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Abstract
Computational models of liver metabolism are gaining an increasing importance within the research community. More-
over, their first clinical applications have been reported in recent years in the context of personalised and systems medi-
cine. Herein, we survey selected experimental models together with the computational modelling approaches that are 
used to describe the metabolic processes of the liver in silico. We also review the recent developments in the large-scale 
hepatic computational models where we focus on object-oriented models as a part of our research. The object-oriented 
modelling approach is beneficial in efforts to describe the interactions between the tissues, such as how metabolism of 
the liver interacts with metabolism of other tissues via blood. Importantly, this modelling approach can account as well 
for transcriptional and post-translational regulation of metabolic reactions which is a difficult task to achieve. The cur-
rent and potential clinical applications of large-scale hepatic models are also discussed. We conclude with the future 
perspectives within the systems and translational medicine research community.
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liver

1. Introduction
Novel high throughput technologies and advanced 

computation impact the medicine quickly and influential-
ly. Despite this, we still face a number of multifactorial dis-
eases where the diagnosis and treatment remain a hurdle. 
This is the case as well for the multifactorial liver patholo-
gies where the combinations of poorly defined genetic fac-
tors, together with environmental factors, interplay with 
each other and result in distinct disease phenotypes.

Non-alcoholic fatty liver disease (NAFLD) is the 
most prevalent form of chronic liver disease in the world. 
It affects 25% of the global adult population and as many as 
1/3 of people in the developed world.1 The disease is man-
ifested by a spectrum of liver pathologies ranging from 
simple steatosis (fatty liver) to liver cell injury with fibrosis 
and can end in cirrhosis or liver cancer (hepatocellular 

carcinoma, HCC). The rising incidence of NAFLD has led 
to dramatic rise of liver cancer, a disease with poor out-
comes and limited therapeutic options. Without  treat-
ment, HCC is fatal, with a 5-year survival of only five per-
cent.

Due to individuality of humans and the combinato-
rial effects, it is virtually impossible to predict all combina-
tions that can lead to a liver disease phenotype. It appears 
that in each individual a different combination of genetic 
and environmental factors might be responsible for the 
multifactorial disease appearance and progression. In ad-
dition, such multifactorial conditions combine during the 
aging. This limits the ability to predict the individuals’ dis-
ease progression and to discover and/or apply efficient in-
dividualized treatments.

We are thus faced with a challenging situation where 
on one hand there is a large progress in understanding the 
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molecular players of the liver disease stages and the over-
lap with other diseases while the inconsistencies from dif-
ferent studies and different populations leave the impres-
sion that we are close to the starting point. A major 
challenge of today’s medicine is thus to incorporate the 
technological revolution accompanied with expansion of 
various data into the everyday clinical practice. One exam-
ple is the knowledge regarding the genetic bases of liver 
diseases. Despite multiple studies and numerous poten-
tially involved genes, the polymorphisms of a single gene 
PNPLA3 named also adiponutrin, correlate with the 
non-alcoholic fatty liver disease progression to later dis-
ease stages, including the hepatocellular carcinoma (re-
viewed in2,3).

At present we do not understand the mechanisms 
and pathways that define a particular liver disease stage, 
we cannot predict the fate of disease progression nor can 
we treat NAFLD. To solve such complex questions we 
must apply innovative systems solutions that in addition to 
experimentation include also modelling and validation in 
clinical samples. These will be described in more details in 
the following chapters of the paper.

