
2 qn−2 + qn−3 + · · ·+ q2 +

q + 1 directions. Then if 〈C〉 denotes the set of all vertices in the affine lines intersecting
at least two points in C, we have |〈C〉| + |S| > 1 + q + · · · + qn−1, so 〈C〉 ∩ S 6= ∅.
However, this contradicts the assumption that C is an independent set in Gn,S . Therefore
C determines at most q+3

2 qn−2 + qn−3 + · · · + q2 + q directions. Since q is prime, by
Corollary 10 in [13], it follows that C is an Fq-linear set. Hence, by Theorem 2.4, the color
class C is a cone with an n−2 (projective) dimensional vertex V atH∞ and an affine point
u1 as base. In particular, the affine plane corresponding to the Fq-subspace spanned by V
passing through the affine point u1 is contained in C. Since |C| = qn−1, it follows that C
is this affine hyperplane, and this proves the claim.

To complete the proof, observe that for each λ ∈ F∗q\{1}, the mapϕλ(x) = λx, x ∈ Fnq
fixes each color class. Moreover, ϕλ fixes the set S and ϕλ(u)−ϕλ(v) = ϕλ(u−v), so ϕλ
is a non-trivial automorphism which fixes each color class. Therefore χD(Gn,S) > q.

Lemma 3.3. If n ≥ 6 and q ≥ 5 is prime, then Aut(Gn,S) ∼= Fnq o F∗q with probability at
least

1− 2−
qn−1

3 .

Proof. Since Gn,S is a Cayley graph on the additive group G = Fnq , by Theorem 1.2,
either Aut(Gn,S) = K ∼= Fnq oF∗q or there exists ϕ ∈ Aut(Gn,S) \K with ϕ normalizing

G = Fnq . We show that with probability at least 1 − 2−
qn−1

3 , there is no ϕ satisfying the
latter condition.

Suppose ϕ ∈ Aut(Gn,S) normalizes Fnq . If a = ϕ(0) and λa : Fnq → Fnq is the
right translation via a, then λ−1a ϕ is an automorphism of Gn,S normalizing Fnq and with
(λ−1a ϕ)(0) = (λ−1a )(ϕ(0)) = (λ−1a )(a) = a − a = 0. Therefore, without loss of gener-
ality, we may assume that ϕ(0) = 0. Since S is the neighbourhood of 0 in Gn,S , we get
ϕ(S) = S. Moreover, since ϕ acts as a group automorphism on Fnq , we have ϕ ∈ GLn(q).

Now, for ϕ ∈ GLn(q), let Eϕ denote the event ϕ(S) = S. Let L denote the set
of all lines ` with ` ∩ H0 = ∅. Also, let Orbϕ(`) = {`, ϕ(`), ϕ2(`), . . . , ϕk(`)} where
ϕk+1(`) = `. Then

P(Eϕ) ≤
Nϕ∏
i=1

21−|Orbϕ(`i)| = 2Nϕ−|L|,
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where Nϕ denotes the number of distinct orbits of ϕ in L. Setting G = GL(n, q) \ {λI :
λ ∈ F∗q}, we have

P

⋃
ϕ∈G

Eϕ

 ≤∑
ϕ∈G

P(Eϕ) ≤ 2−|L|
∑
ϕ∈G

2Nϕ . (3.1)

Let Fϕ := |{` ∈ L : ϕ(`) = `}| and F := maxϕ∈G Fϕ. Now Nϕ ≤ F + |L|−F
2 = F+|L|

2 .
Thus, it suffices to give a suitable upper bound for F . Towards that end, we note that, if
Fϕ = F for ϕ ∈ G, then every line ` fixed by ϕ corresponds to an eigenvector of ϕ. If
E1, E2, . . . , Ek denote the eigenspaces of ϕ for some distinct eigenvalues λ1, . . . , λk, then

Fϕ ≤
k∑
i=1

((
dim Ei

1

)
q

−
(

dim(Ei ∩H0)

1

)
q

)
≤ qn−2 + 1.

Similarly, we have |L| =
(
n
1

)
q
−
(
n−1
1

)
q

= qn−1, and so by (3.1), we have

P

⋃
ϕ∈G

Eϕ

 ≤ |G|2F−|L|
2 < qn

2

2−
qn−1−qn−2−1

2 < 2−
qn−1

3 ,

for q ≥ 5, n ≥ 6.

Computations and estimates similar to the ones presented in the proof of Lemma 3.3
have been proved useful in a variety of problems, see for instance [1, 8] and [12, Sec-
tion 6.4].

Proof of Theorem 1.1. Given k ∈ N with k ≥ 4, pick a prime number q with k < q < 2k.
For n ≥ 6, consider the random graph Gn,S of the group Fnq as constructed above. By
Lemmas 3.1, 3.2 and 3.3, with positive probability, the graph Gn,S satisfies the statements
of the lemmas, and hence satisfies the conclusions of Theorem 1.1.

4 Concluding remarks
• We observe that, for S chosen randomly as in the proof of our result, the distinguish-

ing chromatic number of Gn,S is q + 1 with high probability. Indeed, consider the
q-coloring C described in Lemma 3.1. Re-color the vertex 0 using an additional
color. Then the coloring described by the partition C ′ = C ∪ {0} is a proper, dis-
tinguishing coloring of Gn,S with q + 1 colors. In fact, C ′ is clearly proper, and to
show that it is distinguishing, consider ϕ ∈ Aut(Gn,S) = Fnq o F∗q (by Lemma 3.3)
that fixes every color class. Write ϕ(x) = λx+ b with λ ∈ F∗q , b ∈ Fnq . Since ϕ fixes
the color class containing 0, we have b = 0. Also, x and λx cannot be in same color
class unless λ = 1. Therefore ϕ is the identity automorphism.

It is interesting to determine if one can obtain families of vertex-transitive graphs
with χD(G) > χ(G) + 1, with ‘small’ automorphism groups and with χ(G) being
arbitrarily large. In fact, for k ∈ N, there is no known family of vertex-transitive
graphs for which χD(G) > χ(G) + 1 > k and |Aut(G)| = O(|V (G)|O(1)). It is
plausible that Cayley graphs over certain groups may provide the correct construc-
tions.
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• Theorem 1.1 establishes, for any fixed k, the existence of vertex-transitive graphs
Gn = (Vn, En) with χD(Gn) > χ(Gn) > k and with |Aut(Gn)| < 2k|Vn|. It
would be interesting to obtain a similar family of graphs that satisfy with χD(Gn) >
χ(Gn) > k and with |Aut(Gn)| ≤ C|Vn|, for some absolute constant C.
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[12] P. Potočnik, P. Spiga and G. Verret, Asymptotic enumeration of vertex-transitive graphs of fixed
valency, J. Comb. Theory Ser. B 122 (2017), 221–240, doi:10.1016/j.jctb.2016.06.002.

[13] L. Strome and P. Sziklai, Linear point sets and Rédei type k-blocking sets PG(n, q), J. Alge-
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1 Introduction
All graphs considered here are undirected and simple. For a graph G, let V (G) and E(G)
denote the vertex set and edge set of G, respectively. The order of G is the number of
vertices of G, denoted by |G|. For v ∈ V (G), we denote by NG(v) = {u ∈ V (G) | uv ∈
E(G)} the neighborhood of v, NG[v] = NG(v) ∪ {v} the closed neighborhood of v and
d(v) = |NG(v)| the degree of v. A vertex of G is said to be pendant if it has degree 1.
By δ(G) we mean the minimum degree of vertices of G. As usual, we denote by G + H
the disjoint union of two graphs G and H , Kn1,...,nl

the complete multipartite graph with
l parts of sizes n1, . . . , nl, and Kn, Cn, Pn the complete graph, cycle, path on n vertices,
respectively.

The adjacency matrix ofG, denoted byA(G) = (aij), is the square matrix with aij = 1
if vi and vj are adjacent, and aij = 0 otherwise. Clearly, A(G) is a symmetric matrix with
zeros on the diagonal, and thus all the eigenvalues ofA(G) are real, which are defined to be
the eigenvalues of G. The multiset consisting of eigenvalues along with their multiplicities
is called the spectrum of G denoted by Spec(G). To characterize graphs in terms of their
eigenvalues has always been of the great interests for researchers, for instance to see [2, 4,
5, 8, 9] and references therein.

The inertia of a graph G is defined as the triplet In(G) = (p(G), n(G), η(G)), where
p(G), n(G) and η(G) are the numbers of positive, negative and zero eigenvalues (including
multiplicities) of G, respectively. Traditionally p(G) (resp. n(G)) is called the positive
(resp. negative) inertia index of G and η(G) is called the nullity of G. Obviously, p(G) +
n(G) = r(G) = n− η(G) if G has n vertices, where r(G) is the rank of A(G). Let B and
D be two real symmetric matrices of order n. Then D is called congruent to B if there is
an real invertible matrix C such that D = CTBC. Traditionally we say that D is obtained
from B by congruent transformation. The famous Sylvester’s law of inertia states that the
inertia of two matrices is unchanged by congruent transformation.

Since the adjacency matrix A(G) of G has zero diagonal, we have p(G) ≥ 1 if G has
at least one edge. One of the attractive problems is to characterize those graphs with a
few positive eigenvalues. In [9] Smith characterized all graphs with exactly one positive
eigenvalue. Recently, Oboudi [6] completely determined the graphs with exactly two non-
negative eigenvalues, i.e., those graphs satisfying p(G) = 1 and η(G) = 1 or p(G) = 2
and η(G) = 0.

In this paper, we introduce three types congruent transformations for graphs. By using
these congruent transformations and Oboudi’s results in [6], we completely characterize
the graphs satisfying p(G) = 2 and η(G) = 1.

2 Preliminaries
In this section, we will introduce some notions and lemmas for the latter use.

Theorem 2.1 (Interlacing theorem [1]). Let G be a graph of order n and H be an induced
subgraph of G with order m. Suppose that λ1(G) ≥ · · · ≥ λn(G) and λ1(H) ≥ · · · ≥
λm(H) are the eigenvalues of G and H , respectively. Then for every 1 ≤ i ≤ m, λi(G) ≥
λi(H) ≥ λn−m+i(G).

Lemma 2.2 ([1]). Let H be an induced subgraph of graph G. Then p(H) ≤ p(G).



F. Duan, Q. Huang and X. Huang: On graphs with exactly two positive eigenvalues 321

Lemma 2.3 ([3]). Let G be a graph containing a pendant vertex, and let H be the induced
subgraph of G obtained by deleting the pendant vertex together with the vertex adjacent to
it. Then p(G) = p(H) + 1, n(G) = n(H) + 1 and η(G) = η(H).

Lemma 2.4 (Sylvester’s law of inertia). If two real symmetric matrices A and B are con-
gruent, then they have the same positive (resp., negative) inertia index, the same nullity.

Theorem 2.5 ([9]). A graph has exactly one positive eigenvalue if and only if its non-
isolated vertices form a complete multipartite graph.

Let G1 be a graph containing a vertex u and G2 be a graph of order n that is disjoint
from G1. For 1 ≤ k ≤ n, the k-joining graph of G1 and G2 with respect to u, denoted by
G1(u)�k G2, is a graph obtained from G1 ∪G2 by joining u to arbitrary k vertices of G2.
By using the notion of k-joining graph, Yu et al. [11] completely determined the connected
graphs with at least one pendant vertex that have positive inertia index 2.

Theorem 2.6 ([11]). Let G be a connected graph with pendant vertices. Then p(G) = 2
if and only if G ∼= K1,r(u) �k Kn1,...,nl

, where u is the center of K1,r and 1 ≤ k ≤
n1 + · · ·+ nl.

Theorem 2.7 ([6]). Let G be a graph of order n ≥ 2 with eigenvalues λ1(G) ≥ · · · ≥
λn(G). Assume that λ3(G) < 0, then the following hold:

(1) If λ1(G) > 0 and λ2(G) = 0, then G ∼= K1 +Kn−1 or G ∼= Kn \e for e ∈ E(Kn);

(2) If λ1(G) > 0 and λ2(G) < 0, then G ∼= Kn.

Let H be set of all graphs satisfying λ2(G) > 0 and λ3(G) < 0 (in other words,
p(G) = 2 and η(G) = 0). Oboudi [6] determined all the graphs of H. To give a clear
description of this characterization, we introduce the class of graphs Gn defined in [6].

For every integer n ≥ 2, let Kdn2 e and Kbn2 c be two disjoint complete graphs with
vertex set V = {v1, . . . , vdn2 e} and W = {w1, . . . , wbn2 c}. Gn is defined to be the graph
obtained from Kdn2 e and Kbn2 c by adding some edges distinguishing whether n is even or
not below:

(1) If n is even, then add some new edges to Kn
2

+Kn
2

satisfying

∅ = NW (v1) ⊂ NW (v2) = {wn
2
} ⊂ NW (v3) = {wn

2
, wn

2−1} ⊂ · · · ⊂
NW (vn

2−1) = {wn
2
, . . . , w3} ⊂ NW (vn

2
) = {wn

2
, . . . , w2}.

(2) If n is odd, then add some new edges to Kn+1
2

+Kn−1
2

satisfying

∅ = NW (v1) ⊂ NW (v2) = {wn−1
2
} ⊂ NW (v3) = {wn−1

2
, wn−1

2 −1
} ⊂ · · · ⊂

NW (vn+1
2 −1

) = {wn−1
2
, . . . , w2} ⊂ NW (vn+1

2
) = {wn−1

2
, . . . , w1}.

By deleting the maximum (resp. minimum) degree vertex from Gn+1 if n is an even (resp.
odd), we obtain Gn. It follows the result below.

Remark 2.8 (See [6]). Gn is an induced subgraph of Gn+1 for every n ≥ 2.
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Figure 1: G5, G6, Gt and Gt+1.

For example, G2
∼= 2K1, G3

∼= P3 and G4
∼= P4. The graphs G5 and G6 are shown in

Figure 1. In general, Gt and Gt+1 are also shown in Figure 1 for an even number t.
Let G be a graph with vertex set {v1, . . . , vn}. By G[Kt1 , . . . ,Ktn ] we mean the gen-

eralized lexicographic product of G (by Kt1 ,Kt2 , . . . ,Ktn ), which is the graph obtained
from G by replacing the vertex vj with Ktj and connecting each vertex of Kti to each
vertex of Ktj if vi is adjacent to vj in G.

Theorem 2.9 ([6]). Let G ∈ H of order n ≥ 4 with eigenvalues λ1(G) ≥ · · · ≥ λn(G).

(1) If G is disconnected, then G ∼= Kp +Kq for some integers p, q ≥ 2;

(2) If G is connected, there exist some positive integers s and t1, . . . , ts such that G ∼=
Gs[Kt1 , . . . ,Kts ] where 3 ≤ s ≤ 12 and t1 + · · ·+ ts = n.

Furthermore, Oboudi gave all the positive integers t1, . . . , ts such that Gs[Kt1 , . . . ,
Kts ] ∈ H in Theorems 3.4 – 3.14 of [6].

Let G be the set of all graphs with positive inertia index p(G) = 2 and nullity η(G) = 1.
In next section, we introduce some new congruent transformations for graph that keep to
the positive inertia index. By using such congruent transformations we characterize those
graphs in G based onH.

3 Three congruent transformations of graphs
In this section, we introduce three types of congruent transformations for graphs.

Lemma 3.1 ([10]). Let u, v be two non-adjacent vertices of a graph G. If u and v have the
same neighborhood, then p(G) = p(G−u), n(G) = n(G−u) and η(G) = η(G−u) + 1.

Remark 3.2. Two non-adjacent vertices u and v are said to be congruent vertices of I-type
if they have the same neighbors. Lemma 3.1 implies that if one of congruent vertices of
I-type is deleted from a graph then the positive and negative inertia indices left unchanged,
but the nullity reduces just one. Conversely, if we add a new vertex that joins all the
neighbors of some vertex in a graph (briefly we refer to add a vertex of I-type in what
follows) then the positive and negative inertia indices left unchanged, but the nullity adds
just one. The graph transformation of deleting or adding vertices of I-type is called the
(graph) transformation of I-type.

Since Spec(Ks) = [(s − 1)1, (−1)s−1]. By applying the transformation of I-type, we
can simply find the inertia of Kn1,n2,...,ns

.
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Corollary 3.3. Let G = Kn1,n2,...,ns be a multi-complete graph where n1 ≥ n2 ≥ · · · ≥
ns and i0 = min{1 ≤ i ≤ s | ni ≥ 2}. Then G has the inertia index: In(G) =
(p(G), η(G), n(G)) = (1, ni0 + ni0+1 + · · ·+ ns − s+ i0 − 1, s− 1).

The following transformation was mentioned in [4], but the author didn’t prove the
result. For the completeness we give a proof below.

