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The 2018 Petra Šparl Award

Dr Petra Šparl was a talented woman mathematician with a promising future who
worked in graph theory and combinatorics, but died mid-career in 2016 after a battle with
cancer. In her memory, the Petra Šparl Award was established recently to recognise in each
even-numbered year the best paper published in the previous five years by a young woman
mathematician in one of the two journals Ars Mathematica Contemporanea (AMC) and
The Art of Discrete and Applied Mathematics (ADAM).

Nominations for the inaugural award were invited in AMC in 2017, and cases were
considered by a committee (consisting of the three of us) appointed by Dragan Marušič
and Tomaž Pisanski as editors of AMC and ADAM.

As judges we were impressed by the large number of papers in AMC over the five years
2013–2017 having a woman author or co-author: almost 60 in total, with well over half of
those being women in the early stages of their career. With helpful commentaries from
co-authors (in some cases) we drew up a long list of candidates for the 2018 award, sought
reports from referees on those, and also considered the papers themselves, before making
a decision, which was unanimous.

The winner of the Petra Šparl

Dr Monika Pilśniak

Award for 2018 is Dr Monika Pilśniak
(Department of Discrete Mathematics,
AGH University, Kraków, Poland), for
her paper ‘Improving upper bounds for
the distinguishing index’, in Ars Math-
ematica Contemporanea 13 (2017),
259–274.

Monika Pilśniak published four pa-
pers in AMC in 2016 and 2017, but
one stands out: a single-author paper
in 2017 on the distinguishing index of
a graph. This is the smallest number
of classes in a partition of the edge-set
such that the only class-preserving au-
tomorphism of the graph is the identity
automorphism. Monika helped intro-
duce this concept in 2015, and in her
2017 paper in AMC, she classified all
graphs with distinguishing index being
at least equal to the maximum vertex
degree. The main theorem is impres-
sive, and difficult to prove, and it im-
proves on the analogous theorem from
2005 on the distinguishing number (for
partitions of vertices).
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In summary, and quoting a referee: “Monika richly deserves the Petra Šparl Award:
four papers in ACM pioneering a new concept, and one solo paper with an outstanding
theorem, worthy of an award by itself.”

We would also like to make special mention of other high quality papers, by Sophie
Decelle, María del Río Francos, Klavdija Kutnar, Klara Stokes and Aleksandra Tepeh.

Monika Pilśniak will be awarded a certificate and invited to give a lecture in the Math-
ematics Colloquium at the University of Primorska, and to give lectures at the University
of Maribor and the University of Ljubljana.

Finally, we encourage nominations for the next Petra Šparl Award in 2020, and submis-
sions of high quality new papers that will be worthy of consideration for future awards.

Marston Conder, Asia Ivić Weiss and Aleksander Malnič
Members of the 2018 Petra Šparl Award Committee
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Abstract

Every Ree group R(q), with q 6= 3 an odd power of 3, is the automorphism group of
an abstract regular polytope, and any such polytope is necessarily a regular polyhedron (a
map on a surface). However, an almost simple group G with R(q) < G ≤ Aut(R(q)) is
not a C-group and therefore not the automorphism group of an abstract regular polytope of
any rank.

Keywords: Abstract regular polytopes, string C-groups, small Ree groups, permutation groups.

Math. Subj. Class.: 52B11, 20D05

1 Introduction
Abstract polytopes are certain ranked partially ordered sets. A polytope is called “regu-
lar” if its automorphism group acts (simply) transitively on (maximal) flags. It is a natural
question to try to classify all pairs (P, G), where P is a regular polytope and G is an auto-
morphism group acting transitively on the flags of P . An interesting subclass is constituted
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by the pairs (P, G) with G almost simple, as then a lot of information is available about
the maximal subgroups, centralizers of involutions, etc., of these groups, making classifi-
cation possible for some of these families of groups. Potentially this could also lead to new
presentations for these groups, as well as a better understanding of some families of such
groups using geometry.

The study of polytopes arising from families of almost simple groups has received a lot
of attention in recent years and has been very successful. Mazurov [23] and Nuzhin [25, 26,
27, 28] established that most finite simple groups are generated by three involutions, two of
which commute. These are precisely the groups that are automorphism groups of rank three
regular polytopes. The exceptions are PSL3(q), PSU3(q), PSL4(2n), PSU4(2n), A6,
A7, M11, M22, M23, McL, PSU4(3), PSU5(2). The two latter, although mentioned by
Nuzhin as being generated by three involutions, two of which commute, have been found
to be exceptions recently by Martin Mačaj and Gareth Jones (personal communication).
We refer to [18] for almost simple groups of Suzuki type (see also [16]); [4, 20, 21] for
groups PSL2(q) ≤ G ≤ PΓL2(q); [2] for groups PSL3(q) and PGL3(q); [1] for groups
PSL(4, q); [9] for symmetric groups; [3, 10, 11] for alternating groups; and [13, 19, 22]
for the sporadic groups up to, and including, the third Conway group Co3, but not the
O’Nan group. Recently, Connor and Leemans have studied the rank 3 polytopes of the
O’Nan group using character theory [5], and Connor, Leemans and Mixer have classified
all polytopes of rank at least 4 of the O’Nan group [6].

Several attractive results were obtained in this vein, including, for instance, the proof
that Coxeter’s 57-cell and Grünbaum’s 11-cell are the only regular rank 4 polytopes with a
full automorphism group isomorphic to a group PSL2(q) (see [20]). Another striking result
is the discovery of the universal locally projective 4-polytope of type {{5, 3}5, {3, 5}10},
whose full automorphism group is J1 × PSL2(19) (see [14]); this is based on the classifi-
cation of all regular polytopes with an automorphism group given by the first Janko group
J1.

The existing results seem to suggest that polytopes of arbitrary high rank are difficult to
obtain from a family of almost simple groups. Only the alternating and symmetric groups
are currently known to act on abstract regular polytopes of arbitrary rank. For the sporadic
groups the highest known rank is 5.

The Ree groups R(q), with q = 32e+1 and e > 0, were discovered by Rimhak Ree [29]
in 1960. In the literature they are also denoted by 2G2(q). These groups have a subgroup
structure quite similar to that of the Suzuki simple groups Sz(q), with q = 22e+1 and
e > 0. Suzuki and Ree groups play a somewhat special role in the theory of finite simple
groups, since they exist because of a Frobenius twist, and hence have no counterpart in
characteristic zero. Also, as groups of Lie-type, they have rank 1, which means that they
act doubly transitively on sets of points without further apparent structure. However, the
rank 2 groups which are used to define them, do impose some structure on these sets. For
instance, the Suzuki groups act on “inversive planes”. For the Ree groups, one can define
a geometry known as a “unital”. However, these unitals, called Ree unitals, have a very
complicated and little accessible geometric structure (for instance, there is no geometric
proof of the fact that the automorphism group of a Ree unital is an almost simple group
of Ree type; one needs the classification of doubly transitive groups to prove this). Also,
Ree groups seem to be misfits in a lot of general theories about Chevalley groups and their
twisted analogues. For instance, there are no applications yet of the Curtis-Tits-Phan theory
for Ree groups; all finite quasisimple groups of Lie type are known to be presented by two
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elements and 51 relations, except the Ree groups in characteristic 3 [12]. Hence it may
be clear that the Ree groups R(q), with q a power of 3, deserve a separate treatment when
investigating group actions on polytopes.

Now, the regular polytopes associated with Suzuki groups are quite well understood
(see [16, 18]). But the techniques used for the Suzuki groups are not sufficient for the Ree
groups. In the present paper, we carry out the analysis for the groups R(q). In particular,
we ask for the possible ranks of regular polytopes whose automorphism group is such a
group, and we prove the following theorem.

Theorem 1.1. Among the almost simple groups G with R(q) ≤ G ≤ Aut(R(q)) and
q = 32e+1 6= 3, only the Ree group R(q) itself is a C-group. In particular, R(q) admits
a representation as a string C-group of rank 3, but not of higher rank. Moreover, the
non-simple Ree group R(3) is not a C-group.

In other words, the groups R(q) behave just like the Suzuki groups: they allow repre-
sentations as string C-groups, but only of rank 3. Although Nuzhin proved in [27] that these
groups allow representations as string C-groups of rank 3 for every q, we will describe a
string C-group representation for R(q), q 6= 3, for each value of q to make the paper self-
contained. Also, almost simple groups R(q) < G ≤ Aut(R(q)) can never be C-groups (in
characteristic 3).

Rephrased in terms of polytopes, Theorem 1.1 says that among the almost simple
groups R(q) ≤ G ≤ Aut(R(q)), only the groups G := R(q) are automorphism groups of
regular polytopes, and that these polytopes must necessarily have rank 3.

Ree groups can also be the automorphism groups of abstract chiral polytopes. In fact,
Sah [30] showed that every Ree group R(32e+1), with 2e + 1 an odd prime, is a Hurwitz
group; and Jones [15] later extended this result to arbitrary simple Ree groups R(q), prov-
ing in particular that the corresponding presentations give chiral maps on surfaces. Hence
the groups R(q) are also automorphism groups of abstract chiral polyhedra.

It is an interesting open problem to explore whether or not almost simple groups of Ree
type also occur as automorphism groups of chiral polytopes of higher rank.

Note that the Ree groups in characteristic 2 are also very special: they are the only
(finite) groups of Lie type arising from a Frobenius twist and having rank at least 2. This
makes them special, in a way rather different from the way the Ree groups in characteristic
3 are special. We think that in characteristic 2, quite different geometric methods will have
to be used in the study of polytopes related to Ree groups.

2 Basic notions
2.1 Abstract polytopes and string C-groups

For general background on (abstract) regular polytopes and C-groups we refer to McMullen
& Schulte [24, Chapter 2].

A polytope P is a ranked partially ordered set whose elements are called faces. A
polytope P of rank n has faces of ranks −1, 0, . . . , n; the faces of ranks 0, 1 or n − 1
are also called vertices, edges or facets, respectively. In particular, P has a smallest and a
largest face, of ranks −1 and n, respectively. Each flag of P contains n + 2 faces, one for
each rank. In addition to being locally and globally connected (in a well-defined sense), P
is thin; that is, for every flag and every j = 0, . . . , n − 1, there is precisely one other (j-
adjacent) flag with the same faces except the j-face. A polytope of rank 3 is a polyhedron.
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A polytope P is regular if its (automorphism) group Γ(P) is transitive on the flags. If Γ(P)
has exactly two orbits on the flags such that adjacent flags are in distinct orbits, then P is
said to be chiral.

The groups of regular polytopes are string C-groups, and vice versa. A C-group of
rank n is a group G generated by pairwise distinct involutions ρ0, . . . , ρn−1 satisfying the
following intersection property:

〈ρj | j ∈ J〉 ∩ 〈ρj | j ∈ K〉 = 〈ρj | j ∈ J ∩K〉 (J,K ⊆ {0, . . . , n− 1}).

Moreover, G, or rather (G, {ρ0, . . . , ρn−1}), is a string C-group (of rank n) if the underly-
ing Coxeter diagram is a string diagram; that is, if the generators satisfy the relations

(ρjρk)2 = 1 (0 ≤ j < k − 1 ≤ n− 2).

Let Gi := 〈ρj | j 6= i〉 for each i = 0, 1, . . . , n− 1, and let Gij := 〈ρk | k 6= i, j〉 for
each i, j = 0, 1, . . . , n− 1 with i 6= j.

Each string C-group G (uniquely) determines a regular n-polytope P with automor-
phism group G. The i-faces of P are the right cosets of the distinguished subgroup Gi
for each i = 0, 1, . . . , n − 1, and two faces are incident just when they intersect as cosets;
formally we must adjoin two copies of G itself, as the (unique) (−1)- and n-faces of P .
Conversely, the group Γ(P) of a regular n-polytope P is a string C-group, whose genera-
tors ρj map a fixed, or base, flag Φ of P to the j-adjacent flag Φj (differing from Φ in the
j-face).

2.2 The Ree groups in characteristic 3

We let Ck denote a cyclic group of order k and D2k a dihedral group of order 2k.
The Ree group G := R(q), with q = 32e+1 and e ≥ 0, is a group of order q3(q −

1)(q3 + 1). It has a faithful permutation representation on a Steiner system S := (Ω,B) =
S(2, q + 1, q3 + 1) consisting of a set Ω of q3 + 1 elements, the points, and a family of
(q + 1)-subsets B of Ω, the blocks, such that any two points of Ω lie in exactly one block.
This Steiner system is also called a Ree unital. In particular, G acts 2-transitively on the
points and transitively on the incident pairs of points and blocks of S.

The group G has a unique conjugacy class of involutions (see [29]). Every involution
ρ of G has a block B of S as its set of fixed points, and B is invariant under the centralizer
CG(ρ) of ρ in G. Moreover, CG(ρ) ∼= C2 × PSL2(q), where C2 = 〈ρ〉 and the PSL2(q)-
factor acts on the q + 1 points in B as it does on the points of the projective line PG(1, q).

The Ree groups R(q) are simple except when q = 3. In particular, R(3) ∼= PΓL2(8) ∼=
PSL2(8) : C3 and the commutator subgroup R(3)′ of R(3) is isomorphic to PSL2(8).

A list of the maximal subgroups of G is available, for instance, in [32, p. 349] and [17].
Here we briefly review the list for R(q), with q 6= 3, as the maximal subgroups are required
in the proof of Theorem 1.1; in parentheses we also note their characteristic properties
relative to the Steiner system S.

• NG(A) ∼= A : Cq−1 (stabilizer of a point), where A is a 3-Sylow subgroup of G;

• CG(ρ) ∼= C2 × PSL2(q) (stabilizer of a block), where C2 = 〈ρ〉 and ρ is an involu-
tion of G;

• R(q0) (stabilizer of a sub-unital of S), where (q0)p = q and p is a prime;
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• NG(Ai), for i = 1, 2, 3, where Ai is a cyclic subgroup of G of one of the following
kinds:

– A1 = C q+1
4

, with NG(A1) ∼= (C 2
2 ×D q+1

2
) : C3;

– A2 = Cq+1−3e+1 , with NG(A2) ∼= A2 : C6;
– A3 = Cq+1+3e+1 , with NG(A3) ∼= A3 : C6.

Note here that q ≡ 3 mod 8, so (q − 1)/2 is odd and (q + 1)/2 is even. Moreover, since p
is odd, q0 − 1 and q0 + 1 divide q− 1 and q+ 1, respectively. Finally, q+ 1 is divisible by
4 but not by 8.

The automorphism group Aut(R(q)) of R(q) is given by

Aut(R(q)) ∼= R(q) :C2e+1,

so in particular Aut(R(3)) ∼= R(3).
In the proof of our theorem we need the following lemma about normalizers of dihedral

subgroups of dihedral groups. The proof is straightforward.

Lemma 2.1. Let m,n > 1 be integers such that m |n. The normalizer ND2n
(D2m) of any

subgroup D2m of D2n coincides with D2m if n/m is odd, or is isomorphic to a subgroup
D4m of D2n if n/m is even.

3 Proof of Theorem 1.1
The proof of Theorem 1.1 is based on a sequence of lemmas. We begin in Lemma 3.1 by
showing that if R(q) < G ≤ Aut(R(q)) then G can not be a C-group (with any underlying
Coxeter diagram). Thus only the Ree groups R(q) themselves need further consideration.
Then we prove in Lemma 3.3 that R(q) does not admit a representation as a string C-group
of rank at least 5. In the subsequent Lemmas 3.9, 3.11 and 3.12 we then extend this to rank
4 and show that R(q) can also not be represented as a string C-group of rank 4. Finally, in
Lemma 3.15 we construct each group R(q) as a rank 3 string C-group.

All information that we use about the groups R(q) can found in [17].
We repeatedly make use of the following simple observation. If A : B is a semi-

direct product of finite groups A,B such that B has odd order, then each involution in
A : B must lie in A. In fact, if ρ = αβ is an involution, with α ∈ A, β ∈ B, then
1 = ρ2 = α(βαβ−1)β2, where α(βαβ−1) ∈ A and β2 ∈ B; hence β2 = 1, so β = 1 and
ρ = α ∈ A.

3.1 Reduction to simple groups R(q)

We begin by eliminating the almost simple groups of Ree type that are not simple.

Lemma 3.1. Let R(q) < G ≤ Aut(R(q)), where q = 32e+1. Then G is not a C-group.

Proof. Since Aut(R(q)) ∼= R(q) :C2e+1 and 2e+ 1 is odd, every involution in Aut(R(q))
lies in R(q) (by the previous observation), and hence any subgroup of Aut(R(q)) generated
by involutions must be a subgroup of R(q). Thus no subgroup G of Aut(R(q)) strictly
above R(q) can be a C-group. (When e = 0 we have Aut(R(3)) ∼= R(3), so the statement
holds trivially.)
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3.2 String C-groups of rank at least five

By Lemma 3.1 we may restrict ourselves to Ree groups G = R(q). We first rule out the
possibility that the rank is 5 or larger.

Lemma 3.2. Let G be a simple group. Suppose G has a generating set S := {ρ0, . . . ,
ρn−1} of n involutions such that (G,S) is a string C-group. Then |ρiρi+1| ≥ 3 for all
i = 0, . . . , n− 2.

Proof. This is due to the fact that, as G is simple, G is not directly decomposable, that is,
G cannot be written as the direct product of two nontrivial normal subgroups of G.

Lemma 3.3. Let G = R(q), where q = 32e+1 6= 3. Suppose G has a generating set S of
n involutions such that (G,S) is a string C-group. Then n ≤ 4.

Proof. Let S = {ρ0, . . . , ρn−1}, so in particular, G = 〈ρ0, . . . , ρn−1〉. Then ρ0 com-
mutes with ρ2, . . . , ρn−1, since the underlying Coxeter diagram is a string. However, by
Lemma 3.2, ρ0 does not commute with ρ1 and ρn−1 does not commute with ρn−2. Now
suppose n ≥ 5 and consider the subgroup H := 〈ρ0, ρ1, ρn−2, ρn−1〉 of G. Then H must
be isomorphic to D2c ×D2d for some integers c, d ≥ 3. Inspection of the list of maximal
subgroups of R(q) described above shows that direct products of (non-abelian) dihedral
groups never occur as subgroups in G. So n is at most 4.

3.3 String C-groups of rank four

Next we eliminate the possibility that the rank is 4. We begin with a general lemma about
string C-groups that are simple.

Lemma 3.4. Let (G,S) be a string C-group of rank n, and let G be simple. Then

NG(G01)\NG(G0)

must contain an involution (namely ρ0).

Proof. The involution ρ0 centralizes G01 and hence must lie in NG(G01). On the other
hand, ρ0 cannot also lie in NG(G0) for otherwise G0 would have to be a nontrivial normal
subgroup in the simple group G.

The next two lemmas will be applied to dihedral subgroups in subgroups of type
PSL2(q) or C2 × PSL2(q) of R(q), respectively.

Lemma 3.5. Let q = 32e+1 and e ≥ 0. Then the order 2d of a non-abelian dihedral
subgroup of PSL2(q) must divide q − 1 or q + 1. Moreover, d 6≡ 0 mod 4, and d is even
only if 2d divides q + 1.

Proof. Suppose D2d is a non-abelian dihedral subgroup of PSL2(q), so d ≥ 3. We claim
that 2d must divide q + 1 or q − 1. Recall that under the assumptions on q, the order 2d
must either be 6 or must divide q − 1 or q + 1. It remains to eliminate 6 as a possible
order. In fact, since q is an odd power of 3, the only maximal subgroups of PSL2(q) with
an order divisible by 6 are subgroups PSL2(q0) with q0 a smaller odd power of 3 (see [8]
for a list of the subgroups of PSL(2, q)). If we apply this argument over and over again
with smaller odd powers of 3, we eventually are left with a subgroup PSL2(3). However,
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PSL2(3) ∼= A4 and hence cannot have a subgroup of order 6. Thus 2d must divide q + 1
or q − 1. This proves the first statement of the lemma. The second statement follows from
the fact that q ≡ 3 mod 8.

Lemma 3.6. Let q = 32e+1 and e ≥ 0, let 2d divide q − 1 or q + 1, and let D2d be a
non-abelian dihedral subgroup of a group C := C2 × PSL2(q).

(a) Then there exists a dihedral subgroup D in PSL2(q) such that D2d is a subgroup
of C2 ×D of index 1 or 2, and NC(D2d) = NC(C2 ×D) = C2 ×NPSL2(q)(D). Here the
normalizer NPSL2(q)(D) must lie in a maximal subgroup Dq+1 or Dq−1 of PSL2(q), and
coincide with NDq+1

(D) or NDq−1
(D), according as 2d divides q − 1 or q + 1.

(b) LetD2d
∼= D (that is, the index is 2). If 2d | (q−1) or if 2d | (q+1) and (q+1)/2d

is odd, then NPSL2(q)(D) = D and NC(D2d) ∼= C2×D2d. If 2d | (q+ 1) and (q+ 1)/2d
is even, then NPSL2(q)(D) ∼= D4d and NC(D2d) ∼= C2 ×D4d.

(c) If D2d = C2 ×D (that is, d is even, d/2 is odd, D ∼= Dd, and the index is 1), then
NPSL2(q)(D) ∼= D2d and NC(D2d) ∼= C2 × D2d (regardless of whether 2d | (q − 1) or
2d | (q + 1)).

(d) The structure of NC(D2d) only depends on d and q, not on the way in which D2d is
embedded in C.

Proof. For the first part, suppose C2 = 〈ρ〉 and D2d = 〈σ0, σ1〉 where σ0, σ1 are standard
involutory generators for D2d. Write σ0 = (ρi, σ′0) and σ1 = (ρj , σ′1) for some i, j = 0, 1
and involutions σ′0, σ

′
1 in PSL2(p). ThenD := 〈σ′0, σ′1〉 is a dihedral subgroup of PSL2(p),

and D2d lies in C2 ×D. Since the period of σ′0σ
′
1 divides that of σ0σ1, the order of D is at

most 2d andD2d has index 1 or 2 in C2×D. If this index is 1 thenD2d = C2×D (and d is
even and D ∼= Dd). If the index of D2d in C2×D is 2, then D ∼= D2d and D2d ∩{1}×D
must have index 1 or 2 in {1} ×D. If the index of D2d ∩ {1} ×D in {1} ×D is 1 then
clearly D2d = {1} ×D and D2d can be viewed as a subgroup of PSL2(q). If the index of
D2d∩{1}×D is 2, thenD2d∩{1}×D is of the form {1}×E where E is either the cyclic
subgroup Cd of D, or d is even and E is one of the two dihedral subgroups of D of order d.
(Note here that D2d cannot itself be a direct product in which one factor is generated by ρ,
since ρ cannot lie in D2d.)

Next we investigate normalizers. First note that the normalizer of a direct subproduct in
a direct product of groups is the direct product of the normalizers of the component groups.
Thus NC(C2 ×D) = C2 ×NPSL2(q)(D).

We now show that the normalizers in C of the subgroups D2d and C2 × D coincide.
There is nothing to prove if D2d = C2×D or D2d = {1}×D. Now suppose that D2d has
index 2 in C2 ×D and E is as above. Then it is convenient to write D2d in the form

D2d = ({1} × E) ∪ ({ρ} × (D\E)). (3.1)

If (α, β) ∈ C then

(α, β)D2d(α, β)−1 = ({1} × βEβ−1) ∪ ({ρ} × β(D\E)β−1). (3.2)

Now if (α, β) ∈ NC(D2d) then the group on the left in (3.2) is justD2d itself and therefore
βEβ−1 = E and β(D\E)β−1 = D\E. It follows that β normalizes both E and D, so in
particular (α, β) ∈ NC(C2 ×D). Hence NC(D2d) ≤ NC(C2 ×D).

Now suppose that (α, β) ∈ NC(C2×D). Then β normalizesD. But βEβ−1 must be a
subgroup of D of index 2 isomorphic to E, and hence βEβ−1 and E are either both cyclic
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or both are dihedral. Clearly, if both subgroups are cyclic then βEβ−1 = E. However,
the case when both subgroups are dihedral is more complicated. First recall that then d
must be even. Now the normalizerNPSL2(q)(D) of the dihedral subgroupD of PSL2(q) in
PSL2(q) either coincides with D (that is, D is self-normalized), or is a dihedral subgroup
containing D as a subgroup of index 2. We claim that under the assumptions on q, the
second possibility cannot occur. In fact, in this case the normalizer would have to be a
group of order 4d, and since d is even, its order would have to be divisible by 8; however,
the order of PSL2(q) is not divisible by 8 when q is an odd power of 3, so PSL2(q) certainly
cannot contain a subgroup with an order divisible by 8. Thus NPSL2(q)(D) = D. But
β belongs to the normalizer of D in PSL2(q), so then β must lie in D. In particular,
βEβ−1 = E since E is normal in D. Thus, in either case we have βEβ−1 = E, and since
βDβ−1 = D, also β(D\E)β−1 = D\E. Hence, (3.2) shows that (α, β) ∈ NC(D2d).
Hence also NC(C2 ×D) ≤ NC(D2d).

To complete the proof of the first part, note that D must lie in a maximal subgroup
Dq±1 of PSL2(q) and NPSL2(q)(D) = NDq±1

(D).
The second and third part of the lemma follow from Lemma 3.2 applied to the dihedral

subgroupD ofDq±1. In particular,D is self-normalized inDq±1 if (q±1)/|D| is odd, and
NPSL2(q)(D) is a dihedral subgroup of Dq±1 of order 2|D| if (q ± 1)/|D| is even. Bear in
mind that (q − 1)/2 is odd, and (q + 1)/2 is even but not divisible by 4.

To establish the last part of the lemma, note that NC(D2d) ∼= C2 ×D2d, except when
D ∼= D2d, 2d | (q+1) and (q+1)/2d is even. However, since q ≡ 3 mod 8, if 2d | (q+1)
and (q + 1)/2d is even then d must be odd. In other words, the situation described in the
third part of the lemma cannot occur as this would require d to be even. Thus, if 2d | (q+1)
and (q + 1)/2d is even, then we are necessarily in the situation described in second part of
the lemma, and so necessarily NC(D2d) ∼= C2 ×D4d.

Our next lemma investigates possible C-subgroups of G = R(q) of rank 3. The vertex-
figure of a putative regular 4-polytope with automorphism group G would have to be a
regular polyhedron with a group of this kind.

Lemma 3.7. The only proper subgroups of R(q) that could have the structure of a C-
group of rank 3 are Ree subgroups R(q0) with q0 6= 3 or subgroups of the form PSL2(q0),
C2 × PSL2(q0), or R(3)′ ∼= PSL2(8).

Proof. It is straightforward (sometimes by applying Lemma 3.2) to verify that only sub-
groups of maximal subgroups of R(q) of the second and third type can have the structure
of a rank 3 C-group. Therefore we are left with Ree subgroups R(q0) and subgroups of
groups C2 ×PSL2(q0), with q0 an odd power of 3 dividing q, as well as subgroups of type
R(3)′ ∼= PSL2(8) inside a subgroup R(3). A forward appeal to Lemma 3.15 shows that
Ree groups R(q0) with q0 6= 3 do in fact act flag-transitively on polyhedra, and by [31],
so does R(3)′ ∼= PSL2(8). The complete list of subgroups of PSL2(q0) is available, for
instance, in [20]. As q0 is an odd power of 3, the group PSL2(q0) does not have sub-
groups isomorphic to A5, S4, or PGL2(q1) for some q1. Hence, none of the subgroups of
PSL2(q0), except for those isomorphic to a group PSL2(q1), with q1 an odd power of 3
dividing q0 (and hence q), admits flag-transitive actions on polyhedra. Now the maximal
subgroups of C2 × PSL2(q0) consist of the factor PSL2(q0), as well as all subgroups of
the form C2 ×H where H is a maximal subgroup of PSL2(q0) from the following list:

Eq0 :C q0−1
2
, Dq0−1, Dq0+1, PSL2(q1).
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A subgroup of C2 × PSL2(q0) of the form C2 ×Dq0−1 is isomorphic to D2(q0−1) (since
q0 ≡ 3 mod 8), so none of its subgroups (including the full subgroup itself) can act regu-
larly on a non-degenerate polyhedron (that is a polyhedron with no 2 in the Schläfli sym-
bol). Similarly, a subgroup of C2 × PSL2(q0) of the form C2 × Dq0+1 is isomorphic to
C2 × C2 × D(q0+1)/2, so again none of its subgroups (including the full subgroup itself)
can act regularly on a non-degenerate polyhedron. Finally, a subgroup of C2 × PSL2(q0)
of the forms C2 × (Eq0 : C(q0−1)/2) has an order not divisible by 4. Hence, as in the two
other cases, none of its subgroups (including the full subgroup itself) can act regularly on
a non-degenerate polyhedron.

In summary, the only possible candidates for rank 3 subgroups of R(q) are of the form
R(q0), PSL2(q0), C2 × PSL2(q0), and R(3)′ ∼= PSL2(8). We can further rule out a
subgroup of type R(3), since R(3) ∼= PΓL2(8) is not generated by involutions.

For a subgroup B of A we define N0
A(B) := 〈a | a ∈ NA(B), a2 = 1〉. If B is

generated by involutions then B ≤ N0
A(B) ≤ NA(B). We first state a lemma that will be

useful in several places.

Lemma 3.8. Let H := R(3) = PΓL2(8), and let D := D2d be a dihedral subgroup of
H of order at least 6. Then d = 3, 7 or 9, and in all cases N0

H(D) = D.

Proof. Straightforward.

The following lemma considerably limits the ways in which Ree groups R(q) might be
representable as C-groups of rank 4.

Lemma 3.9. If the group G := R(q) can be represented as a string C-group of rank 4,
then

N0
G(G01) = N0

CG(ρ0)
(G01). (3.3)

Proof. Suppose that G admits a representation as a string C-group of rank 4. Thus

G = 〈ρ0, ρ1, ρ2, ρ3〉.

Since R(3) is not generated by involutions, we must have q 6= 3.
The subgroup G01 = 〈ρ2, ρ3〉 is a dihedral subgroup D2d (say) of the centralizer

CG(ρ0) of ρ0, and CG(ρ0) ∼= 〈ρ0〉 × PSL2(q). Here d ≥ 3, by arguments similar to
those used in the proof of Lemma 3.3. Thus

D2d
∼= 〈ρ2, ρ3〉 = G01 ≤ G1 = 〈ρ0, ρ2, ρ3〉 ≤ CG(ρ0) ∼= C2 × PSL2(q). (3.4)

By Lemma 3.6 applied to G01 and CG(ρ0), there exists a dihedral subgroup D in the
PSL2(q)-factor of CG(ρ0) such that G01 is a subgroup of 〈ρ0〉 ×D = C2 ×D of index at
most 2 and

NCG(ρ0)(G01) = NCG(ρ0)(C2 ×D) = C2 ×NPSL2(q)(D).

In fact, the proof of Lemma 3.6 shows that this subgroup C2 ×D is just given by G1. But
ρ0 6∈ G01, so G01 has index 2 in C2 ×D = G1, and D ∼= G01

∼= D2d. Then Lemma 3.5,
applied to D, shows that 2d must divide either q + 1 or q − 1.

The structure of the normalizer NCG(ρ0)(G01) can be obtained from Lemma 3.6. In
fact, NCG(ρ0)(G01) ∼= C2 ×D2d, unless 2d | (q + 1) and (q + 1)/2d is even; in the latter
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case NCG(ρ0)(G01) ∼= C2 ×D4d. In particular, NCG(ρ0)(G01) is generated by involutions
and its order is divisible by 4. We will show that the normalizer of G01 in CG(ρ0) captures
all the information about the full normalizerNG(G01) ofG01 inG that is relevant for us. A
key step in the proof is the invariance of the structure of the normalizer of G01 in arbitrary
subgroups of G of type C2×PSL2(q); more precisely, the structure only depends on d and
q, not on the way in whichG01 is embedded in a subgroup C2×PSL2(q) (see Lemma 3.6).

The full normalizer NG(G01) of G01 in G must certainly contain NCG(ρ0)(G01) and
also have an order divisible by 8. We claim that all involutions of the full normalizer
NG(G01) must already lie in CG(ρ0) and hence in NCG(ρ0)(G01).

First note that NG(G01) must certainly lie in a maximal subgroup M of G and then
coincide with NM (G01). (Since G is simple, the normalizer of a proper subgroup of G
cannot coincide with G.) Inspection of the list of maximal subgroups of G shows that only
maximal subgroups M of type R(q0), C2 × PSL2(q) or NG(A1) have an order divisible
by 4. Only those maximal subgroups could perhaps contain NCG(ρ0)(G01) and hence
NG(G01). We investigate the three possibilities for M separately.

Suppose M is a group of type C2 × PSL2(q). Then the invariance of the structure of
the normalizer of G01 shows that NM (G01) ∼= NCG(ρ0)(G01). However, NCG(ρ0)(G01) ≤
NG(G01) and NG(G01) = NM (G01), so this gives NG(G01) = NCG(ρ0)(G01). But
NCG(ρ0)(G01) is generated by involutions, so NCG(ρ0)(G01) = N0

CG(ρ0)
(G01) and (3.3)

must hold as well.
Let M be a group of type NG(A1) ∼= (C2

2 × D(q+1)/2) : C3 where A1 is a group
C(q+1)/4 (recall that (q + 1)/4 is odd). Then all involutions of M must lie in its subgroup
K := C2

2 × D(q+1)/2 = C2 × Dq+1. In particular, all involutions of NM (G01) must lie
in K and hence in NK(G01); that is, N0

M (G01) ≤ NK(G01). Also, G01 itself must lie
in K and its order 2d must divide q + 1. The subgroup K lies in the centralizer C of the
involution generating the C2-factor in the direct product factorization C2 × Dq+1 for K,
and NK(G01) ≤ NC(G01). This subgroup C is of type C2 × PSL2(q), and so again the
invariance of the structure of the normalizers implies that NC(G01) ∼= NCG(ρ0)(G01). But
NG(G01) = NM (G01) and therefore

NCG(ρ0)(G01) = N0
CG(ρ0)

(G01) ≤ N0
G(G01) = N0

M (G01) ≤ NK(G01) ≤ NC(G01).

Thus N0
G(G01) = N0

CG(ρ0)
(G01), as required.

Now let M be a Ree group R(q0) where (q0)p = q and p is a prime. We first cover
the case when M is a Ree group R(3) = PSL2(8) : C3, that is, q = 3p where p is a
prime. In that case, by Lemma 3.8, N0

G(G01) = N0
M (G01) = G01. Hence, since also

G01 ≤ N0
CG(ρ0)

(G01) ≤ N0
G(G01), we must have N0

G(G01) ≤ N0
CG(ρ0)

(G01).
Now suppose q0 6= 3, so in particular M is simple. Then 2d must divide q0 ± 1, since

NCG(ρ0)(G01) lies in M and therefore ρ0 ∈ M , giving G01 ≤ NCM (ρ0)(G01) ∼= C2 ×
PSL2(q0). Since the subgroup NG(G01) of M must have an order divisible by 4, it must
lie in a maximal subgroup M ′ of M of type R(q1), C2 × PSL2(q1), or NR(q0)(A

′
1) with

A′1
∼= C(q0+1)/4. The maximal subgroups M ′ of M = R(q0) of types C2 ×PSL2(q0) and

NR(q0)(A
′
1), respectively, lie in maximal subgroups ofG of typeC2×PSL2(q) orNG(A1),

so they are subsumed under the previous discussion. (Alternatively we could dispose of
these cases for M ′ directly, using arguments very similar to those in the two previous cases
for M .) Then this leaves the possibility that M ′ is of type R(q1), in which case we are
back at a Ree group. Now continuing in this fashion to smaller and smaller Ree subgroups
that could perhaps contain NG(G01), we eventually arrive at either a Ree subgroup M (k)
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(say) whose parameter q(k) ± 1 (say) is no longer divisible by 2d, or a Ree group R(3).
In the first case, R(q0) does not contribute anything new to N0

G(G01), and the normalizer
NG(G01) must already lie in one of the maximal subgroups of type C2 × PSL2(q) or
NG(A1) discussed earlier; in particular, N0

G(G01) = N0
CG(ρ0)

(G01), as required. In the
second case, the normalizer NG(G01) lies in a Ree subgroup R(3) ∼= PSL2(8) : C3, and
its involutory part N0

G(G01) must lie in the PSL2(8) subgroup. Again, by Lemma 3.8, we
have N0

G(G01) = N0
M (G01) = G01, hence (3.3) must also hold in this case.

Lemma 3.10. If the group G := R(q) can be represented as a string C-group of rank 4,
then q 6= 3 and both the facet stabilizer G3 and vertex stabilizer G0 have to be isomorphic
to PSL2(8) = R(3)′ (i.e. the commutator subgroup of R(3)) or a simple Ree group R(q0)
with q = qm0 for some odd integer m.

Proof. We consider the possible choices for G0 in the given C-group representation of
G of rank 4. Our goal is to use Lemma 3.4 to limit the choices for G0 to just R(3)′ or
R(q0). First recall from Lemma 3.7 that the only possible candidates for G0 are either
Ree subgroups R(q0) with q0 6= 3 or subgroups of the form PSL2(q0), C2 × PSL2(q0),
or R(3)′ ∼= PSL2(8). To complete the proof we must eliminate the second and third types
of candidates. This is accomplished by means of Lemmas 3.4 and 3.6, proving in each
case that NG(G01)\NG(G0) cannot contain an involution, or equivalently N0

G(G01) ≤
NG(G0). Bear in mind that G01 ≤ G0.

First observe that all subgroups of G of the form C2 × PSL2(q0) are self-normalized
in G; and the normalizer of a subgroup of G of the form PSL2(q0) is isomorphic to C2 ×
PSL2(q0). In other words, NG(G0) = G0 ifG0 is of type C2×PSL2(q0), andNG(G0) =
C2 ×G0 if G0 is of type PSL2(q0). We show that N0

G(G01) ≤ NG(G0) for each of these
two choices of G0.

Suppose that G0
∼= C2 × PSL2(q0). We first claim that then 2d | q0 ± 1 (where

2d = |G01|). To see this, note that the intersection of G01 with the PSL2(q0)-factor of G0

is a subgroup of index 1 or 2 in G01. If the index is 1, the statement is clear by Lemma 3.5,
since then G01 lies in the PSL2(q0)-factor; and if the index is 2 and the intersection is
a cyclic group Cd, the statement follows by inspection of the possible orders of cyclic
subgroups of PSL2(q0). Now if the index is 2 and the intersection is a dihedral group Dd,
then Lemma 3.6 shows that d must be even, 2d | q + 1, and d/2 must be odd; moreover,
d | q0 + 1 since Dd lies in PSL2(q0), and hence 2d | q0 + 1 since q0 + 1 is divisible by 4.
Thus 2d | q0 ± 1, as claimed.

Now, since G0
∼= C2 × PSL2(q0), the normalizer NCG(ρ0)(G01) coincides with the

normalizer NH(G01) of G01 taken in a suitable subgroup H of CG(ρ0) of type C2 ×
PSL2(q0). In fact, from Lemma 3.6 we know that

NCG(ρ0)(G01) ≤ C2 ×Dq±1 ≤ CG(ρ0) ∼= C2 × PSL2(q).

But 2d | q0 ± 1, so we must have NCG(ρ0)(G01) ≤ C2 ×Dq0±1. However, C2 ×Dq0±1
lies in a subgroup H of CG(ρ0) isomorphic to C2 × PSL2(q0).

To complete the argument (for any given type of group G0) we show that N0
G(G01)

must lie in NG0
(G01) and therefore also in G0 and NG(G0). When G0 is a group of type

C2×PSL2(q0), the normalizer NG0
(G01) can be determined using Lemma 3.6 (with q re-

placed by q0). In fact, by the invariance of the normalizers of G01 we know that NG0(G01)
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and NH(G01) are isomorphic and that both subgroups are generated by involutions. How-
ever, then by Lemma 3.9,

NG0
(G01) = N0

G0
(G01) ≤ N0

G(G01) = N0
CG(ρ0)

(G01) = N0
H(G01) = NH(G01),

so clearly NG0
(G01) = NH(G01). Thus N0

G(G01) = NG0
(G01) ≤ G0 ≤ NG(G0).

Now letG0 be of type PSL2(q0). ThenC := NG(G0) is a group of typeC2×PSL2(q0)
containingG0, so we can replaceG0 by C and argue as before. In fact, using the same sub-
group H , we see that the normalizers NC(G01) and NH(G01) are isomorphic subgroups
generated by involutions. In particular,

NC(G01) = N0
C(G01) ≤ N0

G(G01) = N0
CG(ρ0)

(G01) = N0
H(G01) = NH(G01),

and therefore NC(G01) = NH(G01). Hence N0
G(G01) = NC(G01) ≤ C = NG(G0).

Let us now show that G0 6∼= R(3)′.

Lemma 3.11. If R(q) has a representation as a string C-group of rank 4 withG0
∼= R(3)′,

then q = 27.

Proof. Suppose G := R(q) is represented as a string C-group of rank 4 with generators
ρ0, . . . , ρ3. Then we know that G01 ≤ G1 ≤ CG(ρ0) ∼= C2 × PSL2(q).

The abstract regular polyhedra with automorphism group R(3)′ = PSL2(8) are all
known and are available, for instance, in [22]. There are seven examples, up to isomor-
phism, but not all can occur in the present context. In fact, the dihedral subgroup G01 of
G0 must also lie CG(ρ0) ∼= C2×PSL2(q) and hence cannot be a subgroup D18. It follows
that the polyhedron associated with G0 (that is, the vertex-figure of the polytope for G)
must have Schläfli symbol {3, 7}, {7, 3}, or {7, 7}. We can further rule out the possibility
thatG01

∼= D6 by Lemmas 3.5 and 3.6, giving thatC2×PSL2(q) has no dihedral subgroup
of order 6. Hence G01

∼= D14.
The fixed point set of every involution in G is a block of the corresponding Steiner

system S(2, q + 1, q3 + 1), and vice versa, every block is the fixed point set of a unique
involution. Hence, two involutions with two common fixed points must coincide, since
their blocks of fixed points must coincide. Suppose B0 denotes the block of fixed points
of ρ0. As ρ2 and ρ3 centralize ρ0, they stabilize B0 globally but not pointwise. However,
ρ2 cannot have a fixed point among the q + 1 points in B0, since otherwise two points
of B0 would have to be fixed by ρ2 since q + 1 is even. Thus ρ2, and similarly ρ3, does
not fix any point in B0. Moreover, in order for G01

∼= D14 to lie in a subgroup of G of
type C2 × PSL2(q), we must have 7 | q + 1 or 7 | q − 1. Using q = 32e+1 and working
modulo 7 the latter possibility is easily seen to be impossible. On the other hand, the former
possibility occurs precisely when e ≡ 1 mod 3, and then 3 | 2e + 1. Hence G must have
subgroups isomorphic to R(27) = R(33).

We claim that G itself is isomorphic to R(27), that is, q = 27. Now the subgroup
G0
∼= R(3)′ lies in a unique subgroup K ∼= R(3) of G, namely its normalizer NG(G0).

Indeed, Figure 1 tells us that G0
∼= R(3)′ is in a unique subgroup isomorphic to R(27)

(because of the lower 1’s on the edges joining the boxes). This subgroup K, in turn, lies
in a unique subgroup H ∼= R(27) of G. All Ree subgroups of G are self-normalized in
G, so in particular K and H are self-normalized. Relative to the Ree subgroup H , the
normalizer NH(C7) in H of the cyclic subgroup C7 of G01 is a maximal subgroup of type
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NH(A1) = (C2
2×D14) : C3 inH , which also containsG01 (see Section 2.2 or [7, p. 123]).

Note here that this subgroup C7 is a 7-Sylow subgroup of bothK andH , and is normalized
byG01. Thus, NH(C7) = (C2

2 ×D14) : C3. We claim thatNH(G01) = NH(C7). Clearly,
NH(G01) ≤ NH(C7). For the opposite inclusion observe that (C2

2 ×D14) : C3 has four
subgroups isomorphic to D14, including G01. The subgroup G01 is normalized by the C3-
factor, and the three others are permuted under conjugation by C3. This is due to the fact
that if it were otherwise, the number of subgroups R(3)′ containing G01 would not be an
integer but 4/3. Hence, among these four subgroups only G01 is normal and can be thought
of as the subgroup D14 occurring in the factorization of the semi-direct product. It follows
that the subgroups C2

2 and C3 normalize G01. Thus

NH(G01) = NH(C7) = (C2
2 ×D14) : C3.

Figure 1 shows the sublattice of the subgroup lattice of G that is relevant to the current
situation. Each box contains two pieces of information: a group that describes the abstract
structure of the groups in the conjugacy class of subgroups of G depicted by the box, and a
number in the lower left corner that gives the number of subgroups in the conjugacy class.
This number is the order of G divided by the order of the normalizer in G of a represen-
tative subgroup of the conjugacy class. Two boxes are joined by an edge provided that the
subgroups represented by the lower box are subgroups of some subgroups represented by
the upper box. There are also two numbers on each edge. The number at the top gives the
number of subgroups in the conjugacy class for the lower box that are contained in a given
subgroup in the conjugacy class for the upper box. The number at the bottom similarly
is the number of subgroups in the conjugacy class for the upper box that contain a given
subgroup in the conjugacy class for the lower box. If we know the lengths of the conjugacy
classes for the upper box and lower box, then knowing one of these two numbers on the
connecting edge gives us the other. For instance, in Figure 1, if we know that there are 36
(conjugate) subgroups D14 in a given subgroup R(3)′, then there are

|G|
|R(3)|

. 36 /
|G|

|22 . 3 . 14|
= 4

(conjugate) subgroups R(3)′ containing a given subgroup D14.
Returning to our line of argument, as already pointed out above, Figure 1 tells us that

G0
∼= R(3)′ is in a unique subgroup isomorphic to R(27), namely H (because of the

lower 1’s on the edges joining the boxes). It also shows that G01 is contained in a unique
subgroup (C2

2 ×D14) : C3, which, in turn, is contained in a unique R(27), namely H . As
we saw above, this subgroup (C2

2 ×D14) : C3 is necessarily the normalizer NH(G01) of
G01 in H . Moreover, ρ0 has to lie in this unique subgroup (C2

2 ×D14) : C3, which itself is
a subgroup of H , and therefore 〈ρ0, G0〉 ≤ H . This holds because NG(G01) = NH(G01).
That these normalizers coincide can be seen as follows. Clearly, NH(G01) ≤ NG(G01).
Now for the opposite inclusion observe that for g ∈ NG(G01) we have G01 = gG01g

−1 ≤
gNH(G01)g−1 and (trivially) G01 ≤ NH(G01). But then Figure 1 shows that a subgroup
D14 of H must lie in a unique conjugate of (C2

2 ×D14) : C3 = NH(G01), so necessarily
gNH(G01)g−1 = NH(G01). Similarly, since NH(G01) ≤ H and hence NH(G01) =
gNH(G01)g−1 ≤ gHg−1, Figure 1 (at box R(27)) gives gHg−1 = H , so g ∈ H since H
is self-normalized. Thus G = 〈ρ0, G0〉 = H ∼= R(27).
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R(q)

|G|
|R(27)|

R(27)

|G|
|R(3)|

R(3)

|G|
|R(3)|

R(3)′ ∼= PSL2(8)

|G|
|22.3.14|

D14

|G|
|22.3.14|

(C2
2 ×D14) : C3

|R(27)|/|R(3)|

1

1

1

36

4
1

1

|R(27)|/168

1

Figure 1: A sublattice of the subgroup lattice of R(q).

Lemma 3.12. The group R(27) cannot be represented as a string C-group of rank 4.

Proof. Let G ∼= R(27). By the previous lemmas we may assume that G0
∼= G3

∼=
PSL2(8). In all other cases we know that G cannot be represented as a rank 4 string C-
group. Moreover, from the proof of the previous lemma we already know that G01

∼= D14

andNG(G01) ∼= (C2
2×D14) : C3. As there is a unique conjugacy class of subgroups R(3)′

in R(27), and there is also a unique conjugacy class of subgroups D14 in R(3)′, the choice
of ρ2, ρ3 is therefore unique up to conjugacy in R(27). Once ρ2, ρ3 have been chosen,
there are three candidates for ρ0, namely the elements of the subgroup C2

2 that centralizes
D14, and these are equivalent under conjugacy by C3. Hence there is a unique choice for
{ρ0, ρ2, ρ3} up to conjugacy. By similar arguments we also know that G3

∼= R(3)′ and
G23

∼= D14, and that the pair (G23, G3) is related to (G01, G0) by conjugacy in R(27).
Hence there must exist an element g ∈ R(27) such that

• ρg0 = ρ3, ρg2 = ρ1, ρg3 = ρ0, or

• ρg0 = ρ3, ρg2 = ρ0, ρg3 = ρ1.

The second case can be reduced to the first, as the centraliser of ρ0 contains an element
that swaps ρ2 and ρ3 (any two involutions in D14 are conjugate). Hence, we may assume
without loss of generality that g swaps ρ0 and ρ3. In particular, 〈ρ0, ρ3〉 is an elementary
abelian group of order 4 normalized by g. All such subgroups are known to be conjugate
and have as normalizer a group (C2

2 × D14) : C3. In this group, there is no element that
will swap ρ0 and ρ3 under conjugation. All elements that will conjugate ρ0 to ρ3 will
necessarily conjugate ρ3 to ρ0ρ3. Hence we have a contradiction.
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We therefore know that if a string C-group representation of rank 4 exists for R(q), both
G0 and G3 must be subgroups of Ree type. Thus from now on we can assume G0

∼= R(q0)
with q0 > 3.

In a Ree group, the dihedral subgroups D2n are such that n must divide one of

9, q − 1, q + 1, αq := q + 1− 3e+1, βq := q + 1 + 3e+1.

Note that
αqβq = q2 − q + 1,

so in particular if H is a Ree subgroup R(q0) of G then similarly αq0βq0 = q20 − q0 + 1.

Lemma 3.13. Let G ∼= R(q) with q = 32e+1 and 〈ρ0, ρ1, ρ2, ρ3〉 be a string C-group
representation of rank 4 of G. Then

(1) G01 is a dihedral subgroup D2d with d a divisor of q+ 1 and of either αq0 or βq0 for
some q0 such that q = qm0 with m odd (where q0 is determined by G0 = R(q0));

(2) m = 3, and G0 and G3 are conjugate Ree subgroups R(q0) with q = q30;

(3) G03 is a dihedral subgroup D2t with t a divisor of αq0 or βq0 .

Proof. (1) By Lemmas 3.10, 3.11 and 3.12, we may assume that G0 is a simple Ree sub-
group of G. Let G0 be a Ree subgroup R(q0), with q0 6= 3 such that qm0 = q with m
a positive odd integer and let G01

∼= D2d. As G01 ≤ CG(ρ0) we have that 2d | q ± 1
by Lemma 3.5. In order to have involutions in NG(G01)\NG(G0), the only possibility is
that NG(G01) (of order divisible by 4) lies in a maximal subgroup of type NG(A1) but
not in a maximal subgroup NG0

(C q0+1
4

) of G0; for otherwise, the same techniques as in
Lemma 3.10 show that there is no involution in NG(G01)\NG(G0). Hence 2d divides
q + 1. Observe that NG(A1) ∼= (C2

2 ×D q+1
2

) : C3 has exactly four subgroups D q+1
2

be-
cause of the subgroup C2

2 . These four subgroups are not all normalised by the C3 because
of the semi-direct product. Hence the C3 must conjugate three of them and normalise the
fourth one. Similarly, in R(q0) there are four subgroups Dq0+1 in each NR(q0)(A

′
1) and it

is obvious that NR(q0)(D2d) = NR(q)(D2d) for every divisor d of q0 + 1. Hence, in order
to find some involutions in NG(G01)\NG(G0), we need to have that 2d does not divide
q0 + 1. Moreover, since q0 − 1 divides q − 1, we have also that (q0 − 1, q + 1) = 2.
That forces d not to be a divisor of q0 − 1 as d > 2. Hence, looking at the list of maximal
subgroups ofR(q0) we can conclude that d is a divisor of either αq0 or βq0 in order forD2d

to be a dihedral subgroup of R(q0).
(2) Observe that q30 + 1 = (q0 + 1)αq0βq0 divides q3 + 1. Let us first show that

2e + 1 must be divisible by 3 in order for d to satisfy (1). Suppose (3, 2e + 1) = 1. Then
q0 = 32f+1 with 2e + 1 = m(2f + 1) and (3,m) = 1. Let p be an odd prime dividing
(αq0βq0 , q+ 1) but not dividing q0 + 1. Then p divides (q30 + 1, q+ 1) and hence p divides

(q60 − 1, q2m0 − 1) = q
2(3,m)
0 − 1 = q20 − 1 = (q0 + 1)(q0 − 1)

and hence also q0−1. As p divides q+1, and q0−1 divides q−1, and since (q−1, q+1) = 2,
we have that p | 2, a contradiction. Hence m must be divisible by 3 and so does 2e + 1.
Suppose m 6= 3. Then m = 3m′ and given a Ree subgroup R(q0) of R(q) with qm0 = q,
there exists a Ree subgroup R(q30) such that R(q0) < R(q30) < R(q). Using similar
arguments as in the proof of Lemma 3.11, it is easy to show that, since αq0βq0 divides
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q30 + 1, we must have 〈ρ0, ρ1, ρ2, ρ3〉 = R(q30) and therefore m = 3. Indeed, as we stated
in (1), NR(q30)

(D2d) = NR(q)(D2d) for every divisor d of q30 + 1. Hence ρ0 ∈ R(q30). This
implies that m = 3 and G0

∼= R(q0) with q30 = q. Dually, G3
∼= R(q0). As all subgroups

R(q0) are conjugate in R(q), we have that G0 and G3 are conjugate.
(3) is due to the fact thatG0∩G3 = G03 and that, by (2),G0 andG3 are conjugate inG.

Hence, NG(G03)\G0 has to be nonempty and G03 must not be contained in a subgroup H
of G0 such that NG(H) ≥ NG(G03), for if such a subgroup H exists, then G0 ∩G3 ≥ H .
If t divides 9 or one of q0± 1, this does not happen. Hence t divides one of αq0 or βq0 .

Lemma 3.14. The small Ree groups have no string C-group representation of rank 4.

Proof. Suppose G is a Ree group that has a string C-group representation of rank 4. By
Lemma 3.10 and part (2) of Lemma 3.13 we may assume that G := R(q) where q = q30
with q0 = 3m for an odd integer m. Moreover, G0 and G3 are conjugate simple Ree
subgroups isomorphic to R(q0). By part (3) of Lemma 3.13, if G03 = D2t then t must be
a divisor of either αq0 or βq0 , and since q = q30 , we also have

q + 1 = (q0 + 1)(q20 − q0 + 1) = (q0 + 1)αq0βq0 .

Thus t is also a divisor of q + 1. We claim that then G0 ∩ G3 > G03, which gives
a contradiction to the intersection property. Indeed, since G03 lies in a subgroup H :=
Ct : C6 of G0, and the normaliser of G03 is not contained in G0 (for otherwise, D2t would
have to lie in a unique subgroup R(q0), whereas already G0 and G3 give two examples of
such subgroups, by the previous lemma), we have NG(G03) = (C2 × C2 × D2t) : C3.
This group contains H = Ct : C6

∼= D2t : C3 as a normal subgroup, and G03 is normal
in H . We also have that NG(H) = NG(G03). But then, as G03 is normal in H , any
subgroup R(q0) containing G03 must contain H . In particular this applies to G3. Thus
G0 ∩G3 ≥ H > G03, and the intersection property fails.

3.4 String C-groups of rank 3

It remains to investigate the possibility of representing R(q) as a string C-group of rank 3.
Nuzhin already showed in [27] that there exist triples of involutions, two of which com-
mute, that generate R(q) for every q. This completes the proof of Theorem 1.1. However,
we decided to give here another way to construct an example of a rank three regular poly-
tope for R(q) for the paper to be self-contained.

Lemma 3.15. Let G = R(q), with q 6= 3 an odd power of 3. Then there exists a triple of
involutions S := {ρ0, ρ1, ρ2} in G such that (G,S) is a string C-group.

Proof. Recall that the fixed point set of an involution in G is a block of the Steiner system
S := S(2, q+ 1, q3 + 1). Pick two involutions ρ0, ρ1 from a maximal subgroup M of G of
type NG(A3) such that ρ0ρ1 has order q + 1 + 3e+1, and let B0, B1, respectively, denote
their blocks of fixed points. Obviously,B0∩B1 = ∅, for otherwise 〈ρ0, ρ1〉would lie in the
stabilizer of a point in B0 ∩B1, which is not possible because of the order of ρ0ρ1. Recall
here that the point stabilizers are maximal subgroups of the form NG(A) = A : Cq−1,
where A is a 3-Sylow subgroup of G. Now choose an involution ρ2 in CG(ρ0) distinct
from ρ0 such that its block of fixed points B2 meets B1 in a point. Such a ρ2 exists as
all involutions of CG(ρ0) have pairwise disjoint blocks of size q + 1 and therefore they
cover all of the q3 + 1 points. Then B1 ∩ B2 must consist of a single point p (say), and
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B0 ∩B2 = ∅ since the stabilizer of a point does not contain Klein 4-groups. Then 〈ρ1, ρ2〉
lies in the point stabilizer of p, and hence must a dihedral group D2n, with n a power of
3. As 〈ρ0, ρ1〉 is a subgroup of index 3 in M , and ρ0 does not belong to M , we see that
〈ρ0, ρ1, ρ2〉 = G. Moreover, since the orders of ρ0ρ1 and ρ1ρ2 are coprime, the intersection
property must hold as well. Thus (G,S), with S := {ρ0, ρ1, ρ2}, is a string C-group of
rank 3.

We have not attempted to enumerate or classify all representations of R(q) as a string
C-group of rank 3.
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Abstract

In 2003, Cavicchioli et al. corrected an omission in the statement and proof of Fiorini’s
theorem from 1983 on hypohamiltonian snarks. However, their version of this theorem
contains an unattainable condition for certain cases. We discuss and extend the results of
Fiorini and Cavicchioli et al. and present a version of this theorem which is more general
in several ways. Using Fiorini’s erroneous result, Steffen had shown that hypohamiltonian
snarks exist for some orders n ≥ 10 and each even n ≥ 92. We rectify Steffen’s proof by
providing a correct demonstration of a technical lemma on flower snarks, which might be
of separate interest. We then strengthen Steffen’s theorem to the strongest possible form
by determining all orders for which hypohamiltonian snarks exist. This also strengthens a
result of Máčajová and Škoviera. Finally, we verify a conjecture of Steffen on hypohamil-
tonian snarks up to 36 vertices.

Keywords: Hypohamiltonian, snark, irreducible snark, dot product.
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1 Introduction
A graph G is hypohamiltonian if G itself is non-hamiltonian, but for every vertex v in G,
the graphG−v is hamiltonian. A snark shall be a cubic cyclically 4-edge-connected graph
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with chromatic index 4 (i.e. four colours are required in any proper edge-colouring) and
girth at least 5. We refer for notions not defined here to [22] and [7].

Motivated by similarities between the family of all snarks and the family of all cubic hy-
pohamiltonian graphs regarding the orders for which such graphs exist, Fiorini [8] studied
the hypohamiltonian properties surrounding Isaacs’ so-called “flower snarks” [13] (defined
rigorously below). The a priori surprising interplay between snarks and hypohamiltonian
graphs has been investigated extensively—we now give an overview. Early contributions
include Fiorini’s aforementioned paper [8], in which he claims to show that there exist in-
finitely many hypohamiltonian snarks. (In fact, according to Máčajová and Škoviera [18],
it was later discovered that a family of hypohamiltonian graphs constructed by Gutt [12]
includes Isaacs’ snarks, thus including Fiorini’s result.)

Skupień showed that there exist exponentially many hypohamiltonian snarks [20], and
Steffen [22] proved that there exist hypohamiltonian snarks of order n for every even
n ≥ 92 (and certain n < 92)—we will come back to this result in Section 3. For more refe-
rences and connections to other problems, see e.g. [3, 18, 20, 23]. Hypohamiltonian snarks
have also been studied in connection with the famous Cycle Double Cover Conjecture [3]
and Sabidussi’s Compatibility Conjecture [9].

The smallest snark, as well as the smallest hypohamiltonian graph, is the famous Pe-
tersen graph. Steffen [21] showed that every cubic hypohamiltonian graph with chromatic
index 4 is bicritical, i.e. the graph itself is not 3-edge-colourable but deleting any two dis-
tinct vertices yields a 3-edge-colourable graph. Nedela and Škoviera [19] proved that every
cubic bicritical graph is cyclically 4-edge-connected and has girth at least 5. Therefore,
every cubic hypohamiltonian graph with chromatic index 4 must be a snark.

This article is organised as follows. In Section 2 we discuss the omission in Fiorini’s
theorem on hypohamiltonian snarks [8]—first observed by Cavicchioli et al. [5]—and its
consequences and state a more general version of this theorem. In Section 3 we first rec-
tify a proof of Steffen on the orders for which hypohamiltonian snarks exist which relied
on Fiorini’s theorem—this erratum is based on giving a correct proof of a technical lemma
concerning flower snarks, which may be of separate interest. We then prove a strengthening
of Steffen’s theorem, which is best possible, as all orders for which hypohamiltonian snarks
exist are determined. Our result is stronger than a theorem of Máčajová and Škoviera [17]
in the sense that our result implies theirs, while the converse does not hold. Finally, in Sec-
tion 4 we comment upon and verify a conjecture of Steffen on hypohamiltonian snarks [23]
for small orders.

2 Fiorini’s theorem revisited
We call two edges independent if they have no common vertices. Let G and H be disjoint
connected graphs on at least 6 vertices. Consider G′ = G− {ab, cd}, where ab and cd are
independent edges in G, put H ′ = H − {x, y}, where x and y are adjacent cubic vertices
in H , and let a′, b′ and c′, d′ be the other neighbours of x and y in H , respectively. Then
the dot product G ·H is defined as the graph

(V (G) ∪ V (H ′), E(G′) ∪ E(H ′) ∪ {aa′, bb′, cc′, dd′}).

Two remarks are in order. (1) Under the above conditions, the dot product may be discon-
nected. (2) In fact, there are eight ways to form the dot product for a specific ab, cd, xy.
For the computational results in Section 4 we indeed applied the dot product in all eight
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possible ways, but for the theoretical proofs in this paper we will perform the dot prod-
uct in one way, namely as follows. We always construct the dot product by adding the
edges aa′, bb′, cc′, dd′ and we will abbreviate this as “a, b, c, d are joined by edges to the
neighbours of x and y, respectively”.

The dot product was introduced by Adelson-Velsky and Titov [1], and later and in-
dependently by Isaacs [13]. Its original purpose was to obtain new snarks by combining
known snarks. Fiorini then proved that the dot product can also be used to combine two
hypohamiltonian snarks into a new one. Unfortunately, Fiorini’s argument is incorrect.
We shall discuss this omission within this section, and correct the proof of a lemma of
Steffen [22] which depended on Fiorini’s result in Section 3.

In a graph G, a pair (v, w) of vertices is good in G if there exists a hamiltonian path in
G with end-vertices v and w. Two pairs of vertices ((v, w), (x, y)) are good in G if there
exist two disjoint paths which together span G, and which have end-vertices v and w, and
x and y, respectively.

Claim 2.1 (Fiorini, Theorem 3 in [8]). Let G be a hypohamiltonian snark having two
independent edges ab and cd for which

(i) each of (a, c), (a, d), (b, c), (b, d), ((a, b), (c, d)) is good in G;

(ii) for each vertex v, exactly one of (a, b), (c, d) is good in G− v.

If H is a hypohamiltonian snark with adjacent vertices x and y, then the dot product G ·H
is also a hypohamiltonian snark, where ab and cd are deleted from G, x and y are deleted
fromH , and vertices a, b, c, d are joined by edges to the neighbours of x and y, respectively.

Cavicchioli et al. [5] point out the omissions in Claim 2.1: in order for the proof to
work, the given vertex pairs need to be good in G− {ab, cd} rather than in G. They give a
corrected statement of the theorem envisioned by Fiorini and give a new proof.

Claim 2.2 (Cavicchioli et al., Theorem 3.2 in [5]). Let G be a hypohamiltonian snark
having two independent edges ab and cd for which

(i) each of (a, c), (a, d), (b, c), (b, d), ((a, b), (c, d)) is good in G− {ab, cd};
(ii) for each vertex v, each of (a, b), (c, d) is good in G− {v, ab, cd}.

If H is a hypohamiltonian snark with adjacent vertices x and y, then the dot product G ·H
is also a hypohamiltonian snark, where ab and cd are deleted from G, x and y are deleted
fromH , and vertices a, b, c, d are joined by edges to the neighbours of x and y, respectively.

In above statements, the fact that the dot product of snarks is itself a snark had already
been shown [1, 13], so indeed only the hypohamiltonicity was to be proven.

We point out that the hypotheses in Claim 2.2 are unattainable for v ∈ {a, b, c, d}, since
(a, b) and (c, d) cannot both be good in G − {v, ab, cd} if v ∈ {a, b, c, d}. This is tied to
the fact that the requirements in (ii) are stronger than what is needed to prove the statement.

In [11, Theorem 1], we gave the following (second) restatement of Claim 2.1 which we
used to solve a problem of McKay. Note that in [11] the graphs are required to be cubic and
below we do not state this requirement—we do however need the two vertices which are
removed to be cubic. This allows us to use exactly the same proof as in [11, Theorem 1].
Nevertheless, we now give a sketch of the proof: first, we assume that G ·H does contain
a hamiltonian cycle. This however implies that at least one of the factors is hamiltonian,



230 Ars Math. Contemp. 14 (2018) 227–249

contradicting their hypohamiltonicity. Second, we prove that every vertex-deleted subgraph
of G · H is indeed hamiltonian. This is done with a careful case analysis (depending on
where the removed vertex lies) using the goodness of various pairs (and pairs of pairs) of
vertices in G− {ab, cd} and G− {v, ab, cd}.
Theorem 2.3. Let G be a non-hamiltonian graph having two independent edges ab and cd
for which

(i) each of (a, c), (a, d), (b, c), (b, d), ((a, b), (c, d)) is good in G− {ab, cd};
(ii) for each vertex v, at least one of (a, b) and (c, d) is good in G− {v, ab, cd}.

If H is a hypohamiltonian graph with cubic adjacent vertices x and y, then the dot product
G ·H is also a hypohamiltonian graph, where ab and cd are deleted from G, x and y are
deleted from H , and vertices a, b, c, d are joined by edges to the neighbours of x and y,
respectively.

If G and H are planar, and ab and cd lie on the same facial cycle, then the dot product
can be applied such that G · H is planar, as well. If g and h are the girth of G and H ,
respectively, then the girth of G ·H is at least min{g, h}. If G and H are cubic, then so is
G ·H.

Note that the fact that G is non-hamiltonian together with condition (ii) implies that G
must be hypohamiltonian.

In the following, we will call the pair of edges ab, cd from the statement of Theorem 2.3
suitable. The Petersen graph is the smallest snark, and the two Blanuša snarks on 18 ver-
tices are the second-smallest snarks. All three graphs are also hypohamiltonian. Due to
the huge automorphism group of the Petersen graph, it can be verified by hand that it does
not contain a pair of suitable edges. Although both Blanuša snarks are dot products of two
Petersen graphs, the Petersen graph does not contain a pair of suitable edges. Thus, in a
certain sense, Theorem 2.3 is not “if and only if”, i.e. there exist dot products whose factors
do not contain suitable edges.

Let us end this section with a remark which may prove to be useful in other applications.
Throughout its statement and proof, we use the notation from Theorem 2.3.

Observation 2.4. We have that G ·H + ab, G ·H + cd, and G ·H + ab + cd are hypo-
hamiltonian, as well.

Proof. Put N(x) = {a′, b′, y} and N(y) = {c′, d′, x} such that the unique neighbour of
a′ (b′, c′, d′) in G is a (b, c, d). Assume G · H + ab + cd contains a hamiltonian cycle
h. Thus, at least one of ab and cd lies in h, say ab. We treat H − {x, y} as a subgraph
of G ·H . If aa′, bb′ ∈ E(h), then h ∩H ∪ a′xb′ ∪ c′yd′ gives a hamiltonian cycle in H ,
a contradiction. If aa′, bb′ /∈ E(h), then the cycle h ∩ G + cd yields a contradiction. So
w.l.o.g. aa′ ∈ E(h) and bb′ /∈ E(h). This implies the existence of a hamiltonian path in
H − {x, y} with end-vertices a′ and u ∈ {c′, d′}. But this path together with uyxa′ is a
hamiltonian cycle in H , a contradiction. It follows that G · H + ab and G · H + cd are
non-hamiltonian, as well.

3 On a theorem of Steffen on hypohamiltonian snarks
3.1 Rectifying Steffen’s proof

A snark is irreducible if the removal of every edge-cut which is not the set of all edges
incident with a vertex yields a 3-edge-colourable graph. Steffen’s article [22] is motivated
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by the following problem.

