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Abstract. The paper proposes an extension of a known method for heart-beat detection based on ECG 
reconstruction in a 2D phase space coherent to the delay method to detection of the P-Q-R-S-T characteristic 
(fiducial) points. The QT Database was used for evaluation and algorithm performance was assessed using 
sensitivity (Se) and positive predictive value (PPV). Results are 99.19 %, 99.67 % and 94.58 % for Se and 95.02 
%, 99.67 % and 94.55 % for PPV for the P points, heartbeats and T points, respectively.   
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1 INTRODUCTION  

The goal of the paper is to present an extension of a 
known method for heart-beat detection based on ECG 
reconstruction in a 2D phase space to detection of the P-
Q-R-S-T characteristic (fiducial). The paper focuses on 
processing a single-lead ECG signal by means of which 
information about the cardiovascular system (CVS) 
functioning is extracted [1, 2].  

Phase space based methods for signal processing are 
well established [3–10]. The paper reviews development 
of phase space based ECG processing methods for the 
last two decades [1, 2, 11–21].  

ECG signal processing is decisive in diagnosis of 
cardiac disorders. Most of the clinically relevant 
information in the ECG signal can be derived from the 
analysis of the P-Q-R-S-T waves of the cardiac cycle 
(Fig. 1). Therefore, detection of these characteristic 
waves is one of the essential tasks in ECG signal 
processing [22]. For that reason, the development of 
effective and automated methods for detection of the 
mentioned waves and heart arrhythmias is of value for 
long recordings of patients with coronary diseases [23].  

Nevertheless, emerging nonmedical applications of 
the ECG signal also express the need for detection of 
fiducial points, such as human identification [24] and 
emotion recognition [25]. The results in [24] show that 
the features extracted from digitally detected fiducial 
points are independent of sensor location, invariant to 
the individual’s state of anxiety and unique to an 
individual and hence, appropriate for human 
identification. Results in [25] state that ECG features 
extracted from the fiducial points excellently express 

the emotion state of an individual with an almost 90 % 
success rate for sadness and joy.  

Automated detection of these characteristic waves 
has been addressed before [11, 22, 24–32]. The term 
fiducial (reference) points is a common term for 
characteristic points which are local maxima or minima 
of characteristic waves. Different methods have been 
proposed for detection of the fiducial points in the ECG 
signal, such as signal derivatives and digital filtering 
[11, 22], Wavelet Transformation [26, 28, 31], Neural 
Networks [27], Hidden Markov Models [29], Hilbert 
Transformation [30], etc.  

According to [3] CVS is an example of a nonlinear 
dynamical system. Because of non-damping oscillations 
CVS can be treated as a self-sustained oscillator which 
is not strictly periodic [1, 4]. The knowledge of 
deterministic dynamical chaos in real dynamical 
systems (such as CVS) is based on the properties of 
attractors (phase portraits) serving as the mathematical 
image of such systems [3].  
 A phase portrait is a graphical presentation of 
dynamical-system oscillations in phase space. The 
method of analyzing oscillations of dynamical systems 
through phase portraits was introduced in [5]. A phase 
portrait of a system is a set of paths that represent all of 
its possible histories. Each point in the phase portrait 
represents a specific state of the system in time. 
Analysis of phase portraits of complex oscillations 
enables assessing topological structures of chaotic 
attractors and making valuable assumptions for further 
investigations.  

According to [3] a dynamical system, which can be 
observed experimentally in time and cannot be 
described by equations, is called a “black box” 
dynamical system. The entire available information  
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about such a system is contained in the input and output 
signals only. The output signal is measured 
experimentally in the form of a one-dimensional time 
series 

 
xk=x(k*∆t), k = 1, …, N.   (1) 
 

 The techniques for reconstructing phase portraits of 
dynamical systems from their scalar time series are 
introduced in [6] and the mathematical definition of the 
delay method is given in [7]. This method was also 
presented in [8], where it was used in modeling of 
chaotic time series. In the nineties, reconstructing phase 
portraits from the scalar time series was applied by 
several authors in processing of electrocardiogram 
signals [1, 11–13]. Implementations of the method in 
the field of cardiography continued in the last decade in 
[2, 14–17].  
 A phase portrait visualizes the entire ECG record in a 
single small-size figure thus, simplifying handling with 
ECG recordings as it removes scrolling longer records 
in time (Fig. 1) and simultaneously presents several 
ECG signal characteristics, such as the P-Q-R-S-T 
waves, of the complete ECG record.  
 There were also hardware implementations of cardiac 
abnormalities detectors [18, 19], where the authors 
describe the method as fast and accurate and highly 
noise resistant enabling the use in small, portable and 
wearable wireless devices limited with energy supply 
and processing power (mobile phones, smartphones, 
electronic patches, etc.). In both cases, real-time 
processing of the ECG signals using phase portraits was 
demonstrated. Furthermore, phase portraits are reported 
in major EU research projects, such as [33] and [34]. 
 The method of phase portraits was described in detail 
in [3, 9, 20]. A very informative description of nonlinear 
time-series analysis of the human ECG is given in [21]. 
According to the authors, the method of delays 
determined in [19] is the most simple for phase-portrait 
reconstruction and therefore most widely used. In fact, 
most of the authors mentioned in this section have used 
the delay method in their work. Nevertheless, other 
methods for phase-portrait reconstruction are also 
possible, e.g. derivation, integration [2, 10], although 
rarely used.  
 

