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Abstract

The topic of this paper is a novel evaluation of the integral 
representation of the surface Green’s function for a layered 
half-space, loaded on its surface by a harmonic tangential 
point force. The equations of motions are reduced to 
wave equations by the introduction of wave potentials. 
The Hankel transform is applied to them and they are 
consecutively solved leading to the integral representation 
of surface displacements. They are consecutively evaluated 
by the proposed three step procedure. First the singularity 
is extracted. It is further noted that so obtained integrals, 
after suitably chosen branch cuts and analytic continu-
ation of integrands are introduced, can be evaluated by 
contour integration for an arbitrary number of layers. 
They are, therefore, expressed by number of residues at the 
poles of integrand and the integrals along finite portions 
of the branch cuts. The latter ones can easily be evaluated 
to any desired accuracy leading to a closed form solu-
tion. Some numerical results corroborating the presented 
approach are given.
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1 INTRODUCTION

Modeling the elastodynamic characteristics of soil is 
required in a number of engineering problems, e.g. 
dynamic soil-structure interaction, dynamically loaded 
foundations etc. The soil is geometrically in prevalent 
number of cases modeled as a half space, which is, to 
be more realistic, endowed with some structure. As a 
starting point to determine the elastodynamic charac-
teristics of soil one can use the fundamental solution 
or the Green’s function. The use of the fundamental 
solution, which is known from the literature, results in 
the integrals over the whole surface of the half-space, 
interface between the soil and the superstructure and 
over the interfaces between the materials with different 
elastodynamic properties. Some of them are of infinite 
or semi-infinite extend. Their evaluations, which can 
be performed only numerically, represent the major 
difficulty of this approach. For practical evaluation the 
integration area has to be made finite, what results into 
introduction of the fictitious boundary, where the radia-
tion conditions should be satisfied. The latter represent 
a demanding and not completely resolved problem e.g. 
Premrov [1]. The Green’s function approach leads us 
to the integrals extending across the interface surface 
between the soil and the superstructure only. Their eval-
uation is straightforward and relatively easy to perform, 
ones the Green’s function is given. The difficulty of the 
problem is transferred to the determining and evaluating 
the Green’s function itself.

The problematic of the homogeneous as well as 
the layered half-space has drawn the attention of 
considerable number of authors, not all of them can be 
mentioned here. The first elasticity solutions for whole- 
and half-space problems, static as well as dynamic 
ones have been obtained by Kelvin [2], Boussinesq [3], 
Cerruti [4], Lamb [5], Mindlin [6] and the others. The 
basic results on layered media were presented by Ewing 
et al. [7]. In more recent times the authors sought the 
solutions by two basically different approaches. On one 
side there are the approximate methods e.g. Luco’s ray 
method [8, 9], Kausel’s [10] thin layer method as well 
as BEM and FEM methods, their combinations e.g. 
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Gaitanaros et al. [11], Triantafyllidis [12], Auersch [13] 
and refinements e.g. Aubry et al. [14]. On the other hand 
we have methods leading to exact solutions in the form 
of integrals of semi- or infinite extend e.g. Vostroukhov 
[15] and Jin [16]. Their evaluation in the concept of 
FFT [17] concludes the latter approach. It, however, 
appears that the use of FFT like integration is a success-
ful method to evaluate the Hankel transforms inversion 
integrals in the cases, where there are no singularities 
in the resulting displacement field. It must be however 
noted that in the case of the Green’s function the vital 
information about its singularity comes from the portion 
of integration path, where the integration variable is 
very large or infinite. This fact makes in the case of the 
Green’s function the FFT like evaluation of integrals less 
efficient.