Problem 3.1 (Nedela and Škoviera [19]). For which even number n ≥ 10 does there exist
an irreducible snark of order n? In particular, does there exist an irreducible snark of each
sufficiently large order?

Steffen settled the second question of Problem 3.1 by giving the following main result
from [22].

Theorem 3.2 (Steffen, Theorem 2.5 in [22]). There is a hypohamiltonian snark of order n

(1) for each n ∈ {m : m ≥ 64 and m ≡ 0 mod 8},
(2) for each n ∈ {10, 18} ∪ {m : m ≥ 98 and m ≡ 2 mod 8},
(3) for each n ∈ {m : m ≥ 20 and m ≡ 4 mod 8},
(4) for each n ∈ {30} ∪ {m : m ≥ 54 and m ≡ 6 mod 8}, and

(5) for each even n ≥ 92.

Isaacs’ flower snark J2k+1, see [13], is the graph(
{ai, bi, ci, di}2ki=0, {biai, bici, bidi, aiai+1, cidi+1, dici+1}2ki=0

)
,

where addition in the indices is performed modulo 2k + 1.
However, the proof of [22, Lemma 2.3], which is essential for the proof of the theo-

rem, is erroneous, since it uses Fiorini’s erroneous Claim 2.1 (and it does not work with
Theorem 2.3). We here give a correct proof of that lemma.
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Figure 1: The flower snark J9. The suitable edges b0c0 and b4c4 are marked in bold red.
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Lemma 3.3 (Steffen, Lemma 2.3 in [22]). The flower snarks J9, J11, and J13 satisfy the
conditions of Theorem 2.3.

Proof. In [22], in each of the graphs J9, J11, and J13, the suitable edges were chosen to
be b0c0 and b4c4. However, in [22], for various vertices v, the hamiltonian paths did not
satisfy condition (ii) from Theorem 2.3, as the paths used one of the edges b0c0 or b4c4.
This was for instance the case for v ∈ {a0, a8, d0} in J9, for v ∈ {a0, a10, d0} in J11, and
for v ∈ {a0, c1, c12, d0} in J13, see Claims 6, 7, and 8 in the Appendix of [22].

We will now prove that b0c0 and b4c4 are indeed suitable edges for Theorem 2.3 for J9,
J11, and J13. For J9 the proof is given below (and partially in the Appendix), while the
technical details of the proofs for J11 and J13 can be found in the Appendix. The mapping
between the ai, bi, ci, di (used by Steffen) and the vertex numbers used in the proof is
shown in Figures 1–3. We use numbers as labels in the proof to make it easier to read these
graphs using a computer for verifying the results.

Proof that b0c0 and b4c4 are suitable edges for J9. Figure 1 shows the flower snark J9.
In J9, the edges b0c0 and b4c4 correspond to the edges (0, 26) and (11, 12), respectively.

The pairs (0, 11), (0, 12), (26, 11) and (26, 12) are good in J9−{(0, 26), (11, 12)} due
to the following hamiltonian paths, respectively:

• 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 35, 24, 23, 22, 17, 16, 15, 32, 31, 12, 13, 14, 19,
18, 33, 34, 21, 20, 25, 26, 4, 3, 2, 1, 0

• 12, 13, 14, 15, 16, 11, 10, 5, 4, 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 30, 9, 8,
7, 6, 29, 28, 3, 2, 1, 23, 24, 35, 27, 0

• 11, 10, 5, 4, 3, 2, 1, 0, 27, 28, 29, 6, 7, 8, 9, 30, 31, 12, 13, 14, 19, 18, 17, 16, 15, 32,
33, 34, 35, 24, 23, 22, 21, 20, 25, 26

• 12, 13, 8, 7, 2, 3, 4, 5, 6, 29, 28, 27, 0, 1, 23, 22, 17, 18, 33, 32, 31, 30, 9, 10, 11, 16,
15, 14, 19, 20, 21, 34, 35, 24, 25, 26

Note that ((0, 26), (11, 12)) is good in J9 − {(0, 26), (11, 12)} due to the following
two disjoint paths with end-vertices 0 and 26, and 11 and 12, respectively, which together
span J9:

• 26, 25, 20, 19, 14, 13, 8, 7, 2, 1, 0

• 12, 31, 32, 15, 16, 17, 18, 33, 34, 21, 22, 23, 24, 35, 27, 28, 3, 4, 5, 6, 29, 30, 9, 10,
11

We showed by computer that at least one of (0, 26) or (11, 12) is good in J9−{v, (0, 26),
(11, 12)} for every v ∈ V (J9). In each case we verified that the path found by the com-
puter is indeed a valid hamiltonian path in the graph. Below we explicitly show this for
v = 0. The hamiltonian paths for the other choices of v can be found in the Appendix.

• v = 0: 12, 13, 14, 15, 32, 31, 30, 29, 6, 5, 10, 9, 8, 7, 2, 1, 23, 24, 25, 26, 4, 3, 28,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

Since Steffen’s statement of Lemma 3.3 remains intact, the proof and statement of his
main result, reproduced above as Theorem 3.2, are correct as given in [22]. Even though we
prove a stronger version of Steffen’s theorem in the next section, we think it is important to
fix the proof of Lemma 3.3 as there may be others who rely on this lemma, or might want
to rely on it in the future.
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Figure 2: The flower snark J11. The suitable edges b0c0 and b4c4 are marked in bold red.
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Figure 3: The flower snark J13. The suitable edges b0c0 and b4c4 are marked in bold red.
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3.2 Orders of hypohamiltonian snarks

We shall now prove a strengthening of Steffen’s theorem, which in a sense is strongest
possible since we will determine all orders for which hypohamiltonian snarks exist. We
emphasise that our proof’s mechanism contains significantly fewer “moving parts” than
Máčajová and Škoviera’s [17], and, as mentioned in the introduction, our theorem also
strengthens their result. We do need the following two easily verifiable lemmas.

Lemma 3.4. The second Blanuša snark B2 shown in Figure 4 has a pair of suitable edges.

Proof. Figure 4 shows the second Blanuša snark B2. By computer we determined that B2

has exactly three pairs of suitable edges: ((6, 8), (10, 16)), ((3, 9), (12, 17)) and ((4, 7),
(13, 15)). We will now prove by hand that ((6, 8), (10, 16)) is a suitable edge pair.

The pairs (6, 10), (6, 16), (8, 10) and (8, 16) are good in B2 − {(6, 8), (10, 16)} due to
the following hamiltonian paths, respectively:

• 10, 11, 12, 17, 16, 15, 13, 14, 0, 1, 5, 4, 7, 8, 9, 3, 2, 6

• 16, 15, 9, 8, 7, 17, 12, 13, 14, 10, 11, 1, 0, 2, 3, 4, 5, 6

• 10, 11, 1, 0, 14, 13, 12, 17, 16, 15, 9, 3, 2, 6, 5, 4, 7, 8

• 16, 15, 9, 3, 4, 5, 6, 2, 0, 1, 11, 10, 14, 13, 12, 17, 7, 8

Note that ((6, 8), (10, 16)) is good in B2 − {(6, 8), (10, 16)} due to the following
two disjoint paths with end-vertices 6 and 8, and 10 and 16, respectively, which together
span B2:

• 8, 7, 4, 5, 6

• 16, 17, 12, 11, 1, 0, 2, 3, 9, 15, 13, 14, 10

We now prove that at least one of (6, 8) or (10, 16) is good in B2−{v, (6, 8), (10, 16)}
for every v ∈ V (B2). By symmetry we only need to prove this for v = 0, 2, 4, 6, 7, 8.

• v = 0: 8, 7, 4, 5, 1, 11, 10, 14, 13, 12, 17, 16, 15, 9, 3, 2, 6

• v = 2: 8, 9, 3, 4, 7, 17, 16, 15, 13, 12, 11, 10, 14, 0, 1, 5, 6

• v = 4: 16, 15, 13, 14, 0, 1, 5, 6, 2, 3, 9, 8, 7, 17, 12, 11, 10

• v = 6: 16, 15, 9, 8, 7, 17, 12, 13, 14, 0, 2, 3, 4, 5, 1, 11, 10

• v = 7: 8, 9, 15, 16, 17, 12, 13, 14, 10, 11, 1, 0, 2, 3, 4, 5, 6

• v = 8: 16, 15, 9, 3, 2, 6, 5, 4, 7, 17, 12, 13, 14, 0, 1, 11, 10

Lemma 3.5. The first Loupekine snark L1 shown in Figure 5 has a pair of suitable edges.

Proof. Figure 5 shows the first Loupekine snark L1. By computer we determined that L1

has exactly six pairs of suitable edges: ((0, 1), (17, 20)), ((0, 2), (8, 17)), ((1, 5), (14, 20)),
((2, 3), (8, 10)), ((3, 4), (10, 12)) and ((4, 5), (12, 14)). We will now prove by hand that
((3, 4), (10, 12)) is a suitable edge pair.

The pairs (3, 10), (3, 12), (4, 10) and (4, 12) are good in L1 − {(3, 4), (10, 12)} due to
the following hamiltonian paths, respectively:

• 10, 7, 9, 6, 8, 17, 19, 21, 16, 13, 11, 0, 1, 5, 4, 18, 20, 14, 12, 15, 2, 3
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Figure 4: The second Blanuša snark. It has 18 vertices. The suitable edges (6, 8) and
(10, 16) are marked in bold red.

• 12, 14, 20, 18, 4, 5, 7, 10, 8, 17, 19, 21, 16, 9, 6, 1, 0, 11, 13, 15, 2, 3

• 10, 7, 5, 1, 0, 11, 13, 16, 9, 6, 8, 17, 20, 14, 12, 15, 2, 3, 19, 21, 18, 4

• 12, 14, 11, 0, 1, 6, 9, 16, 13, 15, 2, 3, 19, 21, 18, 20, 17, 8, 10, 7, 5, 4

Note that ((3, 4), (10, 12)) is good in L1 − {(3, 4), (10, 12)} due to the following
two disjoint paths with end-vertices 3 and 4, and 10 and 12, respectively, which together
span L1:

• 4, 5, 1, 6, 8, 17, 20, 18, 21, 19, 3

• 12, 14, 11, 0, 2, 15, 13, 16, 9, 7, 10

We now prove that at least one of (3, 4) or (10, 12) is good in L1−{v, (3, 4), (10, 12)}
for every v ∈ V (L1). By symmetry we only need to prove this for v = 1, 4, 5, 6, 7, 8, 9,
10, 16, 17, 18, 21.

• v = 1: 12, 15, 13, 16, 9, 6, 8, 17, 20, 14, 11, 0, 2, 3, 19, 21, 18, 4, 5, 7, 10

• v = 4: 12, 14, 20, 18, 21, 16, 9, 6, 8, 17, 19, 3, 2, 15, 13, 11, 0, 1, 5, 7, 10

• v = 5: 4, 18, 20, 17, 8, 10, 7, 9, 6, 1, 0, 2, 15, 12, 14, 11, 13, 16, 21, 19, 3

• v = 6: 4, 5, 1, 0, 2, 15, 12, 14, 11, 13, 16, 9, 7, 10, 8, 17, 20, 18, 21, 19, 3

• v = 7: 12, 14, 20, 17, 19, 3, 2, 15, 13, 11, 0, 1, 5, 4, 18, 21, 16, 9, 6, 8, 10

• v = 8: 12, 14, 20, 17, 19, 3, 2, 15, 13, 11, 0, 1, 6, 9, 16, 21, 18, 4, 5, 7, 10

• v = 9: 4, 5, 7, 10, 8, 6, 1, 0, 2, 15, 12, 14, 11, 13, 16, 21, 18, 20, 17, 19, 3

• v = 10: 4, 5, 7, 9, 16, 13, 11, 0, 1, 6, 8, 17, 19, 21, 18, 20, 14, 12, 15, 2, 3

• v = 16: 4, 5, 1, 6, 9, 7, 10, 8, 17, 19, 21, 18, 20, 14, 12, 15, 13, 11, 0, 2, 3

• v = 17: 4, 5, 1, 6, 8, 10, 7, 9, 16, 13, 11, 0, 2, 15, 12, 14, 20, 18, 21, 19, 3

• v = 18: 4, 5, 1, 6, 8, 10, 7, 9, 16, 21, 19, 17, 20, 14, 12, 15, 13, 11, 0, 2, 3

• v = 21: 4, 18, 20, 14, 12, 15, 2, 0, 11, 13, 16, 9, 6, 1, 5, 7, 10, 8, 17, 19, 3
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Figure 5: The first Loupekine snark L1. It has 22 vertices. The suitable edges (3, 4) and
(10, 12) are marked in bold red.

The following generalisation of Steffen’s Theorem 3.2 is strongest possible.

Theorem 3.6. A hypohamiltonian snark of order n exists if and only if n ∈ {10, 18, 20, 22}
or n is even and n ≥ 26.

Proof. For n = 10, it is well-known that the Petersen graph is hypohamiltonian and it is
also well-known that no snarks exist of order 12, 14 or 16.

In Lemma 3.4 we showed that the second Blanuša snark B2 (which has order 18) con-
tains a pair of suitable edges. In [3] it was proven that hypohamiltonian snarks exist for
all even orders from 18 to 36 with the exception of 24 (see Table 1). Let Sn denote a
hypohamiltonian snark of order n. Using Theorem 2.3, we form the dot product B2 · Sn

for n ∈ {18, 20, 22, 26, 28, 30, 32} and obtain hypohamiltonian snarks of all even orders
between 34 and 48 with the exception of 40 (recall that the dot product of two snarks is a
snark).

By Lemma 3.5 we know that the first Loupekine snark L1 (which has order 22) contains
a pair of suitable edges. Applying Theorem 2.3 to this snark and a 22-vertex hypohamilto-
nian snark, we obtain a hypohamiltonian snark of order 40.

We form the dot product B2 · Sn for all even n ∈ {34, . . . , 48} and obtain hypohamil-
tonian snarks of all even orders from 50 to 64. This may now be iterated ad infinitum, and
the proof is complete.

3.3 Hypohamiltonian and irreducible snarks

In [17] Máčajová and Škoviera proved the following theorem (which fully settles Prob-
lem 3.1).

Theorem 3.7 (Máčajová and Škoviera, Theorems A and B in [17]). There exists an irre-
ducible snark of order n if and only if n ∈ {10, 18, 20, 22} or n is even and n ≥ 26.
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Nedela and Škoviera [19] proved that a snark is irreducible if and only if it is bicritical,
and Steffen [21] showed that every hypohamiltonian snark is bicritical—while the converse
is not true, as will be shown in Table 1.

A graph G without k-flow is k-vertex-critical if, for every pair of vertices (u, v) of
G, identifying u and v yields a graph that has a k-flow; see [4] for more details. In [4]
Carneiro, da Silva, and McKay determined all 4-vertex-critical snarks up to 36 vertices and
Škoviera [24] showed that a snark is 4-vertex-critical if and only if it is irreducible.

Cavicchioli et al. [5] determined all hypohamiltonian and irreducible snarks on n ≤ 28
vertices. Later, Brinkmann et al. [3] determined all hypohamiltonian snarks on n ≤ 36
vertices. These counts can be found in Table 1 together with the number of irreducible
snarks from [4]. These graphs can also be downloaded from the House of Graphs [2] at
http://hog.grinvin.org/Snarks.

The number of hypohamiltonian cubic graphs on n ≤ 32 vertices can be found in [10].
As can be seen from Table 1, there is a significant number of irreducible snarks which are
not hypohamiltonian. The smallest such snarks have order 26. So Theorem 3.6 implies
Theorem 3.7, while the converse is not true.

Table 1: Number of irreducible and hypohamiltonian snarks (see [4, Table 1] and [3, Table
2]). λc stands for cyclic edge-connectivity. The counts of cases indicated with a ’≥’ are
possibly incomplete; all other cases are complete.

Order irreducible hypo. hypo. and λc = 4 hypo. and λc ≥ 5
10 1 1 0 1
18 2 2 2 0
20 1 1 0 1
22 2 2 0 2
24 0 0 0 0
26 111 95 87 8
28 33 31 30 1
30 115 104 93 11
32 13 13 0 13
34 40 328 31 198 29 701 1 497
36 13 720 10 838 10 374 464
38 ? ? ≥ 51 431 ?
40 ? ? ≥ 8 820 ?
42 ? ? ≥ 20 575 458 ?
44 ? ? ≥ 8 242 146 ?

The hypohamiltonian snarks on n ≥ 34 vertices constructed by the dot product in the
proof of Theorem 3.6 clearly all have cyclic edge-connectivity 4. By combining this with
Table 1 we obtain:

Corollary 3.8. Hypohamiltonian snarks of order n and cyclic edge-connectivity 4 exist if
and only if n ∈ {18, 26, 28, 30} or n is even and n ≥ 34.

As already mentioned, every hypohamiltonian snark is irreducible, thus Corollary 3.8
implies [17, Theorem A]. For higher cyclic edge-connectivity, the following is known.
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Theorem 3.9 (Máčajová and Škoviera [18]). There exists a hypohamiltonian snark of or-
der n and cyclic connectivity 5 for each even n ≥ 140, and there exists a hypohamiltonian
snark of order n and cyclic connectivity 6 for each even n ≥ 166.

If we relax the requirements from hypohamiltonicity to irreducibility, more is known:

Theorem 3.10 (Máčajová and Škoviera [17]). There exists an irreducible snark of or-
der n and cyclic connectivity 5 if and only if n ∈ {10, 20, 22, 26} or n is even and
n ≥ 30, and there exists an irreducible snark of order n and cyclic connectivity 6 for each
n ≡ 4 (mod 8) with n ≥ 28, and for each even n ≥ 210.

Note that as every hypohamiltonian snark is irreducible, Theorem 3.9 also implies that
n ≥ 210 can be improved to n ≥ 166 in Theorem 3.10.

The smallest hypohamiltonian snark of cyclic edge-connectivity 5 has order 10 and is
the Petersen graph, and the second-smallest such graph has order 20. The flower snark J7 of
order 28 is the smallest cyclically 6-edge-connected hypohamiltonian snark. We conclude
this section with the following two problems motivated by Theorem 3.10 and results of
Kochol [14, 16].

Problem 3.11 (Máčajová and Škoviera [17]). Construct a cyclically 6-edge-connected
snark (irreducible or not) of order smaller than 118 and different from any of Isaacs’ snarks.

Problem 3.12. Determine all orders for which cyclically 6-edge-connected snarks exist.

4 On a conjecture of Steffen on hypohamiltonian snarks
Consider a cubic graph G. We denote with µk(G) the minimum number of edges not
contained in the union of k 1-factors of G, for every possible combination of k 1-factors.
If µ3(G) = 0, then G is 3-edge-colourable. In [23], Steffen made the following conjecture
on hypohamiltonian snarks.

Conjecture 4.1 (Steffen, Conjecture 4.1 in [23]). If G is a hypohamiltonian snark, then
µ3(G) = 3.

If true, this conjecture would have significant consequences, e.g. by Theorem 2.14
from [23], it would imply that every hypohamiltonian snark has a Berge-cover (a bridgeless
cubic graph G has a Berge-cover if µ5(G) = 0).

We wrote a computer program for computing µ3(G) and tested Conjecture 4.1 on the
complete lists of hypohamiltonian snarks up to 36 vertices. This leads to the following
observation.

Observation 4.2. There are no counterexamples to Conjecture 4.1 among the hypohamil-
tonian snarks with at most 36 vertices.

The authors of [3] noted a huge increase (from 13 to 31 198) in the number of hy-
pohamiltonian snarks from order 32 to 34, see Table 1. Using a computer, we were
able to determine that 29 365 out of the 29 701 hypohamiltonian snarks with cyclic edge-
connectivity 4 on 34 vertices can be obtained by performing a dot product on a hypohamil-
tonian snark on 26 vertices and the Petersen graph. We also determined that the remaining
hypohamiltonian snarks with cyclic edge-connectivity 4 on 34 vertices are obtained by per-
forming a dot product on the Blanuša snarks. Intriguingly, our computations show that
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some hypohamiltonian snarks can be obtained by performing a dot product on a hypo-
hamiltonian snark on 26 vertices and the Petersen graph, as well as by performing a dot
product on the Blanuša snarks.

There is also a (slightly less dramatic) increase in the cyclically 5-edge-connected
case—these are obviously not dot products—and we believe it to be due to more general
graph products, for instance “superposition” introduced by Kochol [15]. It would be in-
teresting to further explore these transformations in order to fully understand these sudden
increases and decreases in numbers.

Using a computer, we determined that all hypohamiltonian snarks with cyclic edge-
connectivity 4 up to 36 vertices can be obtained by performing a dot product on two hypo-
hamiltonian snarks. This leads us to pose the following question.

Problem 4.3. Is every hypohamiltonian snark with cyclic edge-connectivity 4 a dot product
of two hypohamiltonian snarks?

In [6] Chladný and Škoviera proved that every bicritical snark with cyclic edge-connec-
tivity 4 is a dot product of two bicritical snarks. Since every hypohamiltonian snark is
bicritical, this implies that every hypohamiltonian snark with cyclic edge-connectivity 4 is
a dot product of two bicritical snarks.

Recall that in Theorem 2.3 the graphs G and H are hypohamiltonian, but the theorem
is not “if and only if”, since although the Petersen graph does not contain a pair of suitable
edges, the Blanuša snarks (which are dot products of two Petersen graphs) are hypohamil-
tonian. Despite the previous paragraph, we believe the answer to Problem 4.3 to be “no”
due to the following observation. In order to cover all cases, we would need to add to con-
dition (ii) of Theorem 2.3 the possibility of ((a, b), (c, d)) being good in G − {v, ab, cd}.
However, we would then need to require from H that it contains a 2-factor containing ex-
actly two (necessarily odd) cycles. Although we were unable to find a counterexample, we
believe that there exist hypohamiltonian snarks which do not possess such a 2-factor.

We also determined all hypohamiltonian snarks up to 44 vertices which can be obtained
by performing a dot product on two hypohamiltonian snarks. The counts of these snarks
can be found in the fourth column of Table 1. We also verified Conjecture 4.1 on these
snarks.

Observation 4.4. There are no counterexamples to Conjecture 4.1 among the hypohamil-
tonian snarks with at most 44 vertices which are a dot product of two hypohamiltonian
snarks.
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interesting graphs, Discrete Appl. Math. 161 (2013), 311–314, doi:10.1016/j.dam.2012.07.018,
available at http://hog.grinvin.org/.
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Appendix
Below we give the technical details which were left out in the proof of Lemma 3.3.

Proof that b0c0 and b4c4 are suitable edges for J9 (continued)
We will now prove that at least one of (0, 26) or (11, 12) is good in J9 − {v, (0, 26),
(11, 12)} for every v ∈ V (J9) except for v = 0, which we have already shown above in
the proof of Lemma 3.3.

• v = 1: 26, 4, 5, 6, 7, 2, 3, 28, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 17, 18, 33, 32, 15,
14, 19, 20, 25, 24, 23, 22, 21, 34, 35, 27, 0

• v = 2: 12, 31, 32, 15, 14, 13, 8, 7, 6, 5, 10, 9, 30, 29, 28, 3, 4, 26, 25, 24, 23, 1, 0,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

• v = 3: 26, 4, 5, 6, 7, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 31, 30, 29, 28, 27, 0

• v = 4: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 5, 6,
7, 8, 9, 30, 29, 28, 3, 2, 1, 23, 24, 35, 27, 0

• v = 5: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11,
10, 9, 30, 31, 12, 13, 8, 7, 6, 29, 28, 27, 0

• v = 6: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 5, 4,
3, 2, 7, 8, 9, 30, 29, 28, 27, 35, 24, 23, 1, 0

• v = 7: 26, 4, 5, 6, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15, 32, 33, 34,
35, 24, 25, 20, 21, 22, 23, 1, 2, 3, 28, 27, 0

• v = 8: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 9, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 9: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11,
10, 5, 6, 7, 8, 13, 12, 31, 30, 29, 28, 27, 0

• v = 10: 12, 13, 14, 15, 32, 31, 30, 9, 8, 7, 2, 3, 28, 29, 6, 5, 4, 26, 25, 24, 23, 1, 0,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

• v = 11: 26, 4, 3, 2, 1, 23, 22, 21, 34, 35, 24, 25, 20, 19, 14, 15, 16, 17, 18, 33, 32,
31, 12, 13, 8, 7, 6, 5, 10, 9, 30, 29, 28, 27, 0

• v = 12: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 30, 9, 8, 13, 14, 15, 16, 11, 10,
5, 4, 3, 2, 7, 6, 29, 28, 27, 35, 24, 23, 1, 0

• v = 13: 12, 31, 30, 29, 6, 5, 10, 9, 8, 7, 2, 1, 0, 27, 28, 3, 4, 26, 25, 20, 21, 22, 23,
24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11

• v = 14: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 15, 16, 11, 10, 9, 8, 13, 12, 31, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 15: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 32, 31, 12, 13, 14, 19, 18,
17, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

• v = 16: 12, 13, 8, 7, 2, 3, 28, 29, 6, 5, 4, 26, 25, 24, 23, 1, 0, 27, 35, 34, 33, 18, 17,
22, 21, 20, 19, 14, 15, 32, 31, 30, 9, 10, 11

• v = 17: 26, 4, 3, 2, 1, 23, 22, 21, 20, 25, 24, 35, 34, 33, 18, 19, 14, 13, 12, 31, 32,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0
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• v = 18: 26, 25, 20, 19, 14, 15, 32, 33, 34, 21, 22, 17, 16, 11, 10, 9, 8, 13, 12, 31, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 19: 26, 4, 3, 28, 27, 35, 34, 21, 20, 25, 24, 23, 22, 17, 18, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 29, 30, 9, 8, 7, 2, 1, 0

• v = 20: 26, 25, 24, 35, 27, 28, 29, 6, 5, 4, 3, 2, 7, 8, 13, 12, 31, 30, 9, 10, 11, 16, 17,
18, 19, 14, 15, 32, 33, 34, 21, 22, 23, 1, 0

• v = 21: 26, 4, 3, 2, 1, 23, 22, 17, 18, 19, 20, 25, 24, 35, 34, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

• v = 22: 26, 25, 20, 21, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 31, 30,
29, 28, 3, 4, 5, 6, 7, 2, 1, 23, 24, 35, 27, 0

• v = 23: 26, 4, 3, 28, 27, 35, 24, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 29, 30, 9, 8, 7, 2, 1, 0

• v = 24: 26, 25, 20, 19, 14, 15, 32, 33, 18, 17, 16, 11, 10, 9, 8, 13, 12, 31, 30, 29, 28,
3, 4, 5, 6, 7, 2, 1, 23, 22, 21, 34, 35, 27, 0

• v = 25: 26, 4, 3, 2, 1, 23, 24, 35, 34, 33, 18, 17, 22, 21, 20, 19, 14, 13, 12, 31, 32,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

• v = 26: 12, 13, 8, 7, 2, 3, 4, 5, 6, 29, 28, 27, 0, 1, 23, 22, 21, 34, 35, 24, 25, 20, 19,
14, 15, 16, 17, 18, 33, 32, 31, 30, 9, 10, 11

• v = 27: 26, 4, 5, 6, 7, 2, 3, 28, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
32, 33, 34, 35, 24, 25, 20, 21, 22, 23, 1, 0

• v = 28: 12, 13, 14, 15, 32, 31, 30, 29, 6, 5, 10, 9, 8, 7, 2, 3, 4, 26, 25, 24, 23, 1, 0,
27, 35, 34, 33, 18, 19, 20, 21, 22, 17, 16, 11

• v = 29: 26, 4, 5, 6, 7, 8, 13, 12, 31, 30, 9, 10, 11, 16, 17, 18, 19, 14, 15, 32, 33, 34,
35, 24, 25, 20, 21, 22, 23, 1, 2, 3, 28, 27, 0

• v = 30: 26, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14, 15, 16, 11, 10, 9, 8,
7, 2, 3, 4, 5, 6, 29, 28, 27, 35, 24, 23, 1, 0

• v = 31: 12, 13, 8, 7, 6, 5, 10, 9, 30, 29, 28, 27, 0, 1, 2, 3, 4, 26, 25, 20, 21, 22, 23,
24, 35, 34, 33, 32, 15, 14, 19, 18, 17, 16, 11

• v = 32: 26, 25, 24, 23, 1, 2, 7, 6, 5, 4, 3, 28, 29, 30, 31, 12, 13, 8, 9, 10, 11, 16, 15,
14, 19, 20, 21, 22, 17, 18, 33, 34, 35, 27, 0

• v = 33: 26, 4, 3, 28, 27, 35, 34, 21, 20, 25, 24, 23, 22, 17, 18, 19, 14, 13, 12, 31, 32,
15, 16, 11, 10, 5, 6, 29, 30, 9, 8, 7, 2, 1, 0

• v = 34: 26, 25, 24, 35, 27, 28, 29, 6, 5, 4, 3, 2, 7, 8, 13, 12, 31, 30, 9, 10, 11, 16, 17,
18, 33, 32, 15, 14, 19, 20, 21, 22, 23, 1, 0

• v = 35: 26, 4, 3, 2, 1, 23, 24, 25, 20, 19, 18, 17, 22, 21, 34, 33, 32, 31, 12, 13, 14,
15, 16, 11, 10, 5, 6, 7, 8, 9, 30, 29, 28, 27, 0

Proof that b0c0 and b4c4 are suitable edges for J11

Figure 2 shows the flower snark J11 and here b0c0 and b4c4 correspond to the edges (0, 32)
and (11, 12), respectively.

The pairs (0, 11), (0, 12), (32, 11), and (32, 12) are good in J11 − {(0, 32), (11, 12)}
due to the following hamiltonian paths, respectively:
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• 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 43, 30, 29, 28, 23, 22, 17, 16, 15, 38, 37, 12, 13,
14, 19, 18, 39, 40, 21, 20, 25, 24, 41, 42, 27, 26, 31, 32, 4, 3, 2, 1, 0

• 12, 13, 14, 15, 16, 11, 10, 5, 4, 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 17, 18, 19,
20, 21, 40, 39, 38, 37, 36, 9, 8, 7, 6, 35, 34, 3, 2, 1, 29, 30, 43, 33, 0

• 11, 10, 5, 4, 3, 2, 1, 0, 33, 34, 35, 6, 7, 8, 9, 36, 37, 12, 13, 14, 19, 18, 17, 16, 15, 38,
39, 40, 41, 24, 25, 20, 21, 22, 23, 28, 29, 30, 43, 42, 27, 26, 31, 32

• 12, 13, 8, 7, 2, 3, 4, 5, 6, 35, 34, 33, 0, 1, 29, 28, 23, 22, 17, 18, 39, 38, 37, 36, 9, 10,
11, 16, 15, 14, 19, 20, 21, 40, 41, 24, 25, 26, 27, 42, 43, 30, 31, 32

We have that ((0, 32), (11, 12)) is good in J11−{(0, 32), (11, 12)} due to the following
two disjoint paths with end-vertices 0 and 32, and 11 and 12, respectively, which together
span J11.

• 32, 31, 26, 25, 20, 19, 14, 13, 8, 7, 2, 1, 0

• 12, 37, 38, 15, 16, 17, 18, 39, 40, 21, 22, 23, 24, 41, 42, 27, 28, 29, 30, 43, 33, 34, 3,
4, 5, 6, 35, 36, 9, 10, 11

The following hamiltonian paths show that at least one of (0, 32) or (11, 12) is good in
J11 − {v, (0, 32), (11, 12)} for every v ∈ V (J11).

• v = 0: 12, 13, 14, 15, 38, 37, 36, 35, 6, 5, 10, 9, 8, 7, 2, 1, 29, 30, 31, 32, 4, 3, 34,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 1: 32, 4, 5, 6, 7, 2, 3, 34, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
38, 39, 40, 41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 42, 43, 33, 0

• v = 2: 12, 37, 38, 15, 14, 13, 8, 7, 6, 5, 10, 9, 36, 35, 34, 3, 4, 32, 31, 30, 29, 1, 0,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 3: 32, 4, 5, 6, 7, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25,
20, 19, 14, 15, 38, 39, 18, 17, 16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 33, 0

• v = 4: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 3, 2, 1, 29, 30, 43, 33, 0

• v = 5: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19,
14, 15, 38, 39, 18, 17, 16, 11, 10, 9, 36, 37, 12, 13, 8, 7, 6, 35, 34, 33, 0

• v = 6: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 5, 4, 3, 2, 7, 8, 9, 36, 35, 34, 33, 43, 30, 29, 1, 0

• v = 7: 32, 4, 5, 6, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15, 38, 39, 40,
41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 42, 43, 33, 34, 3, 2, 1, 0

• v = 8: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 9, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 9: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19,
14, 15, 38, 39, 18, 17, 16, 11, 10, 5, 6, 7, 8, 13, 12, 37, 36, 35, 34, 33, 0

• v = 10: 12, 13, 14, 15, 38, 37, 36, 9, 8, 7, 2, 3, 34, 35, 6, 5, 4, 32, 31, 30, 29, 1, 0,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 11: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 20, 25, 24, 23, 22,
17, 16, 15, 14, 19, 18, 39, 38, 37, 12, 13, 8, 7, 6, 5, 10, 9, 36, 35, 34, 33, 0
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• v = 12: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
8, 9, 10, 11, 16, 15, 38, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 13: 12, 37, 36, 35, 6, 5, 10, 9, 8, 7, 2, 1, 0, 33, 34, 3, 4, 32, 31, 26, 27, 28, 29,
30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19, 14, 15, 38, 39, 18, 17, 16, 11

• v = 14: 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 17, 18, 19, 20, 21, 40, 39, 38, 15,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 15: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20,
19, 14, 13, 12, 37, 38, 39, 18, 17, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 16: 12, 13, 8, 7, 2, 3, 34, 35, 6, 5, 4, 32, 31, 30, 29, 1, 0, 33, 43, 42, 41, 24, 25,
26, 27, 28, 23, 22, 17, 18, 39, 40, 21, 20, 19, 14, 15, 38, 37, 36, 9, 10, 11

• v = 17: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20,
19, 18, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 18: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 38, 15, 14, 19, 20, 21, 22, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 19: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 20, 25, 24, 23, 22,
17, 18, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 20: 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 21, 40, 39, 38, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 21: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 39, 18, 17, 22, 23, 24,
25, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 22: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 21, 20, 19, 14, 15, 38, 39, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 23: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 24, 25, 20, 19, 18, 17, 22,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 24: 32, 31, 26, 25, 20, 21, 22, 23, 28, 27, 42, 41, 40, 39, 38, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 25: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 24, 23, 22, 17, 18, 19, 20,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 26: 32, 31, 30, 29, 1, 2, 7, 6, 5, 4, 3, 34, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17,
18, 19, 14, 15, 38, 39, 40, 41, 24, 25, 20, 21, 22, 23, 28, 27, 42, 43, 33, 0

• v = 27: 32, 4, 3, 2, 1, 29, 28, 23, 24, 25, 26, 31, 30, 43, 42, 41, 40, 39, 18, 17, 22,
21, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 28: 32, 31, 26, 27, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19, 14, 15, 38, 39, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 29: 32, 4, 3, 34, 33, 43, 30, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22,
21, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 35, 36, 9, 8, 7, 2, 1, 0

• v = 30: 32, 31, 26, 25, 20, 21, 22, 23, 24, 41, 40, 39, 38, 15, 14, 19, 18, 17, 16, 11,
10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 28, 27, 42, 43, 33, 0

• v = 31: 32, 4, 3, 2, 1, 29, 30, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 17, 22,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0
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• v = 32: 12, 13, 8, 7, 2, 3, 4, 5, 6, 35, 34, 33, 0, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41,
40, 21, 20, 25, 24, 23, 22, 17, 16, 15, 14, 19, 18, 39, 38, 37, 36, 9, 10, 11

• v = 33: 32, 4, 5, 6, 7, 2, 3, 34, 35, 36, 37, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
38, 39, 40, 41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 43, 42, 27, 28, 29, 1, 0

• v = 34: 12, 13, 14, 15, 38, 37, 36, 35, 6, 5, 10, 9, 8, 7, 2, 3, 4, 32, 31, 30, 29, 1, 0,
33, 43, 42, 41, 24, 23, 28, 27, 26, 25, 20, 19, 18, 39, 40, 21, 22, 17, 16, 11

• v = 35: 32, 4, 5, 6, 7, 8, 13, 12, 37, 36, 9, 10, 11, 16, 17, 18, 19, 14, 15, 38, 39, 40,
41, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 42, 43, 33, 34, 3, 2, 1, 0

• v = 36: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 13,
12, 37, 38, 15, 16, 11, 10, 9, 8, 7, 2, 3, 4, 5, 6, 35, 34, 33, 43, 30, 29, 1, 0

• v = 37: 12, 13, 8, 7, 6, 5, 10, 9, 36, 35, 34, 33, 0, 1, 2, 3, 4, 32, 31, 26, 27, 28, 29,
30, 43, 42, 41, 40, 21, 22, 23, 24, 25, 20, 19, 14, 15, 38, 39, 18, 17, 16, 11

• v = 38: 32, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22, 21, 20, 19, 14, 15,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 39: 32, 4, 3, 2, 1, 29, 28, 27, 26, 31, 30, 43, 42, 41, 40, 21, 20, 25, 24, 23, 22,
17, 18, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 40: 32, 31, 26, 25, 24, 41, 42, 27, 28, 23, 22, 21, 20, 19, 14, 15, 38, 39, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 41: 32, 4, 3, 2, 1, 29, 28, 27, 42, 43, 30, 31, 26, 25, 24, 23, 22, 17, 18, 19, 20,
21, 40, 39, 38, 37, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

• v = 42: 32, 31, 26, 27, 28, 23, 22, 21, 20, 25, 24, 41, 40, 39, 38, 15, 14, 19, 18, 17,
16, 11, 10, 9, 8, 13, 12, 37, 36, 35, 34, 3, 4, 5, 6, 7, 2, 1, 29, 30, 43, 33, 0

• v = 43: 32, 4, 3, 2, 1, 29, 30, 31, 26, 25, 24, 23, 28, 27, 42, 41, 40, 39, 18, 17, 22,
21, 20, 19, 14, 13, 12, 37, 38, 15, 16, 11, 10, 5, 6, 7, 8, 9, 36, 35, 34, 33, 0

Proof that b0c0 and b4c4 are suitable edges for J13

Figure 3 shows the flower snark J13 and here b0c0 and b4c4 correspond to the edges (0, 38)
and (11, 12), respectively.

The pairs (0, 11), (0, 12), (38, 11), and (38, 12) are good in J13 − {(0, 38), (11, 12)}
due to the following hamiltonian paths, respectively:

• 11, 10, 5, 6, 7, 8, 9, 42, 41, 40, 39, 51, 36, 35, 34, 29, 28, 23, 22, 17, 16, 15, 44, 43,
12, 13, 14, 19, 18, 45, 46, 21, 20, 25, 24, 47, 48, 27, 26, 31, 30, 49, 50, 33, 32, 37,
38, 4, 3, 2, 1, 0

• 12, 13, 14, 15, 16, 11, 10, 5, 4, 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23,
28, 27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 42, 9, 8, 7, 6, 41, 40, 3, 2, 1, 35,
36, 51, 39, 0

• 11, 10, 5, 4, 3, 2, 1, 0, 39, 40, 41, 6, 7, 8, 9, 42, 43, 12, 13, 14, 19, 18, 17, 16, 15, 44,
45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 35, 34,
33, 32, 37, 38

• 12, 13, 8, 7, 2, 3, 4, 5, 6, 41, 40, 39, 0, 1, 35, 34, 29, 28, 23, 22, 17, 18, 45, 44, 43,
42, 9, 10, 11, 16, 15, 14, 19, 20, 21, 46, 47, 24, 25, 26, 27, 48, 49, 30, 31, 32, 33, 50,
51, 36, 37, 38
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The pair of pairs ((0, 38), (11, 12)) is good in J13 − {(0, 38), (11, 12)} due to the fol-
lowing two disjoint paths with end-vertices 0 and 38, and 11 and 12, respectively, which
together span J13.

• 38, 37, 32, 31, 26, 25, 20, 19, 14, 13, 8, 7, 2, 1, 0

• 12, 43, 44, 15, 16, 17, 18, 45, 46, 21, 22, 23, 24, 47, 48, 27, 28, 29, 30, 49, 50, 33,
34, 35, 36, 51, 39, 40, 3, 4, 5, 6, 41, 42, 9, 10, 11

The following hamiltonian paths show that at least one of (0, 38) or (11, 12) is good in
J13 − {v, (0, 38), (11, 12)} for every v ∈ V (J13).

• v = 0: 12, 13, 14, 15, 44, 43, 42, 41, 6, 5, 10, 9, 8, 7, 2, 1, 35, 36, 37, 38, 4, 3, 40,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11

• v = 1: 38, 4, 5, 6, 7, 2, 3, 40, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
44, 45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 49, 48, 27, 28, 29, 34, 35, 36, 37,
32, 33, 50, 51, 39, 0

• v = 2: 12, 43, 44, 15, 14, 13, 8, 7, 6, 5, 10, 9, 42, 41, 40, 3, 4, 38, 37, 36, 35, 1, 0,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11

• v = 3: 38, 4, 5, 6, 7, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29,
28, 23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12,
43, 42, 41, 40, 39, 0

• v = 4: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8, 9, 42, 41, 40, 3, 2,
1, 35, 36, 51, 39, 0

• v = 5: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23,
22, 21, 20, 25, 24, 47, 46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 42, 43, 12, 13, 8,
7, 6, 41, 40, 39, 0

• v = 6: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 4, 3, 2, 7, 8, 9, 42, 41, 40,
39, 51, 36, 35, 1, 0

• v = 7: 38, 4, 5, 6, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15, 44, 45, 46,
47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 37, 32, 33, 34,
35, 1, 2, 3, 40, 39, 0

• v = 8: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 9, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 9: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23,
22, 21, 20, 25, 24, 47, 46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 5, 6, 7, 8, 13, 12, 43,
42, 41, 40, 39, 0

• v = 10: 12, 13, 14, 15, 44, 43, 42, 9, 8, 7, 2, 3, 40, 41, 6, 5, 4, 38, 37, 36, 35, 1, 0,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11



J. Goedgebeur and C. T. Zamfirescu: On hypohamiltonian snarks and a theorem of Fiorini 247

• v = 11: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 21, 46, 47, 24, 25, 20, 19, 14, 15, 16, 17, 18, 45, 44, 43, 12, 13, 8, 7, 6, 5, 10,
9, 42, 41, 40, 39, 0

• v = 12: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 42, 9, 8, 13, 14, 15, 16, 11, 10, 5, 4, 3, 2, 7, 6, 41, 40,
39, 51, 36, 35, 1, 0

• v = 13: 12, 43, 42, 41, 6, 5, 10, 9, 8, 7, 2, 1, 0, 39, 40, 3, 4, 38, 37, 32, 33, 34, 35,
36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 15,
14, 19, 18, 17, 16, 11

• v = 14: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 15, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 15: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 43, 12, 13, 14, 19, 18, 17, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 16: 12, 13, 8, 7, 2, 3, 40, 41, 6, 5, 4, 38, 37, 36, 35, 1, 0, 39, 51, 50, 49, 30, 29,
34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 15,
44, 43, 42, 9, 10, 11

• v = 17: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 21, 20, 25, 24, 47, 46, 45, 18, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 18: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
14, 15, 44, 45, 46, 21, 22, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 19: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 28, 29, 30, 31, 26,
25, 20, 21, 46, 47, 24, 23, 22, 17, 18, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 20: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 25, 26, 27, 28, 23, 22, 21,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 21: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 22, 17, 18, 19, 20, 25, 24, 47, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 22: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 21,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 23: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 28, 29, 30, 31, 26,
25, 24, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 24: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 46, 21, 22, 23, 28, 27, 26, 25,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0
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• v = 25: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 24, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 26: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 27, 28, 23, 22, 21, 20, 25, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 27: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 47, 24, 23, 28, 29, 30,
31, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 28: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 27, 26, 25, 20, 21, 22, 23, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 29: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 30, 31, 26, 25, 24, 23, 28,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 30: 38, 37, 32, 31, 26, 27, 28, 29, 34, 33, 50, 49, 48, 47, 46, 21, 22, 23, 24, 25,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 31: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 30, 29, 28, 23, 24, 25, 26,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 32: 38, 37, 36, 35, 1, 2, 7, 6, 5, 4, 3, 40, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17,
18, 19, 14, 15, 44, 45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 49, 48, 27, 28, 29,
34, 33, 50, 51, 39, 0

• v = 33: 38, 4, 3, 2, 1, 35, 34, 29, 30, 31, 32, 37, 36, 51, 50, 49, 48, 47, 24, 23, 28,
27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 34: 38, 37, 32, 33, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 20, 25, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 35: 38, 4, 3, 40, 39, 51, 36, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28,
27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 41,
42, 9, 8, 7, 2, 1, 0

• v = 36: 38, 37, 32, 31, 26, 27, 28, 29, 30, 49, 48, 47, 46, 21, 22, 23, 24, 25, 20, 19,
14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2, 1, 35,
34, 33, 50, 51, 39, 0

• v = 37: 38, 4, 3, 2, 1, 35, 36, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 38: 12, 13, 8, 7, 2, 3, 4, 5, 6, 41, 40, 39, 0, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49,
48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 46, 47, 24, 25, 20, 19, 14, 15, 16, 17, 18, 45,
44, 43, 42, 9, 10, 11
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• v = 39: 38, 4, 5, 6, 7, 2, 3, 40, 41, 42, 43, 12, 13, 8, 9, 10, 11, 16, 17, 18, 19, 14, 15,
44, 45, 46, 47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 37,
32, 33, 34, 35, 1, 0

• v = 40: 12, 13, 14, 15, 44, 43, 42, 41, 6, 5, 10, 9, 8, 7, 2, 3, 4, 38, 37, 36, 35, 1, 0,
39, 51, 50, 49, 30, 29, 34, 33, 32, 31, 26, 25, 24, 23, 28, 27, 48, 47, 46, 45, 18, 19,
20, 21, 22, 17, 16, 11

• v = 41: 38, 4, 5, 6, 7, 8, 13, 12, 43, 42, 9, 10, 11, 16, 17, 18, 19, 14, 15, 44, 45, 46,
47, 24, 23, 22, 21, 20, 25, 26, 31, 30, 29, 28, 27, 48, 49, 50, 51, 36, 37, 32, 33, 34,
35, 1, 2, 3, 40, 39, 0

• v = 42: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28, 27, 26, 25, 20, 19,
18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 9, 8, 7, 2, 3, 4, 5, 6, 41, 40,
39, 51, 36, 35, 1, 0

• v = 43: 12, 13, 8, 7, 6, 5, 10, 9, 42, 41, 40, 39, 0, 1, 2, 3, 4, 38, 37, 32, 33, 34, 35,
36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28, 23, 22, 21, 20, 25, 24, 47, 46, 45, 44, 15,
14, 19, 18, 17, 16, 11

• v = 44: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 25, 26, 27, 28, 23, 22, 17,
18, 45, 46, 21, 20, 19, 14, 15, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 45: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 28, 29, 30, 31, 26,
25, 20, 21, 46, 47, 24, 23, 22, 17, 18, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 46: 38, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 25, 26, 27, 28, 23, 22, 21,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 47: 38, 4, 3, 2, 1, 35, 34, 33, 32, 37, 36, 51, 50, 49, 48, 27, 26, 31, 30, 29, 28,
23, 24, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 48: 38, 37, 32, 31, 30, 49, 50, 33, 34, 29, 28, 27, 26, 25, 20, 21, 22, 23, 24, 47,
46, 45, 44, 15, 14, 19, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 49: 38, 4, 3, 2, 1, 35, 34, 33, 50, 51, 36, 37, 32, 31, 30, 29, 28, 23, 24, 25, 26,
27, 48, 47, 46, 45, 18, 17, 22, 21, 20, 19, 14, 13, 12, 43, 44, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0

• v = 50: 38, 37, 32, 33, 34, 29, 28, 27, 26, 31, 30, 49, 48, 47, 46, 21, 22, 23, 24, 25,
20, 19, 14, 15, 44, 45, 18, 17, 16, 11, 10, 9, 8, 13, 12, 43, 42, 41, 40, 3, 4, 5, 6, 7, 2,
1, 35, 36, 51, 39, 0

• v = 51: 38, 4, 3, 2, 1, 35, 36, 37, 32, 31, 30, 29, 34, 33, 50, 49, 48, 47, 24, 23, 28,
27, 26, 25, 20, 19, 18, 17, 22, 21, 46, 45, 44, 43, 12, 13, 14, 15, 16, 11, 10, 5, 6, 7, 8,
9, 42, 41, 40, 39, 0
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Gábor Korchmáros , Angelo Sonnino
Dipartimento di Matematica, Informatica ed Economia
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Abstract

We prove that every Moulton plane of odd order—by duality every generalised André
plane—contains a unital. We conjecture that such unitals are non-classical, that is, they
are not isomorphic, as designs, to the Hermitian unital. We prove our conjecture for Moul-
ton planes which differ from PG(2, q2) by a relatively small number of point-line inci-
dences. Up to duality, our results extend previous analogous results—due to Barwick and
Grüning—concerning inherited unitals in Hall planes.

Keywords: Unitals, Moulton planes.

Math. Subj. Class.: 51E20, 05B25

1 Introduction
A unital is a set of q3+1 points together with a family of subsets, each of size q+1, such that
every pair of distinct points are contained in exactly one subset of the family. Such subsets
are usually called blocks so that unitals are block-designs 2−(q3+1, q+1, 1). The classical
example of a unital arises from the unitary polarity in the Desarguesian projective plane
PG(2, q2) where the points are the absolute points, and the blocks are the non-absolute
lines of the unitary polarity. The name of “Hermitian unital” is commonly used for the
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classical example since the absolute points of the unitary polarity are the points of the
Hermitian curve defined over GF(q2).

A unital U is embedded in a projective plane Π of order q2, if its points are points of Π
and its blocks are intersections with lines. As usual, we adopt the term “chord” to indicate a
block of U . A line ` of Π is either a tangent or a (q+1)-secant to U according as |`∩U| = 1
or |` ∩ U| = q + 1, and in the latter case ` ∩ U is a chord. Examples of unitals embedded
in PG(2, q2) other than the Hermitian ones are known to exist.

A unital is classical if it is isomorphic, as a block-design, to a Hermitian unital. Clas-
sical unitals contain no O’Nan configurations, and it has been conjectured that any non-
classical unital embedded in PG(2, q2) must contain a O’Nan configuration.

In several families of non-desarguesian planes, the problem of constructing and charac-
terizing unitals has also been investigated; see [1, 2, 5, 6, 8, 10, 11, 12, 13, 14, 15, 16, 17,
18, 19, 20, 22, 23, 24, 27, 28]. Apart from the examples of unitals arising from a unitary
polarity in a commutative semifield plane, the known examples are inherited unitals from
the Hermitian unital. In a non-desarguesian plane Π of order q2 arising from PG(2, q2)
by altering some of the point-line incidences, the adjective “inherited” is used for those
pointsets of PG(2, q2) which keep their intersection properties with lines when moving
from PG(2, q2) to Π.

In this paper we construct inherited unitals in Moulton planes of odd order q2, and,
by duality, in generalised André planes of the same order; see Theorem 3.1. We also
investigate the problem whether these unitals are classical; see Theorems 3.5 and 3.6. We
show that if such a plane differs from PG(2, q2) by a relatively small number of incidences
only, then the inherited unital is non-classical. Also, we exhibit non-classical inherited
unitals in case of many point-line incidence alterations. Such unitals appear to be of interest
in coding theory; see [25].

What emerges from our work leads us to conjecture that the inherited unitals con-
structed in our paper are all non-classical. It should be noticed that our results extend
previous analogous results due to Barwick and Grüning concerning inherited unitals in
Hall planes which are very special André planes; see [8, 16] and Remark 3.4. The methods
used in [8] are mostly geometric and involve Baer subplanes and blocking sets. In this
paper, we adopt a more algebraic approach that allows us to exploit results on the number
of solutions of systems of polynomial equations over a finite field.

2 Two new results on the Hermitian unital
We establish and prove two theorems on Hermitian unitals that will play a role in our study
on unitals in Moulton planes.

Up to a change of the homogeneous coordinate system (X1, X2, X3) in PG(2, q2), the
points of the classical unital U are those satisfying the equation

Xq+1
1 +Xq+1

2 +Xq+1
3 = 0. (2.1)

In the affine plane AG(2, q2) arising from PG(2, q2) with respect to the line X3 = 0, we
use the coordinates (X,Y ) where X = X1/X3 and Y = X2/X3). Then the points of U
in AG(2, q2) are the solutions of the equation

Xq+1 + Y q+1 + 1 = 0. (2.2)

Since GF(q2) is the quadratic extension of GF(q) by adjunction of a root i of the poly-
nomial X2 − s with a non-square element s of GF(q), every element u of GF(q2) can
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uniquely be written as u = u1 + iu2 with u1, u2 ∈ GF(q). Then uq = u1 − iu2 and
‖u‖ = uq+1 = u21 − su22. Therefore, the points P (x, y) ∈ U lying in AG(2, q2) are those
satisfying the equation

x21 − sx22 + y21 − sy22 + 1 = 0. (2.3)

For a subset T ⊆ GF(q) \ {0}, let St denote the set of points { (x, y) | ‖x‖ = t ∈ T }.
Hence the pointset St ∩ U comprises all points P (x, y) such that both x21 − sx22 = t and
(2.3) hold. Therefore, a point P (x, y) ∈ AG(2, q2) is in St ∩U if and only if P1(x1, x2) ∈
AG(2, q) lies on the non-degenerate conic C1 : X2 − sY 2 − t = 0 while P2(y1, y2) ∈
AG(2, q) does lie on the conic C2 : X2 − sY 2 + 1 + t = 0. This shows that St ∩ U has
size (q + 1)2 apart from the case t = −1 when it consists of the q + 1 points of U lying on
the X-axis.

Lemma 2.1. Let ` be a non-vertical line in AG(2, q2). Then |`∩U ∩St| ∈ {0, 1, 2, q+ 1}
for every t ∈ T . If q + 1 occurs then ` is either a horizontal line, or it passes through the
origin.

Proof. The points P (x, 0) with ‖x‖ = t form a Baer subline. As U is classical, ` ∩ U is a
Baer subline of `, and hence the projection of `∩U on theX-axis from Y∞ is a Baer-subline,
as well. Since two distinct Baer sublines have at most two common points, the first assertion
follows. To prove the second one, we need some computation. If ` has equation Y = Xm+
b, we have to count the roots x of the polynomial f(X) = Xq+1+(Xm+b)q+1+1 whose
norm ‖x‖ is equal to t. If ‖x‖ = t, then f(x) = bmqxq + bqmx+ t(1 +mq+1) + bq+1 + 1
and hence

xf(x) = bqmx2 + (t(1 +mq+1) + bq+1 + 1)x+ bmqt.

If we have at least three such roots x then either m = 0 and t + 1 = −bq+1, or b = 0 and
t(1 +mq+1) = −1.

Take any two distinct non-tangent lines `1 and `2 of U . We are interested in the inter-
section of the projection of `1 ∩ U from P on `2 with `2 ∩ U . For any point P outside
both `1 and `2, the projection of `1 to `2 from P takes the chord `1 ∩ U to a Baer subline
of `2. Since two Baer sublines of `2 intersect in 0, 1, 2 or q + 1 points, one may want to
determine the size of the sets Σi (i = 0, 1, 2, q+1) consisting of all points P for which this
intersection number is equal to i. The points in Σi are called elliptic, parabolic, hyperbolic,
or full with respect to the pair (`1, `2), according as i = 0, i = 1, i = 2, or i = q + 1,
respectively; see [21].

We go on to compute the size of Σi ∩ U . Since the linear collineation group G ∼=
PGU(3, q) of PG(2, q2) preserving U acts transitively on the points outside U , we may
assume that Y∞ = `1 ∩ `2. The stabiliser of Y∞ in G acts on the pencil with center in
Y∞ as the general projective group PGL(2, q) on the projective line PG(1, q2). Therefore,
it has two orbits, one consisting of all tangents the other of all chords to U through Y∞.
This allows us to assume without loss of generality that `1 is the line at infinity. Since `2
is not a tangent to U , its equation is of the form X = c with cq+1 + 1 6= 0. Therefore,
cq+1 + 1 is either a non-zero square or a non-square element of GF(q). These two cases
occur depending upon whether a linear collineation γ ∈ PGL(2, q) taking `1 to `2 is in
the subgroup isomorphic to the special projective group PSL(2, q) or not. Accordingly,
{`1, `2} is called a special pair or a general pair. Further, since P is a point outside `1 and
`2, it is an affine point P = (a, b) with a 6= c.
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X = 0 X = c

Y = 0

`1 = `∞

`2

��
�
��

��

s
Q(c, τ)

s
P (a, b)

sL∞(m)

Figure 1: The initial configuration.

Let P = (a, b) denote a point of U , that is,

aq+1 + bq+1 + 1 = 0. (2.4)

Take a line r of equation Y = m(X−a)+b through P = (a, b). A necessary and sufficient
condition for r to meet both `1 and `2 in U is the existence of a solution τ ∈ GF(q2) of the
system consisting of (2.4) together with

cq+1 + τ q+1 + 1 = 0, (2.5)

mq+1 + 1 = 0. (2.6)

In fact, Q(c, τ) with τ = m(c− a) + b is the point of r on `2. Then (2.5) holds if and only
if Q ∈ U . Furthermore, (2.6) is the necessary and sufficient condition for the infinite point
of r to be in U ; see Figure 1.

The above discussion also shows how to count lines through P meeting both `1 ∩ U
and `2 ∩ U . Essentially, one has to find the number of solutions in the indeterminate τ of
the system consisting of the equations (2.4), (2.5), and (2.6). Observe that (2.4), (2.5), (2.6)
are equivalent to

a21 − sa22 + b21 − sb22 + 1 = 0, (2.7)

c21 − sc22 + τ21 − sτ22 + 1 = 0, (2.8)
b1τ1 − sb2τ2 + a1c1 − sa2c2 + 1 = 0. (2.9)

From this the following result is obtained.

Proposition 2.2. The number of lines through P meeting both `1∩U and `2∩U equals the
number of solutions (τ1, τ2), with τ1, τ2 ∈ GF(q), of the system consisting of (2.7), (2.8),
(2.9).
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In investigating the above system, two cases are distinguished according as (b1, b2) is
(0, 0) or not.

In the former case, Equations (2.7) and (2.9) read a21−sa22 +1 = 0 and a1c1−sa2c2 +
1 = 0. Geometrically in AG(2, q), the point U = (a1, a2) is the intersection of the ellipse
E , with equation X2 − sY 2 + 1 = 0, and the line v with equation c1X − sc2Y + 1 = 0.
Since cq+1 + 1 = c21 − sc22 + 1 is a non-zero element of GF(q), v must be either a secant,
or an external line to E and this occurs according as c21 − sc22 + 1 is a non-zero square or
non-square element in GF(q). In fact, from (2.7) and (2.9),

a1 =
sc2a2 − 1

c1
, a2 =

−sc2 ± ic1
√
c21 − sc22 + 1

s(c21 − sc22)
.

Therefore, if P is on the X-axis, then P is elliptic in general, apart from the case where
cq+1 +1 = c21−sc22 +1 is a non-square element in GF(q) and P is one of the two common
points of C and v, namely P = P (a, 0) where

a = a1 + ia2 =
−1±

√
1 + cq+1

cq
.

Further, in the exceptional case, P is a full point as for any c1, c2 ∈ GF(q) with c21− sc22 +
1 6= 0, Equation (2.8) always has q + 1 solutions (τ1, τ2) with τ1, τ2 ∈ GF(q).

In the latter case, either b1 or b2 is not zero. If b1 6= 0, retrieving τ1 from (2.9) and
putting it in (2.8) gives a quadratic equation in the indeterminate τ2, namely

(s2b22 − sb21)τ22 − 2sb2(a1c1 − sa2c2 + 1)τ2 +

(a1c1 − sa2c2 + 1)2 + b21(1 + c21 − sc22) = 0, (2.10)

whose discriminant is ∆1 = sb21∆ with

∆ = (b21 − sb22)(1 + c21 − sc22) + (a1c1 − sa2c2 + 1)2

which can also be written by (2.7) as

∆ = −(1 + c21 − sc22)(a21 − sa22 + 1) + (a1c1 − sa2c2 + 1)2.

For b2 6= 0, retrieving τ2 from (2.9) and putting it in (2.8) gives the following quadratic
equation in the indeterminate τ1:

(−b21 + b22)τ21 + 2a1b1c1τ1 −
a21 − s2a22c22 − b22c21 + sb22c

2
2 + 2sa2c2 − b22 − 1 = 0 (2.11)

with discriminant ∆2 = s3b22∆. Since ∆1 and ∆2 are simultaneously zero, or a square, or
a non-square in GF(q), each of the equations (2.10) and (2.11) has 2, 1 or zero solutions in
GF(q), depending upon whether ∆ is a square element, zero, or a non-square element of
GF(q), respectively. This leads to the study of the zeroes of the polynomial

F (X,Y, Z) = −(1 + c21 − sc22)(X2 − sY 2 + 1) + (c1X − sc2Y + 1)2 − Z2. (2.12)

Geometrically, F (X,Y, Z) = 0 is the equation of a quadric Q in AG(3, q). Actually, Q
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Table 1: Elliptic, parabolic, hyperbolic and full points.

P (a, 0) P (a, b), b 6= 0

1 + ‖c‖ ∈ � 1 + ‖c‖ ∈ 6� 1 + ‖c‖ ∈ � 1 + ‖c‖ ∈ 6�

NE q + 1 q − 1
−3− 9q + q2 + q3

2

−3− 5q − q2 + q3

2

NP 0 0 2q − 1 0

NH 0 0
(q − 1)2

2
(q + 1)

(q + 1)2

2
(q − 1)

NF 0 2 0 0

is a cone. In fact, the system FX = FY = FZ = 0 has a (unique) solution (c1, c2, 0) and
hence the point V (c1, c2, 0) is the vertex of Q. In particular, the intersection of Q with the
plane Z = 0 splits into two lines over GF(q) or its quadratic extension GF(q2), and this
occurs according as the infinite points of the conic with equation

−(1 + c21 − sc22)(X2 − sY 2) + (c1X − sc2Y )2 = 0

lie in PG(2, q) or in PG(2, q2) \ PG(2, q). By a direct computation, this condition only
depends on cq+1, namely whether 1 + cq+1 is a square or a non-square element of GF(q).
Therefore, Q contains either 2q−1 or 1 points in the planeZ = 0, and this occurs according
as the pair {`1, `2} is special or general. Also, in the former case there are exactly 2q − 1
parabolic points P but in the latter case no point P is parabolic. Therefore, the following
result holds.

Theorem 2.3. Let `1, `2 be any two distinct non-tangent lines of the classical unital U
in PG(2, q2) whose common point is off U . The number NE , NP , NH, NS , of elliptic,
parabolic, hyperbolic and full points of U with respect to the pair {`1, `2} is given in
Table 1.

We state a corollary of Theorem 2.3 that will be used in Section 3. For i = 1, 2 let Λi

be a subset of `i ∩ U such that |Λ1| = |Λ2| = λ.

Theorem 2.4. If

λ >

√
(q + 1)(q + 3)

2
(2.13)

there exists a non-degenerate quadrangle A1B1A2B2 with vertices Ai, Bi ∈ Λi for i =
1, 2 such that its diagonal point A1B2 ∩B1A2 lies in U .

Proof. We prove the existence of a hyperbolic point D in U such that the projection of Λ1

fromD on `2 share two points with Λ2. From Theorem 2.3, we have at least 1
2 (q−1)2(q+1)

hyperbolic points in U . We omit those hyperbolic points projecting Λ1 = (`1 ∩ U) \ Λ1

to a pointset of `2 meeting `2 ∩ U nontrivially. The number of such hyperbolic points is
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λ̄(q − 1)(q + 1) with λ̄ = q + 1 − λ. Similarly we omit all hyperbolic points projecting
Λ2 = (`2 ∩ U) \ Λ2 to a pointset of `1 meeting `1 ∩ U nontrivially. Therefore, the total
number of omitted hyperbolic points is 2λ̄(q2−1)−λ̄2(q−1) = (q−1)λ̄(2q+2−λ̄(q−1)).
From Theorem 2.3, this number is smaller than the total number of hyperbolic points as far
as (2.13) holds.

To state the other new result on the classical unital a couple of ad hoc notation in
AG(2, q2) will be useful: For a non-vertical line ` with equation Y = Xm + b, ¯̀denotes
the non-vertical line with equation Y = Xmq + b. Given a point P (a, b) outside U , two
lines `1 and `2 are said to be a good line-pair whenever the lines ¯̀

1 and ¯̀
2 meet in a point

of U . Our goal is to show that if a 6= 0 then there exist many good pairs.
For i = 1, 2, write the equations of `i in the form Y = (X − a)mi + b. Then ¯̀

i has
equation Y = Xmq

i − ami + b. Hence P̄ (x, y) = ¯̀
1 ∩ ¯̀

2 where

x =
a(m1 −m2)

mq
1 −m

q
2

,

and hence

y =
a(m1 −m2)

mq
1 −m

q
2

mq
1 − am1 + b.

Note that

‖x‖ = xq+1 = aq+1

(
1

(m1 −m2)q−1

)q+1

=
‖a‖

(m1 −m2)q2−1
= ‖a‖ 6= 0.

The condition for P (x, y) to lie in U is

xq+1 + yq+1 + 1 = aq+1 + aq+1

(
(m1 −m2)

(m1 −m2)q
mq

1 −m1 +
b

a

)q+1

+ 1 = 0.

Let

ξ = −a
q+1 + 1

aq+1
∈ GF(q).

Then the last equation reads(
(m1 −m2)

(m1 −m2)q
mq

1 −m1 +
b

a

)q+1

= ξ. (2.14)

Henceforth we assume that
‖a‖ 6= −1.

With

m1 = α+ iβ, m2 = γ + iδ,
b

a
= u+ iv,

(2.14) reads (
(α− γ) + i(β − δ)
(α− γ)− i(β − δ)

(α− iβ)− (α+ iβ) + u+ iv

)q+1

= ξ,



258 Ars Math. Contemp. 14 (2018) 251–265

whence

(uα− uγ − svβ + svδ)2 − s(2βγ − 2αδ − u(β − δ) + v(α− γ))2

− ξ((α− γ)2 − s(β − δ)2) = 0,

that is,

(u(α− γ)− sv(β − δ))2 − s(2βγ − 2αδ − u(β − δ) + v(α− γ))2

− ξ((α− γ)2 − s(β − δ)2) = 0. (2.15)

With
γ = α− γ, δ = β − δ,

Equation (2.15) becomes

(uγ − svδ)2 − s(−2βγ − 2αδ − uδ + vγ)2 − ξ(γ2 − sδ2) = 0, (2.16)

which can be viewed as a quadratic form in γ and δ:

F (γ, δ) = (u2 − v2s+ 4vβs− 4β2s− ξ) γ2 + 2(−2uβs+ 2vαs− 4αβs) γδ

+ (−u2s− 4uαs+ v2s2 − 4α2s+ sξ) δ
2

(2.17)

with discriminant

∆ = −u4s+ 2u2v2s2 + 2u2sξ − v4s3 − 2v2s2ξ − sξ2

+ (−4u3s+ 4uv2s2 + 4usξ)α+ (−4u2vs2 + 4v3s3 + 4vs2ξ)β

− 8uvs2 αβ + (−4u2s+ 4sξ)α2 + (−4v2s3 − 4s2ξ)β2.

Note that P (x, y) ∈ U if and only if ∆ = λ2 for some λ ∈ GF(q). This leads us to
consider the quadric Q in AG(3, q) of equation

a00 + a01X + a02Y + a12XY + a11X
2 + a22Y

2 − Z2 = 0,

where

a00 = −u4s+ 2u2v2s2 + 2u2sξ − v4s3 − 2v2s2ξ − sξ2,
a01 = −4u3s+ 4uv2s2 + 4usξ,

a02 = −4u2vs2 + 4v3s3 + 4vs2ξ,

a12 = −8uvs2,

a11 = −4u2s+ 4sξ,

a22 = −4v2s3 − 4s2ξ.

The above coefficients are related by the following equations:

(i) a00 − 1
2 ( 1

2a01u−
1
2a02v) = sξ(u2 − sv2 − ξ);

(ii) 1
2a01 −

1
2 (a11u− 1

2a12v) = 0;
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(iii) 1
2a02 −

1
2 ( 1

2a12u− a22v) = 0.