2. Selected Liver Disease Models that 
Produce Data for Computation
Cholesterol presents one of the most important me-

tabolites synthesized within liver. Starting point of choles-
terol biosynthesis is an acetyl-CoA molecule. The pathway 
consists of more than 20 enzyme catalysed reactions.4 Un-
like the pre-squalene part of the cholesterol biosynthesis 
the exact order of reactions in the post-squalene part has 
not yet been clarified. Enzyme lanosterol 14α-demethylase 
i.e. CYP51, the evolutionary most conserved member of 
the cytochrome P450 family, catalyses the conversion of 
lanosterol to FF-MAS in the post-squalene part of choles-
terol biosynthesis.5 Cyp51 is regulated by transcription 
factor SREBP, via cyclic adenosine monophosphate 
(cAMP)6 and by the circadian regulation.7 Liver disease 
mouse model in which CYP51 was blocked as the rate lim-
iting enzyme of the post-lanosterol part of cholesterol bio-
synthesis, exposed the progression of NAFLD in mice, and 
resulted in a phenotype similar to the metabolic progres-
sion of NAFLD towards HCC in humans.8 It is impossible 
to monitor the long-term metabolic progression of NAFLD 
in human individuals since repetitive liver biopsies are 
strictly avoided in practice. The complete removal of both 
Cyp51 gene alleles in mice causes death of the embryo in 
the 15th day of development, which indicates the impor-
tance of cholesterol in embryogenesis.9 Cholesterol syn-
thesis mutations may cause severe defects such as Ant-
ley-Bixler syndrome, Smith-Lemli-Opitz syndrome and 
several other genetic diseases.10

There are still no approved therapies for NAFLD, 
which is becoming a major health concern due to increas-

ing incidence of obesity in Europe. The problem of NAFLD 
is its multifactorial nature, with a largely uncharacterized 
genetic basis and only a few known associated genes.11 For 
several patients, NAFLD presents an initial step of a seri-
ous condition called non-alcoholic steatohepatitis 
(NASH), which includes fibrosis and is the fastest growing 
cause of HCC.3 While HCC prevails in males and is in-
creased in postmenopausal females, the sex-based meta-
bolic cues have not been investigated.12 Clinical research 
and more individualized disease progression monitoring 
is thus hampered by a lack of reliable non-invasive bio-
markers. It currently seems impossible to predict all genet-
ic and environmental factors and their combinations that 
leads to NAFLD phenotypes. To bridge this gap it is timely 
to apply a multidisciplinary systems medicine approach to 
combine experimentation and clinical work with the state-
of-the-art multiscale and spatio-temporal liver models.13 
Only in this way we will be able to fully understand 
NAFLD as a multifactorial condition and deduce metabol-
ic causes and risk factors in females and males. This article 
will survey the combination of experimental, clinical, bio-
informatics and modelling approaches that present the 
state-of-the art in identifying potential targets of complex 
multifactorial NAFLD and other complex liver diseases.

3. From Dynamical Models  
of Biochemical Reactions  

to Virtual Organisms
Computational modelling approaches that are cur-

rently used in the systems biology and systems medicine 
research communities can be differentiated into two main 
groups. First are the bioinformatic approaches, which allow 
us to analyse the experimental data, perform statistical 
analyses and conduct statistical modelling. The second are 
computational biology also known as mechanistic or dy-
namical modelling approaches, which allow us to perform 
dynamical modelling and execute computational simula-
tions of the systems under the study.14 Even though bioin-
formatic approaches serve to be complementary to the 
dynamical modelling approaches, the focus of this paper 
will be made solely on the later.

Dynamical modelling approaches differ in depend-
ence on the data that are available either from experimen-
talists or already in published literature. They differ as well 
based on the type and scale of the system we are investigat-
ing and also on the level of details we are aiming to de-
scribe in silico15 (see Table 1 and  Figure 1).

Isolated segments of gene regulatory, signalling or 
metabolic networks are usually described with ordinary 
differential equations (ODEs). ODEs are composed of the 
classical Michaelis-Menten equations for modelling the 
enzymatic reactions. They contain as well Hill equations 
for modelling the gene regulation and expression, and also 
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Table 1: Dynamical modelling approaches depend on the focus, the data and the size of the observed (sub)system. Abbreviations: NF-kB – nuclear 
factor kappa beta, ODEs – ordinary differential equations, PDEs – partial differential equations, SSA – stochastic simulation algorithm, GEMs – 
genome scale metabolic models, WCM – whole-cell model, M. genitalium – Mycoplasma genitalium, 3D – three dimensional, ABM – agent-based 
model, OOM – object-oriented modelling.