Kobayashi et al. [18] considered the homogeneous, elas-
tic half-space and succeeded to reduce the semi-infinite 
integrals representing the Green’s function to a part 
containing the singularity, the residue at the Rayleigh 
pole and the integrals of finite extend along the properly 
chosen branch cut, which can be easily evaluated with 
any desired accuracy. Štrukelj et al. [19] succeeded 
to modify the Kobayashi’s approach, so that it could 
be applied to the problem of vertically loaded layered 
half-space. The authors have first derived the Green’s 
function for a single layer [20] and have demonstrated 
that under the assumption of infinite thickness of the 
layer their solutions lead to the Kobayshi’s ones. Our 
decision to focus on the layer has also been motivated 
by the investigations of the mechanical properties of 
soils e.g. Žlender et al. [21] and [22], which are given at a 
point and can be easily generalized to a layer. This paper 
continues and completes the method to determine the 
surface Green’s function for a layered half-space loaded 
with the harmonic force acting in any direction. It is 
motivated by the previous works by Kobayashi et al. [18, 
23], Štrukelj et al. [19] and Pliberšek et al. [20]. The load 
acting in a general direction is decomposed into normal 
and tangential components with respect to the surface 
of the half-space, so that the problem of the latter one 
has to be dealt with only. First the general equations of 
motion for a single layer in Hankel transform domain 
are derived by adapting the Vostroukhov’s [15] approach 
and then transformed back into the geometrical domain. 
These single layer solutions are then combined into the 
solution for a layered half-space making use of the conti-
nuity conditions on the interfaces between the layers and 
boundary conditions on the surface of the half-space. 
It is proven that the basic mathematical properties of 
these solutions do not depend on the number of layers. 
They are the same for a homogeneous half-space as 
well as for the half-space with any number of layers. 

The inverse Hankel transform integrals appearing in 
the Green’s function can be therefore for any number of 
layers expressed with part proportional to r−1  , integrals 
of finite extend along the properly chosen branch cut 
and some residues at the poles of the integrand. The 
closed form solutions, obtained by our approach, for the 
Green’s function of the tangentially loaded layered half-
space are consecutively presented graphically for some 
selected number of cases.

2 METHOD OF ANALYSIS

2.1 GOVERNING EQUATIONS FOR A LAYER

We consider a horizontally layered half-space, which 
consist of  n layers on a half-space, as shown on the 
Fig. 1. The material properties of each layer and of the 
underlying half-space are assumed to be isotropic and 
homogeneous. Shear modulus μi , Poisson’s ratio νi , 
mass density ρi   and the dumping coefficient �μi  are the 
material constants of i-th layer. The homogeneous half-
space is labeled as the layer number H.

The global, cylindrical co-ordinate system and the local 
cylindrical co-ordinate systems having their origins 
at the top of each layer are introduced. The model is 
subjected on its free surface to a concentrated tangential 
point load, which varies harmonically in time. Without 
loss of generality, it is assumed that it acts in the 
direction of positive x-axis. The governing equation 
for each homogeneous, elastic layer is the well known 
[24] reduced Navier’s equation of motion in frequency 
domain:

μ
ρ

λ μ
ρ

ωi

i
i

i i

i
i iu u u i n H∇ +

+
∇∇⋅ =− ∈[ ]2 2 1 2� � � � � ; , ,..., , .     (1)

The boundary conditions on the free surface of the half-
space can be in the cylindrical coordinates written as:

σ ϑ ω σ ω ϑ
ω δ

π
ϑrz rzr r Q r

r, , , , , , cos cos1 0 0
2

( )= ( )⋅ ( )=−
( )⋅ ( )
⋅ ⋅

⋅ ( )     (2)

σ ϑ ω σ ω ϑ
ω δ

π
ϑϑ ϑz zr z r z Q r

r, , , , , , sin sin1 2
( )= ( )⋅ ( )=

( )⋅ ( )
⋅ ⋅

⋅ ( )      (3)

σ ϑ ωzz r, , , ,1 0 0( )=  .        (4)

where δ r( )  is the Dirac delta function. The continuity 
equation along the interfaces of consecutive layers, 
where perfect bonding is assumed, and radiation condi-
tions for r →∞   complete the definition of boundary 
value problem under consideration.
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The geometry of the above defined boundary-value 
problem is axi-symmetric. Therefore the ϑ-dependence 
of the problem is governed by the  ϑ-dependence of the 
loading only. Due to very simple  ϑ-dependence as a first 
step in the solution procedure reduced stresses:

σ ϑ ω σ ω ϑrz i rz ir z r z i n H, ,, , , , , cos ; , , , ,( )= ( )⋅ ( ) ∈ ⎡⎣
⎤
⎦1 2 …  (5)

σ ϑ ω σ ω ϑϑ ϑz i z ir z r z i n H, ,, , , , , sin ; , , , ,( )= ( )⋅ ( ) ∈ ⎡⎣
⎤
⎦1 2 …  (6)

