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The allocation of resources within a system of autonomous agents, that not only have preferences over
alternative allocations of resources but also actively participate in computing an allocation, is an exciting
area of research at the interface of Computer Science and Economics. This paper is a survey of some of
the most salient issues in Multiagent Resource Allocation. In particular, we review various languages to
represent the preferences of agents over alternative allocations of resources as well as different measures
of social welfare to assess the overall quality of an allocation. We also discuss pertinent issues regarding
allocation procedures and present important complexity results. Our presentation of theoretical issues
is complemented by a discussion of software packages for the simulation of agent-based market places.
We also introduce four major application areas for Multiagent Resource Allocation, namely industrial
procurement, sharing of satellite resources, manufacturing control, and grid computing.

Povzetek: Opisana je alokacija virov v sistemu avtonomnih agentov.
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1 Introduction
The allocation of resources is a central matter of concern
in both Computer Science and Economics. To emphasise
the fact that resources are being distributed amongst several
agents and that these agents may influence the choice of al-
location, the field is sometimes called Multiagent Resource
Allocation (MARA). The questions investigated by com-
puter scientists are often of a procedural nature (how do
we find an allocation?), while economists are more likely
to concentrate on qualitative issues (what makes a good
allocation?). A comprehensive analysis of the problem
at hand, however, requires an interdisciplinary approach.
Here the multiagent system (MAS) paradigm offers an ex-
cellent framework in which to study these issues.

MARA is relevant to a wide range of applications. These
include, amongst others, industrial procurement [45],
manufacturing and scheduling [15, 71, 89], network rout-
ing [38], the fair and efficient exploitation of Earth Obser-
vation Satellites [59, 60], airport traffic management [52],
crisis management [62], logistics [49, 77], public trans-
port [16], and the timely allocation of resources in grid ar-
chitectures [48].

This paper is a survey of some of the most salient is-
sues in MARA. In the remainder of this introduction, we
first give a tentative definition of MARA and introduce its
main parameters (Section 1.1). To illustrate the interdis-
ciplinary character of the field, we then list some of the
research questions that we consider particularly interesting
and challenging (Section 1.2). Finally, we give an overview
of the content of the main body of the paper (Section 1.3).

1.1 What is MARA?
A tentative definition would be the following:

Multiagent Resource Allocation is the process of
distributing a number of items amongst a number
of agents.

However, this definition needs to be further qualified: What
kind of items (resources) are being distributed? How are
they being distributed (in other words, what kind of allo-
cation procedure or mechanism do we employ)? And fi-
nally, why are they being distributed (that is, what are the
objectives of searching for an allocation and how are these
objectives determined)?

1.1.1 Resources

We refer to the items that are being distributed as resources,
while agents are the entities receiving them. We should
stress that this terminology is not universally shared. In the
context of applications of MARA in manufacturing, for in-
stance, we usually speak of tasks that are being allocated to
resources. That is, in this context, the term “resource” (i.e.
the resources available to the manufacturer for production)
refers to what we would call an “agent” here.

We can distinguish different types of resources. For in-
stance, resources may or may not be divisible. For divisible
resources (such as electricity), different agents may receive
different fractions of a resource. In the case of indivisible
resources, it may or may not be possible for different agents
to share (jointly use) the same resource (e.g. access to net-
work connections as opposed to items of clothing). For
many purposes, task allocation problems can be regarded
as instances of MARA (if we think of tasks as resources
associated with a cost rather than a benefit).

1.1.2 Allocations

A particular distribution of resources amongst agents is
called an allocation. For instance, in the case of non-
sharable indivisible resources, an allocation is a partition
of the set of resources amongst the agents. The set of re-
sources assigned to a particular agent is also called the bun-
dle allocated to that agent.

1.1.3 Agent Preferences

Agents may or may not have preferences over the bundles
they receive. In addition, they may also have preferences
over the bundles received by other agents (in the case of
network connections, for example, the value of a resource
diminishes if shared by too many users). The latter type of
preferences are called externalities.

Agents may or may not report their preferences truth-
fully. To provide incentives for agents to be truthful is one
of the main objectives of mechanism design.

1.1.4 Allocation Procedures

The allocation procedure used to find a suitable allocation
of resources may be either centralised or distributed. In
the centralised case, a single entity decides on the final al-
location of resources amongst agents, possibly after having
elicited the agents’ preferences over alternative allocations.
Typical examples are combinatorial auctions. Here the cen-
tral entity is the auctioneer and the reporting of preferences
takes the form of bidding. In truly distributed approaches,
on the other hand, allocations emerge as the result of a se-
quence of local negotiation steps.

1.1.5 Objectives

The objective of a resource allocation procedure is either
to find an allocation that is feasible (e.g. to find any allo-
cation of tasks to production units such that all tasks will
get completed in time); or to find an allocation that is opti-
mal. In the latter case, the allocation in question could be
optimal either for the central entity choosing the allocation
(e.g. a solution to a combinatorial auction that maximises
the auctioneer’s revenue); or with respect to a suitable ag-
gregation of the preferences of the individual agents in the
system (e.g. an allocation of resources that maximises the
average utility enjoyed by the agents).
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Combinations are also possible: The objective may be to
find an optimal allocation amongst a small set of feasible
allocations; and what is considered optimal could depend
both on the preferences of a central entity and on an ag-
gregation of the other agents’ individual preferences (e.g.
auction mechanisms aiming at balancing revenue maximi-
sation and bidder satisfaction). Of course, where comput-
ing an optimal allocation is not possible (due to lack of
time, for instance), any progress towards the optimum may
be considered a success.

1.1.6 Social Welfare

Multiagent systems are sometimes referred to as “societies
of agents” and the aggregation of individual preferences in
a MARA system can often be modelled using the notion of
social welfare as studied in Welfare Economics and Social
Choice Theory. Examples include utilitarian social wel-
fare, where the aim is to maximise the sum of individual
utilities, and egalitarian social welfare, where the aim is to
maximise the individual welfare of the agent that is cur-
rently worst off.

1.1.7 The Role of Agents

Our discussion shows that the term “multiagent” in Mul-
tiagent Resource Allocation can have different interpreta-
tions:

– If a distributed resource allocation procedure is used,
then the term “multiagent” indicates that the com-
putational burden of finding an allocation is shared
amongst several agents.

– If an aggregation of individual preferences is used to
assess the quality of the final allocation, then the term
“multiagent” refers to the fact that the choice of al-
location depends on the preferences of several agents
(rather than on the preferences of a single entity).

Of course, the term “multiagent” could also be derived
merely from the fact that resources are being allocated to
several different agents. However, if individual agents have
no preferences (or such preferences are not taken into ac-
count) and the allocation procedure is centralised, then us-
ing the term “multiagent” may be less appropriate.

1.1.8 A Computational Perspective

MARA, as introduced at the beginning of Section 1.1, may
not seem to differ significantly from what has tradition-
ally been studied in Microeconomics. However, a distinc-
tive feature of MARA is the focus on computational is-
sues. For instance, with respect to the preferences of in-
dividual agents, we are interested in representations that
can be efficiently managed and communicated. Similarly,
in the case of allocation procedures, MARA encompasses
both the theoretical analysis of their computational com-
plexity and the design of efficient algorithms for scenarios

for which this is possible. As a final example, concerning
the strategic aspects of negotiation, we may find that clas-
sical results in Game Theory fail to hold due to the compu-
tational limitations of the participating agents.

1.2 Research Topics
MARA is a highly interdisciplinary field; relevant disci-
plines include Computer Science, Artificial Intelligence,
Decision Theory, Microeconomics, and Social Choice The-
ory. Research in MARA can take a variety of forms:

– Preferences: What are suitable representation lan-
guages for agent preferences? Issues to consider in-
clude their expressive power, their succinctness, and
their suitability in view of preference elicitation.

– Social welfare: What are suitable measures of social
welfare to assess the quality of an allocation for a
given application? Under what circumstances can we
expect an optimal allocation to be found?

– Complexity: What is the overall complexity of find-
ing a feasible/optimal allocation? What is the com-
plexity of the decision problems that agents need to
solve locally? What is the communication complexity
(amount of information to be exchanged) of negotia-
tion?

– Negotiation: In particular for the distributed approach,
what are suitable negotiation protocols? What are
good strategies for agents using such protocols?

– Algorithm design: How can we devise efficient algo-
rithms for MARA (e.g. algorithms for combinatorial
auction winner determination in the centralised case;
algorithms to support complex negotiation strategies
in the distributed case)?

– Mechanism design: How can we devise negotiation
mechanisms that force agents to report their prefer-
ences truthfully (both to reduce strategic complexity
and to allow for a correct assessment of social wel-
fare)?

– Implementation: What are best practices for the devel-
opment of prototypes for specific MARA applications
and general-purpose platforms to support quick proto-
typing?

– Simulation and experimentation: How do different
optimisation algorithms or negotiation strategies per-
form in practice? How serious is the impact of the-
oretical impossibility results in practice? How pro-
hibitive are theoretical intractability results (computa-
tional complexity) in practice?

– Interplay of theory and applications: What con-
straints do real-world applications impose on theoret-
ical models for MARA? How can theoretical results
inform the development of new tools?



6 Informatica 30 (2006) 3–31 Y. Chevaleyre et al.

The aim of this survey is to provide a base line for some
of these issues. In particular, we present a range of lan-
guages for representing preferences, we give an overview
of the social welfare measures most relevant to MARA,
and we review known complexity results in the area. As
it is often difficult to make precise predictions on the per-
formance of a resource allocation procedure by theoretical
means alone, we also discuss the requirements to be met
by software packages for MARA simulations. To underline
the importance of further research in the area, we introduce
several prestigious applications and discuss the challenges
imposed on MARA models by these applications.

1.3 Paper Overview

The remainder of this survey paper is organised as follows.
In Section 2, we introduce four major application areas for
MARA technology. These are industrial procurement, the
joint exploitation of Earth Observation Satellites, manu-
facturing control, and grid computing. Throughout Sec-
tion 2, we highlight the specific challenges raised by these
applications.

Next we review three important parameters that are rel-
evant to the definition of a MARA problem. Firstly, in
Section 3, we discuss generic properties of resources, such
as being indivisible or sharable, and how such properties
would affect the design of a concrete MARA system. We
then move on, in Section 4, to the issue of preference rep-
resentation for individual agents. Each agent needs to be
endowed with a suitable representation of preferences over
alternative allocations and it is important to be able to ex-
press these preferences in a compact way. We discuss both
quantitative and ordinal preference languages. A third pa-
rameter in the definition of a MARA problem is the social
welfare measure (or a similar tool) we employ to assess the
overall quality of a given allocations. A range of differ-
ent concepts—including collective utility functions, Pareto
optimality, and envy-freeness—are reviewed in Section 5.

In Section 6, we attempt to give a short overview of the
parameters that are relevant when one chooses (or designs)
an allocation procedure. We discuss the respective merits
and drawbacks of centralised and distributed approaches to
MARA, and we briefly introduce some (centralised) auc-
tion protocols as well as (distributed) negotiation proto-
cols. We also report on results that establish under what
circumstances allocations can be expected to converge to
a socially optimal state in a distributed negotiation set-
ting. Section 7 is a survey of relevant complexity results.
We mostly concentrate on the computational complexity of
problems such as finding a socially optimal allocation, but
we also briefly discuss issues in communication complexity
for MARA, which is concerned with the length of negotia-
tion processes.

Our presentation of theoretical issues is complemented
by a discussion of software packages for the simulation of
agent-based market places in Section 8. We start by giving
an overview of the typical requirements to be met by such

packages and then list the most relevant software products
available to MARA researchers interested in simulation.
Finally, Section 9 concludes.

2 Application Areas
As mentioned already in the introduction, MARA is rele-
vant to a wide range of application domains. In this section,
we introduce four of these problem domains, all of which
have recently been addressed by (some of) the authors of
this survey.

2.1 Industrial Procurement
The sourcing process of multiple goods or services usu-
ally involves complex negotiations that include discussion
of product features as well as quality, service, and avail-
ability issues. Consequently, several commercial systems
to support online negotiation (e-sourcing tools) have been
developed. In fact, e-sourcing is becoming an established
part of the business landscape [90]. However, there are still
enormous challenges confronting users who want to get the
maximum value out of e-sourcing.

2.1.1 Problem Description

Traditionally, the core of the sourcing process comprises
the following tasks:

– request for quotation/proposal (RFQ/RFP);

– provider selection for RFQ/RFP delivery;

– offer generation;

– negotiation through offer/counter-offer interaction or
reverse auction; and

– selection of best offers.

Typically a buyer creates an RFQ by sequentially adding
items. Each item specifies a product, be it a good or ser-
vice. A paradigmatic example of multi-item RFQ occurs in
industrial settings. The production plan outlined by a com-
pany’s ERP (Enterprise Resource Planning) or SCM (Sup-
ply Chain Management) application comes in the shape of
a list of items to be produced along with the parts required
for each product, the so-called bill of material. This is
the basis for the buyer to initiate multiple sourcing events,
each devoted to the procurement of the parts for each of the
items to be produced.