Therefore, the determinant D of the 4× 4 matrix associated with Q is equal to −sξ(u2 −
sv2 − ξ) multiplied by the determinant of the cofactor of a00. The latter determinant
a11a22 − 1

4a
2
12 is equal to

D0 = s3ξ(u2 − sv2 − ξ) = s3(aq+1 + bq+1 + 1)(aq+1 + 1). (2.18)

It turns out that

D = −(s2ξ(u2 − sv2 − ξ))2.

Observe that ξ = 0 if and only if aq+1 = −1, while

u2 − sv2 − ξ =
bq+1

aq+1
+
aq+1 + 1

aq+1
=
aq+1 + bq+1 + 1

aq+1

vanishes only for P (a, b) ∈ U . Therefore,Q is non-degenerate. More precisely, the quadric
Q is either elliptic or hyperbolic according as q ≡ −1 (mod 4) or q ≡ 1 (mod 4). The
plane at infinity cuts out fromQ a conic C with homogeneous equation a11X2 +a12XY +
a22Y

2−Z2 = 0. Observe that C is non-degenerate byD0 6= 0. Thus, the number of points
ofQ inAG(3, q) is q2±q with q ≡ ±1 (mod 4). Furthermore, the point at infinity Z∞ on
the Z-axis does not lie on Q, and it is an external point or an internal point to C according
as −D0 is a non-zero square or a non-square in GF(q). Therefore, the number of tangents
to Q through Z∞ in AG(3, q) is equal to q − 1 or q + 1 according as −D0 is a (non-zero)
square or a non-square in GF(q). From the above discussion, the numbers Ns and Nt of
secants and tangents to Q through Z∞ are those given in the following lemma:

Lemma 2.5. For q ≡ −1 (mod 4), either Nt = q + 1, Ns = 1
2 (q − 1)2, or Nt = q −

1, Ns = 1
2 (q2−2q−1), according asD0 is a (non-zero) square or a non-square in GF(q).

For q ≡ 1 (mod 4), either Nt = q− 1, Ns = 1
2 (q2 + 1), or Nt = q+ 1, Ns = 1

2 (q2− 1),
according as D0 is a (non-zero) square or a non-square in GF(q).

Going back to the discriminant ∆, we see that ∆ vanishes for Ns + Nt ordered pairs
(α, β), that is, Ns + Nt is the number of lines `1 through P (a, b) for which there exists
a line `2 such that (`1, `2) is a good line-pair. For each `1 counted in Nt (resp. Ns), we
have q − 1 (resp. 2(q − 1)) such lines `2, since if (2.17) has a non-trivial solution (γ̄, δ̄) in
GF(q)×GF(q) then it has exactly q − 1 solutions, the multiples of (γ̄, δ̄) by the non-zero
elements of GF(q).

If we do not count the q + 1 tangents to U through P (a, b), each of the lines through
P (a, b) counted in Ns is in at least 2(q − 1)− (q + 1) = q − 3 good line-pairs. Therefore
Lemma 2.5 has the following corollary.

Theorem 2.6. Let P (a, b) be a point of AG(2, q2) outside U . If a 6= 0, ‖a‖ 6= −1 and
q > 3, then there exist at least two non-tangent lines `1, `2 of U through P , such that the
non-tangent lines ¯̀

1 and ¯̀
2 meet in a point of U . Further, if q > 5 then `1 and `2 may be

chosen among the lines through P (a, b) other than the horizontal lines and those passing
through the origin.
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3 Unitals in Moulton planes
Let T be a non-empty subset of the multiplicative group of GF(q). The (affine) Moulton
plane MT (q2) which is considered in our paper is the affine plane coordinatized by the left
quasifield GF(q2)(+, ◦) where

x ◦ y =

{
xy if ‖x‖ 6∈ T ,
xyq if ‖x‖ ∈ T ,

with ‖x‖ = xq+1 being the norm of x ∈ GF(q2) over GF(q). Geometrically, MT (q2) is
constructed on AG(2, q2) by replacing the non-vertical lines with the graphs of the func-
tions

Y = X ◦m+ b. (3.1)

This also shows that to the non-vertical line ` of equation Y = Xm+ b there corresponds
the line of equation ˜̀ of equation Y = X ◦m + b in MT (q2), and viceversa. It is useful
to look at the partition of the points outside the Y -axis into q− 1 subsets Si, called stripes,
where P (x, y) ∈ Si if and only if ‖x‖ = ωi with ω a fixed primitive element of GF(q).
Such stripes were already defined in Section 2; here we just abbreviate the subscript ωi by
i. In fact, moving to MT (q2) the point-line incidences P ∈ ` in AG(2, q2) do not alter as
long as P ∈ Si with ωi 6∈ T . The projective Moulton plane is the projective closure of
MT (q2) and it has the same points at infinity as AG(2, q2). For a similar description of
Moulton planes see also [3, 4, 26].

The dual of the Moulton plane is the André plane AT (q2) coordinatized by the right
quasifield GF(q2)(+, ∗) where

x ∗ y =

{
xy if ‖x‖ 6∈ T ,
xqy if ‖x‖ ∈ T .

In this duality, the correspondence occurs between the point (u, v) of MT (q2) and the line
of equation Y = u ∗ X − v, as well as between the line of equation Y = X ◦ m + b
and the point (m,−b) of AT (q2). The correspondence between points at infinity and lines
through Y∞, and viceversa, is the same as the canonical duality between PG(2, q2) and its
dual plane PG∗(2, q2). If T consists of just one element, then the arising André planes are
pairwise isomorphic and they are also known as Hall planes.

Let U be the classical unital in PG(2, q2) given in its canonical form (2.1). We prove
that U is an inherited unital in the Moulton plane, that is, the point-set of U is a unital in
MT (q2) as well.

Theorem 3.1. Let U be the classical unital in PG(2, q2) given in its canonical form (2.1).
Then, for any T , U is a unital in the projective Moulton plane MT (q2) as well.

Proof. In the very special case T = {−1}, the proof is straightforward. It is enough to
show that if a non-vertical line ` of equation Y = Xm+ b meets U in a point P (x, y) with
‖x‖ = −1 then y = 0 and x = −b/mwith (−b/m)q+1 = 1. In fact, the corresponding line
˜̀ in MT (q2) has the same property: if P (x, y) ∈ ˜̀∩ U then y = 0 and x = (−b/mq)q+1.
Since (−b/m)q+1 = (−b/mq)q+1, the assertion follows for T = {−1}.

In the general case, it suffices to exhibit a bijective map from ` ∩ U to ˜̀∩ U for every
line ` of AG(2, q2). We may limit ourselves to non-vertical lines with non zero slopes. Let
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Y = Xm + b be the equation of such a line ` and take any point P (x, y) lying in ` ∩ U .
Then m 6= 0 and x = (y − b)m−1. Define the map ϕ : ` 7→ ˜̀by

ϕ(P ) =

{
P ((y − b)m−1, y) for ‖x‖ 6∈ T,
P ((y − b)m−q, y) for ‖x‖ ∈ T.

Obviously, ϕ(P ) = P whenever ‖x‖ 6∈ T .
Since ϕ is bijective, it suffices to show that P ∈ U yields ϕ(P ) ∈ U , and the converse

also holds. P (x, y) = ((y − b)m−1, y) ∈ U if and only if

((y − b)m−1)q+1 + yq+1 − 1 = (y − b)q+1(m−1)q+1 + yq+1 − 1 = 0.

By (mq)q+1 = mq+1, the latter equation is equivalent to

((y − b)q+1(m−q)q+1 + yq+1 − 1 = ((y − b)m−q)q+1 + yq+1 − 1 = 0,

whence the claim follows.

Theorem 3.1 and its proof also show that if ` is a tangent to U in AG(2, q2) then the
corresponding line ˜̀is a tangent to U in the projective Moulton plane, and the converse also
holds. In particular, the tangent to U at a point outside the X-axis is the line ` of equation
Y = X(−cd−1)q − d−q with tangency point P (c, d). Therefore, the corresponding line
˜̀ of equation Y = X ◦ (−cd−1)q − d−q is a tangent to U at the point ϕ(P ) = P̄ (c̄, d)
with c̄ = c or c̄ = c(cd−1)q−1 according as ‖c‖ 6∈ T or ‖c‖ ∈ T . Since ‖c̄‖ = ‖c‖, the
tangency points of ` and ˜̀ lie in the same stripe. The tangents of U with tangency point at
infinity contain the origin and each of them has equation Y = Xm with mq+1 + 1 = 0.
By the proof of Theorem 3.1, the corresponding lines Y = X ◦m are the tangents of U in
the projective Moulton plane.

Now look at dual plane of the projective Moulton plane MT (q2) which is the projective
André plane AT (q2). In this duality, the tangent line ˜̀ of U with equation Y = X ◦
(−cd−1)q − d−q corresponds to the point P ∗(u∗, v∗) ∈ AT (q2) where u∗ = −(−cd−1)q

and v∗ = d−q . Since ((−cd−1)q)
q+1

+(d−q)
q+1

+1 = 0, we have u∗q+1+v∗q+1+1 = 0.
Similarly, the tangent line ˜̀of U with equation Y = X ◦m, mq+1 + 1 = 0, corresponds to
the point P ∗(u∗, v∗) ∈ AT (q2) where u∗ = u and v∗ = 0. Therefore u∗q+1+v∗q+1+1 =
0. In terms of PG∗(2, q2), the Desarguesian plane which gives rise to the projective André
plane AT (q2), the points P ∗(u∗, v∗) lie on the classical unital U∗ given in its canonical
form. This shows that U∗ can be viewed as an inherited unital in the projective André
plane AT (q2).

Remark 3.2. If T = {−1} then the unique stripe where incidence are altered meets U in
q+ 1 points lying on the X-axis. The unital U∗ in the Hall plane is the Grüning unital [16]
while for T = {i} with ωi 6= −1, U∗ in the Hall plane is the Barwick unital [7].

A O’Nan configuration of a unital consists of four blocks b1, b2, b3 and b4 intersecting
in six points P1, P2, P3, P4, P5 and P6 as in Figure 2. As mentioned in the introduction, the
Hermitian unital contains no O’Nan configuration. This fundamental result due to O’Nan
dates back to 1972, see [22] and [9, Section 4.2].

Lemma 3.3. If T = {−1} then the unital U of MT (q2) is non-classical.
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Figure 2: O’Nan configuration of four blocks and six points.

Proof. We show that the unital U in MT (q2) with T = {−1} contains a O’Nan configura-
tion. Take α ∈ GF(q2) such that ‖α‖ = −1. The line `1 of equation Y = X − α meets
U in Q(α, 0) and q more points. Take m ∈ GF(q2) such that mq−1 = −1. The line `2 of
equation Y = Xm + αm meets U in R (−α, 0) and q more points. Further, the common
point of `1 and `2 is

S =

(
−α(m+ 1)

(m− 1)
,
−2αm

(m− 1)

)
.

Since∥∥∥∥−α(m+ 1)

(m− 1)

∥∥∥∥ = −αq+1 (m+ 1)q+1

(m− 1)q+1
=

− mq+1 +mq +m+ 1

mq+1 −mq −m+ 1
= −−m

2 −m+m+ 1

−m2 +m−m+ 1
= −1,

the point S is outside U . Further, in the Moulton plane MT (q2) with T = {−1}, the
corresponding lines ˜̀

1 and ˜̀
2 meet in Q(α, 0) which is a point of U .

To show that U is not a classical unital in our Moulton plane MT (q2), it suffices to
exhibit a O’Nan configuration {P0, P1, P2, P3, P4, P5} lying in U . The idea is to start off
with P0 = Q(α, 0), and to find four more affine points P1, P2 ∈ ˜̀

1 and P3, P4 ∈ ˜̀
2 each

lying in U , so that U also contains one of the two diagonal points P5 of the quadrangle
P1P2P3P4 that are different from P0. First we show that P1 ∈ `1. Let P1 = P1(x1, y1).
Then, ‖x1‖ 6= −1. In fact, otherwise, we would have yq+1

1 = 0 and hence y1 = 0,
contradicting P0 6= P1. Similarly, P2 ∈ `1 and P3, P4 ∈ `2. Now we use a counting
argument in PG(2, q2) to show that the quadrangle P1P2P3P4 can be chosen in such a
way that P5 ∈ U . Since S = `1 ∩ `2 is outside U , the lines of U joining a point of ¯̀

1 with
a point of ¯̀

2 cover (q + 1)2(q − 1) points of U other than those lying in ¯̀
1 ∪ ¯̀

2. From
(q+ 1)2(q− 1) > q3 + 1− 2q, there exists a quadrangle P1P2P3P4 in PG(2, q2) such that

P1, P2 ∈ `1 ∩ U , P3, P4 ∈ `2 ∩ U , P5 = P1P3 ∩ P2P4 ∈ U .
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Since (q+1)2(q−1) > q3 +1−2q+(q+1) we may also assume that either P5 ∈ `∞∩U ,
or P5 = (x5, y5) with ‖x5‖ 6= −1. In particular, P5 is not on the X-axis.

If P1, P2 6= Q and P3, P4 6= R then P5 remains a diagonal point of the quadrangle
P1P2P3P4 in MT (q2), and we are done.

Otherwise, take the cyclic subgroup G of PGU(3, q) of order q + 1 fixing the point
S and preserving each line through S. Since |G| ≥ 4, G contains an element g such that
Q 6∈ {g(P1), g(P2)} and R 6∈ {g(P3), g(P4)}. Then g takes the quadrangle P1P2P3P4 to
another one, whose vertices are different from bothQ andR. The image g(P5) is on the line
r through S and P5. Since r ∩ U has at most one point on the X-axis, there exists at most
one g ∈ G such that g(P5) lies on theX-axis. Therefore, if |G| ≥ 5, some g ∈ G also takes
P5 either to a point of infinity or a point (x′5, y

′
5) with ‖x′5‖ 6= −1. In the Moulton plane

MT (q2), the O’Nan configuration P0, g(P1), g(P2), g(P3), g(P4), g(P5) arising from the
quadrangle g(P1)g(P2)g(P3)g(P4) lying in U has also two diagonal points, namely P0 and
g(P5), belonging to U .

Remark 3.4. Lemma 3.3 can also be obtained from Grüning’s work. In fact, if T = {−1}
then U is isomorphic to its dual, see [16, Theorem 4.2], and the dual of U contains some
O’Nan configuration, see [16, Lemma 5.4c].

We conjecture that Lemma 3.3 holds true for any T . Theorem 3.5 proves this as long
as T is small enough. On the other end, Theorem 3.6 provides Moulton planes with large
T for which the conjecture holds.

Theorem 3.5. If q > 5 and

|T | < 1
2

(
(q + 1)−

√
1
2 (q + 1)(q + 3)

)
, (3.2)

then U in the Moulton plane MT (q2) is a non-classical unital.

Proof. As in the proof of Lemma 3.3, we show the existence of a O’Nan-configuration
{P0, P1, P2, P3, P4, P5} lying in U . For a point P (a, b) ∈ AG(2, q2) with a 6= 0 and
‖a‖ ∈ T \ {−1}, Theorem 2.6 ensures the existence of two non-vertical lines `1 and `2
through P such that

(i) neither `1 nor `2 is horizontal or passes through the origin,

(ii) P0 = ¯̀
1 ∩ ¯̀

2 ∈ U .

From Lemma 2.1, there exist at least q + 1 − 2|T | points P (x, y) lying on `1 ∩ U such
that ‖x‖ 6∈ T , and the same holds for `2 ∩ U . Therefore, Theorem 2.4 applies with λ =
q+1−2|T | showing that if (3.2) is assumed, then the unital U in MT (q2) contains a O’Nan
configuration.

Theorem 3.6. If q > 5, then there exists a T with |T | > q−4 such that U is a non-classical
unital in MT (q2).

Proof. From the proof of Theorem 3.5, some Moulton plane MT (q2) contains O’Nan con-
figurations lying in U . If {P0, P1, P2, P3, P4, P5} one of them, add each non-zero element
s ∈ GF(q) to T which satisfies the condition s 6= ‖xi‖ for Pi = Pi(xi, yi) with 1 ≤ i ≤ 5.
Then T expands and its size becomes at least q−4. In the resulting Moulton plane MT (q2),
the above hexagon {P0, P1, P2, P3, P4, P5} is still a O’Nan configuration lying in the uni-
tal U .
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Abstract

We define a new class of a rank-3 matroid called a trilateral matroid. When defined, the
ground set of such a matroid consists of the points of an n3-configuration, and its bases are
the point triples corresponding to non-trilaterals within the configuration. We characterize
which n3-configurations induce trilateral matroids and provide several examples.

Keywords: Configurations, trilaterals, matroids.

Math. Subj. Class.: 05B30, 51E30, 05C38, 05B35

1 Introduction
A (combinatorial) n3-configuration C is an incidence structure consisting of n distinct
points and n distinct blocks for which each point is incident with three blocks, each block
is incident with three points, and any two points are incident with at most one common
block. If C may be depicted in the real projective plane using points and having (straight)
lines as its blocks, then it is said to be geometric. As observed in [6] (pg. 17–18), it is
evident that every geometric n3-configuration is combinatorial, but the converse of this
statement does not hold.

A trilateral in a configuration is a cyclically ordered set {p0, b0, p1, b1, p2, b2} of pair-
wise distinct points pi and pairwise distinct blocks bi such that pi is incident with bi−1 and
bi for each i ∈ Z3 [2]. We may without ambiguity shorten this notation by listing only
the points of the trilateral as {p0, p1, p2}, or more simply as p0p1p2. A configuration is
trilateral-free if no trilateral exists within the configuration. Unless stated otherwise, the
n3-configurations we shall examine are point-line configurations, so that the blocks are
lines. But we shall investigate an example of a point-plane configuration in Section 3.

Following the terminology of [7], we define a matroid M to be an ordered pair (E,B)
consisting of a finite ground setE and a nonempty collection B of subsets ofE called bases
which satisfy the basis exchange property:

∗The author wishes to acknowledge the anonymous referee for the suggestion to consider point-plane n3-
configurations as potential sources for trilateral matroids.

E-mail address: mwr23@georgetown.edu (Michael W. Raney)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/
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Definition 1.1. If B1, B2 ∈ B and x ∈ B1 −B2, then there exists y ∈ B2 −B1 such that
B1 − x ∪ y ∈ B.

It is a consequence of this definition that any two bases ofM share the same cardinality;
this common cardinality is called the rank of the matroid. See [7], pg. 16–18 for the details.

It is a standard result that any n3-configuration C defines a rank-3 linear matroid, or vec-
tor matroid, M(C) = (E,B) whose ground set E consists of the points {p1, p2, . . . , pn} of
C and whose set of bases B consists of the point triples {pa, pb, pc} which are not collinear
in C. Hence the cardinality of B is

(
n
3

)
− n for the linear matroid M(C) induced by C.

In this work we pose the following associated question: under what conditions do the
trilaterals of an n3-configuration C induce a rank-3 matroid Mtri(C) = (E,B) whose
ground set E again consists of the points of C, but now whose bases are the point triples
corresponding to non-trilaterals? This question, to our knowledge, has not previously been
considered in the literature on configurations and matroids.

Definition 1.2. A trilateral matroid Mtri(C) = (E,B), when it exists, is a matroid defined
on the set E of points of an n3-configuration C whose set of bases B consists of all of the
non-trilaterals of C. When Mtri(C) exists, we say that C induces Mtri(C).

We shall see that, in contrast to the linear matroid setting, seldom is it the case that
an n3-configuration C induces a trilateral matroid Mtri(C). But thankfully such matroids
do exist; for instance, any trilateral-free configuration induces a trilateral matroid, since
in this setting every point triple forms a base of the matroid. In other words, if C is a
trilateral-free n3-configuration, then Mtri(C) exists and furthermore Mtri(C) ∼= U3,n, the
uniform matroid of rank 3 on n points. Thus our initial motivation to define this new class
of matroids stems from the desire to enlarge the class of trilateral-free configurations.

For purposes of instruction, we regard an example of a 153-configuration which induces
a trilateral matroid on its points. Here is a combinatorial description of this configuration.

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14 l15
1 1 1 2 2 3 3 4 5 5 7 7 9 10 13
2 4 6 4 6 8 11 6 8 9 8 9 11 11 14
3 5 7 14 10 12 13 12 10 13 14 15 12 15 15

This configuration has 10 trilaterals:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10
1 1 1 2 3 7 9 9 9 11
2 2 4 4 11 14 11 11 13 13
4 6 6 6 12 15 13 15 15 15

In Figure 1 we see both a diagram of this 153-configuration and a geometric representation
of its trilateral matroid. In the geometric representation, each trilateral (that is, each non-
basis element) is collinear.

Note that the configuration contains two complete quadrangles. The first complete
quadrangle is determined by the point set {1, 2, 4, 6}, and the second by {9, 11, 13, 15}.
This means, for example, that no three points in {1, 2, 4, 6} are collinear, and each pair
of points is incident to a line of the configuration. So all four point triples present within
{1, 2, 4, 6} give trilaterals, and hence are not bases of the matroid. Thus every 2-element
subset of {1, 2, 4, 6} is independent, but no 3-element subset of {1, 2, 4, 6} is. Therefore
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Figure 1: A 153-configuration with 10 trilaterals, and a geometric representation of the
matroid induced by these trilaterals.

the four-point line that represents the level of dependency of {1, 2, 4, 6} in the geomet-
ric representation is appropriate. This minor is isomorphic to U2,4, which is the unique
excluded minor for the class of binary matroids ([7], pg. 501).

We must note that there is a fundamental difference between trilateral matroids and
linear matroids. Admittedly a finite set of points and lines in the plane gives a (linear)
matroid if and only if any pair of lines meet in at most one point. For suppose there exist
two points a and b which are met by two lines, so that points a, b, c are collinear, points
a, b, d are collinear, but a, b, c, d are not all on one line. Pick a new point e so that c, d, and e
are not collinear, and so that a, b, and e are not collinear. LetB1 = abe andB2 = cde ∈ B;
both are bases of the linear matroid. We have B1 − B2 = ab and B2 − B1 = cd. Let
x = e ∈ B1 − B2, so B1 − x = cd. But if y ∈ B2 − B1 = ab, then B1 − x ∪ y equals
either abc or abd, neither of which is a base.

Hence a linear matroid cannot have two points common to more than one line. But
a trilateral matroid can; if both abc and abd are trilaterals, then the configuration has a
chance to induce a trilateral matroid if trilaterals acd and bcd are also present, meaning
that points c and d are incident to a particular line of the configuration. In other words,
points {a, b, c, d} form a complete quadrangle within the configuration. We shall explore
this necessity further in Theorem 1.7.

Any point of an n3-configuration is incident to three lines; these three lines are then
incident to six points which are distinct from the original point and from each other. Con-
sequently, the maximum number of trilaterals incident to a given point is

(
6
3

)
− 3 = 12,

since lines are not trilaterals. This maximum is achieved by every point of the Fano 73-
configuration (the smallest n3-configuration) given in Figure 2.

Proposition 1.3. Suppose an n3-configuration C induces a trilateral matroid Mtri(C) =
(E,B). Then each point of the configuration is incident to at most six trilaterals.

Proof. Let a be a point in C, and let abc, ade, and afg be the lines in C incident to a. Each
of these lines belongs to B, and hence there are at most

(
6
3

)
− 3 = 12 trilaterals incident to

a, namely

abd, abe, abf, abg, acd, ace, acf, acg, adf, adg, aef , and aeg.
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Figure 2: The Fano 73-configuration.

Since B1 = abc and B2 = ade are bases of Mtri(C), the basis exchange property applies
to them. This means that if x ∈ B1 − B2 = bc, there must exist some y ∈ B2 − B1 = de
such that B1 − x∪ y ∈ B. Consequently, letting x = b, we find at least one of acd and ace
must be a base, hence not a trilateral. Likewise, letting x = c, it follows that at least one of
abd and abe is not a trilateral.

Applying a similar analysis to the pair of bases B1 = abc,B2 = afg, we find that at
least one of acf and acg is not a trilateral, and at least one of abf and abg is not a trilateral.
Finally, given B1 = ade,B2 = afg, we find that at least one of aef and aeg is not a
trilateral, and at least one of adf and adg is not a trilateral. Hence at least six of the 12
possible non-collinear triples are not trilaterals, so at most six are trilaterals.

Corollary 1.4. Suppose an n3-configuration C induces a trilateral matroid Mtri(C) =
(E,B). Then C contains at most 2n trilaterals.

Although Corollary 1.4 admittedly serves as a crude necessary condition for an n3-
configuration to induce a trilateral matroid, it does permit us to eliminate some of the
smallest n3-configurations from consideration, such as the Fano 73-configuration (which
contains 28 trilaterals) and also the Möbius-Kantor 83-configuration (which contains 24
trilaterals). Additionally, two of the three non-isomorphic 93-configurations may be dis-
missed from consideration by this criterion, although the Pappus 93-configuration, which
contains 18 trilaterals, is still a possibility. We shall soon see, though, that the Pappus
configuration does not induce a trilateral matroid on its points.

The upper bound indicated by Proposition 1.3 is sharp, for it turns out that the Desar-
gues 103-configuration induces a trilateral matroid. Each of the points of the Desargues
configuration is incident to six trilaterals.

Figure 3: The Desargues 103-configuration.
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We now establish our main result. This will require the introduction of two types of
geometric obstructions (near-complete quadrangles and near-pencils) that, when present
within an n3-configuration C, individually preclude the existence of Mtri(C).

Definition 1.5. A near-complete quadrangle [ab : cd] consists of four points a, b, c, and d
of the configuration, no three of which are collinear, for which five of the six possible lines
connecting each pair of points exist within the configuration, except for the pair cd.

Figure 4: Near-complete quadrangle [ab :cd].

For example, we note the presence of the near-complete quadrangle [ab : cd] in the
Pappus configuration in Figure 5.

Figure 5: The Pappus 93-configuration.

It is important to note that, by our conventions, a complete quadrangle determined by
points {a, b, c, d} does not contain a near-complete quadrangle [ab : cd], since there exists
a line in the configuration incident to both c and d. So the Desargues configuration, for
example, possesses five complete quadrangles but no near-complete quadrangle.

As we shall witness in greater detail, n3-configurations which induce trilateral matroids
may contain complete quadrangles. Indeed, in a linear matroid, given any two points, at
most one line passes between them. But, two trilaterals (call them abc and abd) may share
the points a, b provided that acd and bcd are also trilaterals, that is, that line cd is also
present within the configuration.

Definition 1.6. A near-pencil [a : bcd] consists of four points a, b, c, and d of the configu-
ration, with a incident to each of b, c, and d, and with bcd a line of the configuration.

We regard the near-pencil [a : bcd] in the Möbius-Kantor 83-configuration given in
Figure 7.

The notations [ab : cd] and [a : bcd] for a near-complete quadrangle and a near-pencil,
respectively, are similar in that the points incident to three of the lines which determine the
object appear to the left of the colon, and those points incident to two lines appear to the
right of the colon.
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Figure 6: Near-pencil [a :bcd].

Figure 7: The Möbius-Kantor 83-configuration.

Theorem 1.7. Let C be an n3-configuration, and let B be the set of the non-trilaterals of
C. Then C induces a trilateral matroid Mtri(C) if and only if no four points of C determine
either a near-complete quadrangle or a near-pencil.

Proof. (⇒) First suppose that C contains a near-complete quadrangle [ab :cd]. Let e be the
third point on line ace.

Case 1: bde is a line in C. Then the following subfiguration is present inside C.

LetB1 = ace andB2 = bde; bothB1, B2 ∈ B. ThenB1−B2 = ac andB2−B1 = bd.
Let x = c ∈ B1 − B2; then B1 − x = ae. But both abe and ade are trilaterals, so
B1 − x ∪ y 6∈ B for all y ∈ B2 −B1. Hence B cannot be the set of bases of a matroid.

Case 2: bde is not a line in C. Then inside of C we have

Note that edge be cannot be present, for if so point b would have four lines incident to it,
but every point in an n3-configuration is incident to three lines.

Let B1 = abe,B2 = acd ∈ B. Take e ∈ B1 − B2; we have B1 − e = ab. But
B2 −B1 = cd, and both abc and abd are trilaterals. Hence B cannot be the set of bases of
a matroid.
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Now suppose C contains a near-pencil [a :bcd] as indicated in the diagram. Let e be the
third point on line ace.

We have B1 = ace,B2 = bcd ∈ B. Choose e ∈ B1 − B2. Then B1 − e = ac. But
B2 −B1 = bd, and both abc and acd are trilaterals. Hence B cannot be the set of bases of
a matroid.

(⇐) Suppose that C does not induce a trilateral matroidMtri(C). Since B cannot be the
set of bases of a matroid, there must exist a pair B1, B2 in B for which the basis exchange
property is violated. So there must exist x ∈ B1 − B2 such that for all y ∈ B2 − B1,
B1 − x ∪ y is a trilateral.

There are several cases to consider, some of which are vacuous.
Case 1: B1 = B2. Then B1 − B2 = ∅, so a violation of the basis exchange property

cannot occur in this circumstance.
Case 2: B1 = abc, B2 = abd (distinct letters label distinct points in C.) Then B1 −

B2 = c andB2−B1 = d. For a violation to occur, we require thatB1−c∪d be a trilateral.
But B1 − c ∪ d = B2 ∈ B. Hence no violation can occur in this case as well.

Case 3: B1 = abc, B2 = ade. Then B1−B2 = bc and B2−B1 = de. Without loss of
generality we assume that x = b. For a violation of the basis exchange property to occur,
both acd and ace must be trilaterals.

Subcase 3.1: ade is a non-collinear non-trilateral. Then [ac : de] is a near-complete
quadrangle.

Subcase 3.2: ade is a line. Then [c :ade] is a near-pencil.

Case 4: B1 = abc, B2 = def , so B1 ∩ B2 = ∅. We may let x = a without loss of
generality. So for a violation of the basis exchange property to occur, all three of bcd, bce
and bcf must be trilaterals.

Subcase 4.1: Two of d, e, f are collinear with b. Without loss of generality, we assert
that bde is a line. Then [c :bde] is a near-pencil.

Subcase 4.2: No two of d, e, f are collinear with b. Then b must be incident to four
lines, a contradiction.
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2 Examples
We have already observed, by Corollary 1.4, that the Fano 73-configuration, the Möbius-
Kantor 83-configuration, and two of the three 93-configurations cannot induce trilateral
matroids. It is worth noting that the Fano configuration contains no near-complete quad-
rangle, but many near-pencils; given any line abc of the Fano configuration, and any fourth
point d not on this line, then [d : abc] is a near-pencil. Since by Figure 5 we see that
the Pappus 93-configuration contains a near-complete quadrangle, by Theorem 1.7 it also
cannot induce a trilateral matroid.

It is worth noting that there is a matroid associated with the Fano configuration in the
sense that no three-element subset of the point set can be an independent set, since every
point triple determines a trilateral. But this is really a degenerate case; the matroid is U2,7,
so every 2-element subset of the point set is independent, but no 3-element subset is. Since
U2,7 is a rank-2 matroid, and not rank-3, we will not deem it to be a trilateral matroid.

The smallest configuration which does generate a rank-3 trilateral matroid is the De-
sargues 103-configuration provided in Figure 3. There we may readily observe that the
configuration contains neither a near-complete quadrangle nor a near-pencil. Since the De-
sargues configuration contains 20 trilaterals, there are

(
10
3

)
− 20 = 100 bases in the associ-

ated matroid. Each of the other nine 103-configurations contains at least one near-complete
quadrangle, and therefore the Desargues configuration is the smallest configuration which
induces a trilateral matroid.

Figure 8 depicts a geometric representation of the the trilateral matroid induced by the
Desargues configuration in the following fashion. If three points happen to be collinear in
the geometric representation, then these points describe a trilateral in the original configura-
tion. Each of the five four-point lines in this representation thus describes four point triples
which determine trilaterals; these four points consequently are associated with a complete
quadrangle in the Desargues configuration. The Desargues configuration contains five such
complete quadrangles, and each point of the configuration is involved in two quadrangles.
So we arrive at the star in Figure 8, which is itself a (102, 54)-configuration. This means
that there are ten points, with each point incident to two lines, and five lines, with each line
incident to four points.

Figure 8: A geometric representation of the trilateral matroid associated with the Desargues
configuration.

Interestingly, there is no 113-configuration which induces a trilateral matroid. In fact,
each of the 31 113-configurations contains at least one near-complete quadrangle.

Among the 229 123-configurations, there is only one which does not contain a near-
complete quadrangle. This configuration also happens not to contain a near-pencil, and
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hence induces a trilateral matroid on its points. This configuration is the Coxeter 123-
configuration shown in Figure 9.

12A:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12
1 1 1 2 2 3 3 4 5 5 6 7
2 4 6 6 8 4 9 8 7 9 9 8
3 5 7 10 11 12 11 10 11 10 12 12

Figure 9: The Coxeter 123-configuration.

The automorphism group of this configuration has order 72. This configuration is listed
as D88 in Daublebsky von Sterneck’s enumeration of the first 228 123-configurations in
1895 [4]; the last of the 229 123-configurations was found much later in 1990 by Gropp [5].
All 229 123-configurations have been recently re-examined in [1], and the provided geo-
metric realization of D88 in Figure 9 stems from this work. Again, by inspection, we see
that no near-complete quadrangle is present, as well as no near-pencil.

This configuration contains 12 trilaterals. Each point of the configuration is incident to
three of them, with no pair of points belonging to the same trilateral. So these trilaterals
are blocks of another 123-configuration defined on the same set of points, namely

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
1 1 1 2 2 3 4 4 5 6 6 7
2 3 5 3 8 9 5 8 9 7 9 8
6 4 7 11 10 12 10 12 11 12 10 11

It is not hard to see that this configuration is isomorphic to the previous one. In fact, this is
the first instance of a more general phenomenon.

Theorem 2.1. Suppose that an n3-configuration C has n trilaterals, with every point inci-
dent to three trilaterals and no pair of points incident to more than one trilateral. Let Ctri
be the n3-configuration formed by these n trilaterals. Then Ctri ∼= C.

Proof. It suffices to show that the dual of C and the dual of Ctri are isomorphic. Regard one
of the lines of the respective duals; call this line p. This is a point of each of the original
configurations. The local structure is indicated by the diagram in Figure 10.

We associate the line a with the trilateral ta as follows: of the three trilaterals incident
to p, ta is chosen so that a is not involved in determining this trilateral. In a similar manner,
line b is identified with trilateral tb and line c is identified with trilateral tc. Our hypotheses
allow us to carry this correspondence across the respective dual configurations, with the
resulting correspondence between the points of C and of Ctri (the blocks of the duals) the
identity map. Therefore Cdual ∼= (Ctri)dual, whence C ∼= Ctri.
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Figure 10: Lines and trilaterals incident to point p.

Next, among the 2036 133-configurations, there are four which do not contain a near-
complete quadrangle. And among these four, there is only one which does not contain a
near-pencil. This is Configuration 13A, given in Figure 11. The automorphism group of

Figure 11: A 133-configuration which induces a trilateral matroid.

this configuration has order 39. The configuration contains 13 trilaterals, and each point is
incident to three trilaterals, with no pair of points incident to more than one trilateral. So
we may derive an associated 133-configuration by listing these trilaterals:

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13
1 1 1 2 2 3 4 4 5 6 6 7 9
2 3 5 3 8 11 5 8 10 7 9 8 11
4 7 6 9 10 12 11 13 12 13 11 12 13

By Theorem 2.1 this configuration is isomorphic to Configuration 13A. Configuration 13A
is also isomorphic to the cyclic configuration C3(13, 1, 4), given combinatorially by re-
garding the lines {j, j + 1, j + 4} mod 13 for 0 ≤ j ≤ 12:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13
0 1 2 3 4 5 6 7 8 9 10 11 12
1 2 3 4 5 6 7 8 9 10 11 12 0
4 5 6 7 8 9 10 11 12 0 1 2 3

One may employ these point labels to construct the Paley graph of order 13 as follows.
Draw an edge between labels a and b if and only if a− b is a perfect square mod 13. This
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means that a− b can be ±1, ±3, or ±4 mod 13. We thus obtain the following graph where
each edge is contained in exactly one triangle, and each triangle in the graph corresponds
to a trilateral of the 133-configuration.

Figure 12: Paley graph associated with Configuration 13A.

More generally, the cyclic n3-configuration C3(n, k,m) is given by the lines {j, j +
k, j +m} mod n for 0 ≤ j ≤ n− 1.

Proposition 2.2. For n ≥ 13, the cyclic configuration C3(n, 1, 4) induces a trilateral
matroid on n trilaterals which equals the linear matroid on C3(n, 3, 4). In other words,
Mtri(C3(n, 1, 4)) =M(C3(n, 3, 4)). Moreover, C3(n, 1, 4) ∼= C3(n, 3, 4).

Proof. In order to determine the trilaterals of C3(n, 1, 4), it suffices to ascertain the trilater-
als which involve 0, and then extend from this via a cyclic pattern. The trilaterals involving
0 are:

• 0 3 4 (using the lines {0, 1, 4}, {3, 4, 7}, and {n− 1, 0, 3})
• n−4n−3 0 (using the lines {n−4, n−3, 0}, {n−1, 0, 3}, and {n−5, n−4, n−1})
• n− 3 0 1 (using the lines {n− 4, n− 3, 0}, {n− 3, n− 2, 1}, and {0, 1, 4})

Since n ≥ 13, no extra trilateral involving 0 is formed (for example, if n = 12, then
0 4 8 would be a trilateral.) Hence we see, after extending cyclically, that the trilaterals of
C3(n, 1, 4) form their own configuration, namelyC3(n, 3, 4), and thusMtri(C3(n, 1, 4)) is
the linear matroid corresponding to C3(n, 3, 4). Finally we may recognize that C3(n, 1, 4)
is isomorphic to C3(n, 3, 4) either by utilizing Theorem 2.1 or by applying the correspon-
dence t→ (4− t) mod n.

It turns out thatC3(16, 1, 4) andC3(16, 1, 7) are the smallest examples of non-isomorphic
cyclic C3(n, k,m) configurations having n trilaterals each, and hence their corresponding
trilateral matroids (which are isomorphic to the linear matroids associated with the respec-
tive original configurations) are non-isomorphic to each other as well.

It is possible, however, for a non-cyclic n3-configuration to induce a trilateral matroid
on its n trilaterals, with the trilaterals capable of determining an n3-configuration in their
own right, without the original configuration needing to be cyclic. We have already seen
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Figure 13: A non-cyclic 163-configuration whose trilateral matroid is isomorphic to the
linear matroid associated with the configuration.

one example of this with the Coxeter 123-configuration given in Figure 9. Another example
is the 163-configuration provided in Figure 13 whose automorphism group has order 32.

It is additionally possible for an n3-configuration possessing n trilaterals to induce a
trilateral matroid that is not isomorphic to the linear matroid associated with the origi-
nal configuration. Figure 14 gives a diagram of such a configuration, a 203-configuration
containing 20 trilaterals. It contains two points which are involved in six trilaterals and
four points involved in four trilaterals. A geometric representation of the matroid is also
provided.

Figure 14: A 203-configuration with 20 trilaterals whose trilateral matroid is not isomor-
phic to the linear matroid of the configuration, and a geometric representation of its trilat-
eral matroid.

We next offer an example of of an 183-configuration possessing 20 trilaterals which in-
duces a trilateral matroid. In Figure 15 we provide a picture of this configuration (with sev-
eral pseudolines) and the accompanying geometric representation of its trilateral matroid.
This example presents another instance, in addition to the Desargues 103-configuration, of
an n3-configuration containing more than n trilaterals which induces a trilateral matroid.
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Figure 15: An 183-configuration with 20 trilaterals, and a geometric representation of its
trilateral matroid.

Note that this configuration contains four complete quadrangles.
We now return to the enumeration of the smallest n3-configurations which induce trilat-

eral matroids. There are four 143-configurations which do so. We label these configurations
as 14A, 14B, 14C and 14D, and provide combinatorial depictions of them.

14A:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14
1 1 1 2 2 3 3 4 5 5 6 7 8 9
2 4 6 4 8 7 8 11 6 12 9 10 13 11
3 5 7 9 10 12 11 12 13 14 10 14 14 13

14B:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14
1 1 1 2 2 3 3 4 5 5 6 6 7 8
2 4 6 4 9 7 10 11 10 12 8 9 9 11
3 5 7 8 12 11 12 13 14 13 10 13 14 14

14C:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14
1 1 1 2 2 3 3 4 5 5 6 7 7 10
2 4 6 4 8 6 13 11 8 12 8 9 10 11
3 5 7 9 10 11 14 12 13 14 9 14 12 13

14D:

l1 l2 l3 l4 l5 l6 l7 l8 l9 l10 l11 l12 l13 l14
1 1 1 2 2 3 3 4 5 5 6 6 7 7
2 4 6 4 10 8 12 11 8 10 8 10 9 11
3 5 7 9 13 11 14 12 13 14 9 12 14 13

These configurations contain 14, 10, 10, and 6 trilaterals, respectively. Also, their
automorphism groups have orders 14, 1, 4, and 8, respectively.

Figure 16 gives a realization of Configuration 14A, which is isomorphic to the cyclic
configuration C3(14, 1, 4). Hence we know its trilateral matroid is isomorphic to its linear
matroid by Proposition 2.2.

Configurations 14B and 14C both contain 10 trilaterals, so it is conceivable that their
associated trilateral matroids could be isomorphic. But they are not, for 14B has three
points which are each incident to three trilaterals and one point which is incident to only
one trilateral, whereas Configuration 14C has two points each incident to three trilaterals
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Figure 16: Configuration 14A.

and no point incident to only one trilateral. Figure 17 gives geometric representations of
the trilateral matroids associated with Configurations 14B and 14C, respectively.

Figure 17: Geometric representations for trilateral matroids for Configurations 14B and
14C.

Figure 18 is a rendering for Configuration 14D with several pseudolines, along with a
geometric representation of its associated trilateral matroid.

Proceeding to the n = 15 setting, we encounter a substantial increase, to 220, of the
number of 153-configurations which induce trilateral matroids. One such example is the
Cremona-Richmond configuration provided in Figure 19. It is the smallest example of a
trilateral-free n3-configuration. As it is trilateral-free, the trilateral matroid it induces is the
uniform matroid on 15 points U3,15.

Another example is the cyclic configuration C3(15, 1, 4), whose induced trilateral ma-
troid (with 15 trilaterals) is isomorphic to the linear matroid on C3(15, 1, 4) by Proposi-
tion 2.2. Its automorphism group has order 30. Each of the other 153-configurations which
induces a trilateral matroid contains k trilaterals, where k ∈ {4, 6, 7, 8, 9, 10, 11, 12, 13, 14}.

It is clearly not the case that for all n, there exists a one-to-one correspondence between
the trilateral matroids themselves and the n3-configurations which induce them. We know
this because there are four non-isomorphic trilateral-free 183-configurations [3], so each
consequently must induce the same uniform matroid on 18 points.
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Figure 18: Configuration 14D and its trilateral matroid.

Figure 19: The Cremona-Richmond 153-configuration.

It is of interest to contemplate whether smaller non-isomorphic n3-configurations ex-
ist that induce isomorphic trilateral matroids, and indeed this turns out to be true. In fact,
this property is satisfied by the following pair of non-isomorphic 153-configurations given
in Figure 20. Each contains 8 trilaterals and has a symmetry group of order 48. The

Figure 20: Non-isomorphic 153-configurations which induce the same trilateral matroid on
15 points.

set of points for both configurations consists of the eight vertices of a cube, the centers
of the six faces of the cube, and the center of the cube itself. In the former configura-
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tion the diagonally-opposing points in each face of the cube are incident via a line which
passes through the center of the same face, whereas in the latter configuration one pair of
diagonally-opposing points in each face are incident via a “line” which passes through the
center of the opposite face. The eight trilaterals involved in these respective configura-
tions are identical, and thus their corresponding trilateral matroids are the same. Figure 21
gives this matroid, which is isomorphic to U2,4 ⊕ U2,4 ⊕ U3,7. Hence the number of

Figure 21: The common trilateral matroid.

trilateral matroids that are induced from 153-configurations is smaller than the number of
153-configurations which induce trilateral matroids. Our calculations indicate that there are
214 non-isomorphic trilateral matroids that may be found from the 220 153-configurations
which induce trilateral matroids.

We conclude this section with a table which summarizes the current state of affairs.
Here #c(n) denotes the number of non-isomorphic n3-configurations, #tri(n) denotes the
number of these configurations which induce trilateral matroids, and #mat(n) denotes the
number of non-isomorphic trilateral matroids which arise from these configurations.

n #c(n) #tri(n) #mat(n)
7 1 0 0
8 1 0 0
9 3 0 0

10 10 1 1
11 31 0 0
12 229 1 1
13 2036 1 1
14 21399 4 4
15 245342 220 214

3 A point-plane configuration
A point-plane n3-configuration is an incidence structure consisting of n distinct points and
n distinct planes for which each point is incident with three planes, each plane is incident
with three points, and any two points are incident with at most one common plane. In such
a configuration, we deem a trilateral to be a cyclically ordered set {p0, π0, p1, π1, p2, π2}
of pairwise distinct points pi and pairwise distinct planes πi such that pi is incident with
πi−1 and πi for each i ∈ Z3. Once more we may without ambiguity shorten this notation
by listing only the points of the trilateral as {p0, p1, p2}, or more simply as p0p1p2.

In Figure 22 we offer an example of a point-plane 123-configuration which induces
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a trilateral matroid on its points. The 12 points are selected from the 20 vertices of the
regular dodecahedron so that each of the twelve pentagonal faces contains three points;
note that each of the 12 points is the intersection of three faces, so a point-plane 123-
configuration is achieved. We observe that each of the eight unlabeled red points in the

Figure 22: A 123 point-plane configuration which induces a trilateral matroid.

diagram corresponds to a trilateral, and that this trilateral may be specified uniquely by
cycling through the configuration points that are immediately adjacent to the red point. For
example, the triple {1, 3, 5} defines a trilateral. We start at 1, then pass through the plane
containing both 1 and 3 to 3. We then pass through the plane containing both 3 and 5 to 5,
and then finally pass through the plane containing both 5 and 1 back to 1 to complete the
cycle. Here are the eight trilaterals.

t1 t2 t3 t4 t5 t6 t7 t8
1 1 2 3 4 4 6 8
2 3 7 6 5 9 11 10
9 5 8 7 11 10 12 12

Figure 23 gives a geometric representation of the trilateral matroid.

Figure 23: The trilateral matroid of the 123 point-plane configuration.
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After identifying each trilateral with its corresponding red point in Figure 22, we rec-
ognize that the trilateral matroid may also be represented as a point-plane configuration,
namely an (83, 122)-configuration. This means the configuration has eight points, with
three planes incident to each point, and twelve planes, with two points incident to each
plane.
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1 Introduction
It has long been known that there are finitely many homogeneous tessellations of the Eu-
clidean plane; they all have quadratic growth rate. However, in the hyperbolic plane, for
various definitions of “homogeneity,” infinitely many homogeneous tessellations are real-
izable, and their growth rate, if not quadratic, is always exponential. Presently we will
give a rigorous definition of growth rate, but for now one should think of this parameter
intuitively as the asymptotic rate at which additional tiles (or faces) accrue with respect
to some chosen center of a tessellation. In this schema, all Euclidean tessellations have
growth rate equal to 1, and hyperbolic tessellations have growth rate strictly greater than 1.
The first author has shown by construction in [5] that, given any ε > 0, there exists a hy-
perbolic tessellation with growth rate exactly 1 + ε. In general, these latter tessellations
have few if any combinatorial or geometric symmetries. The question then becomes one
of determining the growth rates of hyperbolic tessellations when some sort of homogeneity
is imposed. In particular, subject to a homogeneity constraint, how small can the gap be
between quadratic and exponential growth?

In a seminal work [8], Grünbaum and Shephard defined a graph to be edge-homogene-
ous with edge-symbol 〈p, q; k, `〉 if every edge is incident with vertices of valences p and
q and faces of covalences k and `. They proved that the parameters of an edge-symbol
uniquely determine an edge-homogeneous tessellation up to isomorphism.

The notion of homogeneity was extended by Moran [10]. She defined a tessellation to
be face-homogeneous with valence sequence [p0, . . . , pk−1] if every face is a k-gon incident
with vertices of valences p0, . . . , pk−1 in either clockwise or counter-clockwise consecutive
order. Unfortunately, no uniqueness property analogous to the Grünbaum-Shephard result
holds in general for face-homogeneous tessellations.

Moran’s work on growth rates of face-homogeneous tessellations led the authors (to-
gether with T. Pisanski) to return to edge-homogeneous tessellations and conclusively de-
termine their growth rates. In [6] they determined the growth rate of any edge-homogeneous
tessellation as a function of its edge-symbol and proved that the least growth rate for an
exponentially-growing, edge-homogeneous tessellation is 1

2 (3 +
√

5) ≈ 2.618.
The goal of this article is to obtain an analogous result for face-homogeneous tessella-

tions. Our main result is that if a face-homogeneous tessellation with exponential growth
rate is determined up to isomorphism by its valence sequence, then its growth rate is at
least 1

2 (1 +
√

5), namely the “golden mean.” Moreover, we determine exactly the valence
sequences for which this golden mean is realized. A significant by-product of our inves-
tigation is an abundance of machinery for computing the growth rates of many classes of
face-homogeneous planar tessellations.

Section 2 consists of six subsections. Following some general definitions concerning in-
finite graphs in the plane, we present (Subsection 2.2) a system for labeling sets of vertices
and sets of faces of a tessellation; such a labeling is called a “Bilinski diagram.” Subsec-
tion 2.3 presents the notion of face-homogeneity and associated notation. Polynomial and
exponential growth, defined on the one hand with respect to the standard graph-theoretic
metric, and on the other hand with respect to the notion of angle excess, appear in Sub-
section 2.4. Subsection 2.5 presents a rigorous theoretical treatment of growth rate with
respect to regional distance in a Bilinski diagram. Subsection 2.6 concludes the Prelimi-
naries with a review of the completely resolved case of edge-homogeneous tessellations,
summarizing results from [8] and [6].

In Subsection 3.1 we lay out our method for filling in the formulas obtained in Sub-



S. J. Graves and M. E. Watkins: Growth of face-homogeneous tessellations 287

section 2.5 while introducing the notion of a transition matrix. Analogous to a Markov
process, this matrix encodes for given n ≥ 1 how many faces of each possible configu-
ration are “begotten” at regional distance n + 1 from the root of a Bilinski diagram by a
face at regional distance n from the root. The maximum modulus of the eigenvalues of the
transition matrix are key to the growth rate of T .

Subsection 3.2 applies the machinery of Subsection 3.1 to the significant class of va-
lence sequences that are monomorphic, i.e., that are uniquely realizable as a face-homoge-
neous tessellation and whose Bilinski diagrams are in a certain sense well-behaved, called
uniformly concentric. It is shown in Theorem 3.7 that for such valence sequences, the
partial order defined in Subsection 2.3 is preserved by their growth rates. The six classes
of monomorphic sequences of lengths 3, 4, and 5 whose Bilinski diagrams are not uni-
formly concentric are identified in Subsection 3.3, where it is proved that they are in-
deed monomorphic. The exhaustive proof that this list is complete is contained in the
Appendix [7]. Finally, we present in Subsection 3.4 the main result of the paper, that the
least growth rate of a face-homogeneous tessellation with monomorphic valence sequence
is the golden mean 1

2 (1 +
√

5).
Those valence sequences (described as polymorphic) which admit multiple non-isomor-

phic tessellations are alive and well in Subsection 4.1. A general sufficient condition for
polymorphism is given. The difficulties posed by polymorphism are illustrated by an ex-
ample; the polymorphic sequence [4, 4, 6, 8] is considered in some depth in Subsection 4.2.
In particular, we see by this example that two different tessellations having the same (poly-
morphic) valence sequence may well have different growth rates. We conclude the chapter
with some conjectures in Subsection 4.3.

The appendix [7] alluded to above is to be found with this article on the arXiv, at
arXiv:1707.03443. All references therein are to results in the present paper. Due to
the considerable length (and tedium!) of the appendix, it will not appear in Ars Mathemat-
ica Contemporanea with this article.

2 Preliminaries
2.1 Tessellations

For a graph Γ, the symbol V (Γ) denotes the vertex set of Γ. If M is a planar embedding of
Γ, we call M a plane map and denote by F (M) the set of faces of M .

A graph Γ is infinite if its vertex set V (Γ) is infinite; Γ is locally finite if every vertex has
finite valence. A graph is 3-connected if there is no set of fewer than three vertices whose
removal disconnects the graph. It is well known that if the underlying graph Γ of a plane
map M is 3-connected (as is generally the case in this work), then every automorphism of
Γ induces a permutation of F (M) that preserves face-vertex incidence and can be extended
to a homeomorphism of the plane. Thus we tend to abuse language and speak of “the faces
of Γ.” When a plane map is 3-connected, every edge is incident with exactly two distinct
faces. In this case, the number of edges (and hence of vertices) incident with a given face
is its covalence. A map is locally cofinite if the covalence of every face is finite.

An accumulation point of an infinite plane map M is a point x in the plane such that
every open disk of positive radius (in either the Euclidean or hyperbolic metric) containing
x intersects infinitely many map objects, be they faces, edges, or vertices. A map is 1-ended
when the deletion of any finite submap leaves exactly one infinite component.

Definition 2.1. A tessellation is an infinite plane map that is 3-connected, locally finite,
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locally cofinite, 1-ended, and also admits no accumulation point.

In the terminology of Grünbaum and Shepherd’s exhaustive work [9] on tilings of the
plane, a tessellation T is normal if there is an embedding of T in the plane and radii
0 < r < R under a specific metric such that the boundary of each face lies within some
annulus with inner radius r and outer radius R. A Euclidean tessellation is a tessellation
that is normal with respect to the Euclidean metric, and a hyperbolic tessellation is one that
is normal with respect to the hyperbolic metric but not with respect the Euclidean metric.

2.2 Bilinski diagrams

A very useful tool for computing “growth rate” is what we have called a Bilinski diagram,
because these diagrams were first used by Stanko Bilinski in his dissertation [1, 2].

Definition 2.2. Let M be a map that is rooted at some vertex x. Define a sequence of sets
{Un : n ≥ 0} of vertices and a sequence of sets {Fn : n ≥ 0} of faces of M inductively as
follows.

• Let U0 = {x} and let F0 = ∅.
• For n ≥ 1, let Fn denote the set of faces of M not in Fn−1 that are incident with

some vertex in Un−1.

• For n ≥ 1, let Un denote the set of vertices of M not in Un−1 that are incident with
some face in Fn.

The stratification ofM determined by the set-sequences {Un} and {Fn} is called the Bilin-
ski diagram of M rooted at x. In a similar way one can define a Bilinski diagram of M
rooted at a face f . In this case U0 = ∅ and F0 = {f}. Given a Bilinski diagram of T , the
induced submap 〈Fn〉 of T is its nth corona.

A Bilinski diagram is concentric if each subgraph 〈Un〉 induced by Un (n ≥ 1) is a
cycle; otherwise the Bilinski diagram is non-concentric. If a plane map yields a concentric
Bilinski diagram regardless of which vertex or face is designated as its root, then the map
is uniformly concentric; analogously a map which for every designated root yields a non-
concentric Bilinski diagram is uniformly non-concentric.

To answer the question as to which tessellations are uniformly concentric we state a
sufficient condition and a necessary condition. Let Ga,b denote the class of tessellations all
of whose vertices have valence at least a and all of whose faces have covalence at least b.
Let Ga+,b be the subclass of Ga,b of tessellations with no adjacent a-valent vertices.

Proposition 2.3 ([3, Corollary 4.2], [11, Theorem 3.2]). Every tessellation T ∈ G3,6 ∪
G3+,5 ∪ G4,4 is uniformly concentric, and in every Bilinski diagram of T , for all n ≥ 1,
every face in Fn is incident with at most two edges in 〈Un−1〉.

Proposition 2.4 ([3, Theorem 5.1]). If an infinite planar map admits any of the following
configurations, then the map is not uniformly concentric:

1. a 3-valent vertex incident with a 3-covalent face;

2. a 4-valent vertex incident with two nonadjacent 3-covalent faces;

3. a 4-covalent face incident with two nonadjacent 3-valent vertices;

4. an edge incident with two 3-valent vertices and two 4-covalent faces;

5. an edge incident with two 4-valent vertices and two 3-covalent faces.
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2.3 Face-homogeneity and realizability

Let k ≥ 3 be an integer and let an equivalence relation be defined on the set of ordered
k-tuples (p0, p1, . . . , pk−1) of positive integers whereby

• (p0, p1, . . . , pk−1) ≡ (p1, p2, . . . , pk−1, p0), and

• (p0, p1, . . . , pk−1) ≡ (pk−1, pk−2, . . . , p0).

The equivalence class of which (p0, . . . , pk−1) is a member is the cyclic sequence
[p0, . . . , pk−1], and k is its length. There is a natural partial order ≤ on the set of cyclic
sequences:

[p0, . . . , pk−1] ≤ [q0, . . . , q`−1]

if and only if k ≤ ` and there exists a cyclic subsequence qi0 , qi1 , . . . , qik−1
occurring in

either order in [q0, q1, . . . , q`−1] such that pj ≤ qij for each j ∈ {0, . . . , k − 1}. We write
σ1 < σ2 if σ1 ≤ σ2 but σ1 6= σ2, where σ1 and σ2 are cyclic sequences.

Example 2.5. Let σ1 = [4, 6, 8, 10], σ2 = [6, 8, 12, 4], and σ3 = [10, 8, 12, 6, 4]. Then
σ1 < σ2 and σ1 < σ3, but σ2 and σ3 are not comparable.

Definition 2.6. Let σ = [p0, p1, . . . , pk−1] be a cyclic sequence of integers ≥ 3. Then σ
is the valence sequence of a k-covalent face f of a tessellation T if the valences of vertices
incident with f in clockwise or counter-clockwise order are p0, p1, . . . , pk−1. If every face
of T has the same valence sequence σ, then T is face-homogeneous and σ is the valence
sequence of T . Thus, to say briefly that a tessellation T has valence sequence σ implies
that T is face-homogeneous.

Definition 2.7. Let the cyclic sequnce σ be realizable as the valence sequence of a tessel-
lation. If every tessellation having valence sequence σ is uniformly concentric, then we say
that σ is uniformly concentric. Otherwise σ is non-concentric. If every tessellation having
valence sequence σ is non-concentric, then σ is uniformly non-concentric.

Notation. By convention, when distinct letters are used to represent terms in a cyclic se-
quence (e.g. [p, p, q, r, q]), the values corresponding to distinct letters are all presumed to
be distinct; that is, p 6= q 6= r 6= p. Moreover, if some term in the cyclic sequence is given
as an integer (usually 3 or 4), then the terms given by letters are presumed to be greater
than that integer. For example, if σ = [4, p, q], then we understand that p, q > 4 and p 6= q.
When using subscripts in the general form [p0, . . . , pk−1], we do not make this assumption.

Remark 2.8. Not all cyclic sequences are realizable as vertex sequences of face-homoge-
neous tessellations of the plane. For instance, the map with valence sequence [3, 3, 3] (the
tetrahedron) is a tessellation of the sphere but not of the plane. More importantly, there
are many cyclic sequences for which no face-homogeneous map exists at all. For instance,
the valence sequence [4, 5, 6, p] for any p ≥ 3 is not realizable, because in any such map
the valences of the neighbors of a 5-valent vertex in cyclic order would have to alternate
between 4 and 6. However, this does not generalize to all cyclic sequences containing a
subsequence [p, q, r] where q is odd and p 6= r; for instance, [5, 4, 5, 6, 5, 8] is realizable.

Conjecture 2.9. Suppose σ is the valence sequence of a face-homogeneous tessellation
and that σ contains [p, q, r] as a subsequence, with q odd and p 6= r. Then σ must contain
at least three terms equal to q.
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2.4 Polynomial versus exponential growth

Let x be a vertex of a connected graph Γ. For each nonnegative integer n, the ball of radius
n about x is the set of vertices of Γ at distance ≤ n from x, written

Bn(x) = {v ∈ V (Γ) : d(x, v) ≤ n}, (2.1)

where d(−,−) is the standard graph-theoretic metric, that is, d(u, v) is the length of a
shortest path with terminal vertices u and v.

Definition 2.10. An infinite, locally finite, connected graph Γ has exponential growth if
for some vertex x ∈ V (Γ) there exist real numbers α > 1 and C > 0 such that, for all
n > 0, one has |Bn(x)| > Cαn; otherwise Γ has subexponential growth. We say that Γ
has polynomial growth of degree d ∈ N if there exist positive constants C1 and C2 such
that C1n

d ≤ |Bn(x)| ≤ C2n
d for all but finitely many n.

For example, the graph underlying the square lattice in the plane has quadratic growth
(d = 2). If x is any vertex, then |Bn(x)| = 2n2 + 2n + 1 for all n ≥ 1, and one can set
C1 = 2 and C2 = 3.

Continuing the notation of Equation (2.1) and Definition 2.10, we consider the gener-
ating function

βx(z) =

∞∑
n=0

|Bn(x)| zn (2.2)

We denote the radius of convergence of βx(z) by RB and define the ball-growth rate of Γ
about x to be the reciprocal of RB .

If Γ has exponential growth, then we have

βx(z) ≥
∞∑
n=0

Cαnzn =
C

1− αz
, (2.3)

where α > 1 is the supremum of values for which the series of Equation (2.2) converges.
The convergence is absolute if and only if |z| < 1/α < 1. If Γ has polynomial growth of
degree d, then

C1

∞∑
n=0

ndzn ≤
∞∑
n=0

|Bn(x)| zn ≤ C2

∞∑
n=0

ndzn.

By the “ratio test,” the first and third series converge if and only if |z| < 1. These compu-
tations yield the following.

Proposition 2.11. Let RB denote the radius of convergence of the generating function of
Equation (2.2). Then RB < 1 if and only if Γ has exponential growth, and RB = 1 if and
only if Γ has polynomial growth. Moreover, RB is independent of the vertex x about which
|Bn(x)| is determined.

It will be seen in the next subsection (see Theorem 2.16) that the value of RB is inde-
pendent of the choice of the root vertex x.

It is well known (for example, see [9]) that there exist exactly eleven face-homogeneous
Euclidean tessellations, namely the Laves nets. Their valence sequences [p0, . . . , pk−1]
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correspond to integer solutions of the equation

k−1∑
i=0

1

pi
=
k − 2

2
.

A necessary condition for the existence of a face-homogeneous hyperbolic tessellation
with valence sequence [p0, . . . , pk−1] is that the inequality

k−1∑
i=0

1

pi
<
k − 2

2
(2.4)

hold. This condition is not sufficient, because as we have seen, not every such integer
solution of the inequality (2.4) is realizable as a valence sequence.

Definition 2.12. The angle excess of a cyclic sequence σ = [p0, . . . , pk−1] is given by

η(σ) =

(
k−1∑
i=0

pi − 2

pi

)
− 2.

Motivation for this definition comes from Descartes’ notion of angular defect in the
Euclidean plane. When η(σ) > 0, there are too many faces incident at a vertex for the
faces to be regular k-gons in the Euclidean plane.

Proposition 2.13. For a cyclic sequence σ = [p0, . . . , pk−1], inequality (2.4) is equivalent
to

η(σ) > 0 (2.5)

and is a necessary condition for σ to be a valence sequence of a face-homogeneous hyper-
bolic tessellation.

Angle excess provides a quick gauge of the growth behavior of a tessellation with va-
lence sequence σ. If η(σ) < 0, the tessellation is finite. If η(σ) = 0, the tessellation is one
of the Laves nets and has polynomial growth of degree 2. If η(σ) > 0, the tessellation has
exponential growth. Additionally, we have the following comparison result.

Proposition 2.14. Let σ1 and σ2 be cyclic sequences that are comparable in the partial
order. Then σ1 < σ2 if and only if η(σ1) < η(σ2).

Proof. Suppose that σ1 < σ2, where σ1 = [p0, . . . , pk−1] and σ2 = [q0, . . . , q`−1]. By
definition there exist qi0 , . . . , qik−1

with pj ≤ qij for all j = 0, . . . k − 1. So

η(σ1) =

k−1∑
j=0

pj − 2

pj
≤
k−1∑
j=0

qij − 2

qij
≤

`−1∑
i=0

qi − 2

qi
= η(σ2). (2.6)

If k = `, then pj < qij for some j and the first inequality in (2.6) is strict. If k < `, the
second inequality in (2.6) is strict. Since σ1 6= σ2, at least one such strict inequality must
hold.
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2.5 Growth formulas

In Definition 2.10, the standard graph-theoretical metric was used to define polynomial
and exponential growth of a connected graph. However, to measure growth rates of tes-
sellations, it is more convenient to use the notion of “regional distance;” we will count the
number of graph objects in the nth corona of a Bilinski diagram centered at a given vertex,
and our working definition of “growth rate” will be the following.

Definition 2.15. Let T be a tessellation labeled as a Bilinski diagram rooted at a vertex x.
Let R be the radius of convergence of the power series

ϕx(z) =

∞∑
i=1

|Fi|zi. (2.7)

When 0 < R <∞, we define the growth rate of T (with respect to x) to be γ(T ) = 1/R.

Although it was shown in [6] (see pages 3–4) that, for any connected planar map with
bounded covalences, the above definition of growth rate is equivalent to the growth rate
with respect to the standard graph-theoretic metric, we need to show that said growth rate
is independent of the root of the Bilinski diagram in question.

Theorem 2.16. The growth rate γ(T ) of a face-homogeneous tessellation T computed by
means of a Bilinski diagram is invariant under the choice of the root of the diagram.

Proof. Choose an arbitrary vertex x of T and consider a Bilinski diagram rooted at x. Re-
call that the sequences {Un(x) : 0 ≤ n ∈ Z} and {Fn(x) : 1 ≤ n ∈ Z} constitute the con-
ventional labeling of T as a Bilinski diagram with root vertex x. As T is face-homogeneous,
all faces are k-covalent for some k ≥ 3. Hence for any n ≥ 1 and any vertex v ∈ Un+1(x)
there exists a vertex u ∈ Un such that d(u, v) ≤

⌊
k
2

⌋
. By induction on n, we obtain

d(x, v) ≤ (n+ 1)
⌊
k
2

⌋
, yielding

n⋃
i=0

Ui(x) ⊆ Bnbk/2c(x) (2.8)

and similarly,

Bn(x) ⊆
n⋃
i=0

Ui(x). (2.9)

In addition to the power series ϕx(z) of Definition 2.15 with radius of convergenceRF , we
require the power series υx(z) =

∑
|Un(x)| zn with radius of convergence RU . Writing

Υx(z) =
υx(z)

1− z
=

∞∑
n=0

(
n∑
i=0

|Ui(x)|

)
zn =

∞∑
n=0

∣∣∣∣∣
n⋃
i=0

Ui(x)

∣∣∣∣∣ zn,
we have that the radius of convergence of Υx(z) equals min {RU , 1} ≤ RB by Equa-
tion (2.8) (where RB is as in Proposition 2.11). But similarly by Equation (2.9) we have
that RB ≤ min {RU , 1}. Hence the radii of convergence of Υx(z) and βx(z) are equal,
for any choice of root vertex x.
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If p is the maximum valence of the vertices in T , each vertex is also incident with at
most p faces, while each face is incident with k vertices, giving

|Un(x)| ≤ k |Fn+1(x)| ≤ pk |Un+1(x)|

for each n ≥ 0, or equivalently,

1

k
|Un(x)| ≤ |Fn+1(x)| ≤ p |Un+1(x)| .

Hence the radii of convergence of υx(z) and ϕx(z) are equal, and more importantly, RF =
RB ; that is, the rate of ball-growth equals the rate of growth when the Bilinski diagram is
labeled from a vertex x.

Finally, it follows from Proposition 2.11 that ball-growth rates computed about distinct
vertices are asymptotically equal in locally finite, connected, infinite graphs. Hence the
radii of convergence of ϕx(z), βx(z), βy(z), and ϕy(z) are equal for all x, y ∈ V . That is
to say, the growth rate of the graph is independent of the choice of root vertex.

Notation. The subscript on the symbol ϕ of Definition 2.15 has now been shown to be
superfluous and will henceforth be suppressed.

Consider the function τ : N0 → N0, (where N0 = {0, 1, 2, . . .}) given by

τ(n) =

n∑
i=1

|Fi|.

The quantity

lim
n→∞

τ(n+ 1)

τ(n)
(2.10)

was the definition of the growth rate of a face-homogeneous tessellation used by Moran [10]
provided that this limit exists, in which case she called the tessellation balanced. Moran’s

limit fails to converge only when there exist subsequences of the sequence
{
τ(n+1)
τ(n)

}∞
n=1

with distinct limits.
The following proposition shows that the parameters of a face-homogeneous tessella-

tion determine an upper bound for the limit in Equation (2.10).