σ ϑ ω σ ω ϑzz i zz ir z r z i n H, ,, , , , , cos ; , , , ,( )= ( )⋅ ( ) ∈ ⎡⎣
⎤
⎦1 2 …  (7)

and reduced displacements:

u r z u r z i n Hr i r i, ,, , , , , cos ; , ,..., ,ϑ ω ω ϑ( )= ( )⋅ ( ) ∈[ ]1 2   (8)

u r z u r z i n Hi iϑ ϑϑ ω ω ϑ, ,, , , , , sin ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2  (9)

u r z u r z i n Hz i z i, ,, , , , , cos ; , ,..., ,ϑ ω ω ϑ( )= ( )⋅ ( ) ∈[ ]1 2 (10)

are introduced. In the second step we make use of the 
Helmholtz wave potentials [25] to decouple the equa-
tions of motion (1):

Figure 1. A horizontally layered half-space subjected to a surface horizontal harmonic point load.

� � � �
u i n Hi i i=∇⋅ +∇× ∈[ ]ϕ ψ ; , ,..., ,1 2  .        (11)

The vector potential 
�
ψi  should in addition satisfy the 

constraint condition:

∇• =
�
ψi 0  .        (12)

As in the case of displacements and stresses we intro-
duce the reduced wave potentials:

ϕ ϑ ω ϕ ω ϑi ir z r z i n H, , , , , cos ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2    (13)

ψ ϑ ω ψ ω ϑr i r ir z r z i n H, ,, , , , , sin ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2   (14)

ψ ϑ ω ψ ω ϑϑ ϑ, ,, , , , , cos ; , ,..., ,i ir z r z i n H( )= ( )⋅ ( ) ∈[ ]1 2     (15)

ψ ϑ ω ψ ω ϑz i z ir z r z i n H, ,, , , , , sin ; , ,..., ,( )= ( )⋅ ( ) ∈[ ]1 2 . (16)

The substitution of Eqs. (13) to (16) into equations of 
motion (1) yields:
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We note that the above equation system contains two 
decoupled equations (17) and (20) and two still coupled 
equations (18) and (19). To decouple the latter ones we 
add them and subtract them and introduce two new 
reduced wave potentials χi  and κi  as:

χ ψ ψ κ ψ ψϑ ϑi r i i i r i i= + = −, , , ,;   ,       (22)

where i n H∈[ ]1 2, ,..., ,  and the equations (18) and (19) 
are replaced by:
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and the compatibility condition becomes:
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The most efficient way to solve the boundary value 
problem under consideration is by the introduction of 
Hankel integral transform.

2.2 HANKEL TRANSFORM AND SOLUTIONS 
IN HANKEL TRANSFORM DOMAIN

To solve the equations of motion (17), (20), (23) and 
(24) for each layer with appropriate boundary conditions 
(2) to (4) and continuity conditions Hankel integral 
transform r → ξ  :

f̆ H f r f r J r r drHn
n nξ ξ( )= ( )[ ]= ( )⋅ ( )⋅ ⋅

∞

∫
0

        (26)

and its inverse ξ→ r :

f r H f f J r dn
Hn Hn

n( )= ( )⎡⎣ ⎤⎦ = ( )⋅ ( )⋅ ⋅−
∞

∫1

0

ξ ξ ξ ξ ξ˘  ,        (27)

are introduced [26]. n is the order of the transform and J rn ξ( )   
is Bessel function of the first kind and order n. To trans-
form the equations of motion to their canonical form 
the integral transforms of different orders are employed. 
Equations (17) and (20) are transformed through Hankel 
transform of order 1, equation (23) of order 0 and equa-
tion (24) of order 2. This yields the following system of 
equations:

d
z
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H

2
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˘ ; , ,..., ,,
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− −( )⋅ ( )= ∈[ ]   (30)

d
z

k i n Hz i
H

T i z i
H

2

2
2 2
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˘

˘ ; , ,..., ,,
, ,
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∂
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The solutions of the above equations can be written as:

˘ ; , ,..., ,, ,ϕ α α
i
H

i
z

i
zC e C e i n Hi i i i1

1 2 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅        (32)

˘ ; , ,..., ,, ,χ β β
i
H

i
z

i
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˘ ; , ,..., ,, ,κ β β
i
H

i
z

i
zC e C e i n Hi i i i2

5 6 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅        (34)

˘ ; , ,..., ,, , ,ψ β β
z i
H

i
z

i
zC e C e i n Hi i i i1

7 8 1 2= ⋅ + ⋅ ∈[ ]⋅ − ⋅  ,       (35)

where:

α ξ β ξi L i i T ik k i n H= − = − ∈[ ]2 2 2 2 1 2, , ; , ,..., ,; . (36)
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The constraint condition the transformed wave potentials 
must satisfy is obtained from equation (25). This yields:
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The yet unknown integration constants  C iij ; , , ,∈[ ]1 2 8…  
and j n H∈[ ]1 2, , , ,…  will be determined from boundary, 
continuity and radiation conditions. For this purpose 
the reduced displacement components are expressed 
through the transformed wave potentials as:

From the above expressions strains are derived and 
introduced into the constitutive equation for linear, 
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homogeneous and isotropic solid. The pertinent reduced 
stresses are then given as:
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The equations (38) to (43) permit us to construct a liner, 
algebraic equation system in integration constants Cij  as 
unknowns. It is worth-while to note that in these equa-
tions due to constraint condition (37) only three wave 
potentials are appearing, what results in six integration 
constants per layer or underlying half-space. If a branch 
cut in the complex ξ-plane is introduced, which makes 
Re αi( )>0  and Re β( )>0  on the real positive ξ-axis, 
then the radiation conditions demand:

C C CH H H1 5 7 0, , ,= = =  .        (44)

The boundary conditions on the surface of the half-
space are given by equations (2) to (4) and for the 
continuity condition perfect bonding between the 
layers and the underlying half-space i.e. the continuity 
of displacements and stresses across the interfaces, is 

assumed. Thus the boundary and continuity conditions 
result in 6 3⋅ +n  equations for the same number of 
unknown integration constants Cij . For the reason 
of in the forthcoming paragraph introduced solution 
procedure we must study some properties of the matrix 
of this equation system and its submatrices. To simplify 
the further mathematical derivation some dimensionless 
variables and constants are introduced:
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α α β β
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; ; ;
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,

ii T ik h i n H= ⋅ ∈[ ]1 1 2; , ,..., , .
 (45)

We begin the derivation of the equation system with the 
boundary conditions defined on the upper surface of the 
first layer shown on the Fig. 2.

Figure 2. Material and geometrical properties of the first layer.
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We introduce the expressions for stresses (41) to (43) 
into the transformed boundary conditions (2) to (4) and 
take into account the equation (45). This yields:
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The other equations follow from continuity conditions 
on the interfaces between layers and the nth layer and 
the underlying half-space respectively. The interface 
between the ith  and the (i+1)st  layer is depicted in
Fig. 3.

Figure 3. Material and geometrical properties of  ith  and  (i+1)st  layer.

Introduction of equations for the displacements and the 
stresses (38) to (43) into continuity equations leads to:
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where i n n H∈ + ≡[ ]1 2 1, ,..., ,   and the equation (44) 
has to be accounted for. The above created system of  6 3⋅ +n  
equations can be written in the matrix form:

A• =
� �
C b   .        (55)

The matrix A in the above equation is a band matrix 
with the bandwidth of maximum 9 terms. 

�
C  is a 

properly ordered vector of integration constants Ci j, . 
The right side of the system is a vector, where each term 
except the first one equals to zero. As we have limited 
our interest to motion at the surface, only the first six 
integration constants are needed. They are obtained 
by Cramer’s rule. The value of the determinant of the 
matrix A is determined by its development along the 
first row. According to the fact, that only first six terms 
of the first row are different from zero the expression of 
the determinant A  has the following form:

A a Aj
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j

j
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=

=

∑( ) ,1 1
1

1

6

  ,        (56)

where a jj1 1 2 6, ; , , ,∈[ ]…  represent the first six 
non-zero terms of first row of matrix A[ ]  and A jj ; , , ,∈[ ]1 2 6…   
represent corresponding sub matrices. Due to the fact 
that the vector on the right side of the system equations 
(55) has the following form:
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the six constants, which determine the surface motion of 
the half-space, can be written as:
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Introducing the equations (32), (33), (35) and (58) into 
equations (38) to (40) and evaluating the latter at z= 0  
lead to the displacements on the surface of the half-space as:

j 1 2 6, , , .∈[ ]…
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where following change of variable has been introduced:
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The newly introduced functions B ii η( ) =, , ,1 2 3  can 
be identified from the above equations. They also allow 
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For further analysis it is worth vile to note that in the 
above equations only three distinct integrals appear. 
They are denoted as I1 , I2  and  I3  and are given as:

us to write the reduced surface displacements in a more 
compact form. They are given as:



ACTA GEOTECHNICA SLOVENICA, 2008/160.

u a Q
c

I I

Q
c

B J a

r
T

T

,
,

,

0
2

2

1 1
1 2

1 1
1 0

( )=
( )

⋅
⋅ ⋅ +( )

=
( )

⋅
⋅ ⋅ ( )⋅

ω
π μ

ω

ω
π μ

ω
η η(( )⋅ + ( )⋅ ( )⋅

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∞ ∞

∫ ∫d B J a dη η η η
0

2 2
0

         (66)

u a Q
c

I I

Q
c

B J

T

T

ϑ

ω
π μ

ω

ω
π μ

ω
η

,
,

,

0
2

2

1 1
1 2

1 1
1 0

( )=
( )

⋅
⋅ ⋅ − +( )

=
( )

⋅
⋅ ⋅ − ( )⋅ aa d B J a dη η η η η( )⋅ + ( )⋅ ( )⋅

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

∞ ∞

∫ ∫
0

2 2
0

         (67)

u a Q
c

I Q
c

B J a dz
T T

,
, ,

0
1 1

3
1 1

3 1
0

( )=
( )

⋅
⋅ ⋅ =

( )

⋅
⋅ ⋅ ( )⋅ ( )⋅

∞ω
π μ

ω ω
π μ

ω
η η η∫∫ .          (68)

3 EVALUATION OF THE 
INVERSION INTEGRALS

As it is known from the literature [27] and it was already 
demonstrated in the previous paper by the authors [19] 
the leading term of singularity depends on the local 
conditions only. Due to this fact the singularity at the 

surface of the layered half-space can be determined by 
considering the homogeneous half-space with the mate-
rial properties of the uppermost layer, what considerably 
simplifies the analysis. The integrals I ii , , ,=1 2 3  equa-
tions (63) to (65) are first reduced to the case of a 
homogeneous half-space and consecutively their limits 
are evaluated. This yield:
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and in an analogous way:
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where:

FH η η η η η γ( ) = ⋅ −( ) − ⋅ ⋅ − ⋅ −2 1 4 12 2 2 2 2 2  .     (71)

The limit of the integral  I3  as a→ 0   is zero and there-
fore it remains regular for all values of  a. The singulari-

ties given by equations (69) and (70) are now subtracted 
from integrals  I1  and  I2  respectively and taken under 
the integral sign. This yields:
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The horizontal displacements components are now given by:
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We note that the singular terms, which appear in the 
horizontal displacement components, are given explic-
itly. The values of the integrals I1  and I2  are bounded 
for all values of the parameter a or r respectively. And 
what is also important for a numerical evaluation and of 
course for our later considerations B1 η( ) , B2 η( )  and B3 η( )   
tend to zero as η→∞ .

3.1 EXTENDING THE RANGE OF INTE-
GRATION

To transform the integrals I ii , ,=1 2   and I3 into a form 
permitting their evaluation by contour  integration in a 
complex  η -plane we must make their integrands single 
valued and extend the range of integration from −∞   to 

∞ . Thus we note that the functions B1 η( ) , B2 η( )  and 
B3 η( )  are not single-valued due to the terms αi  and 
βi  appearing in them. They are made single valued by 
introducing the branch cuts in the complex η -plane. 
In the selection of a suitable branch cut we are however 
limited by the following requirements: imposed radia-
tion conditions, which require that the real parts of α ηi ( )   
and β ηi ( )  are positive on the positive real η -axis; that it 
does not intersect the big semi-circle in the upper
η -half-plane and by the demand that α ηi ( )  and 
β ηi ( )   are odd functions of η  on the real η -axis. The 
latter is needed to extend the range of integration from 
semi-infinite to infinite. The branch-cut fulfilling the 
above stated requirements is shown in Fig. 4.
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We realize that the chosen branch-cut indeed makes α ηi ( )   
and  β ηi ( )  odd functions of  η  on the real η -axis and 
does not intersect the big semi-circle in the upper  
η -half-plane. We further note that all terms of matrix A, 
equation (55), except the exponential functions:

p e ei
t ti i i i± ± ± −( )= =η α η γ2 2

     and 

q e ei
t ti i i i± ± ± −( )= =η β η ϑ2 2

         (76)

which are neither odd nor even. To make the terms in 
matrix A determined with respect to evenness or oddness 
respectively we replace them by their analytic continu-
ations, which do not change their values on positive η
-axis and are even functions on the real η -axis. As func-
tions satisfying the stated requirements we have chosen:

� �p e ei

t
ti i

i i±
± −

±( )= =η
η
η

η γ
α

2 2

     and

�
�

q e ei

t
ti

i i±
± −

±( )= =η
η
η

η ϑ
β

2 2
1

 .        (77)

The replacement of the functions pi
± ( )η   and qi

± ( )η   in 
equations (49)-(54) through �pi

± ( )η   and �qi
± ( )η   leads 

Figure 4. Branch points of expressions αi   and βi   with introduced branch cut and the corresponding Rayleigh pole. For greater 
clarity of the figure some material damping has been assumed and expressed by complex shear module μ μ ϕ

i i
ie= ⋅0 .

to the matrix �A , which has on the integration path 
of inverse Hankel transform exactly the same values 
as the original matrix A. The terms of matrix �A  have 
interesting and for further analysis very useful proper-
ties. It can be seen from equations (46) to (48) that all 
the terms in the first three rows of matrix �A  are even 
functions of η  on the real  η -axis. The further rows of 
matrix �A  are coming from continuity conditions on 
interfaces between layers, six rows for each interface. 
From equations (49) to (54) it is easy to recognize that 
the first tree of these six rows contain only terms, which 
are even functions of  η , and the next three only terms, 
which are odd functions of η  on the real  η -axis. 
Matrix �A  therefore has 3 1⋅ +( )n  rows, where all the 
terms are even, and 3 ⋅n   rows, where all the terms are 
odd and n is the number of layers. This implies that all 
the determinants �A   and  � …A ii , , , ,∈[ ]1 2 6  are in the 
case of odd number of layers n odd functions and on the 
other hand in the case of even number of layers n are 
even functions on the real  η -axis. We now derive func-
tions �Bi η( )   exactly the same way as we have derived 
functions Bi η( )  only that we make use of determinants  
�A  and � …A ii , , , ,∈[ ]1 2 6  , instead of the determinants A  

and A ii , , , ,∈[ ]1 2 6…  . This yields:
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where all the �B ii η( ) ∈[ ], , ,1 2 3   are even functions of  
η  on the real  η -axis and �B B ii iη η( )= ( ) ∈[ ], ,1 2   and 
�B Bi3 η η( )= ( )  on the real, positive  η -axis. Taking into 

account these equalities, the equations (72), (73) and 
(65) can be written as:

I B J a d B J a d I1 1
0

0 1
0

0 1= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞ ∞

∫ ∫η η η η η η� �     (81)
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and

I B J a d B J a d I3 3 1
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3 1
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3= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞ ∞

∫ ∫η η η η η η� � .(83)

At this point we make use of integral representations of Bessel 
functions known from the literature e.g. Gradshteyn et al. [28]:

J a h a h a ii i iη η η( )= ( )+ −( ) =; , ,1 2 3         (84)

where:
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( )= −( )∫ sin         (87)

and H a1
1 η( )   is the Hankel’s function of the first order 

and the first kind. Making use of the relationship (84) 
equation (81) yields:
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         (88)

Where we have made use of the change of variables 
η η→−   and the symmetry of the function �B1 η( ) . In 
a very analogous fashion we obtain for the other two 
pertinent integrals given by equations (82) and (83) 
following expressions:

I I B J a d B h a d I2 2 2
0

2 2 2 2= = ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞

−∞

∞

∫ ∫� � �η η η η η η ˘  (89)

I B J a d B h a d I3 5 1
0

5 1 3= ( )⋅ ( )⋅ = ( )⋅ ( )⋅ =
∞

−∞

∞

∫ ∫η η η η η η� ˘  . (90)

The equations (88) to (90) clearly show that we have 
successfully replaced the original inverse Hankel trans-
form integrals with the range of integration from 0  to +∞  
with newly defined integrals having the range of integra-
tion from −∞  to +∞  . The integrals ˘ , , ,I ii =1 2 3  can 
be evaluated by contour integration in the complex  
η -plane as it will be shown in the next paragraph.