Focus Parameters Multi-scale Size Examples Examples 
    (applications) (approaches)

molecular modelling,  needed No small oscillatory network ODEs, PDEs, SSA
isolated segments, only    of transcription factor
vital reactions    NF-kB 16

subcellular processes /  not needed no large Comprehensive model Boolean networks, 
reaction networks    of human metabolism17 GEMs

integration of subcellular needed yes large WCM of M.  integrated models, 
processes, whole-cells    genitalium18 WCMs

tissues, organs, cell needed yes from small 3D liver tissue ABM, coupled
populations   to large models 19 ODEs and/or PDEs

all of the above partially needed yes large LiverSex model 20 OOM

Figure 1: The focus of computational models scales from simple models describing selected chemical reactions to complex models describing reac-
tion networks and finally organs and tissues. Abbreviations: ODEs – ordinary differential equations, PDEs – partial differential equations, SSA – 
stochastic simulation algorithm, GEMs – genome scale metabolic models, WCMs – whole-cell models, ABMs – agent-based models, OOM – ob-
ject-oriented model
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first order differential equations for modelling the protein 
degradation and similar processes.21 Models based on 
ODEs usually present the basis for the so called determin-
istic modelling, which describes the average of the system’s 
response. Deterministic modelling also presumes a homo-
geneous distribution of the observed entities through the 
constant volume of the observed molecular space.22 An 
entity can be anything, from small molecules to proteins 
and genes. When concentrations of the observed chemical 
species become small, the noise influences become too 
large to be simply omitted from the models.23,24 In such 
cases a single-molecule level which is named also the sto-
chastic modelling approach, need to be applied.23,25,26 The 
stochastic modelling bases on the Stochastic Simulation 
Algorithm (SSA)27 and on its variations (e.g., see28). It can 
account for the stochasticity of the observed biochemical 
reactions on the account of a larger computational com-
plexity.

Stochastic as well as deterministic modelling ap-
proaches described above require the estimation of biolog-
ically relevant parameter values. Parameters are values 
(numbers) that are mostly based on the rate constants k for 
the observed biochemical reactions. It is the fact that these 
models (stochastic and deterministic) are useful only with 
realistic parameter values.29 This means that the simula-
tions that would produce biologically relevant results can-
not be performed without the evaluation of kinetic param-
eter values. Specific parameter values, such as protein 
binding affinities or their degradation rates, can be experi-
mentally measured. However, several pitfalls exist here. 
For example, (1) mathematical models usually describe 
complex processes in a simplified manner, which do not 
necessarily correspond to the measured biochemical con-
stants (for example, multiple reactions can be lumped into 
a single virtual reaction) (2) reaction rates may strongly 
depend on environmental conditions (for example, reac-
tion rates increase at higher temperatures) (3) variations of 
evaluated parameters may be extremely large (for example, 
reaction rates may differ significantly within the colony of 
genetically identical cells) and finally (4) not all parame-
ters can be evaluated neither in vivo nor in vitro.29 It can 
thus happen that the majority of the parameter values that 
are needed in the model, have to be deduced or inferred. 
Deduction of the missing parameter values is possible with 
the so called parameter estimation techniques. These tech-
niques compare the available experimental results with the 
simulation results from the model, and upon that globally 
minimize the error function 30,31. Different parameter esti-
mation techniques that aim to integrate the experimental 
results within the computational models have already been 
described (see e.g. 32–34). Even though specific techniques 
that might be able to cope with the large-scale models have 
also been proposed recently (see e.g.35), they are in general 
still far from being scalable.29 Moreover, comprehensive in 
vivo measurements in animals are still not available even 
for the most studied organisms.29 We must underline at 

this point that there are few in vivo studies in humans that 
are ethically feasible. It is, for example, impossible to count 
on kinetic data from human organs in vivo. Even ex vivo 
studies relying on data from human liver, are frequently 
small and difficult to compare with one another.36 Conse-
quently, majority of experiments that require e.g. a time-se-
ries of data, or data from the inner body organs, rely on 
experiments on laboratory animals, in line with ethical 
considerations for work on laboratory animals, including 
the 3R (reduce, replace, refine) principles.

Computational approaches that are able to deal with 
large-scale models have thus evolved into different forms 
that allow us to fully or partially omit the parameter esti-
mation problem. These approaches are mainly focused to 
specific segments of observed biological system. For exam-
ple, gene regulatory or signalling networks can be de-
scribed with Boolean networks (see e.g.37), while metabolic 
networks use the stoichiometric description in the form of 
genome-scale metabolic models.38

Boolean networks (known also as logic models) de-
pict the biological systems as a network of Boolean func-
tions, i.e. functions describing binary relations between 
inputs and outputs.39,40 These networks presume that the 
observed chemical species can take only two possible val-
ues, i.e. absent (0) or present (1). Boolean networks are 
thus only a rough and approximate description of the sys-
tem under study, but circumvent several problems of the 
approaches mentioned before. Boolean models can be es-
tablished without any knowledge of kinetic parameter val-
ues and, when experimental data describing the system’s 
response in different conditions are available, also without 
the knowledge of exact mechanistic description of the sys-
tem under study. Their structure can be in many cases in-
ferred solely from the characterization of the system’s dy-
namical response (see e.g.41,42).