Theorem 2.17. Let T be a face-homogeneous tessellation with valence sequence
[p0, . . . , pk−1], labeled as a Bilinski diagram. Then

lim sup
n→∞

τ(n+ 1)

τ(n)
≤ 1 +

k−1∑
i=0

pi − 2k <∞.

Proof. By hypothesis, each face of the tessellation shares an incident vertex with exactly

k−1∑
i=0

(pi − 2) =

k−1∑
i=0

pi − 2k

other faces. So for n > 0,

|Fn+1| ≤ |Fn|

(
k−1∑
i=0

pi − 2k

)
,
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which in turn gives that for all n > 0,

τ(n+ 1)

τ(n)
≤ 1 +

|Fn|∑n
i=0 |Fi|

(
k−1∑
i=0

pi − 2k

)

≤ 1 +

k−1∑
i=0

pi − 2k <∞,

since T is locally finite.

By the “ratio test” of elementary calculus, the above proof implies that in the case of
a “balanced” tessellation, Moran’s definition of growth rate concurs with Definition 2.15,
and

1

R
= lim sup

n→∞

τ(n+ 1)

τ(n)
= lim
n→∞

τ(n+ 1)

τ(n)
.

The definition of growth rate in terms of the radius of convergence of a power series
also allows us to prove the following result, which is essential in many comparisons of
growth rates of various tessellations.

Lemma 2.18 (Comparison Lemma). Let T1 and T2 be tessellations, and for i = 1, 2 let
|Fi,n| be the number of faces in the nth corona of a Bilinski diagram of Ti. Suppose that
for some N ∈ N, we have |F1,n| ≤ |F2,n| for all n ≥ N . Then γ(T1) ≤ γ(T2).

Proof. Let

φ1(z) =

∞∑
n=0

|F1,n|zn, φ2(z) =

∞∑
n=0

|F2,n|zn,

and for i ∈ {1, 2}, let Ri be the radius of convergence of φi(z) about 0. Then since
|F1,n| ≤ |F2,n| for sufficiently large n, and

lim sup
n→∞

n

√
|Fi,n| =

1

Ri
= γ(Ti),

we have γ(T1) ≤ γ(T2).

2.6 The edge-homogeneous case

We conclude our presentation of preliminary material with a quick review of what is known
about growth rates of edge-homogeneous tessellations, as this case has been completely
resolved and its consequences turn out to be useful here and there in attacking the present
problem. The point of departure here is the following classification theorem of Grünbaum
and Shephard. (Edge-symbols were defined in Section 1.)

Proposition 2.19 ([8, Theorem 1]). Let p, q, k, ` ≥ 3 be integers. There exists an edge-
homogeneous, 3-connected, finite or 1-ended map with edge-symbol 〈p, q; k, `〉 if and only
if exactly one of the following holds:

1. all of p, q, k, ` are even;

2. k = ` is even and at least one of p, q is odd;

3. p = q is even and at least one of k, ` is odd;
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4. p = q, k = `, and all are odd.

Such a tessellation is edge-transitive, and the parameters p, q, k, ` determine the tessel-
lation uniquely up to homeomorphism of the plane. If p = q, then the tessellation is
vertex-transitive. If k = `, then it is face-transitive.

Following up on the Grünbaum-Shephard result, the authors together with T. Pisanski
completely determined the growth rates of all edge-homogeneous tessellations. Their main
result is the following.

Proposition 2.20 ([6, Theorem 4.1]). Let the function

g : {t ∈ N : t ≥ 4} → [1,∞)

be given by

g(t) =
1

2

(
t− 2 +

√
(t− 2)2 − 4

)
. (2.11)

Let T be an edge-homogeneous tessellation with edge-symbol 〈p, q; k, `〉, and let

t =

(
p+ q

2
− 2

)(
k + `

2
− 2

)
. (2.12)

Then exactly one of the following holds:

1. the growth rate of T is γ(T ) = g(t); or

2. the edge-symbol of T or its planar dual is 〈3, p; 4, 4〉 with p ≥ 6, and the growth rate
of T is γ(T ) = g(t− 1).

Observe that each value of t ≥ 4 corresponds to only finitely many edge-homogeneous
tessellations and that pairs of planar duals correspond to the same value of t. As the growth
rates of edge-homogeneous tessellations are determined by an increasing function in one
variable, the following is immediate.

Corollary 2.21. The least growth rate of an edge-homogeneous hyperbolic tessellation is
(3 +

√
5)/2. This value is attained only by the tessellations with edge-symbols 〈3, 3; 7, 7〉,

〈4, 4; 4, 5〉, 〈3, 7; 4, 4〉, and their planar duals.

Remark 2.22. It is evident from Proposition 2.19 that if a tessellation is both edge- and
face-homogeneous, then its edge-symbol and valence sequence have, respectively, either
the forms 〈p, p; k, k〉 and [p, p, . . . , p] or the forms 〈p, q; k, k〉 and [p, q, . . . , p, q], the latter
pair being possible only when k is even.

We mention that, by an argument similar to the proof of Theorem 2.17, one easily
obtains the following upper bound for the growth rate of an edge-homogeneous tessellation.

Proposition 2.23. Let T be an edge-homogeneous tessellation with edge-symbol 〈p, q; k, `〉.
Then for any labeling of T as a Bilinski diagram, one has

lim
n→∞

τ(n+ 1)

τ(n)
≤ 1 + max{pk, qk, p`, q`}.
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3 Accretion and monomorphic valence sequences
3.1 Accretion

Given an arbitrary face-homogeneous tessellation T with valence sequence
σ = [p0, p1, . . . , pk−1], we wish to apply Definition 2.15 to determine its growth rate. Let-
ting T be labeled as a Bilinski diagram, we require a means to evaluate |Fn| for all n ∈ N.
This is done inductively; each face f ∈ Fn “begets” a certain number of facial “offspring”
in Fn+1, and that number is determined by the configuration of f within 〈Fn〉, that is, what
the valences are of the vertices incident with f (in the rotational order of σ) that belong,
respectively, to Un−1 and more importantly to Un.

A class of identically configured faces (in any corona) is a face type, and is denoted by
fi for some range of i = 1, . . . , r. The benefit of using face types is that we can define an r-
dimensional column vector ~vn, called the nth distribution vector, which lists the frequency
with which each face type occurs in the nth corona. Thus, if ~j is the r-dimensional vector
of 1s, then |Fn| = ~j · ~vn via the standard dot product.

Figure 1 depicts a face f ∈ Fn of some tessellation and the faces in Fn+1 which are
determined by the face type of f . These faces are called the offspring of f , and the figure
is accordingly called the offspring diagram for f . As the vertex labeled pj is incident with

Un Un+1

pj

pk

f

f ′

f ′′

A

B

Figure 1: A face f in Fn of a tessellation T , along with the offspring of f in Fn+1.

both faces f and f ′ ∈ Fn, one-half of those faces in Fn+1 labeled as A in the figure count
as offspring of f , and one-half are counted as offspring of f ′. Similarly, half of the faces
labeled by B count as offspring of f and half as offspring of f ′′. All those faces between
labels A and B in Figure 1 are wholly offspring of f . Those faces which are offspring of
f , or offspring of offspring of f , and so on, are called collectively descendants of f .

Definition 3.1. With respect to the labeling of a Bilinski diagram, each vertex incident
with a face f ∈ Fn lies in Un−1 or Un. The pattern of valences of vertices in Un−1 and in
Un determines the face type of f . The three face types occurring most routinely are called
wedges, bricks, and notched bricks. A face f in Fn is a wedge if it is incident with exactly
one vertex in Un−1. The face f is a brick if it incident with exactly two adjacent vertices in
Un−1 and at least two vertices in Un. Finally, f is a notched brick if it is incident with three
consecutive vertices of Un−1, of which the middle vertex is 3-valent, and f is incident with
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two or more vertices in Un. For a given labeling of a tessellation T as a Bilinski diagram,
the face types of T are indexed f1, . . . , fr for some r ∈ N; we explain the method by which
indices are assigned after the statement of Theorem 3.7.

An algorithm by which one can describe the faces, corona by corona, of a tessellation
labeled as a Bilinski diagram is called an accretion rule. Often some homogeneous system
of recurrence relations determines such an accretion rule. In this case, the nth distribution
vector ~vn defined above has the property that the jth component of ~vn is the number of faces
of type fj in the nth corona. We then encode the system of recurrences into a transition
matrix M such that ~vn+1 = M~vn holds for all n ≥ 1. When M = [mi,j ] is such a matrix,
the entry mi,j is the number of faces of type fj that are offspring of a face of type fi. We
require the following result from [6].

Proposition 3.2 ([6, Theorem 3.1]). Let T be a tessellation labeled as a Bilinski diagram
with accretion rule specified by the transition matrix M and first distribution vector ~v1.
Then the ordinary generating function for the sequence {|Fn|}∞n=1 is

ϕ(z) = |F0|+ z
(
~j · (I − zM)−1~v1

)
, (3.1)

where I is the identity matrix and ~j is the vector of 1s.

By using Definition 2.15, we can prove the following more directly than we did in
Theorem 3.4 of [6].

Theorem 3.3. If M is the transition matrix of a tessellation T and Λ is the maximum
modulus of an eigenvalue of M , then γ(T ) = Λ.

Proof. We can write the generating function ϕ(z) of Proposition 3.2 as a rational function
u(z)/v(z), with v(z) determined entirely by (I − zM)−1. Specifically, using Cramer’s
rule where r denotes the order of M , we have

(I − zM)−1 =
1

det(I − zM)
adj(I − zM)

=
1

(−z)r det(M − 1
z I)

adj(I − zM)

=
1

(−z)rχ( 1
z )

adj(I − zM)

(3.2)

where χ( 1
z ) is the characteristic polynomial (in 1

z ) ofM . Entries of the adjoint adj(I−zM)
are polynomials in z of degree at most r − 1, and so v(z) = (−z)rχ( 1

z ). As χ( 1
z ) is a

polynomial in 1
z of degree exactly r, v(z) has a nonzero constant term and the roots of v

occur precisely at the roots of χ( 1
z ). These are precisely the reciprocals of the eigenvalues

of M . Thus the minimum modulus of a pole of ϕ(z) is 1/Λ. As this is the definition of the
radius of convergence of a power series expanded about 0, we have γ(T ) = Λ.

3.2 Monomorphic, uniformly concentric sequences

As we have already remarked, valence sequences of face-homogeneous tessellations are
unlike edge-symbols of edge-homogeneous tessellations in two significant ways: (i) the
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requirements for realizability of an edge-symbol are simpler and less stringent than the
realizability criteria for a cyclic sequence, and (ii) two or more non-isomorphic face-
homogeneous tessellations may share a common valence sequence. This latter property
motivates the following definition.

Definition 3.4. Let σ be a cyclic sequence. If there exists (up to isomorphism) a unique
face-homogeneous tessellation with valence sequence σ, then we say that σ is monomor-
phic. If there exist at least two (non-isomorphic) tessellations with valence sequence σ,
then σ is polymorphic.

Proposition 3.5 (Moran [10]). All realizable cyclic sequences of length 3 are monomor-
phic.

A second property of interest is whether a given valence sequence is uniformly concen-
tric. These two properties thus yield four classes of valence sequences. Not surprisingly,
the class most amenable to an elegant and simple accretion rule consists of those that are
both monomorphic and uniformly concentric.

One can find in [13] a complete classification of cyclic sequences of length k for
3 ≤ k ≤ 5 in terms of Definition 3.4 which will help us to narrow our investigation.
(It is actually the equivalent dual problem that is treated in [13], and the term “covalence
sequence” is used. In the present work we have opted to follow Moran [10], speaking rather
in terms of “valence sequences.”)

We now turn to considering the relative growth rates of tessellations with monomor-
phic valence sequences. The ideal condition would be to have that the partial order on
cycic sequences is mirrored by the natural order on growth rates: that is, if T1 and T2 are
tessellations with valence sequences σ1 ≤ σ2, then γ(T1) ≤ γ(T2). For monomorphic,
uniformly concentric valence sequences, this is precisely the case, as stated below in The-
orem 3.7. In order to prove the theorem, we now demonstrate the necessary machinery via
the following example, which can be readily generalized.

Example 3.6. Consider T1 and T2 to be face-homogeneous tessellations with monomor-
phic valence sequences σ1 = [4, 5, 4, 5] and σ2 = [4, 6, 6, 4, 5], respectively, both labeled
as face-rooted Bilinski diagrams. Note that σ1 < σ2. We continue the convention that
Fi,n denotes the set of faces of the nth corona of Ti for i = 1, 2. (The reader may follow
Figures 2 through 7.) Starting with T1, we construct by induction a sequence {T ′j : j ∈ N}
of tessellations such that:

1. T ′0 = T1 as a base for the induction,

2. if we denote by F ′j,n the set of faces in the nth corona of T ′j , then for each j ∈ N, the
unions of the first n coronas of T ′j satisfy〈

j⋃
n=1

F ′j,n

〉
∼=

〈
j⋃

n=1

F2,n

〉

as induced subgraphs, and

3. |F1,n| ≤
∣∣F ′j,n∣∣ for all n ∈ N.

To construct T ′1 from T ′0, the valence sequence of the root face of T ′0 must change from σ1
to σ2. To do so, we augment the valence of a 5-valent vertex v ∈ U1 to 6-valent and then
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Figure 2: The first three coronas of T1.

Figure 3: The first three coronas of T ′1. The dark gray region is a subgraph inserted by
augmentation of the valence of a vertex from 5 to 6; the light gray region is a subgraph
inserted while interpolating a 6-valent vertex along an incident edge. These insertions
continue throughout all coronas of T ′1.
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subdivide an edge of 〈U1〉 incident with v by inserting a 6-valent vertex. Augmentation
and interpolation are both performed via the insertion of an infinite “cone” as follows.
We choose a sequence of edges e2, e3, e4, . . ., with ei ∈ 〈Ui〉, such that e2 and v are
incident with a common face in F1, and for each i ≥ 2, ei and ei+1 are incident with a
common face in Fi. On each of these edges we interpolate vertices, and we insert edges
connecting vertices between Ui and Ui+1 ensuring that every face so created has covalence
5. Furthermore, if a created face is incident only with interpolated vertices, then its valence
sequence is σ2. This insertion is well-defined precisely because σ2 is monomorphic, i.e.,
the vertices and edges may be inserted in exactly one way.

The resulting tessellation after the procedure just described is denoted by T ′1. Faces
of T ′1 fall into three classes: first, there are faces which have valence sequence σ1 and in
T ′0 were not incident with any part of the inserted cone; second, there are those faces with
valence sequence σ2 that have been inserted; finally, there are faces which are incident with
newly inserted edges but which have neither valence sequence σ1 nor σ2. A face f in this
third class has covalence equal to the length of σ2, but some vertices incident with f have
valences from σ1. These faces may occur in all coronas outward from the first corona.

4 4 4 4 4 4 4 4 4 45 5 5 56 6 6 6 6 6 6 6 6 6 6 6 6

↑
5 4

4 5 4 6 4 5 4

6

Figure 4: An expanded view of the subgraph inserted when increasing the valence of a
5-valent vertex to 6-valent. Note that the 5-valent vertex in the upper left, marked by the
arrow, is disrupting the valence sequence of the white face with which it is incident; if the
marked vertex were 6-valent, that face would have valence sequence σ2 = [4, 6, 6, 4, 5].

We compare now the tessellations T1, T ′1, and T2. In each case, the 0th corona contains
only the root face. So from our construction,

|F1,0| =
∣∣F ′1,0∣∣ = |F2,0| , and for all n ∈ N0, |F1,n| ≤

∣∣F ′1,n∣∣ ,
as we have inserted faces into every corona outward from the first.

We construct T ′2 from T ′1 just as we created T ′1 from T ′0 = T1; there is, however, one
additional type of interpolation which may occur. Specifically, a vertex must be interpolated
in an edge incident with two adjacent faces in F ′1,1. In Figure 6, an example of such an edge
is marked with an arrow. This obstacle proves to be minor, as the necessary interpolation
is shown in Figure 7 – rather than interpolating a vertex on an edge incident with vertices
in both U1 and U2, the vertex and its two neighbors are interpolated in U2, replacing a
(5, 4, 5)-path in 〈U2〉 with a (5, 4, 6, 4, 5)-path.
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↑
6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 64 4 4 4 4 4 4 4 4 4 4 4 45 5 5 5 5

4 4 4 4 4 4 45 5 5 5 56 6

6 6 4

Figure 5: An expanded view of the subgraph inserted when interpolating a 6-valent vertex
along an edge incident to the root. Again note the marked 5-valent vertex in the upper left.
(The large shaded region represents a number of faces of valence sequence [4, 6, 6, 4, 5]
which are too dense to draw nicely in the Euclidean plane.)

↑

Figure 6: Beginning the construction of T ′2 from T ′1.
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4 5 4

5 x 5

6

6 6 6 6 6 64 45 5 5

5 4 x 4 5

6

Figure 7: In the diagram to the left, the (4, 6)-edge at the bottom must have a 6-valent
vertex interpolated, along with the attendant subgraph. However, we wish to avoid non-
concentricity; hence the single 4-valent vertex x is expanded to a (4, 6, 4)-path as in the
diagram on the right.

We continue by induction; suppose a tessellation T ′j has been created by this process.
Then in the jth corona, there are finitely many faces which require a finite number of ver-
tices to have their valences increased and a finite number of edges along which we must
interpolate a vertex. This creates T ′j+1 such that

|F1,n| ≤
∣∣F ′j+1,n

∣∣ = |F2,n|

for n < j + 1, as the first j coronas are comprised only of faces with valence sequence σ2.
Furthermore,

|F1,n| ≤
∣∣F ′j+1,n

∣∣
for all n ∈ N. In this manner we can construct an infinite sequence of tessellations, namely
{T ′j : j ∈ N}, with the properties that |F1,n| ≤

∣∣F ′j,n∣∣ for any j, n ∈ N0, and
∣∣F ′j,n∣∣ =

|F2,n| whenever j > n.

In the previous example, we constructed the sequence in the process of transforming
T1 with valence sequence [4, 5, 4, 5] into T2 with valence sequence [4, 6, 6, 4, 5]; however,
the process of creating {T ′j : j ∈ N0} is identical in any case where T1 and T2 are face-
homogeneous and uniformly concentric with monomorphic valence sequences σ1 and σ2,
respectively, where σ1 < σ2. Thus by Lemma 2.18, we obtain the following result.

Theorem 3.7 (Growth Comparison Theorem). Let σ1 and σ2 be monomorphic valence
sequences realized by tessellations T1, T2 ∈ G4,4 ∪ G3+,5 ∪ G3,6, with σ1 < σ2. Then
γ(T1) ≤ γ(T2).

Our convention is to index the face types (f1, . . . , fr for some r) in the following order:
first wedges, then bricks, then notched bricks, and finally, other face types if any. A wedge
in Fn with face type fi is incident with a pi−1-valent vertex in Un−1, for i = 1, . . . , k.
Similarly, the indices of face types of bricks begin with a brick in Fn incident with a
p0-valent vertex and a pk−1-valent vertex in Un−1. A new index fj is not introduced if
there is some fi for i < j with the same configuration of vertices in Un−1 and Un, up
to orientation. For example, the valence sequence [4, 6, 8, 8, 6, 4] yields seven face types
f1, . . . , f7, of which f1, f2, and f3 are wedge types and f4 through f7 are brick types.
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When a monomorphic sequence [p0, . . . , pk−1] is realized by a tessellation in G4,4 ∪
G3+,5 ∪ G3,6, then every face, with respect to any Bilinski diagram, can be only a wedge,
a brick, or a notched brick. The indexing of face types when pi 6= pj for i 6= j allows
a stricter labeling which we can use in several other cases. A face f in Fn is a wedge
of type wi when the vertex incident with f in Un−1 corresponds to valence pi−1 in σ.
If instead f is a brick with incident vertices in Un−1 corresponding to valences pi−1 and
pi−2 (indices here taken modulo k), then f has face type bi. Finally, if f a notched brick
whose incident vertices in Un−1 have valences pi, pi−1 = 3, and pi−2, then f has face
type ni. It is important to note that if pi−1 6= 3, then faces of type ni never occur as
offspring. This stricter labeling is used explicitly only for the few theorems which follow,
by which we determine the number of offspring of each instance of these general face types.
Furthermore, we demonstrate a first application of the accretion rules and half-counting of
faces that were introduced in Section 3.1.

Notation. Let T be a face-homogeneous tessellation with valence sequence σ, labeled as
a Bilinski diagram. We denote by Ω(f) the number of faces in Fn+1 that are counted as
offspring of a single face of face type f in Fn, for any n > 0. For T ∈ G4,4 ∪ G3+,5 ∪ G3,6

we let Ω(wi), Ω(bi), and Ω(ni) denote the number of offspring of a single wedge, brick,
or notched brick of, respectively, of the given type.

Lemma 3.8. For a face-homogeneous tessellation in G4,4∪G3+,5∪G3,6 with monomorphic
valence sequence σ = [p0, . . . , pk−1], one has for i ∈ {1, . . . , k},

Ω(wi) =
pi−2 + pi

2
− 2k + 3 +

∑
j /∈I1

pj , and (3.3)

Ω(bi) =
pi−3 + pi

2
− 2k + 5 +

∑
j /∈I2

pj , (3.4)

where I1 = {i− 2, i− 1, i} and I2 = {i− 3, i− 2, i− 1, i}. Also, when pi−1 = 3,

Ω(ni) =
pi−3 + pi+1

2
− 2k + 7 +

∑
j /∈I3

pj (3.5)

with I3 = {i− 3, i− 2, i− 1, i, i+ 1}.

Proof. The reader is referred to the three offspring diagrams shown in Figure 8.
Letting i ∈ {1, . . . , k}, the first diagram applies when pi−1 ≥ 4. If also pi−2, pi ≥ 4

as in the diagram, then we have

Ω(wi) =
pi−2 − 4

2
+
pi − 4

2
+ k − 2 +

∑
j /∈I1

(pj − 3)

=
pi−2 + pi

2
− 2k + 3 +

∑
j /∈I1

pj .

If instead pi−2 = 3, then the number of wedge offspring of wi is

pi − 4

2
+
∑
j /∈I1

(pj − 3),
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Un−1 Un Un+1 Un−1 Un Un+1 Un−1 Un Un+1

wi bi nipi−1

pi−1

pi−2

pi

pi−1

pi−2

wi+1

wi+2

wi−2

wi−1

bi+2

bi−1

wi+1

wi+2

wi−3

wi−2

bi+2

bi−2

wi+2

wi+3

wi−3

wi−2

bi+3

bi−2

Figure 8: Offspring diagrams for the three general face types (respectively wedges, bricks,
and notched bricks) of a tessellation with monomorphic, uniformly concentric valence se-
quence [p0, . . . , pk−1].

the number of brick offspring is k − 3, and the number of notched brick offspring is 1
2 .

Thus when pi−2 = 3,

Ω(wi) =
1

2
+
pi − 4

2
+ k − 3 +

∑
j /∈I1

(pj − 3)

= −1

2
+
pi − 4

2
+ k − 2 +

∑
j /∈I1

(pj − 3)

=
pi−2 − 4

2
+
pi − 4

2
+ k − 2 +

∑
j /∈I1

(pj − 3)

as before; likewise when pi = 3. Analogous arguments hold for the offspring of bricks and
notched bricks.

The process of establishing an accretion rule and accompanying transition matrices is
considerably simplified for tessellations in G4,4 by virtue of the absence of notched bricks.
By applying the following lemma and Theorem 3.3, one can then compute the growth
rate explicitly of any monomorphic valence sequence realizable in G4,4. Recall that by
Proposition 2.3, all such valence sequences are uniformly concentric.

Lemma 3.9. Let [p0, . . . , pk−1] be the monomorphic valence sequence for a tessellation
T ∈ G4,4. Then T has an accretion rule which admits the block transition matrix

M =

[
A B
C D

]
,

with A = (ai,j), B = (bi,j), C = (ci,j), and D = (di,j) given by

ai,j =


0 j − i = 0
1
2 (pi−1 − 4) j − i ∈ {1, k − 1} (mod k)

pi−1 − 3 otherwise,
(3.6)
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bi,j =


0 j − i ∈ {0, 1} (mod k)
1
2 (pi−1 − 4) j − i ∈ {2, k − 1} (mod k)

pi−1 − 3 otherwise,
(3.7)

ci,j =

{
0 j − i ∈ {0, 1} (mod k)

1 otherwise,
(3.8)

di,j =

{
0 j − i ∈ {0, 1, k − 1} (mod k)

1 otherwise,
(3.9)

for i, j ∈ {1, . . . , k}.

Proof. Since all general face types are wedges or bricks, we need demonstrate only that
the entries ai,j and ci,j correspond to numbers of offspring of the k face types in wedge
configurations and that the entries bi,j and di,j correspond to numbers of offspring of the k
face types in brick configurations.

1
2 (pi − 4) faces of type wi+1

pi+1 − 3 faces of type wi+2

pi−3 − 3 faces of type wi−2

1
2 (pi−2 − 4) faces of type wi−1

pi−1

pi−2

pi

wi

Un−1 Un Un+1

Figure 9: Offspring of a wi face in a tessellation T ∈ G4,4, where i ∈ {1, . . . , k}.

The offspring of wedges of type wi are shown in Figure 9, and the offspring of a brick
of type bi is shown in Figure 10. The ordering of face types is w1,w2, . . .,wk,b1, . . .,bk.

1
2 (pi − 4) faces of type wi+1

pi+1 − 3 faces of type wi+2

pi−4 − 3 faces of type wi−3

1
2 (pi−3 − 4) faces of type wi−2

pi−1

pi−2
pi−3

pi

bi

Un−1 Un Un+1

Figure 10: Offspring of a bi face in a tessellation T ∈ G4,4, where i ∈ {1, . . . , k}.

Recalling that the (i, j)-entry of a transition matrix M is the number of faces of the ith
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indexed type which are produced in Fn+1 as offspring of a face of the jth indexed type in
Fn, it is straightforward to verify from these two offspring diagrams that the entries of M
are correct.

Remark 3.10. We emphasize the breadth of this class of monomorphic, uniformly con-
centric valence sequences. In addition to the many monomorphic face-homogeneous tes-
sellations in G3,6 ∪G3+,5 ∪G4,4, there are many with covalence 3 (cf. Proposition 3.5). By
Proposition 2.19, all edge-transitive tessellations of constant covalence are included, except
for those of the with valence sequence [3, p, 3, p] (edge-symbol 〈3, p; 4, 4〉), as they are not
uniformly concentric. By Proposition 2.3, a k-covalent tessellation T is uniformly concen-
tric whenever k ≥ 6. If k ≥ 7 and if σ is monomorphic, then σ ≥ [3, 3, 3, 3, 3, 3, 3].
In that case, Theorem 3.7 and Proposition 2.20 tell us that σ has growth rate at least
γ([3, 3, 3, 3, 3, 3, 3]) = 1

2 (3 +
√

5).

3.3 Monomorphic non-concentric sequences

The purpose of this section is to characterize the six forms of monomorphic, non-concentric
valence sequences with positive angle excess. These sequences give rise to face types other
than wedges, bricks, and notched bricks, and so the foregoing methods cannot be applied
to compute their growth rates.

An interesting situation arises when a tessellation is not uniformly concentric but none-
theless, by prudent selection of the root, admits some Bilinski diagram that is concentric.
To illustrate this point, we examine sequences of the form [4, p, q].

Example 3.11. Consider the valence sequence σ = [4, p, q] with 4 < p < q, where
1
p + 1

q <
1
4 , and let T be a face-homogeneous tessellation with valence sequence σ. For

σ to be realizable, clearly p and q must be even. Note as well that the inequality (2.4)
is satisfied. While σ is monomorphic and admits a concentric Bilinski diagram, σ is not
uniformly concentric (cf. the second case of Proposition 2.4).

When a Bilinski diagram of T admits a 4-valent vertex v0 ∈ Un (for some n) adjacent
to the vertices u1, u2 ∈ Un−1 and v1, v2 ∈ Un, then the diagram is not concentric; the
vertices v1 and v2 must also be adjacent, as T is 3-covalent. Hence 〈{v0, v1, v2}〉 is a cycle
within 〈Un〉, causing the Bilinski diagram to be non-concentric. However, it is possible to
avoid this configuration by choosing the root of the Bilinski diagram to be either a p-valent
or a q-valent vertex. When so labeled, only four face types occur, as demonstrated by the
offspring diagrams in Figure 11.

Un−1 Un Un+1 Un−1 Un Un+1

f1
f3

f2

f2

f4

f1

: 4-valent
: p-valent
: q-valent

Figure 11: Offspring diagrams for a concentric tessellation with valence sequence [4, p, q].
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One sees here that if the root is taken to be a p-valent vertex, the first corona consists en-
tirely of faces of type f1, which produce in turn only offspring of types f2 and f3. Similarly,
given a q-valent root, the first corona consists entirely of faces of type f2, which produce in
turn only offspring of types f1 and f4. The non-concentric configuration described above
can never be produced among the descendants of faces of types f1 or f2.

Inspection of Figure 11 gives the first and second columns of the transition matrix M ;
the third and fourth columns, corresponding to f3 and f4, merit further explanation. A face
of type f3 in Fn+1 has a p-valent vertex in Un+1; this vertex is incident with p − 5 faces
of type f1 in Fn+2. So the behavior of a face of type f3 is effectively to collapse one of the
faces in Un+2 of type f1 begotten by the adjacent face of type f2. Faces of type f4 behave
similarly, collapsing a face of type f2 . These considerations give us

M =


0 1

2 (p− 4) −1 0
1
2 (q − 4) 0 0 −1

1 0 0 0
0 1 0 0


as the transition matrix M for this accretion rule for T . As the characteristic equation for
M is of degree 4, it can be solved to determine that the maximum modulus of an eigenvalue
of M is

Λ =
1

4

√
[2(p− 4)(q − 4)− 16] + 2

√
(p− 4)2(q − 4)2 − 16(p− 4)(q − 4).

By Theorem 3.3 and Theorem 2.16, Λ is the growth rate of T . This quantity can be min-
imized by minimizing pq subject to the initial conditions 1

p + 1
q <

1
4 and that p and q be

even. We shall see in Section 3.4 the role played by this example.

Growth rate formulas for each of the other five classes are derived in the Appendix.

Theorem 3.12. Let σ be a valence sequence such that η(σ) > 0. Then σ is both monomor-
phic and non-concentric if and only if σ is of one of the following six forms:

(i) [3, p, p], with p ≥ 14 and even;

(ii) [4, p, q], with p and q both even, 4 < p < q, and 1
p + 1

q <
1
4 ;

(iii) [3, p, 3, p], with p ≥ 7;

(iv) [3, p, 4, p], with p ≥ 5 and even;

(v) [3, 3, p, 3, p], with p ≥ 5; or

(vi) [3, 3, p, 3, q], with p, q ≥ 4 and 1
p + 1

q <
1
2 .

Proof. The parity conditions and the inequalities bounding the parameters in each case are
minimal such that σ be indeed realizable as a tessellation with η(σ) > 0.

As noted in Remark 3.10, all valence sequences of length at least 6 are uniformly con-
centric. Furthermore, by Proposition 3.5, all valence sequences of length 3 are monomor-
phic. Valence sequences [3, p, p], [4, p, q], and [3, p, 3, p] give rise to tessellations exem-
plifying cases 1, 2, and 4 respectively of Proposition 2.4, and hence cannot be uniformly
concentric. As a face-homogeneous tessellation with valence sequence [3, p, 3, p] is also
edge-transitive, the sequence must be monomorphic. The proof that the sequence [3, p, 4, p]
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must be monomorphic and uniformly non-concentric is given in the Appendix, where the
growth rate of a corresponding tessellation is determined.

We now prove that [3, 3, p, 3, p] is monomorphic for all p ≥ 5. As a 3-valent vertex
is incident with a common face with any two of its neighbors, every 3-valent vertex must
be adjacent to at least two p-valent vertices; otherwise some face would be incident with a
(3, 3, 3)-path. Consider a p-valent vertex v1. By face-homogeneity, v1 is adjacent to some
3-valent vertex u1, with u1 adjacent in turn to a 3-valent vertex u2 which is not adjacent
to v0. But then the other vertex adjacent to u1 must be a p-valent vertex v2. This forces
the pattern of valences at regional distance 1 from v1 to be (3, 3, p, . . . , 3, 3, p); as v1 was
arbitrary, this must be the pattern of valences at regional distance 1 from any p-valent
vertex. As every vertex is at regional distance 1 from some p-valent vertex, [3, 3, p, 3, p]
must be monomorphic; the first two coronas of a tessellation with this valence sequence
rooted at a p-valent vertex is depicted in Figure 12. Furthermore, this local configuration
to a p-valent vertex forces the local behaviors to a (3, 3)-edge and a 3-valent vertex shown
in Figure 13. Hence when a 3-valent vertex v0 is taken as the root of the Bilinski diagram
of a tessellation with valence sequence [3, 3, p, 3, p], a pendant vertex occurs in 〈U3〉. This
is shown in Figure 14. So [3, 3, p, 3, p] is monomorphic but not uniformly concentric; the
argument for [3, 3, p, 3, q] is analogous.

We have shown these six forms to be both monomorphic and non-concentric; that these
are the only such valence sequences is proved via the exhaustive examination of cases in
the Appendix.

. . .

. . .

: 3-valent
: p-valent

Figure 12: The first two coronas of a tessellation with valence sequence [3, 3, p, 3, p] rooted
at a p-valent vertex. Each shaded region indicates p − 3 faces in F2 all having the same
face type.

3.4 The main result

The following theorem establishes the so-called “golden mean” as the least rate of expo-
nential growth for face-homogeneous tessellations with monomorphic valence sequences.

Theorem 3.13 (Least Exponential Growth Rate of Monomorphic Valence Sequences). The
least growth rate of a face-homogeneous tessellation with monomorphic valence sequence
σ such that η(σ) > 0 is 1

2 (1 +
√

5) and is attained by exactly the tessellations with valence
sequences [4, 6, 14] and [3, 4, 7, 4].
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(A) (B)

: 3-valent
: p-valent

Figure 13: (A) Local configuration along an edge with edge-symbol 〈3, 3; 5, 5〉 in a face-
homogeneous tessellation with valence sequence [3, 3, p, 3, p]. (B) Local configuration in
the same tessellation when rooted at a 3-valent vertex.

: 3-valent
: p-valentv0

Figure 14: Non-concentricity of [3, 3, p, 3, p] when rooted at a 3-valent vertex v0.

Table 1: Table of the least exponential growth rate within each monomorphic class of
valence sequences. All rates of growth have been truncated at four decimal places rather
than being rounded.

Class σ γ(Tσ) ≈ Class σ γ(Tσ) ≈
[p, p, p] [7, 7, 7] 2.6180 [p, p, q, r, q] [4, 4, 6, 5, 6] 6.6650

[3, p, p] [3, 14, 14] 2.6180 [3, p, q, q, p] [3, 4, 6, 6, 4] 4.9911

[p, p, q] [6, 6, 7] 1.722 [p, q, r, s, t] [4, 6, 10, 12, 8] 14.5753

[4,p,q] [4,6,14] 1.6180 [p, p, p, p, p, p] [4, 4, 4, 4, 4, 4] 5.8284

[p, q, r] [6, 8, 10] 3.4789 [p, p, q, p, p, q] [4, 4, 5, 4, 4, 5] 7.1347

[p, p, p, p] [5, 5, 5, 5] 3.7320 [p, q, p, q, p, q] [4, 5, 4, 5, 4, 5] 7.8729

[p, p, q, q] [4, 4, 6, 6] 3.4081 [p, q, q, p, r, r] [6, 4, 4, 6, 8, 8] 13.1291

[3, p, 3, p] [3, 7, 3, 7] 2.6180 [p, q, p, r, q, r] [4, 5, 4, 6, 5, 6] 9.8115

[p, q, p, q] [4, 5, 4, 5] 2.6180 [p, q, r, p, q, r] [4, 6, 8, 4, 6, 8] 13.5612

[3, p, 4, p] [3, 6, 4, 6] 2.9655 [p, q, p, r, s, r] [4, 5, 4, 6, 7, 6] 10.9033

[3,p,q,p] [3,4,7,4] 1.6180 [p, q, r, p, s, t] [4, 6, 8, 4, 10, 12] 18.1174

[p, q, p, r] [4, 5, 4, 6] 3.1462 [p, q, r, s, t, u] [4, 6, 10, 14, 12, 8] 23.9963

[p, q, r, s] [4, 6, 10, 8] 7.0367 [3, p, p, 3, p, p] [3, 4, 4, 3, 4, 4] 4.3306

[p, p, p, p, p] [4, 4, 4, 4, 4] 3.7320 [3, p, 3, p, 3, p] [3, 4, 3, 4, 3, 4] 3.7320

[3, 3, 3, 3, p] [3, 3, 3, 3, 7] 1.7553 [3, 3, 3, p, q, p] [3, 3, 3, 4, 5, 4] 4.0265

[3, 3, 3, p, p] [3, 3, 3, 6, 6] 3.0217 [3, p, q, 3, q, p] [3, 4, 6, 3, 6, 4] 6.8091

[3, 3, p, 3, p] [3, 3, 5, 3, 5] 2.6180 [3, p, 3, q, 3, r] [3, 4, 3, 5, 3, 6] 5.6723

[3, 3, p, 3, q] [3, 3, 4, 3, 5] 1.9318 [3, p, q, r, q, p] [3, 4, 6, 5, 6, 4] 8.0601
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Proof. With respect to the partial order on valence sequences, if a valence sequence σ has
length at least 7, then [3, 3, 3, 3, 3, 3, 3] ≤ σ. A face-homogeneous tessellation T0 with va-
lence sequence [3, 3, 3, 3, 3, 3, 3] is edge-homogeneous with edge-symbol 〈3, 3; 7, 7〉 and so
has growth rate γ(T0) = 1

2 (3 +
√

5) by Proposition 2.20. But then if [3, 3, 3, 3, 3, 3, 3] < σ
and T is a tessellation with monomorphic valence sequence σ, then γ(T0) ≤ γ(T ), by The-
orem 3.7. We proceed then by exhaustion: there are only finitely many forms of valence
sequences of length at most 6. The Appendix contains an exhaustive classification of real-
izable valence sequences as monomorphic or polymorphic. For each form of monomorphic
valence sequence, the least rate of growth is either determined or bounded below. The min-
imum growth rate of a minimal representative of each form is listed in Table 1. Of these
forms, [4, 6, 14] and [3, 4, 7, 4] have the least rate of growth, shown to be 1

2 (1 +
√

5) in the
Appendix.

Remark 3.14. It is interesting to observe that the two tessellations realizing the minimum
exponential growth rate are closely related. The face-homogeneous tessellation with va-
lence sequence [4, 6, 14] can be realized by the classical tiling of the hyperbolic plane by
triangles with interior angles π2 , π3 , and π

7 . Moreover, a face-homogeneous tessellation with
valence sequence [3, 4, 7, 4] is the subgraph of one with valence sequence [4, 6, 14] obtained
by the deletion of all edges joining 6-valent and 14-valent vertices. Many artistic renderings
of these tilings exist and can be found on web sites regarding the (2, 3, 7)-triangle group,
the Order-7 triangular tiling, or triangular tilings of the hyperbolic plane.

4 Polymorphic valence sequences
4.1 A sufficient condition for polymorphicity

With respect to the ordering of cyclic sequences, the least polymorphic valence sequence
with positive angle excess is [4, 4, 4, 5]; that is to say, every cyclic sequence σ such that
σ < [4, 4, 4, 5] is either not realizable as a tessellation, is realizable only by a finite map
or a Euclidean tessellation, or is monomorphic. While all valence sequence of length 3
are monomorphic, k-covalent polymorphic valence sequences abound for k ≥ 4. The
following theorem gives a simple sufficient condition under which a realizable valence
sequence is polymorphic.

Un Un+1

u0

u1

u2

v1

v2

vr

w
b

b′

Figure 15: A configuration of faces demonstrating polymorphicity.

Proposition 4.1. Let σ = [p0, . . . , pk−1] be the valence sequence of a face-homogeneous
tessellation T ∈ G4,4 ∪ G3+,5. If there exist distinct i, j ∈ {0, . . . , k − 1} such that
pi, pi+1 ≥ 4 and either
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1. pi = pj , pi+1 = pj+1, and pi+2 6= pj+2, or

2. pi = pj , pi+1 = pj−1, and pi+2 6= pj−2,

then σ is polymorphic.

Proof. As the only two forms of valence sequences of length k = 4 that satisfy the hypoth-
esis, namely [p, p, p, q] and [p, p, q, r], are polymorphic (see Appendix), we assume that
k ≥ 5. Also, since condition (2) is identical to (1) save for orientation within the cyclic
sequence, it suffices to assume that there are distinct i, j such that (1) holds. Furthermore,
we may assume i = 0 due to the rotational equivalence of valence sequences.

Since k ≥ 5, there exists for some n a face in Fn incident with three consecutive
vertices u0, u1, u2 ∈ Un with valence ρ(um) = pm for m = 0, 1, 2. Let b be the brick
in Fn+1 incident with the edge u0u1, and let b′ be the brick (or perhaps notched brick
if p2 = 3) in Fn+1 incident with the edge u1u2. Let v1, . . . , vr be the vertices in Un+1

incident with u1 in consecutive order, so that v1 is incident with b and vr is incident with b′.
Thus r = p1 − 2 ≥ 2. If σ contains a subsequence [q, p1, p2] with q 6= p0, then ρ(vr) may
equal either p0 or q, resulting in a choice of face types for b′, and we’re done. Otherwise
we must have ρ(vr) = p0, which forces the vertex vr−2 and subsequent alternate neighbors
of u1 in Un+1 also to be p0-valent.

If p1 is even, then ρ(v1) may equal either p2 or pj+2 in which case the wedge w ∈
Fn+1 incident with vertices v1, u1, v2 may be of either type w2 or type wj+2, and T is
polymorphic. (See Figure 15.)

If p1 is odd, then working backward as in the even case forces ρ(v1) = p0, which
implies that either p0 = p2 or p0 = pj+2, and without loss of generality, we assume the
former. Now we may assign ρ(v2) to be either p0 or pj+2, and the argument proceeds as in
the even case.

The existence of polymorphic valence sequences considerably complicates the compu-
tation of growth rates of face-homogeneous tessellations. The above proof suggests that,
unlike in the monomorphic case, polymorphic valence sequences may admit many different
accretion rules, as we illustrate in the next section.

4.2 Two non-isomorphic tessellations with the same valence sequence

The minimal polymorphic valence sequence under the partial order on cyclic sequences,
namely [4, 4, 4, 5], is unfortunately not amenable to study via our methods. In fact, there
is no well-defined transition matrix between coronas, and this problem is shared by all
valence sequences of the form [4, 4, 4, q] for q > 4. However, [4, 4, 6, 8] provides us with
the opportunity to investigate two distinct (but related) accretion rules.

The valence sequence [4, 4, 6, 8] is representative of form [p, p, q, r] discussed in the
Appendix. As every face is incident with a pair of adjacent 4-valent vertices, every real-
ization of this valence sequence contains a countable infinity of pairwise-disjoint double
rays, each induced exclusively by 4-valent vertices. Figure 16 (A) shows a strip-like patch
bordering a double ray of 4-valent vertices. To obtain Figure 16 (B) from this (or vice
versa), one can fix pointwise the half-plane on one side of the double ray while translating
the half-plane on the other side along one edge of the double ray.

To construct still other such (non-isomorphic) realizations, one can choose to “trans-
late” along any one of these double rays by leaving fixed the half-plane on one side of the
double ray but translating the half-plane on the other side by one edge. Since there exists
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(A) (B)

: 4-valent
: 6-valent
: 8-valent

Figure 16: Two non-isomorphic patches of a tessellation with valence sequence [4, 4, 6, 8],
showing possible neighborhoods of double rays of 4-valent vertices.

a countable infinity of double rays along which one may choose to translate one or the
other or neither of the adjacent half-planes, there exists an uncountable class of pairwise
non-isomorphic tessellations that all have the same valence sequence [4, 4, 6, 8].

While one might expect that all tessellations having the same valence sequence always
have the same growth rate, we show that this is not so.

We begin by observing that every 4-valent vertex in a face-homogeneous tessellation
with valence sequence [4, 4, 6, 8] is adjacent to two other 4-valent vertices and two vertices
with valences 6 or 8; thus any given 4-valent vertex either has exactly one 6-valent and one
8-valent neighbor, has two 6-valent neighbors, or has two 8-valent neighbors. Furthermore,
every 4-valent vertex lies on a double ray (two-way infinite path) of 4-valent vertices; if one
vertex along this path has a 6-valent neighbor and an 8-valent neighbor, then so does every
other vertex along the double ray. This is the behavior demonstrated in Figure 16 (A).

If the local configuration specified in Figure 16 (A) is enforced along every double ray
of 4-valent vertices, then the tessellation obtained is unique; let this tessellation be T1. We
can then construct offspring diagrams for T1 as given in Figure 17. It is interesting to note
that T1 is the dual of the Cayley graph of the group with presentation

G1 =
〈
a, b, c | a2 = b2 = c2 = (bc)3 = (caba)4 = 1

〉
.

Encoding the offspring diagrams into a matrix, we obtain the transition matrix M1 of
T1 given below. The four entries underlined in the matrix are the only entries which change
between this example and the next example, T2, that we construct.

M1 =



0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
3 1 0 1 1 1 0 0
2 5 2 0 0 2 2 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
1 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0


The characteristic polynomial of M1 is

f1(z) = (z − 1)(z + 1)
(
z2 + 3z + 1

) (
z4 − 3z3 − 4z2 − 3z + 1

)
,

which in turn gives that the eigenvalue of maximum modulus of M1 is

λ1 =
1

4

3 +
√

33 + 2

√
13

2
+

3
√

33

2

 ≈ 4.13016.
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Un−1 Un Un+1

Un−1 Un Un+1
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f3

f4

f2

f5

f8

f3

f4
f3

f6

f5
f4

f2

f4 f7

f6 f1

f3

f5
f7

f3

f6
f8

f3

f4

Un−1 Un Un+1

f7 f5

f4

Un−1 Un Un+1

f8 f6

: 4-valent

: 6-valent

: 8-valent

Figure 17: Offspring diagrams for T1.
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Considering again the double-rays of 4-valent vertices, it is trivial to note that if a vertex
on such a double ray has two 6-valent neighbors in the tessellation, then both vertices
adjacent to it in the double-ray have two 8-valent neighbors. This local behavior is shown
in Figure 16 (B).

If this pattern is extended to all such double rays we obtain the tessellation T2, which
is also the dual of a Cayley graph. The underlying group of this Cayley graph is

G2 =
〈
a, b, c, d | a2 = b2 = c2 = d2 = (ab)2 = (ad)2 = (cd)3 = (bc)4

〉
.

The growth behavior of T2 differs from that of T1 only in the offspring of faces of types f3
and f4, as shown in the offspring diagrams in Figure 18.

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

Un−1 Un Un+1

f1

f7

f8

f3

f4

f2

f5

f8

f3

f4
f3

f6

f5
f4

f1

f4 f7

f6 f2

f3

f5
f7

f3

f6
f8

f3

f4

Un−1 Un Un+1

f7 f5

f4

Un−1 Un Un+1

f8 f6

: 4-valent

: 6-valent

: 8-valent

Figure 18: Offspring diagrams for T2.

The effect of the change of offspring of types f2 and f3 in the transition matrix of T2
lies only in the underlined 2 × 2 submatrix of M1, while the remainder of the matrix M2
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remains identical to M1. Hence we have

M2 =



0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
3 1 0 1 1 1 0 0
2 5 2 0 0 2 2 0
0 1 1 0 0 0 1 0
0 0 1 1 0 0 0 1
1 0 0 1 1 0 0 0
1 1 0 0 0 1 0 0


.

The characteristic polynomial of M2 is

f2(z) = (z − 1)2
(
z6 + 2z5 − 15z4 − 40z3 − 15z2 + 2z + 1

)
.

As polynomials of degree 6 are unfortunately not solvable by radicals, we obtain by ap-
proximation that the root of maximum modulus is λ2 ≈ 4.14659.

As these growth rates are nearly the same, there is only a small difference in corona
sizes in the first several coronas. However, the size of the coronas and distribution of face
types differs greatly farther from the root. To demonstrate this, Table 2 gives corona sizes
in Bilinski diagrams of T1 and of T2, both rooted at 4-valent vertices. Note that the sizes
of the coronas of T2 dominate those of T1 only after the 13th corona.

4.3 Some conjectures

Ideally, all tessellations realizing the same polymorphic valence sequence would have the
same growth rate. The example of valence sequence [4, 4, 6, 8] illustrates that this is not so.
We propose the following definitions.

Definition 4.2. Let σ be some polymorphic valence sequence, and define Tσ to be the set
of isomorphism classes of face-homogeneous tessellations with valence sequence σ. Let

λσ = inf{γ(T ) : T ∈ Tσ}, (4.1)

λσ = sup{γ(T ) : T ∈ Tσ}, (4.2)
Lσ = {T : T ∈ Tσ and γ(T ) = λσ}, and (4.3)

Hσ = {T : T ∈ Tσ and γ(T ) = λσ}. (4.4)

We conjecture that the lower and upper bounds λσ and λσ for any given valence se-
quence σ are realized.

Conjecture 4.3. Let σ be a polymorphic valence sequence. Then Lσ and Hσ are nonempty.

Bearing in mind the polymorphic valence sequence [4, 4, 6, 8] analyzed in Section 4.2,
we propose as a conjecture the following sharper version of Theorem 3.7.

Conjecture 4.4. Let σ1 and σ2 be valence sequences such that σ1 < σ2. Then

λσ1
≤ λσ2

. (4.5)

In the spirit of the famous quote of the late George Pólya [12] (“If you can’t solve a
problem, then there is an easier problem you can solve: find it.”), we offer the following
(perhaps) easier conjecture.
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Table 2: Corona sizes in T1 and T2; emphasis on the 14th corona beyond which the coronas
of T2 appear to exceed in size those of T1.

n |F1,n| |F2,n| n |F1,n| |F2,n|
1 4 4 29 1.20050× 1018 1.27748× 1018

2 30 28 30 4.95826× 1018 5.29701× 1018

3 110 108 31 2.04784× 1019 2.19652× 1019

4 494 468 32 8.45791× 1019 9.10786× 1019

5 1938 1900 33 3.49325× 1020 3.77673× 1020

6 8272 7956 34 1.44277× 1021 1.56603× 1021

7 33464 32868 35 5.95887× 1021 6.49377× 1021

8 140046 136380 36 2.46111× 1022 2.69268× 1022

9 573610 565956 37 1.01648× 1023 1.11655× 1023

10 2.38167× 106 2.34358× 106 38 4.19821× 1023 4.62986× 1023

11 9.80378× 106 9.73259× 106 39 1.73393× 1024 1.91983× 1024

12 4.05773× 107 4.02988× 107 40 7.16140× 1024 7.96071× 1024

13 1.67365× 108 1.67318× 108 41 2.95777× 1025 3.30099× 1025

14 6.91836× 108 6.93034× 108 42 1.22161× 1026 1.36878× 1026

15 2.85585× 109 2.87639× 109 43 5.04544× 1026 5.67580× 1026

16 1.17992× 1010 1.19181× 1010 44 2.08385× 1027 2.35352× 1027

17 4.87218× 1010 4.94504× 1010 45 8.60662× 1027 9.75910× 1027

18 2.01257× 1011 2.04947× 1011 46 3.55467× 1028 4.04670× 1028

19 8.31149× 1011 8.50179× 1011 47 1.46814× 1029 1.67800× 1029

20 3.43297× 1012 3.52419× 1012 48 6.06363× 1029 6.95799× 1029

21 1.41782× 1013 1.46172× 1013 49 2.50438× 1030 2.88520× 1030

22 5.85596× 1013 6.05990× 1013 50 1.03435× 1031 1.19637× 1031

23 2.41857× 1014 2.51322× 1014 60 1.49395× 1037 1.79797× 1037

24 9.98918× 1014 1.04199× 1015 70 2.15777× 1043 2.70207× 1043

25 4.12567× 1015 4.32117× 1015 80 3.11654× 1049 4.06079× 1049

26 1.70397× 1016 1.79166× 1016 90 4.50134× 1055 6.10274× 1055

27 7.03766× 1016 7.42979× 1016 100 6.50145× 1061 9.17148× 1061

28 2.90667× 1017 3.08066× 1017 200 2.56861× 10123 5.38996× 10123

Conjecture 4.5. Let σ1 and σ2 be valence sequences with σ1 < σ2. Then

λσ1
≤ λσ2

. (4.6)

If Conjecture 4.4 holds, then one could delete the condition of monomorphicity from
the hypothesis of Theorem 3.7 and therefore from Theorem 3.13 as well. Moreover, the
Appendix could be much abbreviated. For example, one could eliminate the exhaustive
consideration of the many forms of 6-covalent face-homogeneous tessellations listed and
treated there by observing that the least valence sequence σ of length 6 with η(σ) > 0 is
[3, 3, 3, 3, 3, 4]. Thus, if any tessellation with the polymorphic valence sequence [3, 3, 3, 3,
3, 4] has growth rate greater than 1

2 (1 +
√

5), then so does every tessellation with valence
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sequence σ ≥ [3, 3, 3, 3, 3, 4].
Beyond these conjectures, there are some open questions. Consider the partially or-

dered set of valence sequences, and in particular, the poset consisting of the polymorphic
valence sequences.

Question 4.6. As one goes up a chain in the poset, do intervals of the form
[
λσ, λσ

]
become

(asymptotically) longer?

Question 4.7. Do the intervals in the complement of⋃
σ

{[
λσ, λσ

]
: σ is polymorphic

}
become arbitrarily long?

If the answer to Question 4.7 is negative, we pose the following.

Question 4.8. If x is a sufficiently large real number, is there always some polymorphic
valence sequence σ such that λσ ≤ x ≤ λσ?

Or, on the other hand,

Question 4.9. Do there exist polymorphic sequences σ, τ such that[
λσ, λσ

]
∩
[
λτ , λτ

]
6= ∅?
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[8] B. Grünbaum and G. C. Shephard, Edge-transitive planar graphs, J. Graph Theory 11 (1987),
141–155, doi:10.1002/jgt.3190110204.
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Abstract

In this paper, we define the 4-girth-thickness θ(4, G) of a graph G as the minimum
number of planar subgraphs of girth at least 4 whose union is G. We prove that the 4-
girth-thickness of an arbitrary complete graph Kn, θ(4,Kn), is

⌈
n+2
4

⌉
for n 6= 6, 10 and

θ(4,K6) = 3.

Keywords: Thickness, planar decomposition, girth, complete graph.

Math. Subj. Class.: 05C10

1 Introduction
A finite graph G is planar if it can be embedded in the plane without any two of its edges
crossing. A planar graph of order n and girth g has size at most g

g−2 (n − 2) (see [6]),
and an acyclic graph of order n has size at most n − 1, in this case, we define its girth as
∞. The thickness θ(G) of a graph G is the minimum number of planar subgraphs whose
union is G; i.e. the minimum number of planar subgraphs into which the edges of G can
be partitioned.

The thickness was introduced by Tutte [11] in 1963. Since then, exact results have been
obtained when G is a complete graph [1, 3, 4], a complete multipartite graph [5, 12, 13] or
a hypercube [9]. Also, some generalizations of the thickness for the complete graph Kn

have been studied such that the outerthickness θo, defined similarly but with outerplanar
instead of planar [8], and the S-thickness θS , considering the thickness on a surfaces S
instead of the plane [2]. See also the survey [10].

We define the g-girth-thickness θ(g,G) of a graph G as the minimum number of planar
subgraphs of girth at least g whose union is G. Note that the 3-girth-thickness θ(3, G) is
the usual thickness and the ∞-girth-thickness θ(∞, G) is the arboricity number, i.e. the
minimum number of acyclic subgraphs into which E(G) can be partitioned. In this paper,
we obtain the 4-girth-thickness of an arbitrary complete graph of order n 6= 10.

E-mail address: christian@cs.cinvestav.mx (Christian Rubio-Montiel)

cb This work is licensed under http://creativecommons.org/licenses/by/3.0/
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2 The exact value of θ(4,Kn) for n 6= 10

Since the complete graph Kn has size
(
n
2

)
and a planar graph of order n and girth at least

4 has size at most 2(n − 2) for n ≥ 3 and n − 1 for n ∈ {1, 2} then the 4-girth-thickness
of Kn is at least ⌈

n(n− 1)

2(2n− 4)

⌉
=

⌈
n+ 1

4
+

1

2n− 4

⌉
=

⌈
n+ 2

4

⌉
for n ≥ 3 and also

⌈
n+2
4

⌉
for n ∈ {1, 2}, we have the following theorem.

Theorem 2.1. The 4-girth-thickness θ(4,Kn) of Kn equals
⌈
n+2
4

⌉
for n 6= 6, 10 and

θ(4,K6) = 3.

Proof. Figure 1 displays equality for n ≤ 5.

1

1

2

1 1

2 2

3

1 1

1 1

2 2
2

23 3 3

3

4 4 4

4
5

5

,

, ,

Figure 1: θ(4,Kn) =
⌈
n+2
4

⌉
for n = 1, 2, 3, 4, 5.

To prove that θ(4,K6) = 3 >
⌈
6+2
4

⌉
= 2, suppose that θ(4,K6) = 2. This partition

define an edge coloring of K6 with two colors. By Ramsey’s Theorem, some part contains
a triangle obtaining a contradiction for the girth 4. Figure 2 shows a partition of K6 into
tree planar subgraphs of girth at least 4.

6

11 1 22

2

3

3

3

4
4

4

5

5

6
65, ,

Figure 2: θ(4,K6) = 3.

For the remainder of this proof, we need to distinguish four cases, namely, when n =
4k − 1, n = 4k, n = 4k + 1 and n = 4k + 2 for k ≥ 2. Note that in each case, the lower
bound of the 4-girth thickness require at least k + 1 elements. To prove our theorem, we
exhibit a decomposition of K4k into k+1 planar graphs of girth at least 4. The other three
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cases are based in this decomposition. The case of n = 4k− 1 follows because K4k−1 is a
subgraph of K4k. For the case of n = 4k + 2, we add two vertices and some edges to the
decomposition obtained in the case of n = 4k. The last case follows because K4k+1 is a
subgraph of K4k+2. In the proof, all sums are taken modulo 2k.

1. Case n = 4k. It is well-known that a complete graph of even order contains a cyclic
factorization of Hamiltonian paths, see [7]. Let G be a subgraph of K4k isomorphic
to K2k. Label its vertex set V (G) as {v1, v2, . . . , v2k}. Let F1 be the Hamiltonian
path with edges

v1v2, v2v2k, v2kv3, v3v2k−1, . . . , v2+kv1+k.

Let Fi be the Hamiltonian path with edges

vivi+1, vi+1vi−1, vi−1vi+2, vi+2vi−2, . . . , vi+k+1vi+k,

where i ∈ {2, 3, . . . , k}.
Such factorization of G is the partition {E(F1), E(F2), . . . , E(Fk)}. We remark
that the center of Fi has the edge e = vi+d k

2 evi+d 3k
2 e, see Figure 3.

vi
vi+1

vi−1

vi+k
vi+k+1

vi+k−1

vi+d k
2 e−1

vi+d 3k
2 e−1

vi+d 3k
2 e

vi+d k
2 e

vi
vi+1

vi−1

vi+k−1

vi+d k
2 e

vi+d 3k
2 e

vi+d 3k
2 e+1

vi+d k
2 e−1

a) b)

vi+kvi+k+1

Figure 3: The Hamiltonian path Fi: Left a): The dashed edge e for k odd. Right b) The
dashed edge e for k even.

Now, consider the complete subgraph G′ of K4k such that G′ = K4k \ V (G). Label
its vertex set V (G′) as {v′1, v′2, . . . , v′2k} and consider the factorization, similarly as
before, {E(F ′1), E(F ′2), . . . , E(F ′k)} where F ′i is the Hamiltonian path with edges

v′iv
′
i+1, v

′
i+1v

′
i−1, v

′
i−1v

′
i+2, v

′
i+2v

′
i−2, . . . , v

′
i+k+1v

′
i+k,

where i ∈ {1, 2, . . . , k}.
Next, we construct the planar subgraphs G1, G2,...,Gk−1 and Gk of girth 4, order 4k
and size 8k − 4 (observe that 2(4k − 2) = 8k − 4), and also the matching Gk+1, as
follows. Let Gi be a spanning subgraph of K4k with edges E(Fi) ∪ E(F ′i) and

viv
′
i+1, v

′
ivi+1, vi+1v

′
i−1, v

′
i+1vi−1, vi−1v

′
i+2, v

′
i−1vi+2,...,vi+k+1v

′
i+k, v

′
i+k+1vi+k
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where i ∈ {1, 2, . . . , k}; and let Gk+1 be a perfect matching with edges vjv′j for
j ∈ {1, 2, . . . , 2k}. Figure 4 shows Gi is a planar graph of girth at least 4.

vi v1+i vi−1 vi+k+1 vi+k

v′i v′1+i v′i−1 v′i+k+1 v′i+k

. . .

. . .

. . .

Gi

v1 v2 v2k

v′1 v′2 v′2k

. . .

. . .

. . .

Gk+1

a) b)

Figure 4: Left a): The graph Gi for any i ∈ {1, 2, . . . , k}. Right b) The graph Gk+1.

To verify that K4k =
k+1⋃
i=1

Gi: 1) If the edge vi1vi2 of G belongs to the factor Fi

then vi1vi2 belongs to Gi. If the edge is primed, belongs to G′i. 2) The edge vi1v
′
i2

belongs to Gk+1 if and only if i1 = i2, otherwise it belongs to the same graph Gi as
vi1vi2 . Similarly in the case of v′i1vi2 and the result follows.

2. Case n = 4k − 1. Since K4k−1 ⊂ K4k, we have

k + 1 ≤ θ(4,K4k−1) ≤ θ(4,K4k) ≤ k + 1.

3. Case n = 4k + 2 (for k 6= 2). Let {G1, . . . , Gk+1} be the planar decomposition of
K4k constructed in the Case 1. We will add the two new vertices x and y to every
planar subgraph Gi, when 1 ≤ i ≤ k+ 1, and we will add 4 edges to each Gi, when
1 ≤ i ≤ k, and 4k+1 edges toGk+1 such that the resulting new subgraphs ofK4k+2

will be planar. Note that
(
4k
2

)
+ 4k + 4k + 1 =

(
4k+2

2

)
.

To begin with, we define the graph Hk+1 adding the vertices x and y to the planar
subgraph Gk+1 and the 4k + 1 edges

{xy, xv1, xv′2, xv3, xv′4, . . . , xv2k−1, xv′2k, yv′1, yv2, yv′3, yv4, . . . , yv′2k−1, yv2k}.

The graph Hk+1 has girth 4, see Figure 5.

In the following, for 1 ≤ i ≤ k, by adding vertices x and y to Gi and adding
4 edges to Gi, we will get a new planar graph Hi such that {H1, . . . ,Hk+1} is a
planar decomposition of K4k+2 such that the girth of every element is 4. To achieve
it, the given edges to the graph Hi will be v′jx, xvj−1, vjy, yv

′
j−1, for some odd

j ∈ {1, 3, . . . , 2k − 1}.
According to the parity of k, we have two cases:



C. Rubio-Montiel: The 4-girth-thickness of the complete graph 323

v1 v′2 v3 v2k−1 v′2k

v′1 v2 v′3 v′2k−1 v2k

. . .

. . .

. . .

Gk+1

x

y

Figure 5: The graph Hk+1.

• Suppose k odd. For odd i ∈ {1, 2, . . . , k}, we define the graph Hi adding the
vertices x and y to the planar subgraph Gi and the 4 edges

{xv′
i+d 3k

2 e−1, xvi+d 3k
2 e, yvi+d 3k

2 e−1, yv
′
i+d 3k

2 e}

when
⌈
k
2

⌉
is even, otherwise

{yv′
i+d 3k

2 e−1, yvi+d 3k
2 e, xvi+d 3k

2 e−1, xv
′
i+d 3k

2 e}.

Additionally, for even i ∈ {1, 2, . . . , k}, we define the graph Hi adding the
vertices x and y to the planar subgraph Gi and the 4 edges

{xv′
i+d k

2 e−1, xvi+d k
2 e, yvi+d k

2 e−1, yv
′
i+d k

2 e}

when
⌈
k
2

⌉
is even, otherwise

{yv′
i+d k

2 e−1, yvi+d k
2 e, xvi+d k

2 e−1, xv
′
i+d k

2 e}.

Note that the graph Hi has girth 4 for all i, see Figure 6.
• Suppose k even. Similarly that the previous case, for odd i ∈ {1, 2, . . . , k}, we

define the graph Hi adding the vertices x and y to the planar subgraph Gi and
the 4 edges

{xvi+d 3k
2 e+1, xv

′
i+d 3k

2 e, yv
′
i+d 3k

2 e+1
, yvi+d 3k

2 e}

when
⌈
k
2

⌉
is even, otherwise

{yvi+d 3k
2 e+1, yv

′
i+d 3k

2 e, xv
′
i+d 3k

2 e+1
, xvi+d 3k

2 e}.

On the other hand, for even i ∈ {1, 2, . . . , k}, we define the graph Hi adding
the vertices x and y to the planar subgraph Gi and the 4 edges

{xvi+d k
2 e, xv

′
i+d k

2 e−1, yv
′
i+d k

2 e, yvi+d k
2 e−1}

when
⌈
k
2

⌉
is even, otherwise

{yvi+d k
2 e, yv

′
i+d k

2 e−1, xv
′
i+d k

2 e, xvi+d k
2 e−1}.

Note that the graph Hi has girth 4 for all i, see Figure 7.



324 Ars Math. Contemp. 14 (2018) 319–327
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Figure 6: The graphHi when k is odd and its auxiliary graph F∗i . Above a) When i is odd.
Botton b) When i is even.
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Figure 7: The graph Hi when k is even and its auxiliary graph F∗i . Above a) When i is
odd. Botton b) When i is even.
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In order to verify that each edge of the set

{xv′1, xv2, xv′3, xv3, . . . , xv′2k−1, xv2k, yv1, yv′2, yv3, yv′3, . . . , yv2k−1, yv′2k}.

is in exactly one subgraph Hi, for i ∈ {1, . . . , k}, we obtain the unicyclic graph F∗i
identifying vj and v′j resulting in vj ; identifying x and y resulting in a vertex which
is contracted with one of its neighbours. The resulting edge, in dashed, is showed in
Figures 6 and 7. The set of those edges are a perfect matching of K2k proving that
the added two paths of length 2 in Gi have end vertices vj and v′j−1, and the other
v′j and vj−1. The election of the label of the center vertex is such that one path is
vevenxv

′
odd and v′evenyvodd and the result follows.

4. Case n = 4k + 1 (for k 6= 2). Since K4k+1 ⊂ K4k+2, we have

k + 1 ≤ θ(4,K4k+1) ≤ θ(4,K4k+2) ≤ k + 1.

For k = 2, Figure 8 displays a decomposition of three planar graphs of girth at least 4
proving that θ(4,K9) =

⌈
9+2
4

⌉
= 3.

v1 v2 v4 v3

v′1 v′2 v′4 v′3

H1

v1 v3 v′4

v′1 v′3 v′4

H3x

v′2

v2

v2 v3 v1 v4

v′2 v′3 v′1 v′4

H2x

x

, ,

Figure 8: A planar decomposition of K9 into three subgraphs of girth 4 and 5.

By the four cases, the theorem follows.

About the case of K10, it follows 3 ≤ θ(4,K10) ≤ 4. We conjecture that θ(4,K10) =
4.
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Abstract

The thickness of a graph is the minimum number of planar subgraphs into which the
graph can be decomposed. Determining the thickness for the complete bipartite graph is an
unsolved problem in graph theory for over fifty years. Using a new planar decomposition
for K4k−4,4k(k ≥ 4), we obtain the thickness of the complete bipartite graph Kn,n+4, for
n ≥ 1.

Keywords: Planar graph, thickness, complete bipartite graph.
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1 Introduction
In this paper, all graphs are simple. A graph G is denoted by G = (V,E) where V (G) is the
vertex set and E(G) is the edge set. A complete graph is a graph in which any two vertices
are adjacent. A complete graph on n vertices is denoted by Kn. A complete bipartite graph
is a graph whose vertex set can be partitioned into 2 parts, such that every edge has its ends
in different parts and every two vertices in different parts are adjacent. We use Kp1,p2

to
denote a complete bipartite graph in which the ith part contains pi vertices, for i = 1, 2.