3.2 EVALUATION OF INTEGRALS BY 
CONTOUR INTEGRATION

Integrals Ĭ1 , Ĭ2  and Ĭ3 , are finally in the form permit-
ting their evaluation by the contour integration in the 
complex  η -plane. The most suitable contour is shown 
in Fig. 5. By the residue theorem it can be written:

˘ ˘ ˘ ˘ ˘ ˘ ; , , .I I I I I I i res ii iR i ib ir ib i+ −+ + + + + = =∑1 2 2 1 2 3π  (91)

It can be easily shown that the value of the integral along 
the big semi-circle in the upper  η -half plane is identi-
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cally zero. This is due to the behaviour of integrands, 
which are dominated by h ai η( )  functions. On the big 
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Figure 5. Integration path for the evaluation of integrals Ĭ1 , Ĭ2 and Ĭ3 . Some material damping is assumed to make the picture clearer.

And the same behavior for h a H a1 1
1η η( )= ( )( ) , namely 

that lim ( )

R

iH R e
→∞

⋅( )→1
1 0ϕ   for 0≤ ≤ϕ π   is well docu-

mented in the literature [29]. Therefore it can be concluded:

˘ ; , , .I iiR = =0 1 2 3         (94)

Taking in account the above equation the equation (91) 
can be rewritten as:

˘ ˘ ˘ ˘ ˘ ˘ ; , , .I I I i res I I I ii i i i ib ir ib= + = − − − =+ − ∑2 1 2 31 2π   (95)

It is clear from Fig. 5 that all three integrals appearing 
in the right hand term of the above equation have finite 
integration path. Therefore by the equation (95) our 

fundamental goal has been achieved. It can be further 
noted that if the integrals Ĭib1  and Ĭib2  are led along one 
and the other side of the branch cut and the value of the 
integral Ĭir  is equal zero. For the numerical calculation 
it is advantageous to express the integrals Ĭib1  and Ĭib2   
through a sum of integrals of even shorter integration 
range stretching from one singularity on the branch cut 
to the other. These singularities are either branch points 
of functions αi  and βi  defined through the equation 
(45) or the poles defined by the zeros of the determinant 
A , which lie on the branch cut. Introducing the equa-

tion (95) and considering the equations (88)-( 90) into 
equations (74), (75) and (68) yields the surface displace-
ments as:

semi-circle η  can bi given as η ϕ= ⋅ ⋅R ei , where ϕ  takes 
the values from 0 to π . Equations (85) and (87) yield:
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The above three equations are the final result of our 
analysis. In them the surface displacements of a layered 
half-space due to a tangential point load are given by 
a singular term, in the components, which become 
singular as r → 0 , a sum of the residues and a sum of 
integrals with the finite integration path. The latter ones 
can be evaluated numerically with any desired accuracy. 
We can further note that the residues represent the 
surface waves and the integrals are due to body waves.

4 NUMERICAL EXAMPLE

As an illustrative example a one-layer half-space with the 
same geometrical and material characteristics as the one 
considered by Štrukelj et al. [19] has been chosen. It is 
shown in Fig. 1 with n=1 . On its surface a horizontal, 
harmonic point-load is applied. The material properties 
of this half-space are as follows: ratio of material densi-
ties in the underlying half-space and the layer is
ρ ρH 1 1 5= . , the ratio of shear modules μ μH 1 2 0= . , 
the Poisson’s ratio for the layer is ν1 1 3=  and the 

Poisson’s ratio for underlying half-space is νH =1 4 . The 
materials in the layer and in the underlying half-space 
are assumed to have no material damping. The ratio of 
the layer thickness h1 and the wave length of shear waves 
in the layer λ1  is taken to be h1 1 2 0λ = . .

As it can be seen from equations (96) to (98), the 
displacement components are expressed as sums of 
several terms. It is worthwhile to note that in the both 
horizontal displacements components the same terms 
appear with exception of the singular term. In the verti-
cal displacement, however, completely different terms 
are forthcoming. The numerical effort can be, therefore, 
considerably reduced by computing first each of these 
terms separately and later combine them into displace-
ment components as given by equations (96) to (98). In 
the Fig. 6 and 7 as an example three such characteristic 
terms are given.