Genome-scale metabolic models (GEMs) describe 
the in silico relations between the organism’s genome and 
its metabolic phenotype.38 In these models, the organism’s 
genome and its annotations are applied to the reconstruc-
tion of stoichiometric description of the metabolism.43 
GEMs have already been established for simple prokaryot-
ic organisms (see e.g.44) as well as for humans17 and other 
eukaryotes (see e.g.45 and46). These models represent the 
general metabolism encoded within the genome of the or-
ganism under study and can be further refined to reflect 
experimental data observed in different environmental 
conditions, in different cell strains (see e.g.46), in different 
tissues (see e.g.47), organs (see e.g.48), diseases (see e.g.49), 
as well as within specific individuals (see e.g.50), using ded-
icated computational algorithms, such as GIMME51, 
mCADRE47 and CORDA52. GEMs can be used to assess 
the metabolic fluxes that bring the observed metabolic net-
work into an optimal steady-state under given criteria and 
optimisation function, such as maximal biomass produc-
tion. Flux-balance analysis (FBA)53 and other con-
straint-based approaches under the hood of COBRA 
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methodologies54 can be applied for this purpose. These 
methodologies require the definition of optimisation crite-
ria as well as upper and lower limits of metabolic fluxes, i.e. 
constraints, through observed reactions, and do not rely on 
the evaluation of exact values of kinetic parameters. They 
are, however, limited solely to the observation of the met-
abolic phenotype within the steady state of the system and 
without direct interactions with other cellular processes, 
such as gene regulation and protein-protein interactions.

The integration of GEMs with other cellular net-
works into integrated models have also been reported in 
recent years (see e.g.55 and56). The most comprehensive 
version of these model are so called whole-cell models 
(WCMs), which integrate the GEMs with the large-scale 
models of gene regulatory networks, signalling networks, 
protein-protein networks and other cellular processes.57 
WCM has already been established for Mycoplasma genita-
lium.18 This model integrates 28 different submodels into a 
unified WCM that is able to describe the cellular dynamics 
in the time-span of one cellular division.18 Even though 
this model seems extremely promising, the methodology 
used in its establishment is hardly scalable.29 There are sev-
eral challenges and problems that currently obstruct the 
application of WCMs to more complex organisms.58 One 
of the main problems these models are facing is again the 
evaluation of realistic parameter values, their distributions 
and uncertainties in order to describe the dynamics of ob-
served systems accurately.29 Moreover, the integration of 
models of different cellular processes as well WCMs with 
their environment into comprehensive models that bridge 
the gaps between multiple scales still needs to be addressed 
sufficiently.58

While WCMs try to give an accurate description of 
all cellular processes, models that are currently being ap-
plied to the analysis of intra- or inter-cellular dynamics 
mostly base on the descriptions of the selected processes 
that seem to be vital for the analysed aspects of cellular 
dynamics. These models are usually based on the simplifi-
cations that combine and reduce the number of observed 
biochemical reactions thus reducing also the number of 
parameters that need to be evaluated.59 Since the number 
of observed biochemical entities is drastically reduced, the 
ODE- or SSA-based approaches can be applied again.