The thickness t(G) of a graph G is the minimum number of planar subgraphs into
which G can be decomposed [14]. It is a classical topological parameter of a graph and
has many applications, for instance, to graph drawing [12] and VLSI design [1]. Since
deciding the thickness of a graph is NP-hard [9], it is very difficult to get the exact number
of thickness for arbitrary graphs. Battle, Harary and Kodama [3] in 1962 and Tutte [13]
in 1963 independently showed that the thickness of K9 and K10 equals 3. Beineke and
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Harary [4] determined the thickness of complete graph Kn for n 6≡ 4 (mod 6) in 1965, the
remaining case was solved in 1976, independently by V.B. Alekseev and V.S. Gonchakov
[2] and by J.M. Vasak [15].

For complete bipartite graphs, the problem has not been entirely solved yet. By con-
structing a planar decomposition of Km,n when m is even, Beineke, Harary and Moon [5]
determined the thickness of Km,n for most values of m,n in 1964.

Theorem 1.1. [5] For m ≤ n, the thickness of the complete bipartite graph Km,n is

t(Km,n) =

⌈
mn

2(m+ n− 2)

⌉
, (1.1)

except possibly when m and n are both odd and there exists an integer k satisfying n =⌊
2k(m−2)
(m−2k)

⌋
.

We recall that the thickness of Kn,n is also obtained in 1968 by Isao and Ozaki [11]
independently. The following open problem is adapted from [7] by Gross and Harary.

Problem 1.2. [See Problem 4.1 of [7]] Find the thickness of Km,n for all m,n.

Beineke, Harary and Moon [5] also pointed out that the smallest complete bipartite
graph whose thickness is unknown is K17,21. From Euler’s Formula, the thickness of
K17,21 is at least 5.

From Theorem 1.1, we need to determine the thickness of Km,n for odd m,n. Since the
difference between the two odd numbers is even, we only need to determine the thickness of
Kn,n+2k for odd n and k ≥ 0. In this paper, we start to calculate the thickness of Kn,n+2k

for some small values of k. Indeed, we determine the thickness of Kn,n+4.

Theorem 1.3. The thickness of Kn,n+4 is

t(Kn,n+4) =

{
1, if n ≤ 2⌈
n+3
4

⌉
, otherwise.

The following corollary follows from Theorem 1.3.

Corollary 1.4. The thickness of K17,21 is 5.

We may refer the reader to [6, 10, 16] for more background on graph thickness.

2 The thickness of Kn,n+4

To begin with, we define two special graphs called the pattern graph and the kth-order nest
graph. Then, we prove a new planar decomposition of K4k−4,4k. Finally, we prove the
thickness of K4k−3,4k+1 and Kn,n+4.

2.1 The pattern graph

Let U = {u1, u2} and Xn be a set of n vertices. A graph is said to be a pattern graph of
order n+ 2, denoted by G[u1Xnu2], if it can be constructed by the following two steps.

1. Arrange the n vertices in a row, and put vertices u1, u2 on the above and below of n
vertices, respectively.
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2. Join both u1 and u2 to the n vertices using straight lines.

From the definition above, the pattern graph is a planar straight-line graph. Figure 1 illus-
trates the pattern graph G[u1Xnu2].

Remark 2.1. Unless explicitly mentioned, we always join vertices using straight lines in
the drawings of the following proofs.

u1

u2

Figure 1: The pattern graph G[u1Xnu2].

2.2 The kth-order nest graph

Let Uk = {ui1 , ui2 , . . . , uik}, Vk = {vj1 , vj2 , . . . , vjk} and W2k+2 = {wl1 , wl2 , . . . ,
wl2k+2

}, we define a kth-order nest graph G[Uk, Vk,W2k+2] as follows:

1. Arrange 2k + 2 vertices wl1 , wl2 , . . . , wl2k+2
in a row.

2. For 1 ≤ m ≤ k, place vertices uim and vjm on the above and below of the row,
respectively, and join them to wl1 , wl2m , wl2m+1 , wl2m+2 .

Figure 2 illustrates a third-order nest graph G[U3, V3,W8], where U3 = {u1, u2, u3},
V3 = {v1, v2, v3} and W8 = {w1, w2, . . . , w8}.

u1

v1

u2

v2

u3

v3

w1 w2 w3 w4 w5 w6 w7 w8

Figure 2: The third-order nest graph G[U3, V3,W8].

2.3 A new planar decomposition of K4k−3,4k+1, for k ≥ 4

In this subsection, we shall construct a planar decomposition for the complete bipartite
graph K4k−3,4k+1 with k planar subgraphs G1, G2, . . . , Gk. Suppose that the vertex parti-
tion of K4k−3,4k+1 is (X,Y ), where X={x1, x2, . . . , x4k−3}, Y ={y0, y1, y2, . . . , y4k}.
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2.3.1 The planar decomposition for K4k−4,4k

Let the vertex partition of K4k−4,4k be (X1, Y1), where X1 = {x1, x2, . . . , x4k−4}, Y1 =
{y0, y1, . . . , y4k−1}. In this subsection, all subscripts in yj are taken mod 4k.

1. In the graph Gi (1 ≤ i ≤ k), we arrange 4k vertices in a row, and divide the 4k
vertices into two subsets L2k and R2k such that each subset contains 2k vertices
according to the following steps.

2. In the graph Gi (1 ≤ i ≤ k − 1), we choose four vertices x4i−3, x4i−2, x4i−1, x4i

from X1 and construct two pattern graphs G[x4i−3L2kx4i−1] and G[x4i−2R2k x4i].
Then we join both x4i−3 and x4i−1 to the first vertex and the last vertex in R2k. Fi-
nally, we label the vertices in L2k and R2k as y1, y3, y5, . . . , y4k−1 and y2i+6, y2i+8,
y2i+10, . . . , y2i+4k+4 in turn, respectively.

3. In the graph Gk, we label the vertices in L2k and R2k as y1, y3, y5, . . . y4k−1 and
y2, y4, . . . , y4k−2, y0, respectively. First, we construct a (k − 1)th-order nest graph
G[Uk−1, Vk−1,W2k], where Uk−1 = {x2, x6, x10, . . . , x4k−6} , Vk−1 = {x4, x8,
x12, . . . , x4k−4, } and W2k = {y1, y3, y5, . . . , y4k−1}. We join x4i−3 to y2i and
y2i+2, for 1 ≤ i ≤ k− 1. Second, we construct a union of paths, if k is even, we join
x4i−1 to y2i+2k and y2i+2+2k, for 1 ≤ i ≤ k − 1; otherwise k is odd, we join x4i−1
to y2i+2k−2 and y2i+2k, for 1 ≤ i ≤ k − 1.

4. In each graph Gj (1 ≤ j ≤ k − 1), we put x4i−2, x4i in the quadrangle x4j−3y4j+1

x4j−1y4j+3, and join them to y4j+1 and y4j+3, for 1 ≤ i < j. We put the vertices
x4i−2, x4i in the quadrangle x4j−3y4j−1x4j−1y4j+1, and join both x4i−2 and x4i

to y4j−1 and y4j+1, for j < i ≤ k − 1. Next, we put x4i−3 in the quadrangle
x4j−2y4j−2i+4x4jy4j−2i+6, and join x4i−3 to y4j−2i+4, y4j−2i+6, for 1 ≤ i < j.
We put x4i−3 in the quadrangle x4j−2y4j−2i+4kx4jy4j−2i+4k+2, and join x4i−3 to
y4j−2i+4k, y4j−2i+4k+2, for j < i ≤ k − 1.

For each i (1 ≤ i ≤ k − 1), we define a set Mi = {i + 1, i + 2, . . . , i + k − 2}.
Suppose that m ∈Mi, if m ≤ k − 1, we let j = m; otherwise, j = m− k + 1.

(i) k is even. If i+1 ≤ m ≤ i+ k−4
2 , we put x4i−1 in the quadrangle x4j−2y4m−2i+4

x4jy4m−2i+6, and join x4i−1 to y4m−2i+4, y4m−2i+6. If i+ k−4
2 +1 ≤ m ≤ i+k−2,

we put x4i−1 in the quadrangle x4j−2y4m−2i+8x4jy4m−2i+10, and join x4i−1 to
y4m−2i+8, y4m−2i+10.

(ii) k is odd. If i+1 ≤ m ≤ i+ k−5
2 , we put x4i−1 in the quadrangle x4j−2y4m−2i+4

x4jy4m−2i+6, and join x4i−1 to y4m−2i+4, y4m−2i+6. If i+ k−5
2 +1 ≤ m ≤ i+k−2,

we put x4i−1 in the quadrangle x4j−2y4m−2i+8x4jy4m−2i+10, and join x4i−1 to
y4m−2i+8, y4m−2i+10.

Theorem 2.2. Let G1, G2, . . . , Gk be the planar subgraphs obtained from steps 1, 2, 3 and
4 above, then {G1, G2, . . . , Gk} is a planar decomposition of K4k−4,4k.

Proof. From the constructions above, we have E(Gi) ∩ E(Gj) = ∅, for 1 ≤ i 6= j ≤ k.
In order to prove that {G1, G2, . . . , Gk} is a planar decomposition of K4k−4,4k, we need
to show that E(G1) ∪ E(G2) ∪ · · · ∪ E(Gk) = E(K4k−4,4k). We denote dGi

(v) as the
degree of v in Gi, for 1 ≤ i ≤ k.
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By the construction above, Step 2 contributes to the degrees of v4i−3, v4i−1, v4i−2, and
v4i in Gi by terms 2k+2, 2k+2, 2k+1 and 2k+1, respectively. In other words, we have
dGi

(v4i−3) = dGi
(v4i−1) = 2k + 2 and dGi

(v4i−2) = dGi
(v4i) = 2k + 1.

For 1 ≤ i ≤ k − 1, Step 3 contributes to dGk
(v4i−3), dGk

(v4i−1), dGk
(v4i−2) and

dGk
(v4i) by terms 2, 2, 3, and 3, respectively.
For 1 ≤ j ≤ k − 1 and i 6= j, Step 4 contributes to each of dGj

(v4i−3), dGj
(v4i−1),

dGj (v4i−2) and dGj (v4i) a term 2.

In total, for 1 ≤ i ≤ k − 1, we have
k∑

j=1

dGj
(v4i−1) =

k∑
j=1

dGj
(v4i−3) = dGi

(v4i−3) +

k∑
1≤j 6=i≤k−1

dGj
(v4i−3) + dGk

(v4i−3)

= 2k + 2 + 2(k − 2) + 2 = 4k,

and
k∑

j=1

dGj
(v4i−2) =

k∑
j=1

dGj
(v4i) = dGi

(v4i) +

k∑
1≤j 6=i≤k−1

dGj
(v4i) + dGk

(v4i) =

2k + 1 + 2(k − 2) + 3 = 4k.

From the discussion above, the result follows.

2.3.2 Add the vertex x4k−3

1. In the graph Gi(1 ≤ i ≤ k − 1), put the vertex x4k−3 in the quadrangle x4i−3y4i−1
x4i−1y4i+1, and join it to y4i−1, y4i+1.

2. In the graph Gk, place the vertex x4k−3 below the row of 2k vertices of R2k, and
join it to y1, y4k−1 and all the 2k vertices of R2k.

2.3.3 Add the vertex y4k

1. In the graph Gi(1 ≤ i ≤ k − 1), put the vertex y4k in the quadrangle x4i−2y4i+8x4i

y4i+10, and connect it to x4i−2, x4i.

2. In the graph Gk, place the vertex y4k above the row of vertices of R2k, and join it to
x1, x5, . . . , x4k−7, x3, x7, . . . , x4k−3.

We have the following theorem.

Theorem 2.3. The thickness of K4k−3,4k+1 is k, for k ≥ 4.

Proof. From Theorem 2.2, Subsection 2.3.2 and Subsection 2.3.3, a planar decomposition
of K4k−3,4k+1 with k planar subgraphs G1, G2, . . . , Gk is obtained. From Euler’s formula,
we have

t(K4k−3,4k+1) ≥
⌈
(4k − 3)(4k + 1)

2(8k − 4)

⌉
= k,

and so t(K4k−3,4k+1) = k.

Example 2.4. By using the procedure above, the two planar decompositions of K17,21

(k = 5 is odd) and K21,25 (k = 6 is even) are shown in Appendix A (See Figures 3-7) and
Appendix B (See Figures 8-13), respectively.
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2.4 Proof of Theorem 1.3

From Theorem 1.1, the proof has two cases:
Case 1: n = 4k−3 (k > 0). When 1 ≤ k ≤ 3, it is routine to check that the theorem is true.
For k ≥ 4,

⌊
2k(4k−3−2)
4k−3−2k

⌋
=
⌊
4k + 1 + 3

2k−3

⌋
= 4k+1, thus, the thickness of K4k−3,4k+1

can not be determined by Theorem 1.1. By Theorem 2.3, we have t(K4k−3,4k+1) = k =⌈
n+3
4

⌉
.

Case 2: n = 4k − 1 (k > 0). Since 4k − 1 and 4k + 3 are both odd and 4k + 3 6=⌊
2(k+1)(4k−1−2)
4k−1−2(k+1)

⌋
(See Lemma 1 of [5] for details), the thickness of K4k−1,4k+3 can be

determined by Theorem 1.1, thus

t(Kn,n+4) = t(k4k−1,4k+3) =

⌈
(4k − 1)(4k + 3)

2(4k − 1 + 4k + 3− 2)

⌉
=

⌈
k +

1

2
− 3

16k

⌉
= k + 1 =

⌈
n+ 3

4

⌉
.

Summarizing the above, the theorem follows.

3 Conclusion
In this paper, we determine the thickness for Kn,n+4. The proof replies on a planar decom-
position of K4k−3,4k+1 and the Theorem 1.1 of Beineke, Harary and Moon. We observe
that our approach for the construction of a planar decomposition of Kn,n+4 is the first step
in finding a solution for Problem 1.2. From Theorem 1.1, the next classes of complete
bipartite graphs whose thickness is unknown is K4k−1,4k+7, for k ≥ 10. Furthermore, the
new smallest complete bipartite graph whose thickness is unknown is K19,29. We hope that
the construction here helps establish intuition and structure of the Problem 1.2.

Another way of solving the Problem 1.2 is to find a new planar decomposition of Km,n,
for odd m,n. Actually, using a new planar decomposition of the complete tripartite graph
K1,g,n and a recursive construction, we also [8] obtained the thickness of Ks,t, where s is
odd and t ≥ (s−3)(s−2)

3 . Now we split Problem 1.2 into the following two problems.

Problem 3.1. Find the thickness of Kn,n+4k for odd n and k ≥ 2.

Problem 3.2. Find the thickness of Kn,n+4k+2 for odd n and k ≥ 0.
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A A planar decomposition {G1, G2, G3, G4, G5} for K17,21
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Figure 3: The graph G1.
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B A planar decomposition {G1, G2, G3, G4, G5, G6} for K21,25
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Figure 11: The graph G4.
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1 Introduction

Ever since Shannon’s 1948 paper [18, 19] there has been a great deal of interest around
families of error-correcting codes with a high degree of symmetry. The rationale behind
this interest is that codes with symmetry should have good error correcting properties. The
first families classified were perfect (see [21] or [22]) and nearly-perfect (defined in [12],
classified in [15]) codes over prime power alphabets. Note that the classification of nearly-
perfect codes follows from the earlier results of [17] on uniformly packed codes, since
nearly-perfect codes are uniformly packed codes with maximal packing density. These
classifications show that perfect and nearly-perfect codes are rare. In an effort to find
further classes of efficient codes, Delsarte [4] introduced completely regular codes, a more
general class of codes that posses a high degree of combinatorial symmetry. Much effort
has been put into classifying particular classes of completely regular codes (see for instance
[1, 2]), and new completely regular codes continue to be found [6]. However, completely
regular codes have proven to be hard to classify, and this remains an open problem.

Completely transitive codes (first defined in [20], with a generalisation studied in [10])
are a class of codes with a high degree of algebraic symmetry and are a subset of completely
regular codes. As such a classification of completely transitive codes would be interesting
from the point of view of classifying completely regular codes. This problem also remains
open.

Here, the conditions of complete transitivity are relaxed and the family of 2-neighbour-
transitive codes is studied, a class of codes with a moderate degree of algebraic symme-
try. Note that every completely transitive code (see Section 2) is 2-neighbour-transitive.
By studying this class of codes we hope to find new codes and gain a better understand-
ing of completely transitive codes. Indeed a classification of 2-neighbour-transitive codes
would have as a corollary a classification of completely transitive codes. We also note that
codes with 2-transitive actions on the entries of the Hamming graph (which 2-neighbour-
transitive codes indeed have), have been of interest lately, where this fact can be used to
prove that certain families of codes achieve capacity on erasure channels [14]. The analysis
of 2-neighbour-transitive codes is being attacked as three separate problems: entry-faithful
(see [7]), alphabet-almost-simple, and alphabet-affine. This paper concerns the alphabet-
almost-simple case. The results of this paper do not return any new examples.

However, the results here are of interest from the point of view of perfect codes over
an alphabet of non-prime-power size, since in this case a code cannot be alphabet-affine
(and also not entry-faithful, by [7]), but may be alphabet-almost-simple. The existence of
perfect codes over non-prime-power alphabets with covering radius 1 or 2, is still an open
question (see [13]). By Theorem 1.1, if such codes exist, then they cannot be 2-neighbour-
transitive (unless they are equivalent to the repetition code of length 3). Note that in the
prime power case, for each set of parameters for which a perfect code with covering radius
ρ ≥ 2 exists, a 2-neighbour-transitive code with those parameters exists. That is, the
repetition and Golay codes are 2-neighbour-transitive. In fact, the repetition, Hamming
and Golay codes are completely transitive (by [11, Example 3.1] for the repetition codes,
[20, Proposition 7.3] for the Hamming and binary Golay codes, and [10, Example 3.5.6]
for the ternary Golay codes).
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1.1 Statement of the main results

Let X be a subgroup of the full automorphism group Smq o Sm of the Hamming graph
Γ = H(m, q) and let C be a code, that is, a subset of the set of vertices V Γ . We say
that C is an (X, s)-neighbour-transitive code if X fixes C setwise and acts transitively on
C = C0, C1, . . . , Cs (where Ci are parts of the distance partition, see Section 2). In joint
work with Giudici and Praeger [7], the authors classified all (X, 2)-neighbour-transitive
codes for which the group X acts faithfully on the set of entries of the Hamming graph. In
this paper, we begin the study of (X, 2)-neighbour-transitive codes such that the action of
X on the entries has a non-trivial kernel.

Let M be the set of entries of the Hamming graph H(m, q) and Qi be the copy of the
alphabet Q in the corresponding entry i ∈M . Then the vertex set of H(m, q) is:

V Γ =
∏
i∈M

Qi.

If C is an (X, 2)-neighbour-transitive code with minimum distance δ ≥ 3, then the sub-
group Xi ≤ X stabilising the entry i ∈ M has a 2-transitive action on the alphabet
Qi in that entry (see [7, Proposition 2.7]). Any 2-transitive group G is of affine type
(G ≤ AGLd(p) for some integer d and prime p) or almost-simple type (S ≤ G ≤ Aut(S)
for some non-abelian simple group S) [5, Theorem 4.1B]. If the action of X on M (see
Section 2.1) is transitive with a non-trivial kernel and the action of Xi on the alphabet
Qi is almost-simple then we say C is X-alphabet-almost-simple. Our main aim here
is to prove the non-existence of codes which are X-alphabet-almost-simple and (X, 2)-
neighbour-transitive with minimum distance δ ≥ 4.

Theorem 1.1. Let C be an X-alphabet-almost-simple and (X, 2)-neighbour-transitive
code in H(m, q) with minimum distance δ ≥ 3. Then δ = 3 and C is equivalent to
the repetition code in H(3, q), where q ≥ 5.

In Section 2 we define the notation used in the paper. In Section 3 we give some
results on the structure of codes that are X-alphabet-almost-simple and (X, 2)-neighbour-
transitive, as well as pose some questions about codes for which the action of Xi on the
alphabet in the entry i ∈ M is affine. We present some examples of codes with properties
of interest in relation to our results in Section 4. Finally, in Section 5, we give a clas-
sification of diagonally (X, 2)-neighbour-transitive codes (see Definition 3.1) and prove
Theorem 1.1.

2 Preliminaries
Throughout this paper we letM = {1, . . . ,m} andQ = {1, . . . , q}, withm, q ≥ 2, though
if q = 2 we will at times use Q = {0, 1}. We refer to M as the set of entries and Q as the
alphabet. We use Qi to denote the disjoint copy of the alphabet Q in the entry i ∈M . The
vertex set V Γ of the Hamming graph Γ = H(m, q) consists of all m-tuples with entries
labeled by the set M , taken from the set Q. An edge exists between two vertices if they
differ asm-tuples in exactly one entry. For vertices α, β ofH(m, q) the Hamming distance
d(α, β) is the number of entries in which α and β differ, i.e. the usual graph distance in Γ .
For α ∈ V Γ , we refer to the element of Q appearing in the i-th entry of α as αi, so that
α = (α1, . . . , αm) throughout.
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A code C is a subset of the vertex set of the Hamming graph. The minimum distance
of C is δ = min{d(α, β) | α, β ∈ C,α 6= β}. For a vertex α ∈ H(m, q), define

Γr(α) = {β ∈ Γ | d(α, β) = r}, and d(α,C) = min{d(α, β) | β ∈ C}.

We then define the covering radius to be

ρ = max{d(α,C) | α ∈ Γ}.

For any r ≤ ρ, define Cr = {α ∈ Γ | d(α,C) = r}. Note that Ci is the disjoint union
∪α∈CΓi(α) for i ≤ b δ−12 c.

2.1 Automorphism groups

The automorphism group Aut(Γ ) of the Hamming graph is the semi-direct productBoL,
where B ∼= Smq and L ∼= Sm (see [3, Theorem 9.2.1]). We refer to B as the base group,
and L as the top group, of Aut(Γ ). Let g = (g1, . . . , gm) ∈ B, σ ∈ L and α be a vertex in
H(m, q). Then g and σ act on α as follows:

αg = (αg11 , . . . , α
gm
m ) and ασ = (α1σ−1 , . . . , αmσ−1).

We define the automorphism group of a code C inH(m, q) to be Aut(C) = Aut(Γ )C ,
the setwise stabiliser of C in Aut(Γ ). For a subgroup X ≤ Aut(C) we define two other
important actions of X which will be useful to us. First, consider the action of X on the set
of entries M , which we will write as XM . In particular XM = µ(X), that is, the image of
the homomorphism:

µ : X −→ Sm
(h1, . . . , hm)σ 7−→ σ

.

Note that σ here is not necessarily an automorphism of C, that is, σ is a permutation of M
but may not necessarily fix C setwise, though its pre-image (h1, . . . , hm)σ is an element
of Aut(C). We define K to be the kernel of the map µ and note that K = X ∩ B. In this
paper we are concerned with (X, 2)-neighbour-transitive codes where K 6= 1.

We also consider the action of the stabiliser Xi ≤ X of the entry i ∈ M , on the
alphabet Qi in that entry. We denote this action by XQi

i = ϕi(Xi), and it is the image of
the homomorphism:

ϕi : Xi −→ Sq
(h1, . . . , hm)σ 7−→ hi

.

Let C be a code in H(m, q) and let X be a subgroup of Aut(Γ ). Recall that C is
(X, s)-neighbour-transitive if each Ci is anX-orbit for i = 0, . . . , s. Note that this implies
X ≤ Aut(C) and C is also (X, r)-neighbour-transitive, for r < s. If s = 1 then C is
simply X-neighbour-transitive and if s = ρ, the covering radius, then C is X-completely
transitive.

An almost-simple group is a group G where S ≤ G ≤ Aut(S) for some non-abelian
simple group S. The socle of a group G, denoted soc(G), is the product of its minimal
normal subgroups. The socle of an almost-simple group G is the non-abelian simple group
S such that S ≤ G ≤ Aut(S). Recall, if C is a code and X ≤ Aut(C) such that K 6= 1,
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XM is transitive onM and theXQi

i is almost-simple, then we sayC isX-alphabet-almost-
simple. We may sometimes omit the group X from any of the above terms, if the meaning
is clear from the context.

We say that two codes,C andC ′, inH(m, q), are equivalent if there exists x ∈ Aut(Γ )
such that Cx = C ′. Since elements of Aut(Γ ) preserve distance, equivalence preserves
minimum distance.

2.2 Projections

For a subset J = {j1, . . . , jk} ⊆ M we define the projection of α with respect to J as
πJ(α) = (αj1 , . . . , αjk). For a code C we then define the projection of C with respect to
J as πJ(C) = {πJ(α) | α ∈ C}. So πJ maps a vertex or code from H(m, q) into the
smaller Hamming graph H(k, q).

Let XJ be the setwise stabiliser of a subset J = {j1, . . . , jk} ⊆ M . For x =
(h1, . . . , hm)σ ∈ XJ , we define the projection of x with respect to J as χJ(x) where

πJ(α)χJ (x) = πJ(αx).

To be well defined, this requires x ∈ XJ and it follows that

χJ(x) = (hj1 , . . . , hjk)σ̂ ∈ Aut(H(k, q)),

where σ̂ is the element of Sym(J) induced by σ. Moreover, we define χJ(X) = {χJ(x) |
x ∈ XJ}.

3 Structural results
Some results from [8], in which X-alphabet-almost-simple and X-neighbour-transitive
codes with δ ≥ 3 are characterised, are stated below. This is our starting point when look-
ing at codes that areX-alphabet-almost-simple and (X, 2)-neighbour-transitive with δ ≥ 3,
since we then have that C is indeed X-neighbour-transitive. The following definitions are
needed first. For a subgroup T ≤ Sq define Diagm(T ) = {(h, . . . , h) ∈ B | h ∈ T}.

Definition 3.1. A code C in H(m, q) is diagonally (X, s)-neighbour-transitive if C is
(X, s)-neighbour-transitive and X ≤ Diagm(Sq) o L.

Each part of Proposition 3.2 is proved in the relevant citation of [8]. Recall the defini-
tions of: πJ(C) and χJ(X) (see Section 2.2), the socle soc(G) and the kernel K = X ∩B
for the action of X on M , where B ∼= Sm is the base group of Aut(Γ ) (see Section 2.1).
Note also that G is a sub-direct subgroup of a direct product

∏n
i=1 Ti of isomorphic groups

Ti ∼= T , where i ∈ {1, . . . , n}, if the projection of G in each coordinate is isomorphic to
T .

Proposition 3.2. Suppose C is an X-neighbour-transitive code in H(m, q) with δ ≥ 3.
Then the following hold:

i) Let J be an X-invariant partition of M and J ∈ J such that πJ(C) is not the
complete code. Then πJ(C) is χJ(X)-neighbour-transitive [8, Proposition 3.4].
(Note that the assumption that πJ(C) is not the complete code does not appear in
[8], but is necessary since the proof assumes that πJ(C)1 is non-empty.)
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ii) Let J be an X-invariant partition of M and J ∈ J such that πJ(C) is not the
complete code. Then πJ(C) has minimum distance at least 2 [8, Corollary 3.7].

iii) If C is also X-alphabet-almost-simple, then soc(K) is a sub-direct subgroup of∏
i∈M soc

(
XQi

i

)
[8, Proposition 5.2].

While the next result is not explicitly stated in [8], it is the basis of the characterisation
contained within it.

Proposition 3.3. Let C be anX-alphabet-almost-simple andX-neighbour-transitive code
with δ ≥ 3. Then there exists an X-invariant partition J of M such that for all J ∈ J
the code πJ(C) is equivalent to a diagonally χJ(X)-neighbour-transitive with minimum
distance δ(πJ(C)) ≥ 2.

Proof. Let T be the non-abelian simple socle of the almost-simple 2-transitive group XQi

i .

By Proposition 3.2-(iii), the group soc(K) is a sub-direct subgroup of
∏
i∈M soc

(
XQi

i

)
.

Following the discussion after [8, Proposition 5.2], Scott’s Lemma [16, p. 328] can be
applied to give a partition J of M such that soc(K) =

∏
J∈J DJ , where each DJ

∼=
Diagk(T ) acts on πJ(V Γ ), for all J ∈ J , where k = |J |. Moreover, by [8, Remark 5.5],
J is X-invariant. By examining soc(K), it can be shown [8, Section 5] that, up to equiv-
alence, two possibilities occur. Either χJ(X) ≤ Diagk(Sq) o Sk, where k = |J |, for all
J ∈ J , or J can be replaced by a more refined X-invariant partition Ĵ of M such that
χĴ(X) ≤ Diagk̂(Sq) o Sk̂, where k̂ = |Ĵ |, for all Ĵ ∈ Ĵ .

In either case, it follows from Proposition 3.2-(i) and (ii) that, for all J ∈ J or Ĵ
respectively, χJ(X) acts transitively on πJ(C) and either πJ(C) is the complete code
or it is χJ(X)-neighbour-transitive with minimum distance at least 2. Since χJ(X) is
a diagonal subgroup, we deduce that πJ(C) is as in the second case, since no diagonal
subgroup acts transitively on the complete code.

Proposition 3.4. Let C be an (X, 2)-neighbour-transitive code with δ ≥ 3 in H(m, q),
and suppose J is an X-invariant partition of M . Then for all J ∈ J , either;

i) πJ(C) is the complete code, δ(πJ(C)) = 1, and χJ(X) is transitive on πJ(C);

ii) πJ(C) has covering radius 1, δ(πJ(C)) = 2 or 3, and is (χJ(X), 1)-neighbour-
transitive; or,

iii) πJ(C) is (χJ(X), 2)-neighbour-transitive.

Proof. Let C̄ = πJ(C). The fact that χJ(X) is transitive on C̄ and C̄1, if C̄1 is non-empty,
follows from Proposition 3.2-(i). From this we deduce (i) and (ii). In particular, suppose the
covering radius of C̄ is at most 1. If the covering radius is 0 then C̄ is the complete code,
and if the covering radius is 1 then C̄ is not the complete code and the minimum distance
is at most 3 so, by Proposition 3.2-(ii), the minimum distance is at least 2. Therefore, we
need only show that when C̄2 is non-empty χJ(X) is transitive on C̄2.

Suppose C̄ has covering radius at least 2. Let µ, ν ∈ C̄2. Then there exists α, β ∈ C
such that d(µ, πJ(α)) = d(ν, πJ(β)) = 2. Let ν̂ ∈ H(m, q) with ν̂u = νu for u in J and
ν̂v = αv otherwise. Similarly, let µ̂ ∈ H(m, q) with µ̂u = µu for u in J and µ̂v = βv
otherwise. We claim that ν̂, µ̂ ∈ C2. We show this for ν̂ and note that an identical argument
holds for µ̂. First, note that d(α, ν̂) = 2 and δ ≥ 3, so ν̂ /∈ C. Suppose ν̂ ∈ C1. Then
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there exists α′ ∈ C such that d(ν̂, α′) = 1. We then have d(ν, πJ(α′)) ≤ 1. However, this
contradicts ν ∈ C̄2. Hence µ̂, ν̂ ∈ C2.

As C is (X, 2)-neighbour-transitive, there exists an x = hσ ∈ X mapping ν̂ to µ̂. We
claim x ∈ XJ . Suppose x /∈ XJ . Then, since J is a system of imprimitivity for the action
of X on M , there exists J ′ ∈ J such that J 6= J ′ and J ′σ = J . Since πJ′(ν̂) = πJ′(α),
this implies that πJ(ν̂x) = πJ(αx) ∈ C̄ and hence πJ(ν̂x) 6= µ, which contradicts the fact
that ν̂x = µ̂. Thus x ∈ XJ and

νχJ (x) = πJ(ν̂)χJ (x) = πJ(ν̂x) = πJ(µ̂) = µ.

Proposition 3.5. Let C be an (X, 2)-neighbour-transitive code in H(m, q) with δ ≥ 3,
and J be an X-invariant partition of M . Then, for all J ∈ J and i ∈ J ,

1. χJ(X)Qi

i is 2-transitive on Q; and,

2. for α ∈ C, χJ(X)πJ (α) is transitive on J .

Proof. As C is X-neighbour-transitive with δ ≥ 3, we have that XQi

i is 2-transitive, by
[7, Proposition 2.7], and XM is transitive, by [7, Proposition 2.5]. One then deduces that
XQi

i is 2-transitive for all i. Now, because J is an X-invariant partition, it follows that
Xi = (XJ)i for all i ∈ J . This in turn implies that χJ(X)i = χJ(Xi). It is now straight
forward to show that χJ(Xi)

Qi = XQi

i .
Now, since Xα is transitive on M and J is an X-invariant partition of M , it follows

that (Xα)J is transitive on J . Thus χJ(Xα) ≤ χJ(X)π(α) is transitive on J .

The previous two propositions suggest a study of codes that are (X, 2)-neighbour-
transitive, have minimum distance δ ≥ 2, and where X acts primitively on M . An answer
to the following questions would provide us with the building blocks for (X, 2)-neighbour-
transitive codes with δ ≥ 3.

Question 3.6. Can we classify all (X, 2)-neighbour-transitive codes with δ ≥ 2 such that
XM is primitive and XQi

i is 2-transitive?

Question 3.7. Can we classify all (X, 1)-neighbour-transitive codes with δ = 2 or 3 and
ρ = 1 such that XM is primitive and XQi

i is 2-transitive?

Let C be a code and X ≤ Aut(C). If X acts faithfully on M , that is K = X ∩B = 1,
we say C is X-entry-faithful. If K 6= 1, XM is transitive on M and XQi

i is affine (XQi

i ≤
AGLd(p) for some integer d and prime p) we say C is X-alphabet-affine. Questions 3.6
and 3.7 can be further broken down into X-entry-faithful and non-trivial kernel cases, that
is, X-alphabet-affine and X-alphabet-almost-simple (see Section 2.1 for the definition of
X-alphabet-almost-simple). By the main result of this paper, the outstanding cases of
Question 3.6 are X-alphabet-almost-simple and (X, 2)-neighbour-transitive with δ = 2,
and X-alphabet-affine and (X, 2)-neighbour-transitive, where XM is primitive and XQi

i is
2-transitive.

Given Proposition 3.3, a third question is the following.

Question 3.8. Can we construct (X, 2)-neighbour-transitive codes with δ ≥ 3 by taking
copies of (X, 1)-neighbour-transitive codes with δ = 2 or 3 and ρ = 1.



352 Ars Math. Contemp. 14 (2018) 345–357

4 Examples
We begin this section by considering some examples of codes which have properties re-
lating to the results of the previous section. We first introduce the operators Prod and
Rep which allow the construction of new codes from old ones. For an arbitrary code C in
H(m, q) we define Prod(C, `) and Rep`(C) in H(m`, q) as

Prod(C, `) = {(α1, . . . ,α`) | αi ∈ C},

and
Rep`(C) = {(α, . . . ,α) | α ∈ C}.

The repetition code Rep(m, q) in H(m, q) is the set of all vertices (a, . . . , a) consisting of
a single element a ∈ Q repeated m times.

The next two examples present codes which are both X-alphabet-almost-simple and
X-completely transitive, though the second example has minimum distance δ = 2.

Example 4.1. Let C = Rep(3, q), where q ≥ 5, and X = Diag3(Sq) o S3, as in [11,
Example 3.1]. Now,

C1 = {(a, a, b), (a, b, a), (b, a, a) | a, b ∈ Q; a 6= b},

and
C2 = {(a, b, c) | a, b, c ∈ Q; a 6= b 6= c 6= a}.

Since Sq acts 3-transitively on Q and S3 acts transitively on M , it follows that X acts
transitively on C, C1 and C2. Thus C is (X, 2)-neighbour-transitive and X-completely
transitive, since C has covering radius ρ = 2. Also, XQi

i
∼= Sq is almost-simple, since

q ≥ 5, and XM ∼= S3 is transitive on M . Hence C is X-alphabet-almost-simple and
X-completely transitive.

Example 4.2. Let q ≥ 5, ` ≥ 2, C = Prod(Rep(2, q), `) and X = (Diag2(Sq))
` o U ,

where Diag2(Sq) is a subgroup of the base group of Aut(H(2, q)) and U = S2 o S` =
S`2 o S` is a subgroup of the top group of Aut(H(2`, q)). Let J = {J1, . . . , J`}, with
Ji = {2i − 1, 2i}, be the partition of M preserved by U . Note that δ = 2. Let R ⊆
{1, . . . , `} of size s, and ν ∈ H(m, q) be such that πJi(ν) = (a, b), where a 6= b for
all i ∈ R, and a = b for all i /∈ R. Any codeword β is at least distance s from ν,
since d(πJi(ν), πJi(β)) ≥ 1 for each i ∈ R. Also, there exists some codeword α with
πJi(α) = (a, a) whenever πJi(ν) = (a, b) for i ∈ {1, . . . , `}, and hence d(α, ν) = s.
So ν ∈ Cs. Any vertex ν of H(2`, q) can be expressed in this way, for some R, since
πJi(ν) = (a, b) has either a = b or a 6= b. Thus, for each s, Cs consists of all such vertices
ν where |R| = s. It also follows from this that ρ = `.

Let ν ∈ Cs, with R as above. Let x = (hJ1 , . . . , hJ`)σ ∈ X where hJi ∈ Diag2(Sq)
such that πJi(ν)hJi = (1, 2), for i ∈ R, and πJi(ν)hJi = (1, 1), for all i /∈ R. More-
over, since S` is `-transitive, there exists σ ∈ S` ≤ S2 o S` mapping {Ji1 , . . . , Jis} to
{J1, . . . , Js} (where R = {i1, . . . , is}), whilst preserving order within each Ji. Then
νx = γ ∈ Cs, where πJi(γ) = (1, 2) for all i ∈ {1, . . . , s} and πJi(γ) = (1, 1) for all
i /∈ {s + 1, . . . , `}. Since we can map any such ν to γ, X is transitive on Cs for each
s ∈ {1, . . . , `}. Hence C is X-completely transitive, and in particular (X, 2)-neighbour-
transitive for ` ≥ 2. Since XQi

i
∼= Sq and XM ∼= S2 o S` is transitive on M , C is

X-alphabet-almost-simple.
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Lemma 4.3. Suppose C is an (X, 2)-neighbour-transitive code in H(m, q), with q ≥ 3,
and J is an X-invariant partition of M , such that πJ(C) = Rep(k, q), for all J ∈ J
where k = |J |. Then either δ = k = 2, or J is a trivial partition.

Proof. Let x = (h1, . . . , hm)σ ∈ X and J ∈ J . By the hypothesis it follows that for all
a ∈ Q, there exists α ∈ C such that πJ(α) = (a, . . . , a). Suppose Jσ = J ′ ∈ J . Then
πJ′(α

x) = (ahi1 , . . . , ahik )σ = (b, . . . , b) for some b ∈ Q, that is, ahis = ahit for all
is, it ∈ J . In particular χJ(xσ−1) = (h, . . . , h) for some h ∈ Sq , andX ≤ Diagk(Sq) oU ,
where U is the stabiliser of J in the top group.

Suppose that the partition J is non-trivial, so that k, ` ≥ 2. Since C is a subset of
Prod(Rep(k, q), `), which has minimum distance k, it follows that δ ≥ k ≥ 2.

Suppose δ ≥ 3. As C is a subset of Prod(Rep(k, q), `) we can replace C by an
equivalent code contained in Prod(Rep(k, q), `) containing α = (1, . . . , 1) and such that

J = {{1, . . . , k}, {k + 1, . . . , 2k}, · · · , {m− k + 1, . . . ,m}} .

Consider,

µ = (2, 3, 1, 1, . . . , 1, 1, 1, 1, . . . , 1, · · · , 1, . . . , 1) and
ν = (2, 1, 1, 1, . . . , 1︸ ︷︷ ︸

k entries

, 2, 1, 1, . . . , 1︸ ︷︷ ︸
k entries

, · · · , 1, . . . , 1︸ ︷︷ ︸
k entries

).

If k = 2, then we claim µ ∈ C2. Any vertex β ∈ Prod(Rep(2, q), `) ⊇ C with d(µ, β) = 1
is of the form γ = (a, a, 1, . . . , 1), where a = 2 or 3. However, no such γ is an element
of C, since each is distance 2 from α. If k ≥ 3 then µ ∈ C2 since d(α, µ) = 2 and there
is no closer codeword as πJ1(µ) ∈ πJ1(C)2. In both cases ν ∈ C2 since d(α, ν) = 2 and
no codeword is closer, as πJi(ν) ∈ πJi(C)1 for i = 1, 2. Let x = (h1, . . . , hm)σ ∈ X
such that µx = ν. We reach a contradiction here, since h1 = h2 = · · · = hk = h cannot,
assuming k ≥ 3, map the set {1, 2, 3} to either of the sets {1, 2} or {1}. In the case k = 2,
in at least one block we must map the set {1} to {1, 2}, which is not possible. Hence
2 ≥ δ ≥ k ≥ 2.

Suppose J is a system of imprimitivity for the action of X on M and C is an X-
neighbour-transitive code, with δ ≥ 3. The next example shows that it is possible that the
projection of C onto each block of J gives the complete code, though this is not the system
of imprimitivity of interest to us in Proposition 3.3.

Example 4.4. Let C̄ = Prod(C, `) be a code in Γ = H(m, q), where m = k` and C is
an X-neighbour-transitive code in H(k, q) where X ∩B is transitive on C and δ ≥ 3. Let
X̄ = 〈(X ∩B)`,Diag`(X), S`〉 preserve the partition

J = {{1, . . . , k}, . . . , {m− k + 1, . . . ,m}} = {J1, . . . , J`},

of M , where χJ((X ∩B)`) = X ∩B and χJ(Diag`(X)) = X for all J ∈ J , and S` acts
as pure permutations by permuting the blocks of J whilst preserving the order of entries
within a given block. It follows that we preserve two X̄-invariant partitions. These being
J and J ′, where J ′ is attained by taking the corresponding entries, by order, from each
copy of C to form each block:

J ′ = {{1, k + 1, . . . ,m− k + 1}, . . . , {`, k + `, . . . ,m}}.
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Given any α = (α1, . . . ,α`) ∈ C̄, αi ∈ C, and β = (β1, . . . ,β`) ∈ C̄, βi ∈ C there
exists an x ∈ (X∩B)` mapping α to β sinceX∩B is transitive onC. Hence X̄ is transitive
on C̄. Given any two neighbours µ, ν ∈ Γ1(α), where µ, ν differ from α in the respective
blocks Ji and Jj , we can map Jj to Ji via some element σ ∈ S`. Then, since Xαi

is
transitive on Γ1(αi), there exists an element x ∈ Diag`(X) such that πJi(ν

σx) = πJi(µ).
We can then map νσx to µ via some element h ∈ (X ∩B)`, where χJi(h) = 1, since each
πJt(ν

σx) and πJt(µ) are elements of C for t 6= i and X ∩B is transitive on C. Hence σxh
maps ν to µ and X̄ is transitive on C̄1.

When we consider the projection πJ(C̄) for any J ∈ J ′ we are left with the complete
code. To see this, consider that for (α1, . . . ,α`) ∈ C̄,αi ∈ C, we may choose an arbitrary
element of C asαi for each i. SinceXQi

i is 2-transitive onQi, each element appears in the
first entry for some codeword. Thus, as πJ((α1, . . . ,α`)) when J = {1, k + 1, . . . ,m −
k + 1} is the first entry of each αi, we have that πJ(C̄) is the complete code.

5 Alphabet-almost-simple (X, 2)-neighbour-transitive codes
Before we prove the final results we define the codes used in this section, which first re-
quires the following definition.

Definition 5.1. Define the composition of a vertex α ∈ H(m, q) to be the set

Q(α) = {(a1, p1), . . . , (aq, pq)},

where pi is the number of entries of α which take the value ai ∈ Q. For α ∈ H(m, q)
define the set

Num(α) = {(p1, s1), . . . , (pj , sj)},

where (pi, si) means that si distinct elements of Q appear precisely pi times in α.

Definition 5.2. We define the following codes:

1. Inj(m, q), where m < q, is the set of all vertices α ∈ H(m, q) such that Num(α) =
{(1,m)};

2. for m odd, W ([m/2], 2) is the set of vertices in α ∈ H(m, 2) such that Num(α) =
{(m+ 1)/2, 1), (m− 1)/2, 1)}; and,

3. All(pq, q), with pq = m, is the set of all vertices α ∈ H(m, q) such that Num(α) =
{(p, q)}.

More information on these codes is available in [9, Definition 2]. The following lemma
is [9, Lemma 4].

Lemma 5.3. Let α be a vertex inH(m, q). Then Num(α) is preserved by Diagm(Sq)oL.

The last result, in combination with the classification of diagonally neighbour-transitive
codes [9, Theorem 4.3], allows us to prove the next result.

Proposition 5.4. LetC be a diagonally (X, 2)-neighbour-transitive code inH(m, q). Then
one of the following holds:

1. q = 2 and C = {(a, . . . , a)};
2. m = 3 or q = 2, and C = Rep(m, q);
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3. C = Inj(3, q);

4. m is odd and C = W ([m/2], 2); or,

5. q = 2 or q = m = 3, and there exists some p such that m = pq and C is a subset of
All(pq, q).

Proof. From [9, Theorem 4.3], we have that a diagonally neighbour-transitive code C is
one of: {(a, . . . , a)} for some a ∈ Q, Rep(m, q), Inj(m, q) with m < q, W ([m/2], 2)
with m odd, or there exists a p such that m = pq and C is a subset of All(pq, q). Here
we consider m ≥ 2, since if m = 1 then C2 is empty, so C is not (X, 2)-neighbour-
transitive. Also to prove some C is (X, 2)-neighbour-transitive, we need only find some
X ≤ Aut(C) such that X ≤ Diagm(Sq)oL and X is transitive on C2, since C is already
X-neighbour-transitive, for some X , by [9, Theorem 4.3].

First, if C = Inj(2, q) then C2 is empty. Thus, C is not (X, 2)-neighbour-transitive.
Table 1 lists the remaining cases which are not 2-neighbour-transitive. The second and third
columns give a pair µ, ν ∈ C2 such that Num(µ) 6= Num(ν). Hence, by Lemma 5.3, X is
not transitive on C2. It can be deduced from Num(µ),Num(ν) that µ, ν ∈ C2, since this
makes it clear that we must change µ, ν in at least two entries to get a vertex in C. Note that
we let α = (1, 2, 3, . . . , q) ∈ H(q, q) and in the second last and last rows we assume α ∈ C
and (α, . . . , α) ∈ C, respectively, and observe for the last row µ̂ = (1, 1, 1, 4, 5, . . . , q),
ν̂ = (1, 1, 3, 4, 5, . . . , q) are in Γ2(α).

C µ ∈ C2 ν ∈ C2

Conditions Num(µ) Num(ν)

{(a, . . . , a)} (b, b, a, . . . , a) (b, c, a, . . . , a)
q ≥ 3 {(m− 2, 1), (2, 1)} {(m− 2, 1), (1, 2)}

Rep(m, q) (2, 2, 1, . . . , 1) (2, 3, 1, . . . , 1)
m > q ≥ 3 {(m− 2, 1), (2, 1)} {(m− 2, 1), (1, 2)}

Inj(m, q) (1, 1, 1, 4, 5, . . . ,m) (1, 1, 3, 3, 5, 6, . . . ,m)
m ≥ 4 {(3, 1), (1,m− 3)} {(2, 2), (1,m− 4)}

⊆ All(q, q) (1, 1, 1, 4, 5, . . . , q) (1, 1, 3, 3, 5, 6, . . . , q)
q ≥ 4 {(3, 1), (1, q − 3)} {(2, 2), (1, q − 4)}

⊆ All(pq, q) (µ̂, α, . . . , α) (ν̂, ν̂, α, . . . , α)
q > p ≥ 2 {(p− 1, 2), (p, q − 3), (p+ 2, 1)} {(p− 2, 1), (p, q − 2), (p+ 2, 1)}

Table 1: Diagonally neighbour-transitive codes C which are not diagonally 2-neighbour-
transitive, and elements of C2 which illustrate this. Note: µ̂ = (1, 1, 1, 4, 5, . . . , q), ν̂ =
(1, 1, 3, 4, 5, . . . , q) and α = (1, 2, 3, . . . , q).

Now we prove the result for the cases which are 2-neighbour-transitive. Suppose C =
{(a, . . . , a)} for some a ∈ Q. Let q = 2 and Q = {0, 1}. Then L = Sm = Aut(C).
Without loss of generality, let a = 0 so that C2 is the set of weight two vertices. Since L is
transitive on the sets of weight 2 and weight 1 vertices, it follows C is diagonally (X, 2)-
neighbour-transitive. Let C = Rep(m, q). It follows from Example 4.1 that Rep(3, q) is
(Diag3(Sq) o S3, 2)-neighbour-transitive. If q = 2 then Aut(C) ∼= Diagm(S2) o Sm and
C is completely transitive [11, Example 3.1]. ConsiderC = Inj(m, q) with 3 = m < q and
q ≥ 4. If ν ∈ C2 then ν1 = ν2 = ν3, since otherwise ν ∈ C or C1. Since Diagm(Sq) ≤
Aut(C), we are transitive on C2. Suppose C = W ([m/2], 2) and m is odd. Then by [9,
Corollary 3.4] C is Diag(S2) o Sm-completely transitive. Finally, suppose C is a subset
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of All(pq, q) for some p such that m = pq. Let p ≥ 2, q = 2 and C = All(2p, 2). Then
C2 is the set of all weight p ± 2 vertices, which Diag2(S2) o Sm ≤ Aut(C) is transitive
on. Let p = 1, q = 3 and C = All(3, 3). Then C2 = Rep(3, q) and is Aut(C)-completely
transitive by Example 4.1.

With our classification of diagonally (X, 2)-neighbour-transitive codes from the pre-
vious result, Propositions 3.3 and 3.4 mean we are now in a position to prove the main
theorem.

Proof of Theorem 1.1. Suppose C is an X-alphabet-almost-simple and (X, 2)-neighbour-
transitive code with δ ≥ 3 such that X ∩ B 6= 1. By Proposition 3.3, there exists an
X-invariant partition J = {J1, . . . , J`}, for some `, for the action of X on M . Moreover,
πJi(C) has minimum distance at least 2 and is diagonally χJi(X)-neighbour-transitive. By
Proposition 3.4, either πJi(C) has covering radius ρ ≤ 1, or πJi(C) is also (χJi(X), 2)-
neighbour-transitive. Note ρ 6= 0, that is, πJi(C) is not the complete code, since πJi(C)
has minimum distance at least 2.

Suppose πJi(C) has covering radius ρ ≥ 2. SinceXQi

i is almost-simple, it follows that
q ≥ 5. By Proposition 5.4, the only diagonally 2-neighbour-transitive code with q ≥ 5 and
δ ≥ 2 is Rep(3, q) for q ≥ 5 (note that δ = 1 for Inj(3, q)). Then Lemma 4.3 implies J is a
trivial partition. Since |Ji| = k = 3 > 1, it follows that ` = 1, k = m, and C = Rep(3, q).

Suppose πJi(C) has covering radius ρ = 1. Now, by [9, Thm. 4 and Cor. 2], the only
diagonally neighbour-transitive code with δ ≥ 2 and ρ = 1 is Rep(2, q). If l = 1 then
we have δ = 2, a contradiction. Suppose l ≥ 2. Then Lemma 4.3 implies δ = 2, a
contradiction.
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Abstract

We study the maximum number of congruent triangles in finite arrangements of ` lines
in the Euclidean plane. Denote this number by f(`). We show that f(5) = 5 and that the
construction realizing this maximum is unique, f(6) = 8, and f(7) = 14. We also discuss
for which integers c there exist arrangements on ` lines with exactly c congruent triangles.
In parallel, we treat the case when the triangles are faces of the plane graph associated to
the arrangement (i.e. the interior of the triangle has empty intersection with every line in
the arrangement). Lastly, we formulate four conjectures.

Keywords: Arrangement, congruent triangles.

Math. Subj. Class.: 52C10, 52C30

1 Introduction
A problem from mathematical folklore asks for bounding four congruent triangles with
six matchsticks. This is easily done, and left to the reader. Quite naturally, one can ask
whether more congruent triangles may be formed by using the same six matchsticks. It
seems that this particular problem has not been treated in the literature. Our main focus
lies on constructing planar arrangements in which a fixed number ` of lines bound as many
congruent triangles as possible. For an excellent overview on arrangements and spreads,
see Grünbaum’s [11]. The results presented in this article are complementary to work of
Erdős and Purdy [4, 5] on sets of n points—see also [6].

In this paper, everything happens in R2. An arrangement (of lines) A shall be a finite
family of ` lines L1, . . . , L`. In the following, we will ignore the case when there exists
a point common to all lines, and thus assume that ` ≥ 3. Denote by A` the set of all
arrangements of ` lines.
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We associate to A ∈ A` a graph ΓA: the vertices of ΓA correspond to the intersection
points of lines from A and the edges of ΓA correspond to the line-segments between these
vertices. ΓA is a plane graph. The vertices, edges, and faces of ΓA are also said to belong
to A.

A triangle in A ∈ A` shall be the convex hull of the set of intersection points of three
non-concurrent pairwise non-parallel lines in A. Denote by FA the set of all triangles
in A. Whenever ∆1,∆2 ∈ FA are congruent we write ∆1 ∼ ∆2. Let FA1 , . . . , F

A
p

be the equivalence classes with respect to ∼ such that
∣∣FA1 ∣∣ ≥ . . . ≥

∣∣FAp ∣∣. Here, |M |
denotes the cardinal number of M . We call a triangle ∆ ∈ FA facial if it is a face of
ΓA, i.e. L ∩ int ∆ = ∅ for all L ∈ A. Let GA ⊂ FA be the set of all facial triangles in
A, and, as before, let GA1 , . . . , G

A
q be the equivalence classes with respect to ∼ such that∣∣GA1 ∣∣ ≥ . . . ≥ ∣∣GAq ∣∣. Put

f(`) = max
A∈A`

∣∣FA1 ∣∣ and g(`) = max
A∈A`

∣∣GA1 ∣∣ .
We shall also be considering restrictions relative to a certain arrangement A ∈ A`,

namely, for k ≤ `,

fA(k) = max
B⊂A,B∈Ak

∣∣FB1 ∣∣ and gA(k) = max
B⊂A,B∈Ak

∣∣GB1 ∣∣ .
We call an arrangement A ∈ A` f -optimal (g-optimal) if

∣∣FA1 ∣∣ = f(`) (|GA1 | = g(`)).
IfA is both f -optimal and g-optimal, we simply write optimal. A triangle from FA1 or GA1
is said to be good. Note that FA1 and GA1 need not be unique. In that case, one makes a
choice clearly defining FA1 and GA1 . The edges and angles of a good triangle will be called
good, too.

An arrangement is simple if no three lines are concurrent. The lines of an arrangement
are in general position if no two lines are parallel and no three lines are concurrent. Two
arrangements A and B are combinatorially equivalent if their associated graphs ΓA and
ΓB are isomorphic. (Note that, as mentioned above, we do not consider line arrangements
in which all lines meet in a single point.) A ∈ A` is c-unique if there exists no B ∈ A`

such that A and B are (a) not combinatorially equivalent and (b) |HA1 | = |HB1 |, where
H is F or G. In the same vein, we say that two arrangements A ∈ A` and B ∈ A` are
g-equivalent if A can be obtained from B by translation, rotation, reflection, and scaling.
A ∈ A` is g-unique if there exists no B ∈ A` such thatA and B are (a) not g-equivalent and
(b) |HA1 | = |HB1 |, where H is F or G. A few examples: Three lines in general position
yield an arrangement that is c-unique, but not g-unique; any arrangement on four lines
that forms exactly two congruent triangles is not c-unique (and thus cannot be g-unique);
finally, as we shall see in Theorem 3.5, the f -optimal arrangement from Figure 2 (b) is
g-unique (and thus c-unique).

F (`) (G(`)) is defined as the set of all integers u such that there exists an arrangement
on ` lines having exactly u congruent triangles (congruent facial triangles). We write [s..t]
for the set of all integers u with s ≤ u ≤ t, put H for F or G, and

h =

{
f if H = F,

g if H = G.

WheneverH(`) = [0..h(`)], we say thatH(`) is complete. In the following, we will tacitly
use the fact that G(`) ⊂ F (`). We call an arrangement A ∈ A` 1-extendable if there exists
a line L such that |HA∪L1 | = |HA1 |+ 1.
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2 Preparation
We briefly concern ourselves with the following question, since it will shorten later argu-
ments. What if we drop the condition that the triangles need to be congruent? Kobon Fu-
jimura asked in 1978 in his book “The Tokyo Puzzle” [8]—see also [10, pp. 170–171 and
178]—what the maximum number K(`) of facial (not necessarily congruent!) triangles re-
alisable by ` lines in the plane is. (Grünbaum treated this problem before Fujimura, but
he might have only been interested in arrangements in the projective plane [6].) Recently,
Bader and Clément [1], improving upon a result of Tamura, showed the following.

Lemma 2.1 (Bader and Clément).

K(`) ≤
⌊
`(`− 2)

3

⌋
− I{` : (` mod 6)∈{0,2}}(`),

where I denotes the indicator function.

Many arrangements have been constructed in order to find solutions to Fujimura’s prob-
lem. Fujimura himself gave an example which shows that K(7) ≥ 11, although it was
thought for many years that K(7) = 10. In 1996, Grabarchuk and Kabanovitch [13] gave
two 10-line, 25-triangle constructions, whereas Lemma 2.1 gives K(10) ≤ 26. Whether
K(10) is 25 or 26 is unknown. Other 10-line, 25-triangle arrangements were found inde-
pendently by Grünbaum [12, p. 400], Wajnberg, and Honma (see [15] for more details).
Good overviews of the best (i.e. the greatest number of triangles for a fixed number of
lines) known arrangements can be found in [14] and [15].

Table 1: Bounding K(`) for ` ≤ 12.

` 3 4 5 6 7 8 9 10 11 12

Bader-Clément bound 1 2 5 7 11 15 21 26 33 39

Best known arrangement 1 2 5 7 11 15 21 25 32 38

Füredi and Palásti [9] construct an arrangement proving K(`) ≥ `(` − 3)/3. See also
the article of Forge and Ramı́rez Alfonsı́n [7].

We continue with a series of lemmas. Lemma 2.2 is stated without its straightforward
proof, but we present the heptagonal case in Figure 1 and its caption.

Lemma 2.2. The ` lines bounding a regular `-gon determine exactly 2` congruent triangles
if ` ≥ 7, and therefore 2` ∈ F (`) and f(`) ≥ 2`. With the same construction we obtain for
` ≥ 5 that ` ∈ G(`) and g(`) ≥ `.

Lemma 2.3. Let A ∈ A` and h ∈ {f, g}. Then, for 3 ≤ k ≤ `− 1,

hA(`) ≤ `(`− 1)(`− 2)

k(k − 1)(k − 2)
· hA(k).

Proof. We observe that every subset of k < ` lines within the arrangement A cannot have
more than hA(k) good triangles (good in A). Counting all together, there are at most
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(
`
k

)
hA(k) good triangles, each appearing several times. Since each of them lies in

(
`−3
k−3
)

sub-arrangements of k lines, we obtain

hA(`) ≤
(
`
k

)
hA(k)(
`−3
k−3
) .

Thus, for each k we obtain an upper bound for hA(`).

Figure 1: Seven lines bounding a regular heptagon. This arrangement contains fourteen
congruent triangles: abe, acd, and their symmetric counterparts obtained by rotating around
the barycentre of the heptagon by 2πk/7 for k = 1, . . . , 6. This arrangement proves that
f(7) ≥ 14.

Lemma 2.4 is a direct consequence of Lemma 2.3.

Lemma 2.4. Let h ∈ {f, g}. Then

h(`) ≤ min
3≤k≤`−1

`(`− 1)(`− 2)

k(k − 1)(k − 2)
· h(k).

3 Results
3.1 Bounds for the general case

Proposition 3.1. Let h ∈ {f, g}, consider A ∈ A` and B ∈ Ak, and assume that a good
triangle of A is similar to a good triangle of B. Furthermore, A and B each contain two
lines intersecting in the boundary of the respective convex hulls of V (ΓA) and V (ΓB) and
forming the same good angle. Then h(`+ k − 2) ≥ h(`) + h(k).

Proof. We scale B to B′ such that the good triangles of B′ are congruent with the good
triangles ofA. Consider the convex hull CA (CB′ ) of the intersection points ofA (B′). Let
pA (pB′ ) be an intersection point of A (B′) lying on the boundary of the convex polygon
CA (CB′ ) and incident with a good angle αA (αB′ ) of A (B′) such that αA = αB′ . Denote
with LA1 and LA2 (LB

′

1 and LB
′

2 ) two of the lines of A (B′) intersecting at pA (pB′ ) and
forming the angle αA (αB′). We can now identify LA1 with LB

′

1 and LA2 with LB
′

2 such that
an arrangement C is obtained in which, seeingA and B′ as sub-arrangements of C, no good
triangle lies in both A and B′. (Note that the number of good triangles in C may be larger
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than the sum of the number of good triangles in A and B′, see e.g. Figure 8, in which the
arrangements from Figures 1 and 5 (b) are joined: the original arrangements have 14 and 8
good triangles, respectively, but the new arrangement has 26.)

We write f̃(`) if we consider the values of f(`) only for arrangements whose good
triangles are not right triangles.

Proposition 3.2. f̃(`+ 1) ≤ f̃(`) + 3(`− 1) and f(`+ 1) ≤ f(`) + 4(`− 1).

Proof. Let L be a line being added to A ∈ A`. If A has the property that
∣∣FA1 ∣∣ =

∣∣FA2 ∣∣,
then consider henceforth only the triangles in FA1 , as well as their edges, to be good. We
denote the lengths of good edges with a, b, and c.

There are at most ` − 1 triangles with an edge of length a on L: there are at most `/2
lines of one of the two lines needed to make a good triangle with an edge on L, each of
these lines is part of at most two triangles with an edge of length a on L, and it is impossible
for there to be exactly `/2 of them each of which is part of exactly two triangles. Since this
can be applied analogously for edges of length b and c, we have f̃(`+1) = f̃(`)+3(`−1).

For good triangles that are right triangles, we argue in the same manner and obtain that
for each of the three types of good edge (i.e. of length a, b or c) there are at most 4(`−1)/3
triangles with a good edge of that type on L.

Proposition 3.3. f̃(`) ≤ `(`− 1) and f(`) ≤ 4`(`− 1)/3.

Proof. The idea is the same as the one used in the proof of Proposition 3.2. In the case of
non-right triangles, we have established that on each line in A there are at most 3(` − 1)
good edges. By multiplying this with `, we obtain an upper bound for the number of good
edges inA. Now we divide by three (as there are three edges to each triangle) and have the
desired bound. The case of right triangles is settled analogously.

All angles in A ∈ A` equal to one of the angles of a good triangle which is not a right
triangle will be called non-right angles.

Proposition 3.4. f̃(`) ≤ 2`(`− 2)/3 for simple arrangements.

Proof. Consider a simple arrangementA on ` lines admitting a good triangle which is not a
right triangle. Let V (ΓA) = V , and write Vk for the set of vertices of degree k. As no three
lines are concurrent, in ΓA there exist only vertices of degree 2, 3, or 4. Trivially, around
a vertex of degree 2 at most one non-right angle resides. Around a vertex of degree 3
likewise (as π/2 is a right angle, and the sum of two non-right angles must be strictly
smaller than π), and around a vertex of degree 4 there may be at most two non-right angles.

Thus, in A, we have as an upper bound for the maximum number of non-right angles
|V2|+ |V3|+2 · |V4| = |V |+ |V4|. We have |V | ≤ `(`−1)/2. Also |V4| ≤ |V |−`, because
on every line the first and the last vertex belong to V2 ∪V3, but any such vertex may appear
as first or last vertex on two lines of A. Thus, the bound is `2 − 2`. For odd ` ≥ 5, this
bound is best possible: for the ` lines bounding a regular `-gon we have |V2| = `, |V3| = 0,
and |V4| = `(`−3)/2. One non-right angle cannot lie in more than two triangles which are
not right triangles, and every triangle requires three angles, whence, the final bound. (In
fact, no good angle can lie in more than two good triangles.)
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3.2 ` ≤ 5

We have f(3) = g(3) = 1 and f(4) = g(4) = 2, and F (3), G(3), F (4), and G(4) are
complete. We leave the easy proofs to the reader, but mention that in the 4-line case there
exist exactly three combinatorially different solutions with two congruent triangles (these
coincide for the g-optimal and the f -optimal case): one with three concurrent lines, one
with two parallel lines, and one in general position.

We now focus on the first interesting case: ` = 5.

Figure 2: (a) shows a 5-line arrangement with four congruent triangles constructed as fol-
lows. Two lines L1, L2 orthogonal to a third line L3 are considered. Let the intersection
points be p1 and p2, resp. A fourth and fifth line are considered such that their intersection
point is the midpoint of the line-segment p1p2 and the angle each forms with L3 is π/4.
(b) depicts the five lines bounding a regular pentagon. This arrangement contains ten trian-
gles, distributed among two congruence classes of size 5 each.

Theorem 3.5. (i) We have f(5) = g(5) = 5 while F (5) and G(5) are complete. Further-
more, the arrangement from Figure 2 (b) is (ii) optimal, and (iii) g-unique among f -optimal
and g-optimal 5-line arrangements.

Proof. Figure 2 (b) shows that g(5) ≥ 5 (whence, f(5) ≥ 5), with which Lemma 2.1
implies g(5) = 5. f(5) = 5 follows from Lemma 2.4 (with k = 4). We now discuss G(5).
We have G(4) = [0..2] ⊂ G(5). Consider the four lines bounding a square and add the
two lines containing the square’s diagonals. By removing one of the four original lines, we
have shown that 3 ∈ G(5). Together with the arrangements from Figure 2, we have that
G(5) is complete since g(5) = 5. Thus, (i) is proven. (ii) follows directly from (i).

We now prove (iii). First, we show that the arrangement from Figure 2 (b) is c-unique.
We use the database provided in Christ’s Dissertation [3, Chapter 3.2.5]. (A visualisation
of Christ’s results is available in [2]. Note that this does not coincide with Grünbaum’s
isomorphism types of arrangements given in [11, p. 5], since Grünbaum discusses the issue
in the projective plane, while here we treat the situation in the Euclidean plane.) Among
arrangements of five lines in general position, there are exactly six combinatorially different
ones, shown in Figure 3. The arrangement in Figure 2 (b) belongs to the combinatorial
class (A).

Only the arrangements in (A) contain five facial triangles, i.e. triangles which are faces
in the associated graph. We leave to the reader the straightforward proof that among ar-
rangements with five lines not in general position (i.e. containing two parallel lines or three
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Figure 3: Representations of the six combinatorially different arrangements of five lines in
general position.

concurrent lines), there is none featuring five facial triangles. Note that the occurrence of
more triangles is impossible due to Lemma 2.1.

We now turn to the case in which triangles are not facial. Let us denote a line-segment
between two points x, y with xy and its length with L(xy). We will use the following.

Remark. The sum of the measures α and β of two good angles is π if and only if α =
β = π/2.

We write ∆ijk for the triangle with vertices pi, pj , pk. We will tacitly make use of the
fact that if in a given arrangement a triangle ∆ is strictly contained in a triangle ∆′, then
∆ � ∆′ and so ∆ and ∆′ cannot lie in the same congruence class.

(B) We have ∆012 ⊂ ∆149 ∩∆136 (so ∆149 � ∆012 � ∆136), ∆345 ⊂ ∆149 ∩∆248,
∆569 ⊂ ∆136 ∩∆237 ∩∆578, ∆578 ⊂ ∆237, ∆067 ⊂ ∆237, ∆089 ⊂ ∆248 ∩∆237 ∩∆067.
Due to these inclusion relations, only the following set of triangles may form a congruence
class of size 5: {∆149,∆136,∆248,∆578,∆067}. Assume it is indeed a congruence class.
Thus, all angles around p6 are right. We apply the Remark to the angles surrounding p6.
Combining this with ∆136 ∼ ∆067 and p0p6 ( p1p6, we have L(p6p7) = L(p1p6),
L(p0p6) = L(p3p6), and L(p0p7) = L(p1p3). p1p3 is the hypothenuse in ∆136, but as
p1p4 is an edge of ∆149 and ∆149 ∼ ∆136 we obtain a contradiction, since L(p1p4) >
L(p1p3).

(C) We have ∆012 ⊂ ∆134∩∆268∩∆378, ∆134∪∆239 ⊂ ∆378, ∆457∪∆056 ⊂ ∆158,
∆049 ⊂ ∆158∩∆239∩∆378∩∆056, ∆679 ⊂ ∆158∩∆268∩∆457. There is no congruence
class of size 5.
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(D) We have ∆012 ⊂ ∆149 ⊂ ∆156, ∆234 ⊂ ∆039 ⊂ ∆378, ∆457 ∪ ∆068 ⊂ ∆258,
∆679 ⊂ ∆258 ∩∆457 ∩∆068. Once more, all congruence classes have size at most 4.

(E) We have ∆129 ⊂ ∆138 ⊂ ∆145, ∆237 ⊂ ∆246, ∆034 ⊂ ∆058 ⊂ ∆067, ∆789 ⊂
∆237 ∩∆246 ∩∆569. As above.