Lemma 3.4. Let {u, v, w} be an independent set of a graph G. If N(u) is a disjoint union
of N(v) and N(w), then p(G) = p(G−u), n(G) = n(G−u) and η(G) = η(G−u) + 1.

Proof. Since u, v, w are not adjacent to each other, we may assume that (0, 0, 0, αT ),
(0, 0, 0, βT ) and (0, 0, 0, γT ) are the row vectors of A(G) corresponding to the vertices
u, v, w, respectively. Thus A(G) can be written as

A(G) =


0 0 0 αT

0 0 0 βT

0 0 0 γT

α β γ A(G− u− v − w)

 .

Since N(u) = N(v) ∪N(w) and N(v) ∩N(w) = ∅, we have α = β + γ. By letting the
u-th row (resp. u-th column) minus the sum of the v-th and w-th rows (resp. the sum of the
v-th and w-th columns) of A(G), we get that A(G) is congruent to

0 0 0 0T

0 0 0 βT

0 0 0 γT

0 β γ A(G− u− v − w)

 =

(
0 0T

0 A(G− u)

)
.

Thus p(G) = p(G− u), n(G) = n(G− u) and η(G) = η(G− u) + 1 by Lemma 2.4.

Remark 3.5. The vertex u is said to be a congruent vertex of II-type if there exist two non-
adjacent vertices v andw such thatN(u) is a disjoint union ofN(v) andN(w). Lemma 3.4
implies that if one congruent vertex of II-type is deleted from a graph then the positive and
negative indices left unchanged, but the nullity reduces just one. Conversely, if there exist
two non-adjacent vertices v and w such that N(v) and N(w) are disjoint, we can add a
new vertex u that joins all the vertices in N(v) ∪N(w) (briefly we refer to add a vertex of
II-type in what follows), then the positive and negative inertia indices left unchanged, but
the nullity adds just one. The graph transformation of deleting or adding vertices of II-type
is called the (graph) transformation of II-type.

An induced quadrangle C4 = uvxy of G is called congruent if there exists a pair of
independent edges, say uv and xy in C4, such that N(u) \ {v, y} = N(v) \ {u, x} and
N(x) \ {y, v} = N(y) \ {x, u}, where uv and xy are called a pair of congruent edges of
C4. We call the vertices in a congruent quadrangle the congruent vertices of III-type.

Lemma 3.6. Let u be a congruent vertex of III-type in a graph G. Then p(G) = p(G−u),
n(G) = n(G− u) and η(G) = η(G− u) + 1.

Proof. Let C4 = uvxy be the congruent quadrangle of G containing the congruent vertex
u. Then (0, 1, 0, 1, αT ), (1, 0, 1, 0, αT ), (0, 1, 0, 1, βT ), (1, 0, 1, 0, βT ) are the row vectors
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of A(G) corresponding to the vertices u, v, x and y, respectively. Thus A(G) can be
presented by

A(G) =


0 1 0 1 αT

1 0 1 0 αT

0 1 0 1 βT

1 0 1 0 βT

α α β β A(G− u− v − x− y)

 .

By letting the u-th row (resp. u-th column) minus the x-th row (resp. x-th column) of
A(G), and letting the v-th row (resp. v-th column) minus the y-th row (resp. y-th column)
of A(G), we obtain that A(G) is congruent to

B =


0 0 0 0 αT − βT

0 0 0 0 αT − βT

0 0 0 1 βT

0 0 1 0 βT

α− β α− β β β A(G− u− v − x− y)

 .

Again, by letting the u-th row (resp. u-th column) minus the v-th row (resp. v-th col-
umn) of B, and adding the y-th row (resp. y-th column) to the v-th row (resp. v-th column)
of B, we obtain that B is congruent to

0 0 0 0 0T

0 0 1 0 αT

0 1 0 1 βT

0 0 1 0 βT

0 α β β A(G− u− v − x− y)

 =

(
0 0T

0 A(G− u)

)
.

Thus p(G) = p(G− u), n(G) = n(G− u) and η(G) = η(G− u) + 1 by Lemma 2.4.

Remark 3.7. The Lemma 3.6 confirms that if a congruent vertex of III-type is deleted
from a graph then the positive and negative inertia indices left unchanged, but the nullity
reduces just one. Conversely, if we add a new vertex to a graph that consists of a congruent
quadrangle with some other three vertices in this graph (briefly we refer to add a vertex
of III-type in what follows) then the positive and negative inertia indices left unchanged,
but the nullity adds just one. The graph transformation of deleting or adding vertices of
III-type is called the (graph) transformation of III-type.

Remark 3.2, Remark 3.5 and Remark 3.7 provide us three transformations of graphs that
keep the positive and negative inertia indices and change the nullity just one. By applying
these transformations we will construct the graphs in G. Let G1 be the set of connected
graphs each of them is obtained from some H ∈ H by adding one vertex of I-type, G2 be
the set of connected graphs each of them is obtained from some H ∈ H by adding one
vertex of II-type and G3 be the set of connected graphs each of them is obtained from some
H ∈ H by adding one vertex of III-type. At the end of this section, we would like to give
an example to illustrate the constructions of the graphs in Gi (i = 1, 2, 3).

Example 3.8. We know the path P4, with spectrum Spec(P4) = {1.6180, 0.6180,
−0.6180,−1.6180}, is a graph belonging toH. By adding a vertex u of I-type to P4 we ob-
tain H1 ∈ G1 (see Figure 2) where Spec(H1) = {1.8478, 0.7654, 0,−0.7654,−1.8478},
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Figure 2: The graphs P4, H1, H2 and H3.

adding a vertex u of II-type to P4 we obtainH2 ∈ G2 where Spec(H2) = {2.3028, 0.6180,
0,−1.3028,−1.6180}. Finally, by adding a vertex u of III-type to P4 we obtain H3 ∈ G3,
where Spec(H3) = {2.4812, 0.6889, 0,−1.1701,−2}. In fact, uv and xy is a pair of inde-
pendent edges in H3. Clearly, N(u)\{v, y} = N(v)\{u, x} = {w} and N(x)\{y, v} =
N(y) \ {x, u} = ∅. Thus C4 = uvxy is a congruent quadrangle of H3.

Clearly, G = K1,2 ∪ P2 is a non-connected graph in G, and all such graphs we collect
in G− = {G ∈ G | G is disconnected}. Additionally, H1 and H2 shown in Figure 2 are
graphs with pendant vertex belonging to G, and all such graphs we collect in G+ = {G ∈
G | G is connected with a pendant vertex}. In next section, we firstly determine the graphs
in G− and G+.

4 The characterization of graphs in G− and G+

The following result completely characterizes the disconnected graphs of G.

Theorem 4.1. Let G be a graph of order n ≥ 5. Then G ∈ G− if and only if G ∼=
Ks +Kt +K1, H +K1 or Ks +Kn−s \ e for e ∈ E(Kn−s), where H ∈ H is connected
and s+ t = n− 1, s, t ≥ 2.

Proof. All the graphs displayed in Theorem 4.1 have two positive and one zero eigenvalues
by simple observation. Now we prove the necessity.

Let G ∈ G−, and H1, H2, . . . ,Hk (k ≥ 2) the components of G. Since λ1(Hi) ≥ 0
for i = 1, 2, . . . , k and λ4(G) < 0, G has two or three components and so k ≤ 3.

First assume that G = H1 +H2 +H3. It is easy to see that G has exactly one isolated
vertex due to η(G) = 1 and p(G) = 2. Without loss of generality, let H3

∼= K1. Since
λ3(G) = 0 and λ1(Hi) > 0 (i = 1, 2), we have λ2(H1) < 0 and λ2(H2) < 0. By
Theorem 2.7 (2), G ∼= Ks +Kt +K1 as desired, where s+ t = n− 1 and s, t ≥ 2.

Next assume that G = H1 +H2. If H1
∼= K1, then

λ1(G) = λ1(H2) ≥ λ2(G) = λ2(H2) > λ3(G) =

0 = λ1(H1) > λ4(G) = λ3(H2) < 0.

Thus H2
∼= H ∈ H, and so G ∼= H + K1 as desired. If |Hi| ≥ 2 for i = 1, 2, then one

of λ2(H1) and λ2(H2) is equal to zero and another is less than zero because λ3(G) = 0
and λ4(G) < 0. Without loss of generality, let λ2(H1) < 0 and λ2(H2) = 0. We have
λ3(H1) ≤ λ2(H1) < 0, in addition, λ3(H2) < 0 since η(G) = 1. By Theorem 2.7 (2),
H1
∼= Ks for some s ≥ 2 and by Theorem 2.7 (1), H2

∼= Kn−s \ e.
We complete this proof.

In terms of Theorem 2.6, we will determine all connected graphs with a pendant vertex
satisfying p(G) = 2 and η(G) = d for any positive integer d.
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Theorem 4.2. Let G be a connected graph of order n with a pendant vertex. Then p(G) =
2 and η(G) = d ≥ 1 if and only if G ∼= K1,r(u)�k Kn1,...,nl

, where r + n1 + n2 + · · ·+
nl − (l + 1) = d.

Proof. Let G = K1,r(u) �k Kn1,...,nl
and vu is a pendant edge of G. By deleting v and

u from G we obtain H = G − {u, v} = (r − 1)K1 ∪ Kn1,...,nl
. It is well known that

p(Kn1,...,nl
) = 1 and η(Kn1,...,nl

) = n1 + · · ·+ nl − l. From Lemma 2.3, we have

p(G) = p(H) + 1 = p(Kn1,...,nl
) + 1 = 2,

η(G) = η(H) = (r − 1) + (n1 + · · ·+ nl − l) = d.

Conversely, let G be a graph with a pendant vertex and p(G) = 2. By Theorem 2.6,
we have G ∼= K1,r(u) �k Kn1,...,nl

. According to the arguments above, we know that
η(G) = r + n1 + n2 + · · ·+ nl − (l + 1) = d.

From Theorem 4.2, it immediately follows the result that completely characterizes the
graphs in G+.

Corollary 4.3. A connected graph G ∈ G+ if and only if G ∼= K1,2(u) �k Kn−3 or
G ∼= K1,1(u)�k Kn−2 \ e for e ∈ E(Kn−2).

Proof. By Theorem 4.2, we have G ∈ G+ if and only if G ∼= K1,r(u) �k Kn1,...,nl
,

where r + n1 + n2 + · · · + nl − (l + 1) = 1 and r, l, n1, . . . , nl ≥ 1. It gives two
solutions: one is r = 2, n1 = n2 = · · · = nl = 1 and l = n − 3 which leads to
G ∼= K1,2(u)�kKn−3; another is r = 1, n1 = 2, n2 = · · · = nl = 1 and l = n−2 which
leads to G ∼= K1,1(u)�k Kn−2 \ e for e ∈ E(Kn−2).

Let G∗ denote the set of all connected graphs in G without pendant vertices. Then
G = G− ∪ G+ ∪ G∗. Therefore, in order to characterize G, it remains to consider those
graphs in G∗.

5 The characterization of graphs in G∗

First we introduce some symbols which will be persisted in this section. Let G ∈ G∗. The
eigenvalues of G can be arranged as:

λ1(G) ≥ λ2(G) > λ3(G) = 0 > λ4(G) ≥ · · · ≥ λn(G).

We choose v∗ ∈ V (G) such that dG(v∗) = δ(G) = t, and denote by X = NG(v∗) and
Y = V (G) − NG[v∗]. Then t = |X| ≥ 2 since G has no pendant vertices. In addition,
|Y | > 0 since otherwise G would be a complete graph. First we characterize the induced
subgraph G[Y ] in the following result.

Lemma 5.1. G[Y ] ∼= Kn−t−1 \ e,K1 +Kn−t−2 or Kn−t−1.

Proof. First we suppose that Y is an independent set. If |Y | ≥ 3, then λ4(G) ≥
λ4(G[Y ∪{v∗}]) = 0 by Theorem 2.1, a contradiction. Hence |Y | ≤ 2, and soG[Y ] ∼= K1

or G[Y ] ∼= K2 \ e = 2K1.
Next we suppose that G[Y ] contains some edges. We distinguish the following three

situations.
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If λ2(G[Y ]) > 0, we have p(G[Y ]) ≥ 2. For any x ∈ X , the induced subgraph
G[{v∗, x}∪Y ] has a pendant vertex v∗ by our assumption. By Lemma 2.2 and Lemma 2.3,
we have p(G) ≥ p(G[{v∗, x} ∪ Y ]) = p(G[Y ]) + 1 ≥ 3, a contradiction.

If λ2(G[Y ]) < 0, by Theorem 2.7 (2) we have G[Y ] ∼= Kn−t−1 as desired.
At last assume that λ2(G[Y ]) = 0. If λ3(G[Y ]) < 0, by Theorem 2.7 (1), we have

G[Y ] ∼= Kn−t−1 \ e,K1 +Kn−t−2 as desired. If λ3(G[Y ]) = 0, by Lemma 2.3 we have
p(G[{v∗, x} ∪ Y ]) = p(G[Y ]) + 1 = 2 and η(G[{v∗, x} ∪ Y ]) = η(G[Y ]) ≥ 2, which
implies that λ4(G) ≥ λ4(G[{v∗, x} ∪ Y ]) = 0, a contradiction.

We complete this proof.

First assume that Y = {y1}. If G[X] = Kt, then G = Kn \ v∗y1. However Kn \
v∗y1 6∈ G∗ since p(Kn \ v∗y1) = 1. Thus there exist x1 6∼ x2 in X . Then NG(x1) =
NG(x2) and NG(v∗) = NG(y1). It follows that η(G) ≥ 2 by Lemma 3.1. Next assume
that Y = {y1, y} is an independent set. We have NG(v∗) = NG(y1) = NG(y) since
dG(y1), dG(y)≥ dG(v∗) = δ(G). Thus, by Lemma 3.1 we have η(G) = η(G−y1) + 1 =
η(G − y1 − y) + 2 ≥ 2. Thus we only need to consider the case that G[Y ] contains at
least one edge. Concretely, we distinguish three situations in accordance with the proof of
Lemma 5.1:

(a) G[Y ] ∼= Kn−t−2 + K1 in case of λ2(G[Y ]) = 0 and λ3(G[Y ]) < 0, where
n− t− 2 ≥ 2;

(b) G[Y ] ∼= Kn−t−1 \ e in case of λ2(G[Y ]) = 0 and λ3(G[Y ]) < 0, where |Y | =
n− t− 1 ≥ 3;

(c) G[Y ] ∼= Kn−t−1 in case of λ2(G[Y ]) < 0, where |Y | = n− t− 1 ≥ 2.

In the following, we deal with situation (a) in Lemma 5.2, (b) in Lemma 5.3 and (c)
in Lemma 5.4, 5.7 and Lemma 5.15. We will see that the graph G ∈ G∗ illustrated in (a)
and (b) can be constructed from some H ∈ H by the graph transformations of I-, II- and
III-type, but (c) can not.

Lemma 5.2. If G[Y ] ∼= Kn−t−2 +K1, where n− t− 2 ≥ 2, then G ∈ G1.

Proof. Since G[Y ] is isomorphic to Kn−t−2 +K1 (n− t−2 ≥ 2), Y exactly contains one
isolated vertex of G[Y ], say y. We have NG(v∗) = NG(y) and thus y is a congruent vertex
of I-type. By Lemma 3.1, we have p(G) = p(G − y) and η(G) = η(G − y) + 1. Notice
that G − y is connected, we have G − y ∈ H, and so G ∈ G1. Such a graph G, displayed
in Figure 3 (1), we call the v∗-graph of I-type.

In Figure 3 and Figure 5, two ellipses joining with one full line denote some edges
between them. A vertex and an ellipse joining with one full line denote some edges between
them, and with two full lines denote that this vertex joins all vertices in the ellipse. Two
vertices join with same location of an ellipse denote that they have same neighbours in this
ellipse.

It needs to mention that the v∗-graph of I-type characterized in Lemma 5.2, is a graph
obtained from H ∈ H by adding a new vertex joining the neighbors of a minimum degree
vertex of H .

For S ⊆ V (G) and u ∈ V (G), let NS(u) = NG(u) ∩ S and NS [u] = NG[u] ∩ S.

Lemma 5.3. Let G[Y ] ∼= Kn−t−1 \ e, where n− t− 1 ≥ 3 and e = yy′. Then G ∈ G1 if
NX(y) = NX(y′) and G ∈ G2 otherwise.
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Figure 3: The structure of some graphs.

Proof. Since n− t− 1 ≥ 3, there is y∗ ∈ Y other than y and y′. It is clear that NG(y) =
NX(y)∪ (Y \ {y, y′}) and NG(y′) = NX(y′)∪ (Y \ {y, y′}), and thus NG(y) = NG(y′)
if and only if NX(y) = NX(y′). We consider the following cases.