These models can be integrated into multicellular 
models describing bacterial populations, tissues or organs 
with the coupling of differential equations and accounting 
for spatial as well as temporal dynamics of the system’s re-
sponse (see e.g. 60, 61 and 62). An alternative approach that 
accounts for the spatial aspects of the systems under study 
is so called agent-based modelling (ABM). ABM describes 
the dynamics of different individual agents, i.e. in our case 
cells, that follow predefined rules (describing e.g. cellular 
motility, growth and basic cellular processes) and commu-
nicate using cellular communication mechanisms.15 Dif-
ferent easy-to-use computational tools that allow straight-
forward ABM modelling have been proposed recently 

(see63 for a recent review of these tools and frameworks). 
These allow computational modelling of bacterial popula-
tions (see e.g.64) as well as computational modelling of tis-
sues and organs (see e.g.65, 66 and67). The main problem of 
these approaches is again in their inability to scale up, in 
the context of increasing the modelling accuracy as well as 
observed population size63. Moreover, large computational 
complexity of these models usually needs to be addressed 
with an expensive computer hardware.63,68

An alternative to the approaches described above is 
object-oriented modelling that is based on the systems biol-
ogy (SysBio) library that was built at the University of Lju-
bljana.69 SysBio library was initially used to construct the 
first integrated human metabolic model SteatoNet with 
multi-layered regulation.70 This model describes the inter-
action between multiple tissues and accounts for metabol-
ic reactions as well as for transcriptional and post-tran-
scriptional regulation.70 Most of the parameters that 
describe the dynamics of the observed system can be omit-
ted from the model representation due to the observation 
of the normalised steady-state of the system’s response. 
Object-oriented modelling approach that is applied here 
allows us to construct complex models by connecting the 
objects corresponding to basic biological entities in a 
meaningful and straightforward way.70 Since the number 
of parameters that need to be incorporated into the model 
is small, this prevents several problems, such as parameter 
estimation problems as well as the problem of model over-
fitting. On the other hand parameters that are used at the 
end allow us to easily adapt the models to specific data, 
such as personalised or gender specific data as described 
in20.

4. Large-scale Computational Models 
of Liver Metabolism

Changes in health, which may lead to the develop-
ment and progression of different diseases, are caused by 
abnormal modifications of metabolism. Identification and 
characterization of these modifications have potentials for 
various applications, which include drug discovery and 
identification of new biomarkers.71 The majority of meta-
bolic disorders occurs in the liver.72,73 The study of liver 
disorders improves the understanding of their physiologi-
cal and pathological consequences. Computational mod-
els present an indispensable tool for the prediction of the 
effects of metabolic, genetic or chemical perturbations in 
liver metabolism and consequently in liver-related disease 
development and progression.13 Traditional methods fail 
to conduct the analyses in the same scope as in silico meth-
ods or can be conducted only under unfeasible costs. They 
need to be, however, complemented with the computa-
tional approaches.15 Finally, combination of experimental 
work, clinical work and computational modelling can be 
used for understanding the disease mechanisms, for eval-
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uating the clinical efficacy and cost-effectiveness of exist-
ing diagnostic methods, for the development of new diag-
nostic methods and for the proposal of new drugs73 (see 
Figure 2).

The liver is a key organ maintaining the metabolic 
homeostasis in the human body via synthesis, storage, and 
degradation of metabolites.76 The use of computational 
models in liver research has been increasingly growing in 

recent years (see Table 2 ). Most computational liver mod-
els are focused to the isolated liver (hepatic) metabolic 
mechanisms. For example, a detailed kinetic model of gly-
colysis, gluconeogenesis, and glycogen metabolism in hu-
man hepatocytes under the hormonal control of insulin, 
glucagon, and epinephrine, presents a tool for understand-
ing the role of the liver in glucose homeostasis under nor-
mal conditions, in patients with diabetes or with glycogen 
storage diseases.77 Different models are used to analyse 
different specific aspects of liver metabolism, such as ener-
gy metabolism78, fat accumulation79, iron metabolism80 
and xenobiotic metabolism81. Even though liver exhibits a 
large dynamical complexity, their microscopic architec-
ture is remarkably uniform. The uniformity of the liver 
structure makes the modelling of the hepatic architecture 
relatively easy, which is indicated by several in silico mod-
els of hepatic structural architecture.82,83 These models 
help us to explain how cells form functional tissues, as for 
example in the 3-dimensional computational model of liv-
er regeneration.84

To date, only selected computational approaches of 
hepatic metabolism have been shifted to clinical applica-
tion.43 Individualized options for medical care of patients 
with HCC are not available yet, but there are large efforts 
to develop personalized systems care for them.85 HCC pre-
sents a global health problem because it is the seventh 
most common cancer in the world and the third leading 
cause of cancer-related deaths.86 Research in personalized 
approaches in hepatology has delivered different examples 
of successful application of systems biology such as HCC 
GEMs, which improved the HCC stratification and sug-

Figure 2: Computational models are complemented with experi-
mental, literature and clinical data, which allows their transition 
towards clinical applications.