(F) We have ∆012 ⊂ ∆139 ⊂ ∆145, ∆238 ∪ ∆056 ⊂ ∆246, ∆678 ⊂ ∆579 ⊂ ∆347,
∆089 ⊂ ∆238 ∩∆246 ∩∆056. As above.

Let us show that in a 5-line arrangement A containing two parallel lines or three con-
current lines, no more than four congruent triangles can be achieved. We first assume that
A contains parallel lines L1, L2. If there exists a line L3 parallel to L1, we are done, as in
A there are only at most three triples of lines forming triangles. Thus, w.l.o.g. we are in the
situation that a third line, L3, intersects L1 and L2. Now assume that a fourth line, L4, is
parallel to L3. Note that L1, L2, L3, L4 bound zero triangles. In this situation, a fifth line
generates at most four new triangles. Thus, L4 cannot be parallel to L3. We have proven
that a 5-line arrangement containing three parallel lines or two parallel pairs of parallel
lines cannot have more than four congruent triangles.

Denote the open strip bounded by L1 and L2 with S, and the complement of its closure
by T . Also, let T1 and T2 be the connected components of T . In the light of above para-
graph, there are three cases (see Figure 4): either (a) L4 is concurrent with L1 and L3 in a
point x lying in the closure of T1, (b) L4 intersects L3 in S, or (c) L4 intersects L3 in T2.
Denote with L5 the fifth line of A. We know that L5 is not parallel to any of the existing
four lines. We write ∆ijk for the triangle bounded by the lines Li, Lj , Lk.

Figure 4: Cases (a)–(c) occurring in the proof of Theorem 3.5.

(a): If x ∈ L5, then the five lines would bound only three triangles, so we can assume
x /∈ L5.

Case 1: L5 intersects both L3 and L4 in S. We have six triangles, but ∆345 = ∆234 ∩
∆145 and ∆245 ⊂ ∆235, so the maximum number of congruent triangles is three.

Case 2: L5 intersects L4 in S and L5 intersects L3 in T1∪T2. Six triangles appear. Sub-
case 2.1: L3 and L5 intersect in T1. But then we have ∆135 ⊂ ∆345 ⊂ ∆235. Subcase 2.2:
L3 and L5 intersect in T2. Here, ∆235 ⊂ ∆345 ⊂ ∆135, so once more five congruent
triangles cannot occur. (If L5 intersects L3 in S and L4 in T2, then we are, combinatorially,
in the situation treated in Subcase 2.2.)

Case 3: L5 is concurrent with L2 and L3. Subcase 3.1: All intersection points lie in the
closure of S. Five triangles appear, but among them one is a subset of another. Subcase 3.2:
L4 and L5 intersect in T2. We apply the same argument as before. Subcase 3.3: L4 and L5

intersect in T1. Once more five triangles occur, but one is contained in another.
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Case 4: L5 intersects L3 and L4 in points p and p′, respectively, which do not lie in S
(since this was covered in Cases 1 and 2). Subcase 4.1: If p and p′ lie in T1, six triangles
appear, but ∆345 ⊂ ∆135 ⊂ ∆235. Subcase 4.2: If p and p′ lie in T2, again six triangles
occur, but ∆245 ⊂ ∆235 ⊂ ∆135. Subcase 4.3: If p ∈ T1 and p′ ∈ T2, six triangles
are present in the arrangement, but ∆245 ⊂ ∆145 ⊂ ∆345, so at most four triangles are
congruent.

Case 5: L5 is concurrent with L2 and L4. Subcase 5.1: All intersection points lie in the
closure of S. Subcase 5.1 coincides with Subcase 3.1. Subcase 5.2: L3 and L5 intersect in
T2. But then we are in the same situation as Subcase 3.2.

(b) Let L3 and L4 intersect in y. We know that L5 is not parallel to L1. If y ∈
L5, we obtain six triangles. However, either ∆135 ∪ ∆145 = ∆134 and symmetrically
∆235 ∪∆245 = ∆234 or ∆134 ∪∆145 = ∆135 and ∆245 ∪∆234 = ∆235. In either case,
the largest congruence class has cardinality at most four. We have treated the cases when
L5 is concurrent with L1 and L3, L1 and L4, L2 and L3, or L2 and L4 in (i). We split
the remaining cases into four cases according to where the intersection points of L5 with
L3 and L4 lie. In each situation, inclusions are given which make the occurrence of a
congruence class of cardinality at least five impossible.

Case 1: Both intersection points lie in S. However, we then have ∆135 ⊂ ∆145,
∆345 = ∆134 ∩∆235, and ∆234 ⊂ ∆245.

Case 2: The intersection points of L5 with L3 and L4 lie in T1 and T2, respectively.
Then ∆135 ∪∆245 ⊂ ∆345, ∆135 ∪∆234 ⊂ ∆235, and ∆134 ∪∆245 ⊂ ∆145.

Case 3: The intersection points of L5 with L3 and L4 lie in T1 and S, respectively. We
have ∆135 ⊂ ∆345 ⊂ ∆235, ∆245 ⊂ ∆234, and ∆134 ⊂ ∆145.

Case 4: Both intersection points lie in T1. Then ∆234 ⊂ ∆235, ∆135 = ∆235 ∩∆145,
and ∆134 ⊂ ∆145 ⊂ ∆245.

As situation (c) uses very similar arguments, we skip it.
We have shown that no two lines in A are parallel. Assume now that three lines

L1, L2, L3 of A intersect at a point q. If L4 contains q as well, the largest congruence
class which may be formed by a fifth line has size 2. So q /∈ L4 and L4 is not parallel
to any of L1, L2, L3. W.l.o.g. let the intersection point of L4 with L2 lie between the in-
tersection point of L4 with L1 and the intersection point of L4 with L3. If there are two
coincidences (of three lines)—it is easy to see that there cannot be more—we have three
combinatorially different cases. W.l.o.g., in each of them L1, L4, and L5 shall be concur-
rent. We denote this intersection point with a, and the intersection point of L5 with L2 and
L3 with b and c, respectively. We differentiate the three cases by the order in which the
intersection points occur on L5.

Case 1: a− c− b (or equivalently b− c− a): Eight triangles occur. However, we have
∆124 ∪∆234 = ∆134 ⊂ ∆345 and ∆135 ∪∆235 = ∆125 ⊂ ∆245. Thus, no five triangles
can be congruent.

Case 2: b − a − c (or equivalently c − a − b): Again, eight triangles appear, but
∆245 ∪∆124 = ∆125, ∆125 ∪∆135 = ∆235, ∆234 ∪∆124 = ∆134, and ∆134 ∪∆135 =
∆345.

Case 3: a− b− c (or equivalently c− b− a): ∆124 ∩∆135 = ∆125, ∆235 ⊂ ∆234, and
∆245 ⊂ ∆345. Furthermore, every triangle is contained in ∆134.

We are left with the case that there is exactly one coincidence of three lines (namely
in q). Once more, several cases occur. We leave them to the reader—treating them is a
straightforward task in exactly the same spirit as above paragraphs.
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Finally, we prove that the construction from Figure 2 (b) is indeed g-unique. Consider
five lines bounding a pentagon P such that we obtain an arrangement A in combinatorial
class (A). This implies that no two lines in A are parallel. Combinatorially, there are two
types of triangles in P : those sharing exactly two vertices (and thus an edge) with P , and
those sharing exactly one vertex with P . Due to straightforward inclusion arguments, all
triangles in a congruence class of size 5 are of the same type.

Consider the first type, and let ∆ be one of these five congruent facial triangles. Denote
the angles of ∆ incident with a vertex of P with α and β. Applying successively the fact
that no two lines in A are parallel, we obtain that α = β, so ∆ is isosceles. This implies
that all angles of P must be equal, and since P is a pentagon, the angles of P measure 3π/5
each. Thus α = 2π/5—in particular, ∆ is not equilateral. Hence, the sides of P must have
equal length, so P is a regular pentagon.

We treat the second case. We see each triangle of the second type as the union of three
faces (of ΓA): the pentagon P , which lies in all five triangles, and two facial triangles.
Since certain pairs of triangles of the second type share a facial triangle, there are at most
two congruence classes C1 and C2 of facial triangles. Assume C1 6= C2. Thus, there exists
a triangle ∆ of second type containing a facial triangle in C1 and a facial triangle in C2. By
considering all five congruent triangles of second type, a contradiction is obtained, since
necessarily one of these triangles will contain only triangles from either C1 or C2 and thus,
it cannot be congruent to ∆. We have proven that all facial triangles are congruent. Now
we may argue as in the preceding paragraph.

3.3 ` = 6

Figure 5: (a) This arrangement is due to Tudor Zamfirescu and shows that 7 ∈ F (6). To the
five lines bounding a regular pentagon a sixth line is added which is parallel to one of the
five lines such that seven congruent triangles are present. (b) This arrangement proves that
8 ∈ F (6) and f(6) ≥ 8. In Theorem 3.6 we show that in fact f(6) = 8. The arrangement
is obtained by considering six of the seven lines bounding a regular heptagon.

Theorem 3.6. We have f(6) = 8, 6 ≤ g(6) ≤ 7, F (6) is complete, and [0..6] ⊂ G(6).

Proof. The arrangement from Figure 5 (b) proves that f(6) ≥ 8. Theorem 3.5 (iii) states
that there is exactly one f -optimal arrangement on five lines, shown in Figure 2 (b). We
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call this arrangement P . We now show that one cannot produce an arrangement on six
lines which has P as a sub-arrangement and features eight (or more) congruent triangles.
Assume there exists such an arrangement A. Denote the lines of P by L1, . . . , L5, and the
line added to P in order to obtain A by L.

First we prove that the addition of L cannot create a “new” congruence class (i.e. a
class the triangles of which are non-congruent to every triangle present in P) of congruent
triangles of cardinality at least 8. At least one of the angles π/5, 2π/5, 3π/5, 4π/5 is good
in both P andA, since every triangle bounded by L has at least one angle in P . Among all
angles in A, each of the aforementioned four angles appears at least ten times in five pairs
of opposite angles, since P is a sub-arrangement of A. Thus, L forms at least three copies
of the angle α with the lines L1, . . . , L5, where α ∈ {π/5, 2π/5, 3π/5, 4π/5} is fixed. But
since the Li’s are pairwise non-parallel, this is only possible if L is parallel to some Li.
But then the addition of L to P yields at most six new triangles—too few.

Take the two congruence classes FP1 and FP2 such that the triangles in FP1 are facial in
P , and notice that FP = FP1 ∪FP2 and |FP1 | = |FP2 | = 5. Thus, L must add at least three
triangles to FP1 or FP2 . As π/5 belongs to triangles in FP1 as well as triangles in FP2 , π/5
is a good angle in A, so L makes this angle with a line of P , whence, L is parallel to some
Li, say L1. Among all possible positions of L, only three provide new triangles congruent
either to a good triangle in FP1 or to a good triangle in FP2 , see Figure 6. The number of
those new triangles is 1, 1, 2, respectively.

Figure 6: The three essentially different arrangements of five lines bounding a regular
pentagon together with a sixth line parallel to one of the five lines forming at least six
congruent triangles.

We conclude that in an arrangement on six lines which is f -optimal, every sub-arrange-
ment on five lines contains at most four good triangles. With this in mind, by applying
Lemma 2.3 (with k = 5), we obtain the desired f(6) = 8. Lemmas 2.1 and 2.2 yield the
bounds on g(6).

Theorem 3.5 (i) and the Star of David (which proves that 6 ∈ G(6)) imply that [0..6] ⊂
G(6). Together with the arrangements from Figure 5, we are done.

Among arrangements on six lines bounding exactly six congruent facial triangles, we
found three combinatorially non-equivalent ones. (It is unknown whether these are all.)
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In the general case, the solution from Figure 5 (b) seems to be unique; see Conjecture 4.1
(which states that g(6) = 6) in the final section.

3.4 ` = 7

Theorem 3.7. We have f(7) = 14, 9 ≤ g(7) ≤ 11, [0..10] ∪ {14} ⊂ F (7), and [0..9] ⊂
G(7).

Proof. By Theorem 3.6, f(6) = 8. Thus, by Lemma 2.2 and Lemma 2.4 (with k = 6),
f(7) = 14. For g(7), the lower bound is given by the construction in Figure 7 (a) (by
deleting the line marked h), the upper bound by Lemma 2.1.

Since the Star of David is 1-extendable, we have 7 ∈ G(7). Removing the line marked
h in Figures 7 (a) and (b) shows that 9 ∈ G(7) and 8 ∈ G(7), resp. Thus, [0..9] ⊂ G(7).
By considering seven of the eight lines bounding a regular octagon, we obtain 10 ∈ F (7).
Together with Lemma 2.2, we have [0..10] ∪ {14} ⊂ F (7).

Figure 7: (a) An arrangement proving 12 ∈ G(8). Deleting the line marked h shows that
9 ∈ G(7). (b) An arrangement showing 11 ∈ G(8). Deleting h yields 8 ∈ G(7). (c) This
arrangement proves that g(10) ≥ 20.

3.5 ` = 8

Theorem 3.8. We have 16 ≤ f(8) ≤ 22, 12 ≤ g(8) ≤ 15, [0..16] \ {13} ⊂ F (8) and
[0..12] ⊂ G(8).

Proof. Lemma 2.2 implies the lower bound for f(8), Theorem 3.7 and Lemma 2.4 (with
k = 7) the upper bound. For g(8), the lower bound is given by the arrangement from
Figure 7 (a), the upper bound by Lemma 2.1.

Figures 7 (a) and (b) show that {11, 12} ⊂ G(8). This, Theorem 3.7 and the fact
that the arrangement from Figure 7 (a) minus the line marked h is 1-extendable (which
proves that 10 ∈ G(8)) yield [0..12] ⊂ G(8). Applying Lemmas 2.2 and 2.4, we obtain
[0..16] \ {13} ⊂ F (8).

3.6 9 ≤ ` ≤ 12

As the techniques for proving the following results are very similar to what has been shown,
we skip them. A notable exception is the construction from Figure 8.
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Theorem 3.9. We have

18 ≤ f(9) ≤ 33, 15 ≤ g(9) ≤ 21, [0..18] ⊂ F (9), [0..15] ⊂ G(9),

21 ≤ f(10) ≤ 48, 20 ≤ g(10) ≤ 26, [0..21] ⊂ F (10), [0..20] ⊂ G(10),

26 ≤ f(11) ≤ 66, 23 ≤ g(11) ≤ 33, [0..26] ⊂ F (11), [0..23] ⊂ G(11),

and

32 ≤ f(12) ≤ 88, 26 ≤ g(12) ≤ 39, [0..28] ∪ {32} ⊂ F (12), [0..26] ⊂ G(12).

h

Figure 8: An arrangement proving f(11) ≥ 26. It is obtained by joining the two arrange-
ments from Figures 1 and 5 (b) with the technique described in the proof of Proposition 3.1,
i.e. such that the two arrangements share a pair of lines (forming the same good angle) in
the new arrangement. Deleting the line marked h, one obtains f(10) ≥ 21. By completing
the left regular heptagon, we obtain f(12) ≥ 32.

3.7 Summary

Consider ` ≤ 12 lines in the Euclidean plane, and let f(`) and g(`) be defined as in the
Introduction. Then we have the following bounds.

Table 2: Bounding f(`) and g(`) for ` ≤ 12.

` 3 4 5 6 7 8 9 10 11 12

f(`) ≥ 1 2 5 8 14 16 18 21 26 32

f(`) ≤ 1 2 5 8 14 22 33 48 66 88

g(`) ≥ 1 2 5 6 9 12 15 20 23 26

g(`) ≤ 1 2 5 7 11 15 21 26 33 39

We were also able to prove that f(13) ≥ 37, f(14) ≥ 44, f(15) ≥ 50, f(16) ≥ 56,
and f(17) ≥ 61.
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4 Conjectures
Conjecture 4.1. g(6) = 6.

If Conjecture 4.1 is true, we would have g(7) ≤ 10.

Conjecture 4.2. g(7) = 9.

If Conjecture 4.2 is true, we would have g(8) ≤ 14.

Conjecture 4.3. The f -optimal arrangements on 6 and 7 lines (consider Figures 5 (b)
and 1, resp.) are g-unique.

Conjecture 4.4. (a) F (7) is not complete, but (b) for every `, G(`) is complete.
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Abstract

It is proved that a complete graphKn can have an orientation whose minimum directed
genus is d 1

12 (n − 3)(n − 4)e if and only if n ≡ 3, 7 (mod 12). This answers a question
of Bonnington et al. by using a method different from current graphs. It is also proved that
a complete symmetric tripartite graph Kn,n,n has an orientation whose minimum directed
genus is 1

2 (n− 1)(n− 2).

Keywords: Digraph, complete tripartite graph, directed genus, surfaces.

Math. Subj. Class.: 05C10, 05B05, 05B07

1 Introduction
Throughout this paper, all graphs are assumed to be finite, connected and simple. In a
directed graph D, the number of in-arcs at a vertex v is called the in-degree of v which
is denoted by d−(v); the number of out-arcs at v is called the out-degree of v, denoted
by d+(v). The degree of v, denoted by d(v), is the sum of d−(v) and d+(v). A digraph
D is Eulerian if it is connected and every vertex has equal in-degree and out-degree. The
underlying graphG of a digraphD is a graph obtained fromD by suppressing all directions
of the arcs in D. The orientable surface of genus h, denoted by Sh, is the sphere with h
handles added. A graph is said to be 2-cell embedded in a surface S, if it is embedded
in a surface S such that each component, called a region, of S \ D is homeomorphic to
an open disk. A 2-cell directed embedding (or 2-cell embedding) of a digraph D on an
orientable surface S means that it is a 2-cell embedding of its underlying graph of D in S
such that each region is bounded by a directed cycle. In this paper, all embeddings of graphs
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and digraphs are assumed to be 2-cell embedded on oriented surfaces. Let the genus of a
surface S be denoted by γ(S). The directed genus (or simply say genus) of an embeddable
digraph D, denoted by γ(D), is the smallest of the numbers γ(S) for orientable surfaces S
in which D can be directed embedded. Let |X| be the cardinality of a set X .

The study of embeddings of a graph began with Euler. By now, there are many re-
sults about the genus ([14, 22, 23, 25, 26, 28, 27, 29]), the maximum genus ([24, 30]),
and the genus distribution of a graph ([12, 13, 19, 20]). However, a study of the embed-
dings of a digraph was started in 2002 by Bonnington et al. in [2]. Bonnington, Hartsfield
and Širáň ([3]) gave some obstructions for directed embeddings of digraphs and proved
Kuratowski-type theorem for embeddings of digraphs in the plane. This area has remained
almost uninvestigated. As we know, genera of only a few kinds of digraphs are known.
Hales and Hartsfield calculated the directed genus of the de Bruijn graph in [15]. Hao et
al. ([16, 17, 18]) obtained the embedding distributions of some digraphs and maximum
embedding properties of digraphs. Chen, Gross and Hu ([4]) derived a splitting theorem
for digraph embedding distributions that is analogous to the splitting theorems of [11] and
[5] for graph embedding distributions.

Let γ(G) denote the genus of a graph G. There are many results on computing genera
of undirected graphs. For example, in [25], the genera of the complete graph Kn and the
complete tripartite graph Kmn,n,n were given as follows: γ(Kn) = d 1

12 (n − 3)(n − 4)e
and γ(Kmn,n,n) =

1
2 (mn− 2)(n− 1). In [28], γ(Kn,n,n−2) =

1
2 (n− 2)2 for even n ≥ 2

and γ(K2n,2n,n) = 1
2 (3n − 2)(n − 1) for n ≥ 1 were derived. In [26], γ(Kn,n,n) =

1
2 (n− 2)(n− 1) was obtained.

Up to now, the genera of only a few kinds of digraphs are known. For examples,
the directed genus of the de Bruijn graph was derived in [15]. In [2], Bonnington et al.
determined the genera of the cartesian product Cn × Cn of two directed cycles, the spoke
digraph on n = 2k+1 vertices and the directed antiprismDAk, which are (n2−3n+2)/2,
k − 1 and 0, respectively. Let ~Kn and ~Kn,n,n be directed graphs gotten from the complete
graph Kn and the complete tripartite Kn,n,n, respectively, by giving an orientation to each
edge. In this paper, we aim to answer the following problem by using a method different
from current graphs.

Problem 1.1 ([2]). Which kinds of ~Kn have γ(~G) = d 1
12 (n−3)(n−4)e, the genus ofKn.

A natural question analogue to Problem 1.1 is the following.

Problem 1.2. Which kinds of ~Kn,n,n with n vertices in each parts have directed genus
1
2 (n− 1)(n− 2), the genus of Kn,n,n.

In this paper, we solve the Problems 1.1 and 1.2. Problem 1.2 is solved by giving
the equivalent conditions for the minimum directed genus embedding of a directed graph
~Kn,n,n and a pair of biembeddable Latin squares with order n in an orientable surface.
Furthermore, we prove that there is a one to one correspondence between the set of directed
embeddings of a digraph D and the set of face-2-colorable embeddings of the underlying
graph of D both on orientable surfaces. The result that there exists an orientation on edges
of Kn such that the obtained tournament ~Kn has the directed genus d 1

12 (n − 3)(n − 4)e,
when n ≡ 3, 7 (mod 12) is gotten which answer the Problem 1.1.
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2 Alternating rotations, face-2-colorable embeddings, and Latin
squares

An alternating rotation at a vertex v of D is a cyclic permutation of the arcs incident at v,
such that in-arcs alternate with out-arcs. A list of alternating rotations, one for each vertex,
is called an alternating embedding scheme (also called alternating rotation system) for the
digraph D. There exists a one to one correspondence between the set of all embeddings
(resp. directed embeddings) of a graph G (resp. a digraph D) on orientable surfaces and
the set of the embedding schemes (resp. alternating embedding schemes) ofG (resp.D). A
color class is a set of faces with the same color. A face-2-colorable embedding of a graph
G is an embedding which admits a 2-coloring of regions such that no two distinct regions of
the same color shares a common edge. Two colors always mean black and white. Regions
in an embedding of a graph are also called faces, while regions in a directed embedding of a
digraph are partitioned into faces which use the arcs in the forward direction and antifaces
which use arcs traversed against the given orientation.

An embedding is triangular if all regions are bounded by 3-cycles. Two face-2-colorable
embeddings of Kn are said to be isomorphic if there exists a permutation on the n vertices
(of the complete graph) such that it maps edges and faces of one embedding to edges and
faces of the other one, respectively, see [2]. Equivalently, two face-2-colorable embeddings
of Kn are isomorphic if and only if there exists a permutation on the n vertices such that
it either preserves the color of the triangles or reverses the color. Let D1 and D2 be two
digraphs. If D1 is derived from D2 by reversing all arcs of D2, then we say these two
digraphs have the opposite orientation.

A transversal design TD(3, n) is an ordered triple (V,G,B), where V is a 3n-element
set (the points), G is a partition of V into three disjoint sets (the groups) each of which
has cardinality n, and B is a set of three-element subsets of V (the triples), such that every
unordered pair of elements from V is either contained in precisely one triple or one group,
but not both.

Example 2.1. An example of a TD(3, n) of n = 3. Let

V = {1, 2, 3, . . . , 9},
G = {{4, 5, 6}, {7, 8, 9}, {1, 2, 3}}, and
B = {(4, 7, 3), (4, 8, 1), (4, 9, 2), (5, 7, 1), (5, 8, 2), (5, 9, 3), (6, 7, 2), (6, 8, 3), (6, 9, 1)}.

Then (V,G,B) is a transversal design TD(3, 3).

A Latin square LS(n) of order n is an n × n array filled with n different entries, each
occurring exactly once in each row and exactly once in each column.

Example 2.2. A Latin square LS(n) of order n for n = 3. Let

M =

3 1 2
1 2 3
2 3 1

 .
Then M is a Latin square LS(3).

There are relations among the face-2-colorable triangular embeddings of Kn,n,n on
an orientable surface, the transversal design TD(3, n) and the Latin squares as follows.
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For a given face 2-colourable triangular embeddings of Kn,n,n on an orientable surface,
it is proved in [10] that there exists a transversal design which is determined under one of
the clockwise and counter-clockwise in each colour class. On the other hand, for a given
transversal design TD(3, n) = (V,G,B), there is a Latin square determined by TD(3, n)
by assigning the three groups in G as labels for the row, columns and entries of the Latin
square.

Two color classesA and B of a face-2-colorable triangular embedding of Kn,n,n on an
orientable surface give two Latin squares, corresponding to A and B respectively, which is
considered as a biembedding of these two Latin squares with order n. Two Latin squares A
and B are biembeddable, denoted by A ./ B, on an orientable surface S if there is a face-
2-colorable (black and white) triangular embedding of Kn,n,n in the orientable surface S
such that the white face set is A and the black face set is B. For more details, the readers
are referred to [6, 7, 8, 9] and [21].

Example 2.3. Let V1, V2 and V3 be a partition of V (K3,3,3), where V1 = {4, 5, 6}, V2 =
{7, 8, 9} and V3 = {1, 2, 3}. For a given embedding ρ of K3,3,3 on an orientable surface,
let ρv be the rotation at a vertex v. Let

ρ1 = (7, 5, 9, 6, 8, 4); ρ2 = (7, 6, 9, 4, 8, 5); ρ3 = (7, 4, 9, 5, 8, 6);
ρ4 = (7, 3, 9, 2, 8, 1); ρ5 = (7, 1, 9, 3, 8, 2); ρ6 = (8, 3, 7, 2, 9, 1);
ρ7 = (1, 5, 2, 6, 3, 4); ρ8 = (2, 5, 3, 6, 1, 4); ρ9 = (2, 4, 3, 5, 1, 6).

Then ρ = {ρi : i ∈ {1, . . . , 9}} is a face 2-colourable triangular embedding of K3,3,3 on
an orientable surface. In fact, a set of faces with the white color is

A1 = {(5, 7, 1), (6, 9, 1), (4, 8, 1), (6, 7, 2), (4, 9, 2), (5, 8, 2), (4, 7, 3), (5, 9, 3), (6, 8, 3)};

while a set of faces with the black color is

A2 = {(9, 5, 1), (8, 6, 1), (7, 4, 1), (9, 6, 2), (8, 4, 2), (7, 5, 2), (9, 4, 3), (8, 5, 3), (7, 6, 3)}.

There exists a transversal design TD(3, 3), say (V,G,B1), which is determined under
the clockwise in white colour class A1. That is,

V = {1, 2, 3, . . . , 9},
G = {{4, 5, 6}, {7, 8, 9}, {1, 2, 3}}, and
B1 = {(5, 7, 1), (6, 9, 1), (4, 8, 1), (6, 7, 2), (4, 9, 2), (5, 8, 2), (4, 7, 3), (5, 9, 3), (6, 8, 3)}.

There exists another transversal design TD(3, 3), say (V,G,B2), which is determined
under the counter-clockwise in black colour class A2. That is,

V = {1, 2, 3, . . . , 9},
G = {{4, 5, 6}, {7, 8, 9}, {1, 2, 3}}, and
B2 = {(5, 9, 1), (6, 8, 1), (4, 7, 1), (6, 9, 2), (4, 8, 2), (5, 7, 2), (4, 9, 3), (5, 8, 3), (6, 7, 3)}.

Example 2.4. Let (V,G,B1) be a transversal design given in Example 2.3. Assume that
{4, 5, 6} labels for the row, {7, 8, 9} labels for columns and {1, 2, 3} labels for entries of
the Latin square. Thus

B1 = {(5, 7, 1), (6, 9, 1), (4, 8, 1), (6, 7, 2), (4, 9, 2), (5, 8, 2), (4, 7, 3), (5, 9, 3), (6, 8, 3)}
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determines the matrix A1 as 
7 8 9

4 3 1 2
5 1 2 3
6 2 3 1

. (2.1)

Thus there is a Latin square A1 determined by (V,G,B1), where

A1 =

3 1 2
1 2 3
2 3 1

 .
Similarly, for a transversal designs (V,G,B2) given in Example 2.3, there is a Latin

square A2 determined by (V,G,B2), where

A2 =

1 2 3
2 3 1
3 1 2

 .
In fact, using V1 = {4, 5, 6} as labels for the row, V2 = {7, 8, 9} as labels for the columns,
and V3 = {1, 2, 3} as labels for entries of the Latin square, thus

B2 = {(5, 9, 1), (6, 8, 1), (4, 7, 1), (6, 9, 2), (4, 8, 2), (5, 7, 2), (4, 9, 3), (5, 8, 3), (6, 7, 3)}

determines the matrix A2 as 
7 8 9

4 1 2 3
5 2 3 1
6 3 1 2

. (2.2)

As a result, a face-2-colorable triangular embedding ρ of K3,3,3 on an orientable sur-
face gives two Latin squares A1 and A2, corresponding to two color classes A1 and A2

respectively. And A1 ./ A2 is a biembedding of these two Latin squares with order 3.

Because an embedding of an embeddable digraph is an embedding of the underlying
graph, the following version of Euler’s polyhedral formula holds.

Lemma 2.5. Let D = (V,A) be an embedding digraph, then for any alternating embed-
ding scheme ρ of D, we have

|V | − |A|+ |R| = 2− 2g,

where |R| is the number of regions in the embeding scheme ρ and g is the genus of the
embedding surface.

Lemma 2.6 ([7]). There is a unique regular triangular embedding of a complete tripartite
graph Kn,n,n on an orientable surface for n ≥ 2.

Lemma 2.7 ([6]). For a triangular embedding of Kn,n,n, it is orientable if and only if it is
face-2-colorable embedding.

The readers are referred to [1] for any undefined notations.
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3 The directed genus of ~Kn,n,n

For an embedding σ of a given digraph ~Kn,n,n, the alternating embedding scheme is de-
noted by ρσ , the alternating rotation at a vertex v ∈ V (D) is denoted by ρσ(v) (or sim-
ply ρv).

Recall thatKn,n,n is a complete tripartite graph. A complete tripartite digraph, denoted
by ~Kn,n,n, obtained from Kn,n,n by giving an orientation for each edge in Kn,n,n. In the
following, we find an orientation ~Kn,n,n of Kn,n,n such that ~Kn,n,n has the directed genus
1
2 (n− 1)(n− 2), the same as the genus of Kn,n,n.

Theorem 3.1. The following two conditions on an orientation ~Kn,n,n of the complete
tripartite graph Kn,n,n are equivalent :

(1) ~Kn,n,n has a directed embedding on the orientable surface of genus 1
2 (n−1)(n−2),

for which we call the sets of faces and antifaces A and B, respectively.

(2) The sets A and B of white faces and black faces for a face-2-colorable triangular
embedding of Kn,n,n correspond to a pair of biembeddable Latin squares A and B
of order n.

Proof. We first show that (1) implies (2).
Assume ~Kn,n,n has a directed embedding on an orientable surface of genus 1

2 (n −
1)(n−2) such that the sets of faces and antifacesA andB, respectively. Let φ : ~Kn,n,n → S

be this directed embedding of ~Kn,n,n and ρφ be the alternating embedding scheme of φ.
Note that ~Kn,n,n has 3n vertices, 3n2 arcs and the embedding genus 1

2 (n− 1)(n− 2). By
Euler’s formula of Lemma 2.5, the number of regions in ρφ is 2n2. This implies that each
region is bounded by a directed 3-cycle because there are no i-cycles for i = 1, 2.

Let the embedding scheme ρ of Kn,n,n be the same as ρφ without considering the
directions of arcs, thenA∪B is the facial set of the embedding ρ ofKn,n,n. We color faces
in A with white and antifaces in B with black. By the definition of a directed embedding,
each arc appears once in exactly one facial boundary and exactly one antifacial boundary.
That is, no two distinct faces inA (resp. B) are incident to the same edge. So ρ ofKn,n,n is
a face-2-colorable triangle embedding with two color classesA andB with |A| = |B| = n2.
Note that two color classes A and B of a face-2-colorable triangular embedding of Kn,n,n

on an orientable surface give two Latin squares, say A and B, corresponding to A and B
respectively, which is a biembedding of these two Latin squares A and B. The result (2) is
obtained.

Secondly, we show that (2) implies (1).
Suppose (2) holds. Note that there exists a face-2-colorable triangular embedding, say

φ, of Kn,n,n on an orientable surface with two facial color classes A and B which cor-
responds a pair of biembeddable Latin squares A and B of order n, respectively. As-
sume the embedding scheme of the embedding φ is ρφ and the rotation at vertex v in
Kn,n,n is denoted by ρφ(v). Let V (Kn,n,n) = V1 ∪ V2 ∪ V3, where {V1, V2, V3} is
a partition of V (Kn,n,n). Suppose V1 = {a1, a2, . . . , an}, V2 = {b1, b2, . . . , bn} and
V3 = {c1, c2, . . . , cn}.

Note that A and B determine transversal designs (V,G,A) and (V,G,B) respectively,
where V = V (Kn,n,n), G = {V1, V2, V3} and the faces in each color class form the triples
in A and B of the transversal designs.
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For every edge uv ∈ E(Kn,n,n), without loss of generality, let u = ai ∈ V1, v =
bj ∈ V2. By the definition of a transversal design, there is only one triple in A containing
ai, bj , say {ai, bj , cx} for some cx ∈ V3. Thus, vertices bj and cx are neighbors of ai.
Without loss of generality, let cx be the closest successor of bj in the rotation ρφ(ai) along
the counter-clockwise and the color of the region corresponding to the triple {ai, bj , cx} be
white. On the other hand, there is exactly one triple in B containing ai, bj , say {ai, bj , cy}
with cy ∈ V3, so bj is the closest successor of cy in the rotation ρφ(ai) along the counter-
clockwise and the color of the region corresponding to the triple {ai, bj , cy} is black which
is illustrated in the left one of Figure 1.

Figure 1: The rotations at vertices ai and w respectively.

Give the orientation of the edge uv = aibj from u = ai to v = bj , i.e., the color of the
left region of the arc # �uv is white and the color of the right region is black. By the random
choice of uv, all edges in Kn,n,n are oriented and the obtained digraph is ~Kn,n,n.

In the following, we only need to show that this orientation makes the in-arcs and out-
arcs alternating at ρφ(v) for any v ∈ V (Kn,n,n). By the contrary, suppose there exists a
vertex, say w ∈ V , such that in-arcs and out-arcs at w are not alternative. Without loss
of generality, suppose two arcs, say #     �u1w,

#     �u2w, are two neighbor in-arcs of w in ρφ(w)
and ρφ(w) = (. . . , u1, u2, . . .) along counter-clockwise. Let the left face and right face of
#     �u1w going from u1 to w be F1 and F2 respectively and the left face and right face of #     �u2w
going along the direction from u2 to w be F3 and F4 respectively. Then F2 = F3. By the
principle of the orientation, F2 is colored black because of the direction of arc #     �u1w and F3

is colored white because of the direction of arc #     �u2w, which is shown in the right graph of
Figure 1. It contradicts with face-2-colorable because F2 = F3. As a result, this orientation
makes in-arcs and out-arcs alternating at every vertex w ∈ V along the rotation ρφ(w).

As a result, ~Kn,n,n, obtained from Kn,n,n by this orientation, has an alternating em-
bedding scheme determined by φ such that the sets of faces and antifaces of this directed
embedding of ~Kn,n,n are A and B, respectively.

Since each region of this directed embedding of ~Kn,n,n is a 3-cycle, the number of
regions is 2n2. By |V | = 3n, the cardinality of arcs in ~Kn,n,n being 3n2 and Lemma 2.5,
it follows 3n− 3n2 + 2n2 = 2− 2g, where g is the genus of this directed embedding. So
g = 1

2 (n − 1)(n − 2). Since neither loop nor 2-cycle is in ~Kn,n,n, the minimum directed
genus of ~Kn,n,n is 1

2 (n−1)(n−2). Thus ~Kn,n,n has a directed embedding in the orientable
surface of genus 1

2 (n− 1)(n− 2), for which we call the sets of faces and antifaces A and
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B, respectively.

Theorem 3.2. LetKn,n,n be the complete tripartite graph. Then there exists an orientation
of Kn,n,n such that the obtained digraph ~Kn,n,n has the directed genus 1

2 (n− 1)(n− 2),
the same as the genus of Kn,n,n.

Proof. Let ~Kn,n,n be the digraph obtained from Kn,n,n by giving the orientation to each
edge in Kn,n,n and g be the directed genus of ~Kn,n,n.

(1) If n = 1, then Kn,n,n = K1,1,1 is a triangle. Let ~K1,1,1 be the digraph obtained by
giving an orientation of K1,1,1 such that it is a directed 3-cycle. Hence g = 0.

(2) If n ≥ 2, by Lemma 2.6, there is a unique regular triangular embedding of a complete
tripartite graph Kn,n,n on an orientable surface. By Lemma 2.7, this regular trian-
gular embedding of a complete tripartite graph Kn,n,n must be a face-2-colorable
embedding and two set of color faces are denoted by A and B respectively. By The-
orem 3.1 , there is an orientation for Kn,n,n such that the resulting digraph ~Kn,n,n

has a directed embedding in the orientable surface of genus 1
2 (n− 1)(n− 2), the set

of faces is A and the set of antifaces is B. Thus the result holds.

4 The number of different orientations of Kn

Theorem 3.1 for a directed triangular embedding of the directed complete tripartite graph
can be generalized to Lemma 4.1 for directed embedding of a general digraph.

Lemma 4.1. The following two conditions on an orientation ~G of a graphG are equivalent.

(1) ~G has a directed embedding on an orientable surface of genus g.

(2) G has a face-2-colorable embedding on an orientable surface of genus g.

Proof. We first show that (1) implies (2).
Let G = (V,E) be a graph with n vertices, ~G = (V,A) be a digraph obtained from G

by giving an orientation to each edge. So |V | = n and |E| = |A|. By (1), ~G has a directed
embedding on an orientable surface of genus g. Let ρ be the alternating embedding scheme
and F1 and F2 be the set of faces and antifaces in ~G, respectively. Note that a directed
embedding of ~G is an embedding of G and F1 ∪F2 is the set of faces of this embedding of
G. We color regions in F1 with white and rigions in F2 with black. From the definition of
directed embedding, each arc in ~G is incident to exactly one face and exactly one antiface
in the directed embedding ρ of ~G, so there is no two distinct regions of the same color
sharing a common edge in this embedding of G. It implies that this embedding of G is the
face-2-colorable embedding on an orientable surface with genus g. So condition (2) holds.

Secondly, we show that (2) implies (1).
Suppose that (2) holds. Let ρ be the embedding scheme of a face-2-colorable embed-

ding of a graph G = (V,E) on an orientable surface S of genus g. And all regions of the
embedding ρ can be colored by white and black. Let F1 and F2 be the set of white and
black regions, respectively. For each edge e ∈ E(G), there are exactly two regions sharing
the edge e, denoted by F 1

e and F 2
e . By the definition of the face-2-colorable embedding,

F 1
e and F 2

e have different colors. Without loss of generality, suppose that F 1
e ∈ F1 and

F 2
e ∈ F2. We give the orientation of e such that the left is white region F 1

e and the right is
black region F 2

e (this is known as orientational principle). Since each edge can be oriented,
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one can obtain a digraph, denoted by ~G, from the graph G by this orientational principle.
Let the alternating embedding scheme of ~G be the same as ρ. By the orientational principle
and face-2-colorability, the in-arcs and out-arcs alternate at each vertex in ρ of ~G. Thus
this embedding scheme is an alternating embedding scheme of ~G as a directed embedding
in the same surface S with genus g, so condition (1) holds.

Theorem 4.2. There is a one to one correspondence between the set of directed embeddings
of a digraph D on orientable surfaces and the set of face-2-colorable embeddings of the
underlying graph of D on orientable surfaces.

Proof. Let D be a digraph and the underlying graph of D be obtained from D by ignoring
the direction of arcs. Theorem 4.2 is obtained directly from Lemma 4.1.

The following Theorem 4.3 give an answer to the problem in [2].

Theorem 4.3. If n ≡ 3, 7 (mod 12), then there exists an orientation on edges of Kn such
that the obtained tournament ~Kn has directed genus d 1

12 (n− 3)(n− 4)e.

Proof. From Ringel and Youngs’ results in [25] and [31], if n ≡ 3, 7 (mod 12), there ex-
ists a face-2-colorable triangular embedding ofKn on an orientable surface. By Lemma 4.1,
there exists an orientation on edges of Kn such that the obtained digraph ~Kn has a directed
triangular embedding on an orientable surface. By Euler’s formula, digraph ~Kn has di-
rected genus d 1

12 (n− 3)(n− 4)e.

5 Concluding remarks
In this paper, we show that there is a one to one correspondence between the set of directed
embeddings of a digraph D and the set of face-2-colorable embeddings of the underlying
graph of D on orientable surfaces. Furthermore, we show that there exist orientations on
Kn,n,n andKn such that the obtained graph ~Kn,n,n has the directed genus 1

2 (n−1)(n−2)

for n ≥ 1 and ~Kn has directed genus d 1
12 (n − 3)(n − 4)e for n ≡ 3, 7 (mod 12) which

answers the problem about tournaments given in [2] by using a method different from
current graphs which were discussed by the same author et al.
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[3] C. P. Bonnington, N. Hartsfield and J. Širáň, Obstructions to directed embeddings of Eulerian
digraphs in the plane, European J. Combin. 25 (2004), 877–891, doi:10.1016/j.ejc.2003.06.006.

[4] Y. Chen, J. L. Gross and X. Hu, Enumeration of digraph embeddings, European J. Combin. 36
(2014), 660–678, doi:10.1016/j.ejc.2013.10.003.

[5] Y. Chen, T. Mansour and Q. Zou, Embedding distributions of generalized fan graphs, Canad.
Math. Bull. 56 (2013), 265–271, doi:10.4153/cmb-2011-176-6.

[6] M. J. Grannell, T. S. Griggs and M. Knor, Biembeddings of Latin squares and Hamiltonian
decompositions, Glasgow Math. J. 46 (2004), 443–457, doi:10.1017/s0017089504001922.



384 Ars Math. Contemp. 14 (2018) 375–385

[7] M. J. Grannell, T. S. Griggs, M. Knor and J. Širáň, Triangulations of orientable surfaces by
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1 Introduction

Fibonacci cubes were introduced by Hsu [19] because of their appealing properties applica-
ble to interconnection networks. Afterwards they have been extensively studied and found
additional applications, see the survey [23]. The interest for Fibonacci cubes continues, re-
cent research of them includes asymptotic properties [24], connectivity issues [7], the struc-
ture of their disjoint induced hypercubes [14, 30], the (non)-existence of perfect codes [5],
and the q-cube enumerator polynomial [31]. From the algorithmic point of view, Ram-
ras [29] investigated congestion-free routing of linear permutations on Fibonacci cubes,
while Vesel [34] designed a linear time recognition algorithm for this class of graphs.

The domination number of Fibonacci cubes was investigated by now in two papers.
Pike and Zou [28, Theorem 3.2] proved that γ(Γn) ≥ d(Fn+2 − 2)/(n− 2)e for n ≥ 9,
where Fn are the Fibonacci numbers: F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2 for n ≥ 2.
Exact values of γ(Γn) for n ≤ 8 were also obtained in [28]. In the second related paper [9]
the domination number of Fibonacci cubes was then compared with the domination number
of Lucas cubes.

In this note we turn our attention to domination invariants of Fibonacci cubes and of
hypercubes with a prime interest on the total domination. We proceed as follows. In the
rest of this section we introduce concepts and notation needed. Then, in Section 2, we
determine the exact value of the total domination number of Γn for n ≤ 12, and obtain an
upper bound and a lower bound on γt(Γn). In Section 3 we use integer linear programming
to either extend or obtain values for several domination-type invariants on Fibonacci cubes
and hypercubes. In the final section we consider the total domination of hypercubes with
respect to a recent conjecture from [22]. In particular, using known results from coding
theory we show that the conjecture does not hold. It is also observed that for any c > 0
there exists n0 ∈ N, such that if n ≥ n0, then γt(Qn) ≤ 2n−c.

The n-dimensional (hyper)cube Qn, n ≥ 1, is the graph with V (Qn) = {0, 1}n,
two vertices being adjacent if they differ in a single coordinate. For convenience we also
set Q0 = K1. The vertices of Qn will be briefly written as binary strings b1 . . . bn. A
Fibonacci string of length n is a binary string b1 . . . bn with bi · bi+1 = 0 for 1 ≤ i < n.
Fibonacci strings are thus binary strings that contain no consecutive 1s. The Fibonacci
cube Γn, n ≥ 1, is the subgraph of Qn induced by the Fibonacci strings of length n. It is
well known that |V (Γn)| = Fn+2.

If u is a binary string, then the number of its bits equal to 1 is the weight of u. If u and
v are binary strings, then uv denotes the usual concatenation of the two strings. If u is a
binary string and X a set of binary strings, then uX = {ux : x ∈ X}.

LetG be a graph. ThenD ⊆ V (G) is a dominating set if every vertex from V (G)\D is
adjacent to some vertex from D. The domination number γ(G) is the minimum cardinality
of a dominating set of G. D is a total dominating set if every vertex from V (G) is adjacent
to some vertex from D. The total domination number γt(G) is the minimum cardinality
of a total dominating set of G. Note that the total domination number is not defined for
graphs that contain isolated vertices, hence unless stated otherwise, all graphs in this paper
are isolate-free. For more information on the total domination in graphs see the recent
book [17] and papers [11, 12].
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2 Total domination in Fibonacci cubes
In this section we present exact values of γt(Γn) for n ≤ 12, prove an upper bound on
γt(Γn), and a lower bound on γt(Γn). The exact values were obtained by computer and
are collected in Table 1, where the order of the cubes is also given so that the complexity
of the problem is emphasized. In particular, |V (Γ12)| = 377.

Table 1: Exact total domination numbers of Fibonacci cubes up to dimension 12.

n 1 2 3 4 5 6 7 8 9 10 11 12

|V (Γn)| 2 3 5 8 13 21 34 55 89 144 233 377
γt(Γn) 2 2 2 3 5 7 10 13 20 30 44 65

More precisely, the results from Table 1 were obtained using integer linear program-
ming as follows. Suppose we associate to each vertex v ∈ V (Γn) a binary variable xv.
The problem of determining γt(Γn) can then be expressed as a problem of minimizing the
objective function ∑

v∈V (Γn)

xv,

subject to the condition that for every v ∈ V (Γn) we have∑
u∼v

xu ≥ 1.

The value of the objective function is then γt(Γn).
We have found out that the most efficient solver for the above problem is GurobiTM

Optimizer [15]. For example, it takes less than 9s to compute γt(Γ12) on a standard desktop
machine. On the other hand, we were not able to make the computation for γt(Γ13) in real
time (note that the order of Γ13 is 610), we could only get the estimates

97 ≤ γt(Γ13) ≤ 101 .

Using the above computations, the following result can be derived.

Theorem 2.1. If n ≥ 11, then γt(Γn) ≤ 2Fn−10 + 21Fn−8.

Proof. Consider the so-called fundamental decomposition of Γn into the subgraphs in-
duced by the vertices that start with 0 and 10, respectively (cf. [23]). These subgraphs
are isomorphic to Γn−1 and Γn−2 respectively, hence we infer that γt(Γn) ≤ γt(Γn−1) +
γt(Γn−2). From the above computations we know that γt(Γ11) = 44 and γt(Γ12) = 65.
Define the sequence (an), n ≥ 11, with a11 = 44, a12 = 65, and an = an−1 + an−2 for
n ≥ 13. Then one can check by a simple induction argument that an = 2Fn−10 + 21Fn−8

holds for any n ≥ 11. Since γt(Γn) ≤ an the argument is complete.

Arnautov [3] and independently Payan [27] proved that

γ(G) ≤ |V (G)|
δ + 1

δ+1∑
j=1

1

j
(2.1)
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holds for any graph G of minimum degree δ. Since δ(Γn) = b(n+ 2)/3c, cf. [25, Corol-
lary 3.5], and because γt ≤ 2γ, we get that

γt(Γn) ≤ 2Fn+2⌊
n+5

3

⌋ bn+5
3 c∑
j=1

1

j
. (2.2)

Computing the values of the right-hand side of the bound of Theorem 2.1 and of (2.2) we
find out that Theorem 2.1 is better than the bound of (2.2) for n ≤ 33.

By using the fact γt(Γ13) ≤ 101 that was obtained by our computations, the bound of
Theorem 2.1 can be further improved to give

γt(Γn) ≤ 601Fn−1 − 371Fn, n ≥ 12 .

We continue by establishing a lower bound on γt(Γn).

Theorem 2.2. If n ≥ 9, then

γt(Γn) ≥
⌈
Fn+2 − 11

n− 3

⌉
− 1 .

Proof. The proof mimics the proof of [28, Theorem 3.2] which gives a lower bound on the
domination number of Fibonacci cubes, hence we will not give all the details.

For a graph G and its total dominating set D we introduce the over-total-domination of
D in G as ODG(D) =

∑
v∈D deg(v)− |V (G)|. Consider now Γn, n ≥ 9, and let D be a

total dominating set of Γn. In Γn, the vertex 0n is the unique vertex of degree n, vertices
10n−1 and 0n−11 have degree n− 1, and all other vertices of weight 1 have degree n− 2.
In addition, the vertices 1010n−3, 10n−21, and 0n−3101 are of degree n−2, while all other
vertices of Γn have degree at most n− 3, cf. [25].

Let k be the number of vertices of weight 1 from D \ {10n−1, 0n−11}. In addition, let
` = |D ∩ {1010n−3, 10n−21, 0n−3101}|. Note that k + ` is the number of vertices from
D that have degree n − 2. The proof now proceeds by considering the cases that happen
based on the membership of the vertices 0n, 10n−1, and 0n−11 in D. Here we consider
only the case when {0n, 10n−1, 0n−11} ⊆ D. We have:

ODG(D) ≤ n+ 2(n− 1) + (k + `)(n− 2) + (γt(Γn)− 3− k − `)(n− 3)− Fn+2 .

Since clearly ODG(D) ≥ 0, from the above inequality we derive that γt(Γn)(n − 3) ≥
Fn+2 − k − `− 7. Because k + ` ≤ n+ 1 we get

γt(Γn) ≥ Fn+2 − k − `− 7

n− 3
≥ Fn+2 − (n+ 1)− 7

n− 3

=
Fn+2 − 11− (n− 3)

n− 3
=
Fn+2 − 11

n− 3
− 1 ,

and the stated inequality holds in this case. All the other cases are treated similarly.

We conclude the section with Table 2 in which known values and current best bounds
on γt(Γn) for n ≤ 33 are collected. The values for n ≤ 12 were computed using the
linear program explained above. The bounds for γt(Γ13) were established by Gurobi, and
we conjecture that in fact Γt(Γ13) = 101. Finally, the remaining bound in Table 2 were
obtained by the bounds given in Theorems 2.1 and 2.2. Recall that n = 33 is the last value
for which Theorem 2.1 gives a better bound than the bound (2.2).
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Table 2: Exact values and current best bounds on γt(Γn), n ≤ 33.

n γt(Γn)

1 2
2 2
3 2
4 3
5 5
6 7
7 10
8 13
9 20

10 30
11 44

n γt(Γn)

12 65
13 97-101
14 87-174
15 131-283
16 196-457
17 296-740
18 449-1197
19 682-1937
20 1040-3134
21 1590-5071
22 2438-8205

n γt(Γn)

23 3749-13276
24 5779-21481
25 8926-34757
26 13816-56238
27 21424-90995
28 33280-147233
29 51778-238228
30 80676-385461
31 125876-623689
32 196649-1009150
33 307580-1632839

3 Additional invariants on small Fibonacci cubes and hypercubes

The integer linear programming approach can be used to compute several additional in-
variants of Fibonacci cubes (and other graphs). This has recently been done by Ilić and
Milošević in [20], where they have computed the domination number, the 2-packing num-
ber, and the independent domination number of low dimensional Fibonacci cubes. In par-
ticular, they have used integer linear programming to confirm the conjecture from [9] stat-
ing that γ(Γ9) = 17. In addition, an integer linear programming model for the connected
domination number has been presented in [13]. In this section we add to the list of inte-
ger linear programming models paired domination and signed domination. The concepts
mentioned in this paragraph that have not been introduced yet are defined next.

A set X ⊆ V (G) is a 2-packing if d(x, y) ≥ 3 holds for any x, y ∈ X , x 6= y.
The maximum size of a 2-packing of G is the 2-packing number of G denoted ρ(G). The
independence domination number i(G) of G is the minimum size of a dominating set that
induces no edges [26]. The connected domination number γc(G) of G is the order of
a smallest dominating set that induces a connected graph [10]. The paired domination
number γp(G) is the order of a smallest dominating set S ⊆ V (G) such that the graph
induced by S contains a perfect matching [2]. Finally, we say that f : V (G) → {−1, 1}
is a signed dominating function if

∑
u∈N [v] f(u) ≥ 1 holds for every v ∈ V (G), where

N [v] is the closed neighborhood of v, that is, N [v] = {v} ∪ {u : vu ∈ E(G)}. The
signed domination number γs(G) is the minimum of

∑
v∈V (G) f(v) taken over all signed

dominating functions f of G, see [18].

We now present the problems to determine the paired domination number of a graph
and the signed domination number of a graph as integer linear programs. To model the
paired domination problem for a graph G we introduce a binary variable xe indicating
whether the edge e ∈ E(G) is present in the graph induced by a paired dominating set of
G. Then we can model the problem as follows:
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minimize
∑

e∈E(G)

xe

subject to
∑
u∼v

xuv ≤ 1, v ∈ V (G)∑
u∼v

∑
w∼u

xuw≥ 1, v ∈ V (G) .

Similarly, to model the signed domination number we introduce a binary variable xv as-
sociated with every vertex v ∈ V (G) indicating whether v is assigned weight 1 or −1,
respectively. Then we have the following linear program.

minimize
∑

v∈V (G)

(2xv − 1)

subject to
∑

u∈N [v]

(2xu − 1)≥ 1, v ∈ V (G) .

Our computational results are collected in Tables 3 and 4. In the rows for γ(Γn), ρ(Γn),
and i(Γn), the results from [20] are in normal font, while the new values are in bold. We
have thus extended the results from [20] for one additional dimension. It is interesting to
observe that the gap between the independent domination number and the domination in
dimension 9 is equal to 2, but then in dimensions 10 and 11 the difference goes down to 1.

Table 3: Additional invariants for small Fibonacci cubes and hypercubes.

n 1 2 3 4 5 6 7 8 9 10 11 12

γ(Γn) 1 1 2 3 4 5 8 12 17 25 39 54-61
ρ(Γn) 1 1 2 2 3 5 6 9 14 20 29 42
i(Γn) 1 1 2 3 4 5 8 12 19 26 40 ?-?

Table 4: Additional invariants for small Fibonacci cubes and hypercubes.

n 1 2 3 4 5 6 7 8 9 10

γc(Γn) 1 1 2 3 5 7 10 14 22
γc(Qn) 1 2 4 6 10 16 28
γp(Γn) 2 2 2 4 6 8 10 14 20 30
γp(Qn) 2 2 4 4 8 14 24 32
γs(Γn) 2 3 3 2 5 9 10 17 25 40
γs(Qn) 2 2 4 6 12 16 32

4 On total domination in hypercubes
It has recently been conjectured in [22, Conjecture 4.6] that γt(Qn) = 2n−2 holds for
n ≥ 6. In [4] Arumugam and Kala first observed that γt(Q1) = γt(Q2) = 2 and
γt(Q3) = γt(Q4) = 4, and then followed by proving that γt(Q5) = 8 [4, Theorem 5.1] and
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γt(Q6) = 14 [4, Theorem 5.2]. The last result is then a sporadic counterexample to the
conjecture. Actually, at this moment the exact value of γt(Qn) is known for n ≤ 10:
γt(Q7) = 24, γt(Q8) = 32, γt(Q9) = 64, and γt(Q10) = 124, see [33, Appendix B,
p. 40]. Hence Q7 and Q10 are additional sporadic counterexamples (and so are Q8 and Q9

since γt(Q8) = 32 6= 26 and γt(Q9) = 64 6= 27).
Total dominating sets of Qn can be in coding theory equivalently described as covering

codes of empty spheres (of length n and covering radius 1). The following result was first
proved back in [21], see also [35, Theorem 1(b)]. Let us rephrase the result here in graph-
theoretical terms and give a corresponding argument.

Proposition 4.1. If n = 2k, k ≥ 0, then γt(Qn) = 2n−k.

Proof. From [32] we know that if n = 2k, then γ(Qn) = 2n−k and from [16] that if
n = 2k − 1, then also γ(Qn) = 2n−k. Let n = 2k and consider Qn. Let QLn−1 and QRn−1

be the subgraphs of Qn induced by the sets of vertices X0 = {0b2 . . . bn : bi ∈ {0, 1}} and
X1 = {1b2 . . . bn : bi ∈ {0, 1}}, respectively. Clearly, V (Qn) partitions into X0 and X1,
and in Qn every vertex of X0 has a unique neighbor in X1. Moreover, QLn−1 and QRn−1

are both isomorphic to Qn−1. Let CL be a perfect code of QLn−1 and let CR be its copy in
QRn−1. Then CL ∪ CR is a total dominating set of Qn of order 2n−k. Since on the other
hand γt(Qn) ≥ γ(Qn) = 2n−k, the conclusion follows.

It follows from (2.1) that

γ(G) ≤ |V (G)|
(

1 + ln(δ + 1)

δ + 1

)
(4.1)

holds for any graph G. Hence, again using the fact that γt(G) ≤ 2γ(G), we get for
hypercubes that

γt(Qn) ≤ 2n+1

(
1 + ln (n+ 1)

n+ 1

)
.

Directly from this inequality we infer:

Remark 4.2. For any c > 0 there exists n0 ∈ N, such that if n ≥ n0, then

γt(Qn) ≤ 2n−c .

Two remarks are in place here. First, (4.1) also follows from a more general result on
transversals in hypergraphs due to Alon [1]. Second, the state of the art on the upper bounds
on the domination number in terms of the minimum degree and the order of a given graph
is given in [8].

It follows from the fact that γt(Qn) ≤ 2γ(Qn−1) and from Proposition 4.1 that
γt(Q2k+1) ≤ 2γ(Q2k) = 22k−k+1. As proved in [32], the equality actually holds here,
that is, γt(Q2k+1) = 22k−k+1. More generally, γt(Qn+1) = 2γ(Qn) holds for any n, a
result very recently proved in [6].
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Abstract

We introduce the covering configuration induced by a regular weight defined on a co-
herent configuration. This construction generalizes the well-known equivalence of regular
two-graphs and antipodal double covers of complete graphs. It also recovers, as special
cases, the rank 6 association schemes connected with regular 3-graphs, and certain ex-
tended Q-bipartite doubles of cometric association schemes. We articulate sufficient con-
ditions on the parameters of a coherent configuration for it to arise as a covering configu-
ration.

Keywords: Association scheme, coherent configuration, regular weight, double cover, two-graph,
t-graph.

Math. Subj. Class.: 05C22, 05C50, 05E30

1 Introduction
The Seidel matrix of a graph Γ may be viewed as a weight on the complete graph: edges of
Γ are weighted (−1) and non-edges (+1). If Γ is strongly regular with n = 2(2k−λ−µ),
it lies in the switching class of a regular two-graph and we call the weight, analogously,
regular on Kn. This condition on Γ is well known, and dates to 1977, in [25]. The same
year, the equivalence of regular two-graphs and antipodal double covers of complete graphs
was established in [26].

Martin, Muzychuk and Williford ([18]) defined the extended Q-bipartite double of a
cometric association scheme, extending the notion of the bipartite double of a distance
regular graph. This construction produces, as special cases, the antipodal double covers of
complete graphs from the strongly regular graphs affording regular two-graphs.

In recent work, Kalmanovich ([16]) has also generalized the regular two-graph result,
working from an unpublished draft of D. G. Higman’s ([9]) on regular 3-graphs. As defined
in [14], a t-graph weights the edges of Kn with elements of the group of roots of unity of
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order t, Ut. The regularity condition ensures that the matrix of edge weights has a quadratic
minimal polynomial. The work of Kalmanovich-Higman establishes the equivalence of
regular 3-graphs with cyclic antipodal 3-fold covers of Kn ([6]). Regular 3-graphs are
shown to give rise to certain rank 6 association schemes, and the necessary conditions
under which a rank 6 scheme arises in this way are given.

In this paper there are two main results. First, working with a regular weight with values
in Ut, defined on a coherent configuration (CC), we show that there is always a covering
configuration; that is, a CC constructed using a t-fold cover in a natural way, to convert
the weight into a CC of higher rank (by a factor of t). As special cases, we recover the
equivalence between regular two-graphs and antipodal double covers of complete graphs;
some extended Q-bipartite doubles of cometric schemes; the rank 6 schemes associated
with regular 3-graphs, and an extension of these to regular t-graphs.

A CC with a regular weight has two sets of parameters: the structure constants for
the weighted adjacency algebra, {βkij}, which lie in C or more specifically in the ring of
integers with a primitive tth root of unity adjoined, and the non-negative integers {βkij(ν)}
which count certain triangles with a specified weight. They are related by

βkij =
∑
ν∈Ut

νβkij(ν).

The weighted adjacency algebra is in general not a coherent algebra, and may in fact have a
coherent closure that is much higher in rank than the original CC. In the regular two-graph
case, for instance, it is precisely when the (−1) edges form an SRG that we get a minimal
closure: a natural fission of the edge set into (+1) and (−1) edges that yields a (rank 3)
association scheme. The covering configuration is the realization of a CC whose structure
constants are the βkij(ν). Some properties, namely homogeneity and commutativity of a
CC carry over to the covering configuration. Symmetry is preserved only if t = 2. Metric
and cometric properties are not.

The second main result of this paper is the articulation of sufficient conditions for a CC
to be the covering configuration of a regular weight.

In the final section, we describe a family of regular weights on the Hamming Scheme
H(n, 2) with values in U4, due to Ada Chan. These weights all fuse to regular 4-graphs,
providing an infinite family that may be of interest as complex Hadamard matrices. These
regular weights, and their fusions, admit covering configurations of ranks 4(n + 1) and 8
respectively, on 2n+2 points.

2 Preliminaries
In this section, we give the definitions that are essential to what follows. Much more can
be found in [17] and in the original developments of the area by Weisfeiler and Lehman in
[28] and by D. G. Higman in [11, 12], and [14].

2.1 Coherent configurations

Definition 2.1. Let {Ai}0≤i<r be a set of 01-matrices with rows and columns indexed by
a finite set X . Let I := {0, 1, . . . , r}. The linear spanA := 〈Ai〉C is a coherent algebra if:

(i)
∑
i∈I Ai = J , where J is the all-ones matrix,

(ii)
∑
i∈LAi = I , for some subset L ⊂ I,
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(iii) for each i there exists i∗ ∈ I such that ATi = Ai∗ ,

(iv) AiAj =
∑
pkijAk, pkij ∈ Z+.

A coherent algebra (CA), is homogeneous if |L| = 1; symmetric if i∗ = i for all i, and
commutative, clearly, if pkij = pkji for all i, j, k. The homogeneous CAs are (possibly
non-symmetric) association schemes. Commutative schemes which have the metric or
P-polynomial property are synonymous with distance-regular graphs (DRGs); those of
diameter 2 are the strongly regular graphs (SRGs). Some familiarity with these structures
is assumed. References for readers lacking this background are [1, 2, 4, 5, 19], and [27]. In
the association scheme literature, a rank r scheme is often referred to as an (r − 1)-class
scheme: ‘rank’ counts the trivial relation, while the number of ‘classes’ does not.

Every algebra of n by n matrices over C that is closed under transpose and entry-wise
multiplication, and contains both I and J is a coherent algebra, and as such it has a basis
of 01-matrices satisfying (i)–(iv). Each Ai in a CA is the adjacency matrix of a digraph Γi
with vertex setX , which is simple for i 6∈ L and a graph when i∗ = i. Viewing these graphs
as relations onX , define a coherent configuration (CC) to be a set of binary relations onX ,
indexed by I, with analogous properties to (i)–(iv) above. Denote it A := (X, {Ri}i∈I).

The constant pkij counts the number of i-j paths from a vertex x to a vertex z, given
that (x, z) ∈ Rk and this number is necessarily independent of the choice of edge in Γk. It
is convenient to denote each instance of an i-j path by a triangle (x, y, z) of type (i, j, k).
That is, (x, y, z) ∈ X3 is a triangle of type (i, j, k) if (x, y) ∈ Ri, (y, z) ∈ Rj , and
(x, z) ∈ Rk as indicated in Figure 1.
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Figure 1: Triangle (x, y, z) of type (i, j, k).

Define the intersection matrices Mj of a CC by Mj :=
(
pkij
)
, 0 ≤ i, k < r thus the

map
γ : Aj 7→Mj

is the right regular representation of A.
We treat CAs and CCs as equivalent structures and move freely between the notations

of matrices, relations, and graphs. As {Ai} forms the standard basis ofA, we refer to {Ri}
and {Γi} as the basic relations and basic graphs of A respectively.

2.2 Fusion and fission

A fusion is a merging of relations in a CC according to a partition of I. A fusion will be
deemed coherent if the resulting configuration is coherent. A coherent fission or refinement
is a partition of each basic relation such that the resulting set of relations forms a CC.
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The rank 2 CC represented by Kn is the minimum element in the lattice of all CCs on
a given vertex set X of size n ([12, Prop. 3]). The maximum element has rank n2, with the
full matrix algebra MX(C) as its coherent algebra.

2.3 Regular weights

Let U = Ut be the group of complex tth roots of unity, and fix a primitive root ζ as the
generator of U .

Definition 2.2. A weight with values in U is a 2-cochain ω : X2 → U . Viewed as a matrix,
a weight is Hermitian with unit diagonal.

The coboundary of ω is a function on triangles:

δω(x, y, z) := ω(y, z)ω(x, z)ω(x, y)

and we refer to this value as the weight of the triangle (x, y, z). Analogous to Seidel
switching on a graph, switching a weight ω at vertex xi by a factor of α ∈ U multiplies
the weight on (xi, y) edges by α and on (y, xi) edges by α for all y 6= xi. In matrix form,
this is a similarity transform by the diagonal matrix diag(1, 1, . . . , 1, α, 1, . . . , 1) with α in
position i. We refer to two weights as switching equivalent if one is obtained from the other
by some sequence of switches, and observe that δω is invariant under switching.

Definition 2.3. A t-graph is δω for some weight ω. It is regular if

|{y | δω(x, y, z) = α}|

is independent of x and z, for each value α ∈ U .

This is one of a number of natural generalizations of the regular two-graph ([9, 16, 22,
23, 24, 25]). Since a 2-cochain is equivalent to a weight on the edges of a complete graph,
the notion of regularity can be extended to weights on CAs.

The entry-wise product ω ◦ Ai gives a matrix with (x, y) entry equal to ω(x, y) where
(x, y) ∈ Ri. Denote this weighted adjacency matrix Aωi .

Definition 2.4 ([14]). A weight ω is regular on a CC if for (x, z) ∈ Rk the number of
triangles (x, y, z) of type (i, j, k) and weight α is independent of x and z. In this case, the
number of such triangles depends on i, j, k, and α and we denote this parameter βkij(α).

If ω is regular on A, then
∑
α β

k
ij(α) = pkij . By a straight-forward counting argument,

Aωi A
ω
j =

∑
k

βkijA
ω
k where βkij :=

∑
α∈U

αβkij(α)

thusAω := 〈Aωi 〉 is a self-adjoint matrix algebra containing I and we refer to the βkij as the
parameters or structure constants of the Aω . Note that this weighted adjacency algebra is
not necessarily closed under the entry-wise product, hence it is not, in general, a coherent
algebra. The weighted intersection matrices are defined in the obvious way,

Mj :=
(
βkij
)
, 0 ≤ i, k < r.

Switching equivalent weights have identical parameters and therefore identical intersection
matrices.
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2.4 The fission induced by a weight

The weighted CC (A, ω) has a natural fission in whichRi is partitioned according to distinct
values of ω. Put

(Aαi )xy :=

{
1 if (Aωi )xy = α;

0 otherwise.

Some useful properties are:

1. Aαi ◦A
β
j = δi,jδα,βA

α
i ;

2. Ai =
∑
αA

α
i ;

3. Aωi =
∑
α αA

α
i .

Definition 2.5. (A, ω) has minimal closure if the fission {Aαi } forms a CC.

The terminology draws on the notion of the coherent closure of a set of matrices as the
smallest CA containing them (see [21, 28] for more). The coherent closure of (A, ω) is the
CC whose CA is the coherent closure of the matrix algebra Aω . Clearly∑

i∈L
A1
i = I

and the Aαi sum to J . Furthermore, by the Hermitian property of the weight,

(Aαi )
T

= Aαi∗

but the fission is not in general coherent and may in particular generate a matrix algebra of
dimension greater than rt.