Although several commercial systems to support online
negotiations have been released, to the best of our knowl-
edge, not a single system can claim to address the full com-
plexity of online negotiation. The first generation of sourc-
ing tools merely incorporate single-item, price-quantity re-
verse auction mechanisms. Others only offer basic nego-
tiation capabilities that are usually reduced to a demand-
offer matching tool. In general terms, there is a lack of
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decision support functionalities (decision making in sourc-
ing can involve a few hundred offers, each of which is de-
scribed by several dozen attributes). Furthermore, there
is a lack of technology support for computationally com-
plex negotiation paradigms, which inhibit the application
of promising mechanisms such as combinatorial reverse
auctions [24, 54].

2.1.2 Challenges

Although the degree of automation, namely of delegation
to trading agents, in industrial procurement settings is still
low, we do believe that MARA techniques can contribute to
improve this situation. In what follows we identify several
challenges that any commercial tool aiming at the success-
ful implementation of resource allocation amongst several
(human or software) agents in an industrial procurement
setting must address.

– Preferences of buyers and providers. How do we best
capture and represent trading agents’ preferences so
that they can effectively value their trading partners’
offers, counter-offers, and RFQs? While recent ad-
vances in preference elicitation are encouraging (see,
for instance, the work of Bichler et al. [6]), this still re-
mains as the Achilles’ heel of industrial procurement
applications.

– Business rules to constrain admissible allocations.
While in direct auctions, the items to be sold are phys-
ically concrete (they do not allow configuration), in a
negotiation involving highly customisable goods, buy-
ers need to express relations and constraints between
attributes of different items. On the other hand, multi-
ple sourcing is common practice, either for safety rea-
sons or because offer aggregation is needed to cope
with high-volume demands. This introduces the need
to express constraints on providers and on the con-
tracts they may be awarded. Providers may also im-
pose constraints on their offers. Therefore, highly
expressive languages for both buying and providing
agents are required.1 Incorporating business rules into
allocation procedures can lead to more balanced and
safer allocations.

– Automated negotiation strategies. There are several
dimensions to take into account when designing ne-

1Consider a buyer who wants to buy 200 chairs (any colour/model is
fine) for the opening of a new restaurant and who uses an e-procurement
solution that launches a reverse auction. If we employ a state-of-the-
art combinatorial auction solver, a possible solution might be to buy 199
chairs from provider A and 1 chair from provider B, simply because this
is 0.1% cheaper than the next best allocation and it has not been possible
to specify that, in case of buying from more than one provider, a minimum
of 20 chairs purchase is required. In a different scenario, the optimal so-
lution might tell us to buy 150 blue chairs from provider A and 50 pink
chairs from provider B. Why? Because, although we had no preferences
over the regarding colour, we could not specify that all chairs should be
of the same colour. Although simple, this example shows that without
modelling natural constraints, solutions obtained may be mathematically
optimal, but unrealistic.

gotiation strategies. Agents may negotiate over mul-
tiple attributes of the same item, over a bundle of
multiple items, or they may hold separate but inter-
dependent negotiations. Negotiation techniques such
as trade-off [37] or partial-order scheduling [102] are
candidate techniques put forward from the research
arena. The current procurement practices tell us that
the possibility of automatic offer submission is seen
with interest for repetitive sourcing events in private e-
sourcing platforms where providers and business rules
are well-known or result from a provider qualification
procedure or a frame contract. Nonetheless, the full
application of such automated trading still faces bar-
riers, such as providers not wanting to reveal their ca-
pabilities/preferences to third parties.

– Choice of mechanism. Commercial sourcing tools of-
fer an ever increasing number of customisable nego-
tiation mechanisms. Nonetheless, market design is a
highly complex, intricate task. New trends in auto-
mated mechanism design [22] as well as evolutionary
mechanism design [73] may prove valuable in assist-
ing in the design of market scenarios that ensure cer-
tain global properties.

– Winner determination algorithms. Further research
into algorithms capable of identifying the optimal
set of offers in multi-attribute, multi-item negotiation
scenarios with side constraints representing business
rules is required [45, 83].

– Bundling. Should a buyer (seller) conduct a single ne-
gotiation or auction for an entire bundle of goods he or
she is interested in purchasing (selling) or should they
group items into bundles and conduct several negotia-
tions? Unfortunately, for complexity reasons, combi-
natorial bidding capabilities are rarely found on com-
mercial systems. To overcome this problem, we can
think of a third approach: Based on past market real
data and knowledge, the whole bundle of items can be
divided into separate negotiations for which the ap-
propriate providing agents are invited and for which
certain properties are satisfied (e.g. invite providing
agents that can offer at least 90% of the items in the
bundle). These properties model the expertise of e-
sourcing specialists in the form of rules of thumb [76].

Some of these challenges are already being tackled by re-
cently developed negotiation support tools. iBundler [44,
44], for instance, is an agent-aware decision support ser-
vice acting as a combinatorial negotiation solver for both
multi-item, multi-unit negotiations and auctions that can
integrate business rules to constrain admissible solutions.
iAuctionMaker [76] is a novel decision support tool for
mixed bundling that can help an auctioneer determine how
to group items into promising bundles that are likely to pro-
duce a high revenue. Promising bundles are those that sat-
isfy certain properties believed to be present in competi-
tive sourcing scenarios. These properties are defined by
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e-sourcing professionals and capture their experience and
knowledge in the domain.

2.2 Earth Observation Satellites
Next we consider another real-word application, namely
the exploitation of Earth Observation Satellites (EOSs) [10,
59, 60]. This application pertains to the problem of allocat-
ing a set of indivisible goods to some agents with no possi-
ble monetary compensation between them. As we will see,
this is a typical case of a sharing problem, different from an
auction situation, especially because fairness is a key issue.

2.2.1 Problem Description

Due to their high cost, space projects such as EOSs are of-
ten co-funded and then exploited by several agents (coun-
tries, companies, civil or military agencies, etc.). The mis-
sion of an EOS is to acquire images (photos) of specified
areas on the earth surface, in response to observation de-
mands from users. Such a satellite is operated by an Image
Programming and Processing Center. Each day, the Center
collects a set of observation demands from agents. Usu-
ally a demand can be covered by a single image, but more
complex demands may arise, as we will see below. Each
demand is given a weight (a positive integer), reflecting the
importance the requesting agent assigns to the satisfaction
of the demand. The daily task of the Center is, amongst
others, to build the imaging workload of the satellite for
the next day, by selecting the images to be acquired from
the set of agent demands.

Naturally, the exploitation of the satellite must obey a set
of physical constraints, such as time window visibility con-
straints, minimum transition times between successive im-
age acquisitions, or memory and energy management. Due
to these exploitation constraints, and due to the large num-
ber of (possibly conflicting) demands, a set of demands,
each of which could be satisfied individually, may not be
satisfiable as a whole on a single day. All these physical
constraints define the set of admissible allocations of im-
ages to agents. The exploitation of an EOS must also meet
the following requirements:

– Efficiency: The satellite should not be under-
exploited.

– Equity: Each agent should get a return on investments
that is proportional to its financial contribution.

2.2.2 Modelling

Let us first consider the simple problem where only one
agent exploits the resource. In this case, the allocation
problem consists of selecting, each day, an admissible se-
quence of images that will be acquired by the satellite over
the next day (and allocated to the agent). This agent mea-
sures its satisfaction by a utility function which may be de-
fined as the sum of the weights of the allocated images.

The efficiency requirement comes down to a simple opti-
misation problem: the utility function of the agent must
be maximised over the set of admissible allocations (see
Lemaître et al. [61] for the description of some algorithms
for solving this mono-agent allocation problem).

We now turn to the case where several agents exploit the
satellite. For simplicity, we assume in this paper that the
agents have equal rights over the resource (we may assume,
for example, that they have funded the satellite equally).
Of course, each agent wants to maximise its own utility
function, but generally they are antagonistic: increasing
the utility of one agent can lead to decreasing the utility
of others. So a fair compromise must be found, the reali-
sation of which is the role of a suitable preference aggre-
gation mechanism. Such mechanisms will be discussed in
detail in Section 5. Here, the min function (egalitarian so-
cial welfare) fits our requirements, as it naturally conveys
the equity requisite: we try to make the agent least happy
as happy as possible (a refinement of this approach is given
by the so-called leximin ordering; see Section 5.4).

As mentioned before, weights of demands are freely
fixed by agents. In order to be able to compare individ-
ual utilities between agents, a common utility scale must
be set and used; that is, the same number should express
the same level of satisfaction. To this end, Lemaître et
al. [59, 60] have adopted an approach known as the Kalai-
Smorodinsky solution (see Section 5.6), whereby individ-
ual utilities are compared relative to the maximum utility
that each agent can receive. It should be noted that, unlike
for auction problems, there are no preemptive constraints
in this application: the same image could be requested by
several agents, and allocated to them all (i.e. resources are
sharable).

This application is also of interest because it offers real-
word examples of dependencies between demands. As a
first example, a request may involve a pair of stereoscopic
images; receiving only one image would result in a poor
satisfaction level for the agent. A second example comes
from the fact that, for earth areas situated in high latitudes,
several images of the same area can be taken from distinct
angles during the same day. Consider a stereoscopic de-
mand concerning such an area, and suppose that it could
be photographed from two angles. Let o11 and o12 be the
pair of stereoscopic images from angle 1, o21 and o22 the
images from angle 2. The demand can be quite naturally
formulated as (o11 ∧ o12) ∨ (o21 ∧ o22).

To sum up, our EOS multiagent fair resource alloca-
tion problem can be formally stated in the following way.
Agents express their (weighted) demands as simple logical
propositions. An agent’s individual utility is the sum of the
weights of the satisfied demands. The global utility is an
aggregation of normalised individual utilities, the aggrega-
tion function being the min function (or, better, the leximin
ordering).
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2.3 Manufacturing Systems
Since the second half of the 20th century, the organisa-
tion of mass production has been shifting towards flexi-
ble manufacturing and customised products. From a tech-
nological point of view, it has been observed that current
manufacturing systems (e.g. computer-integrated manu-
facturing architectures) have several drawbacks, in partic-
ular excessive rigidity and centralisation [50, 71]. Fur-
thermore, future manufacturing systems are expected to
be characterised by globally distributed production units,
small quantities of a large variety of products, the provision
of individual solutions tailored to each customer’s specific
needs, and concurrent execution of all the activities in the
manufacturing process [95].

2.3.1 Problems and Requirements

Future manufacturing systems therefore require coordi-
nation amongst production units and it is expected that
rigid, static, and hierarchical manufacturing systems will
give way to systems that are more adaptable to rapid
change [15]. In order to overcome the identified problems
with current manufacturing systems and prepare them for
the expected future scenarios, the new generation of sys-
tems must possess such attributes as decentralisation, dis-
tribution, autonomy, adaptability, and incomplete informa-
tion handling [88].

In manufacturing, the term resource allocation is usually
synonymous for task scheduling. Furthermore, the term re-
source is understood as a physical resource, i.e. a machine,
of the manufacturing plant. One of the problems in this
area is that a task is a step of a production plan for a spe-
cific order (e.g. manufacture 100 chairs of type P12-5),
and there are usually dependencies between tasks that must
be obeyed (e.g. operation “drill hole 2” must be done be-
fore “cool surface” but after “drill hole 1”).

To further complicate things, the tasks involved in a pro-
duction plan will probably be done on different produc-
tion resources, thus creating a network of dependencies
amongst resources.

One issue in the manufacturing area is that the schedule
itself is only valid until the first disturbance (e.g. machine
or tool breakdown, rush order, etc.). Since manufacturing
control and execution is a real time application, the need
to find a feasible solution is much greater than to find one
that is optimal. The system as a whole must reach a stable
and feasible schedule without too much interruption of the
shop floor.

2.3.2 Manufacturing and Agents

Physically, a manufacturing system involves several re-
sources (numeric control machines, robots, automated
guided vehicles, conveyors) and several tasks can be car-
ried out at the same time. The number and configuration
of these may change of the lifetime of the system. Since
the manufacturing process is dynamic (e.g. suppliers and

consumers in a supply chain may change many times) it is
impossible to know the exact structure or topology of the
system in advance. The number of products and orders, as
well as different alternative production routes, account for
the highly complex nature of manufacturing systems.

All of the above make the design of manufacturing sys-
tems an excellent candidate for the application of agent-
based technology. In many implementations of multia-
gent systems for manufacturing scheduling and control, the
agents model the resources of the plant and the scheduling
and control of the tasks is done in a distributed way by
means of cooperation and coordination of actions amongst
agents [15, 53, 72]. As such, manufacturing scheduling and
control touches the areas of distributed planning and dis-
tributed artificial intelligence. Nonetheless, there are also
approaches that use a single agent for scheduling (usually
with a well-known centralised scheduling algorithm) that
dictates the schedules that the resource agents will exe-
cute [92]. The rationale for modelling resources as agents
is to better mimic the actual real-world environment and to
allow for the modelling of the characteristics of each re-
source (e.g. available operations, own agenda of tasks to
execute, cost of performing each operation, etc.)

When responding to disturbances, the distributed nature
of multiagent systems can also be a benefit to the reschedul-
ing algorithm by involving only the agents directly af-
fected, without disturbance to the rest of the community
that can continue with their work. Typical approaches to
rescheduling include the removal of a late order, realloca-
tion of low priority orders to make room for rush orders,
shifting of tasks from one resource to a similar one, etc.