Table 2: State-of-the-art computational models used in the liver research. Only major large-scale computational models are included within the ta-
ble. Abbreviations: GEM – genome scale metabolic models, HCC – hepatocellular carcinoma, NAFLD – non-alcoholic fatty liver disease, NASH – 
non-alcoholic steatohepatitis, SteatoNet – steatosis network.

 Type Description and applications Reference

HepatoNet1 GEM first hepatic GEM; explained the relations between the available oxygen levels and 74

  the nutrients availability in the hepatic detoxification of ammonia
iHepatocyte2322 GEM composed of the hepatocyte, the uptake and secretion of VLDL, LDL and HDL 48

   lipoproteins, and the formation and/or degradation of lipid droplets; used to simulate  
the progression of NAFLD to NASH; identified the potential therapeutic targets for  
treatment of NASH

HCC GEM GEM personalised iHepatocyte2322 model to HCC patients; identified 101 antimetabolites 50

   with tumour suppression effect in the HCC; identified ι-carnitine as suppressor of HCC  
progression by inhibiting β-oxidation

iHCC2578 GEM reconstructed from the proteome and transcriptome of 361 HCC tumors and 49 75

   noncancerous liver samples; used to study acetate utilization and HCC; identified  
deregulation of fatty acid oxidation as a vital process for cell proliferation in HCC

SteatoNet OOM integrated human metabolic model with multi-layered regulation; used to explain 70

   the relations between the liver and other organs in the development of NAFLD; identified  
ketone body metabolism, cholesterol transport and regulatory functions of FXR, LXR and  
SREBP2 as crucial steps in NAFLD development and progressions

LiverSex OOM adaptation of SteatoNet to gender-specific models; used to investigate gender-dependent 20

   complex liver pathologies; identified the partition of fatty acids into different pathways as  
a possible NAFLD protective mechanisms in females; identified PGC1A, PPARα, FXR and  
LXR as regulatory factors for gender dependent personalized treatment of NAFLD
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gested new targets for personalized treatments.50,75,87 Dif-
ferent GEMs have been focused on the human liver me-
tabolism. HepatoNet174 is a product of the liver adaptation 
of the human metabolic network Recon188 using the exten-
sive knowledge and databases for hepatocyte representa-
tion. HepatoNet1 has been used to explain the relations 
between the available oxygen levels and the nutrients 
availability in the hepatic detoxification of ammonia. 
HepatoNet1 presents a starting point for the reconstruc-
tion of other hepatocyte-specific GEMSs, for example 
iLJ104689, iAB67690, iHepatocyte115491 and iHepato-
cyte232248. iHepatocyte2322 currently presents the most 
powerful liver-related GEM. It was established with the 
combination of various clinical, biochemical and genetic 
studies. Its main aim was to provide the identification of 
novel biomarkers and therapeutic targets for NAFLD. Sim-
ulation of NAFLD progression to NASH has exposed ser-
ine deficiency as the main cause in NASH patients. iHepat-
ocyte2322 was used to show that increasing serine level in 
hepatocytes as a consequence of the serine uptake as a di-
etary supplement could prevent NASH progression. Phos-
phoserine phosphatase and hydroxymethyltransferases 1 

as well as branched chain amino-acid transaminase 1 were 
identified as potential therapeutic targets for the treatment 
of NASH.48

SteatoNet70 presents an OOM model, which was es-
tablished to increase the understanding of the relations 
between the liver and other organs in the development of 
NAFLD. SteatoNet was used to identify the interactions 
between liver and adipose tissue as critical for the patho-
genesis of NAFLD. Ketone body metabolism, cholesterol 
transport, and regulatory functions of farnesoid X recep-
tor, liver X receptor and sterol regulatory element-binding 
protein 2 were recognized as novel crucial steps of NAFLD 
development and progressions. However, the liver is well 
known as one of the most sexually dimorphic non-repro-
ductive organs92, which is also indicated by sex differences 
in liver-related disease prevalence and progression.93 He-
patic large-scale metabolic models are, on the other hand, 
uniform models and do not differentiate between genders. 
They are constructed and validated mostly on male data, 
also because of the lack of liver transcriptome-based stud-
ies that would take into account both genders.94 With the 
goal to investigate differences in NAFLD progression be-