Case 1. NX(y) = NX(y′).
By assumption, NG(y) = NG(y′), thus y and y′ are congruent vertices of I-type. By

Lemma 3.1, we have p(G) = p(G − y) and η(G) = η(G − y) + 1. Since G − y is
connected, we have G − y ∈ H and so G ∈ G1. Such a G, displayed in Figure 3 (2), we
call the Y -graph of I-type.

Case 2. NX(y) 6= NX(y′).
First suppose that exactly one of NX(y) and NX(y′) is empty, say NX(y) = ∅ and

NX(y′) 6= ∅. Then yy∗ is a pendant edge of the induced subgraph G[X ∪ {y, y′, y∗, v∗}].
By Lemma 2.2 and Lemma 2.3, we have

2 = p(G) ≥ p(G[X ∪ {y, y′, y∗, v∗}]) = p(G[X ∪ {y′, v∗}]) + 1 ≥ 2.

Thus

p(G[X ∪ {y, y′, y∗, v∗}]) = 2 and
p(G[X ∪ {y′, v∗}]) = 1.

We see that λ2(G[X ∪ {y′, v∗}]) = 0 (since otherwise λ2(G[X ∪ {y′, v∗}]) < 0 and then
G[X ∪ {y′, v∗}] is a complete graph, but y′ 6∼ v∗). If λ3(G[X ∪ {y′, v∗}]) = 0, we have

η(G[X ∪ {y, y′, y∗, v∗}]) = η(G[X ∪ {y′, v∗}]) ≥ 2,

which implies
λ4(G) ≥ λ4(G[X ∪ {y, y′, y∗, v∗}]) = 0,

a contradiction. If λ3(G[X∪{y′, v∗}]) < 0, thenG[X∪{y′, v∗}] ∼= Kt+2\e orKt+1+K1

by Theorem 2.7 (1). Notice that G[X ∪ {y′, v∗}] is connected, we get G[X ∪ {y′, v∗}] ∼=
Kt+2 \ e where e = v∗y′. Thus NX(y′) = X and so NG(y′) = X ∪ (Y \ {y, y′}) =
NG(v∗) ∪ NG(y) is a disjoint union. Additionally, {y′, v∗, y} is an independent set in G,
we see that y′ is a congruent vertex of II-type. Thus p(G) = p(G − y′) and η(G) =
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Figure 4: The graphs Γ1,Γ2, . . . ,Γ14.

η(G − y′) + 1 by Lemma 3.4. This implies that G − y′ ∈ H, and so G ∈ G2. Such a G,
displayed in Figure 3 (3), we call the (v∗, Y )-graph of II-type.

Next suppose that NX(y), NX(y′) 6= ∅, without loss of generality, assume that
NX(y′) \ NX(y) 6= ∅. Then there exists x′ ∈ NX(y′) \ NX(y). Thus x′ ∼ y′ and
x′ 6∼ y. Now by taking some x ∈ NX(y), we see that C6 = v∗xyy∗y′x′ is a 6-cycle in G.
Note that x may joins each vertex in {x′, y′, y∗} and x′ may joins y∗. By distinguishing
different situations in according with the number of edges we have

G[v∗, x, y, y∗, y′, x′] ∼=



C6 no edge;
Γ1 or Γ2 one edges;
Γ3,Γ4 or Γ5 two edges;
Γ6,Γ7 or Γ8 three edges;
Γ9 four edges.

However C6 and Γ1, . . . ,Γ8 and Γ9 are all forbidden subgraphs of G (see Figure 4).
We complete this proof.

It remains to characterize the graph G ∈ G∗ satisfying G[Y ] ∼= Kn−t−1. Such a graph
G we call X-complete if G[X] is also complete graph, and X-imcomplete otherwise. The
following result characterizes the X-imcomplete graphs.

Lemma 5.4. Let G[Y ] ∼= Kn−t−1, where n − t − 1 ≥ 2, and G is X-imcomplete. Then
G ∈ G1 if there exist two non-adjacent vertices x1 6∼ x2 in G[X] such that NY (x1) =
NY (x2) and G ∈ G3 otherwise.

Proof. Let X = {x1, x2, . . . , xt} and Y = {y1, y2, . . . , yn−t−1}. Then V (G) = {v∗} ∪
X ∪ Y and Y induces Kn−t−1. Let x and x′ be two non-adjacent vertices in X . Since
dG(x) ≥ dG(v∗) and n− t− 1 ≥ 2, we have |NY (x)| ≥ 1 and |Y | ≥ 2, respectively. First
we give some claims.

Claim 5.5. If x 6∼ x′ in G[X] then one of NY (x) and NY (x′) includes another. If
NY (x) ⊂ NY (x′) then |NY (x)| = 1 and NY (x′) = Y .
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Proof. On the contrary, let y ∈ NY (x) \ NY (x′) and y′ ∈ NY (x′) \ NY (x), then
G[v∗, x, x′, y, y′] ∼= C5. Thus one of NY (x) and NY (x′) includes another. Now as-
sume that NY (x) ⊂ NY (x′). If |NY (x)| ≥ 2, say {y, y′} ⊆ NY (x), then x′ ∼ y, y′ and
exists y∗ ∈ NY (x′) \ NY (x). Thus G[v∗, x, x′, y, y′, y∗] ∼= Γ10 (see Figure 4). However
p(Γ10) = 3. Hence |NY (x)| = 1, and we may assume thatNY (x) = {y}. IfNY (x′) 6= Y ,
then there exists y′ ∈ Y \ NY (x′). Also, there exists y∗ ∈ NY (x′) \ NY (x). We have
G[v∗, x, x′, y, y′, y∗] ∼= Γ4 (see the labels in the parentheses of Figure 4), but p(Γ4) = 3.
Thus NY (x′) = Y .

Claim 5.6. If x 6∼ x′ in G[X] then NX(x) = NX(x′).

Proof. On the contrary, we may assume that x∗ ∈ NX(x′) \ NX(x). Then x∗ ∼ x′ and
x∗ 6∼ x, thus |NY (x)| ≥ 2 since |NG(x)| ≥ t. By Claim 5.5, we have NY (x∗), NY (x′) ⊆
NY (x). Then either NY (x∗) = NY (x′) = NY (x) or one of NY (x∗) and NY (x′) is a
proper subset of NY (x) (without loss of generality, assume that NY (x∗) ⊂ NY (x), and
then |NY (x∗)| = 1 and NY (x) = Y by Claim 5.5).

Suppose that NY (x) = NY (x∗) = NY (x′). Take y, y′ ∈ NY (x), we see that
G[v∗, x, x∗, x′, y, y′] ∼= Γ11 (see Figure 4). However p(Γ11) = 3.

Suppose that |NY (x∗)| = 1 and NY (x) = Y . Let NY (x∗) = {y} and there exists
another y′ ∈ Y . Then G[v∗, x, x∗, x′, y, y′] is isomorphic Γ13 (see Figure 4) if x′ ∼ y, y′,
or isomorphic to Γ12 (see Figure 4) if x′ ∼ y and x′ 6∼ y′, or isomorphic to Γ14 (see
Figure 4) if x′ 6∼ y and x′ ∼ y′. However p(Γ12) = p(Γ13) = 3 and λ4(Γ14) = 0. We are
done.

Now we distinguish the following cases to prove our result.

Case 1. There exist x1 6∼ x2 such that NY (x1) = NY (x2).
Since x1 6∼ x2, we have NX(x1) = NX(x2) by Claim 5.6, so NG(x1) = NG(x2).

Thus x1 and x2 are congruent vertices of I-type. By Lemma 3.1, p(G) = p(G − x1) and
η(G) = η(G − x1) + 1. Thus G − x1 ∈ H and so G ∈ G1. Such a G, displayed in
Figure 5 (1), we call the X-graph of I-type.

Case 2. For each pair of x 6∼ x′ ∈ X , NY (x) 6= NY (x′).
By Claim 5.5, without loss of generality, assume that NY (x) ⊂ NY (x′) and then

NY (x) = {y} and NY (x′) = Y . Thus y ∼ x, x′ and furthermore we will show that X ⊆
NG(y). In fact, let x∗ ∈ X \{x, x′} (if any), if x 6∼ x∗, we have NY (x∗) ⊇ NY (x) = {y}
by Claim 5.6. Thus y ∼ x∗. Otherwise, x ∼ x∗ and thus x′ ∼ x∗ since NX(x) = NX(x′)
by Claim 5.6. Now take y′ ∈ Y \ {y}. If y 6∼ x∗, then G[v∗, x, x′, x∗, y, y′] is isomorphic
to Γ12 (see the first labels in the parentheses of Figure 4) while x∗ 6∼ y′, or isomorphic to
Γ13 (see the labels in the parentheses of Figure 4) while x∗ ∼ y′, but p(Γ12) = p(Γ13) = 3.
It follows that NG(y) = X ∪ (Y \ {y}) since Y induces a clique.

On the other hand, since dG(x) ≥ |X| = t, x 6∼ x′ and NY (x) = {y}, we have
NX(x) = X \ {x, x′} and so NX(x′) = X \ {x, x′} by Claim 5.6. Thus NG(x) =
(X \ {x, x′}) ∪ {v∗, y} and NG(x′) = (X \ {x, x′}) ∪ Y ∪ {v∗}. Hence the quadrangle
C4 = xv∗x′y is congruent, where xv∗ and x′y is a pair of congruent edges of C4. It
gives that x, v∗, x′, y are congruent vertices of III-type. By Lemma 3.6, we have p(G) =
p(G−x) and η(G) = η(G−x) + 1 thus G−x ∈ H, and so G ∈ G3. Such a G, displayed
in Figure 5 (2), we call the (v∗, X, Y )-graph of III-type.

We complete this proof.
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Figure 5: The structure of some graphs.

At last we focus on characterizing X-complete graph G ∈ G∗, i.e., G[X] ∼= Kt and
G[Y ] ∼= Kn−t−1. A X-complete graph G ∈ G∗ is called reduced if one of NY (xi) and
NY (xj) is a subset of another for any xi 6= xj ∈ X and non-reduced otherwise. Thus the
X-complete graphs are partitioned into a disjoint union of the reduced and non-reduced
X-complete graphs. Concretely, for a reduced X-complete graph G ∈ G∗, we may assume
that ∅ = NY (v∗) ⊆ NY (x1) ⊆ NY (x2) ⊆ · · · ⊆ NY (xt); for a non-reduced (X,Y )-
complete graph G ∈ G∗, there exist some x 6= x′ ∈ X such that NY (x) \NY (x′) 6= ∅ and
NY (x′) \ NY (x) 6= ∅. Such vertices x and x′ are called non-reduced vertices. It remains
to characterize the reduced and non-reduced X-complete graphs in what follows.

Lemma 5.7. Let G ∈ G∗ be a non-reduced X-complete graph and x, x′ be non-reduced
vertices. Then G ∈ G3.

Proof. Since x, x′ are non-reduced vertices, there exist y ∈ NY (x) \ NY (x′) and y′ ∈
NY (x′) \ NY (x). Then x, x′, y′, y induces C4 (see Figure 5 (3)). It suffices to verify that
C4 is congruent. Clearly, NG(x) ⊃ (X \{x})∪{v∗} and NG(x′) ⊃ (X \{x′})∪{v∗}. If
there exists y∗ ∈ NY (x) \NY (x′) other than y, then G[v∗, x, x′, y′, y, y∗] ∼= Γ12 (see the
second labels in the parentheses of Figure 4), however Γ12 is a forbidden subgraph of G.
Hence NY (x) \NY (x′) = {y}. Similarly, NY (x′) \NY (x) = {y′}. On the other aspect,
x ∈ NX(y)\NX(y′) and x′ ∈ NX(y′)\NX(y). If there exists x∗ ∈ NX(y)\NX(y′) other
than x, then G[v∗, x, x′, x∗, y, y′] ∼= Γ10 (see the labels in the parentheses of Figure 4),
however Γ10 is a forbidden subgraph of G. Hence NX(y) \ NX(y′) = {x}. Similarly,
NX(y′)\NX(y) = {x′}. HenceNX(y)\{x} = NX(y′)\{x′}. Note thatNG(y) ⊃ Y \{y}
and NG(y′) ⊃ Y \ {y′}, we have NG(y) \ {y′, x} = (Y \ {y, y′}) ∪ (NX(y) \ {x}) =
NG(y′) \ {x′, y}. Hence the quadrangle C4 = xx′y′y is congruent, where xx′ and y′y is
a pair of congruent edges. It follows that x, x′, y′, y are congruent vertices of III-type. By
Lemma 3.6, we have p(G) = p(G− x) and η(G) = η(G− x) + 1. Thus G− x ∈ H, and
so G ∈ G3. Such a G, displayed in Figure 5 (3), we call the (X,Y )-graph of III-type.

We complete this proof.

To characterize the reduced X-complete graph, we need the notion of canonical graph
which is introduced in [7]. For a graphG, a relation ρ on V (G) we mean that uρv iff u ∼ v
and NG(u) \ v = NG(v) \ u. Clearly, ρ is symmetric and transitive. In accordance with ρ,
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the vertex set is decomposed into classes:

V (G) = V1 ∪ V2 ∪ · · · ∪ Vk, (5.1)

where vi ∈ Vi and Vi = {x ∈ V (G) | xρvi}. By definition of ρ, Vi induces a clique Kni

where n1 + n2 + · · ·+ nk = n = |V (G)|, and vertices of Vi join that of Vj iff vi ∼ vj in
G. We call the induced subgraph G[{v1, v2, . . . , vk}] as the canonical graph of G, denoted
by Gc. Thus G = Gc[Kn1

,Kn2
, . . . ,Knk

] is a generalized lexicographic product of Gc

(by Kn1
,Kn2

, . . . ,Knk
).

Let G be a reduced X-complete graph. From (5.1) we have G = Gc[Kn1
,Kn2

, . . . ,
Knk

], where Gc = G[{v1, v2, . . . , vk}] and Vi = {x ∈ V (G) | xρvi} induces clique
Kni . Without loss of generality, assume v1 = v∗. Let Xc = NGc(v1) and Yc =
{v2, v3, . . . , vk} \ Xc. Clearly, Gc[Xc] is a clique since Xc is a subset of X and X in-
duces a clique in G. Furthermore, Gc[Yc] is a clique since Yc is a subset of Y and Y
induces a clique in G. Thus Gc is also a Xc-complete graph. Additionally, since G
is reduced, Gc is also reduced. Let tc = dGc

(v1) and Xc = {x1, x2, . . . , xtc}, Yc =
{y1, y2, . . . , yk−tc−1}. We may assume NYc(v1) ⊂ NYc(x1) ⊂ · · · ⊂ NYc(xtc) and
NXc(y1) ⊂ · · · ⊂ NXc(yk−tc−1). Therefore,

0 = |NYc(v1)| < |NYc(x1)| < · · · < |NYc(xtc)| ≤ |Yc| = k − tc − 1, (5.2)

and
0 ≤ |NXc(y1)| < |NXc(y2)| < · · · < |NXc(yk−tc−1)| ≤ |Xc| = tc. (5.3)

From Equation (5.2), we have tc ≤ k − tc − 1. Similarly, k − tc − 2 ≤ tc from
Equation (5.3). Thus k − 2 ≤ 2tc ≤ k − 1, and so tc = dk2 e − 1.

If k is even, then tc = k
2 − 1. From Equation (5.2), we have |NYc

(xi)| = i for
i = 1, 2, . . . , tc. Thus we may assume that

NYc
(v1) = ∅,

NYc
(x1) = {y k

2
},

...
NYc

(xn
2−2) = {y k

2
, . . . , y3},

NYc
(xn

2−1) = {y k
2
, . . . , y2}.

This implies that G ∼= Gk where Gk is defined in Section 2. Similarly, G ∼= Gk if k is odd.
Thus we obtain the following result.

Lemma 5.8. Let G be a reduced X-complete graph. Then Gc
∼= Gk where k ≥ 2 is

determined in (5.1).

Let G ∈ G∗ be a reduced X-complete graph. The following lemma gives a characteri-
zation for G. First we cite a result due to Oboudi in [5].

Lemma 5.9 ([5]). Let G = G3[Kn1 ,Kn2 ,Kn3 ], where n1, n2, n3 are some positive inte-
gers. Then the following hold:

(1) If n1 = n2 = n3 = 1, that is G ∼= P3, then λ3(G) = −
√

2;

(2) If n1 = n2 = 1 and n3 ≥ 2, then λ3(G) = −1;
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(3) If n1n2 > 1, then λ3(G) = −1.

We know that any graphG is a generalized lexicographic product of its canonical graph,
i.e., G = Gc[Kn1

,Kn2
, . . . ,Knk

]. We also have Gc = Gk if G is reduced X-complete by
Lemma 5.8. Furthermore, the following result prove that 4 ≤ k ≤ 13.