An example for a MARA system for manufacturing con-
trol is the Fabricare prototype suite [89]. This a multia-
gent system for dynamic scheduling of manufacturing or-
ders. The agents are modelled as extended logic programs
with the ability to handle negative and incomplete knowl-
edge [88]. The system is very dynamic in what concerns its
agents, i.e. resource agents depend on the system descrip-
tion file; task agents depend on the existing tasks (dynamic
events). Each negotiation uses the set of agents that are
present and available at that time, thus giving the system
a high degree of adaptability to the dynamic nature of the
manufacturing arena.

2.4 Grid Computing

Perhaps one of the most pressing applications for MARA
techniques is grid computing [40]. It is true that there are
functioning systems for grid resource allocation, but these
largely operate in benevolent, cooperative subnets where
participants know and trust one another and there is typ-
ically no charge for the utilisation of resources, although
perhaps some artificial accounting system is applied. Such
frameworks are exactly what is needed in order to test out
many grid middleware functions where the objective is to
see a job executed across a range of grid resources. In
many respects, grid resource allocation—as distinct from
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scheduling—and payment for resource usage is an orthog-
onal problem to the actual processing of a job.

However, at some stage, if the vision of grid computing
as a commodity not unlike energy is to become reality, then
resource allocation, payment and job processing will have
to come together and current research in MARA technol-
ogy aims to lay the foundations for this union.

2.4.1 Scalability Issues

If the benevolent, cooperative network of mutually trust-
ing participants is discarded, the client is faced with the
problem of piecing together a range of disparate resources
that are required to complete the processing of a particular
job. The parallels with markets, and especially commod-
ity markets, as efficient (by economic measures) resource
allocation mechanisms in the presence of large numbers of
traders and where possibly complex packages of goods are
required, are striking. Grid networks have not yet become
so large as to make such approaches essential, but that time
is not far off, even in cooperative scientific research net-
works, if one considers the grid that is foreseen to sup-
port the analysis of results emerging from CERN’s Large
Hadron Collider [17].

The issues could be seen as a function of scale: Ex-
isting grids can handle resource allocation through single
centralised mechanisms and (economic) efficiency of allo-
cations may not be important. As grids become larger with
a wider range of resources, and used for broader classes
of tasks, centralised allocation and inefficient allocation
of resources are likely to become less tolerable. In re-
sponse to this, various approaches need to be evaluated and
contrasted under carefully controlled conditions, from cen-
tralised systems seeking optimal allocation to distributed
mechanisms involving bilateral negotiation. Intuition—
which should of course be treated with circumspection—
suggests that neither of these can be entirely satisfactory,
but each may act in different ways as benchmarks against
which to measure the rest:

– Centralised systems relying on combinatorial auction
clearing algorithms can deliver optimal allocations,
but are currently limited by computation costs to hun-
dreds of items and thousands of bids [81].

– Distributed systems relying on bilateral negotiation
between consumer and service provider for each
component—that is, the consumer constructs their
own bundle—will almost certainly scale, but the re-
sults are much less likely to be “good”. The risks in-
herent in such an approach are significant: The order
in which to undertake negotiation, the possibility that
contracting for one resource constrains the choice of
subsequent resources, perhaps leading to incomplete
bundles, the difficulty in assessing the quality of a
bundle or indeed the valuation of a bundle are all sur-
rounded by uncertainty.

Implicit in both scenarios is that a client will need to com-
bine a range of resources from the grid in order to carry out
their computation.

2.4.2 Market-based Allocation

In between the two extremes of centralised and distributed
lie the many variants of market-based allocation. And
given the essentially decentralised nature of (geographi-
cally dispersed) grids, potentially with many administrative
centres and relatively weak control over individual nodes,
the grid seems well suited to market-based schemes, where
the twin benefits of reputation and decentralised negotia-
tion can facilitate the trading of computational resources.

Among the different market schemes that exist, one ap-
proach is to mimic ideas seen in commodity trading [48].
While analogies are both risky and seductive, there do
seem to be sufficient parallels to make more detailed
exploration—and simulation—desirable. Commodity mar-
kets are a blend of centralised and distributed in that there
are many commodity markets around the world, such that
at any one time a significant subset are trading, giving a
24/7 market, but within any given market trades take place
through bilateral mechanisms, typically continuous double
auctions. However, a trader may participate in more than
one market at a time, giving rise to communication between
markets as to current valuation trends along with the publi-
cation of “closing prices”.

But, commodity markets typically trade in lots of a sin-
gle kind and depending on the market, traders may be direct
buyers and sellers with no middle-men or market-makers.
Economic analyses and simulations indicate that market-
makers increase liquidity and enable the market to remain
(economically) efficient at lower levels of participation
than in the presence of buyers and sellers alone [7]. Fur-
thermore, in the case of bundles (lots of varying quantities
of several kinds of goods), market-makers become reposi-
tories of market memory, learning what bundles work (po-
tentially a combination of reputation and fit of resources)
and identifying trends as new kinds of bundles emerge.
Thus they become more than mediators between buyer and
seller, fully justifying the epithet of “market-maker”. A
trading framework such as this seems highly applicable to
grids and resource allocation within grid systems.

3 Types of Resources

A central parameter in any resource allocation problem is
the nature of the resources themselves. In this section, we
give a brief overview of the (abstract) properties of differ-
ent types of resources. Some of these properties are char-
acteristics of the resources (such as being perishable rather
than static, or continuous rather than discrete), while others
are better understood as being characteristics of the chosen
allocation system (for instance, whether or not a given item
is sharable amongst several agents will typically depend on
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the allocation procedure rather than on characteristics of
the item itself).

3.1 Continuous vs. Discrete

A resource may be either continuous (e.g. energy) or dis-
crete (e.g. fruit). This “physical” property will typically in-
fluence how the resource is being traded, although this need
not be the case. For instance, a continuous resource will
typically be regarded as being (infinitely) divisible. Still,
in a particular negotiation setting, it may only be possible
to buy or sell a certain quantity of such a continuous re-
source as a whole. Individual units of a discrete resource,
however, are always indivisible (an apple that can be sold
in small pieces would not count as a discrete resource).

In a setting with several continuous resources, a bundle
can be represented as a vector of non-negative reals (or,
alternatively, numbers in the interval [0, 1] to denote the
proportion of a particular resource owned by the agent re-
ceiving the bundle). Bundles of discrete resources can be
represented as vectors of non-negative integers. If there is
just a single item of each resource in the system, then vec-
tors over the set {0, 1} suffice.

A continuous resource may be discretised by dividing
it into a number of smaller parts to be traded as indivisi-
ble units. For instance, rather than treating 10.000 litres of
orange juice as a truly continuous resource that could be di-
vided into ever smaller subparts, we may agree to negotiate
over 200 units of 50 litres each. This means that methods
developed for discrete MARA are often also applicable in
the continuous case (although they may not be as efficient
as methods specifically tailored to continuous resources).

The allocation of continuous resources (often just a sin-
gle continuous resource), has been studied in depth in the
classical literature in Economics. More recent work in
Computer Science and Artificial Intelligence, on the other
hand, has often focussed on discrete resources. In this pa-
per, we also concentrate on discrete resources.

3.2 Divisible or not

As discussed above, resources may treated as being either
divisible or indivisible. While being either continuous or
discrete is a property of resources themselves, the distinc-
tion between divisible and indivisible resources is made at
the level of the allocation mechanism. In this survey, we
concentrate on indivisible resources.

3.3 Sharable or not

A sharable resource can be allocated to a number of differ-
ent agents at the same time. An example of such sharable
resources can be found in the context of the Earth Observa-
tion Satellite application discussed earlier (see Section 2.2):
A single picture taken by the satellite can be allocated to
several different agents (no preemptive constraints). The

canonical case, however, considers resources as being non-
sharable and in the rest of this paper we also make this
assumption.

3.4 Static or not

A resource may be consumable in the sense that the agent
holding the resource may use up the resource when per-
forming a particular action. For instance, fuel is consum-
able. Also, resources may be perishable, in the sense that
they may vanish or lose their value when held over an ex-
tended period of time. Food is a classical example of a
perishable resource.

We call resources that do not change their properties dur-
ing a negotiation process static resources. In general, re-
sources cannot be assumed to be static. In MARA however,
it is often assumed that they are (that is, that resources are
neither consumable nor perishable). The rationale behind
this stance is the fact that the negotiation process is not re-
ally concerned with the actions agents may undertake out-
side the process itself. That is, even if a resource is either
consumable or perishable, we can often assume that it re-
mains static throughout a particular negotiation process. In
this paper, in particular, we concentrate on static resources.

3.5 Single-unit vs. Multi-unit

In a multi-unit setting it is possible to have many resources
of the same type and to refer to these resources using
the same name. Suppose, for instance, there are a num-
ber of bottles of champagne available in the system, but
that agents cannot distinguish between these bottles. In a
single-unit setting, on the other hand, every item to be al-
located is distinguishable from the other resources and has
a unique name.

The differentiation between single- and multi-unit set-
tings is a matter of representation. Any multi-unit problem
can, in principle, be transformed into a single-unit problem
by introducing new names for previously indistinguishable
items. Vice versa, clearly, any single-unit problem is also a
(degenerate) multi-unit unit problem. An important advan-
tage of working within a multi-unit setting is that it may
allow for a more compact way of representing both alloca-
tions and the preferences of agents over alternative bundles.
On the downside, a richer language (variables ranging over
non-negative integers, rather than binary values) is required
in this case.

3.6 Resources vs. Tasks

At a sufficiently high level of abstraction, a task allocation
problem can be reduced to a resource allocation problem.
Indeed, tasks may be considered resources to which agents
assign a negative utility. However, an important character-
istic of tasks as opposed to resources is the fact that tasks
are often coupled with constraints regarding their coherent
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combination. For instance, a task may require the achieve-
ment of another task as a precondition. In this respect,
treating allocations merely as assignments of bundles of
items to agents (without associated time constraints, for in-
stance) would be too simple a model.

In this paper, however, we concentrate on general re-
source allocation problems rather than issues that are spe-
cific to task allocation (and exception is our discussion in
Section 2.3).

4 Preference Representation
Preferences express the relative or absolute satisfaction of
an individual when faced with a choice between different
alternatives.2 In the context of MARA, these alternatives
are the different potential allocations of resources, or more
concretely, the bundle of resources received by an agent for
each of the alternative allocations.

A preference structure represents an agent’s preferences
over a set of alternatives X . There are several choices
that can be made regarding the definition of a mathemat-
ical model for preference structures (this is an important
question that has been discussed by researchers in decision
theory for a long time). We can distinguish four families of
preference structures:

– A cardinal preference structure consists of an evalua-
tion function (generally called utility) u : X → Val ,
where Val is either a set of numerical values (typi-
cally, N, R, [0, 1], R+, etc.), or a totally ordered scale
of qualitative values (e.g. linguistic expressions such
as “very good”, “good”, etc.). In the former case the
preference structure is called quantitative, in the latter
it is called qualitative.

– An ordinal preference structure consists of a binary
relation on alternatives, denoted by ¹, which is re-
flexive and transitive (and usually, although not nec-
essarily, complete).3

We write x ≺ y (strict preference) if and only if x ¹ y
but not y ¹ x, and x ∼ y (indifference) if and only if
both x ¹ y and y ¹ x.

– A binary preference structure is simply a partition of
X into a set of good and a set of bad states. A binary
preference structure can be seen as both a (degenerate)
ordinal preference structure and a (degenerate) cardi-
nal preference structure.

– A fuzzy preference structure is a fuzzy relation over
X , i.e. a function µ : X ×X → [0, 1]. µ(x, y) is the

2This is the decision-theoretic view of preferences, shared by many
communities, from mathematical economics to multi-criteria decision
making.

3Some work in preference modelling has also addressed non-transitive
preference relations, arguing that humans often exhibit non-transitive
preferences—for the sake of brevity we will omit this issue here.

degree to which x is preferred over y. Fuzzy prefer-
ences are more general than both ordinal and cardinal
preferences.

Since fuzzy and qualitative preferences have not been used
much as far as resource allocation is concerned, we are go-
ing to neglect these in this survey, and focus on quantitative
and ordinal preferences instead.

Observe that we have three “levels” for preference mod-
elling, according to the possible operations allowed by the
preference structure: Ordinal preferences allow only for
comparing the satisfaction of a given agent for different al-
ternatives, but cannot express preference intensity and do
not allow for interpersonal comparison of preferences (that
is, expressing statements such as “agent i is happier with x
than agent j with y”). Qualitative preferences do allow for
interpersonal comparison of preferences, and can express a
weak form of intensity, but they do not allow for any “met-
ric” use of preferences such as computing the difference
between two utility degrees so as to allow for a monetary
compensation—while quantitative preferences do.

Note that any cardinal preference induces an ordinal
preference, namely for a utility function u we can define
the complete weak order ¹u given by x ¹u y if and only
if u(x) ≤ u(y).

The explicit representation of a preference structure con-
sists of the data of all alternatives with their associated util-
ities (for cardinal preferences) or the whole relation ¹ (for
ordinal preferences). These representations have a spatial
complexity in O(|X|) for cardinal structures and O(|X|2)
for ordinal structures, respectively.