Figure 3: LiverSex presents the gender-based adaptation of the SteatoNet model, and is able to provide detailed insights into gender-dependent 
complex liver pathologies. The adaptation was performed with the addition of androgen and estrogen receptor responses, the addition of connec-
tions between sex steroids and growth hormone, and the addition of gender-based growth hormone release (see20).
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tween genders, we developed the LiverSex model20, the 
first gender-based, multi-tissue and multi-level liver meta-
bolic computational model (see Figure 3). SteatoNet was 
reused and adapted to gender-based hormonal regulation 
of liver. The key step in the adaptation of liver metabolism 
to gender was the addition of androgen and estrogen re-
ceptor responses to relevant hormones, the additions of 
connections between sex steroids and growth hormone, 
and the addition of specific gender-based growth hormone 
release to the model. Hormonal regulation in LiverSex was 
simplified to a level that still ensures normal function. 
Hormones were organized into 3 groups: androgen, estro-
gens and growth hormone. Androgen and estrogen groups 
represent steroid hormones that regulate the development 
and maintenance of sex characteristics in mammals by 
binding to their corresponding receptors.92 The growth 
hormone has a daily oscillatory behaviour in males and 
has a constant concentration in females, which was also 
included in the model.95 The dynamics of estrogen in the 
female model was described with the monthly estrous cy-
cle that cannot be found in males.96 With these alterations, 
LiverSex was able to provide detailed insights into gender 
dependent complex liver pathologies in the liver-related 
disease development and progression. The model identi-
fied the cardinal gender dependent metabolic pathways 
such as partition of fatty acids to ketone body production, 
VLDL synthesis, and fatty acids oxidation, together with 
deposition of triglycerides as lipid droplets, which are in-
volved in accumulation of triglyceride as one of the initial 
steps of NAFLD. Later was recognized as substantially 
more sensitive in females in response to a high-fat diet 
challenge. The ability to partition fatty acids into different 
pathways might be one of the possible protective mecha-
nisms in females leading to delayed NAFLD progression 
compared to males. In the same way, PGC1A, PPARα, 
FXR and LXR were identified as regulatory factors, which 
could become influential in gender dependent personal-
ized treatment of NAFLD.

5. Future Perspectives
In systems medicine, computational models can be 

applied for diagnostics, for prediction of disease progres-
sion, and for optimal selection of suitable therapeutic 
strategies. They give us the opportunity to personalise the 
clinical care to the patients’ anatomy, physiology, genomic 
background, etc. In addition, systems medicine approach-
es highlight patient specific aspects on the development 
and progression of the diseases.

The liver has a major physiological role in the 
fine-tuning of metabolic pathways, including functions as-
sociated with health and disease. A comprehensive charac-
terization of liver maintenance and disruptions might be 
crucial in preventive medicine and in the design of safer 
and more efficient therapeutic approaches. Systems medi-

cine may help with finding preventive approaches for dis-
eases of hepatic metabolism.

Computational models complement experimental 
data and can be used for diagnostic purposes, for identifi-
cation of drug targets and for personalized care of patients 
with liver diseases. There is an urgent need for new thera-
pies in hepatology, as the mortality and morbidity in many 
liver diseases is still high. End-stage liver diseases and can-
cers share a similar dismal prognosis.

The aim of personalised medicine is to adapt the di-
agnosis and clinical care to each individual patient. With 
the reduction of the probability of wrong diagnoses as well 
as the application of wrong therapies, personalized medi-
cine has all the potentials to drastically reduce the costs of 
health care as well as global health risks. Personalized 
medicine, however, still needs an approval from the gener-
al audience of physicians as well as from the wider popula-
tion. Making big data work for patients is still a challenge 
from the decision making to the data management as well 
as ethical and legal perspective.97 The consent policies 
need to be clear. The data and its interpretations need to be 
integrated into a comprehensive health care system that 
would have practical benefits for all participants, i.e. pa-
tients, clinicians and researchers. Other challenges that 
limit the bridging of personalized medicine to market in-
clude is current costs of multiomics experimental ap-
proaches and lack as well as inconsistencies of internation-
ally accepted best practice standards.98