2 SETUP  

The algorithm was evaluated by using the QT Database 
[35] designed to evaluate algorithms detecting 
waveform boundaries in ECG. It contains 105 ECG 
recordings with signals sampled at 250 Hz, each 15 
minutes long (containing 225.000 samples). Recordings 
in the QT Database [35] contain two ECG leads with 
manually determined waveform boundaries and fiducial 
points on subsets of heartbeats in each signal. These  

 

Figure 1: Normal ECG signal segment from the recording 
sel100 of the QT Database [35] in (a) time space and (b) phase 
space.  
 
subsets of annotated heartbeats included at least 30 heart 
beats in each signal record. In all, 3622 QRS complexes, 
3193 P points and 3541 T points were annotated in the 
database. 

The algorithm was designed and evaluated in 
MATLAB® [36].  

 

3 METHOD  

3.1 Characteristics of a normal ECG signal  

The ECG signal is visualization of the electrical cyclic 
activity of the heart. An ECG signal is captured with 
electrodes acquiring the body surface potentials and the 
difference between two electrode readings representing 
one ECG lead. The standard in medicine cardiac 
monitoring is the 12-lead ECG [38]. It consists of 12 
different ECG leads exposing the heart cyclic activity 
from 12 different directions. For a complete 12-lead 
ECG, 10 electrodes need to be placed on specific 
locations of the body [37]. This paper focuses on a 
single ECG lead (preferably lead II) proved to be 
sufficient for phase portrait reconstruction and detection 
and classification of the ECG signal [1, 2].  

A normal ECG cycle of the lead II signal is shown in 
Fig. 1. It starts with a positive P wave which is a result 
of the heart atria contraction (depolarization). This is 
followed by a combination of three waves: a negative Q, 
a positive R and a negative S. This is called the QRS 
complex and represents the atria relaxation 
(repolarization) and ventricular depolarization which 
happen at the same time. The heart cycle is concluded 
by a positive T wave representing ventricular 
repolarization. The amplitudes of these five waves along 
with time intervals between them are ECG signal 
characteristics and represent important information 
about the heart function.  
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The ECG signal is very diverse and each individual 
has a unique signal pattern. However, normal ECG 
signal characteristics are statistically determined and are 
also valid for lead II in [37].  

3.2 Phase-space reconstruction – delay method  

In general, as defined by [6] and [7], a phase portrait of 
a dynamical system, described by a one-dimensional 
time series of measured scalar values y(t), can be 
reconstructed in a k-dimensional state space. From the 
time-series signal we can construct an n-dimensional 
signal Y(t)  
 
���� = �����, ��� + 
�, … , ��� + 
�� − 1����,      (2)

  

 
where τ is the time delay and n is the mapping 
dimension of the reconstruction space. The result of the 
reconstruction process is the phase portrait presented in 
an n-dimensional phase space.  

We reconstructed the phase portrait in a 2D (n = 2) 
phase space (y(t), y(t + τ)). The phase portrait 
reconstruction is shown in Fig. 1 with a single ECG 
cycle visualized in time and phase space along with five 
correlated points in every figure.  
 The phase portrait – is the end result of the 
reconstruction procedure – is shown in Fig. 1(b). The 
amplitude values of the selected ECG signal segment in 
Fig. 1(a) serve as the abscissa values for Fig. 1(b) and 
the amplitude values of the delayed signal segment 
represent the ordinate values for the phase portrait in 
Fig. 1 (b). Since the space dimension is determined, the 
shape of the polygons in the phase portrait depends 
entirely on the choice of delay. 

3.3 Optimal delay selection  

The QRS complex (combined Q, R and S waves) and 
the P and T waves cause specific trajectories and shapes 
in the phase portrait. A number of consecutive points on 
these trajectories compose polygons. Based on their area 
size, we can distinguish between the QRS complex and 
the P and T waves. The following section describes the 
algorithm for detecting the QRS complexes and the P 
and T waves. These waves and complexes give rise to 
three different polygons in the 2D phase portrait of the 
ECG signal (Fig. 1). The largest and most significant 
polygon in the phase portrait is the result of the QRS 
complex, the smaller polygon corresponds to the T 
wave and the smallest polygon is caused by the P wave.  

The size of the polygons corresponds to the 
amplitudes of specific waves in the ECG signal and to 
the chosen delay. This means that the QRS complex 
with the highest amplitude matches the largest polygon. 
However, the size of the polygons can be further 
increased by choosing a proper delay value. To allow 
for a more clear distinction between the characteristic 
waves, the polygons should be open and maximized in  

Figure 2: Impact of different delay values on the shape of the 
phase portrait on an example of two ECG cycles (a): 4 ms (b), 
10 ms (c), 20 ms (d) and 40 ms (e). 
 
the area size. 