In many real-world domains, the set of alternatives X
is the set of assignments of a value to each of a given set
of variables. In such cases, the alternatives are exponen-
tially many. It is not reasonable to ask agents to report
their preference in an explicit way when the set of alter-
natives is exponentially large, as this amounts to listing the
exponentially many alternatives together with their utility
assessment or their ranking. This is the case, in particular,
when alternatives are allocations of resources (assignments
of resources to agents). For this reason, the MARA project
needs languages for preference representation aiming at
enabling a succinct representation of the description of the
problem, without having to enumerate a prohibitively large
number of alternatives. Such preference representation lan-
guages often allow for a much more concise representation
of the preference structure than an explicit enumeration.

In this section, we are going to give a brief survey of
languages for preference representation. We begin by dis-
cussing several ways of representing compactly quantita-
tive preferences (that is, utility functions), including lan-
guages specifically introduced for combinatorial auctions,
and then we move on to languages for representing ordinal
preferences.
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4.1 Quantitative Preferences
Let R = {r1, . . . , rm} be a set of indivisible resources. A
quantitative preference structure for a resource allocation
problem is a utility function u : 2R → Val mapping bun-
dles of resources (subsets of R) to numerical values (such
as the reals). By defining utilities over bundles, we assume
that the preferences of agents are free of so-called alloca-
tive externalities. That is, the value that an agent assigns
to a bundle R does not depend on the allocation of the re-
maining resources amongst the other agents.

In the case of task allocation (as opposed to resource al-
location), we may model the preferences of agents using
cost functions rather than utility functions. At the level of
abstraction being considered in the present survey, there is
no effective difference in the representation of utility func-
tions and cost functions. In the former case, agents would
usually aim at maximising their utility, while in the latter
case they would aim at minimising their costs.

Next we are going to review several languages for repre-
senting utility functions.

4.1.1 Bundle Enumeration

The most basic form of representing a utility function is
to enumerate the bundles to which it assigns a non-zero
value. That is, a utility function u can be presented as the
set of pairs 〈R, u(R)〉 with R those bundles of resources
for which u(R) 6= 0. We call this the explicit form, or the
bundle form.

The bundle form is obviously fully expressive in the
sense that any utility function may be so described. A
serious drawback, however, is that the length of such de-
scriptions will typically be exponential in the number of
resources. This has prompted researchers to develop more
succinct languages for utility representation.

4.1.2 The k-additive Form

For some (but not all) utilities it is possible to exploit reg-
ularities in the function structure in order to build succinct
and efficiently computable descriptions. Given k ∈ N, a
utility function u is said to be k-additive if and only if there
exists a coefficient αT for each set of resources T of size at
most k such that:

u(R) =
∑

T⊆R

αT

The coefficient αT represents the synergetic value of own-
ing all of the items in T together, beyond the utility asso-
ciated with any of its proper subsets. If a utility function is
presented in terms of such coefficients, then we say that it
is given in k-additive form.

The k-additive form is also fully expressive, but only in
the sense that it can describe any utility function provided k
is chosen large enough (for any k less than the overall num-
ber of resources there are functions that cannot be repre-
sented). It is typically considerably more succinct than the

simple bundles form (think of a function mapping bundles
to the number of items in a bundle), although there are also
counterexamples (such as functions mapping only bundles
with a single element to a non-zero utility value) [18].

In many application domains, it will be reasonable to
assume that utility functions are k-additive with a relatively
small value of k (which would allow for a very succinct
representation). Indeed, the larger a bundle of resources,
the more difficult for an agent to estimate the additional
benefit incurred by owning all the resources in that bundle
together (i.e. beyond the benefit incurred by the relevant
subsets).

The k-additive form of representing utility functions is
inspired by work in fuzzy measure theory [47]. It has
been introduced into the MARA domain by Chevaleyre et
al. [18] and, independently and in a combinatorial auction
setting, by Conitzer et al. [23].

4.1.3 Weighted Propositional Formulas

Many languages for compact preference representation
make an explicit use of logic (for a survey of such lan-
guages we refer to the work of Lang [57]). The basic
idea of logic-based preference representation for MARA
is that each resource r can be identified with a proposi-
tional variable pr, which is true if the agent whose prefer-
ences we are modelling owns the corresponding resource,
and false otherwise.4 That is, every bundle R corresponds
to a model. Agents can then express their preferences in
terms of propositional formulas (or goals) that they want to
be satisfied. We write R |= G to express that the goal G is
satisfied in the model corresponding to the bundle R.

The simplest (and prototypical) logical representation of
preferences simply consists of giving a single propositional
formula G (representing the agent’s goal). The utility func-
tion uG generated by G is extremely basic: uG(R) = 1
if R |= G, uG(R) = 0 if R |= ¬G. One possi-
ble refinement of this consists of considering a goal base
GB = {G1, . . . , Gn} and counting the number of goals
satisfied by R.

In a further refinement, goals are associated with numer-
ical weights, which tell how important the satisfaction of
the goal is considered to be. Formally, the preferences of an
agent are expressed by means of a finite set of such weighed
goals: GB = {〈G1, α1〉, . . . , 〈Gn, αn〉}, where each αi is
an integer and each Gi is a propositional formula. For ev-
ery bundle R, we define the penalty of R as follows:

pGB (R) =
∑

{αi |R 6|= Gi} (1)

The penalty of R can be viewed as its disutility, that is,
uGB (R) = −pGB (R). Many other operators can be used,
in place of the sum, for aggregating weights of violated (or
symmetrically, satisfied) formulas [56].

4In a multi-unit setting (see Section 3.5), we would have to consider
atomic sentences such as x ≥ 50, signifying a bundle with at least 50
units of type x.
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4.1.4 Straight-line Programs

A further representation form for utility functions is based
on straight-line programs (SLPs). SLPs may be viewed
as directed acyclic graphs consisting of two distinguished
types of vertex: inputs which are sources (have in-degree
0) and gates, each of which has in-degree exactly 2. A
subset of the gates (with out-degree 0) are distinguished as
the program outputs. In addition to the graph structure an
SLP is fully defined by associating a binary Boolean oper-
ation with each gate vertex. For an SLP, C, with m inputs,
ordered as 〈x1, x2, . . . , xm〉 and p gates, a topological la-
belling of the vertices assigns a unique integer in the range
[1,m + p], λ(v), to each vertex of C in such a way that:
λ(xi) = i; if v is a gate with 〈w1, v〉 and 〈w2, v〉 edges
in C then λ(v) > max{λ(w1), λ(w2)}. A topological la-
belling may be efficiently computed for C using depth-first
search.

An SLP, C with inputs 〈x1, x2, . . . , xm〉 and p gates, t of
which are outputs labelled 〈s0, s1, . . . , st−1〉 computes its
result by executing the program consisting of exactly m+p
lines, at each of which a single bit value (res(i)) is com-
puted. Given an instantiation of the inputs 〈α1, . . . αm〉,
the ith line, li computes: res(i) := αi if 1 ≤ i ≤ m;
and res(j1)θires(j2) if m + 1 ≤ i ≤ m + p, where θi is
the binary operation associated with the ith gate and whose
inputs are the vertices labelled j1 and j2. The numerical
value computed by C as a consequence of a particular in-
stantiation α of its inputs is val(C, α) =

∑t−1
i=0 res(si)·2i.

This model provides an alternative representation for
utility functions, u : 2R → N by a suitable SLP, C: a
subset S defines an instantiation of the inputs via its m-bit
characteristic vector α(S); the value u(S) is then simply
val(C, α(S)). It is noted that, although this definition uses
N as the range, it is a trivial matter to extend to Z (allow
an additional output to act as a sign bit) and to Q (interpret
the output bits as two groups, one defining the numerator,
the other the denominator). As with the bundle form, the
SLP form has the property of being fully expressive. In
addition, however, there are the following advantages:

– The number of bits needed to encode utility functions
can be exponentially smaller than that required in the
bundle form.

– If the function u : 2Rm → Q is computable by a
deterministic Turing Machine in time T , then u may
be represented by an SLP, C containing O(T log T )
lines.

The first of these is easily seen by considering the func-
tion with value 1 if |S| is odd, and value 0 if |S| is even:
the number of bundles to be listed is exactly 2m−1. The
same function, however, is described by the program with
2m − 1 lines corresponding to the computation ⊕m

i=1 xi.
The second property is a consequence of the constructions
presented by Schnorr [85] and Fischer and Pippenger [39].
These simulations are effective (i.e. not simply existence
arguments) and can be efficiently implemented.

In principle, other “program-based” formalisms can be
defined, however, in order to be effective it must be pos-
sible efficiently to validate that a given bit-string does de-
scribe a syntactically correct program and to have an ef-
fective method of determining the program output. For the
SLP approach above, both of these are satisfied, the latter
since the runtime of a given SLP is exactly the number of
program lines contained within it.

Extensive complexity-theoretic treatments of the SLP
model (described in its usual terminology of combinational
logic networks) may be found in the monographs of Sav-
age [84], Wegener [96] and Dunne [28]. In the context of
MARA, the SLP form has been considered by Dunne et
al. [32].

4.1.5 Bidding Languages

Bidding languages are used in combinatorial auctions to al-
low agents to communicate their preferences to the auction-
eer.5 Preferences structures here are valuation functions or,
equivalently, positive and monotonic utility functions on
2R.

Bids are expressed as combinations of atomic bids of the
form 〈R, p〉, where p is the amount the bidder is prepared
to pay for the bundle R. Two prominent bidding languages
are the OR and the XOR languages:

– The OR language is probably the most widely used
bidding language. Here the valuation of a bundle is
taken to be the maximal value that can be obtained
when computing the sum over disjoint bids for subsets
of the bundle. For instance, a bid of the form

〈{a}, 2〉 OR 〈{b}, 2〉 OR 〈{c}, 1〉 OR 〈{a, b}, 5〉

expresses that the bidder is willing to pay 2 for a
alone, 2 for b alone, 5 for both a and b, and 6 for
the full set. Clearly, this language is not fully expres-
sive since it cannot represent subadditive utility func-
tions (for example, there is no way to specify that you
would only be prepared to pay 4 for the full set).

– In the XOR language [80], atomic bids are assumed
to be mutually exclusive. In this case, the valuation
of a bundle is simply the highest value offered for any
of its subsets. The XOR language can express any
(normalised) monotonic utility function.

While the XOR language is more expressive than the OR
language, it can also prove to be far less compact for cer-
tain types of preferences. For instance, the utility function
u(R) = |R| requires an exponential number of atomic bids
in the XOR language, but only a linear number of OR bids.

Because the OR language is widely considered a sim-
ple and natural bidding language, there have been several
attempts to extend its expressiveness without requiring an

5Of course, strategic considerations may cause agents not to report
their true preferences, but this issue is not relevant from the viewpoint of
preference representation.
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exhaustive listing of XOR bids. It is, for instance, possible
to combine the types of bids, and to thus to obtain OR-of-
XOR and XOR-of-OR bidding languages. For an extensive
discussion of such languages we refer to the review article
by Nisan [68].

An interesting alternative is to simulate XOR bids by
means of OR bids. The idea is simply to introduce “fake”
resources (or phantom goods, or dummy items), that have
no function other than making bundles mutually exclusive,
because the resource appears in both bundles [41]. For in-
stance, if one wanted to express that the set {a, b, c} should
be valued at 4, it would be possible to add the fake resource
f to obtain both 〈{c, f}, 1〉 and 〈{a, b, f}, 5〉, and to bid
in addition on 〈{a, b, c}, 4〉. This language, known as the
OR∗ bidding language (or OR with dummy items), is as
expressive as the XOR language.

4.2 Ordinal Preferences
Next we are going to discuss the representation of ordinal
preferences. Again, let R = {r1, . . . , rm} be a set of in-
divisible resources. An ordinal preference structure ¹ is a
binary relation over 2R. Here, logic-based languages play
a central role (see also our discussion of weighted proposi-
tional formulas in Section 4.1.3).

4.2.1 Prioritised Goals

Prioritised goals are the ordinal counterpart to weighted
goals: instead of numerical weights attached to goals (ex-
pressed as propositional formulas), we have a priority rela-
tion on goals, from which a preference relation on the set
of bundles can be drawn.

While some approaches make use of partial priority pre-
orders, most of them make the assumption that the priority
relation is complete. When this is the case, then priorities
on formulas can be expressed by a function r from inte-
gers to integers. A goal base is then a finite set of formu-
las with an associated function: GB = 〈{G1, . . . , Gn}, r〉.
If r(i) = j, then j is called the rank of the formula Gi.
By convention, a lower rank means a higher priority. The
question is now how to extend the priority on goals to a
preference relation over alternatives. The following three
choices are the most frequent ones:6

– best-out ordering [5]: R ¹bo
GB R′ iff

min{r(i) |R 6|= Gi} ≤ min{r(i) |R′ 6|= Gi}
– discrimin ordering [5, 14, 43]:

Let d(R, R′) = min{r(i) |R 6|=Gi & R′ |=Gi}.
R ¹dis

GB R′ iff d(R,R′) < d(R′, R) or
{Gi |R |= Gi} = {Gi |R′ |= Gi}

– leximin ordering [5, 58]:7

Let dk(R) = |{Gi |R |= Gi & r(i) = k}|.
6We are using the convention min(∅) = +∞.
7Not to be confused with (although related to) the leximin ordering for

the aggregation of individual preferences in a society of agents presented
in Section 5.4.