The majority of current personalized medicine ap-
proaches is directed towards the diagnosis and treatment 
of cancer. In comparison to the recent progress of person-
alized medicine in oncology, personalized medicine in 
hepatology still remains in its infancy. Several liver diseas-
es, such as progression of NAFLD to HCC via NASH, are 
still hard to characterize in the context of their predictive 
outcome. We still do not fully understand the sex-depend-
ent mechanisms that lead the development and progres-
sion of liver related diseases and which might be crucial 
for their diagnosis and treatment. We speculate these 
mechanisms are driven by growth hormone as well as sex 
hormones and their influences on gene expression pat-
terns. In the future, broad molecular profiling of liver dis-
eases, their integration in computational models and their 
validation in clinical trials, in females and males could im-
prove the current treatment options with individualized 
care. These computational models will not only progress in 
their accuracy and prediction power of describing the dy-
namics of the metabolism of isolated organs or reactions 
networks. Current trends of systems biology in hepatology 
go towards the integration of different network types with 
multilayered omics data to obtain integrative models, 
which will accurately simulate whole-body metabolic 
functions.99

Scientific society has entered a new era in which 
computational methods and technologies have a key role 
in investigation of the human body. EuroPhysiome100–102 



261Acta Chim. Slov. 2018, 65, 253–265

Cvitanović Tomaš et al.:   Computational Modelling of Liver Metabolism   ...

is an European project, which created a framework for 
modelling the human body using computational methods 
which incorporate the biochemistry, biophysics, and anat-
omy of cells, tissues and organs known as Homo sapiens in 
silico. These methods aim to design a computational ver-
sion of the human body within the next 20 years.103 This 
will provide the comprehensive insights into the dynamics 
of the human body and development and progression of 
complex diseases, and increase their treatment potentials 
in the context of preventive and personalized medicine.

In conclusion, despite spectacular advances in the 
post-genome era, there is a gap between experimental data 
and medical knowledge, and an even greater gap between 
new knowledge in terms of clinical utility and benefits to 
the patients. We still suffer from multifactorial disorders 
that affect large-scale populations and we are unable to 
guide the epidemics due to the knowledge gaps. Progres-
sive liver diseases arising from metabolic causes are a typ-
ical example where the classical approaches have not lead 
to sufficient progress. It is thus timely to introduce mul-
ti-disciplinary approaches and tackle NAFLD by combin-
ing biochemical experimentation with the state-of-the-art 
modelling. There are no approved therapies for NAFLD 
and the compounds currently in Phase III clinical trials 
may very likely face safety and efficacy issues. Further re-
search and more individualized disease progression moni-
toring is also affected by a current lack of reliable non-in-
vasive biomarkers. It is thus evident that in addition to 
experimental and clinical work we also need models to 
help us decrease the burden of liver pathologies.
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Povzetek
Računski modeli presnove jeter postajajo vse bolj pomembni in prepoznavni v raziskavah na področju sistemske 
medicine. V zadnjih letih so se pojavile tudi njihove prve klinične aplikacije v kontekstu personalizirane medicine. 
V pričujočem prispevku predstavimo pregled eksperimentalnih in računskih modelov, ki jih lahko uporabimo pri 
opisovanju in razumevanju presnovnih procesov in silico. Pregledamo zadnje trende pri razvoju obsežnih računskih 
modelov presnove jeter, kjer se osredotočimo na objektno-orientirane pristope modeliranja, ki predstavljajo eno od 
glavnih usmeritev naših raziskav. Prednosti objektno-orientiranih pristopov so v relativno enostavnem opisovanju 
interakcij med tkivi, kot je npr. interakcija presnove jeter z okoliškimi tkivi preko krvi. V nasprotju z alternativnimi 
pristopi modeliranja objektno-oritentirani pristopi omogočajo neposredno vključitev tako transkripcijske kot tudi post-
translacijske regulacije presnovnih reakcij. Na koncu prispevka opredelimo obstoječe in potencialne klinične aplikacije 
obsežnih računskih modelov presnove jeter ter opredelimo potenciale tako modelov presnovne kot tudi modelov ostalih 
celičnih procesov na področju sistemske in translacijske medicine.