Lemma 5.10. Let G ∈ G∗ be a reduced X-complete graph. Then there exists 4 ≤ k ≤ 13
such that G = Gk[Kn1 ,Kn2 , . . . ,Knk

].

Proof. By Lemma 5.8, G = Gk[Kn1
,Kn2

, . . . ,Knk
] for some k. If k = 1 or 2 then

G ∼= Kn 6∈ G∗, and so k ≥ 3. If k = 3, then G = G3[Kn1
,Kn2

,Kn3
]. Thus λ3(G) < 0

by Lemma 5.9, a contradiction. Hence k ≥ 4. On the other hand, since Gc = Gk is an
induced subgraph of G, we have λ4(Gk) ≤ λ4(G) < 0 by Theorem 2.1. Note that G14 is
an induced subgraph of Gk (by Remark 2.8) for k ≥ 15, we have λ4(Gk) ≥ λ4(G14) = 0.
It implies that k ≤ 13.

Next we consider the converse of Lemma 5.10. In other words, we will try to find the
values of n1, . . . , nk such that p(Gk[Kn1

, . . . ,Knk
]) = 2 and η(Gk[Kn1

, . . . ,Knk
]) = 1,

where 4 ≤ k ≤ 13 and n = n1 + n2 + · · ·+ nk. For the simplicity, we use notation in [8]
to denote

G2s[Kn1
, . . . ,Kn2s

] = B2s(n1, . . . , ns;ns+1, . . . , n2s) and
G2s+1[Kn1

, . . . ,Kn2s+1
] = B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1).

By Remark 3.2 in [6], we know

H0 = B2s(n1, . . . , ns;ns+1, . . . , n2s)
∼= B2s(ns+1 . . . , n2s;n1, . . . , ns) = H ′0 and

H1 = B2s+1(n1, . . . , ns;ns+1, . . . , n2s;n2s+1)
∼= B2s+1(ns+1, . . . , n2s;n1, . . . , ns;n2s+1) = H ′1.

In what follows, we always take H0 and H1, in which (n1, . . . , ns) is prior to (ns+1, . . . ,
n2s) in dictionary ordering, instead of H ′0 and H ′1. For example we use B6(4, 3, 2; 4, 3, 1)
instead of B6(4, 3, 1; 4, 3, 2) and B7(5, 3, 2; 5, 2, 4; 8) instead of B7(5, 2, 4; 5, 3, 2; 8).

For 4 ≤ k ≤ 13, let

Bk(n) = {G = Bk(n1, . . . , nk) | n = n1 + · · ·+ nk, ni ≥ 1}.

LetB+k (n), B00k (n), B0k(n) andB−k (n) denote the set of graphs inBk(n) satisfying λ3(G) >
0 for G ∈ B+

k (n), λ4(G) = λ3(G) = 0 for G ∈ B00
k (n), λ4(G) < λ3(G) = 0 for

G ∈ B0k(n) and λ3(G) < 0 for G ∈ B−k (n), respectively. Clearly, Bk(n) = B+k (n) ∪
B00k (n) ∪ B0k(n) ∪ B−k (n) is disjoint union and G = Gk[Kn1

,Kn2
, . . . ,Knk

] ∈ B0
k(n) if

G ∈ G∗ is a reduced X-complete graph by Lemma 5.10. In what follows, we further show
that n ≤ 13. First, one can verify the following result by using computer.

Lemma 5.11. B0k(14) = ∅ for 4 ≤ k ≤ 13 (it means that there are no reducedX-complete
graphs of order 14).

Proof. For 4 ≤ k ≤ 13, the k-partition of 14 gives a solution (n1, n2, . . . , nk) of the
equation n1 + n2 + · · · + nk = 14 that corresponds a graph G = Bk(n1, n2, . . . , nk) ∈
Bk(14). By using computer, we exhaust all the graphs of Bk(14) to find that there is no
any graph G ∈ Bk(14) with λ4(G) < λ3(G) = 0. It implies that B0k(14) = ∅.
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In [6], Oboudi gave all the integers n1, . . . , nk satisfying λ2(Bk(n1, . . . , nk)) > 0 and
λ3(Bk(n1, . . . , nk)) < 0 for 4 ≤ k ≤ 9. For simplicity, we only cite this result for k = 5
and the others are listed in Appendix B.

Theorem 5.12 ([6]). Let G = B5(n1, n2;n3, n4;n5), where n1, n2, n3, n4, n5 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

(1) B5(a,w; 1, 1; 1);

(2) B5(a, x; 1, d; 1);

(3) B5(a, x; 1, y; z);

(4) B5(a, x; 1, 1; e);

(5) B5(a, 1; c, 1; e);

(6) B5(a, 1;x,w; 1);

(7) B5(a, 1;x, y; e);

(8) B5(a, 1; 1, d; e);

(9) B5(w, x; y, 1; e);

(10) B5(x, b; 1, 1; 1);

(11) B5(x,w; 1, d; 1);

(12) B5(x,w; 1, 1; e);

(13) B5(1, b; 1, d; 1);

(14) B5(1, b; 1, x; y);

(15) B5(1, x; 1, y; e);

(16) 63 specific graphs: 13 graphs of order 10, 25 graphs of order 11, and 25 graphs of
order 12,

where a, b, c, d, e, x, y, z, w are some positive integers such that x ≤ 2, y ≤ 2, z ≤ 2 and
w ≤ 3.

Lemma 5.13. Let G ∈ Bk(n), where 4 ≤ k ≤ 9 and n ≥ 14. If G /∈ B−k (n), then G has
an induced subgraph Γ ∈ Bk(14) \ B−k (14).

Proof. We prove this lemma by induction on n. If n = 14, sinceG ∈ Bk(14)\B−k (14), our
result is obviously true by taking Γ = G. Let n ≥ 15 and G′ ∈ Bk(n − 1) be an induced
subgraph ofG. IfG′ /∈ B−k (n−1), thenG′ has an induced subgraph Γ ∈ Bk(14)\B−k (14)
by induction hypothesis, and so does G. Hence it suffices to prove that G contains an
induced subgraph G′ ∈ Bk(n− 1) \B−k (n− 1) for n ≥ 15 in the following. We will prove
that there exists G′ ∈ B5(n − 1) \ B−5 (n − 1) for n ≥ 15, and it can be similarly proved
for the other k which we keep in the Appendix B.

Let G = B5(n1, n2;n3, n4;n5) ∈ B5(n). Then one of

H1 = B5(n1 − 1, n2;n3, n4;n5), H2 = B5(n1, n2 − 1;n3, n4;n5),

H3 = B5(n1, n2;n3 − 1, n4;n5), H4 = B5(n1, n2;n3, n4 − 1;n5) and
H5 = B5(n1, n2;n3, n4;n5 − 1)

must belong to B5(n−1). On the contrary, assume thatHi ∈ B−5 (n−1) for i = 1, 2, . . . , 5.
Then Hi is a graph belonging to (1) – (15) in Theorem 5.12 since |Hi| = n− 1 ≥ 14.

First we consider H1. If H1 is a graph belonging to (1) of Theorem 5.12, then H1 =
B5(a,w; 1, 1; 1) where n1−1 = a, n2 = w, n3 = n4 = n5 = 1, and henceG = B5(a+1,
w; 1, 1; 1) ∈ B−5 (n), a contradiction. Similarly, H1 cannot belong to (2) – (8) of Theo-
rem 5.12. If H1 is a graph belonging to (9) of Theorem 5.12, then H1 = B5(w, x; y, 1; e)
where n1 − 1 = w, n2 = x, n3 = y, n4 = 1, n5 = e. Since w ≤ 3, we have
n1 ≤ 4. If n1 < 4 then w + 1 ≤ 3 and G = B5(w + 1, x; y, 1; e) ∈ B−5 (n), a con-
tradiction. Now assume that n1 = 4. Then H1 = B5(3, x; y, 1; e). Since x, y ∈ {1, 2},
we have G ∈ {B5(4, 1; 1, 1; e), B5(4, 2; 1, 1; e), B5(4, 1; 2, 1; e), B5(4, 2; 2, 1; e)}. How-
ever B5(4, 1; 1, 1; e), B5(4, 2; 1, 1; e), B5(4, 1; 2, 1; e) belong to (4), (5) of Theorem 5.12
which contradicts our assumption. Thus G = B5(4, 2; 2, 1; e). By Theorem 5.12, G =
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B5(4, 2; 2, 1; e) 6∈ B−5 (n), and also its induced subgraphB5(4, 2; 2, 1; e−1) /∈ B−5 (n−1),
a contradiction. Hence H1 belongs to (10) – (15) of Theorem 5.12, from which we see that
n1 − 1 is either x or 1. Thus n1 ≤ 3 due to x ≤ 2.

By the same method, we can verify that n2 ≤ 3 if H2 ∈ B−5 (n − 1); n3 ≤ 3 if
H3 ∈ B−5 (n − 1); n4 ≤ 3 if H4 ∈ B−5 (n − 1) and n5 ≤ 2 if H5 ∈ B−5 (n − 1). Hence
n = n1 + · · ·+ n5 ≤ 14, a contradiction. We are done.

Lemma 5.14 ([6]). If n ≥ 14, then B−k (n) = ∅ for 10 ≤ k ≤ 13.

Lemma 5.15. Given 4 ≤ k ≤ 13, B0k(n) = ∅ for n ≥ 14 (it means that there are no
reduced X-complete graphs of order n ≥ 14).

Proof. Let G ∈ B0k(n) and n ≥ 14. Then λ4(G) < λ3(G) = 0. First we assume that
4 ≤ k ≤ 9. Since G /∈ B−k (n), G has an induced subgraphs Γ ∈ Bk(14) \ B−k (14)
by Lemma 5.13. Thus λ3(Γ) ≥ 0. Furthermore, we have λ3(Γ) = 0 since otherwise
0 < λ3(Γ) ≤ λ3(G). Additionally, λ4(Γ) ≤ λ4(G) < 0, we have Γ ∈ B0k(14), contrary
to Lemma 5.11. Next we assume that 10 ≤ k ≤ 13. By deleting n − 14 vertices from G,
we may obtain an induced subgraph Γ ∈ Bk(14). By Lemma 5.14, we have λ3(Γ) ≥ 0,
and then λ3(Γ) = 0 by the arguments above. Additionally, λ4(Γ) ≤ λ4(G) < 0, we have
Γ ∈ B0k(14) which also contradicts Lemma 5.11.

By Lemma 5.15, we know that, for any reducedX-complete graphG ∈ G∗, there exists
4 ≤ k ≤ 13 and n ≤ 13 such that G ∈ B0k(n). Let

B∗ = {G = Bk(n1, n2, . . . , nk) ∈ B0k(n) | 4 ≤ k ≤ 13 and n ≤ 13}.

Thus G ∈ G∗ is a reduced X-complete graph if and only if G ∈ B∗.

Remark 5.16. Clearly, B = ∪4≤k≤13,n≤13Bk(n) contains finite graphs. By using com-
puter we can exhaust all the graphs of B to find out the graphs in B∗. We list them in
Table 1.

Recall that G1, G2 and G3 are the set of connected graphs each of them is obtained
from some H ∈ H by adding one vertex of I, II, III-type, respectively. Summarizing
Lemmas 5.2, 5.3, 5.4, 5.15 and Theorem 4.2, finally we give the characterization of the
connected graphs in G.

Theorem 5.17. Let G be a connected graph of order n ≥ 5. Then G ∈ G if and only if G
is isomorphic to one of the following graphs listed in (1), (2) and (3):

(1) K1,2(u)�k Kn−3 or K1,1(u)�k Kn−2 \ e for e ∈ E(Kn−2);

(2) the graphs belonging to G1,G2 or G3;

(3) the 802 specific graphs belonging to B∗ some of which we list in Table 1.

If G∗ is obtained from G ∈ G by adding one vertex of I, II or III-type, then the positive
and negative indices of G∗ left unchanged, but the nullity adds just one. Repeating this
process, we can get a class of graphs which has two positive eigenvalues and s zero eigen-
values, where s ≥ 2 is any integer. However, by using the I, II and III-type (graph) transfor-
mations, we can not get all such graphs. For example, H = B10(1, 1, 2, 3, 2; 1, 1, 1, 1, 1) is
a graph satisfying p(H) = 2 and η(H) = 2 that can not be constructed by above (graph)
transformation. Hence the characterization of graphs with p(H) = 2 and η(H) = s (espe-
cially η(H) = 2) is also an attractive problem.
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Table 1: All graphs of B∗.

k B∗ Number

4

B4(3, 2; 3, 2); B4(4, 3; 2, 2), B4(4, 3; 3, 1); B4(5, 4; 2, 1), B4(5, 2; 2, 3),
B4(3, 4; 2, 3), B4(4, 1; 3, 4), B4(5, 2; 4, 1); B4(7, 3; 2, 1), B4(4, 6; 2, 1),
B4(7, 2; 2, 2), B4(3, 6; 2, 2), B4(4, 2; 2, 5), B4(3, 3; 2, 5), B4(7, 2; 3, 1),
B4(3, 6; 3, 1), B4(6, 1; 3, 3), B4(6, 1; 4, 2).

18

5

B5(2, 2; 2, 2; 1); B5(2, 3; 1, 2; 2), B5(3, 3; 2, 1; 1); B5(3, 4; 1, 1; 2),
B5(3, 4; 1, 2; 1), B5(1, 3; 1, 3; 3), B5(2, 2; 1, 3; 3), B5(2, 4; 2, 1; 2),
B5(4, 2; 3, 1; 1); B5(4, 5; 1, 1; 1), B5(2, 5; 1, 1; 3), B5(4, 3; 1, 1; 3),
B5(1, 4; 1, 2; 4), B5(3, 2; 1, 2; 4), B5(2, 5; 1, 3; 1), B5(4, 3; 1, 3; 1),
B5(1, 4; 1, 4; 2), B5(3, 2; 1, 4; 2), B5(5, 2; 2, 1; 2), B5(3, 1; 2, 3; 3),
B5(3, 1; 2, 5; 1), B5(4, 1; 3, 2; 2); B5(3, 7; 1, 1; 1), B5(6, 4; 1, 1; 1),
B5(2, 7; 1, 1; 2), B5(6, 3; 1, 1; 2), B5(2, 4; 1, 1; 5), B5(3, 3; 1, 1; 5),
B5(2, 7; 1, 2; 1), B5(6, 3; 1, 2; 1), B5(1, 6; 1, 2; 3), B5(5, 2; 1, 2; 3),
B5(1, 3; 1, 2; 6), B5(2, 2; 1, 2; 6), B5(1, 6; 1, 3; 2), B5(5, 2; 1, 3; 2),
B5(2, 4; 1, 5; 1), B5(3, 3; 1, 5; 1), B5(2, 2; 1, 6; 2), B5(2, 7; 2, 1; 1),
B5(7, 2; 2, 1; 1), B5(4, 2; 2, 1; 4), B5(2, 3; 2, 1; 5), B5(5, 1; 2, 3; 2),
B5(5, 1; 2, 4; 1), B5(3, 2; 3, 1; 4), B5(6, 1; 3, 2; 1).

47

6 See Table 2 of Appendix A 138

7 See Table 3 of Appendix A 161

8 See Table 4 of Appendix A 205

9 See Table 5 of Appendix A 124

10 See Table 6 of Appendix A 78

11

B11(1, 1, 1, 2, 1; 1, 1, 1, 1, 1; 1), B11(2, 1, 1, 1, 1; 1, 1, 1, 1, 1; 1);
B11(1, 1, 1, 1, 3; 1, 1, 1, 1, 1; 1), B11(1, 1, 1, 2, 2; 1, 1, 1, 1, 1; 1),
B11(1, 1, 2, 1, 2; 1, 1, 1, 1, 1; 1), B11(1, 1, 2, 2, 1; 1, 1, 1, 1, 1; 1),
B11(1, 1, 3, 1, 1; 1, 1, 1, 1, 1; 1), B11(1, 2, 1, 1, 2; 1, 1, 1, 1, 1; 1),
B11(1, 2, 2, 1, 1; 1, 1, 1, 1, 1; 1), B11(1, 3, 1, 1, 1; 1, 1, 1, 1, 1; 1),
B11(2, 1, 1, 1, 2; 1, 1, 1, 1, 1; 1), B11(2, 2, 1, 1, 1; 1, 1, 1, 1, 1; 1),
B11(1, 1, 1, 1, 2; 1, 1, 1, 1, 1; 2), B11(1, 1, 2, 1, 1; 1, 1, 1, 1, 1; 2),
B11(1, 2, 1, 1, 1; 1, 1, 1, 1, 1; 2), B11(1, 1, 1, 1, 1; 1, 1, 1, 1, 1; 3),
B11(1, 1, 1, 1, 2; 1, 1, 1, 1, 2; 1), B11(1, 1, 1, 2, 1; 1, 1, 1, 1, 2; 1),
B11(1, 1, 2, 1, 1; 1, 1, 1, 1, 2; 1), B11(1, 2, 1, 1, 1; 1, 1, 1, 1, 2; 1),
B11(1, 1, 2, 1, 1; 1, 1, 2, 1, 1; 1), B11(1, 2, 1, 1, 1; 1, 1, 2, 1, 1; 1),
B11(2, 1, 1, 1, 1; 1, 1, 2, 1, 1; 1), B11(1, 2, 1, 1, 1; 1, 2, 1, 1, 1; 1).