R ≺lex
GB R′ iff there exists a k such that

dk(R) < dk(R′) and ∀j < k, dj(R) = dj(R′)
R ¹lex

GB R′ iff R ≺lex
GB R′ or ∀j, dj(R)=dj(R′)

Note that¹lex
GB and¹bo

GB are complete preference relations
while¹dis

GB is generally not. We moreover have the follow-
ing chain of implications: R ≺bo

GB R′ entails R ≺dis
GB R′

entails R ≺lex
GB R′.

4.2.2 Ceteris Paribus Preferences

In this language, preferences are expressed in terms of
statements like: “all other things being equal, I prefer these
alternatives over those other ones.” Formally, let C, G and
G′ be three propositional formulas and V a set of proposi-
tional variables including those occurring in G and G′. The
ceteris paribus desire C : G > G′[V ] means: “when C is
true, all irrelevant things being equal, I prefer G ∧ ¬G′ to
¬G ∧ G′”, where the “irrelevant things” are the variables
that are not in V . The preference relation induced by a set
of such preference statements is then the transitive closure
of the union of preference relations induced by individual
preference statements. This language can also be extended
so as to allow for indifference statements.

An important sublanguage of ceteris paribus preferences
is the language of (binary) CP-nets [9], which is obtained
by imposing the following syntactical restrictions:

– Goals G and G′ are literals speaking about the same
propositional variable.

– The variables mentioned in the context C of a prefer-
ence statement about variable p must belong to a fixed
set, called the parents of p.

– For each variable p and each possible assignment π of
the parents of p, there is one and only one preference
statement C : p > ¬p or C : ¬p > p such that
π |= C.

Various extensions of CP-nets have been proposed so as to
be more expressive. For instance, TCP-nets [12] are CP-
nets with a dominance relation between variables. Lan-
guages for cardinal preference representation in the style
of CP-nets have been defined as well, for instance UCP-
nets [8], which are based on generalised additive indepen-
dence.

4.3 Discussion
At least five very important issues should be addressed
when investigating preference representation languages:

– Elicitation: How hard is is to elicit preference from an
agent so as to obtain a statement expressed in a given
preference language L?

– Cognitive relevance: How close is a given language
L to the way in which humans would express their
preferences?
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– Expressive power: Given a representation language L,
a relevant question is whether L can express all pre-
orders and/or all utility functions, or only complete
preorders, or only a strict subclass of them, etc.

– Computational complexity: For a given language L,
what is the computational complexity of comparing
two alternatives, of deciding whether a given alterna-
tive is optimal, or of finding an optimal alternative?

– Comparative succinctness: Given two languages L
and L′, determine whether every preference structure
that can be expressed in L can also be expressed in
L′ without a significant (that is, supra-polynomial) in-
crease in size (in which case L′ is said to be at least as
succinct as L).

A detailed discussion of these issues in view of all the dif-
ferent representation languages we have covered would be
beyond the scope of this survey. We limit ourselves to a
few indicative remarks.

With the exception of bidding languages, all the lan-
guages for quantitative preferences presented above are
fully expressive and we have already discussed several ex-
amples of comparative succinctness results for such lan-
guages. A problem with quantitative preferences in gen-
eral is the well-known difficulty of eliciting numerical pref-
erences from agents. Ceteris paribus preferences, being
rather close to human intuition and comparatively easy to
elicit, are interesting from a cognitive point of view. How-
ever, they have a high computational complexity in the
general case, and furthermore, they generally leave many
pairs of alternatives incomparable. As for prioritised goals,
their lack of expressive power (no compensation allowed
between goals) somewhat limits their range of use.

5 Social Welfare
A typical objective in MARA is to find an allocation that is
optimal with respect to a metric that depends, in one way or
another, on the preferences of the individual agents in the
system. The aggregation of individual preferences can of-
ten be modelled using the notion of social welfare as stud-
ied in Welfare Economics and Social Choice Theory. This
view is in line with the widely used metaphor of multiagent
systems as “societies of agents”. For instance, assuming
that individual agents model their preferences using utility
functions mapping bundles of resources to numerical val-
ues, the concept of utilitarian social welfare, defined as the
sum of individual utilities, can be used to measure the qual-
ity of an allocation from the viewpoint of the system as a
whole. This is probably the most widely used interpreta-
tion of the term “social welfare” in the multiagent systems
literature [79, 97].

In Welfare Economics and Social Choice Theory, on the
other hand, many different notions of social welfare and re-
lated concepts have been studied [2, 65, 86] and many of
these are also applicable to MARA systems [33]. In the

context of an e-commerce application, our aim may be to
maximise the average profit generated by the negotiating
agents. In this case, utilitarian social welfare provides a
suitable metric for assessing system performance. In an
application such as that introduced in Section 2.2, where
agents need to agree on the access to an Earth Observa-
tion Satellite that has been jointly funded by the owners of
these agents, on the other hand, it is important that each
agent receives a fair share of the common resource (possi-
bly reflecting the size of the financial contribution made by
its owner). In this case, average utility is clearly not a good
indicator of performance.

Generally speaking, before sending a software agent into
a system to negotiate on our behalf, we would like to know
under what (social) rules that system operates. If these
rules are not satisfactory, we may not be prepared to agree
to be bound by the outcome of a negotiation.

In this section, we are going to review some of the no-
tions of social welfare proposed in the literature on Wel-
fare Economics and Social Choice Theory that are relevant
to MARA. More specifically, we are going to present and
discuss different approaches to defining a social welfare or-
dering, i.e. a mapping from the preferences of the agents in
a society to the “preferences” of society as a whole. Good
references in this area are the Handbook of Social Choice
and Welfare, edited by Arrow, Sen and Suzumura [2], and
the textbook by Moulin [65]. We are going to cover prefer-
ence aggregation mechanisms for both ordinal and cardinal
agent preferences (utility functions). Given that every util-
ity function also induces an ordinal preference relation, any
concept defined for ordinal preferences also extends to the
cardinal case.

5.1 Notation

Let A = {1, . . . , n} be a set of agents. Depending on
whether we assume cardinal or ordinal preference struc-
tures, each of these agents i is equipped with either a utility
function ui or a preference relation ¹i. An allocation P
is a mapping from agents to bundles of resources; that is,
P (i) is the bundle held by agent i in allocation P .

Our presentation is independent from the exact nature of
the resources used (divisible or not, sharable or not, etc.).
In most cases, we only assume that agents have prefer-
ences over alternative allocations (only in the case of envy-
freeness, discussed in Section 5.7, we need to assume that
agents have preferences over alternative bundles). For in-
stance, P ¹i Q states that agent i likes allocation P no
more than allocation Q. Despite such generality, it makes
sense to think of preferences as being defined over bundles
of resources (as discussed in Section 4), i.e. to assume that
there are no allocative externalities. That is, P ¹i Q may
be considered an abbreviation for P (i) ¹i Q(i) and ui(P )
is short for ui(P (i)).
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5.2 Pareto Optimality
An allocation P is Pareto-dominated by another allocation
Q if and only if the following hold:

– P ¹i Q for all agents i ∈ A; and

– P ≺i Q for at least one agent i ∈ A.

An allocation is Pareto optimal (or Pareto efficient) if and
only if it is not Pareto-dominated by any other allocation.
That is, an allocation is Pareto optimal if and only if it is
not possible to (strictly) improve the individual welfare of
an agent without making any of the others worse off.

Pareto optimality is generally regarded as the most fun-
damental criterion for efficiency. Note that the concept of
Pareto optimality is purely ordinal: It does not require pref-
erences to be numerical, not even interpersonally compara-
ble. Also observe that the notion of Pareto dominance only
gives rise to a partial (rather than a complete) ordering over
alternative allocations.

5.3 Collective Utility Functions
If individual agents use utility functions to represent their
preferences, then every allocation P gives rise to a util-
ity vector 〈u1(P ), . . . , un(P )〉. A collective utility func-
tion (CUF) is a mapping from such vectors to numerical
values (e.g. the reals). Given that every allocation P de-
termines a utility vector, a CUF may also be regarded as
a function from allocations P to numerical values. Every
CUF sw induces a social welfare ordering: The alloca-
tion Q is socially preferred over allocation P if and only if
sw(P ) ≤ sw(Q).

In the sequel, we list several examples for such CUFs
and indicate the kind of MARA applications where they
may be useful.

5.3.1 Utilitarian Social Welfare

The utilitarian social welfare is defined as the sum of indi-
vidual utilities:

swu(P ) =
∑

i∈A
ui(P ) (2)

The utilitarian CUF is independent of the zeros of individ-
ual utilities. It can provide a suitable metric for overall (as
well as average) profit in a range of e-commerce applica-
tions.

5.3.2 Egalitarian Social Welfare

The egalitarian social welfare is given by the utility of the
agent that is currently worst off:

swe(P ) = min{ui(P ) | i ∈ A} (3)

This CUF offers a level of fairness and may be a suitable
performance indicator when we have to satisfy the min-
imum needs of a large number of customers. Fair divi-
sion [13, 66, 101] is an important area with many potential
applications in the field of MARA.

5.3.3 Nash Product

The Nash product is defined as the product of individual
utilities:

swN (P ) =
∏

i∈A
ui(P ) (4)

This notion of social welfare favours both increases in over-
all utility and inequality-reducing redistributions. In this
sense, it may be regarded as a good compromise between
the utilitarian and the egalitarian agendas. Another inter-
esting aspect of this CUF is that it is independent of the
individual scales of agent utility functions.

Observe that the Nash product can only provide a mean-
ingful metric of social welfare if all individual utilities are
non-negative (or better even, if they are all positive).

5.3.4 Elitist Social Welfare

The elitist social welfare is given by the utility of the agent
that is currently best off:

swel(P ) = max{ui(P ) | i ∈ A} (5)

The elitist CUF is clearly not a fair measure for social wel-
fare, but it can be useful in cooperation-based applications
where we require only one agent to achieve its goals.

5.3.5 Rank Dictators

The egalitarian and the elitist CUFs are both representatives
of the family of k-rank dictator CUFs, which we are going
to define next. Let (v↑P )k denote the kth smallest utility as-
signed to allocation P by any of the agents inA (this is the
kth coordinate in the ordered utility vector for allocation P ;
see also Section 5.4). Then the k-rank dictator CUF swk is
defined as follows:

swk(P ) = (v↑P )k (6)

A special case of particular interest is the median rank dic-
tator CUF which is defined as swk with k = n

2 in case n
is even and k = n+1

2 in case n is odd. Indeed, for certain
applications the individual level of welfare on an agent that
does at least as well as half of the agents in the system but
not better than the other half may be considered as suitable
indicator for overall system performance.

5.4 The leximin Ordering
The leximin ordering is a social welfare ordering that re-
fines egalitarian social welfare. It works by comparing first
the utilities of the least satisfied agents, and in case these
utilities coincide, compares the utilities of the next least
satisfied agents, and so on. This idea is formalised as fol-
lows.

Suppose agents use utility functions to express their pref-
erences. Then every allocation P gives rise to an ordered
utility vector v↑P , which is the result of first computing
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ui(P ) for every agent i ∈ A and then arranging these
values in ascending order. For example, v↑P = 〈3, 5, 20〉
means that the agent worst off enjoys utility 3, the one best
off utility 20, and the third one utility 5.

Then Q is leximin-preferred to P if and only if there ex-
ists an integer k ∈ {1, . . . , n} such that:

– (v↑P )i = (v↑Q)i for all i < k; and

– (v↑P )k < (v↑Q)k.

In other words, the leximin ordering is the lexicographic or-
dering over ordered utility vectors. It favours the reduction
of inequalities between agents. An allocation is leximin-
optimal if and only if it is not leximin-preferred by any
other allocation.

5.5 Generalisations
It is possible to build families of parametrised CUFs able
to induce a continuous collection of social welfare order-
ings, including most of those defined above. Let us de-
scribe briefly two such families. The first one is defined by
the following additive CUF [65]:

sw(p)(P ) =
∑

i∈A
g(p)(ui(P )) (7)

The parameter p is a real number, p 6= 0, and g(p)(x) =
sgn(p) · xp (where sgn(p) = 1 if p > 0 and sgn(p) = −1
if p < 0), with the convention g(0)(u) = log u. Obvi-
ously, sw(1) measures utilitarian social welfare, and sw(0)

induces the same social welfare ordering as the Nash prod-
uct. The leximin ordering is the limit of the social welfare
ordering induced by sw(p) as p goes to −∞.

The other family of CUFs is a particular case of what
is known as ordered weighted averaging (OWA) opera-
tors [99]. With the notation introduced above, let us define:

sww(P ) =
∑

i∈A
wi · (v↑P )i (8)

Here, w = (w1, w2, . . . , wn) is a vector of real numbers.
Let us consider the vector w such that wi = 0 for all i 6= k
and wk = 1, then we have exactly the k-rank dictator CUF
(including the egalitarian and the elitist CUFs, which are
special cases of rank dictators). Consider now the vector
w such that wi = αi−1, with α > 0, then the case α = 1
corresponds to the utilitarian CUF, and the leximin ordering
is the limit of the social welfare ordering induced by sww

as α goes to 0.

5.6 Normalised Utility
It can often be necessary to normalise utility functions be-
fore aggregating individual preferences using any of the
methods presented here, because many of them require in-
dividual utilities to be intercomparable. For instance, if P0

is the initial allocation of resources, then we may restrict

our attention to allocations P that Pareto-dominate P0 and
use the utility gains ui(P ) − ui(P0) rather than the utili-
ties ui(P ) themselves as input to either a collective utility
function or the leximin ordering.