A weighted CC may be represented in a natural way as a t-fold cover of the configura-
tion. The main goal of this work is to characterize regular weights on CCs in this way, and
to describe the construction of a CC of rank rt – the covering configuration – derived from
the cover.

Let U = Ut with generator ζ, let Γ be a graph or digraph with vertex set X , and ω
a weight on Γ. Following [14], we define the t-fold cover of Γ afforded by ω as follows.
The vertex set is X × {1, 2, . . . , t}. We abuse notation, denoting the t copies of each
vertex x by {x1, x2, . . . , xt}. Assign adjacencies by xi ∼ yj whenever x ∼ y in Γ and
ω(x, y) = ζi−j . The induced permutation of indices, i 7→ j determines a permutation σ of
U , namely ζk 7→ ζk+j−i which is simply multiplication by ζj−i. Let Zσ be the image of
σ ∈ U in the left regular representation of U as a multiplicative group. Then {Zσ | σ ∈ U}
is a cyclic group generated by Zζ and the element Zζk corresponds to the kth power of the
cycle (1, 2, . . . , t) on indices. Observe that

∑
σ∈U Zσ is the all-ones matrix J . Indeed, the

Zσ are the adjacency matrices of a cyclic group scheme on t points.

Example 2.6. We construct a weight with values in U3 on the cycle C3, a DRG of diame-
ter 3. The non-trivial basic graphs are shown in Figure 2. Define a weight ω by:

Aω1 =


α α

α α
α α

α α
α α

α α

 , Aω2 =


α α

α α
α α

α α
α α

α α

 ,
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Figure 2: Distance graphs of C3.

Aω3 =


1

1
1

1
1

1

 .
Working out the products, we see that

(Aω1 )2 = 2I +Aω2 ,

Aω1A
ω
2 = Aω2A

ω
1 = Aω1 + 2Aω3 ,

Aω1A
ω
3 = Aω3A

ω
1 = Aω2 ,

(Aω2 )2 = 2I +Aω2 ,

Aω2A
ω
3 = Aω3A

ω
2 = Aω1 ,

(Aω3 )2 = I,

and therefore the weighted intersection matrices are

Mω
1 =


1

2 0 1 0
0 1 0 2

1

 , Mω
2 =


1

0 1 0 2
2 0 1 0

1

 , Mω
3 =


1

1
1

1

 .
Note. Merging the non-trivial relations or, equivalently, summing Ai, i 6= 0, and also the
Aωi , we see that this weight fuses to a regular 3-graph.

3 Main theorem
Theorem 3.1. Let A= (X, {Ri}i∈I) be a coherent configuration of rank r on n := |X|
vertices and suppose ω is a regular weight on A with values in U = Ut. Then ω induces a
rank tr coherent configuration on tn vertices with relations given by∑

α∈U
Aαi ⊗ Zσα (i ∈ I, σ ∈ U)

and parameters {βkij(α)}.
Proof. Let T := {1, 2, . . . , t} and let Γi be one of the basic graphs in A. The t-fold cover
of Γi that is induced by ω has vertex set Y := X × T , and adjacency matrix∑

α∈U
Aαi ⊗ Zα.
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Motivated by this, and looking to define the matrices of a CA on Y , we put

Ci,σ :=
∑
α∈U

Aαi ⊗ Zσα, (3.1)

for i ∈ I and σ ∈ U , we claim that C := 〈Ci,σ〉C is the coherent algebra of a CC C.
We show that C satisfies (i)–(iv) of Definition 2.1. We have observed that

∑
σ∈U Zσ =

J . Since
∑
α∈U A

α
i = Ai for all i, and

∑
i∈I Ai = J , we see that∑

i∈I

∑
σ∈U

Ci,σ =
∑
i∈I

∑
σ∈U

∑
α∈U

Aαi ⊗ Zσα

=

(∑
i∈I

∑
α∈U

Aαi

)
⊗

(∑
σ∈U

Zσα

)

=

(∑
i∈I

Ai

)
⊗ Jt

= Jn ⊗ Jt
= Jnt.

(3.2)

Hence C satisfies (i).
Let L ⊆ I be the unique set of indices such that

∑
i∈LAi = In. (Assume, without

loss of generality, that L = {0} if A is homogeneous.) We claim Int =
∑
i∈L Ci,1. Since

ω(x, x) = 1 for all x, Aαi = 0 if i ∈ L and α 6= 1. Consequently, i ∈ L implies Ai = A1
i .

Hence, ∑
i∈L

Ci,1 =
∑
i∈L

∑
α

Aαi ⊗ Zα

=
∑
i∈L

Ai ⊗ Z0

=

(∑
i∈L

Ai

)
⊗ It

= In ⊗ It = Int.

(3.3)

This proves that C satisfies (ii).
The transpose of M ⊗ N is MT ⊗ NT . Since ω(y, x) = ω(x, y), (Aαi )

T
= (Ai∗)α.

The transpose of a permutation matrix is its matrix inverse, hence ZTσ = Z−1σ = Zσ−1 .
Therefore,

CTi,σ =
∑
α

Aαi∗ ⊗ Z(σα)−1 =
∑
α

Aαi∗ ⊗ Zσα = Ci∗,σ

thus C satisfies (iii).
Finally, we obtain the structure constants as follows. We claim:(∑
α∈U

Aαi ⊗ Zσα

)∑
β∈U

Aβj ⊗ Zτβ

 =
∑
k∈I

∑
ν∈U

βkij(ν)
∑
γ∈U

(Aγk ⊗ Zστνγ) . (3.4)
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The left hand side of equation (3.4) is equal to∑
α,β∈U

(
Aαi A

β
j

)
⊗ (ZσαZτβ) =

∑
α,β∈U

Aαi A
β
j ⊗ Zσταβ

=
∑
µ∈U

∑
αβ=µ

Aαi A
β
j

⊗ Zστµ,
combining terms with the same second tensorand. We now consider the (x, z) entry of each
product Aαi A

β
j for a fixed (x, z) ∈ Rk, setting γ := ω(x, z). This equals the number of

triangles (x, y, z) of type (i, j, k) with weight αβγ. Since we are summing these products
over all α and β with αβ = µ, we account for all such triangles, and the number of these
is βkij(αβγ). Thus

∑
µ∈U

∑
αβ=µ

Aαi A
β
j

⊗ Zστµ =
∑
µ∈U

∑
γ∈U

∑
k∈I

βkij(µγ)Aγk

⊗ Zστµ
=
∑
µ∈U

∑
γ∈U

∑
k∈I

βkij(µγ) (Aγk ⊗ Zστµ) .

(3.5)

Next, observe that βkij(ν) occurs exactly t times, once for each γ with µ = νγ. Factor-
ing gives ∑

k∈I

∑
ν∈U

βkij(ν)
∑
γ∈U

Aγk ⊗ Zστνγ (3.6)

which proves the claim. Hence βkij(ν) is the coefficient of Ck,στν in the product Ci,σCj,τ .

Remark 3.2. If A is an association scheme, then L = {0}, and C0,1 = Int.

Remark 3.3. The following are clear from the proof of Theorem 3.1.

(i) C is homogeneous if and only if A is homogeneous.

(ii) C is symmetric if and only if A is symmetric and ω is real-valued, that is, t = 2. Ci1
is always symmetric if Ai is.

(iii) C is commutative if and only if A is commutative.

(iv) If the Aαi form a CC, then we are in the case of minimal closure, and C is a fusion of
a Kronecker product configuration.

(v) The parameter βkij(ν) in the proof of (iv) clearly does not depend on σ or τ . This
means that each parameter of C is duplicated t2 times:

pkστνiσ,jτ = pkνi1,j1 ∀σ, τ ∈ Ut.

4 Discussion and analysis
Example 4.1. This example relates to Γ = SRG(112, 30, 2, 10) which is known by many
names in the literature, including the collinearity graph of GQ(3, 9), O−(6, 3), and the



A. D. Sankey: On t-fold covers of coherent configurations 405

first sub-constituent of the McLaughlin graph, McL1 to name just three. It has a strongly
regular decomposition into two Gewirtz graphs (SRG(56, 10, 0, 2)) [7].

Let A be the rank 3 scheme afforded by Γ. We construct a regular weight on A with
values in U2, making use of the decomposition. Let X1 and X2 be the two sets of 56
vertices. Define ω(x, y) for x 6= y to be −1 when x and y are in the same half of this
partition, and +1 otherwise. Note that ω restricted to either Gewirtz graph is a trivial
weight with matrix 2I − J .
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Figure 3: Strongly regular decomposition of SRG(112, 30, 2, 10).

In Figure 3, a solid line indicates adjacency in Γ, a dotted line non-adjacency. This
weighted SRG has minimal closure, since the Aαi form a rank 5 scheme, in fact a strongly
regular design or SRD ([13]). Since ω(x, y) is determined by the parity of {x, y}∩X1, the
four non-trivial relations are given by the four combinations of attributes: adjacency/non-
adjacency, and this parity. There are many related configurations. For example, another
copy of the Gewirtz graph may be adjoined to construct an example of triality ([15]). These
112 vertices form the first subconstituent of the McLaughlin graph; the second subcon-
stituent also admits a strongly regular decomposition ([3]).

Some interesting properties of this example:

1. Minimal closure is rare (see [21]).

2. The SRD is cometric, but not metric, which is also rare.

3. The covering configuration C is also cometric, but not metric, having rank 6 on 224
points. This example arises as the Q-bipartite double of McL1 (see [18]).

The Gewirtz graph admits a non-trivial regular weight with values in U4, constructed
via a monomial representation of 2.L3(4) ([20]). The covering configuration is neither
metric nor cometric, has rank 12 on 224 vertices, and contains the doubled Gewirtz graph
(DRG[10, 9, 8, 2, 1; 1, 2, 8, 9, 10]) as a quotient.
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4.1 Intersection matrices

Lemma 4.2. The intersection matrices of C have the form Mjτ =
∑
ν∈Ut

Mν
j ⊗ Zτν where[

Mν
j

]
ik

:= βkij(ν).

Proof. We may assume the relations Ciσ are ordered lexicographically, that is first by i and
then by σ ∈ {1, ζ, . . . , ζt−1} so that the intersection matrix Mjτ has (i, k) block given by(
pkστνiσ,jτ

)
σ,στν

. By equation (3.6) this block has the value βkij(ν) in position (σ, στν) which

means that it has the form
∑
ν β

k
ij(ν)Zτν . Hence Mjτ is the required sum of Kronecker

products.

Lemma 4.3. Let ω be a regular weight on the cc A, and let ω̃ be an equivalent weight
obtained by switching ω by a factor of τ = ζl at vertex x. Further let C = (Y, {Ciσ}) and
C̃ = (Y, {C̃iσ}) be the covering configurations induced by ω and ω̃ respectively. Then C̃
is obtained from C by permuting {xi} according to the permutation (1, 2, . . . , t)l resulting
from multiplication by τ on U .

Proof. Suppose ω(x, y) = α. For some i and j, (x1, yj) ∈ Ci1 of C, thus α = ζj−1.
Now, ω̃(x, y) = τα by assumption, so we have (x1−l, yj) ∈ C̃i1. But this implies that C̃ is
obtained from C by the permutation x 7→ x1−l, which corresponds to multiplication by τ
on U .

4.2 Special cases

(i) If ω has minimal closure, C is a fusion of a tensor product of two CCs.

(ii) If ω is trivial in the sense that Aαi = 0 for all but one value of α, ω has minimal
closure, and C = Aω ⊗ Z.

(iii) If A has rank 2 (ω is regular on Kn), C is a t-fold cover of Kn. It is not necessarily
distance regular. This case encompasses the regular two-graphs (t = 2), and the
regular 3-graphs (t = 3) of Higman [9] and Kalmanovich [16].

(iv) If t = 2, A is a (symmetric) scheme, and Aω has minimal closure (say B, where
B = (X, {Bi})), then the covering configuration is isomorphic to the extended Q-
bipartite double of B, when it exists, if the rank of B is odd ([18, 3.1]). Existence
requires B to be cometric with an additional condition on the Krein parameters. For
even rank, the covering configuration has a fusion (merging just two classes) that
is isomorphic to the extended Q-bipartite double, provided that there is exactly one
class of A on which ω is constant. Note that a minimal closure of a weight with values
in U2 has even rank only when the weight is constant on an odd number of classes of
A. The isomorphism is M ⊗N 7→ N ⊗M on the Ciσ of the cover configuration.

4.2.1 Necessary conditions for a covering configuration

In the case of commutative CCs we extend [16, Prop. 5.4] in a natural way, as follows.
Let C = (X, {Ri}) be a commutative CC of rank tr such that the first t intersection

matrices have the form Mj = Ir ⊗ Zζj , for 0 ≤ j < t, and let U = 〈ζ〉 the group of roots
of unity of order t. Index the relations according to the r blocks of size t, so that

Ci,ζk = Rit+k
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and suppose that for any i, j, k and ν:

pkστνiσ,jτ = pkνi1,j1

for all σ and τ in U . We intend to show that under these conditions, C must arise as the
covering configuration of a regular weight on a quotient of C.

Lemma 4.4. If j < t and pkij 6= 0, then k = i+ j (mod t); in particular, i and k lie in the
same block of Mj .

Proof. This follows from Mj = I ⊗ Zζj .

Observe that E := ∪t−1j=0Rj is a parabolic in the sense of [10]. Indeed, M0 = Irt
implies that R0 is the identity relation of C. Further, E is symmetric, since (x, y) ∈ Ri for
i < t implies that p0i∗i 6= 0, so i∗ is in the same block of Mi as 0. That is, (y, x) ∈ E.
Given (x, y) ∈ Ri and (y, z) ∈ Rj with 0 ≤ i, j < t, we see that (x, z) ∈ Rk for some
k < t, because k must lie in the same block of Mj as i, since all non-diagonal blocks are
zero. Hence, E is a transitive relation.

As a parabolic, E induces an equivalence relation on the indices: If there exist x, x′,
y, y′ ∈ X such that (x, x′) ∈ E, (y, y′) ∈ E, (x, y) ∈ Ri and (x′, y′) ∈ Rj , then
i ∼ j. Write [i] for the equivalence class of i. In addition, the parabolic affords a quotient
(homogeneous) configuration A := (X, {R[i]}) with an associated partition of the vertex
set X into fibres of size t. The fibre containing x is

[x] = {y | (x, y) ∈ E}.

We will henceforth suppress the bracket notation for fibres, writing x = {x1, x2, . . . xt}.
For j ∈ [0], Lemma 4.4 implies that pkkj = 0 for j 6= 0. But then Rk restricted to x× y

has valency at most 1. We conclude that the number of relations occurring between any
two fibres is t. We have: For k ∈ I and x ∈ X ,

|[k]| = |x| = t.

Denoting the graph of Rj by Γj , we have proved the following:

Lemma 4.5. For all j 6∈ [0], Γj is a t-fold cover of Γ[j].

Corollary 4.6. The natural partition of I according to blocks of Mj , for 0 ≤ j < t is the
same as that determined by the equivalence classes of the parabolic. That is,

[mt] = {mt,mt+ 1, . . . ,mt+ t− 1}.

Proof. Suppose j ∈ [i] so that there exist x1, x2, y1, y2 ∈ X with (x1, y1) ∈ Ri and
(x2, y2) ∈ Rj . Then, by the discussion above, (x1, y3) ∈ Rj for some y3 ∈ y and
therefore pjik 6= 0 for some k < t.

But then j = i+ k (mod t) by Lemma 4.4.

Recall thatC0,ζk = Rk for k < t,C0,σ has intersection matrix Ir⊗Zσ , andCm,1 = Rmt
for 0 ≤ m < r. Fix a fibre a (from here on), and order it so that (ai, ai+1) ∈ C0ζ , for each
i, with addition modulo t. This ensures that the perfect matching induced on a corresponds
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to the permutation (1, 2, . . . , t) on indices, which in turn corresponds to the permutation of
U induced by multiplication by ζ.

For each x ∈ X , (a, x) ∈ R[mt] for some m. Order x so that (aj , xj) ∈ Cm,1. In
what follows, we mix the notations regarding indexation of the relations of C. Where two
indices are given, we refer to Ci,σ as above; where one index is given we refer to the
original numbering of the relations.

Lemma 4.7. With notation as above, (xi, xi+1) ∈ C0,ζ for all x ∈ X .

Proof. For some σ, (xi, xi+1) ∈ C0,σ; (ai, xi+1) ∈ Rl for some l, and (ai, xi) ∈ Rm1 for
some m. Note that l ∈ [m]. Since ai, ai+1, and xi+1 form a triangle of type (0ζ,m1, l),
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Figure 4: Triangles (ai, ai+1, xi+1) and (ai, xi, xi+1).

we see that pl0ζ,m1 6= 0. Since C is commutative, Rl = Cmζ by Lemma 4.4. Now observe
that ai, xi, and xi+1 form a triangle of type (m1, 0σ,mζ), and therefore σ = ζ.

Next, following [16] we show that all matchings are cyclic.

Lemma 4.8. With notation as above, all matchings between fibres of C are cyclic.

Proof. Suppose that (xi, yj) ∈ Rk and (xi+1, yl) ∈ Rk. We must show that l = j + 1.
The triangle (xi, xi+1, yj) has type (1,m, k) for some m, indicating that pk1m 6= 0. As
in the previous lemma, this implies that k = m + 1. On the other hand, the triangle
(xi+1, yl−1, yl) has type (b, 1, k) for some b, hence k = b + 1. But then m = b, and by
Lemma 4.5, yl−1 = yj as desired.

Corollary 4.9. For all x ∈ X , (xi, xi+k) ∈ Rk, thus Rk induces on each fibre the perfect
matching corresponding to the kth power of the cycle (1, 2, . . . , t).

Proof. The result follows by Lemma 4.7 and induction (on k) applied to the triangles
(xi−k, xi, xi+1) .

Lemma 4.10. For x ∈ X , (ai, xi+k) ∈ Rmt+k for 0 ≤ k < t.

Proof. The case k = 0 holds by choice of ordering of x. Induction applied to the triangles
(ai, xi+k−1, xi+k) gives the desired result.

We now define a weight on A by means ofCi1. Let x, y ∈ X and suppose (x, y) ∈ R[j].
Then Cj,1 provides a cyclic matching between x and y corresponding to, say, α ∈ U . Set
ω(x, y) := α. Observe that ω(a, x) = 1 for all x.

The next lemma shows how to determine the weight of an edge in Γ[i] from any edge
in Γi.
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Lemma 4.11. If (xi, yj) ∈ Ckσ , then ω(x, y) = σζj−i.

Proof. Consider (xi, yj) ∈ Ck,σ . Let l be such that (xi, yl) ∈ Ck1 and note that the
triangle (xi, yl, yj) has type (k1, 0ζj−l, kσ). By Proposition 4.6, σ = ζj−l. This implies
that (xi, yl+m) ∈ Ck,ζm . We conclude that the matching between x and y in Ck,σ is ασ,
where α = ω(x, y).

We now prove the second main result which is the extension of [16, Prop. 5.4].

Theorem 4.12. Let C = (X, {Ri}) be a commutative CC of rank rt with the first t inter-
section matrices given by

Mj = Ir ⊗ Zζj 0 ≤ j < t,

where U = Ut = 〈ζ〉 is the group of roots of unity of order t. Label the relations according
to the blocking of Mj:

Ci,ζk := Rit+k 0 ≤ i < r, 0 ≤ k < t

and suppose that the CC parameters satisfy, for any i, j, k and ν:

pkστνiσ,jτ = pkνi1,j1

for all σ and τ in U . Then C arises as the covering configuration (in the sense of Theo-
rem 3.1) from a regular weight ω on the quotient scheme A = C/E.

Proof. From the discussion and lemmas above, what remains to be shown is that ω is
regular on the quotient configuration C = (X, {R[i]}). Let (x, z) ∈ R[k]. We consider
all y such that (x, y, z) has type (i, j, k) and weight ν. Let l be such that (x1, zl) ∈ Ckν .
If (x, y) ∈ R[i] and (y, z) ∈ R[j], then (x1, ym) ∈ Ci1 for some m, and this determines
(exactly one) τ with (ym, zl) ∈ Cjτ . By Lemma 4.11,

δω(x, y, z) = ω(x, y)ω(y, z)ω(x, z)

= ζm−1τζl−mνζ1−l

= τν

from which we see that triangles of weight ν occur exactly when τ = 1. These triangles
are counted by the parameter pkνi1,j1 which is independent of the choice of x1 and zl.

Note that in the proof above we are counting distinct y, and that for each y there
is exactly one ym as indicated. Thus we may use Ci1 without loss of generality, since
(x1, ym) ∈ Ciσ would yield the same result. In fact triangles of type (iσ, jτ, kν) will have
weight ν exactly when στ = 1, which is expected as in that case pkνiσ,jτ = pkνi1,j1

5 Examples
5.1 A rank 12 scheme on 18 points

The covering configuration of Example 2.6 has rank 12 (= 4 · 3) on 18 (= 6 · 3) points. It
is isomorphic to as18[88] on Hanaki and Izumi’s list ([8]).
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5.2 A family of CCs from regular weights on H(n, 2) with values in U4

This construction is due to Ada Chan (personal communication). We define a regular
weight on the Hamming Scheme H(n, 2) with values in U4 with generator i. Let t be

an indeterminate, and K the 2 by 2 matrix
[

0 1
−1 0

]
. Form (I + tK)⊗n, a polynomial

in t with coefficients in the ring of matrices M2,2(R)⊗n ' M2n,2n(R). Now let Aωk be
the coefficient of tk, scaled by a factor of ik ∈ U4. We claim this is a regular weight on
the Hamming scheme. Indeed, replacing i with 1 and K with J − I in this process yields
the adjacency matrices of the Hamming scheme, with the standard P-polynomial ordering.
Noting that K2 = −I it is straight-forward to see that Span(Aωk ) is coherent. For regular-
ity, we note that pkij is nonzero only when i + j + k is even, and this implies βkij(±i) = 0
for all i, j, k. Proposition 1 of [21] applies, and we conclude that ω is regular.

The covering configuration induced by this weight is a rank 4(n + 1) CC on 2n+2

vertices. There is a fusion to regular 4-graph, which is easily seen: replace t by i, setting

ω̃ := (I + iK)⊗n,

then verify directly that ω̃2 = 2nω̃ thus ω̃ is the matrix of a regular 4-graph. The covering
configuration of ω̃ has rank 8 and is symmetric, but not necessarily distance regular.

For n = 2, the weight is given by:

Aω1 =


0 i i 0
−i 0 0 i
−i 0 0 i
0 −i −i 0

 and Aω2 =


0 0 0 1
0 0 −1 0
0 −1 0 0
1 0 0 0

 .
The rank 12 covering configuration has color matrix (

∑
iAi) below.

0 1 2 3 7 4 5 6 7 4 5 6 8 9 10 11
3 0 1 2 6 7 4 5 6 7 4 5 11 8 9 10
2 3 0 1 5 6 7 4 5 6 7 4 10 11 8 9
1 2 3 0 4 5 6 7 4 5 6 7 9 10 11 8
5 6 7 4 0 1 2 3 10 11 8 9 7 4 5 6
4 5 6 7 3 0 1 2 9 10 11 8 6 7 4 5
7 4 5 6 2 3 0 1 8 9 10 11 5 6 7 4
6 7 4 5 1 2 3 0 11 8 9 10 4 5 6 7
5 6 7 4 10 11 8 9 0 1 2 3 7 4 5 6
4 5 6 7 9 10 11 8 3 0 1 2 6 7 4 5
7 4 5 6 8 9 10 11 2 3 0 1 5 6 7 4
6 7 4 5 11 8 9 10 1 2 3 0 4 5 6 7
8 9 10 11 5 6 7 4 5 6 7 4 0 1 2 3
11 8 9 10 4 5 6 7 4 5 6 7 3 0 1 2
10 11 8 9 7 4 5 6 7 4 5 6 2 3 0 1
9 10 11 8 6 7 4 5 6 7 4 5 1 2 3 0


The regular 4-graph ω̃ := I +Aω1 +Aω2 satisfies ω̃2 = 4I . The covering configuration

of ω̃ has rank 8 and may also be obtained through fusion of the rank 12 above.
In summary, this construction gives regular weights with values in U4 on the Hamming

Schemes H(n, 2). These have rank n+ 1 on 2n vertices. The covering configurations thus
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have rank 4(n+1) on 2n+2 vertices. These weights fuse to regular 4-graphs always, and the
covering configurations of those have rank 8. In examples constructed to date, the covering
configurations are not metric, nor are their symmetrizations, and they are not cometric.

5.3 CCs afforded by groups

A CC may have relations determined by the orbitals of a group G acting on a set X , in
which the centralizer algebra of the natural permutation representation is the coherent al-
gebra A. In this case, a regular weight may exist such that Aω is the centralizer algebra
of a monomial representation of G, induced from a linear representation of a point stabi-
lizer ([14]).

For example, the rank 3 scheme containing the Petersen graph is afforded by the action
of A5 on 2-sets from {1, 2, 3, 4, 5}. The stabilizer of {1, 2} is a group H ' S3, contain-
ing A := 〈3, 4, 5〉 as a subgroup of index 2. This index determines that the monomial
representation will afford a weight with values in U2. Defining the linear representation

φ : H → C2 by φ(g) =

{
1 g ∈ A,
−1 g 6∈ A,

the induced representation M := φ
∣∣G
H

is a monomial representation of G. The M(g) for
g ∈ G are signed permutation matrices. The centralizer algebra ofM ,Aω , defines a regular
weight on the Petersen graph.

This construction can be done in general when the point stabilizer H has a normal
subgroup A of index t, such that H/A ' Ct. The monomial representation induced may
or may not afford a nontrivial regular weight on the underlying CC.

In this example, the covering configuration C is a rank 6 scheme on 20 points, in fact
the unique (antipodal, non-bipartite) distance-regular graph DRG{3, 2, 1, 1, 1; 1, 1, 1, 2, 3},
that is the dodecahedron graph. (It is not the bipartite double of the Petersen graph, which
is DRG{3, 2, 2, 1, 1; 1, 1, 2, 2, 3}.)

We obtain a permutation representation from M , via

M(g) 7→M+(g)⊗ Z1 +M−(g)⊗ Z2

where M+, M−, Z1 and Z2 are defined as in Section 2. It is natural to ask whether C is
the centralizer algebra of this permutation representation. In fact, C is properly contained
in this centralizer algebra. It affords a CC with valencies 1, 1, 3, 3, 3, 3, 3, 3 which has a
fusion to C. The group affording C is A5 × C2, an extension of our group G by the cyclic
C2, the latter generated by the even permutation interchanging each x1 and x2. This is of
course the symmetry group of the dodecahedron and is not isomorphic to S5.
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Abstract

Cavenagh and Wanless recently proved that, for sufficiently large odd n, the number
of transversals in the Latin square formed from the addition table for integers modulo n is
greater than (3.246)n. We adapt their proof to show that for sufficiently large t the number
of additive permutations on [−t, t] is greater than (3.246)2t+1 and we go on to derive some
much improved lower bounds on the numbers of Skolem-type sequences. For example, it is
shown that for sufficiently large t ≡ 0 or 3 (mod 4), the number of split Skolem sequences
of order n = 7t+3 is greater than (3.246)6t+3. This compares with the previous best bound
of 2bn/3c.
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1 Introduction
This paper is concerned with counting additive permutations and Skolem-type sequences.
Additive permutations are related to certain kinds of transversals in Latin squares. A Latin
square of order n may be envisaged as an n × n array having n distinct entries, each of
which appears once in any one row and once in any one column. We adopt a slightly wider
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than usual definition of a transversal in an n × n array (not necessarily a Latin square) as
a set of n (row, column, entry) triples that cover every row, every column and n distinct
entries from the array. Consequently, a transversal in a Latin square will necessarily cover
every entry precisely once.

In a recent paper, Cavenagh and Wanless [3] proved that, for all sufficiently large odd
n, the number of transversals in the Latin square formed from the addition table for integers
modulo n is greater than (3.246)n. This result was a substantial improvement on previous
results in this area, although Vardi [10] conjectured that this number exceeds cnn! for some
constant c ∈ (0, 1). A proof of this conjecture is claimed in the arXiv paper [6]. However,
it is important to note that not all transversals are suitable for our purposes.

For integers a and b with a < b we use the notation [a, b] to denote the set of integers i
such that a ≤ i ≤ b. An additive permutation π on [−t, t] is a permutation of these integers
such that {i + π(i) : i ∈ [−t, t]} is also a permutation on the same set of integers. This
definition of an additive permutation is the one employed by Abram [1] and others in con-
nection with Skolem sequences, but the reader is cautioned that it differs from that used in
[6] where pointwise addition of permutations on [1, n] is taken modulo n. An examination
of the proof given in [3] shows that it is possible to adapt the proof to show that the num-
ber of additive permutations on [−t, t] is greater than (3.246)2t+1 for all sufficiently large
t, and this is done in Theorem 2.1 below. There are strong connections between additive
permutations and Skolem-type sequences. We investigate some of these connections and
obtain much improved lower bounds on the numbers of some Skolem-type sequences.

A pure Skolem sequence, sometimes simply called a Skolem sequence, of order n is a
sequence (s1, s2, . . . , s2n) of 2n integers satisfying the following conditions.

(C1) For each k ∈ {1, 2, . . . , n} there are precisely two elements of the sequence, say si
and sj , such that si = sj = k.

(C2) If si = sj = k and i < j then j − i = k.

For example, (4, 1, 1, 5, 4, 2, 3, 2, 5, 3) is a pure Skolem sequence of order 5. It is well
known that a pure Skolem sequence of order n exists if and only if n ≡ 0 or 1 (mod 4).
For this and other existence results mentioned below see, for example, [4, 5].

An extended Skolem sequence of order n is a sequence (s1, s2, . . . , s2n+1) of 2n + 1
integers satisfying (C1) and (C2) above and such that precisely one element of the sequence
is zero. An extended Skolem sequence of order n exists for every positive integer n. If the
zero element of an extended Skolem sequence of order n appears in the 2n-th position,
i.e. s2n = 0, then the sequence is called a hooked Skolem sequence. A hooked Skolem
sequence of order n exists if and only if n ≡ 2 or 3 (mod 4). If the zero element of an
extended Skolem sequence of order n appears in the (n + 1)-th position, i.e. sn+1 = 0,
then the sequence is called a split Skolem sequence or a Rosa sequence. A split Skolem
sequence of order n exists if and only if n ≡ 0 or 3 (mod 4).

A split-hooked Skolem sequence (also known as a hooked Rosa sequence) of order n is
a sequence (s1, s2, . . . , s2n+2) of 2n+ 2 integers satisfying (C1) and (C2) above and such
that sn+1 = s2n+1 = 0. A split-hooked Skolem sequence of order n exists if and only if
n ≡ 1 or 2 (mod 4) and n 6= 1.

The various types of Skolem sequence described above may be used to construct so-
lutions to Heffter’s first and second difference problems. These, in turn, may be used to
construct cyclic Steiner triple systems. We will refer to the sequences just described, and
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to some near relatives, somewhat loosely as Skolem-type sequences. It was shown in [1, 2]
that for many of these Skolem-type sequences (in particular, pure, hooked, split and split-
hooked) the number of them is essentially bounded below by 2b

n
3 c, where n is the order of

the sequence.

2 Additive permutations
Define the Latin square An of odd order n = 2t+ 1 to have its rows and columns indexed
by the integers in [−t, t] and the (i, j) entry k ∈ [−t, t] given by k ≡ i+ j (mod n). The
array An gives the addition table on Zn. A Z-transversal T in An is a transversal in which
every (row, column, entry) triple (i, j, k) ∈ T has k = i + j in Z, so that no triples of a
Z-transversal have i + j < −t or i + j > t. Not all transversals in An are Z-transversals,
for example the transversal formed by the leading diagonal in An is not a Z-transversal.
We will only count Z-transversals: in effect the (i, j) cells in An where i + j < −t or
i + j > t are ignored. The entries in these cells are therefore irrelevant to our discussions
and it will sometimes be helpful to take i+ j as the entry, rather than i+ j reduced modulo
n. This has the advantage that the “ignored” cells are easily identified, particularly when
considering subarrays of An – such cells are then precisely those with entries outside the
range [−t, t].

Figure 1 shows the array A19 with the “ignored” entries greyed-out, and with a Z-
transversal having its entries marked in boxes. For the present, disregard the highlighting
of the subarrays.

If the (row, column, entry) triples of a Z-transversal in An are listed as a 3 × n array
T ∗ with row numbers of An forming the first row of T ∗, column numbers the second, and
entries the third, then each row of this array contains the integers [−t, t], and the entries
in the third row are the sums of the corresponding entries in the other two rows. Taking
the first row of T ∗ as [−t, t], the second row as a permutation π on [−t, t], and the third
row as the vector sum of the first two rows, then π is an additive permutation on [−t, t].
Conversely, if π is an additive permutation on [−t, t] then the (row, column, entry) triples
(i, π(i), i + π(i)) for i ∈ [−t, t] form a Z-transversal in An. If the entries in the third row
of such a 3 × n array T ∗ are multiplied by (−1), then each column of the resulting array
sums to zero, and the new array is called a zero-sum array. Thus, there is an equivalence
between Z-transversals, additive permutations, and zero-sum arrays. Table 1 (taken from
[3]) gives the number of these, here denoted by zn, for n = 2t + 1 ≤ 23. These numbers
form the sequence A002047 in Sloane’s encyclopaedia [9] and have been independently
checked by ourselves using our own computer program. The table also gives a rounded
down value for (zn)

1
n which will be used subsequently. We remark that z2t+1 is also the

number of extremal Langford sequences with defect t + 1 (i.e. starting with t + 1) – see
[1, 4] for definitions.

Theorem 2.1. Suppose that b and n are odd and that n ≥ 3b ≥ 9. Then zn ≥ (zb)
2bn−b

2b c.

Proof. Our proof is a re-working of that of Cavenagh and Wanless [3], ensuring that for
general b and n the subarrays R and S (defined below) have appropriate (sub-)transversals
and that the transversals constructed in An are indeed Z-transversals. We take b = 2a+ 1
(so that a ≥ 1) and n = 2t+ 1. Put k = bn−b2b c = b t−ab c, s = t− a− bk, and r = s+ b.
Then 0 ≤ s < b, b ≤ r < 2b, and one of r, s is odd and the other is even.

Next define the subarray M(i,j),c of An to be the c× c block whose top left entry is in
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−9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

−9 1 2 3 4 5 6 7 8 9 -9 −8 −7 −6 −5 −4 −3 −2 −1 0

−8 2 3 4 5 6 7 8 9 −9 −8 -7 −6 −5 −4 −3 −2 −1 0 1

−7 3 4 5 6 7 8 9 −9 -8 −7 −6 −5 −4 −3 −2 −1 0 1 2

−6 4 5 6 7 8 9 −9 −8 −7 −6 −5 −4 −3 -2 −1 0 1 2 3

−5 5 6 7 8 9 −9 −8 −7 −6 −5 −4 -3 −2 −1 0 1 2 3 4

−4 6 7 8 9 −9 −8 −7 −6 −5 −4 −3 −2 -1 0 1 2 3 4 5

−3 7 8 9 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6

−2 8 9 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

−1 9 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8

0 −9 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9

1 −8 −7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 −9

2 −7 -6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 −9 −8

3 −6 −5 -4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 −9 −8 −7

4 -5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 −9 −8 −7 −6

5 −4 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 −9 −8 −7 −6 −5

6 −3 −2 −1 0 1 2 3 4 5 6 7 8 9 −9 −8 −7 −6 −5 −4

7 −2 −1 0 1 2 3 4 5 6 7 8 9 −9 −8 −7 −6 −5 −4 −3

8 −1 0 1 2 3 4 5 6 7 8 9 −9 −8 −7 −6 −5 −4 −3 −2

9 0 1 2 3 4 5 6 7 8 9 −9 −8 −7 −6 −5 −4 −3 −2 −1

Figure 1: The Latin square A19.

Table 1: The number of Z-transversals in An.

n zn (zn)
1
n >

3 2 1.259
5 6 1.430
7 28 1.609
9 244 1.841

11 2 544 2.039
13 35 600 2.239
15 659 632 2.443
17 15 106 128 2.644
19 425 802 176 2.845
21 14 409 526 080 3.046
23 577 386 122 880 3.246
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position (i, j) of the array An. For example, if n = 19 (see Figure 1) then

M(−6,2),3 =

−4 −3 −2
−3 −2 −1
−2 −1 0

 .

As previously mentioned, it is convenient to take the entries of subarrays unreduced
modulo n. Allowing this, M(i,j),c has entries from i+ j to i+ j+ 2(c− 1) and, if c is odd,
there is a central entry i+ j + c− 1. We use the following subarrays:

Type 1: Di = M(−t+ib,−a+ib),b for i = 0, 1, . . . , (k − 1),

Type 2: Ei = M(−t+r+(k+i)b,−t+ib),b for i = 0, 1, . . . , (k − 1),

Type 3: R = M(−t+kb,−a+kb),r and

Type 4: S = M(t−s+1,−a−s),s.

In Figure 1, n = 19 and b = 3, so that t = 9, a = 1, k = 2, s = 2 and r = 5. The subarrays
of types 1 and 2 are lightly shaded and the subarrays R and S are shaded more heavily.

Altogether there are 2k+2 subarrays of the four types. No two of these have a common
row and the total number of rows covered is 2bk+ r+s = n, so each row of An is covered
by precisely one of these subarrays. Similarly, each column of An is covered by precisely
one of these subarrays. Consequently we may attempt to construct Z-transversals in An

from transversals in the subarrays.
The type 1 subarray Di has a central entry 2ib− t+ a. If this value is subtracted from

every entry in Di, the resulting array is a copy of Ab. Since Ab has zb Z-transversals, each
Di has zb transversals that are symmetric about its central entry, that is to say transversals
each covering the entries from 2ib − t to 2ib − t + (b − 1) inclusive. Note that these
transversals avoid “ignored” cells of An. Similarly, the type 2 subarray Ei has zb transver-
sals symmetric about its central entry 2ib− t+ 3a+ 1, and each of these covers the entries
from 2ib− t+ b to 2ib− t+ 2b− 1 inclusive. Collectively the type 1 and type 2 subarrays
have (zb)

2k transversals covering the entries from −t to t − r − s inclusive. All of these
are partial Z-transversals of An.

To complete the proof for all b ≥ 3 and n ≥ 3b we must show that the remaining
subarrays R and S have appropriate transversals (i.e. avoiding “ignored” cells of An) that
cover the entry values from t − r − s + 1 to t inclusive. It will then follow that An has at
least (zb)

2k = (zb)
2bn−b

2b c Z-transversals.
The subarray R has entries ranging from t − r − s − a + 1 to t + a inclusive, and so

R always contains some “ignored” cells of An, namely those with entries exceeding t. The
subarray S has entries ranging from t− r− s+ 2 + a to t− a− 1 inclusive, so S does not
contain any “ignored” cells of An. If we subtract t − s − a from all the entries in R and
S we obtain equivalent arrays R′ and S′, where R′ has entries ranging from −(s + 2a) to
s+2a, while S′ has entries ranging from−(s−1) to s−1, and we are seeking transversals
in these arrays that cover the entry values from−(s+a) to s+a inclusive. Cells in R′ that
contain entries greater than s + a correspond to the “ignored” cells of R. Our proof that
such transversals always exist falls into a number of cases, the details of which are lengthy,
and so are postponed until Section 4.

Corollary 2.2. If n is odd and sufficiently large, then zn > (3.246)n.
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Proof. Theorem 2.1 gives zn ≥ (zb)
2bn−b

2b c ≥ (zb)
n
b−3 for b odd and all sufficiently large

n. From Table 1 we have (z23)
1
23 > 3.246, so taking b = 23 we obtain zn > (3.246)n for

all sufficiently large n.

Putting the corollary into words, the number of additive permutations on [−t, t] is
greater than (3.246)2t+1 for all sufficiently large t.

3 Skolem-type sequences
A connection between additive permutations and Skolem-type sequences is formed by so-
called (m, 3, c)-systems. A set D = {D1, D2, . . . , Dm}, where each Di is a triple of
positive integers (ai, bi, ai + bi) with ai < bi and

⋃m
i=1Di = {c, c+ 1, . . . , c+ 3m− 1}

is called an (m, 3, c)-system. As remarked in [1], such a system exists if and only if

(i) m ≥ 2c− 1, and

(ii) m ≡ 0 or 1 (mod 4) if c is odd, or m ≡ 0 or 3 (mod 4) if c is even.

Given an (m, 3, c)-system D = {D1, D2, . . . , Dm}, where Di = (ai, bi, ai + bi), and
putting r = c + 3m − 1, a (Skolem-type) sequence (x−r, x−r+1, . . . , xr−1, xr) may be
constructed by putting x−(ai+bi) = ai, x−bi = ai, x−ai

= ai +bi, xai
= bi, xbi = ai +bi,

xai+bi = bi for i = 1, 2, . . . ,m, and xj = 0 for −c < j < c. For example, if c = 2 and
m = 3, and if D = {D1, D2, D3} where D1 = (2, 6, 8), D2 = (3, 7, 10), D3 = (4, 5, 9)
then the constructed sequence is

(3, 4, 2, 3, 2, 4, 9, 10, 8, 0, 0, 0, 6, 7, 5, 9, 8, 10, 6, 5, 7).

Observe that in such a sequence, for each k ∈ {c, c+ 1, . . . , r} the two positions occupied
by k are precisely k apart. Further observe that, independently for each i ∈ {1, 2, . . . ,m},
we may replace xj for j ∈ {−ai−bi,−bi,−ai, ai, bi, ai+bi} by x′j where x′−(ai+bi)

= bi,
x′−bi = ai + bi, x

′
−ai

= bi, x
′
ai

= ai + bi, x
′
bi

= ai, x
′
ai+bi

= ai. Thus we may
obtain 2m distinct sequences of length 2r + 1 each of which has the property that for each
k ∈ {c, c + 1, . . . , r}, the two positions occupied by k are precisely k apart. Each such
sequence has zeros in the central 2c− 1 positions.

If π is an additive permutation on [−t, t] then a (2t + 1, 3, t + 1)-system is formed by
the set of triples {Di : i ∈ [−t, t]} where

Di = (i+ 2t+ 1, π(i) + 4t+ 2, i+ π(i) + 6t+ 3).

Note that the first entries in these triples cover the interval [t+ 1, 3t+ 1], the second entries
cover [3t + 2, 5t + 2], and the third entries cover [5t + 3, 7t + 3]. If π1 and π2 are two
different additive permutations on [−t, t], then the two resulting (2t+ 1, 3, t+ 1)-systems
contain different triples. Consequently the number of different (2t+ 1, 3, t+ 1)-systems is
bounded below by z2t+1, and hence by (3.246)2t+1 for all sufficiently large t. Combining
this with the previous observation that each such sequence gives rise to 22t+1 Skolem-type
sequences, we obtain the following result.

Theorem 3.1. For all sufficiently large t, there are more than (6.492)2t+1 Skolem-type
sequences of length 14t+ 7 having the following properties:

(a) there are zeros in the central 2t+ 1 positions, and
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(b) for k ∈ {t + 1, t + 2, . . . , 7t + 3}, the two positions occupied by k are precisely k
apart.

If the central 2t+ 1 zero entries in such a Skolem-type sequence are replaced by a split
Skolem sequence of order t (which exists for t ≡ 0 or 3 (mod 4)) then a split Skolem
sequence of order 7t+ 3 is obtained. Hence we have the corollary:

Corollary 3.2. For sufficiently large t ≡ 0 or 3 (mod 4), there are more than (6.492)2t+1

split Skolem sequences of order 7t+ 3.

In fact we can achieve slightly better than this because the number of split Skolem
sequences of order t is at least 2b

t
3 c for all t ≡ 0 or 3 (mod 4) [1, 2], so we have at least

that number of choices for replacing the central zeros. The bound (6.492)2t+1 > 25.3973t

is (for large t) substantially better than the previous best bound of 2b
7t+3

3 c.
Given a split Skolem sequence of order n, we can form a pure Skolem sequence of

order n + 1 by replacing the central zero with n + 1 and placing a further entry n + 1 at
either the start or the end of the sequence. Hence we obtain:

Corollary 3.3. For sufficiently large t ≡ 0 or 3 (mod 4), there are more than (6.492)2t+1

pure Skolem sequences of order 7t+ 4.

In the next two corollaries, the lower bound of (6.492)2t+1 is extended to hooked and
split-hooked Skolem sequences of orders 7t + 4 and 7t + 5 respectively. In each case
the basic approach is as follows. For given t, choose a small positive integer c such that
t − c ≡ 2 or 11 (mod 12) if c is odd, or t − c ≡ 8 or 11 (mod 12) if c is even. Put
m = (t − c + 1)/3 and assume that t is large enough to ensure that m ≥ 2c − 1 (i.e.
t ≥ 7c − 4). Then there exists an (m, 3, c)-system from which a Skolem-type sequence
T may be constructed that has length 2t + 1, has zeros in the central 2c − 1 positions
and, for each k ∈ {c, c + 1, . . . , t}, the two positions occupied by k are precisely k apart.
The sequence T is used to replace the central 2t + 1 zeros in each sequence S of length
14t + 7 given by Theorem 3.1. We denote the resulting sequence as T  S (T into
S), and this sequence has zeros in its central 2c − 1 positions. These are then replaced
by a sequence Q of length 2c − 1 to form Q  (T  S), and a short sequence R
of further entries is appended at the right-hand end of this sequence to form a sequence
S′ = (Q  (T  S)) ∧ R (where ∧ denotes appending). By choosing c, Q and R
appropriately, it is possible to form hooked and split-hooked Skolem sequences S′.

To illustrate the procedure, we explain how to convert a Skolem-type sequence S of
length 147 of the form described in Theorem 3.1, to a hooked Skolem sequence S′ of order
74. Note that for k ∈ {11, 12, . . . , 73}, the two positions in S occupied by k are precisely
k apart, and that S has zeros in the central 21 positions. Next take a (3, 3, 2)-system (for
example, the one previously described) and from it form a Skolem-type sequence T of
length 21 that has zeros in the central three positions and, for each k ∈ {2, 3, . . . , 10}, the
two positions in T occupied by k are precisely k apart. Replace the central 21 zeros of S
by the sequence T to form T  S. Then T  S has length 147, zeros in the central three
positions and, for each k ∈ {2, 3, . . . , 73}, the two positions occupied by k are precisely
k apart. Finally, replace the central three zeros in T  S by the sequence Q = (1, 1, 74),
and append the sequence R = (0, 74) to the right-hand end of Q  (T  S). The
resulting sequence S′ has length 149, has a zero in the penultimate position and, for each
k ∈ {1, , 2, . . . , 74}, the two positions occupied by k are precisely k apart. Hence S′ is a
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hooked Skolem sequence of order 74. Clearly different sequences S give rise to different
sequences S′.

We now return to the general cases. For given t it is obvious that different sequences S
will result in different sequences S′ = (Q  (T  S)) ∧ R. So, to extend the bound, it
suffices to specify c (and hence T ),Q andR, and to check the parity conditions for t−c. In
the next two corollaries to Theorem 3.1, we establish the bound by tabulating appropriate c,
Q and R. We leave the reader to check the parity conditions for t− c and that the sequence
S′ is of the required type.

Corollary 3.4. For sufficiently large t ≡ 1 or 2 (mod 4), there are more than (6.492)2t+1

hooked Skolem sequences of order 7t+ 4.

Proof. Table 2 covers the possible values of t modulo 12.

Table 2: Construction of hooked Skolem sequences.

t (mod 12) c Q R t ≥ 7c− 4

1, 10 2 (1, 1, 7t+ 4) (0, 7t+ 4) t ≥ 10

2, 5 3 (1, 1, 2, 7t+ 4, 2) (0, 7t+ 4) t ≥ 17

6, 9 7 (2, 4, 2, 5, 6, 4, 3, 7t+ 4, 5, 3, 6, 1, 1) (0, 7t+ 4) t ≥ 45

For each Skolem-type sequence S of the form described in Theorem 3.1, the resulting
sequence S′ = (Q (T  S)) ∧R is a hooked Skolem sequence of order 7t+ 4.

Corollary 3.5. For sufficiently large t ≡ 0 or 3 (mod 4), there are more than (6.492)2t+1

split-hooked Skolem sequences of order 7t+ 5.

Proof. Table 3 covers the possible values of t modulo 12.

Table 3: Construction of split-hooked Skolem sequences.

t (mod 12) c Q R t ≥ 7c− 4

0, 3 4 (1, 1, 7t+ 5, 3, 7t+ 4, 0, 3) (7t+ 5, 7t+ 4, 2, 0, 2) t ≥ 24

4, 7 5 (2, 3, 2, 4, 3, 7t+ 5, 0, (1, 1, 7t+ 5, 0, 7t+ 4) t ≥ 31

4, 7t+ 4)

8, 11 9 (4, 5, 6, 8, 4, 7, 5, 7t+ 5, 6, (7t+ 5, 7t+ 4, 2, 0, 2) t ≥ 59

7t+ 4, 0, 8, 7, 3, 1, 1, 3)

For each Skolem-type sequence S of the form described in Theorem 3.1, the resulting
sequence S′ = (Q (T  S))∧R is a split-hooked Skolem sequence of order 7t+5.

The bound obtained in each of the preceding four corollaries only applies to restricted
parts of the appropriate residue classes. We believe that it is possible to extend the bound
to all possible residue classes in each case. We do not give a proof of this because our
argument breaks into a considerable number of subcases. However, to support our con-
tention, we give one example for split Skolem sequences. Corollary 3.2 gives the bound
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(6.492)2t+1 when n = 7t + 3 and t ≡ 0 or 3 (mod 4), thereby dealing with n ≡ 3 or 24
(mod 28). The necessary and sufficient conditions on n for the existence of a split Skolem
sequence of order n may be written as n ≡ 0, 3, 4, 7, 8, 11, 12, 15, 16, 19, 20, 23, 24 or 27
(mod 28). For our example, we show how the bound may be extended to n ≡ 0 or 7
(mod 28).

Put n = 7t + 7 where t ≡ 0 or 3 (mod 4). Take S to be a Skolem-type sequence as
described in Theorem 3.1. Depending on the residue of t modulo 12, take c as in Table 4
and put m = (t− c+ 1)/3. For t ≥ 7c− 4, use an (m, 3, c)-system to construct a Skolem-
type sequence T of length 2t+ 1 having zeros in the central 2c− 1 positions and such that
for each k ∈ {c, c+ 1, . . . , t}, the two positions occupied by k are precisely k apart. Take
Q and R as specified in the table and form S′ = (Q  (T  S)) ∧ R. Then S′ is a split
Skolem sequence of length 14t + 15 (i.e. of order n = 7t + 7). Hence, for all sufficiently
large t, there are more than (6.492)2t+1 split Skolem sequences of order n = 7t+ 7 where
t ≡ 0 or 3 (mod 4), so that n ≡ 0 or 7 (mod 28).

Table 4: Further split Skolem sequences.

t (mod 12) c Q R t ≥ 7c− 4

4, 7 5 (4, 7t+ 7, 3, 7t+ 6, 4, (7t+ 7, 7t+ 6, 7t+ 4, t ≥ 31

3, 7t+ 4, 7t+ 5, 0) 2, 7t+ 5, 2, 1, 1)

8, 11 9 (1, 1, 3, 8, 4, 3, 7t+ 7, (5, 7t+ 7, 2, 7t+ 6, 2, t ≥ 59

7, 4, 7t+ 6, 6, 8, 0, 5, 7t+ 5, 7t+ 4)

7t+ 5, 7, 7t+ 4, 6)

0, 3 16 (11, 8, 4, 7, 13, 9, 4, 14, 10, (5, 7t+ 7, 2, 7t+ 6, 2, t ≥ 108

8, 7, 11, 12, 7t+ 7, 9, 15, 5, 7t+ 5, 7t+ 4)

7t+ 6, 13, 10, 0, 7t+ 5, 14,

7t+ 4, 6, 12, 3, 1, 1, 3, 6, 15)

There are methods other than the one described above for generating Skolem-type se-
quences from additive permutations. For certain orders the construction technique given
below can give improved bounds.

Suppose that s > ` > 0 and that S is a Skolem-type sequence of length 2s+ 1 having
zeros in the central 2`−1 positions, and such that for k ∈ {`, `+1, . . . , s} the two positions
where k appears in S are precisely k apart. If ` = 1 then S is a split Skolem sequence of
order s (and such a sequence exists if s ≡ 0 or 3 (mod 4)), otherwise the earlier discussion
following Corollary 3.3 shows that such a sequence exists when s− ` ≡ 2 or 11 (mod 12)
if ` is odd, or s − ` ≡ 8 or 11 (mod 12) if ` is even, provided that s ≥ 7` − 4. Let S be
indexed by [−s, s].

Construction 3.6.

• For j = `, ` + 1, . . . , s, denote by aj , bj (with aj < bj) the positions in S occupied
by the entry j, so that bj − aj = j.

• For each j = `, `+ 1, . . . , s, let πj be an additive permutation on [−t, t], and denote
by Π the ordered (s− `+ 1)-tuple (π`, π`+1, . . . , πs).
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• Form a new sequence SΠ indexed by [−((2t + 1)s + t), (2t + 1)s + t] by placing
the entry (2t + 1)j + πj(i) at positions (2t + 1)aj + i and (2t + 1)bj + i + πj(i)
for j = `, ` + 1, . . . , s and i ∈ [−t, t]. For each j these entries cover the interval
[(2t+1)j−t, (2t+1)j+t], and so they collectively cover [(2t+1)`−t, (2t+1)s+t].
These entries cover the positions

[−((2t+ 1)s+ t), (2t+ 1)s+ t] \ [−(2t+ 1)`+ t+ 1, (2t+ 1)`− t− 1].

Place zeros in the vacant positions. Then SΠ is a Skolem-type sequence of length
2(2st + s + t) + 1 having zeros in the central 2((2t + 1)` − t) − 1 positions, and
such that for k ∈ [(2t+ 1)`− t, (2t+ 1)s+ t] the two positions where k appears in
SΠ are precisely k apart.

• Now suppose that t ≡ 0 or 3 (mod 4) and let P be a split Skolem sequence of order
t, indexed by [−t, t]. Apply the previous three steps to P using additive permutations
σj on [−(` − 1), ` − 1] for j = 1, 2, . . . , t to form a new sequence PΣ, where
Σ is the ordered t-tuple (σ1, σ2, . . . , σt). Then PΣ is a Skolem-type sequence of
length 2(2t(` − 1) + t + (` − 1)) + 1 = 2((2t + 1)` − t) − 1 having zeros in the
central 2((2(` − 1) + 1) − (` − 1))) − 1 = 2` − 1 positions, and such that for
k ∈ [`, (2t + 1)` − t − 1] the two positions where k appears in PΣ are precisely k
apart. Replace the central zeros of SΠ by PΣ to form the sequence PΣ  SΠ.

Then PΣ  SΠ is a Skolem-type sequence of length 2(2st + s + t) + 1 having zeros
in the central 2` − 1 positions, and such that for k ∈ {`, ` + 1, . . . , 2st + s + t} the two
positions where k appears in PΣ  SΠ are precisely k apart.

Given a sequence PΣ  SΠ constructed in this fashion for given `, s and t, the in-
gredients S,Π,P and Σ may be recovered by considering entries and positions. Suppose
that entry e > 0 occupies positions a and b with a < b. If e ≥ (2t + 1)` − t then
e = (2t+1)j+πj(i) for some i and j, and j = b(e+t)/(2t+1)c, while a = (2t+1)aj +i,
so aj = b(a+ t)/(2t+ 1)c. Similarly, bj = b(b+ t)/(2t+ 1)c, while i, πj(i) ∈ [−t, t] are
given by i ≡ a (mod 2t + 1) and πj(i) ≡ e (mod 2t + 1). This process recovers S and
Π. If e ≤ (2t+ 1)`− t− 1 = (2(`− 1) + 1)t+ (`− 1), then P and Σ may be recovered
in the same way from b(e+ (`− 1))/(2`− 1)c, etc.

Hence, varying any of S,Π,P and Σ will yield different Skolem-type sequences PΣ  
SΠ. Disregarding variation due to selection of S,P , and Σ, the following result is obtained.

Theorem 3.7. Suppose that there exists a Skolem-type sequence S of length 2s+ 1 having
zeros in the central 2`−1 positions, and such that for k ∈ {`, `+1, . . . , s} the two positions
where k appears in S are precisely k apart. Then for t ≡ 0 or 3 (mod 4) there are at least
(z2t+1)s−`+1 Skolem-type sequences PΣ  SΠ of length 2(2st+ s+ t) + 1 having zeros
in the central 2` − 1 positions, and such that for k ∈ {`, ` + 1, . . . , 2st + s + t} the two
positions where k appears in PΣ  SΠ are precisely k apart.

This result generates lower bounds for the numbers of pure, split, hooked and split-
hooked Skolem sequences of various orders. Recall from Corollary 2.2 that for sufficiently
large t, z2t+1 > (3.246)2t+1.

Corollary 3.8. If s ≡ 0 or 3 (mod 4), then for all sufficiently large t ≡ 0 or 3 (mod 4),
the number of split Skolem sequences of order 2st+ s+ t is greater than (3.246)2st+s.
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Proof. Invoke the above construction with ` = 1.

As an example, taking s = 3 gives that for all sufficiently large t ≡ 0 or 3 (mod 4),
the number of split Skolem sequences of order n = 7t+3 is greater than (3.246)6t+3. This
is substantially better than the bound given earlier in Corollary 3.2, although this approach
does not appear to offer the generalization to n ≡ 0 or 3 (mod 4) mentioned in connection
with the previous method.

If the central zero in a split Skolem sequence of order n is replaced by n + 1 and an
additional entry n + 1 is placed at either the start or the end of the sequence, then a pure
Skolem sequence of order n + 1 is formed. Applying this adaptation to the split Skolem
sequence constructed in Corollary 3.8 gives the following result.

Corollary 3.9. If s ≡ 0 or 3 (mod 4), then for all sufficiently large t ≡ 0 or 3 (mod 4),
the number of pure Skolem sequences of order 2st+ s+ t+ 1 is greater than (3.246)2st+s.

To deal with hooked and split-hooked Skolem sequences, we may replace the central
2`− 1 zeros of PΣ  SΠ with an appropriate sequence Q, and append a short sequence R
to the right hand end to form (Q (PΣ  SΠ)) ∧R.

Corollary 3.10. If s ≡ 1 or 2 (mod 4) and s ≥ 45, then for all sufficiently large t ≡
0 or 3 (mod 4), the number of hooked Skolem sequences of order 2st+s+ t+1 is greater
than (3.246)(s−6)(2t+1).

Proof. Given s and t, put m = 2st+ s+ t. The sequences Q and R for possible values of
s modulo 12 are covered by using Table 2 with t replaced by s, c replaced by ` and 7t+ 3
replaced by m. Note that in Table 2, c ≤ 7 and so we may assume that ` ≤ 7. In each
case, the resulting sequence (Q (PΣ  SΠ))∧R is a hooked Skolem sequence of order
m+ 1 = 2st+ s+ t+ 1, and the result follows.

Corollary 3.11. If s ≡ 0 or 3 (mod 4) and s ≥ 59, then for all sufficiently large t ≡
0 or 3 (mod 4), the number of split-hooked Skolem sequences of order 2st+ s+ t+ 2 is
greater than (3.246)(s−8)(2t+1).

Proof. Given s and t, put m = 2st+ s+ t. The sequences Q and R for possible values of
s modulo 12 are covered by using Table 3 with t replaced by s, c replaced by ` and 7t+ 3
replaced by m. Note that in Table 3, c ≤ 9 and so we may assume that ` ≤ 9. In each case,
the resulting sequence (Q (PΣ  SΠ))∧R is a split-hooked Skolem sequence of order
m+ 2 = 2st+ s+ t+ 2, and the result follows.

4 Completing the proof of Theorem 2.1
As previously described, the arithmetic is simplified by subtracting t − s − a from all the
entries inR and S to obtain equivalent arraysR′ and S′, whereR′ has entries ranging from
−(s+ 2a) to s+ 2a, and S′ has entries ranging from −(s− 1) to s− 1. Transversals are
sought in these arrays that cover the entry values from −(s + a) to s + a inclusive. We
renumber the rows and columns so that for R′ the row and column numbers run from 0
to r − 1 = s + 2a and for S′ they run from 0 to s − 1. The entry in cell (i, j) of R′ is
then i+ j − (s+ 2a), and that in cell (i, j) of S′ is i+ j − (s− 1). The identification of
transversals falls into several cases.
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Table 5: Case 1 (r even), transversal in S′.

Range Row Column Entry

(a) j = 0, . . . , s−1
2 j s−1

2 + j − s−1
2 + 2j

(b) † j = 0, . . . , s−1
2 − 1 s−1

2 + 1 + j j − s−1
2 + 1 + 2j

Case 1: r even. Since r is even, s must be odd. Table 5 identifies a suitable transversal in
S′. Line (b) of the table, marked with †, is omitted when s = 1. In S′, and subject to †,
line (a) of the table covers rows 0 to s−1

2 , and line (b) covers rows s−1
2 + 1 to s − 1. For

columns, line (b) covers 0 to s−1
2 − 1, and line (a) covers s−1

2 to s− 1. As regards entries,
lines (a) and (b) together cover − s−1

2 to s−1
2 .

Subcase 1.1: r ≡ 0 (mod 4). Table 6 identifies a suitable transversal in R′. The line
of the table marked with ∗ is omitted when s = b − 2, and the line marked † is omitted
when s = 1. Subject to ∗ and †, rows, columns and entries of R′ are covered by lines of the

Table 6: Subcase 1.1 (r ≡ 0 (mod 4)), transversal in R′.

Range Row Column Entry

(a) j = 0, . . . , r4 − 1 j a+ j −a− s+ 2j

(b) j = 0, . . . , a− r
4

r
4 + j a+ r

4 + s+ j s−1
2 + 1 + 2j

(c) j = 0, . . . , r4 − 1 a+ 1 + j j −a− s+ 1 + 2j

(d) j = 0, . . . , s−1
2 a+ r

4 + 1 + j a+ r
4 + s−1

2 + j a+ 1 + 2j

(e) † j = 0, . . . , s−1
2 − 1 a+ r

4 + s−1
2 + a+ r

4 + j a+ 2 + 2j

2 + j

(f) ∗ j = 0, . . . , a− r
4 − 1 a+ r

4 + s+ r
4 + j s−1

2 + 2 + 2j

1 + j

table in the following orders, where notation such as (a&c) means that entries from lines
(a) and (c) are interleaved and taken together. Rows 0 to 2a + s by lines (a)(b)(c)(d)(e)(f)
in that order. Columns 0 to 2a + s by lines (c)(f)(a)(e)(d)(b) in that order. Entries −a − s
to− s−1

2 − 1 by lines (a&c), and entries s−1
2 + 1 to a+ s by lines (b&f)(d&e) in that order;

the remaining entries required to complete the transversal values from −(s+ a) to (s+ a)
come from the transversal in S′.

Subcase 1.2: r ≡ 2 (mod 4). Table 7 identifies a suitable transversal in R′. The line
of the table marked with † is omitted when s = 1. Subject to †, rows, columns and entries
of R′ are covered by lines of the table in the following orders. Rows 0 to 2a + s by
lines (a)(b)(c)(d)(e)(f) in that order. Columns 0 to 2a + s by lines (c)(f)(a)(e)(d)(b) in that
order. Entries −a − s to − s−1

2 − 1 by lines (a&c), and entries s−1
2 + 1 to a + s by lines

(b&f)(d&e) in that order; the remaining entries required to complete the transversal values
from −(s+ a) to (s+ a) come from the transversal in S′.

Case 2: r odd. If r is odd then s must be even. If s = 0 then r = b and R is a copy of Ab
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Table 7: Subcase 1.2 (r ≡ 2 (mod 4)), transversal in R′.

Range Row Column Entry

(a) j = 0, . . . , r+2
4 − 1 j a+ j −a− s+ 2j

(b) j = 0, . . . , a− r+2
4

r+2
4 + j a+ r+2

4 + s−1
2 + 2 + 2j

s+ j

(c) j = 0, . . . , r+2
4 − 2 a+ 1 + j j −a− s+ 1 + 2j

(d) j = 0, . . . , s−1
2 a+ r+2

4 + j a+ r+2
4 + a+ 1 + 2j

s−1
2 + j

(e) † j = 0, . . . , s−1
2 − 1 a+ r+2

4 + s−1
2 + a+ r+2

4 + j a+ 2 + 2j

1 + j

(f) j = 0, . . . , a− r+2
4 a+ r+2

4 + s+ j r+2
4 − 1 + j s−1

2 + 1 + 2j

(with rows and columns appropriately renumbered) and any one of the transversals already
identified inAb provides a suitable transversal inR. So throughout Case 2, we may assume
that s > 0, and then Table 8 identifies a suitable transversal in S′. Line (b) of the table,
marked with †, is omitted when s = 2. Subject to †, rows, columns and entries of S′ are

Table 8: Case 2 (r odd), transversal in S′.

Range Row Column Entry

(a) j = 0, . . . , s2 − 1 j s
2 − 1 + j − s

2 + 2j

(b) † j = 0, . . . , s2 − 2 s
2 + j j − s

2 + 1 + 2j

(c) single cell s− 1 s− 1 s− 1

covered by lines of the table in the following orders. Rows 0 to s − 1 by lines (a)(b)(c) in
that order. Columns 0 to s− 1 by lines (b)(a)(c) in that order. Entries − s

2 to s
2 − 2 by lines

(a&b), and entry s− 1 by line (c).
To deal with R′, we consider four subcases depending on the values of r and s mod-

ulo 4.

Subcase 2.1: r ≡ 1, s ≡ 0 (mod 4). These conditions imply that b ≡ 1 (mod 4) and
we may assume that s ≥ 4. Table 9 identifies a suitable transversal in R′. Lines of the
table marked with ∗ are omitted when s = b−1, and lines marked with † are omitted when
s = 4. Subject to ∗ and †, rows, columns and entries of R′ are covered by lines of the table
in the following orders. Rows 0 to 2a + s by lines (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m) in
that order. Columns 0 to 2a+ s by lines (k)(f)(i)(g)(e)(b)(d)(l)(c)(m)(a)(h)(j) in that order.
Entries −a− s to − s

2 − 1 by lines (b&f)(e)(d&g)(i)(c)(a&k) in that order, entries s
2 − 1 to

s−2 by lines (h&l), and entries s to a+s by lines (j&m); the remaining entries required to
complete the transversal values from −(s+ a) to (s+ a) come from the transversal in S′.

Subcase 2.2: r ≡ 1, s ≡ 2 (mod 4). These conditions imply that b ≡ 3 (mod 4) and
a is odd. Table 10 identifies a suitable transversal in R′ when s ≥ 6. The line of the table



428 Ars Math. Contemp. 14 (2018) 415–432

Table 9: Subcase 2.1 (r ≡ 1, s ≡ 0 (mod 4)), transversal in R′.

Range Row Column Entry

(a) ∗ j = 0, . . . , a2 −
s
4 − 1 j a+ s+ j −a+ 2j

(b) j = 0, . . . , s4 − 1 a
2 −

s
4 + j a

2 + s
4 + j −a− s+ 2j

(c) single cell a
2

a
2 + s− 1 −a− 1

(d) † j = 0, . . . , s4 − 2 a
2 + 1 + j a

2 + s
2 + j −a− s

2 + 1 + 2j

(e) single cell a
2 + s

4
a
2 + s

4 − 1 −a− s
2 − 1

(f) † j = 0, . . . , s4 − 2 a
2 + s

4 + 1 + j a
2 −

s
4 + j −a− s+ 1 + 2j

(g) † j = 0, . . . , s4 − 2 a
2 + s

2 + j a
2 + j −a− s

2 + 2j

(h) j = 0, . . . , s4 − 1 a
2 + 3s

4 − 1 + j 3a
2 + 3s

4 + j s
2 − 1 + 2j

(i) single cell a
2 + s− 1 a

2 − 1 −a− 2

(j) j = 0, . . . , a2
a
2 + s+ j 3a

2 + s+ j s+ 2j

(k) ∗ j = 0, . . . , a2 −
s
4 − 1 a+ s+ 1 + j j −a+ 1 + 2j

(l) j = 0, . . . , s4 − 1 3a
2 + 3s

4 + 1 + j a
2 + 3s

4 − 1 + j s
2 + 2j

(m) j = 0, . . . , a2 − 1 3a
2 + s+ 1 + j a

2 + s+ j s+ 1 + 2j

marked with ∗ is omitted when s = b−1, and the line of the table marked with † is omitted
when s = 6. Subject to ∗ and †, rows, columns and entries of R′ are covered by lines of the
table in the following orders. Rows 0 to 2a+s by lines (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)
in that order. Columns 0 to 2a+s by lines (k)(f)(i)(g)(e)(b)(d)(l)(c)(m)(a)(h)(j) in that order.
Entries −a− s to − s

2 − 1 by lines (b&f)(e)(d&g)(c)(i)(a&k) in that order, entries s
2 − 1 to

s−2 by lines (h&l), and entries s to a+s by lines (j&m); the remaining entries required to
complete the transversal values from −(s+ a) to (s+ a) come from the transversal in S′.