24

12

B12(1, 1, 1, 1, 1, 2; 1, 1, 1, 1, 1, 1), B12(1, 1, 1, 1, 2, 1; 1, 1, 1, 1, 1, 1),
B12(1, 1, 1, 2, 1, 1; 1, 1, 1, 1, 1, 1), B12(1, 1, 2, 1, 1, 1; 1, 1, 1, 1, 1, 1),
B12(1, 2, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1), B12(2, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1).

6

13 B13(1, 1, 1, 1, 1, 1; 1, 1, 1, 1, 1, 1; 1). 1
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Appendix A Five tables
Appendix A contains 5 tables, in which there are 706 specific graphs: 4 graphs of order 10,
32 graphs of order 11, 150 graphs of order 12, and 520 graphs of order 13.

Table 2: k = 6.

n B∗

10 B6(1, 2, 2; 1, 2, 2), B6(2, 2, 1; 1, 2, 2);

11

B6(1, 3, 3; 1, 1, 2), B6(2, 3, 2; 1, 1, 2), B6(3, 3, 1; 1, 1, 2), B6(1, 3, 3; 1, 2, 1),
B6(2, 3, 2; 1, 2, 1), B6(3, 3, 1; 1, 2, 1), B6(2, 1, 1; 1, 3, 3), B6(3, 2, 1; 2, 1, 2),
B6(2, 2, 2; 2, 2, 1), B6(3, 1, 2; 3, 1, 1);

12

B6(1, 4, 4; 1, 1, 1), B6(2, 4, 3; 1, 1, 1), B6(3, 4, 2; 1, 1, 1), B6(4, 4, 1; 1, 1, 1),
B6(1, 2, 4; 1, 1, 3), B6(1, 4, 2; 1, 1, 3), B6(2, 2, 3; 1, 1, 3), B6(2, 4, 1; 1, 1, 3),
B6(3, 2, 2; 1, 1, 3), B6(4, 2, 1; 1, 1, 3), B6(1, 3, 1; 1, 2, 4), B6(2, 1, 2; 1, 2, 4),
B6(3, 1, 1; 1, 2, 4), B6(1, 4, 2; 1, 3, 1), B6(2, 2, 3; 1, 3, 1), B6(2, 4, 1; 1, 3, 1),
B6(3, 2, 2; 1, 3, 1), B6(4, 2, 1; 1, 3, 1), B6(2, 1, 2; 1, 4, 2), B6(3, 1, 1; 1, 4, 2),
B6(2, 3, 3; 2, 1, 1), B6(4, 1, 3; 2, 1, 1), B6(4, 3, 1; 2, 1, 1), B6(2, 3, 2; 2, 1, 2),
B6(3, 2, 2; 2, 1, 2), B6(4, 1, 2; 2, 1, 2), B6(2, 3, 1; 2, 1, 3), B6(4, 1, 1; 2, 1, 3),
B6(3, 1, 3; 2, 2, 1), B6(3, 2, 2; 2, 2, 1), B6(3, 3, 1; 2, 2, 1), B6(3, 1, 1; 2, 2, 3),
B6(2, 3, 1; 2, 3, 1), B6(3, 2, 2; 3, 1, 1), B6(4, 2, 1; 3, 1, 1), B6(4, 1, 1; 4, 1, 1);

13

B6(1, 3, 6; 1, 1, 1), B6(1, 6, 3; 1, 1, 1), B6(2, 3, 5; 1, 1, 1), B6(2, 6, 2; 1, 1, 1),
B6(3, 3, 4; 1, 1, 1), B6(3, 6, 1; 1, 1, 1), B6(4, 3, 3; 1, 1, 1), B6(5, 3, 2; 1, 1, 1),
B6(6, 3, 1; 1, 1, 1), B6(1, 2, 6; 1, 1, 2), B6(1, 6, 2; 1, 1, 2), B6(2, 2, 5; 1, 1, 2),
B6(2, 6, 1; 1, 1, 2), B6(3, 2, 4; 1, 1, 2), B6(4, 2, 3; 1, 1, 2), B6(5, 2, 2; 1, 1, 2),
B6(6, 2, 1; 1, 1, 2), B6(1, 2, 3; 1, 1, 5), B6(1, 3, 2; 1, 1, 5), B6(2, 2, 2; 1, 1, 5),
B6(2, 2, 5; 1, 2, 1), B6(2, 6, 1; 1, 2, 1), B6(3, 2, 4; 1, 2, 1), B6(4, 2, 3; 1, 2, 1),
B6(5, 2, 2; 1, 2, 1), B6(2, 3, 1; 1, 1, 5), B6(3, 2, 1; 1, 1, 5), B6(1, 2, 6; 1, 2, 1),
B6(1, 6, 2; 1, 2, 1), B6(6, 2, 1; 1, 2, 1), B6(1, 5, 1; 1, 2, 3), B6(2, 1, 4; 1, 2, 3),
B6(3, 1, 3; 1, 2, 3), B6(4, 1, 2; 1, 2, 3), B6(5, 1, 1; 1, 2, 3), B6(2, 1, 1; 1, 2, 6),
B6(1, 5, 1; 1, 3, 2), B6(2, 1, 4; 1, 3, 2), B6(3, 1, 3; 1, 3, 2), B6(4, 1, 2; 1, 3, 2),
B6(5, 1, 1; 1, 3, 2), B6(2, 2, 2; 1, 5, 1), B6(2, 3, 1; 1, 5, 1), B6(3, 2, 1; 1, 5, 1),
B6(2, 1, 1; 1, 6, 2), B6(2, 2, 5; 2, 1, 1), B6(2, 5, 2; 2, 1, 1), B6(3, 1, 5; 2, 1, 1),
B6(3, 2, 4; 2, 1, 1), B6(3, 3, 3; 2, 1, 1), B6(3, 4, 2; 2, 1, 1), B6(3, 5, 1; 2, 1, 1),
B6(4, 2, 3; 2, 1, 1), B6(4, 3, 2; 2, 1, 1), B6(5, 2, 2; 2, 1, 1), B6(6, 1, 2; 2, 1, 1),
B6(6, 2, 1; 2, 1, 1), B6(2, 2, 4; 2, 1, 2), B6(2, 5, 1; 2, 1, 2), B6(3, 1, 4; 2, 1, 2),
B6(3, 2, 3; 2, 1, 2), B6(6, 1, 1; 2, 1, 2), B6(2, 2, 3; 2, 1, 3), B6(3, 1, 3; 2, 1, 3),
B6(2, 2, 2; 2, 1, 4), B6(3, 1, 2; 2, 1, 4), B6(2, 2, 1; 2, 1, 5), B6(3, 1, 1; 2, 1, 5),
B6(2, 5, 1; 2, 2, 1), B6(4, 2, 2; 2, 2, 1), B6(5, 1, 2; 2, 2, 1), B6(5, 2, 1; 2, 2, 1),
B6(3, 1, 3; 2, 2, 2), B6(4, 1, 2; 2, 2, 2), B6(5, 1, 1; 2, 2, 2), B6(3, 1, 2; 2, 2, 3),
B6(4, 1, 2; 2, 3, 1), B6(4, 2, 1; 2, 3, 1), B6(3, 1, 2; 2, 3, 2), B6(4, 1, 1; 2, 3, 2),
B6(3, 1, 2; 2, 4, 1), B6(3, 2, 1; 2, 4, 1), B6(3, 1, 1; 2, 4, 2), B6(3, 3, 2; 3, 1, 1),
B6(3, 4, 1; 3, 1, 1), B6(6, 1, 1; 3, 1, 1), B6(3, 3, 1; 3, 2, 1), B6(4, 2, 1; 3, 2, 1),
B6(5, 1, 1; 3, 2, 1), B6(4, 1, 1; 3, 3, 1).
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Table 3: k = 7.

n B∗

10 B7(2, 2, 1; 1, 1, 2; 1), B7(2, 1, 2; 2, 1, 1; 1);

11

B7(3, 3, 1; 1, 1, 1; 1), B7(2, 1, 3; 1, 1, 1; 2), B7(2, 2, 2; 1, 1, 2; 1), B7(2, 1, 2; 1, 1, 2; 2),
B7(1, 2, 1; 1, 1, 3; 2), B7(2, 1, 1; 1, 1, 3; 2), B7(1, 2, 3; 1, 2, 1; 1), B7(1, 2, 2; 1, 2, 2; 1),
B7(2, 1, 1; 1, 2, 3; 1), B7(2, 2, 2; 2, 1, 1; 1), B7(3, 2, 1; 2, 1, 1; 1), B7(3, 1, 1; 3, 1, 1; 1);

12

B7(1, 3, 4; 1, 1, 1; 1), B7(3, 1, 4; 1, 1, 1; 1), B7(3, 3, 2; 1, 1, 1; 1), B7(1, 2, 4; 1, 1, 1; 2),
B7(2, 2, 3; 1, 1, 1; 2), B7(2, 4, 1; 1, 1, 1; 2), B7(3, 2, 2; 1, 1, 1; 2), B7(4, 2, 1; 1, 1, 1; 2),
B7(1, 1, 4; 1, 1, 1; 3), B7(3, 1, 2; 1, 1, 1; 3), B7(1, 3, 3; 1, 1, 2; 1), B7(2, 2, 3; 1, 1, 2; 1),
B7(3, 1, 3; 1, 1, 2; 1), B7(1, 1, 3; 1, 1, 2; 3), B7(1, 3, 1; 1, 1, 2; 3), B7(3, 1, 1; 1, 1, 2; 3),
B7(1, 3, 2; 1, 1, 3; 1), B7(3, 1, 2; 1, 1, 3; 1), B7(1, 2, 2; 1, 1, 3; 2), B7(1, 3, 1; 1, 1, 4; 1),
B7(3, 1, 1; 1, 1, 4; 1), B7(2, 1, 4; 1, 2, 1; 1), B7(2, 2, 3; 1, 2, 1; 1), B7(2, 3, 2; 1, 2, 1; 1),
B7(4, 2, 1; 1, 2, 1; 1), B7(2, 1, 2; 1, 2, 1; 3), B7(1, 2, 2; 1, 2, 2; 2), B7(1, 3, 1; 1, 2, 2; 2),
B7(2, 4, 1; 1, 2, 1; 1), B7(2, 1, 2; 1, 2, 2; 2), B7(3, 1, 1; 1, 2, 2; 2), B7(2, 1, 2; 1, 2, 3; 1),
B7(1, 3, 2; 1, 3, 1; 1), B7(3, 1, 1; 1, 3, 2; 1), B7(2, 3, 2; 2, 1, 1; 1), B7(2, 3, 1; 2, 1, 1; 2),
B7(4, 1, 1; 2, 1, 1; 2), B7(3, 2, 1; 2, 2, 1; 1), B7(3, 1, 1; 2, 2, 1; 2);

13

B7(1, 2, 6; 1, 1, 1; 1), B7(1, 5, 3; 1, 1, 1; 1), B7(2, 1, 6; 1, 1, 1; 1), B7(2, 2, 5; 1, 1, 1; 1),
B7(2, 3, 4; 1, 1, 1; 1), B7(2, 4, 3; 1, 1, 1; 1), B7(2, 5, 2; 1, 1, 1; 1), B7(2, 6, 1; 1, 1, 1; 1),
B7(3, 2, 4; 1, 1, 1; 1), B7(3, 3, 3; 1, 1, 1; 1), B7(4, 2, 3; 1, 1, 1; 1), B7(5, 1, 3; 1, 1, 1; 1),
B7(5, 2, 2; 1, 1, 1; 1), B7(6, 2, 1; 1, 1, 1; 1), B7(1, 1, 6; 1, 1, 1; 2), B7(1, 4, 3; 1, 1, 1; 2),
B7(2, 3, 3; 1, 1, 1; 2), B7(2, 4, 2; 1, 1, 1; 2), B7(5, 1, 2; 1, 1, 1; 2), B7(1, 3, 3; 1, 1, 1; 3),
B7(2, 3, 2; 1, 1, 1; 3), B7(1, 2, 3; 1, 1, 1; 4), B7(2, 2, 2; 1, 1, 1; 4), B7(2, 3, 1; 1, 1, 1; 4),
B7(3, 2, 1; 1, 1, 1; 4), B7(1, 1, 3; 1, 1, 1; 5), B7(2, 1, 2; 1, 1, 1; 5), B7(1, 2, 5; 1, 1, 2; 1),
B7(1, 5, 2; 1, 1, 2; 1), B7(2, 1, 5; 1, 1, 2; 1), B7(2, 2, 4; 1, 1, 2; 1), B7(5, 1, 2; 1, 1, 2; 1),
B7(1, 1, 5; 1, 1, 2; 2), B7(1, 2, 4; 1, 1, 2; 2), B7(1, 3, 3; 1, 1, 2; 2), B7(1, 4, 2; 1, 1, 2; 2),
B7(1, 5, 1; 1, 1, 2; 2), B7(5, 1, 1; 1, 1, 2; 2), B7(1, 2, 3; 1, 1, 2; 3), B7(1, 3, 2; 1, 1, 2; 3),
B7(1, 2, 2; 1, 1, 2; 4), B7(1, 1, 2; 1, 1, 2; 5), B7(1, 2, 1; 1, 1, 2; 5), B7(2, 1, 1; 1, 1, 2; 5),
B7(1, 2, 4; 1, 1, 3; 1), B7(1, 5, 1; 1, 1, 3; 1), B7(2, 1, 4; 1, 1, 3; 1), B7(5, 1, 1; 1, 1, 3; 1),
B7(1, 1, 4; 1, 1, 3; 2), B7(1, 2, 3; 1, 1, 3; 2), B7(1, 2, 3; 1, 1, 4; 1), B7(2, 1, 3; 1, 1, 4; 1),
B7(1, 2, 2; 1, 1, 5; 1), B7(2, 1, 2; 1, 1, 5; 1), B7(1, 2, 1; 1, 1, 6; 1), B7(2, 1, 1; 1, 1, 6; 1),
B7(1, 5, 2; 1, 2, 1; 1), B7(3, 2, 3; 1, 2, 1; 1), B7(4, 1, 3; 1, 2, 1; 1), B7(4, 2, 2; 1, 2, 1; 1),
B7(1, 4, 2; 1, 2, 1; 2), B7(2, 3, 2; 1, 2, 1; 2), B7(3, 2, 2; 1, 2, 1; 2), B7(4, 1, 2; 1, 2, 1; 2),
B7(1, 3, 2; 1, 2, 1; 3), B7(2, 2, 2; 1, 2, 1; 3), B7(2, 3, 1; 1, 2, 1; 3), B7(3, 2, 1; 1, 2, 1; 3),
B7(1, 2, 2; 1, 2, 1; 4), B7(1, 5, 1; 1, 2, 2; 1), B7(2, 1, 4; 1, 2, 2; 1), B7(3, 1, 3; 1, 2, 2; 1),
B7(4, 1, 2; 1, 2, 2; 1), B7(5, 1, 1; 1, 2, 2; 1), B7(1, 2, 2; 1, 2, 2; 3), B7(2, 1, 1; 1, 2, 2; 4),
B7(2, 1, 3; 1, 2, 3; 1), B7(3, 1, 3; 1, 3, 1; 1), B7(3, 2, 2; 1, 3, 1; 1), B7(2, 2, 2; 1, 3, 1; 2),
B7(2, 3, 1; 1, 3, 1; 2), B7(3, 1, 2; 1, 3, 1; 2), B7(3, 2, 1; 1, 3, 1; 2), B7(2, 1, 3; 1, 3, 2; 1),
B7(3, 1, 2; 1, 3, 2; 1), B7(2, 1, 2; 1, 3, 2; 2), B7(2, 1, 1; 1, 3, 2; 3), B7(2, 1, 3; 1, 4, 1; 1),
B7(2, 2, 2; 1, 4, 1; 1), B7(2, 3, 1; 1, 4, 1; 1), B7(3, 2, 1; 1, 4, 1; 1), B7(2, 1, 2; 1, 4, 1; 2),
B7(2, 1, 2; 1, 4, 2; 1), B7(2, 1, 1; 1, 4, 2; 2), B7(2, 1, 1; 1, 5, 2; 1), B7(2, 4, 2; 2, 1, 1; 1),
B7(2, 5, 1; 2, 1, 1; 1), B7(6, 1, 1; 2, 1, 1; 1), B7(2, 2, 1; 2, 1, 1; 4), B7(3, 1, 1; 2, 1, 1; 4),
B7(2, 4, 1; 2, 2, 1; 1), B7(5, 1, 1; 2, 2, 1; 1), B7(2, 3, 1; 2, 2, 1; 2), B7(2, 2, 1; 2, 2, 1; 3),
B7(2, 3, 1; 2, 3, 1; 1), B7(3, 2, 1; 2, 3, 1; 1), B7(4, 1, 1; 2, 3, 1; 1), B7(3, 1, 1; 2, 4, 1; 1).
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Table 4: k = 8.