A further normalisation step would be to evaluate an
agent’s utility gains relative to the gains it could expect in
the best possible case. More precisely, let us define the
maximum individual utility for each agent as:

ûi = max{ui(P ) |P ∈ Adm} (9)

Here, Adm is the set of admissible allocations. That is,
ûi is the utility that agent i could enjoy if it were the sole
agent exploiting the available resources. Then we define
the normalised individual utility of an agent i as follows:

u′i(P ) =
ui(P )

ûi
(10)

Observe that max{u′i(P ) |P ∈ Adm} = 1, for all agents
i. In other words, the maximum normalised utility is the
same for all agents.

The optimum of the leximin ordering with respect to nor-
malised utilities is known as the Kalai-Smorodinsky solu-
tion [66].

5.7 Envy-freeness

An allocation is envy-free if and only if each agent is at
least as happy with its share than it would be with any of
the bundles allocated to one of the other agents [13]. That
is, an allocation P is envy-free if and only if P (j) ¹i P (i)
holds for all agents i and j. Envy-freeness is a property
that does not require the intercomparability of the utilities
of different agents.

If we require all items to be allocated, then an envy-free
allocation does not always exist (consider, say, a an allo-
cation problem with a single resource that is desired by all
agents in the system). But even when not all items need to
be allocated, it is well-known that there are allocation prob-
lems for which there exists no allocation that is both Pareto
optimal and envy-free. One could therefore aim at finding
(Pareto optimal) allocations that would, at least, minimise
the overall “degree of envy” as much as possible. There are
several candidate definitions for minimal envy. Two possi-
ble approaches would be the following:

– Minimise the number of envious agents.

– Minimise the average degree of envy (the distance to
the most envied competitor) of all envious agents.

5.8 Example

To exemplify some of the concepts introduced in this sec-
tion, consider a scenario with two agents, 1 and 2, and a set
of three resources {a, b, c} that are indivisible and cannot
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be shared. Suppose the preferences of the two agents are
represented by the utility functions u1 and u2:

u1({a}) = 18 u1({b}) = 12 u1({c}) = 8
u2({a}) = 15 u2({b}) = 8 u2({c}) = 12

Furthermore, suppose u1 and u2 are additive, i.e. ui(R) =∑
r∈R ui({r}), and thereby fully specified by the above

values. Let P be the allocation giving a to 1 and b and c to
2.

Allocation P has maximal egalitarian social welfare
(18). Utilitarian social welfare, on the other hand, is not
maximal for this allocation (38 rather than 42) , and neither
is elitist social welfare (20 rather than 38).

P is Pareto optimal as well as leximin-optimal, but not
envy-free, since agent 1 would be happier with the share
of 2 than with its own. In fact, there is no allocation that
would be both Pareto and and envy-free for this problem.
On the other hand, for the slightly different problem where
u1({a}) = 20 instead of 18 (leaving the rest unchanged),
allocation P would be both Pareto optimal and envy-free.

5.9 Welfare Engineering
The insight that very different notions of social welfare
may be appropriate for different applications of MARA has
provided the impetus for the development of the Welfare
Engineering framework [19, 33], which addresses two is-
sues:

– the systematic choice of suitable social welfare order-
ings for a given application of MARA (and possibly
the application-driven design of new orderings); and

– the design of appropriate rationality criteria and social
interaction mechanisms for negotiating agents in view
of different notions of social welfare.

By “appropriate” we mean criteria and mechanisms that en-
sure the convergence of the negotiation process to an allo-
cation that is optimal with respect to the chosen social cri-
terion (see also Section 6.4). Of course, depending on the
application in question, such criteria need to be balanced
with the autonomy requirements of individual agents.

An example for the first aspect of Welfare Engineering
would be the elitist collective utility function discussed ear-
lier, which seems unethical for human society, but it may
be just the right performance indicator for a distributed
computing application where several agents are working
towards their own goals, but the system designer is only
interested in (at least) one of them achieving their objective
as quickly as possible. This aspect of Welfare Engineering
may be characterised as “welfare economics for artificial
agent societies”.

An example for the second aspect would be the follow-
ing convergence result: To achieve Pareto optimal out-
comes in negotiation without monetary side payments, ask
agents to negotiate mutually beneficial deals involving any
number of agents or resources, but also to participate in

deals that do at least not lower their own level of util-
ity [35]. This aspect of Welfare Engineering can be sum-
marised as “inverse welfare economics”, alluding to the
characterisation of mechanism design as “inverse game
theory” [70].

6 Allocation Procedures
Generally speaking, the allocation procedure used to find a
suitable allocation of resources could be either centralised
or distributed. In the centralised case, a single entity de-
cides on the final allocation of resources amongst agent,
possibly after having elicited the preferences of the other
agents in the system. Typical examples for the centralised
approach are combinatorial auctions [24]. Here the cen-
tral entity is the auctioneer and the reporting of preferences
takes the form of bidding. In truly distributed approaches,
on the other hand, allocations emerge as the result of a
sequence of local negotiation steps. Such local negotia-
tion is often restricted to bilateral trading as in the clas-
sical Contract-Net approach [87], but systems allowing for
multilateral exchanges of resources between more than two
agents are also possible.

A comprehensive survey on allocation procedures for
MARA would be beyond the scope of this paper. Any such
survey would have to address at least the following three
issues:

– Protocols: At this level, we need to address ontologi-
cal issues (what types of deals are possible?) and de-
vise communication protocols accordingly (what mes-
sages do agents have to exchange to agree on one such
deal?).

– Strategies: When designing individual agents, we
need to devise strategies for agents that allow them to
best exploit a given negotiation protocol. This can also
provide feedback to the first level: Where possible,
protocols should be designed in such a way that they
provide incentives to the negotiating agents to adopt a
particular desirable profile of behaviour (mechanism
design).

– Algorithms: At this level, we need to provide algo-
rithms to solve the computational problems faced by
agents when engaged in negotiation. This includes
both algorithms to decide how to respond to a pro-
posal in a distributed negotiation scenario and win-
ner determination algorithms for combinatorial auc-
tions. Again, this level may provide feedback to the
other two levels: If a particular computational prob-
lem proves too hard to be solved in a reasonable
amount of time then this may call for a simplification
of the negotiation protocol (or strategy).

In this paper, we concentrate on the first of these issues.
The most fundamental question to consider before devis-
ing a protocol for a MARA system is whether to adopt a
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centralised or a distributed design. We therefore start with
a short discussion of the respective merits and drawbacks
of centralised and distributed approaches to MARA. This
is followed by an introduction to protocols for combinato-
rial auctions and an overview of the Contract-Net and re-
lated protocols for distributed resource allocation. Finally,
we make a connection to our discussion of social welfare
measures in Section 5 and review a number of results con-
cerning the convergence to a socially optimal allocation for
different protocols in the distributed setting.

6.1 Centralised vs. Distributed

Both the centralised and the distributed approach to MARA
have their advantages and disadvantages. Possibly the most
important argument in favour of auction-based mechanisms
concerns the simplicity of the communication protocols re-
quired to implement such mechanisms. Another reason for
the popularity of centralised mechanisms is the recent push
in the design of powerful algorithms for combinatorial auc-
tions that, for the first time, perform reasonably well in
practice [41, 80]. Of course, such techniques are, in princi-
ple, also applicable in the distributed case, but research in
this area has not yet reached the same level of maturity as
for combinatorial auctions. An important argument against
centralised approaches is that it may be difficult to find an
agent that could assume the role of an “auctioneer” (for in-
stance, in view of its computational capabilities or in view
of its trustworthiness).

The distributed model seems also more natural in cases
where finding optimal allocations may be (computation-
ally) infeasible, but even small improvements over the ini-
tial allocation of resources would be considered a success.
Step-wise improvements over the status quo are naturally
modelled in a distributed negotiation framework.

6.2 Auction Protocols

Auctions [24, 54, 55, 94, 98] are centralised mechanisms
for the allocation of goods amongst several agents. Agents
report their preferences and wait for the final allocation to
be made by the auctioneer (whether there is an initial al-
location of goods, as in combinatorial exchanges, or not,
as in regular combinatorial auctions). The act of reporting
preferences is called bidding and, naturally, agents are not
required to reveal their true preferences during bidding, but
they may submit whatever bid(s) they believe to best serve
their own interests.

Bidding may be public (open-cry) as in the well-known
English auction model or private (sealed bids). In the case
of open-cry bidding, we can further distinguish between as-
cending bids (English auction) and descending bids (Dutch
auction) [94]. In combinatorial domains, which is what we
are interested in here (i.e. there are many goods and agents
can submit bids for different combinations of goods), typ-
ically, most auction protocols foresee only a single round
of bidding using sealed bids. The bidding language (see

Section 4.1.5) determines what types of bids are admissi-
ble (and how to interpret them).

The auction protocol also specifies which agent would be
awarded which goods, based on the bids received in time,
and what price they should pay for the bundles allocated
to them. In some cases, this decision can be left entirely
to the auctioneer (who will seek to maximise her revenue).
In other cases, it is important that the auctioneer follows
the rules specified by the protocol, as these rules have been
designed in such a way as to provide incentives to the bid-
ders to bid truthfully. This is the case for the Vickrey auc-
tion model [94], and its extensions to combinatorial scenar-
ios, where the winning agents pay less then the prices they
specified in their bids.

For an extensive review of different auction models for
resource allocation in combinatorial domains we refer to
the forthcoming book on Combinatorial Auctions, edited
by Cramton, Shoham and Steinberg [24], and the review
article on the same topic by Kalagnanam and Parkes [54].

6.3 Negotiation Protocols
We now give a brief overview of some of the protocols de-
veloped for negotiation over resources in a distributed set-
ting.

6.3.1 Contract-Net

Perhaps the most popular negotiation protocol is the
Contract-Net protocol [87]. Although the protocol was
primarily designed for task allocation, it is also perfectly
suited to MARA. The protocol consists in four interaction
phases, involving two roles (manager and bidder):

– Announcement phase: The manager advertises the re-
source to a number of partner agents (the bidders).

– Bidding phase: The bidders send their proposals to the
manager.

– Assignment phase: The manager elects the best bid
and assign the resource accordingly.

– Confirmation phase: The elected bidder confirms its
intention to obtain the resource.

Any agent can initiate an interaction following the protocol
by assuming the adequate role. The protocol is really a one-
to-many protocol, leading to the assignment of a single task
(or resource) to a single contractor (that is, the resulting
deal is a one-to-one agreement regarding a single item).

6.3.2 Extensions

Many different extensions to this protocol have been pro-
posed and we briefly review some of these here. The TRA-
CONET system developed by Sandholm [77], for instance,
uses a variant of the classical Contract-Net protocol to al-
low negotiation over the exchange of bundles of resources.
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Golfarelli et al. [46] have proposed an extension where
the bidders have no explicit mechanism for utility transfer
(in other words, they cannot use money). The first phase
remains the same as in the original Contract-Net: the man-
ager announces a (bundle of) resource(s). But the proto-
col is based on exchanges: instead of bidding money, the
agents will bid for one or more resources they are inter-
ested in exchanging. This extension allows agents to agree
on swapping resources (rather than buying them from each
other).

Sousa et al. [89] have designed a version of the Contract-
Net protocol where bidders first propagate constraints be-
tween them in order to guarantee the coherence of different
operations related to the same task.

6.3.3 Concurrent Contract-Net

As pointed out by Aknine et al. [1], when many managers
negotiate simultaneously with many contractors, using the
Contract Net protocol can lead to unsatisfactory results. In
particular, because contractors are required to answer a sin-
gle bid at a time, they may miss some contracts. To over-
come this, they have proposed an extension to in which
a pre-bidding and a pre-assignment phase are added be-
fore the final bidding and assignment phase of classical
Contract-Net protocols. During the pre-bidding and pre-
assignment phases, which can last a long time, agents pro-
pose temporary bids and managers temporarily accept (or
reject) these bids. These new phases have several positive
effects:

– After a deal has been temporarily accepted, if the man-
ager receives a better offer, this deal can be turned into
temporarily rejected offer. It turns out that when many
negotiations are conducted simultaneously, by delay-
ing the final acceptance, better deals (from the man-
ager’s point of view) may be negotiated.

– Contractors can modify their offers many times by
making temporary offers. If the contractor receives a
better new offer from another manager, it can modify
its temporary bids before sending a definitive bid.

– The pre-bidding phase may be quite long. This has the
positive effect of reducing the risk of decommitment.

An alternative way to tackle this latter problem is to allow
agents to decommit, but to apply penalties when they do so.
This route has been followed in the levelled commitment
approach proposed by Sandholm and Lesser [82].

6.4 Convergence Properties

As discussed earlier, once a particular negotiation protocol
has been fixed, we need to devise strategies for the agents
using that protocol. Work in this area is often of a game-
theoretical nature. A different line of research has analysed
how the negotiation behaviour of individual agents affects

the quality of the overall distribution of resources (with re-
spect to some of the social welfare measures introduced in
Section 5) by abstracting away from the details of individ-
ual negotiation strategies [35, 78].