The case s = 2 may be obtained from the table by omitting lines (b), (d), (e), (f), (g)
and (l). Subject to ∗ (i.e. when b = 3), rows, columns and entries of R′ are covered by
lines of the table in the following orders. Rows 0 to 2a+ 2 by lines (a)(c)(h)(i)(j)(k)(m) in
that order. Columns 0 to 2a+ 2 by lines (k)(i)(c)(m)(a)(h)(j) in that order. Entries −a− 2
to −2 by lines (c)(i)(a&k) in that order, entry 0 by line (h), and entries 2 to a + 2 by lines
(j&m); the remaining entries required to complete the transversal values from −(a+ 2) to
(a+ 2) come from the transversal in S′.

Subcase 2.3: r ≡ 3, s ≡ 0 (mod 4). These conditions imply that b ≡ 3 (mod 4) and
a is odd. Table 11 identifies a suitable transversal in R′. The line of the table marked with
∗ is omitted when s = b − 3, and the lines of the table marked with † are omitted when
s = 4. Subject to ∗ and †, rows, columns and entries of R′ are covered by lines of the table
in the following orders. Rows 0 to 2a + s by lines (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m) in
that order. Columns 0 to 2a+ s by lines (k)(f)(i)(g)(e)(b)(d)(l)(c)(m)(a)(h)(j) in that order.
Entries −a− s to − s

2 − 1 by lines (b&f)(e)(d&g)(i)(c)(a&k) in that order, entries s
2 − 1 to

s−2 by lines (h&l), and entries s to a+s by lines (j&m); the remaining entries required to
complete the transversal values from −(s+ a) to (s+ a) come from the transversal in S′.
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Table 10: Subcase 2.2 (r ≡ 1, s ≡ 2 (mod 4)), transversal in R′.

Range Row Column Entry

(a) ∗ j = 0, . . . , a−1
2 − j a+ s+ j −a+ 2j

s−2
4 − 1

(b) j = 0, . . . , s−2
4 − 1 a−1

2 −
s−2

4 + j a−1
2 + s−2

4 + −a− s+ 2j

1 + j

(c) single cell a−1
2

a−1
2 + s− 1 −a− 2

(d) j = 0, . . . , s−2
4 − 1 a−1

2 + 1 + j a−1
2 + s

2 + j −a− s
2 + 2j

(e) single cell a−1
2 + s−2

4 + 1 a−1
2 + s−2

4 −a− s
2 − 1

(f) j = 0, . . . , s−2
4 − 1 a−1

2 + s−2
4 + a−1

2 −
s−2

4 + j −a− s+ 1 + 2j

2 + j

(g) † j = 0, . . . , s−2
4 − 2 a−1

2 + s
2 + 1 + j a−1

2 + 1 + j −a− s
2 + 1 + 2j

(h) j = 0, . . . , s−2
4

a−1
2 + 3s−2

4 + j 3a+1
2 + 3s−2

4 + j s
2 − 1 + 2j

(i) single cell a−1
2 + s a−1

2 −a− 1

(j) j = 0, . . . , a−1
2

a−1
2 + s+ 1 + j 3a+1

2 + s+ j s+ 1 + 2j

(k) ∗ j = 0, . . . , a−1
2 − a+ s+ 1 + j j −a+ 1 + 2j

s−2
4 − 1

(l) j = 0, . . . , s−2
4 − 1 3a+1

2 + 3s−2
4 + a−1

2 + 3s−2
4 + j s

2 + 2j

1 + j

(m) j = 0, . . . , a−1
2

3a+1
2 + s+ j a−1

2 + s+ j s+ 2j

Subcase 2.4: r ≡ 3, s ≡ 2 (mod 4). These conditions imply that b ≡ 1 (mod 4) and
a is even. Table 12 identifies a suitable transversal in R′ when s ≥ 6. The line of the table
marked with ∗ is omitted when s = b−3, and the line of the table marked with † is omitted
when s = 6. Subject to ∗ and †, rows, columns and entries of R′ are covered by lines of the
table in the following orders. Rows 0 to 2a+s by lines (a)(b)(c)(d)(e)(f)(g)(h)(i)(j)(k)(l)(m)
in that order. Columns 0 to 2a+s by lines (k)(f)(i)(g)(e)(b)(d)(l)(c)(m)(a)(h)(j) in that order.
Entries −a− s to − s

2 − 1 by lines (b&f)(e)(d&g)(i)(c)(a&k) in that order, entries s
2 − 1 to

s−2 by lines (h&l), and entries s to a+s by lines (j&m); the remaining entries required to
complete the transversal values from −(s+ a) to (s+ a) come from the transversal in S′.

The case s = 2 may be obtained from the table by omitting lines (b), (d), (e), (f), (g)
and (h). Subject to ∗ (i.e. when b = 5), rows, columns and entries of R′ are covered by
lines of the table in the following orders. Rows 0 to 2a+ 2 by lines (a)(c)(i)(j)(k)(l)(m) in
that order. Columns 0 to 2a + 2 by lines (k)(i)(l)(c)(m)(a)(j) in that order. Entries −a − 2
to −2 by lines (i)(c)(a&k) in that order, entry 0 by line (l), and entries 2 to a + 2 by lines
(j&m); the remaining entries required to complete the transversal values from −(a+ 2) to
(a+ 2) come from the transversal in S′.

This concludes the proof of Theorem 2.1.
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Table 11: Subcase 2.3 (r ≡ 3, s ≡ 0 (mod 4)), transversal in R′.

Range Row Column Entry

(a) j = 0, . . . , a−1
2 −

s
4 j a+ s+ j −a+ 2j

(b) j = 0, . . . , s4 − 1 a+1
2 −

s
4 + j a−1

2 + s
4 + j −a− s+ 2j

(c) single cell a+1
2

a−1
2 + s− 1 −a− 1

(d) † j = 0, . . . , s4 − 2 a+1
2 + 1 + j a−1

2 + s
2 + j −a− s

2 + 1 + 2j

(e) single cell a+1
2 + s

4
a−1

2 + s
4 − 1 −a− s

2 − 1

(f) † j = 0, . . . , s4 − 2 a+1
2 + s

4 + 1 + j a−1
2 −

s
4 + j −a− s+ 1 + 2j

(g) † j = 0, . . . , s4 − 2 a+1
2 + s

2 + j a−1
2 + j −a− s

2 + 2j

(h) j = 0, . . . , s4 − 1 a+1
2 + 3s

4 − 1 + j 3a+1
2 + 3s

4 + j s
2 + 2j

(i) single cell a+1
2 + s− 1 a−1

2 − 1 −a− 2

(j) j = 0, . . . , a−1
2

a+1
2 + s+ j 3a+1

2 + s+ j s+ 1 + 2j

(k) ∗ j = 0, . . . , a−1
2 − a+ s+ 1 + j j −a+ 1 + 2j

s
4 − 1

(l) j = 0, . . . , s4 − 1 3a+1
2 + 3s

4 + j a−1
2 + 3s

4 −
s
2 − 1 + 2j

1 + j

(m) j = 0, . . . , a−1
2

3a+1
2 + s+ j a−1

2 + s+ j s+ 2j

5 Concluding remarks

Our results improve the known lower bounds for the number of additive permutations,
zero-sum arrays, some Skolem-type sequences, and some extremal Langford sequences. It
seems highly likely that the bounds obtained in this paper apply to all pure, split, hooked
and split-hooked Skolem sequences of sufficiently large orders. The recent paper [8] com-
bines such bounds with graph labellings to generate Langford sequences. It seems likely
that our new bounds can be combined with these techniques to generate improved estimates
for the numbers of Langford sequences.

For small orders, the numbers of (pure) Skolem sequences and hooked Skolem se-
quences (and other related sequences) are tabulated in [4], while Table 8 of [7] gives the
numbers of split Skolem (Rosa) sequences of orders n ≤ 12. These numerical results
strongly suggest that further improvements to our lower bounds are possible.

Since Skolem sequences may be used to construct solutions to Heffter’s first and second
difference problems, the bounds inform the numbers of these and of resulting cyclic Steiner
triple systems. If improved bounds for z2t+1 are obtained in the future, these methods will
lead to improved bounds for many related sequences. From Table 1, it will be seen that the
ratio z2t+1/z2t−1 appears to increase with t, and to exceed 2t for t ≥ 6, strongly suggesting
that z2t+1 > 2tt! for all sufficiently large t. This is a weaker bound than might be suggested
by Vardi’s conjecture, but it is strongly supported by the computational evidence, and one
might expect that most transversals are not Z-transversals.
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Table 12: Subcase 2.4 (r ≡ 3, s ≡ 2 (mod 4)), transversal in R′.

Range Row Column Entry

(a) j = 0, . . . , a2 − j a+ s+ j −a+ 2j
s−2

4 − 1

(b) j = 0, . . . , s−2
4 − 1 a

2 −
s−2

4 + j a
2 + s−2

4 + j −a− s+ 2j

(c) single cell a
2

a
2 + s− 1 −a− 1

(d) j = 0, . . . , s−2
4 − 1 a

2 + 1 + j a
2 + s

2 − 1 + j −a− s
2 + 2j

(e) single cell a
2 + s−2

4 + 1 a
2 + s−2

4 − 1 −a− s
2 − 1

(f) j = 0, . . . , s−2
4 − 1 a

2 + s−2
4 + 2 + j a

2 −
s−2

4 − 1 + j −a− s+ 1 + 2j

(g) † j = 0, . . . , s−2
4 − 2 a

2 + s
2 + 1 + j a

2 + j −a− s
2 + 1 + 2j

(h) j = 0, . . . , s−2
4 − 1 a

2 + 3s−2
4 + j 3a

2 + 3s+2
4 + j s

2 + 2j

(i) single cell a
2 + s− 1 a

2 − 1 −a− 2

(j) j = 0, . . . , a2
a
2 + s+ j 3a

2 + s+ j s+ 2j

(k) ∗ j = 0, . . . , a2 − a+ s+ 1 + j j −a+ 1 + 2j
s−2

4 − 2

(l) j = 0, . . . , s−2
4

3a
2 + 3s+2

4 + j a
2 + 3s−6

4 + j s
2 − 1 + 2j

(m) j = 0, . . . , a2 − 1 3a
2 + s+ 1 + j a

2 + s+ j s+ 1 + 2j
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Abstract

In this paper, we classify the regular balanced Cayley maps of minimal non-abelian
metacyclic groups. Besides the quaternion groupQ8, there are two infinite families of such
groups which are denoted by Mp,q(m, r) and Mp(n,m), respectively. Firstly, we prove
that there are regular balanced Cayley maps of Mp,q(m, r) if and only if q = 2 and we list
all of them up to isomorphism. Secondly, we prove that there are regular balanced Cayley
maps of Mp(n,m) if and only if p = 2 and n = m or n = m + 1 and there is exactly
one such map up to isomorphism in either case. Finally, as a corollary, we prove that any
metacyclic p-group for odd prime number p does not have regular balanced Cayley maps.

Keywords: Regular balanced Cayley map, minimal non-abelian group, metacyclic group.
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1 Introduction
A Cayley graph Γ = Cay(G,X) is a graph based on a group G and a finite set X =
{x1, x2, . . . , xk} of elements in G which does not contain 1G, contains no repeated el-
ements, is closed under the operation of taking inverses, and generates all of G. In this
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paper, we call X a Cayley subset of G. The vertices of the Cayley graph Γ are the elements
of G, and two vertices g and h are adjacent if and only if g = hxi for some xi ∈ X . The
ordered pairs (h, hx) for h ∈ G and x ∈ X are called the darts of Γ. Let ρ be any cyclic
permutation on X . Then the Cayley mapM = CM(G,X, ρ) is the 2-cell embedding of
the Cayley graph Cay(G,X) in an orientable surface for which the orientation-induced
local ordering of the darts emanating from any vertex g ∈ G is always the same as the
ordering of generators in X induced by ρ; that is, the neighbors of any vertex g are always
spread counterclockwise around g in the order (gx, gρ(x), gρ2(x), . . . , gρk−1(x)).

An (orientation preserving) automorphism of a Cayley mapM is a permutation on the
dart set ofM which preserves the incidence relation of the vertices, edges, faces, and the
orientation of the map. The full automorphism group ofM, denoted by Aut(M), is the
group of all such automorphisms of M under the operation of composition. This group
always acts semi-regularly on the set of darts ofM, that is, the stabilizer in Aut(M) of
each dart ofM is trivial. If this action is transitive, then we say that the Cayley mapM is a
regular Cayley map. As the left regular multiplication action of the underlying groupG lifts
naturally into the full automorphism group of any Cayley map CM(G,X, ρ), Cayley maps
are proved to be a very good source of regular maps. There are many papers on the topic
of regular Cayley maps, we refer the readers to [4, 10] and [11] and the references therein.
Furthermore, A Cayley map CM(G,X, ρ) is called balanced if ρ(x)−1 = ρ(x−1) for every
x ∈ X . In [11], Škoviera and Širáň showed that a Cayley map CM(G,X, ρ) is regular and
balanced if and only if there exists a group automorphism σ such that σ|X = ρ, where σ|X
denotes the restricted action of σ on X . Therefore, to determine all the regular balanced
Cayley maps of a group is equivalent to determine all the orbits of its automorphisms that
can be Cayley subsets.

In this paper, a non-abelian group G is called minimal if each of its proper subgroups
H (that is H < G but H 6= G) is abelian. In 1903, Miller and Moreno gave a full
classification of minimal non-abelian groups, one may refer to [7] for detailed results. A
group G is metacyclic if it has a cyclic normal subgroup N such that the factor group G/N
is cyclic. As one can see in [7], there are three classes of minimal non-abelian metacyclic
groups:

(1) the quaternion group Q8;

(2) Mp,q(m, r) = 〈a, b | ap = 1, bq
m

= 1, b−1ab = ar〉, where p and q are distinct
prime numbers, m is a positive integer and r 6≡ 1 (mod p) but rq ≡ 1 (mod p);

(3) Mp(n,m) = 〈a, b | apn = bp
m

= 1, b−1ab = a1+pn−1

, n ≥ 2,m ≥ 1〉.

One can also cite [3, Theorem 2.1] for reference or [13, pp. 123] for details.
For regular balanced Cayley maps, it has been shown that all odd order abelian groups

possess at least one regular balanced Cayley map [4]. Wang and Feng [12] classified all reg-
ular balanced Cayley maps for cyclic, dihedral and generalized quaternion groups. In [9],
Oh proved the non-existence of regular balanced Cayley maps with semi-dihedral groups.
In this paper, we pay our attentions to the regular balanced Cayley maps of minimal non-
abelian metacyclic groups. Since the regular balanced Cayley maps ofQ8 have been classi-
fied in [12] (Q8 has exactly one regular balanced Cayley map up to isomorphism), we only
consider the groups Mp,q(m, r) and Mp(n,m). In Section 3, we show that Mp,q(m, r) has
regular balanced Cayley maps if and only if q is 2 and we list all of them up to isomor-
phism. In Section 4, we show that Mp(n,m) has regular balanced Cayley maps if and only
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if p = 2 and n = m or n = m + 1. In either case, it has exactly one regular balanced
Cayley map up to isomorphism and the map has valency 4. Moreover, as a corollary any
metacyclic p-group for odd prime p doesn’t have regular balanced Cayley maps.

2 Preliminaries
Lemma 2.1. Take an element btas ∈ Mp,q(m, r), where t 6= 0, then the order of btas is
qm if and only if (t, q) = 1.

Proof. The group Mp,q(m, r) is the union of one cyclic group of order p and p conjugate
cyclic subgroups of order qm. If t 6= 0, then btas belongs to one of the cyclic subgroups of
order qm. Therefore, the order of btas is qm if and only if (t, q) = 1.

Lemma 2.2. The automorphism group of Mp,q(m, r) is

Aut(Mp,q(m, r)) = {σ | aσ = ai, bσ = bjak, 1 6 i 6 p−1, 1 6 j 6 qm−1, q | (j−1)}.

Proof. Assume σ ∈ Aut(Mp,q(m, r)). According to Lemma 2.1, aσ = ai, bσ = bjak for
some 1 6 i 6 p − 1, 1 6 j 6 qm − 1 and (j, q) = 1. If Mp,q(m, r) = 〈aσ, bσ〉, then we
can get the relation q | (j − 1).

In fact, since (ar)σ = (b−1ab)σ = (b−1)σaσbσ = b−jaibj = air
j

= air, we have
air(r

j−1−1) = 1. Moreover, from (ir, p) = 1 and ap = 1, we get (rj−1−1) ≡ 0 (mod p),
that is rj−1 ≡ 1 (mod p). As rq ≡ 1 (mod p) and q is prime, we have q | (j − 1).

Lemma 2.3 ([5]). The automorphism group of Mp(n,m) is listed as follows:

(i) If n ≤ m, then Aut(Mp(n,m)) = {σ | aσ = bjai, bσ = bsar, (i, p) = 1, 1 ≤ i ≤
pn, j = kpm−n+1, 0 ≤ k < pn−1, 1 ≤ r ≤ pn, s ≡ 1 (mod p), 1 ≤ s ≤ pm}.

(ii) If p is odd and n > m ≥ 1 or p = 2 and n > m > 1, then Aut(Mp(n,m)) = {σ |
aσ = bjai, bσ = bsar, (i, p) = 1, 1 ≤ i ≤ pn, 1 ≤ j ≤ pm, r = kpn−m, 0 ≤ k <
pm, s ≡ 1 (mod p), 1 ≤ s ≤ pm}.

The following Lemma 2.4 is a basic result in group theory and we omit the proof.

Lemma 2.4. LetG be a finite group andN be a normal subgroup ofG. Take α ∈ Aut(G).
If Nα = N , then ᾱ : Ng 7→ Ngα is an automorphism of G/N which is called the induced
automorphism of α.

Lemma 2.5. LetG be a finite group andN be a proper characteristic subgroup ofG. Take
α ∈ Aut(G) and g ∈ G. If X = g〈α〉 is a Cayley subset of G, then X = g〈α〉 = ḡ〈ᾱ〉 is
a Cayley subset of G = G/N . Moreover, if the order of α is a power of 2 and g is not an
involution, then |X| = |X|.

Proof. By Lemma 2.4, ᾱ is an automorphism of G/N induced by α. Set X = g〈α〉, then
X = g〈α〉 = ḡ〈ᾱ〉. If X is a Cayley subset of G, then the relations 〈X〉 = G, X = X

−1

follow naturally. Since N < G, we have X 6= 1̄〈ᾱ〉 and then 1 6∈ X . So, X is a Cayley
subset of G.

If the order of α is 2s for some positive integer s, then the order of α is 2t for some

integer t ≤ s. From gα
2s−1

= g−1, we have gα
2s−1

= g−1. While gα
2t

= g, then
t > s− 1. So, s = t and |X| = |X|.
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As a direct corollary of Lemmas 2.4 and 2.5, we give the following Corollary 2.6.

Corollary 2.6. If a group G has regular balanced Cayley maps, then so does the quotient
group G/N for any proper characteristic subgroup N of G.

There are many ways to get proper characteristic subgroups. In the following, we give
a method to get such subgroups. These results are exercises for students, so we omit the
proof.

Lemma 2.7. LetG be a finite group, S ⊆ G, σ ∈ End(G),K be a characteristic subgroup
of G and n be a positive integer. Then,

(i) 〈S〉σ = 〈Sσ〉;
(ii) H1 = 〈xn | x ∈ K〉 is a characteristic subgroup of G;

(iii) H2 = 〈y | y ∈ G, yn ∈ K〉 is a characteristic subgroup of G.

As for isomorphism of regular maps, one may refer to [10] for the following Lemma 2.8.

Lemma 2.8. Assume M1 = CM(G,X1, ρ1) and M2 = CM(G,X2, ρ2) are two regular
balanced Cayley maps of the finite group G, where X1 = g〈σ1〉 and X2 = h〈σ2〉 are orbits
of two group elements g and h under the action of two automorphisms σ1 and σ2 of G,
respectively. Then M1 and M2 are isomorphic if and only if |X1| = |X2| = k and there is
some τ ∈ Aut(G) such that hσ

i
2 = gσ

i
1τ , 1 ≤ i ≤ k.

As a special case and an application of Lemma 2.8, we have the following Lemma 2.9.

Lemma 2.9. Let G be a finite group. Take α ∈ Aut(G) and two elements g, h ∈ G.
Assume X = g〈α〉 is a Cayley subset of G. If there is some σ ∈ Aut(G) such that gσ = h,
then Y = h〈σ

−1ασ〉 is also a Cayley subset ofG and Y = Xσ . Under this situation, the two
regular balanced Cayley maps CM(G,X,α|X) and CM(G, Y, σ−1ασ|Y ) are isomorphic.

Proof. Because Y = h〈σ
−1ασ〉 = gσ〈σ

−1ασ〉 = gσσ
−1〈α〉σ = g〈α〉σ = Xσ and X is a

Cayley subset, it follows that Y is also a Cayley subset. The result that CM(G,X,α|X)
and CM(G, Y, σ−1ασ|Y ) are isomorphic follows from Lemma 2.8.

3 Regular balanced Cayley maps of Mp,q(m, r)

As we mentioned in the introduction, to determine all the regular balanced Cayley maps of
a group is equivalent to determine all the orbits of its automorphisms that can be Cayley
subsets. In this section, we divide our discussion into two parts according to the parity of q.

Lemma 3.1. The center Z(Mp,q(m, r)) of Mp,q(m, r) is generated by bq and the quotient
group Mp,q(m, r)/Z(Mp,q(m, r)) ∼= Mp,q(1, r).

Proof. From the defining relation of Mp,q(m, r), we have b−qabq = ar
q

= a. So, bq ∈
Z(Mp,q(m, r)). Since Mp,q(m, r) is not abelian and generated by a and b, we have a, b 6∈
Z(Mp,q(m, r)), henceZ(Mp,q(m, r)) = 〈bq〉. The formulaMp,q(m, r)/Z(Mp,q(m, r)) ∼=
Mp,q(1, r) follows directly from the definition of Mp,q(m, r).

Theorem 3.2. If q is odd, then the groupMp,q(1, r) does not have regular balanced Cayley
maps.
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Proof. For brevity, setH = Mp,q(1, r). Suppose there exists a σ ∈ Aut(H) and bvau ∈ H
such that X = (bvau)〈σ〉 is a Cayley subset of H . The derived subgroup of H is H ′ = 〈a〉
which is a characteristic subgroup. LetH = H/H ′ and σ be induced by σ. By Lemma 2.2,

bσ = bak for some integer k and as a result b
σ

= b. So, X = bvau
〈σ〉

= bv
〈σ〉

= {bv}.
While X = X

−1
, o(b) = q and o(bv) | o(b), we have bv = 1 and so bv ∈ H ′. It follows

that 〈X〉 ≤ H ′ < H contradicting to H = 〈X〉.

As a corollary of Lemmas 3.1 and 2.5, we have the following Theorem 3.3.

Theorem 3.3. If q is odd, then Mp,q(m, r) does not have regular balanced Cayley maps.

It is known that Z∗2n
∼= Z2 × Z2n−2 = 〈−1〉 × 〈5〉, where −1 and 5 denote the class of

integers equaling to −1 and 5 modular 2n, respectively. In a p-group G, let f1(G) = 〈ap |
a ∈ G〉. Then, f1(Z∗2n) = 〈52〉 which does not contain −1.

Lemma 3.4. For a positive integer n ≥ 2, the equation xk ≡ −1 (mod 2n) holds if and
only if k is odd and x ≡ −1 (mod 2n).

Proof. It is obviously true when n = 2. So, we may assume n ≥ 3. Let u be a solution
of the equation xk ≡ −1 (mod 2n), then the integer u should be odd, so u ∈ Z∗2n =
〈−1〉 × 〈5〉. From the discussion preceding to the lemma, suppose k is even, then −1 ≡
uk = (u

k
2 )2 ∈ f1(Z∗2n), a contradiction. So, k is odd.

Let u = ab for some a ∈ 〈−1〉 and b ∈ 〈5〉 such that uk = −1. Then, uk = akbk = −1.
There are two choices of a, that is 1 and −1. But a 6= 1, for otherwise bk = −1, a
contradiction. So, bk = 1 and as a result b = 1 and u = −1.

In a group G, for any element g ∈ G, we use o(g) to denote the order of g. Now we
look at the group Mp,2(m, r). In the definition of Mp,2(m, r), one can see that r ≡ −1
(mod p). In particular, if m = 1, then Mp,2(m, r) is a dihedral group of order 2p. One
may refer to [12] for the classification of the regular balanced Cayley maps of dihedral
groups. For the sake of completeness, We restate the result in the following theorem.

Theorem 3.5 ([12, Theorem 3.3]). The dihedral group D2p of order 2p has p − 1 non-
isomorphic regular balanced Cayley maps, where p is an odd prime number.

When m ≥ 2, we have the following Theorem 3.6.

Theorem 3.6. Let G = Mp,2(m, r), where m ≥ 2, p is an odd prime and r ≡ −1
(mod p). If p − 1 = 2es, where s is odd, then G has s non-isomorphic regular balanced
Cayley maps. In particular, if p is a Fermat prime, thenG has exactly one regular balanced
Cayley map up to isomorphism.

Proof. If the orbit of bvau under the action of σ ∈ Aut(G) is a Cayley subset ofG, then the
integer v must be odd. In fact, both the subgroups 〈a〉 and Z(G) = 〈b2〉 are characteristic
in G, so 〈(bvau)〈σ〉〉 is a proper subgroup of G if (v, 2) 6= 1. By Lemma 2.2, there is some
α ∈ Aut(G) such that (bvau)α = b. According to Lemma 2.9, we only need to consider
the orbit of b under the action of σ.

For brevity, we denote the automorphism σ ∈ Aut(G) satisfying aσ = ai and bσ =
bjak by σi,j,k and X = b〈σi,j,k〉 by Xi,j,k. Let ρi,j,k be the arrangement of the elements
in Xi,j,k which respects the order of the elements in the orbit. Assume Xi,j,k is a Cayley
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subset of G for some integer i coprime to p and odd integer j. Note that k 6≡ 0 (mod p)
for otherwise contradicting to the Cayley subset assumption of Xi,j,k.

In the quotient group G = G/〈a〉, Xi,j,k = b
〈σi,j,k〉 should be a Cayley subset of

G. Therefore, there exists some integer t such that b
σi,j,k

t

= b
−1

. Clearly, b
σi,j,k

t

=

b
jt

= b
−1

, so jt ≡ −1 (mod 2m). From Lemma 3.4, t is odd and j ≡ −1 (mod 2m).
Moreover, as Xσk,1,0

i,−1,1 = Xi,−1,k, we may assume k = 1. Under these conditions, we only
need to pay attention to Xi,−1,1. By direct enumeration one can easily get

bσ
`
i,−1,1 = b(−1)`ai

`−1+i`−2+···+i+1,

for any positive integer `. Since Xi,−1,1 is a Cayley subset, there exists some positive
integer n such that bσ

n
i,−1,1 = b−1. So, n is odd and

in−1 + in−2 + · · ·+ i+ 1 ≡ 0 (mod p).

If i ≡ 1 (mod p), then bσ
p
1,−1,1 = b−1 and

X1,−1,1 = {b, b−1a, ba2, . . . , bap−1, b−1, (b−1a)−1, . . . , (bap−1)−1}

is a Cayley subset of G of valency 2p.
If 1 < i ≤ p − 1, then in−1 + in−2 + · · · + i + 1 ≡ 0 (mod p) if and only if in ≡ 1

(mod p). Let S = {x | x ∈ Z∗p, o(x) is odd}, then |S| = s. Since n is odd, any i satisfying
in ≡ 1 (mod p) corresponds to ī ∈ S. And for any ī ∈ S \ {1}, if o(̄i) = n, then
bσ

n
i,−1,1 = b−1 and

Xi,−1,1 = {b, b−1a, bai+1, b−1ai
2+i+1, . . . , bai

n−2+···+i+1, b−1, . . . , (bai
n−2+···+i+1)−1}

is a Cayley subset of G of valency 2n. From all the above, when i > 1, Xi,−1,1 is a Cayley
subset of G if and only if ī ∈ S and |Xi,−1,1| is twice of o(̄i).

For any two distinct i1 and i2 in S \ {1}, Cayley maps CM(G,Xi1,−1,1, ρi1,−1,1) and
CM(G,Xi2,−1,1, ρi2,−1,1) are not isomorphic. Otherwise, according to Lemma 2.8, there
exists some β ∈ Aut(G) such that bβ = b and for each ` ≥ 1,

(b(−1)`ai
`−1
1 +i`−2

1 +···+i1+1)β = b(−1)`ai
`−1
2 +i`−2

2 +···+i2+1.

In particular, (b−1a)β = b−1a and therefore β is the identical automorphism. Therefore, G
has s non-isomorphic regular balanced Cayley maps. When p is a Fermat prime, then p−1
is a power of 2, so G has exactly one regular balanced Cayley map up to isomorphism.

4 Regular balanced Cayley maps of Mp(n,m)

For minimal non-abelian p-group, one may refter to [1, 2] or [14] for the following Lem-
ma 4.1.

Lemma 4.1 ([14, Theorem 2.3.6]). Let G be a finite p-group, d(G) be the number of
elements in a minimal generating subset of G. Then, the followings are equivalent.

(i) The group G is a minimal non-abelian group;

(ii) d(G) = 2 and |G′| = p;
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(iii) d(G) = 2 and Z(G) = Φ(G), where Φ(G) denotes the Frattini subgroup of G.

Lemma 4.2. Assume G is a finite p-group for some prime number p and d(G) = 2. Let
β ∈ Aut(G), g ∈ G and X = g〈β〉. If G = 〈X〉, then G = 〈g, gβ〉.

Proof. Because d(G) = 2, it follows that G = G/Φ(G) ∼= Zp × Zp. Suppose 〈g, gβ〉 <
G, then in the quotient group the subgroup generated by g and gβ has order p, that is
|〈g, gβ〉| = p. So, gβ ∈ 〈gΦ(G)〉. As Φ(G) is a characteristic subgroup of G, for each
k > 1 the element gβ

k ∈ 〈gβk−1

Φ(G)〉. Therefore, X ⊆ 〈gΦ(G)〉 and then 〈X〉 ≤
〈gΦ(G)〉 < G, a contradiction. So, G = 〈g, gβ〉.

Remark Lemma 4.2 may not be true for a non-p-group. For example, the symmetry group
Sn can be generated by two elements (1 2) and (1 2 . . . n). Take g = (1 2) ∈ Sn and
β the automorphism of Sn induced from the conjugation by the element (2 3 . . . n), then
X = g〈β〉 = {(1 2), (1 3), . . . , (1 n)} is a Cayley subset of Sn and gβ = (1 3). But it is
obvious that Sn 6= 〈(1 2), (1 3)〉 when n ≥ 4.

Theorem 4.3. Let G = Mp(n, n), where n ≥ 2 and p is an odd prime number. Then, the
group G does not have regular balanced Cayley maps.

Proof. Let N = 〈x ∈ G | xpn−1 ∈ G′〉. According to Lemma 2.7, N is a characteristic
subgroup of G. One can see from the defining relations of G that G′ = 〈apn−1〉 ∼= Zp
and N = 〈a, bp〉. Take σ ∈ Aut(G) such that aσ = bkpai and bσ = bsar, where the
integers i, s, r satisfy the conditions in Lemma 2.3 and especially s ≡ 1 (mod p). Suppose
X = (buav)

〈σ〉 is a Cayley subset of G. Then buav 6∈ N and therefore (u, p) = 1. In the

quotient groupG = G/N ,X = (buav)
〈σ〉

= bu
〈σ̄〉

is a Cayley subset ofG. So, there exists
some integer n such that b−u = bsnu. As a result, one can get snu ≡ −u (mod p). While
(u, p) = 1, then sn ≡ −1 (mod p). But this result contradicts to s ≡ 1 (mod p).

Theorem 4.4. Let G = Mp(n,m), where n ≥ 2,m ≥ 1,m 6= n and p is an odd prime
number. Then, the group G does not have regular balanced Cayley maps.

Proof. We firstly assume m > n. Set N = {xpn | x ∈ G}. By Lemma 2.7, N = 〈bpn〉 is
a characteristic subgroup of G. The quotient group

G = G/N = 〈a, b | ap
n

= b
pn

= 1, ab = a1+pn−1

〉 ∼= Mp(n, n).

According to Theorem 4.3 and Lemma 2.5,G does not have regular balanced Cayley maps.
When m < n, suppose there exists some σ ∈ Aut(G) such that X = (buav)〈σ〉 is

a Cayley subset of G. Because Z(G) = 〈ap, bp〉 is characteristic of G, one can assume
u = 0, v = 1 from the results of Lemma 2.3 and Lemma 2.9. That is, X = a〈σ〉. Assume
aσ = bjai, o(σ) = 2k and τ = σk, then aτ = a−1, (bjai)τ = a−ib−j . Recall that
G′ = 〈apn−1〉 ∼= Zp and [a, bj ] ∈ G′ < 〈a〉, so [a, bj ]

τ
= [a, bj ]

−1. While

[a, bj ]
τ

= ([a, ai][a, bj ][a, bj , ai])τ = [a, bjai]
τ

=

[aτ , (bjai)
τ
] = [a−1, a−ib−j ] = [a−1, b−j ],

and [a−1, b−j ] belongs to the center, the result

[a, bj ]
τ

= [a−1, b−j ] = b−ja−1[a−1, b−j ]abj = [a, bj ]
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follows. Therefore, [a, bj ]
−1

= [a, bj ], that is [a, bj ]
2

= 1. But the order of [a, bj ] is a
power of p which is coprime with 2, we get [a, bj ] = 1. And from Lemma 4.2, one can get
G = 〈a, aσ〉 = 〈a, bjai〉. So G is abelian, a contradiction. Thus in either case, G doesn’t
have regular balanced Cayley maps.

Remark 4.5. In the paper of Newman and Xu ([8]), they claimed that for odd primes p
every metacyclic p-group is isomorphic to one of the groups

G = 〈a, b | ap
r+s+u

= 1, bp
r+s+t

= ap
r+s

, b−1ab = a1+pr 〉, (4.1)

where r, s, t, u are non-negative integers with r positive and u ≤ r, and these groups are
pairwise non-isomorphic. In the following Lemma 4.6, one will see that the metacyclic
p-group has an ‘intimate’ connection with the minimal non-abelian metacyclic p-group.

Lemma 4.6. Let G be a metacyclic p-group for some odd prime number p and N < G′ be
a maximal subgroup of the derived subgroup G′. Then N is a characteristic subgroup of
G and the quotient group G = G/N is a minimal non-abelian metacyclic p-group.

Proof. Because G′ is cyclic and G′ is characteristic of G, it follows that N is also char-
acteristic of G. While N is a proper subgroup of G′, the quotient group G = G/N is
non-abelian and metacyclic, generated by two elements because G is generated by two el-
ements. As G

′
= G′ ∼= Zp and so |G′| = p. The quotient group G is mininal non-abelian

follows from Lemma 4.1.

From the results of Lemma 2.5 and Theorems 4.3 and 4.4, we get the following Corol-
lary 4.7.

Corollary 4.7. For any odd prime number p, the metacyclic p-group does not have regular
balanced Cayley maps.

Theorem 4.8. Let G = M2(n,m), where m and n are positive integers and m > n ≥ 2.
Then G does not have regular balanced Cayley maps.

Proof. According to Lemma 2.3, Aut(G) = {σ | aσ = bjai, bσ = bsar}, where (is, 2) =
1, 1 ≤ i ≤ 2n, 1 ≤ s ≤ 2m, j = 2m−n+1k, 0 ≤ k < 2n−1, 1 ≤ r ≤ 2n. From the
defining relations of G, one can see that both a2 and b2 belong to the center of G. Set
N = 〈a2, b4〉 = {x ∈ Z(G) | x2m−2

= 1}. By Lemma 2.7, N is a characteristic subgroup
of Z(G). Since Z(G) is characteristic in G, N is characteristic in G. Suppose there is
some σ ∈ Aut(G) and buav ∈ G such that X = (buav)〈σ〉 is a Cayley subset of G. By
Lemma 2.9, one may assume u = 1 and v = 0, that is, X = b〈σ〉.

Assume aσ = bjai and bσ = bsar, then 4 | j, (s, 2) = 1 and so s2 ≡ 1 (mod 4).
According to Lemma 4.2, G = 〈b, bsar〉 = 〈b, ar〉 and so (r, 2) = 1. In the quotient group
G = G/N , X = b〈σ〉 should be a Cayley subset of G. Noticing that 2 | (s + i), 4 | j
and G′ ≤ N , we have (bsar)σ = (bsar)s(bjai)r = bs2arsbjrair = bs2+jrar(s+i) = bs2 .
Since o(b) = 4 and s2 ≡ 1 (mod 4), we have bs2 = b. So, X = {b, bsar}. But (r, 2) = 1,
b
−1

/∈ X . Then, X is not a Cayley subset, a contradiction.

Theorem 4.9. Let G = M2(n,m), where m and n are positive integers, n > m + 1 and
m ≥ 2. Then G does not have regular balanced Cayley maps.
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Proof. In this case, Aut(G) = {σ | aσ = bjai, bσ = bsar}, where (is, 2) = 1, 1 ≤ i ≤
2n, 1 ≤ s ≤ 2m, 1 ≤ j ≤ 2m, r = k2n−m, 0 ≤ k < 2m. Let N = 〈a4, b2〉 = {x ∈
Z(G) | x2n−2

= 1}. According to Lemma 2.7, N is characteristic in Z(G). Since Z(G) is
characteristic in G, N is characteristic in G. Similar to the proof of Theorem 4.8, we only
need to show that X = a〈σ〉 is not a Cayley subset of G for any σ ∈ Aut(G).

Assume aσ = bjai and bσ = bsar. Then (s, 2) = 1, 4 | r, (i, 2) = 1 and so i2 ≡ 1
(mod 4). And from Lemma 4.2, G = 〈a, bjai〉 = 〈a, bj〉 and so (j, 2) = 1. If X is a
Cayley subset, thenX = a〈σ〉 is a Cayley subset ofG = G/N . While from 2 | (s+i), 4 | r
and G′ ≤ N , we have (bjai)σ = (bsar)j(bjai)i = bsjarjbjiai2 = bj(s+i)ai2+rj = ai2 .
And from o(a) = 4, i2 ≡ 1 (mod 4), we have ai2 = a. So,X = {a, bjai}. But (j, 2) = 1
implies a−1 /∈ X . So, X is not a Cayley subset, a contradiction.

In Theorem 4.9, if we allow m = 1 and so n > 2, then the group M2(n, 1) belongs
to one of the p-groups with a cyclic maximal subgroup which had been considered by
D. D. Hou, Y. Wang and H. P. Qu in [6]. We list the result in the following theorem.

Theorem 4.10 ([6, Theorem 3.3]). For positive integers n > 2, M2(n, 1) does not have
regular balanced Cayley maps.

Now, there are still two cases about which we have not said anything, that is M2(n, n)
for n ≥ 2 and M2(n + 1, n) for n ≥ 1. One may look back at Lemma 2.3 and can easily
see that the automorphism groups of both M2(n, n) and M2(n+ 1, n) are 2-groups.

Theorem 4.11. Let G = M2(n, n), n ≥ 2. Then G has exactly one regular balanced
Cayley map of valency 4 in the sense of isomorphism.

Proof. By Lemma 2.3, Aut(G) = {σ | aσ = b2kai, bσ = bsar}, where (si, 2) = 1,
1 ≤ i, s, r ≤ 2n, 1 ≤ k ≤ 2n−1, and both a2 and b2 belong to Z(G).

We firstly show that if for some g ∈ G and σ ∈ Aut(G), X = g〈σ〉 is a Cayley subset
of G, then |X| = 4. Set N = {x ∈ G | x2n−2 ∈ G′}. According to Lemma 2.7, N is
a characteristic subgroup of G and N = 〈a2, b4〉. Without loss of generality, we assume
g = b, then in the quotient group G = G/N ∼= Z2 × Z4, the order of b is 4. While

there are exactly four order-4 elements in G and X = b
〈σ〉

is a Cayley subset of G, X
should contain all these four elements. Because the order of σ is a power of 2 and b is not
involution, according to the results in Lemma 2.5, we have |X| = |X| = 4.

Take σ1 ∈ Aut(G) such that aσ1 = b2a−1 and bσ1 = ba2n−1−1. By a direct calcula-
tion, X1 = b〈σ1〉 = {b, ba2n−1−1, b−1, (ba2n−1−1)−1} is clearly a Cayley subset of G.

For any σ2 ∈ Aut(G) such that aσ2 = b2kai, bσ2 = bsar, where k, i, s, r satisfy
the conditions listed in the first paragraph, and X2 = b〈σ2〉 = {b, bsar, b−1, (bsar)−1} is
a Cayley subset of G, one may take τ ∈ Aut(G) such that aτ = b1−sa−r(1+2n−1) and
bτ = b. It is easy to check that (ba2n−1−1)τ = bsar.

Therefore, by Lemma 2.8, the two regular balanced Cayley maps CM(G,X1, σ1|X1)
and CM(G,X2, σ2|X2

) are isomorphic. So, G has exactly one regular balanced Cayley
map of valency 4 in the sense of isomorphism.

Theorem 4.12. Let G = M2(n+ 1, n), n > 1. Then G has exactly one regular balanced
Cayley map up to isomorphism and this map is of valency 4.
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Proof. By Lemma 2.3, Aut(G) = {σ | aσ = bjai, bσ = bsa2k}, where (si, 2) = 1,
1 ≤ i ≤ 2n+1, 1 ≤ j, s, k ≤ 2n and both a2 and b2 belong to Z(G).

We firstly show that if g ∈ G, σ ∈ Aut(G) and X = g〈σ〉 is a Cayley subset of G, then
|X| = 4. Set N = {x ∈ G | x2n−1

= 1}. According to Lemma 2.7, N is a characteristic
subgroup of G and N = 〈a4, b2〉. In the quotient group G ∼= Z2 × Z4, the order of a
is 4. There are exactly four order-4 elements in G, similar to the proof of Theorem 4.11,
X = a〈σ〉 is a Cayley subset of G of order 4 and |X| = |X| = 4.

Take σ1 ∈ Aut(G) such that aσ1 = b−1a and bσ1 = b−1a2. Then, Y1 = a〈σ1〉 =
{a, b−1a, a−1, (b−1a)−1} is a Cayley subset of G.

For any σ2 ∈ Aut(G) such that aσ2 = bjai, bσ2 = bsa2k, where j, i, s, k satisfy
the conditions listed in the first paragraph, and Y2 = a〈σ2〉 = {a, bjai, a−1, (bjai)−1} is
a Cayley subset of G, one may take τ ∈ Aut(G) such that aτ = a and bτ = b−ja1−i. It
is easy to check that (b−1a)τ = bjai. Therefore, the two regular balanced Cayley maps
CM(G, Y1, σ1|Y1) and CM(G, Y2, σ2|Y2) are isomorphic and so G has only one regular
balanced Cayley map of valency 4 in the sense of isomorphism.

To be more clear, we list the number of non-isomorphic regular balanced Cayley maps
of minimal non-abelian metacyclic groups in Table 1. For brevity, we use |G|, N , RBCM
and MNAMG to denote the order of group G, the number of regular balanced Cayley maps
up to isomorphism, regular balanced Cayley maps and minimal non-abelian metacyclic
groups, respectively.

Table 1: Number of RBCM of MNAMG.

G |G| N

1 Q8 8 1

2 Mp,2(1, r) ∼= D2p 2p p− 1

3 Mp,2(m, r),m ≥ 2, p− 1 = 2es, (s, 2) = 1 2mp s

4 Mp,q(m, r), q 6= 2 pqm 0

5 M2(2, 1) ∼= D8 8 2

6 M2(n, 1), n > 2 2n+1 0

7 M2(n, n), n ≥ 2 22n 1

8 M2(n+ 1, n), n ≥ 2 22n+1 1

9 M2(n,m), m 6= n and m 6= n− 1 2n+m 0

10 Mp(n,m), p 6= 2 pn+m 0
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[11] M. Škoviera and J. Širáň, Regular maps from Cayley graphs, Part 1: Balanced Cayley maps,
Discrete Math. 109 (1992), 265–276, doi:10.1016/0012-365x(92)90296-r.

[12] Y. Wang and R. Q. Feng, Regular balanced Cayley maps for cyclic, dihedral and generalized
quaternion groups, Acta Math. Sinica 21 (2005), 773–778, doi:10.1007/s10114-004-0455-7.

[13] M. Y. Xu, Introduction to Group Theory I, Science Publishing House, Beijing, 1999.

[14] M. Y. Xu and H. P. Qu, Finite p-Group, Peking University Press, Beijing, 2010.





ISSN 1855-3966 (printed edn.), ISSN 1855-3974 (electronic edn.)

ARS MATHEMATICA CONTEMPORANEA 14 (2018) 445–454
https://doi.org/10.26493/1855-3974.1107.1c8

(Also available at http://amc-journal.eu)

A note on extremal results on directed acyclic
graphs
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Departamento de Análisis Económico y Finanzas, Universidad de Castilla-La Mancha,
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Área de la Investigación Cientı́fica, Circuito Exterior, C.U., Coyoacán 04510,
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Abstract

This paper studies the maximum number of edges of a Directed Acyclic Graph (DAG)
with n vertices in terms of it’s longest path `. We prove that in general this number is the
Turán number t(n, l+1), the maximum number of edges in a graph with n vertices without
a clique of size `+2. Furthermore, we find the maximum number of edges in a DAG which
is either reduced, strongly reduced or extremely reduced and we relate this extremal result
with the family of intersection graphs of families of boxes with transverse intersection.

Keywords: Directed graphs, Turán numbers, intersection graphs of families of boxes.

Math. Subj. Class.: 05C20, 52C99

1 Introduction
One of the fundamental results in extremal graph theory is the Theorem of Turán (1941)
which states that a graph with n vertices that has more than t(n, k) edges, will always
contain a complete subgraph of size k + 1. The Turán graph T (n, k), is a k–partite graph
on n vertices whose partite sets are as nearly equal in cardinality, and has the property

∗Partially supported by MTM 2015-63612P.
†Supported by CONACyT 166306.
‡Partially supported by PAPIIT 104915 and CONACyT 166306.
E-mail address: alvaro.martinezperez@uclm.es (Álvaro Martı́nez-Pérez), luis@matem.unam.mx (Luis
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that contains the maximum posible number of edges t(n, k) of any graph not containing a
clique of size k + 1. It is known that t(n, k) ≤ (1− 1

k )n2

2 , and equality holds if k divides
n. In fact, limn→∞

t(n,m)
n2/2 = 1− 1

m . See [1].
Turán numbers for several families of graphs have been studied in the context of ex-

tremal graph theory, see for example [3] and [4]. In ([2, 7]) the authors analyze, among
other things, the intersection graphs of boxes in Rd proving that, if T (n, k, d) denotes
the maximal number of intersection pairs in a family F of n boxes in Rd with the prop-
erty that no k + 1 boxes in F have a point in common (with n ≥ k ≥ d ≥ 1), then
T (n, k, d) = T (n − k + d, d) + T (n, k − d + 1, 1), with T (n, k, 1) =

(
n
2

)
−
(
n−k+1

2

)
being the precise bound in dimension 1 for the family of interval graphs.

Turán numbers have played and important role for several variants of the Turán Theo-
rem and its relation with the fractional Helly Theorem (see [5, 6]).

The purpose of this paper is to study the maximum number of edges in directed acyclic
graphs with n vertices with respect to it’s longest path. That turns out to be related with the
extremal behavior of the family of intersection graphs for a collection of boxes in R2 with
transverse intersection.

The first result, Theorem 2.10, states that in a directed acyclic graph with n vertices,
if the longest path has length `, then the maximal number of edges is the Turán number
t(n, `+ 1).

Theorem 3.19 and its Corollaries state that given a directed acyclic graph ~G with n
vertices such that the longest path has length `, then if ~G is either reduced, strongly reduced
or extremely reduced, ~G has at most t(n − ` + 1, 2) + T (n, `, 1) edges, where again
T (n, `, 1) denotes the maximal number of intersecting pairs in a family F of n intervals in
R with the property that no `+ 1 intervals in F have a point in common.

In fact, this bound is best possible. The bound is reached by the intersection graph of a
collection of boxes in R2 with transverse intersection (see Proposition 4.6). This graph is
extremely reduced (and thus is also strongly reduced and reduced, see Proposition 4.4).

2 Directed acyclic graphs
By a directed acyclic graph, DAG, we mean a simple directed graph without directed cy-
cles. A DAG, ~G = (V, ~E), with vertex set V and directed edge set ~E is transitive if for
every x, y, z ∈ V , if {x, y}, {y, z} ∈ ~E then {x, z} ∈ ~E .

Definition 2.1. A topological order of a directed graph ~G is an ordering O of its vertices
{v1, v2, . . . , vn} so that for every edge {vi, vj} then i < j.

The following proposition is a well known result:

Proposition 2.2. A directed graph ~G is a DAG if and only if ~G has a topological order.

Given any set X , by |X| we denote the cardinal of X .

Definition 2.3. The indegree, deg−(v), of a vertex v is the number of directed edges {x, v}
with x ∈ V . The outdegree, deg+(v), of a vertex v is the number of directed edges {v, x}
with x ∈ V . Notice that each directed edge {v, w} adds one outdegree to the vertex v and
one indegree to the vertex w. Therefore,

∑
v∈V deg+(v) =

∑
v∈V deg−(v) = |(~E)|.

The degree of a vertex is deg(v) = deg−(v) + deg+(v).
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Definition 2.4. A vertex v such that deg−(v) = 0 is called source. A vertex v such that
deg+(v) = 0 is called sink.

It is well known that every DAG ~G has at least one source and one sink.

Definition 2.5. Given a DAG, ~G = (V, ~E), a directed path ~γ in G is a sequence of vertices
{v0, . . . , vn} such that {vi−1, vi} ∈ ~E for every 1 ≤ i ≤ n. Here, ~γ has length n, and
endpoint vn.

Observe that since DAG’s are acyclic, all the vertices on a directed path are different.

Definition 2.6. Given a DAG, ~G = (V, ~E), let Γ: V → N be such that Γ(v) = k if there
exists a directed path ~γ in G of length k with endpoint v and there is no directed path ~γ′

with endpoint v and length greater than k.

Definition 2.7. Given a DAG, ~G = (V, ~E) suppose that ` = max{k | Γ(v) = k for every
v ∈ V}. Notice that, since ~G has no directed cycle, ` ≤ |V|. Then, let us define a partition
PΓ = {V0, . . . , V`} of V such that Vi := {v ∈ V | Γ(v) = i} for every 0 ≤ i ≤ `.

Notice that V0 is exactly the set of sources in ~G and V` is contained in the set of sinks
in G.

Lemma 2.8. Vi is nonempty for every 0 ≤ i ≤ `.

Proof. Let {v0, . . . , v`} be a directed path of maximal length in ~G. Clearly, for every
0 ≤ i ≤ `, vi /∈ Vj if j < i. Suppose vi ∈ Vj with i < j ≤ `. Then, there is a directed path
{v′0, . . . , v′j = vi} with j > i and {v′0, . . . , v′j , vi+1, . . . , v`} is a directed path with length
j + l − i > ` which contradicts the hypothesis.

Lemma 2.9. The induced subgraph with vertices Vi, G[Vi], is independent (has no edges)
for every i.

Proof. Let vi, v′i ∈ Vi and suppose {vi, v′i} ∈ ~E . Let {v0, . . . , vi} be a path of length iwith
endpoint vi. Then, {v0, . . . , vi, v

′
i} defines a directed path of length i+1 which contradicts

the fact that v′i ∈ Vi.

Recall that T (n, `) denote the `-partite Turán graph with n vertices and t(n, `) denote
the number of edges of T (n, `).

Theorem 2.10. Let ~G = (V, ~E) be a DAG with n vertices such that the longest directed
path has length `. Then, ~G has at most t(n, `+ 1) edges.

Proof. Consider the partition PΓ = {V0, . . . , V`} of V . By Lemma 2.9, this defines an
(`+1)-partite directed graph. Thus, neglecting the orientation we obtain a complete (`+1)-
partite graph with partition sets V0, . . . , V`. Therefore, the number of edges is at most
t(n, `+ 1).

Remark 2.11. It is readily seen that the bound in Theorem 2.10 is best possible. Consider
the Turán graph T (n, ` + 1) and any ordering of the ` + 1 independent sets V0, . . . , V`.
Then, for every edge {vi, vj} in T (n, `) with vi ∈ Vi, vj ∈ Vj and i < j let us assume the
orientation {vi, vj}. It is trivial to check that the resulting graph is a DAG with t(n, `+ 1)
edges.



448 Ars Math. Contemp. 14 (2018) 445–454

3 Reduced, strongly reduced and extremely reduced DAGs

LetO be a topological ordering in a DAG ~G. Given any two vertices v, w, and two directed
paths in ~G, γ,γ′, from v to w, let us define γ ∪O γ′ as the sequence of vertices defined by
the vertices in γ ∪ γ′ in the order given by O. Of course, this need not be, in general, a
directed path from v to w.

Let Γ(u, v) be the set of all directed paths from u to v. Let ∪O{γ | γ ∈ Γ(u, v)}
represent the sequence of all the vertices from the paths in Γ(u, v) ordered according toO.

Definition 3.1. A finite DAG ~G is strongly reduced if for any topological ordering O of
~G, every pair of vertices, v, w, and every pair of directed paths, γ, γ′, from v to w, then
γ ∪O γ′ defines a directed path from v to w.

Remark 3.2. Let ~G be DAG. Given any two vertices v, w, and two directed paths in ~G,
γ,γ′, from v to w, let us define γ ≤ γ′ if every vertex in γ is also in γ′. Clearly, “≤” is a
partial order.

Definition 3.3. A vertex w is reachable from a vertex v if there is a directed path from v
to w.

Proposition 3.4. Given a finite DAG ~G = (V, ~E), the following properties are equivalent:

i) For every pair of vertices v, w and every pair of paths, γ, γ′, from v to w, there exists
a directed path from v to w, γ′′, such that γ, γ′ ≤ γ′′.

ii) For every pair of vertices v, w such that w is reachable from v, there is a directed
path from v to w, γM , such that for every directed path, γ, from v to w, γ ≤ γM .

iii) For every topological ordering O of ~G and any pair of vertices v, w, ∪O{γ | γ ∈
Γ(u, v)} defines a directed path from v to w.

Proof. Since the graph is finite and the relation ‘≤’ is transitive, i) and ii) are trivially
equivalent.

If ii) is satisfied, then it is trivial to see that ∪O{γ | γ ∈ Γ(u, v)} = γM and iii) is
satisfied. Also, it is readily seen that iii) implies ii) taking γM := ∪O{γ | γ ∈ Γ(u, v)}.

Definition 3.5. We say that a finite DAG ~G is reduced if it satisfies any of the properties
from Proposition 3.4.

Proposition 3.6. If a finite DAG ~G is strongly reduced, then ~G is reduced.

Proof. Since the graph is finite, it is immediate to see that being strongly reduced im-
plies iii).

Remark 3.7. The converse is not true. The graph in the left from Figure 1 is clearly re-
duced. Notice that the directed path γM := {v1, v2, v3, v4, v5} is an upper bound for every
directed path from v1 to v5. However, if we consider the directed paths γ = {v1, v2, v5}
and γ′ = {v1, v4, v5} with the topological order O = {v1, v2, v3, v4, v5}, then γ ∪O γ′ =
{v1, v2, v4, v5} which is not a directed path.
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Figure 1: Being reduced does not imply being strongly reduced and being strongly reduced
does not imply being extremely reduced.

Definition 3.8. Given a finite DAG ~G and a vertex v ∈ V we say that w is an ancestor of
v if there is a directed path {w = v0, . . . , vk = v} and w is a descendant of v if there is a
directed path {v = v0, . . . , vk = w}.

Definition 3.9. We say that a finite DAG ~G is extremely reduced if for every pair of non-
adjacent vertices x, y, if x, y have a common ancestor, then they do not have a common
descendant.

Proposition 3.10. If a DAG ~G = (V, ~E) is extremely reduced, then it is strongly reduced.

Proof. Let γ = {v, v1, . . . , vn, w} and γ′ = {v, w0, . . . , wm, w} be two directed paths in
~G from v yow. LetO be any topological order in ~G and consider γ∪Oγ′ = {v, z1, . . . , zk,

w}. First, notice that z1 is either v1 or w1. Therefore, {v, z1} ∈ ~E . Also, zk is either vn
or wm, and {zk, w} ∈ ~E . Now, for every 1 < i ≤ k, let us see that {zi−1, zi} ∈ ~E . If
zi−1, zi ∈ γ or zi−1, zi ∈ γ′, then they are consecutive vertices in a directed path and we
are done. Otherwise, since zi−1, zi have a common ancestor v and a common descendant
w, then there is a directed edge joining them and, since zi−1, zi are sorted by a topological
order, {zi−1, zi} ∈ ~E .

Remark 3.11. The converse is not true. The graph in the right from Figure 1 is strongly
reduced. However, vertices w2 and w4 are not adjacent and have a common ancestor and a
common descendent.

Proposition 3.12. If ~G is transitive, then the following properties are equivalent:

• ~G is extremely reduced,

• ~G is strongly reduced,

• ~G is reduced.

Proof. By Proposition 3.10 if ~G is extremely reduced, then it is strongly reduced. By
Proposition 3.6, if ~G is strongly reduced, then it is reduced.

Suppose ~G is reduced and suppose that two vertices x, y have a common ancestor, v,
and a common descendant, w. Then, there are two directed paths γ, γ′ from v to w such
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that x ∈ γ and y ∈ γ′. By property i) in Proposition 3.4, there exists a path γ′′ in ~G from
v to w such that γ, γ′ ≤ γ′′. In particular, x, y ∈ γ′′. Therefore, either x is reachable from
y or y is reachable from x in ~G. Since ~G is transitive, this implies that x, y are adjacent.
Therefore, ~G is extremely reduced.

Definition 3.13. Given a DAG ~G = (V, ~E), the graph with vertex set V and edge set
~E ′ := ~E ∪ {{v, w} | w is reachable from v} is called the transitive closure of ~G, T [~G].

It is immediate to check the following:

Proposition 3.14. Given any DAG ~G, T [~G] is transitive.

Proposition 3.15. If a DAG ~G is reduced, then the transitive closure T [~G] is also reduced.

Proof. Suppose ~G satisfies i) in Proposition 3.4 and let γ = {v = v0, . . . , vn = w},
γ′ = {v = w0, . . . , wm = w} be any pair of paths from v to w in T [~G]. Therefore, vi
is reachable from vi−1 in ~G for every 1 ≤ i ≤ n and wi is reachable from wi−1 in ~G for
every 1 ≤ i ≤ m. Thus, there exist a path γ0 in ~G such that γ ≤ γ0 and a path γ′0 in ~G such
that γ′ ≤ γ′0. By property i), there is a directed path from v to w such that γ0, γ

′
0 ≤ γ′′0 .

Therefore, γ, γ′ ≤ γ′′0 and T [~G] satisfies i).

Then, from Propositions 3.6, 3.10, 3.12, 3.14 and 3.15:

Corollary 3.16. If a DAG ~G is reduced, then the transitive closure T [~G] is extremely
reduced and strongly reduced. In particular, if ~G is extremely reduced or strongly reduced,
then T [~G] is extremely reduced and strongly reduced.

Let us recall that

T (n, `, 1) =

(
n

2

)
−
(
n− `+ 1

2

)
= (n− `+ 1)(`− 1) +

(`− 1)(`− 2)

2
(3.1)

As it was proved in [7]:

Lemma 3.17. For n ≥ ` and d ≥ 1,

T (n+ d, `, 1)− T (n, `, 1) = d(`− 1).

In particular, T (n+ 2, `, 1)− T (n, `, 1) = 2(`− 1).
Also, from [7]:

Lemma 3.18. For 1 ≤ d ≤ n,

t(n+ d, d)− t(n, d) = (d− 1)n+

(
d

2

)
In particular, t(n+ 2, 2)− t(n, 2) = n+ 1.

Theorem 3.19. Let ~G = (V, ~E) be a DAG with n vertices and such that the longest directed
path has length ` ≥ 1. If ~G is extremely reduced, then ~G has at most t(n − ` + 1, 2) +
T (n, `, 1) edges.
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Proof. Let us prove the result by induction on n. Suppose that the longest directed path
has length `.

First, let us see that the result is true for n = `+ 1 and n = `+ 2.
If n = ` + 1 then ~G has at most `(`+1)

2 = (`−2)(`−1)
2 + 2(` − 1) + 1 = T (n, `, 1) +

t(n − ` + 1, 2) edges. The last equation follows immediately from (3.1) and the fact that
t(2, 2) = 1.

If n = `+ 2 then there are `+ 1 vertices which define a directed path γ = {v0, . . . , v`}
and one vertex w such that neither {w, v0} nor {v`, w} is a directed edge. Then, the parti-
tion PΓ = {V0, . . . , V`} of ~G satisfies that vi ∈ Vi for every 0 ≤ i ≤ `. Also, w ∈ Vj for
some 0 ≤ j ≤ ` and {w, vj}, {vj , w} are not directed edges. Hence, deg(w) ≤ `. There-
fore, ~G has at most `(`+1)

2 + ` = (`−2)(`−1)
2 + 3(`− 1) + 2 = T (n, `, 1) + t(n− `+ 1, 2)

edges. The last equation follows immediately from (3.1) and the fact that t(3, 2) = 2.
Suppose the induction hypothesis holds when the graph has n vertices and let #(V) =

n+ 2. Also, by Proposition 3.15 we may assume that the graph is transitive.
Consider the partition PΓ = {V0, . . . , V`} of V . Let #(Vi) = ri. Let v ∈ V0 and w

be any sink of ~G. Consider any pair of vertices vi, v′i ∈ Vi. Since ~G is extremely reduced
and every two vertices in Vi are non-adjacent, vi, v′i can not be both descendants of v and
ancestors of w simultaneously. Hence, the number of edges joining the sets {v, w} and
Vi are at most ri + 1. Therefore, there are at most n + ` − 1 edges joining {v, w} and
G \ {v, w}

Since G \ {v, w} has n vertices, by hypothesis, it contains at most t(n − ` + 1, 2) +
T (n, `, 1) edges.

Finally, there is at most 1 edge in the subgraph induced by {v, w}.
Therefore, by Lemmas 3.17 and 3.18, | ~E(G)| ≤ t(n− `+ 1, 2) +T (n, `, 1) +n+ ` =

t(n− `+ 3, 2) + T (n+ 2, `, 1).

By Corollary 3.16 we know that the extremal graph for reduced and strongly reduced
graphs is transitive. Thus, from Theorem 3.19 and Proposition 3.12 we obtain the follow-
ing.

Corollary 3.20. Let ~G = (V, ~E) be a DAG with n vertices and such that the longest
directed path has length ` ≥ 1. If ~G is reduced, then ~G has at most t(n − ` + 1, 2) +
T (n, `, 1) edges.

Corollary 3.21. Let ~G = (V, ~E) be a DAG with n vertices and such that the longest
directed path has length ` ≥ 1. If ~G is strongly reduced, then ~G has at most t(n − ` +
1, 2) + T (n, `, 1) edges.

4 Directed intersection graphs of boxes
Definition 4.1. Let R be a collection of boxes with parallel axes in R2. Let ~G = (V, ~E)
be a directed graph such that V = R and given R,R′ ∈ R with R = I × J , R′ = I ′ × J ′
then {R,R′} ∈ ~E if and only if I ⊂ I ′ and J ′ ⊂ J (i.e. there is an edge if and only
if the intersection is transverse and the order is defined by the subset relation in the first
coordinate). Let us call ~G the directed intersection graph ofR.

Definition 4.2. LetR be a collection of boxes with parallel axes in R2. We say thatR is a
collection with transverse intersection if for every pair of boxes either they are disjoint or
their intersection is transverse.
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R=I×J

R’=I’×J’

I

I’

J’

J

Figure 2: The transverse intersection above induces a directed edge {R,R′}.

Proposition 4.3. Let R be a collection of boxes with parallel axes in R2 and ~G be the
induced directed intersection graph. If two vertices v, w have both a common ancestor and
a common descendant in ~G, then the corresponding boxes Rv, Rw intersect.

Proof. Let a be a common ancestor and Ra = Ia × Ja be the corresponding box. Let
b be a common descendant and Rb = Ib × Jb be the corresponding box. Then if Rv =
Iv × Jv , Rw = Iw × Jw are the boxes corresponding to v and w respectively, it follows
by construction that Ia ⊂ Iv, Iw and Jb ⊂ Jv, Jw. Therefore, Ia × Jb ⊂ Rv, Rw and
Rv ∩Rw 6= ∅.

Proposition 4.4. If R is a collection of boxes with parallel axes in R2 with transverse
intersection, then the induced directed intersection graph G is extremely reduced and tran-
sitive.

Proof. First notice that the transitivity holds simply by the transverse intersection prop-
erty. Let v, w be two vertices such that there is no edge joining them. This means, by
construction, that their corresponding boxes do not have a transverse intersection. SinceR
has transverse intersection, this implies that these boxes do not intersect. Thus, by Proposi-
tion 4.3, if v, w have a common ancestor, then they can not have a common descendant.

Remark 4.5. Consider the bipartite graph G from Figure 3 with the partition given by
{letters, numbers} and assume all directed edges go from letters into numbers. Note that
G is extremely reduced, transitive and acyclic. Notice that the induced subgraphs given by
the sets C1 := {1, 2, A,B}, C2 := {3, 4, C,D} and C3 := {5, 6, E, F} are three cycles
of length 4. Furthermore the induced subgraph given by the set of vertices {1, 2, 3, 4, 8, 9,
A,B,C,D,H, I} is realizable as boxes in R2 (see Figure 4) note, that contains C1 and
C2 and its realization force one of them to be inside the other say C1 inside C2. Simi-
larly the induced subgraphs given by the set of vertices {1, 2, 5, 6, A,B,E, F, 7, 12, G, L}
and the set of vertices {3, 4, 5, 6, C,D,E, F, 10, 11, J,K} forces necessarily a system of
tree squares one inside the other. However, intervals given by {7, 8, 9, 10, 11, 12} and
{G,H, I, J,K,L} are forced to have more intersections that those given by the graph. In
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A B C D E F

G H I J K L

1 2 3 4 5 6

7 8 9 10 11 12

Figure 3: The bipartite, transitive, and extremely reduced DAG, G with partition given by
{letters, numbers} and edges directed from letters into numbers. This graph is not realiz-
able as a family of boxes in R2.

other words, there is no family of boxes (or intervals) that realizes such a graph or for which
it is induced the graph G. Then, the converse of Proposition 4.4 is not true.

1

2

3

4

A B
C

D8

9
H

I

Figure 4: Realization in R2 of the induced subgraph with vertices {1, 2, 3, 4, 8, 9, A,
B,C,D,H, I} of the graph shown in Figure 3.

Let G[r, l, s] be the graph, G(V, ~E), such that:

• V = {x1, . . . , xr, y1, . . . , yl−1, z1, . . . , zs}
• {xi, xj} /∈ ~E for any i 6= j,

• {zi, zj} /∈ ~E for any i 6= j,

• {xi, yj} ∈ ~E for every i, j,

• {yi, yj} ∈ ~E for every i < j,

• {yi, zj} ∈ ~E for every i, j,

• {xi, zj} ∈ ~E for every i, j.

This is the directed intersection graph from the collection of boxes in Figure 5.
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B1 

A1 

Bs 

Ar 

… 

…
 

Ai Bj …
 

…
 … 

C1 Cl-1 

C1 

Cl-1 

V0 V1 Vl-1 Vl 

Figure 5: The graph G[r, l, s] corresponds to the directed intersection graph of the collec-
tion in the figure where xi ∼ Ai, yj ∼ Cj and zk ∼ Bk. Notice that the graph is transitive
although not every edge is represented in the figure.

By Proposition 4.4, G[r, l, s] is a transitive extremely reduced DAG. In particular,
G[r, l, s] is strongly reduced and reduced.

Now, to prove that the bound obtained in Theorem 3.19 and its corollaries is best pos-
sible, it is immediate to check the following:

Proposition 4.6. If n− ` is even, G[n−`2 , `, n−`2 ] has t(n− `+ 1, 2) + T (n, `, 1) edges. If
n− ` is odd, G[n−`+1

2 , `, n−`−1
2 ] has t(n− `+ 1, 2) + T (n, `, 1) edges.
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