n B∗

11
B8(1, 2, 1, 2; 1, 1, 1, 2), B8(2, 2, 1, 1; 1, 1, 1, 2), B8(1, 2, 2, 1; 1, 1, 2, 1),
B8(1, 2, 1, 1; 1, 1, 2, 2), B8(2, 1, 2, 1; 1, 2, 1, 1), B8(2, 1, 1, 1; 1, 2, 1, 2);

12

B8(1, 1, 3, 3; 1, 1, 1, 1), B8(1, 3, 1, 3; 1, 1, 1, 1), B8(1, 3, 3, 1; 1, 1, 1, 1),
B8(2, 1, 3, 2; 1, 1, 1, 1), B8(2, 3, 1, 2; 1, 1, 1, 1), B8(3, 1, 3, 1; 1, 1, 1, 1),
B8(3, 3, 1, 1; 1, 1, 1, 1), B8(1, 1, 2, 3; 1, 1, 1, 2), B8(1, 2, 2, 2; 1, 1, 1, 2),
B8(1, 3, 2, 1; 1, 1, 1, 2), B8(2, 1, 2, 2; 1, 1, 1, 2), B8(2, 2, 2, 1; 1, 1, 1, 2),
B8(3, 1, 2, 1; 1, 1, 1, 2), B8(1, 1, 1, 3; 1, 1, 1, 3), B8(1, 3, 1, 1; 1, 1, 1, 3),
B8(2, 1, 1, 2; 1, 1, 1, 3), B8(3, 1, 1, 1; 1, 1, 1, 3), B8(1, 1, 3, 2; 1, 1, 2, 1),
B8(1, 2, 2, 2; 1, 1, 2, 1), B8(1, 3, 1, 2; 1, 1, 2, 1), B8(2, 1, 3, 1; 1, 1, 2, 1),
B8(2, 2, 2, 1; 1, 1, 2, 1), B8(2, 3, 1, 1; 1, 1, 2, 1), B8(2, 1, 1, 1; 1, 1, 2, 3),
B8(1, 1, 3, 1; 1, 1, 3, 1), B8(1, 3, 1, 1; 1, 1, 3, 1), B8(1, 2, 1, 3; 1, 2, 1, 1),
B8(1, 2, 2, 2; 1, 2, 1, 1), B8(1, 2, 3, 1; 1, 2, 1, 1), B8(2, 2, 1, 2; 1, 2, 1, 1),
B8(2, 2, 2, 1; 1, 2, 1, 1), B8(3, 2, 1, 1; 1, 2, 1, 1), B8(2, 1, 1, 1; 1, 2, 2, 2),
B8(2, 1, 1, 2; 1, 3, 1, 1), B8(3, 1, 1, 1; 1, 3, 1, 1), B8(2, 1, 1, 1; 1, 3, 2, 1),
B8(2, 2, 1, 2; 2, 1, 1, 1), B8(3, 1, 2, 1; 2, 1, 1, 1), B8(2, 2, 1, 1; 2, 1, 1, 2),
B8(3, 1, 1, 1; 2, 1, 1, 2), B8(2, 1, 2, 1; 2, 1, 2, 1), B8(2, 2, 1, 1; 2, 1, 2, 1),
B8(3, 1, 1, 1; 3, 1, 1, 1);

13

B8(1, 1, 2, 5; 1, 1, 1, 1), B8(1, 1, 5, 2; 1, 1, 1, 1), B8(1, 2, 1, 5; 1, 1, 1, 1),
B8(1, 2, 2, 4; 1, 1, 1, 1), B8(1, 2, 3, 3; 1, 1, 1, 1), B8(1, 2, 4, 2; 1, 1, 1, 1),
B8(1, 2, 5, 1; 1, 1, 1, 1), B8(1, 3, 2, 3; 1, 1, 1, 1), B8(1, 3, 3, 2; 1, 1, 1, 1),
B8(1, 4, 2, 2; 1, 1, 1, 1), B8(1, 5, 1, 2; 1, 1, 1, 1), B8(1, 5, 2, 1; 1, 1, 1, 1),
B8(2, 1, 2, 4; 1, 1, 1, 1), B8(2, 1, 5, 1; 1, 1, 1, 1), B8(2, 2, 1, 4; 1, 1, 1, 1),
B8(2, 2, 2, 3; 1, 1, 1, 1), B8(2, 2, 3, 2; 1, 1, 1, 1), B8(2, 2, 4, 1; 1, 1, 1, 1),
B8(2, 3, 2, 2; 1, 1, 1, 1), B8(2, 3, 3, 1; 1, 1, 1, 1), B8(2, 4, 2, 1; 1, 1, 1, 1),
B8(2, 5, 1, 1; 1, 1, 1, 1), B8(3, 1, 2, 3; 1, 1, 1, 1), B8(3, 2, 1, 3; 1, 1, 1, 1),
B8(3, 2, 2, 2; 1, 1, 1, 1), B8(3, 2, 3, 1; 1, 1, 1, 1), B8(3, 3, 2, 1; 1, 1, 1, 1),
B8(4, 1, 2, 2; 1, 1, 1, 1), B8(4, 2, 1, 2; 1, 1, 1, 1), B8(4, 2, 2, 1; 1, 1, 1, 1),
B8(5, 1, 2, 1; 1, 1, 1, 1), B8(5, 2, 1, 1; 1, 1, 1, 1), B8(1, 1, 1, 5; 1, 1, 1, 2),
B8(1, 1, 4, 2; 1, 1, 1, 2), B8(1, 2, 3, 2; 1, 1, 1, 2), B8(1, 2, 4, 1; 1, 1, 1, 2),
B8(1, 5, 1, 1; 1, 1, 1, 2), B8(2, 1, 1, 4; 1, 1, 1, 2), B8(2, 1, 4, 1; 1, 1, 1, 2),
B8(2, 2, 3, 1; 1, 1, 1, 2), B8(3, 1, 1, 3; 1, 1, 1, 2), B8(4, 1, 1, 2; 1, 1, 1, 2),
B8(5, 1, 1, 1; 1, 1, 1, 2), B8(1, 1, 3, 2; 1, 1, 1, 3), B8(1, 2, 3, 1; 1, 1, 1, 3),
B8(2, 1, 3, 1; 1, 1, 1, 3), B8(1, 1, 2, 2; 1, 1, 1, 4), B8(1, 2, 2, 1; 1, 1, 1, 4),
B8(2, 1, 2, 1; 1, 1, 1, 4), B8(1, 2, 1, 1; 1, 1, 1, 5), B8(2, 1, 1, 1; 1, 1, 1, 5),
B8(1, 1, 2, 4; 1, 1, 2, 1), B8(1, 1, 5, 1; 1, 1, 2, 1), B8(1, 2, 1, 4; 1, 1, 2, 1),
B8(1, 2, 2, 3; 1, 1, 2, 1), B8(1, 5, 1, 1; 1, 1, 2, 1), B8(2, 1, 2, 3; 1, 1, 2, 1),
B8(2, 2, 1, 3; 1, 1, 2, 1), B8(2, 2, 2, 2; 1, 1, 2, 1), B8(3, 1, 2, 2; 1, 1, 2, 1),
B8(3, 2, 1, 2; 1, 1, 2, 1), B8(3, 2, 2, 1; 1, 1, 2, 1), B8(4, 1, 2, 1; 1, 1, 2, 1),
B8(4, 2, 1, 1; 1, 1, 2, 1), B8(1, 1, 2, 3; 1, 1, 2, 2), B8(1, 1, 3, 2; 1, 1, 2, 2),

continued on next page



F. Duan, Q. Huang and X. Huang: On graphs with exactly two positive eigenvalues 341

continued from previous page

n B∗

13

B8(1, 1, 4, 1; 1, 1, 2, 2), B8(2, 1, 1, 3; 1, 1, 2, 2), B8(2, 1, 2, 2; 1, 1, 2, 2),
B8(2, 1, 3, 1; 1, 1, 2, 2), B8(3, 1, 1, 2; 1, 1, 2, 2), B8(3, 1, 2, 1; 1, 1, 2, 2),
B8(4, 1, 1, 1; 1, 1, 2, 2), B8(1, 1, 3, 1; 1, 1, 2, 3), B8(2, 1, 2, 1; 1, 1, 2, 3),
B8(1, 2, 1, 3; 1, 1, 3, 1), B8(2, 1, 2, 2; 1, 1, 3, 1), B8(2, 2, 1, 2; 1, 1, 3, 1),
B8(3, 1, 2, 1; 1, 1, 3, 1), B8(3, 2, 1, 1; 1, 1, 3, 1), B8(2, 1, 1, 2; 1, 1, 3, 2),
B8(2, 1, 2, 1; 1, 1, 3, 2), B8(3, 1, 1, 1; 1, 1, 3, 2), B8(1, 2, 1, 2; 1, 1, 4, 1),
B8(2, 1, 2, 1; 1, 1, 4, 1), B8(2, 2, 1, 1; 1, 1, 4, 1), B8(2, 1, 1, 1; 1, 1, 4, 2),
B8(1, 2, 1, 1; 1, 1, 5, 1), B8(1, 3, 2, 2; 1, 2, 1, 1), B8(1, 4, 1, 2; 1, 2, 1, 1),
B8(1, 4, 2, 1; 1, 2, 1, 1), B8(2, 1, 1, 4; 1, 2, 1, 1), B8(2, 3, 2, 1; 1, 2, 1, 1),
B8(2, 4, 1, 1; 1, 2, 1, 1), B8(3, 1, 1, 3; 1, 2, 1, 1), B8(4, 1, 1, 2; 1, 2, 1, 1),
B8(5, 1, 1, 1; 1, 2, 1, 1), B8(1, 2, 3, 1; 1, 2, 1, 2), B8(1, 3, 2, 1; 1, 2, 1, 2),
B8(1, 4, 1, 1; 1, 2, 1, 2), B8(1, 2, 2, 1; 1, 2, 1, 3), B8(1, 3, 1, 2; 1, 2, 2, 1),
B8(1, 4, 1, 1; 1, 2, 2, 1), B8(2, 1, 1, 3; 1, 2, 2, 1), B8(2, 2, 1, 2; 1, 2, 2, 1),
B8(2, 3, 1, 1; 1, 2, 2, 1), B8(3, 1, 1, 2; 1, 2, 2, 1), B8(3, 2, 1, 1; 1, 2, 2, 1),
B8(4, 1, 1, 1; 1, 2, 2, 1), B8(2, 1, 1, 2; 1, 2, 3, 1), B8(2, 2, 1, 1; 1, 2, 3, 1),
B8(3, 1, 1, 1; 1, 2, 3, 1), B8(2, 1, 1, 1; 1, 2, 3, 2), B8(2, 1, 1, 1; 1, 2, 4, 1),
B8(1, 3, 1, 2; 1, 3, 1, 1), B8(1, 3, 2, 1; 1, 3, 1, 1), B8(2, 3, 1, 1; 1, 3, 1, 1),
B8(2, 2, 1, 1; 1, 3, 2, 1), B8(2, 2, 1, 1; 1, 4, 1, 1), B8(2, 1, 1, 1; 1, 5, 1, 1),
B8(2, 1, 1, 4; 2, 1, 1, 1), B8(2, 1, 2, 3; 2, 1, 1, 1), B8(2, 1, 3, 2; 2, 1, 1, 1),
B8(2, 1, 4, 1; 2, 1, 1, 1), B8(2, 2, 2, 2; 2, 1, 1, 1), B8(2, 2, 3, 1; 2, 1, 1, 1),
B8(2, 3, 2, 1; 2, 1, 1, 1), B8(2, 4, 1, 1; 2, 1, 1, 1), B8(3, 1, 1, 3; 2, 1, 1, 1),
B8(3, 1, 2, 2; 2, 1, 1, 1), B8(3, 2, 1, 2; 2, 1, 1, 1), B8(3, 2, 2, 1; 2, 1, 1, 1),
B8(3, 3, 1, 1; 2, 1, 1, 1), B8(4, 1, 1, 2; 2, 1, 1, 1), B8(4, 2, 1, 1; 2, 1, 1, 1),
B8(5, 1, 1, 1; 2, 1, 1, 1), B8(2, 1, 1, 3; 2, 1, 1, 2), B8(2, 1, 2, 2; 2, 1, 1, 2),
B8(2, 1, 3, 1; 2, 1, 1, 2), B8(2, 2, 2, 1; 2, 1, 1, 2), B8(3, 1, 1, 2; 2, 1, 1, 2),
B8(2, 1, 2, 1; 2, 1, 1, 3), B8(2, 1, 2, 2; 2, 1, 2, 1), B8(3, 1, 1, 2; 2, 1, 2, 1),
B8(3, 2, 1, 1; 2, 1, 2, 1), B8(4, 1, 1, 1; 2, 1, 2, 1), B8(3, 1, 1, 1; 2, 1, 2, 2),
B8(3, 1, 1, 1; 2, 1, 3, 1), B8(2, 2, 2, 1; 2, 2, 1, 1), B8(2, 3, 1, 1; 2, 2, 1, 1),
B8(3, 1, 1, 2; 2, 2, 1, 1), B8(3, 2, 1, 1; 2, 2, 1, 1), B8(4, 1, 1, 1; 2, 2, 1, 1),
B8(3, 1, 1, 1; 2, 2, 2, 1), B8(3, 1, 1, 1; 2, 3, 1, 1), B8(3, 2, 1, 1; 3, 1, 1, 1).

Table 5: k = 9.

n B∗

11
B9(2, 1, 2, 1; 1, 1, 1, 1; 1), B9(2, 1, 1, 1; 1, 1, 1, 2; 1), B9(1, 1, 2, 1; 1, 1, 2, 1; 1),
B9(2, 1, 1, 1; 2, 1, 1, 1; 1);

12
B9(1, 2, 1, 3; 1, 1, 1, 1; 1), B9(1, 2, 3, 1; 1, 1, 1, 1; 1), B9(2, 1, 2, 2; 1, 1, 1, 1; 1),
B9(2, 2, 2, 1; 1, 1, 1, 1; 1), B9(3, 2, 1, 1; 1, 1, 1, 1; 1), B9(1, 1, 1, 3; 1, 1, 1, 1; 2),

continued on next page
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continued from previous page

n B∗

12

B9(1, 1, 3, 1; 1, 1, 1, 1; 2), B9(2, 1, 1, 2; 1, 1, 1, 1; 2), B9(3, 1, 1, 1; 1, 1, 1, 1; 2),
B9(1, 2, 1, 2; 1, 1, 1, 2; 1), B9(2, 1, 1, 2; 1, 1, 1, 2; 1), B9(1, 1, 2, 1; 1, 1, 1, 2; 2),
B9(1, 2, 1, 1; 1, 1, 1, 3; 1), B9(1, 1, 2, 2; 1, 1, 2, 1; 1), B9(1, 2, 1, 2; 1, 1, 2, 1; 1),
B9(2, 1, 1, 1; 1, 1, 2, 1; 2), B9(1, 2, 1, 1; 1, 1, 2, 2; 1), B9(2, 1, 1, 1; 1, 1, 2, 2; 1),
B9(1, 2, 1, 1; 1, 1, 3, 1; 1), B9(3, 1, 1, 1; 1, 2, 1, 1; 1), B9(2, 1, 1, 1; 1, 2, 2, 1; 1),
B9(2, 2, 1, 1; 2, 1, 1, 1; 1);