For instance, a rational agent may be defined as an agent
that will only agree to deals that result in a positive pay-
off for itself. That is, a set of rational agents will only
agree on mutually beneficial deals. Which of the possibly
many mutually beneficial deals agents will actually agree
on depends on the concrete strategies they use, and overly
aggressive negotiation strategies may even prevent agents
from identifying any mutually beneficial deal at all [67].
However, in cases where it is admissible to assume that
agents will agree on some deal meeting certain rationality
criteria (such as resulting in a strictly positive payoff for
everyone involved) whenever such a deal exists, it is some-
times possible to prove so-called convergence properties of
a negotiation framework.

For instance, in the context of negotiation over finitely
many indivisible resources, an important result, due to
Sandholm [78], states that any sequence of deals that are
mutually beneficial will eventually result in an alloca-
tion with maximal utilitarian social welfare, provided that
agents can use monetary side payments to compensate their
trading partners for otherwise disadvantageous deals (and
each agent’s payoff is linear in the amount of money re-
ceived). That is, there can be no infinite sequence of mu-
tually beneficial deals, and if agents keep on making such
deals the system will converge to an allocation that max-
imises the sum of individual utilities. A similar result states
that any sequence of mutually beneficial deals without side
payments will converge to a Pareto optimal allocation [35].

An important caveat is that these results apply to negoti-
ation settings where agents can agree on truly multilateral
deals: A single deal may involve any number of agents (as
well as any number of resources). Decomposing such a
multilateral deal into a sequence of bilateral deals is not al-
ways possible, because some of the bilateral deals making
up the overall deal may not be mutually beneficial to both
agents. Hence, myopic agents that require a positive payoff
for every single deal they take part in will not accept such
a deal.

Given the difficulty of implementing such general deals,
it is important to understand under what circumstances se-
quences of structurally simple deals suffice to guarantee
convergence to a socially optimal allocation of resources.
Recent results in this area show that mutually beneficial
deals with side payments that involve only a single resource
each (and thereby only two agents at a time) suffice to reach
allocations with maximal utilitarian social welfare in case
all agents use modular utility functions [35].8 In fact, the
class of modular utility functions is also maximal in the

8A utility function u is said to be modular if and only if we have
u(R1 ∪ R2) = u(R1) + u(R2) − u(R1 ∩ R2) for all bundles R1

and R2. This means that the utility assigned to a bundle of resource can
be computed as the sum of the utilities of the individual resources in that
bundle, i.e. the classes of modular and 1-additive functions coincide.
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sense that for no class of functions strictly including that
class it would still be possible to guarantee that agents us-
ing utility functions from this larger class and negotiating
only mutually beneficial deals over single resources will
eventually reach an allocation with maximal utilitarian so-
cial welfare in all cases [21]. Related work has also identi-
fied classes of utility functions (and ordinal preference re-
lations) that guarantee the convergence to optimal alloca-
tions for sequences of deals involving at most k resources
each [20].

7 Complexity Results
A growing body of work within the study of MARA con-
siders various concepts of complexity, not only in the stan-
dard sense of computational complexity theory but also in
terms of concepts such as communication complexity. Such
work comprises both positive results—e.g. algorithms with
provably efficient performance characteristics, properties
of restricted classes of allocation settings, etc.—and a large
collection of negative results that suggest many naturally
arising decision and optimisation problems are unlikely to
admit generally applicable algorithmic solutions. Within
this section our aim is to review extant work that has ad-
dressed such questions and to catalogue related open prob-
lems.

7.1 Models and Assumptions
The structure we consider in the subsequent text will be
referred to as a resource allocation setting, by which we
mean a triple 〈A,R,U〉 where:

– A = {1, 2 . . . , n} is a set of n agents;

– R = {r1, r2, . . . , rm} is a collection of m resources;
and

– U = {u1, u2, . . . , un} describes the utility function
ui : 2R → Q for the agent i ∈ A.

We assume that each r ∈ R is indivisible and non-
shareable, i.e. at most one agent at a time will “own” r
(see also Section 3). An allocation of the resources in R
among the agents in A is a mapping P : A → 2R with
P (i)∩P (j) = ∅ for any i 6= j. The set of all allocations of
R among A will be denoted by Πn,m. From the fact that
there are n choices of agent for each of the m resources, it
is easily seen that |Πn,m| = nm.

7.2 Computational vs. Communication
Complexity

In very informal terms, traditional computational complex-
ity theory is concerned with the issue of classifying com-
putational problems with respect to how much of a partic-
ular computational resource is required for their solution.
Typically, computational problems are phrased as decision

questions, i.e. given an input instance I , is it the case that
some property φ holds true of I? For example, given a di-
rected graph H(V,E) and a vertex s in V , is it the case that
every vertex in V can be reached by some path that starts
in s? The concept of computational resource is modelled
via some formal model of computation. Thus, time (space)
as the (worst-case) number of moves (tape cells) made by
a (deterministic) 2-tape Turing machine (DTM) that cor-
rectly classifies input instances, i.e. accepts if φ(I) = >,
rejects if φ(I) = ⊥. For further introductions to computa-
tional complexity theory we refer the reader to the textbook
by Papadimitriou [69].

In the context of MARA problems, computational com-
plexity results have tended to address what might be termed
“global” properties of given resource allocation settings,
e.g. whether allocations satisfying particular criteria exist.
Recent work, however, has begun to address computational
properties of abstract high-level negotiation protocols as
reviewed in Section 6.4 above, e.g. given some constraint,
χ, that allowed deals must satisfy, a number of decision
problems may be formulated regarding allocations that are
reachable from a starting allocation via sequences of χ-
deals.

This view of complexity has not, in general, needed to be
concerned with “localised” questions, e.g. the overheads
involved in describing and implementing proposed deals;
how many deals may be needed in order to reach an alloca-
tion with desirable properties, etc. In the work of Endriss
and Maudet [34] the term communication complexity, de-
riving from the model put forward by Yao [100], is intro-
duced to capture the combination of number of deals and
communication to agree a deal that could be needed in or-
der for an allocation to be finalised. While the bulk of the
survey below is concerned with complexity issues from the
perspective of computational complexity, we also discuss
some results related to communication from the works of
Endriss and Maudet [34] and Dunne [29], that consider up-
per and lower bounds on the number of deals needed in
various contexts.

7.3 Allocations with Given Properties

Given a resource allocation setting, 〈A,R,U〉, the agents
concerned seek to bring about an allocation that will sat-
isfy certain criteria. As discussed in Section 5, such criteria
may be purely quantitative (e.g. the sum of the individual
utility valuations (utilitarian social welfare) is maximal (or
is above a given amount), but so-called qualitative prop-
erties (Pareto-optimal or envy-free outcomes, for instance)
are also of interest.

7.3.1 Representation Issues

Standard computational complexity theory considers prop-
erties of algorithms implemented within some “well-
defined” model of computation, e.g. Turing machines. In
order sensibly to consider the performance of a specific al-
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gorithm, this is reported as a function of the algorithm’s
input length. This convention presumes that, in comparing
different algorithmic approaches to a particular problem,
such comparisons are only “reasonable” if the representa-
tion of input instances is similar, or that (at worst) different
formats can be translated between efficiently.

In considering how instances are to be represented in the
case of decision problems concerning resource allocation
settings, a significant issue that arises is the encoding of
the collection of utility functions U . The domain of a utility
function is 2R: thus (from the viewpoint of upper bounds
on complexity) the characteristics of algorithms employ-
ing an enumerative form (listing all subset/value pairs) may
not be comparable with algorithms employing some com-
pact representation. We therefore give complexity results
for the three different forms of representing utility func-
tions discussed in Section 4.1: the bundle form, the SLP
form, and the k-additive form (here the 2-additive form is
of particular interest).

7.3.2 Quantitative Criteria

Two natural decision questions regarding the measure swu

of utilitarian social welfare, have been considered with re-
gard to each of the three formalisms for representing utility
functions:

Welfare Optimisation (WO)
Instance: 〈A,R,U〉; K ∈ Q
Question: ∃P ∈ Πn,m : swu(P ) ≥ K?

Welfare Improvement (WI)
Instance: 〈A,R,U〉; P ∈ Πn,m

Question: ∃Q ∈ Πn,m : swu(Q) > swu(P )?

WI and WO are both NP-complete for the representa-
tion of utility functions in bundle form (reduction from
SET PACKING [18]); for the SLP form (reduction from 3-
SAT [32]); and for 2-additive functions (the simplest proof
is via a reduction from MAX-2-SAT [18]). Both the 2-
additive and SLP results apply even in systems contain-
ing only 2 agents; the SLP reduction shows that the prob-
lems remain NP-complete when (both) utility functions are
monotonic.

7.3.3 Qualitative Criteria

The qualitative measures of Pareto optimality and envy-
freeness give rise to the following decision problems:

Pareto Optimality (PO)
Instance: 〈A,R,U〉; P ∈ Πn,m

Question: Is P Pareto optimal?

Envy-Freeness (EF)
Instance: 〈A,R,U〉
Question: ∃P ∈ Πn,m : P is envy-free?

Deciding PO is coNP-complete for both SLP and 2-
additive utility functions. The former was shown by Dunne
et al. [32] (reduction from 3-UNSAT restricted to instances
with clause and variable numbers equal); the latter, al-
though not explicitly stated by Chevaleyre et al. [18], is
an immediate consequence of their proof that WI is NP-
complete. Again both continue to hold in 2-agent contexts,
with the SLP reduction also applying to monotonic utility
functions.

EF is examined in a variety of cases in the work of
Bouveret and Lang [11]. They consider a representation
based on concise logic-based descriptions of agent prefer-
ences (as discussed in Section 4.1.3 above). In addition
to the basic question of whether envy-free allocations are
possible—shown to be NP-complete even within 2-agent
settings—the question of allocations that combine envy-
freeness with Pareto optimality is examined (termed effi-
cient envy-free, or EEF, allocations). For such decision
problems they demonstrate completeness results ranging
from NP-complete up to Σp

2-complete, depending on the
restrictions placed on the preference relations. That NP-
completeness also holds for the question EF within the SLP
model in 2-agent settings has been shown by Dunne [30]
(reduction from 3-SAT).

7.4 Path and Convergence Properties

The collection of results referred to above, hold indepen-
dently of the regime used to negotiate allocations. There
are, however, a number of questions that arise specifically
in the context of distributed negotiation when the structure
of admissible deals is constrained. Thus suppose that only
individually rational deals may be used, i.e. deals that are
beneficial to all the agents involved. If monetary side pay-
ments are allowed, then individually rational deals are deals
〈P,Q〉 under which swu(Q) > swu(P ) [35]. As has been
shown by Sandholm [78], if additional constraints, such
as “all deals are bilateral and involve exactly one resource
changing” (sometimes called the class of O-contracts), then
there are cases where some rational deals cannot be imple-
mented. A further problem that arises is that, even when
there is a rational O-contract path to go from P to Q this
may involve an agent repeatedly making deals involving
the same resource, i.e. such paths may contain more than
m distinct deals.

In general, given some predicate Φ on deals, the follow-
ing decision problem arises:

Φ-Path
Instance: 〈A,R,U〉; P (s), P (t) ∈ Πn,m with

swu(P (t)) > swu(P (s))
Question: ∃∆ = 〈P (0), P (1), . . . , P (r)〉 s.t.

P (0) = P (s) and P (r) = P (t) and
∀1 ≤ i ≤ r, Φ(P (i−1), P (i))?

Dunne et al. [32] consider the complexity of Φ-Path where
Φ(P, Q) holds only if the deal is individually rational and
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involves at most some given number k of the resources be-
ing passed from one agent to another. Within 2-agent set-
tings using SLP representation it is shown that Φ-Path is
NP-hard for all k ≤ m

3 (and for the case k = m
2 ). In

the special case of O-contracts (i.e. k = 1) NP-hardness
holds with both utility functions being monotonic. Re-
cent work, presented in Dunne and Chevaleyre [31], im-
proves this NP-hardness lower bound and obtains an exact
complexity classification: Φ-Path is PSPACE-complete for
Φ(P,Q) holding if the deal is an individually rational O-
contract.

Introducing the idea of a maximal Φ-path (from an initial
allocation P ) as a sequence of deals every one of which
satisfies Φ and with the final allocation, P (t) being such
that for every Q it is the case that ¬Φ(P (t), Q), leads to the
following related problem:

Φ-Convergence
Instance: 〈A,R,U〉
Question: Is it the case that ∀P ∈ Πn,m, for all

maximal Φ-paths ∆ starting from P ,
the allocation last(∆) these terminate
in, is one which maximises swu?

For instance, the basic convergence result first proved by
Sandholm [78] (discussed in Section 6.4) shows that the
answer to the above question is always “yes” when Φ does
not restrict the range of admissible deals in any way. Φ-
Convergence is the subject of ongoing work which has al-
ready established the following: For Φ corresponding to
individually rational O-contracts, Φ-Convergence is coNP-
complete for the SLP model and for 4-additive utility func-
tions [31] Both results hold in 2-agent settings. If all utility
functions are modular (i.e. 1-additive), then the answer to
Φ-Convergence is always “yes” [21].

We now return to an issue relating to the ideas of com-
munication complexity discussed above. The question of
interest also has a bearing on establishing upper bounds
on the complexity of Φ-Path. Given a resource allocation
setting and Φ, consider the (rational) deals that can be im-
plemented by Φ-paths. Dunne [29] has introduced the fol-
lowing measures:

– Lopt(P,Q): the length of the shortest Φ-path realising
〈P, Q〉.

– Lmax(A,R,U): the maximum value of Lopt(P, Q)
over those deals for which a Φ-path exists.