Our choice of the geometrical and material properties of 
the half-space is based on the fact that it is nearly impos-
sible to obtain the data in the pertinent literature, with 
which our results could be compared to prove their valid-

Figure 6. Real parts of terms 2 3πi res∑  and Ĭ b3 1  .
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Figure 7. Imaginary parts of terms 2 3πi res∑ and Ĭ b3 1 .

ity and accuracy. Therefore we have decided to make use 
of the principle of reciprocity in elastodynamics, which 
is well described in the literature e.g. by Achenbach [30]. 
It can be concluded from this principle, that the vertical 
displacements along the ray ϑ= 0  in a half-space loaded 
with a horizontal, harmonic, unit point-load are equal to 
the radial displacements in an identical half-space loaded 
with a vertical, harmonic and unit point-load. Therefore 
we can state that for our above described choice of the 
layered half-space the displacement component u az ,0( ) , 
as given by equation (98), should equal the radial compo-
nent of the surface displacements presented by Štrukelj et 
al. [19]. It is however worth vile to note that this equiva-
lence can not be seen from the two expressions before 
their numerical evaluation. The integrals in equation (98) 

have integrands, which are based on the determinant and 
sub-determinants of a 9x9 matrix A. The corresponding 
integrals are in the case of the vertically loaded half-space 
based on a 6x6 matrix.

The real and imaginary parts of both displacement func-
tions are shown in Fig. 8 and 9. It can be seen from both 
figures that they are in an excellent agreement with the 
results presented by Štrukelj et al [19].

The results of the evaluation of the radial displacement 
component u ar ,0( )  are shown in the Fig. 10 and 11. In 
exactly the same way the circumferential displacement 
component u aϑ ,0( )  can be evaluated through a different 
combination of terms appearing in u ar ,0( ) . The results 
of this evaluation will not be presented in this paper.

Figure 8. The real part of the displacement function u az ,0( )  given by the dotted line and
the real part of the function u ar ,0( )  presented through the solid line.
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Figure 9. The imaginary part of the displacement function u az ,0( ) given by the dotted line and
the real part of the function u ar ,0( ) presented through the solid line.

Figure 10. The real part of the displacement function u ar ,0( ) .

Figure 11. The imaginary part of the displacement function u ar ,0( ) .
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5 CONCLUSION

The displacement components on the surface of a hori-
zontally layered half-space due to a tangential point-load 
were expressed through a combination of tree distinct 
Hankel’s inverse integrals and trigonometric functions 
with the circumferential coordinate as argument. For the 
evaluation of these Hankel’s integrals a novel three step 
procedure is employed. In the first step the singularity 
at the generic point from the integrals, where it exists is 
extracted and the resulting new integrals are made regu-
lar. In the second step we replaced the new integrands 
functions with their suitable analytic continuations, by 
which we were able to extend the integration range of 
Hankel’s integrals to −∞  to +∞ . By this extension of 
the integration range we were in the last step permitted 
to evaluate them by contour integration.

Through these three steps we were able to transform the 
Hankel’s integrals into sum of three terms. The first one 
contains the singularity in the form C r , the second 
one is given by a sum of the residues of the integrand 
and finally the third term consists of finite number of 
integrals along the suitable chosen branch-cut. The latter 
ones regular and finite in their integration range can be 
easily evaluated numerically.

The results presented in this paper together with the our 
previous results, Štrukelj et al. [19], constitute, what we 
believe, a robust and numerically efficient method to 
evaluate the displacements on the surface of the horizon-
tally layered half-space due to a point force of any direc-
tion. The method of evaluation presented in this paper 
provides us with exact and closed form expressions for 
the singularities of displacement field, what makes our 
results very suitable to be used in soil-structure interac-
tion problems.

We are convinced that an even more efficient integra-
tion line around the branch cut from the one used in 
this paper can be developed. Before we could come 
up with a definite recommendation concerning the 
integration path more numerical research is needed. 
It is however believed that this problem is beyond the 
scope of this paper, where we succeeded to demonstrate 
that the Green’s function for a layered half-space can 
be expressed as a combination of terms, which can be 
easily, especially in comparison with original Hankel’s 
inversion integrals, and accurately evaluated.
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