13

B9(1, 1, 1, 5; 1, 1, 1, 1; 1), B9(1, 1, 2, 4; 1, 1, 1, 1; 1), B9(1, 1, 3, 3; 1, 1, 1, 1; 1),
B9(1, 1, 4, 2; 1, 1, 1, 1; 1), B9(1, 1, 5, 1; 1, 1, 1, 1; 1), B9(1, 2, 2, 3; 1, 1, 1, 1; 1),
B9(1, 2, 3, 2; 1, 1, 1, 1; 1), B9(1, 3, 2, 2; 1, 1, 1, 1; 1), B9(1, 4, 1, 2; 1, 1, 1, 1; 1),
B9(1, 4, 2, 1; 1, 1, 1, 1; 1), B9(2, 1, 1, 4; 1, 1, 1, 1; 1), B9(2, 1, 2, 3; 1, 1, 1, 1; 1),
B9(2, 2, 1, 3; 1, 1, 1, 1; 1), B9(2, 2, 2, 2; 1, 1, 1, 1; 1), B9(2, 3, 1, 2; 1, 1, 1, 1; 1),
B9(2, 3, 2, 1; 1, 1, 1, 1; 1), B9(2, 4, 1, 1; 1, 1, 1, 1; 1), B9(3, 1, 1, 3; 1, 1, 1, 1; 1),
B9(3, 2, 1, 2; 1, 1, 1, 1; 1), B9(4, 1, 1, 2; 1, 1, 1, 1; 1), B9(5, 1, 1, 1; 1, 1, 1, 1; 1),
B9(1, 1, 2, 3; 1, 1, 1, 1; 2), B9(1, 1, 3, 2; 1, 1, 1, 1; 2), B9(1, 2, 2, 2; 1, 1, 1, 1; 2),
B9(1, 3, 1, 2; 1, 1, 1, 1; 2), B9(1, 3, 2, 1; 1, 1, 1, 1; 2), B9(2, 2, 1, 2; 1, 1, 1, 1; 2),
B9(2, 3, 1, 1; 1, 1, 1, 1; 2), B9(1, 1, 2, 2; 1, 1, 1, 1; 3), B9(1, 2, 1, 2; 1, 1, 1, 1; 3),
B9(1, 2, 2, 1; 1, 1, 1, 1; 3), B9(2, 2, 1, 1; 1, 1, 1, 1; 3), B9(1, 1, 1, 2; 1, 1, 1, 1; 4),
B9(1, 1, 2, 1; 1, 1, 1, 1; 4), B9(2, 1, 1, 1; 1, 1, 1, 1; 4), B9(1, 1, 1, 4; 1, 1, 1, 2; 1),
B9(1, 1, 2, 3; 1, 1, 1, 2; 1), B9(1, 1, 3, 2; 1, 1, 1, 2; 1), B9(1, 1, 4, 1; 1, 1, 1, 2; 1),
B9(1, 2, 2, 2; 1, 1, 1, 2; 1), B9(1, 2, 3, 1; 1, 1, 1, 2; 1), B9(1, 3, 2, 1; 1, 1, 1, 2; 1),
B9(1, 4, 1, 1; 1, 1, 1, 2; 1), B9(2, 1, 1, 3; 1, 1, 1, 2; 1), B9(1, 1, 1, 3; 1, 1, 1, 2; 2),
B9(1, 1, 2, 2; 1, 1, 1, 2; 2), B9(1, 2, 1, 2; 1, 1, 1, 2; 2), B9(1, 2, 2, 1; 1, 1, 1, 2; 2),
B9(1, 3, 1, 1; 1, 1, 1, 2; 2), B9(1, 1, 1, 2; 1, 1, 1, 2; 3), B9(1, 2, 1, 1; 1, 1, 1, 2; 3),
B9(1, 1, 1, 3; 1, 1, 1, 3; 1), B9(1, 1, 2, 2; 1, 1, 1, 3; 1), B9(1, 1, 3, 1; 1, 1, 1, 3; 1),
B9(1, 2, 2, 1; 1, 1, 1, 3; 1), B9(1, 1, 2, 1; 1, 1, 1, 4; 1), B9(1, 1, 2, 3; 1, 1, 2, 1; 1),
B9(1, 4, 1, 1; 1, 1, 2, 1; 1), B9(2, 1, 1, 3; 1, 1, 2, 1; 1), B9(2, 2, 1, 2; 1, 1, 2, 1; 1),
B9(2, 3, 1, 1; 1, 1, 2, 1; 1), B9(3, 1, 1, 2; 1, 1, 2, 1; 1), B9(3, 2, 1, 1; 1, 1, 2, 1; 1),
B9(4, 1, 1, 1; 1, 1, 2, 1; 1), B9(1, 3, 1, 1; 1, 1, 2, 1; 2), B9(2, 2, 1, 1; 1, 1, 2, 1; 2),
B9(1, 2, 1, 1; 1, 1, 2, 1; 3), B9(1, 1, 2, 2; 1, 1, 2, 2; 1), B9(2, 1, 1, 2; 1, 1, 2, 2; 1),
B9(1, 2, 1, 1; 1, 1, 2, 2; 2), B9(2, 1, 1, 2; 1, 1, 3, 1; 1), B9(2, 2, 1, 1; 1, 1, 3, 1; 1),
B9(3, 1, 1, 1; 1, 1, 3, 1; 1), B9(2, 1, 1, 1; 1, 1, 3, 2; 1), B9(2, 1, 1, 1; 1, 1, 4, 1; 1),
B9(1, 2, 2, 2; 1, 2, 1, 1; 1), B9(1, 3, 1, 2; 1, 2, 1, 1; 1), B9(1, 3, 2, 1; 1, 2, 1, 1; 1),
B9(2, 1, 1, 3; 1, 2, 1, 1; 1), B9(2, 2, 1, 2; 1, 2, 1, 1; 1), B9(2, 3, 1, 1; 1, 2, 1, 1; 1),
B9(3, 1, 1, 2; 1, 2, 1, 1; 1), B9(1, 2, 1, 2; 1, 2, 1, 1; 2), B9(1, 2, 2, 1; 1, 2, 1, 1; 2),
B9(2, 1, 1, 2; 1, 2, 1, 1; 2), B9(2, 2, 1, 1; 1, 2, 1, 1; 2), B9(2, 1, 1, 1; 1, 2, 1, 1; 3),
B9(1, 2, 2, 1; 1, 2, 1, 2; 1), B9(1, 3, 1, 1; 1, 2, 1, 2; 1), B9(1, 3, 1, 1; 1, 2, 2, 1; 1),
B9(2, 1, 1, 2; 1, 2, 2, 1; 1), B9(2, 2, 1, 1; 1, 2, 2, 1; 1), B9(2, 1, 1, 2; 1, 3, 1, 1; 1),
B9(2, 2, 1, 1; 1, 3, 1, 1; 1), B9(2, 1, 1, 1; 1, 3, 1, 1; 2), B9(2, 1, 1, 1; 1, 4, 1, 1; 1),
B9(2, 3, 1, 1; 2, 1, 1, 1; 1), B9(2, 2, 1, 1; 2, 2, 1, 1; 1).
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Table 6: k = 10.

n B∗

12

B10(1, 1, 2, 1, 2; 1, 1, 1, 1, 1), B10(1, 2, 1, 2, 1; 1, 1, 1, 1, 1),
B10(2, 1, 2, 1, 1; 1, 1, 1, 1, 1), B10(1, 1, 1, 1, 2; 1, 1, 1, 1, 2),
B10(1, 2, 1, 1, 1; 1, 1, 1, 1, 2), B10(2, 1, 1, 1, 1; 1, 1, 1, 1, 2),
B10(1, 1, 2, 1, 1; 1, 1, 1, 2, 1), B10(1, 2, 1, 1, 1; 1, 1, 1, 2, 1),
B10(1, 1, 2, 1, 1; 1, 1, 2, 1, 1), B10(2, 1, 1, 1, 1; 1, 2, 1, 1, 1);

13

B10(1, 1, 1, 1, 4; 1, 1, 1, 1, 1), B10(1, 1, 1, 2, 3; 1, 1, 1, 1, 1),
B10(1, 1, 1, 3, 2; 1, 1, 1, 1, 1), B10(1, 1, 1, 4, 1; 1, 1, 1, 1, 1),
B10(1, 1, 2, 2, 2; 1, 1, 1, 1, 1), B10(1, 1, 2, 3, 1; 1, 1, 1, 1, 1),
B10(1, 1, 3, 2, 1; 1, 1, 1, 1, 1), B10(1, 1, 4, 1, 1; 1, 1, 1, 1, 1),
B10(1, 2, 1, 1, 3; 1, 1, 1, 1, 1), B10(1, 2, 1, 2, 2; 1, 1, 1, 1, 1),
B10(1, 2, 2, 1, 2; 1, 1, 1, 1, 1), B10(1, 2, 2, 2, 1; 1, 1, 1, 1, 1),
B10(1, 2, 3, 1, 1; 1, 1, 1, 1, 1), B10(1, 3, 1, 1, 2; 1, 1, 1, 1, 1),
B10(1, 3, 2, 1, 1; 1, 1, 1, 1, 1), B10(1, 4, 1, 1, 1; 1, 1, 1, 1, 1),
B10(2, 1, 1, 1, 3; 1, 1, 1, 1, 1), B10(2, 1, 1, 2, 2; 1, 1, 1, 1, 1),
B10(2, 1, 1, 3, 1; 1, 1, 1, 1, 1), B10(2, 1, 2, 2, 1; 1, 1, 1, 1, 1),
B10(2, 2, 1, 1, 2; 1, 1, 1, 1, 1), B10(2, 2, 1, 2, 1; 1, 1, 1, 1, 1),
B10(2, 2, 2, 1, 1; 1, 1, 1, 1, 1), B10(2, 3, 1, 1, 1; 1, 1, 1, 1, 1),
B10(3, 1, 1, 1, 2; 1, 1, 1, 1, 1), B10(3, 1, 1, 2, 1; 1, 1, 1, 1, 1),
B10(3, 2, 1, 1, 1; 1, 1, 1, 1, 1), B10(4, 1, 1, 1, 1; 1, 1, 1, 1, 1),
B10(1, 1, 1, 2, 2; 1, 1, 1, 1, 2), B10(1, 1, 1, 3, 1; 1, 1, 1, 1, 2),
B10(1, 1, 2, 2, 1; 1, 1, 1, 1, 2), B10(1, 1, 3, 1, 1; 1, 1, 1, 1, 2),
B10(1, 2, 2, 1, 1; 1, 1, 1, 1, 2), B10(2, 1, 1, 2, 1; 1, 1, 1, 1, 2),
B10(1, 1, 1, 2, 1; 1, 1, 1, 1, 3), B10(1, 1, 2, 1, 1; 1, 1, 1, 1, 3),
B10(1, 1, 1, 2, 2; 1, 1, 1, 2, 1), B10(1, 1, 1, 3, 1; 1, 1, 1, 2, 1),
B10(1, 1, 2, 2, 1; 1, 1, 1, 2, 1), B10(1, 2, 1, 1, 2; 1, 1, 1, 2, 1),
B10(2, 1, 1, 1, 2; 1, 1, 1, 2, 1), B10(2, 1, 1, 2, 1; 1, 1, 1, 2, 1),
B10(2, 2, 1, 1, 1; 1, 1, 1, 2, 1), B10(3, 1, 1, 1, 1; 1, 1, 1, 2, 1),
B10(1, 1, 2, 1, 1; 1, 1, 1, 2, 2), B10(2, 1, 1, 1, 1; 1, 1, 1, 2, 2),
B10(2, 1, 1, 1, 1; 1, 1, 1, 3, 1), B10(1, 2, 1, 1, 2; 1, 1, 2, 1, 1),
B10(1, 2, 2, 1, 1; 1, 1, 2, 1, 1), B10(1, 3, 1, 1, 1; 1, 1, 2, 1, 1),
B10(2, 1, 1, 1, 2; 1, 1, 2, 1, 1), B10(2, 1, 1, 2, 1; 1, 1, 2, 1, 1),
B10(2, 2, 1, 1, 1; 1, 1, 2, 1, 1), B10(3, 1, 1, 1, 1; 1, 1, 2, 1, 1),
B10(1, 2, 1, 1, 1; 1, 1, 2, 2, 1), B10(2, 1, 1, 1, 1; 1, 1, 2, 2, 1),
B10(1, 2, 1, 1, 1; 1, 1, 3, 1, 1), B10(2, 1, 1, 1, 1; 1, 1, 3, 1, 1),
B10(1, 2, 1, 1, 2; 1, 2, 1, 1, 1), B10(1, 2, 2, 1, 1; 1, 2, 1, 1, 1),
B10(1, 3, 1, 1, 1; 1, 2, 1, 1, 1), B10(2, 2, 1, 1, 1; 1, 2, 1, 1, 1),
B10(2, 1, 1, 1, 1; 1, 2, 2, 1, 1), B10(2, 1, 1, 1, 2; 2, 1, 1, 1, 1),
B10(2, 1, 1, 2, 1; 2, 1, 1, 1, 1), B10(2, 1, 2, 1, 1; 2, 1, 1, 1, 1),
B10(2, 2, 1, 1, 1; 2, 1, 1, 1, 1), B10(3, 1, 1, 1, 1; 2, 1, 1, 1, 1).
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Appendix B Some theorems and lemmas
Theorem B.1 ([6]). Let G = B4(a1, a2; a3, a4), where a1, a2, a3, a4 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

(1) B4(a, b; 1, d);

(2) B4(a, x; y, 1);

(3) B4(a, 1; c, 1);

(4) B4(a, 1;w, x);

(5) B4(a, 1;x, d);

(6) B4(w, b;x, 1);

(7) B4(w, x; y, d);

(8) B4(x, b; y, d);

(9) 25 specific graphs: 5 graphs of order 10, 10 graphs of order 11, and 10 graphs of
order 12,

where a, b, c, d, x, y, w are some positive integers such that x ≤ 2, y ≤ 2 and w ≤ 3.

Lemma B.2. Let G ∈ B4(n), where n ≥ 14. If G /∈ B−4 (n), then G has an induced
subgraph Γ ∈ B4(14) \ B−4 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B4(n− 1) \ B−4 (n− 1) for n ≥ 15 in the following.

Let G = B4(n1, n2;n3, n4) ∈ B4(n). Then one of

H1 = B4(n1 − 1, n2;n3, n4), H2 = B4(n1, n2 − 1;n3, n4),

H3 = B4(n1, n2;n3 − 1, n4) and H4 = B4(n1, n2;n3, n4 − 1)

must belong to B4(n − 1). On the contrary, assume that Hi ∈ B−4 (n − 1) (i = 1, 2, 3, 4).
Then Hi is a graph belonging to (1) – (8) in Theorem B.1 since n ≥ 15.

First we consider H1. If H1 is a graph belonging to (1) of Theorem B.1, then H1 =
B4(a, b; 1, d) where n1 − 1 = a, n2 = b, n3 = 1 and n4 = d, hence G = B4(a + 1, b;
1, d) ∈ B−4 (n), a contradiction. Similarly, H1 cannot belong to (2) – (5) of Theorem B.1.
Hence H1 is belong to (6) – (8) of Theorem B.1 from which we see that n1 − 1 is either w
or x. Thus n1 ≤ 4 due to w ≤ 3 and x ≤ 2.

By the same method, we can verify that n2 ≤ 3 if H2 ∈ B−4 (n − 1); n3 ≤ 4 if
H3 ∈ B−4 (n − 1) and n4 ≤ 3 if H4 ∈ B−4 (n − 1). Hence n = n1 + · · · + n4 ≤ 14, a
contradiction. We are done.

Theorem B.3 ([6]). LetG = B6(a1, a2, a3; a4, a5, a6), where a1, . . . , a6 are some positive
integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of the
following graphs:

(1) B6(a, x, c; 1, 1, 1);

(2) B6(a, 1, c; 1, e, 1);

(3) B6(a, 1, c; 1, x, y);

(4) B6(a, 1, c; 1, 1, f);

(5) B6(a, 1, 1;x, e, 1);

(6) B6(x, b, 1; y, 1, 1);

(7) B6(x, y, 1; 1, e, 1);

(8) B6(x, y, 1; 1, 1, f);

(9) B6(x, 1, c; y, 1, f);

(10) B6(1, b, x; 1, 1, 1);

(11) B6(1, b, 1; 1, e, 1);

(12) B6(1, b, 1; 1, x, y);

(13) B6(1, x, y; 1, 1, f);

(14) 145 specific graphs: 22 graphs of order 10, 54 graphs of order 11, and 69 graphs of
order 12,

where a, b, c, d, e, f, x, y are some positive integers such that x ≤ 2 and y ≤ 2.
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Lemma B.4. Let G ∈ B6(n), where n ≥ 14. If G /∈ B−6 (n), then G has an induced
subgraph Γ ∈ B6(14) \ B−6 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B6(n− 1) \ B−6 (n− 1) for n ≥ 15 in the following.

Let G = B6(n1, n2, n3;n4, n5, n6) ∈ B6(n). Then one of

H1 = B6(n1 − 1, n2, n3;n4, n5, n6), H2 = B6(n1, n2 − 1, n3;n4, n5, n6),

H3 = B6(n1, n2, n3 − 1;n4, n5, n6), H4 = B6(n1, n2, n3;n4 − 1, n5, n6),

H5 = B6(n1, n2, n3;n4, n5 − 1, n6) and H6 = B6(n1, n2, n3;n4, n5, n6 − 1)

must belong to B6(n− 1). On the contrary, assume that Hi ∈ B−6 (n− 1) (i = 1, 2, . . . , 6).
Then Hi is a graph belonging to (1) – (13) in Theorem B.3 since n ≥ 15.