– ρmax(n,m): The maximum value (taken over all
choices of utility function) of Lmax(A,R,U).

– ρmax
C (n,m): As ρmax, but with the maximisation

taken over utility functions belonging to some class
C.

A related study (employing different terminology) is given
by Endriss and Maudet [34], where attention is focussed
on utility functions which allow any rational deal to be
implemented via some sequence of rational O-contracts;

the main case being considered in this respect is that of
1-additive functions.

Let Φ(P, Q) hold if and and only if the deal 〈P, Q〉 is an
individually rational O-contract:

– ρmax(n,m) ≤ nm −m(n− 1) [78]

– ρmax(n,m) ≥ 77
2562m − 1 [29]

– ρmax
1−add(n,m) = m [34]

– ρmax
mono(n,m) ≥ 77

1282
m
2 − 3 [29]

The latter two results pertain to the classes of 1-additive and
monotonic utility functions, respectively. The constructed
rational paths in the general and monotonic lower bound
cases are unique.

7.5 Open Problems and Conjectures
Given the existing results concerning the measure swu

wherein exact complexity classifications have been derived
for each of the three representation styles for utility func-
tions, the following conjectures seem plausible and ought
to be straightforward to verify.

Conjecture 1 Deciding if there is an allocation P with
swe(P ) ≥ K is NP-complete (whether U is given in bundle
form, SLP form, or is 2-additive).

Conjecture 2 Given K ∈ Q, deciding if
max{swu(P ) |P ∈ Πn,m} = K is DP -complete
(again in all three representation formalisms).

Conjecture 3 EF is NP-complete for 2-additive utility
functions.

8 Simulation Platforms
Theoretical work in Microeconomics and Auction Theory
provides a very strong foundation for analysing many re-
source allocation problems. However, on occasion we may
be faced with a problem in which some of the assumptions
underlying the theory are violated. This is especially the
case in MARA scenarios where computational concerns
are prominent [25]. For example, mechanism design as
originally developed in Economics is not concerned with
computational issues such as algorithmic or communica-
tion complexity. In a conventional auction design scenario
issues such as the speed of winner determination and the
communication costs of submitting bids are often not of
significant concern since they are not typically a bottle-
neck with respect to the entire auction process which can
involve protracted and lengthy decision making by human
traders. However, in a market place run entirely by auto-
mated trading agents, such issues are likely to be of more
concern since their performance costs can sometimes be
of similar order of magnitude as the overall computational
costs of running the auction. Once these costs are taken
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into account many of the results in auction theory become
somewhat brittle. For example, the revelation principle
no longer applies when transaction-throughput and reduc-
tion in communication complexity are adopted as design
goals [74].

In such cases experimental work using simulations of
agent-based market places—Agent-based Computational
Economics (ACE) [93]—can shed light on some of the grey
areas that are difficult to analyse using existing theoretical
tools.

As with any software engineering problem, in choosing
an appropriate software framework in which to implement
an ACE simulation it is important to consider the require-
ments that the software needs to meet. In this section, we
give an overview of the typical requirements addressed by
ACE software, and we then proceed to give an overview of
some commonly-used simulation frameworks.

8.1 Simulation vs. Implementation

Software for simulating multiagent systems typically ad-
dresses different requirements from that designed to imple-
ment multiagent systems. Although it is natural to view
a MAS implementation as its own simulation, there are a
number of problems with such an approach, which we shall
address in turn.

Firstly, ideally we would like the outcome of a simula-
tion experiment to be exactly reproducible given the initial
conditions of the experiment. This is not always possible in
a MAS implementation since many environmental factors
will be beyond the experimenter’s control. For example,
the precise outcome of an experiment may depend on the
exact timing with which an agent responds to a particular
message, and this time interval will depend on factors be-
yond the experimenter’s control, such as the memory and
CPU currently available to the agent.

Secondly, when we come to analyse the results of a sim-
ulation, we often need to generalise beyond a single run of
an experiment with a single set of initial conditions. Typ-
ically, we generalise by taking many samples of free ini-
tial variables and running the experiment many times for
each sample. Simulation frameworks are equipped to log
data from the outcome of each experiment to a format suit-
able for analysis using statistical analysis software, such as
MATLAB.

Thirdly, the performance considerations of a simulation
are qualitatively different to that of an implementation. The
software architecture of a MAS implementation is driven
by real-world requirements that do not always hold in a
simulation context. For example, trading agents need to
be able to run on different machines due to commercial
and practical considerations. This distributed parallelism
is detrimental to raw system-level performance however,
since inter-host network communication overheads dom-
inate other performance considerations. By running all
agents on the same host we can achieve several orders of
magnitude performance increase. This would be an im-

practical solution for a real MAS trading implementation.
However, such considerations do not apply in a simulation
context, and by relaxing these constraints we can achieve a
significant gain in performance.

Similarly, much of the technical complexity of a real
MAS implementation addresses requirements that are not
present in a simulation context. For instance, MAS im-
plementations need to be robust against system failures,
and they need to respond quickly to real-time asynchronous
events. This necessitates a highly parallel software archi-
tecture, involving, for example, many threads of execution
running simultaneously. Such considerations do not apply
in agent-based simulation, since real-time parallelism can
be simulated using a sequential program, and this greatly
reduces the complexity of the software (and hence the po-
tential for bugs).

Finally, any MAS interacts at some point with the en-
vironment. In a MARA scenario, for example, the envi-
ronment might constitute economically relevant character-
istics of the human owners of agents, such as their utility
functions. Unlike the agents in a MAS implementation, the
environment is not a software entity in a MAS implemen-
tation, and cannot be directly ported to an agent-based sim-
ulation. Rather, the environment itself must be simulated.
Agent-based simulation toolkits allow for the abstract sta-
tistical simulation of environmental factors. Hence a key
feature of any simulation toolkit is a library of pseudo-
random number generators (PRNGs). A good simula-
tion toolkit will provide high quality PRNGs, such as the
Mersenne Twister PRNG [64], with extremely large peri-
ods, low statistical correlation, and the ability to produce
random numbers according to arbitrary (non-uniform) dis-
tributions.

In summary, when developing a system to simulate a
MARA scenario, it is important to choose a framework or
toolkit that is specifically designed for agent-based simu-
lation, as opposed to toolkits such as JADE [51] that are
designed for implementing multiagent systems.

8.2 Simulating Time

For practical purposes we often prefer to simulate the par-
allelism of events using sequential computation, rather than
execute the simulation of multiple simultaneous events in
parallel in real-time. This necessitates a framework for
computing the outcome of events that occur simultane-
ously. There are several approaches to simulating time in a
model.

8.2.1 Continuous Time Models

Many physical processes are characterised by smooth and
continuous changes in time-dependent variables. Differ-
ential equation models are common in analytical microe-
conomics. Such models are applicable approximations of
real market places when there are very large numbers of
participants in the market since individual characteristics
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of the participants play a less significant role and the en-
tities in the system can be treated as simple and homoge-
neous particles. However, these models break down when
the number of participants becomes very small and the in-
dividual and strategic characteristics of the participants be-
come more prominent.

Agent-based models address this issue by providing a
richer structure with which to model market participants.
In such models, macro-level variables describing the en-
semble of agents no longer vary smoothly with time. This
necessitates alternative approaches to temporal modelling.

8.2.2 Discrete-event Simulation

Discrete-event simulation frameworks [4, 42] model time
in discrete quanta called ticks. Intuitively, a tick can be
thought of as an “instant” of time. During the simulation of
a tick—the tick cycle—entities (agents) in the simulation
signal which agents they interact with during that instant
of time by sending events to each other. Individual events
specify the exact nature of the interaction between agents.
In an auction simulation, for example, an auctioneer agent
may send an end-of-auction event to all trading agents in
the auction when it has closed. At the end of a tick cycle,
once events have been exchanged, each entity updates its
internal state in response to any events it has received.

8.3 Agent Modelling

In a MARA simulation, agents often need to make intelli-
gent decisions in their resource utilisation and acquisition
behaviour. The intelligent agents community has tradition-
ally favoured symbolic approaches, such as the class of
BDI (Belief-Desire-Intention) models. In a MARA sce-
nario, however, an agent’s goals are often quantitative in
nature; for example, agents act to maximise their expected
utility. In the field of agent-based electronic commerce,
this has led to the adoption of Bayesian approaches to
agent’s decision problems such as (multiagent) reinforce-
ment learning.

Many agent-based simulation frameworks have been de-
veloped by the Artificial Life (ALife) community. Agents
in ALife models are imbued with very little intelligent be-
haviour at the outset; rather, intelligent behaviour emerges
collectively from the complex interactions between agents
equipped with relatively crude decision making machinery.
Connectionist approaches such as neural networks and evo-
lutionary approaches such as genetic algorithms, are popu-
lar in such models.

Since simulation is the main methodology used in AL-
ife research, ALife software toolkits tend to be the most
mature in terms of simulation functionality. Correspond-
ingly, since empirical methods are relatively rare in MAS
research, there are few frameworks for simulating BDI
agents, as opposed to implementing BDI agents.

8.4 Extensibility and Integration
When conducting research via simulation it is often nec-
essary to extend the existing functionality of the system.
Although all frameworks provide the ability to configure
simulations, the desired behaviour cannot always be imple-
mented by configuring the existing components provided
by the framework. In this case it is necessary for the re-
searcher to implement the desired behaviour by writing
their own code. Toolkits take two main approaches to al-
lowing extensibility: They allow either for scripting in a
custom language or for the introduction of new classes and
methods via inheritance.

8.5 Software Listing
We are now going to give a brief overview of some com-
monly used general-purpose simulation frameworks that
might be suitable for analysing MARA problems.

8.5.1 Swarm

Swarm [91] is one of the most famous ALife software
toolkits and has been continually improved by an active
community of users and developers since the early 1990s.
It provides an API for discrete-event simulation, uses high-
quality PRNGs, allows for spatial modelling, and includes
real-time visualisation tools. Swarm is an open-source
project written in the Objective-C programming language.

8.5.2 Extensions to Swarm

The Evo toolkit [36] is an extension to Swarm that provides
agents with the ability to mate and evolve new behaviour
over time using a system similar to genetic programming.

MAML [63] is an extension to Swarm that provides a
higher-level scripting language that is simpler to use than
Objective-C. The goal is to allow researchers from the so-
cial sciences, who are not necessarily skilled programmers,
to quickly develop simulations.

8.5.3 RePast

RePast [75] is another toolkit inspired by Swarm, but is
written entirely in Java, and the ultimate design goals of
this system are more MAS- rather than ALife-oriented. It
offers similar features as Swarm (discrete-event simulation,
high-quality PRNGs, spatial modelling, visualisation tools)
and it is also open-source and extensible.

The core simulation functionality of RePast is particu-
larly mature and robust (it use the COLT library for high-
performance scientific computing). The MAS-oriented fea-
tures, on the other hand, are still relatively immature (no
explicit reinforcement learning, no BDI support).

8.5.4 Desmo-J

Desmo-J [26] is implemented in Java and provides raw
discrete-event simulation functionality. While only pro-
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viding minimal functionality, the system comes with a
highly flexible, well-designed API. It uses the standard Java
PRNG, but the API should allow other (more advanced)
PRNGs to be plugged in as well.

8.5.5 AScape

AScape [3] is a Java-based discrete-event simulation
framework with an emphasis on spatial modelling of
agents.

8.5.6 DEx

DEx [27] is a high-performance toolkit providing high-
quality PRNGs, discrete-event simulation, spatial mod-
elling, and real-time visualisation tools (including 3D rep-
resentation).

9 Conclusion

We have presented a survey of salient issues in Multi-
agent Resource Allocation (MARA), a timely and fast-
developing area of research at the interface of Computer
Science and Economics. Naturally, the choice of topics
selected for detailed presentation has been driven, at least
in part, by personal interests and preferences. Neverthe-
less, we are confident that this material will prove useful to
many researchers working on different aspects of MARA
and related disciplines.

In the first part of the paper, after a short introduction to
the field, we have highlighted four major application do-
mains, which together both demonstrate the wide scope of
MARA and underline the urgent need to further advance
the field to meet the enormous challenges still posed by
these applications. The second part of the paper serves
as a catalogue of fundamental concepts in MARA: generic
properties of resources characterising a MARA problem at
hand; languages for preference representation to model the
interests of individual agents; and social welfare measures
and related tools to assess the overall quality of an alloca-
tion of resources. The third part of the paper then addresses
actual MARA techniques. This includes, in particular, an
introduction to allocation procedures and a selection of rel-
evant complexity results. Where theoretical results alone
are not sufficient, our survey of simulation platforms can
serve as a starting point for experimental work.

Two important issues that we have not covered are the
algorithmics of MARA and the game-theoretical analy-
sis of negotiation (and bidding) strategies. The former in-
cludes the design of algorithms for the winner determina-
tion problem in combinatorial auctions, and a survey of re-
cent work in this area is available elsewhere [81]. The liter-
ature on game-theoretical issues in negotiation, multiagent
systems, and Computer Science in general is vast and fast-
developing. A good starting point for readers interested
in the computational approach to Game Theory (and the

game-theoretic approach to Computer Science) is the short
paper by Papadimitriou [70].

Acknowledgements. This survey has been written in the
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Group on Multiagent Resource Allocation (TFG-MARA).
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