Let us consider H3. If H3 is a graph belonging to (1) of Theorem B.3, then H3 =
B6(a, x, c; 1, 1, 1) where n1 = a, n2 = x, n3 − 1 = c, n4 = n5 = n6 = 1, hence
G = B6(a, x, c + 1; 1, 1, 1) ∈ B−6 (n), a contradiction. Similarly, H3 cannot belong to
(2) – (4) and (9) of Theorem B.3. If H3 is a graph belonging to (10) of Theorem B.3, then
H3 = B6(1, b, x; 1, 1, 1), where n1 = 1, n2 = b, n3 − 1 = x, n4 = n5 = n6 = 1. Since
x ≤ 2, we have n3 ≤ 3. If n3 < 3 then x + 1 ≤ 2 and G = B6(1, b, x + 1; 1, 1, 1) ∈
B−6 (n), a contradiction. Now assume that n3 = 3. Then H3 = B6(1, b, 2; 1, 1, 1), and
so G = B6(1, b, 3; 1, 1, 1). By Theorem B.3, G 6∈ B−6 (n), and also its induced subgraph
B6(1, b−1, 3; 1, 1, 1) /∈ B−6 (n−1), a contradiction. Similarly,H3 cannot belong to (13) of
Theorem B.3. Hence H3 is belong to (5) – (8) and (11) – (12) of Theorem B.3 from which
we see that n3 − 1 ≤ 1. Thus n3 ≤ 2.

By the same method, we can verify that n1 ≤ 3 if H1 ∈ B−6 (n − 1); n2 ≤ 3 if
H2 ∈ B−6 (n− 1); n4 ≤ 2 if H4 ∈ B−6 (n− 1); n5 ≤ 2 if H5 ∈ B−6 (n− 1) and n6 ≤ 2 if
H6 ∈ B−6 (n− 1). Hence n = n1 + · · ·+ n6 ≤ 14, a contradiction. We are done.

Theorem B.5 ([6]). Let G = B7(a1, a2, a3; a4, a5, a6; a7), where a1, . . . , a7 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

(1) B7(a, 1, x; 1, e, 1; 1);

(2) B7(a, 1, 1; 1, e, 1; g);

(3) B7(a, 1, 1; 1, 1, x; 1);

(4) B7(x, y, 1; 1, e, 1; g);

(5) B7(x, 1, 1; y, 1, 1; g);

(6) B7(1, b, x; 1, 1, 1; g);

(7) B7(1, b, 1; 1, e, 1; g);

(8) B7(1, 1, c; 1, 1, f ; 1);

(9) 143 specific graphs: 18 graphs of order 10, 52 graphs of order 11, and 73 graphs of
order 12,

where a, b, c, d, e, f, g, x, y are some positive integers such that x ≤ 2 and y ≤ 2.

Lemma B.6. Let G ∈ B7(n), where n ≥ 14. If G /∈ B−7 (n), then G has an induced
subgraph Γ ∈ B7(14) \ B−7 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B7(n− 1) \ B−7 (n− 1) for n ≥ 15 in the following.

Let G = B7(n1, n2, n3;n4, n5, n6;n7) ∈ B7(n). Then one of

H1 = B7(n1 − 1, n2, n3;n4, n5, n6;n7),

H2 = B7(n1, n2 − 1, n3;n4, n5, n6;n7),

H3 = B7(n1, n2, n3 − 1;n4, n5, n6;n7),
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H4 = B7(n1, n2, n3;n4 − 1, n5, n6;n7),

H5 = B7(n1, n2, n3;n4, n5 − 1, n6;n7);

H6 = B7(n1, n2, n3;n4, n5, n6 − 1;n7) and
H7 = B7(n1, n2, n3;n4, n5, n6;n7 − 1)

must belong to B7(n− 1). On the contrary, assume that Hi ∈ B−7 (n− 1) (i = 1, 2, . . . , 7).
Then Hi is a graph belonging to (1) – (8) in Theorem B.5 since n ≥ 15.

Let us consider H1. If H1 is a graph belonging to (1) of Theorem B.5, then H1 =
B7(a, 1, x; 1, e, 1; 1) where n1 − 1 = a, n2 = 1, n3 = x, n4 = 1, n5 = e, n6 = n7 = 1,
hence G = B7(a + 1, 1, x; 1, e, 1; 1) ∈ B−7 (n), a contradiction. Similarly, H1 cannot
belong to (2) – (3) of Theorem B.5. If H1 is a graph belonging to (4) of Theorem B.5,
then H1 = B7(x, y, 1; 1, e, 1; g), where n1 − 1 = x, n2 = y, n3 = n4 = 1, n5 = e,
n6 = 1 and n7 = g. Since x ≤ 2, we have n1 ≤ 3. If n1 < 3 then x + 1 ≤ 2 and
G = B7(x + 1, y, 1; 1, e, 1; g) ∈ B−7 (n), a contradiction. Now assume that n1 = 3. Then
H1 = B7(2, y, 1; 1, e, 1; g), and so G = B7(3, y, 1; 1, e, 1; g). Since y ∈ {1, 2}, we have
G ∈ {B7(3, 1, 1; 1, e, 1; g), B7(3, 2, 1; 1, e, 1; g)}. However B7(3, 1, 1; 1, e, 1; g) belongs
to (2) of Theorem B.5 which contradicts our assumption. Thus G = B7(3, 2, 1; 1, e, 1; g).
By Theorem B.5, G 6∈ B−7 (n), and also its induced subgraph B7(3, 2, 1; 1, e − 1, 1; g) or
B7(3, 2, 1; 1, e, 1; g− 1) is not in B−7 (n− 1), a contradiction. Similarly, H1 cannot belong
to (5) of Theorem B.5. Hence H1 belongs to (6) – (8) of Theorem B.5 from which we see
that n1 − 1 ≤ 1. Thus n1 ≤ 2.

By the same method, we can verify that n2 ≤ 2 if H2 ∈ B−7 (n − 1); n3 ≤ 2 if
H3 ∈ B−7 (n − 1); n4 ≤ 2 if H4 ∈ B−7 (n − 1); n5 ≤ 2 if H5 ∈ B−7 (n − 1), n6 ≤ 2 if
H6 ∈ B−7 (n − 1) and n7 ≤ 2 if H7 ∈ B−7 (n − 1). Hence n = n1 + · · · + n7 ≤ 14, a
contradiction. We are done.

Theorem B.7 ([6]). Let G = B8(a1, a2, a3, a4; a5, a6, a7, a8), where a1, . . . , a8 are some
positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to one of
the following graphs:

(1) B8(a, 1, 1, d; 1, 1, g, 1); (2) B8(1, b, 1, 1; 1, f, 1, 1);
(3) 134 specific graphs: 12 graphs of order 10, 42 graphs of order 11, and 80 graphs of

order 12,

where a, b, d, f, g are some positive integers.

Lemma B.8. Let G ∈ B8(n), where n ≥ 14. If G /∈ B−8 (n), then G has an induced
subgraph Γ ∈ B8(14) \ B−8 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B8(n− 1) \ B−8 (n− 1) for n ≥ 15 in the following.

Let G = B8(n1, n2, n3, n4;n5, n6, n7, n8) ∈ B8(n) and

H1 = B8(n1 − 1, n2, n3, n4;n5, n6, n7, n8),

H2 = B8(n1, n2 − 1, n3, n4;n5, n6, n7, n8),

H3 = B8(n1, n2, n3 − 1, n4;n5, n6, n7, n8),

H4 = B8(n1, n2, n3, n4 − 1;n5, n6, n7, n8),

H5 = B8(n1, n2, n3, n4;n5 − 1, n6, n7, n8),
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H6 = B8(n1, n2, n3, n4;n5, n6 − 1, n7, n8),

H7 = B8(n1, n2, n3, n4;n5, n6, n7 − 1, n8) and
H8 = B8(n1, n2, n3, n4;n5, n6, n7, n8 − 1).

If n3 ≥ 3, then H3 ∈ B8(n − 1) \ B−8 (n − 1) by Theorem B.7 as desired. If n3 = 2,
then at least one of n1, n2, n4, n5, n6, n7, n8 is greater than 1 since n ≥ 15, say n2. Thus
H2 ∈ B8(n − 1) \ B−8 (n − 1) by Theorem B.7 as desired. Hence let n3 = 1. Similarly,
let n5 = n8 = 1. Thus one of H1, H2, H4, H6, H7 must belong to B8(n − 1). On the
contrary, assume that Hi ∈ B−8 (n− 1) (i = 1, 2, 4, 6, 7). Then Hi is a graph belonging to
(1) – (2) in Theorem B.7 since n ≥ 15.

Let us consider H1. If H1 is a graph belonging to (1) of Theorem B.7, then H1 =
B8(a, 1, 1, d; 1, 1, g, 1); where n1 − 1 = a, n2 = n3 = 1, n4 = d, n5 = n6 = 1, n7 = g
and n8 = 1, hence G = B8(a + 1, 1, 1, d; 1, 1, g, 1) ∈ B−8 (n), a contradiction. Hence H1

belongs to (2) of Theorem B.7 from which we see that n1 = 2 due to n1 − 1 = 1.
By the same method, we can verify that ni = 2 if Hi ∈ B−8 (n − 1) for i = 2, 4, 6, 7.

Hence n = n1 + · · ·+ n8 ≤ 13, a contradiction. We are done.

Theorem B.9 ([6]). Let G = B9(a1, a2, a3, a4; a5, a6, a7, a8; a9), where a1, . . . , a9 are
some positive integers. Then λ2(G) > 0 and λ3(G) < 0 if and only if G is isomorphic to
one of the following graphs:

(1) B9(1, b, 1, 1; 1, f, 1, 1; k);

(2) 59 specific graphs: 3 graphs of order 10, 17 graphs of order 11, and 39 graphs of
order 12,

where b, f, k are some positive integers.

Lemma B.10. Let G ∈ B9(n), where n ≥ 14. If G /∈ B−9 (n), then G has an induced
subgraph Γ ∈ B9(14) \ B−9 (14).

Proof. By the proof of Lemma 5.13, it suffices to prove that G contains an induced sub-
graph G′ ∈ B9(n− 1) \ B−9 (n− 1) for n ≥ 15 in the following.

Let G = B9(n1, n2, n3, n4;n5, n6, n7, n8;n9) ∈ B9(n). On the contrary, suppose
that every induced subgraphs G′ ∈ B9(n − 1) of G belongs to B−9 (n − 1). If n1 ≥ 3,
then H1 = B9(n1 − 1, n2, n3, n4;n5, n6, n7, n8;n9) /∈ B−9 (n − 1) by Theorem B.9, a
contradiction. If n1 = 2, then at least one of n2, n3, n4, n5, n6, n7, n8, n9 is greater than 1
since n ≥ 15, say n2. Thus H2 = B9(n1, n2 − 1, n3, n4;n5, n6, n7, n8;n9) /∈ B−9 (n− 1)
by Theorem B.9, a contradiction. Hence n1 = 1. Similarly, n3 = n4 = n5 = n7 = n8 =
1. But now G = B9(1, n2, 1, 1; 1, n6, 1, 1;n9) ∈ B−9 (n) by Theorem B.9, a contradiction.
We are done.
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Symmetries of Discrete Objects (SODO 2020)
Rotorua, New Zealand, 10–14 February 2020

https://www.math.auckland.ac.nz/~conder/SODO-2020/

A third conference on Symmetries of Discrete Objects will be held in New Zealand in
February 2020. The conference theme is broad, and includes symmetries of graphs, maps,
polytopes, Riemann/Klein surfaces, and other discrete structures such as block designs and
finite geometries, with theory and applications of groups as a common thread. The first two
of these conferences were held in Queenstown (NZ) in 2012 and 2016.

Venue: The venue will be Rotorua, which is a scenic and interesting city about three
hours drive south of Auckland (or by a 45-minute flight from Auckland). It’s also close to
Hobbiton, the film site used for the Hobbit and Lord of the Rings movies.

Important note: February is summer in New Zealand (with daytime temperature in Ro-
torua in the mid-20s (centigrade) at that time of year).

The confirmed invited keynote speakers so far include:
• Anneleen De Schepper (Ghent University, Belgium)
• Dimitri Leemans (Université Libre de Bruxelles, Belgium)
• Joy Morris (University of Lethbridge, Canada)
• Primož Potočnik (University of Ljubljana, Slovenia)
• Jozef Širáň (Open University, UK, and Slovak University of Technology, Slovakia)

If you are interested in attending, please register (via the conference website) by early
November 2019. (Registration fees do not have to be paid until 4th January 2020.)

Organisers: Marston Conder, Gabriel Verret

Further information: https://www.math.auckland.ac.nz/~conder/SODO-2020/

Sponsors:
• The University of Auckland
• The Marsden Fund (administered by the Royal Society of New Zealand)
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Combinatorics around the q-Onsager algebra
Kranjska Gora, Slovenia, 13–18 July 2020
https://conferences.famnit.upr.si/event/15/

We are happy to announce a conference next year entitled Combinatorics around the
q-Onsager algebra, at which we will be celebrating the 65th birthday of Paul Terwilliger.
This conference will take place in beautiful Kranjska Gora, Slovenia, from July 13–18,
2020. The general theme will be the mathematical topics that Paul has worked on over
the years (which all have relationships to the q-Onsager algebra). These topics include the
following:

• Topics in algebraic graph theory, such as distance-regular graphs, association sche-
mes, the subconstituent algebra, and the Q-polynomial property;

• Topics in linear algebra, such as Leonard pairs, tridiagonal pairs, billiard arrays,
lowering-raising triples, and a linear algebraic approach to the orthogonal polynomi-
als of the Askey scheme;

• Topics in Lie theory, such as the tetrahedron algebra and the Onsager algebra;
• Topics in algebras and their representations, such as the equitable presentation of
Uq(sl2), the q-tetrahedron algebra, the q-Onsager algebra in mathematical physics,
and the universal Askey-Wilson algebra.

The confirmed invited speakers so far include:
• Eiichi Bannai (Shanghai Jiao Tong University, China)
• Pascal Baseilhac (Université de Tours, France)
• Samuel Belliard (Université Paris Saclay, France)
• Sarah Bockting-Conrad (DePaul University, Chicago, USA)
• Ada Chan (York University, Toronto, Canada)
• Sebastian Cioabă (University of Delaware, Newark, USA)
• Darren Funk-Neubauer (Colorado State University-Pueblo, USA)
• Hau-Wen Huang (National Central University, Zhongli, Taiwan)
• Tatsuro Ito (Anhui University, Hefei, China)
• Vaughan Jones (Vanderbilt University, Nashville, USA)
• Aleksandar Jurišić (University of Ljubljana, Slovenia)
• Jack Koolen (University of Science and Technology of China, Hefei, China)
• Tom Koornwinder (University of Amsterdam, Netherlands)
• Jae-ho Lee (University of North Florida, Jacksonville, USA)
• William Martin (Worcester Polytechnic Institute, Massachusetts, USA)
• Mikhail Muzychuk (Ben-Gurion University of the Negev, Beer-Sheva, Israel)
• Hiroshi Nozaki (Aichi University of Education, Kariya, Japan)
• Safet Penjić (University of Primorska, Koper, Slovenia)
• Sarah Post (University of Hawaii at Mānoa, USA)
• Hjalmar Rosengren (Chalmers University of Technology, Gothenburg, Sweden)
• Supalak Sumalroj (Silpakorn University, Bangkok, Thailand)
• Hajime Tanaka (Tohoku University, Sendai, Japan)
• Luc Vinet (Université de Montréal, Canada)
• Yuta Watanabe (Tohoku University, Sendai, Japan)
• Alexei Zhedanov (Renmin University of China, Beijing, China)
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In addition to invited talks, a limited number of contributed talks will also be available.

Venue: Kranjska Gora is a popular and attractive mountain and tourist sports centre nes-
tled in the Julian Alps at the triple border point of Slovenia, Italy and Austria. In winter
Alpine skiers compete and top ski jumpers break new records at nearby Planica. Sum-
mer offers cyclists the challenge of conquering the highest Slovenian mountain pass, while
hikers can enjoy more than 100 km of trails that incorporate many points of interest. See
https://www.kranjska-gora.si/en.

Organisers: Štefko Miklavič, Mark MacLean

Further information: https://conferences.famnit.upr.si/event/15/

This will be a satellite conference of the 8th European Congress of Mathematics (8ECM),
which will be held the prior week in Portorož, Slovenia (https://www.8ecm.si).
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