At small values of τ, the value of y(t+τ) is near y(t) 
and the resulting phase portrait is concentrated around 
the diagonal y = x of the 2D phase space. With 
increasing τ, the phase portrait diverges from the 
diagonal until a breaking point, where the phase portrait 
loses its round shape.  

Fig. 2 visualizes the impact of different delay values 
on the shape of the phase portrait on an example of two 
ECG cycles (Fig. 2(a)) from the recording sel100 of the 
QT Database [35]. The time delay for the reconstruction 
of the phase portrait in Fig. 2(b) is 4 ms, which is 
considered small since it represents one signal sample. 
Thus, the resulting phase portrait is concentrated near 
the diagonal of the phase space. Nevertheless, when the 
delay is increased, the phase portrait increases in its size 
and stretches away from the diagonal. Fig. 2(c) shows 
the phase portrait at the time delay of 10 ms. The 
increase in the phase-portrait size is evident compared 
to Fig. 2(b). The phase portrait continues growing in its 
size together with the delay values to around 20 ms 
(Fig. 2(d)), when it reaches the breaking point. This 
means that the phase portraits for the delay values above 
20 ms are intersecting and divided into several smaller 
loops thus, complicating detection of specific points. 
The algorithm is still effective till the delay values of 
about 80 ms. An example of such intersected phase 
portrait is shown in Fig. 2(e) with the delay being 40 
ms. According to this visual experience, the optimal 
delay would be the value just before the breaking point, 
which is 20 ms.  

To confirm this optimal delay, the algorithm was 
tested on a one minute segment of the ECG signal from 
recording sel16265 from the QT Database [35]. In the 
selected minute of the signal there are 67 normal heart 
beats. The phase portrait was reconstructed according to 
Section 3.2. Fig. 2 (a) – (h) represents phase portraits 
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Table 1: Detection of the R waves through phase-portrait area 
calculation. 

Delay [no. of 

samples] 

No. of detected R 

waves  
PPV =  [%] 

1 (2 – 5 ms) 67 100 
5 (18 – 21 ms) 67 100.0 
8 (30 – 33 ms) 67 100.0 
10 (38 – 41 ms) 67 100.0 
15 (58 – 61 ms) 67 100.0 
18 (70 – 73 ms) 67 100.0 
19 (74 – 77 ms) 67 100.0 
20 (78 – 81 ms) 68 100.0+1.5 
21 (82 – 85 ms) 75 100.0+11.9 
22 (86 – 89 ms) 95 100.0+41.8 
23 (90 – 93 ms) 113 100.0+68.7 
25 (98 – 101 ms) 130 100.0+94.0 

 
for the selected signal at different delay values. With the 
experiment we planned to show the impact of the 
selected time delay on the algorithm efficiency, hence 
the time delay was the only variable. 
The testing results are shown in Table 1 giving the 
number and percentage of the detected R waves in the 
signal (2nd and 3rd column) at various delay values (1st 
column). The delay values are given as the number of 
samples and are also calculated in milliseconds. 
According to Section 2, one sample is taken every four 
milliseconds. 

From the results given in Table 1 we can conclude 
that the algorithm to be used in detection of the R wave 
by using area calculation in the phase portrait is works 
very well till the delay value of 20 samples 
(approximately 80 milliseconds) and after that at higher 
delay values its effectiveness decreases very quickly. 
With the delay of 23 samples (approximately 90 
milliseconds), the algorithm fails completely as it 
detects 46 additional R waves that are not true. 

In [18] and [19], 20 milliseconds were chosen as the 
optimal delay. This is in line with our experiments, 
which return good results for the delay values between 2 
ms and 80 ms. Therefore, we chose the time delay of 20 
ms for the experiment presented in this paper.  

3.4 Detection using area calculation in the phase 

space  

To determine the fiducial points representing the local 
maxima or minima of the mentioned waves, we 
calculated the areas of individual polygons to create the 
detection function. After selecting the time delay and 
reconstructing the phase portraits, the characteristic-
point detection can proceed by determining the 
detection function. Elements of the detection function 
for this method are the area values of the consecutive 
polygons. The area size of a polygon is calculated by 
using a plane-geometry equation for the planar non-self-
intersecting polygons (3) 

Figure 3: Phase portraits of the ECG signal from the recording 
sel16265 from the QT Database [35] at different delay values: 
5 ms (a), 15 ms (b), 20 ms (c), 30 ms (d), 45 ms (e), 70 ms (f), 
85 ms (g) and 100 ms (h). On the x axis of each phase portrait 
there are amplitude values in millivolts of the non-delayed 
ECG signal and on the y axis there are amplitude values in 
millivolts of the delayed ECG signal. 
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We consider the absolute values as the orientation of 
the polygons is not relevant. Parameter n in equation (3) 
denotes the number of samples comprising one area 
considered for calculation.  

Selection of the value of parameter n depends on the 
sampling frequency and QRS complex duration [18]. 
This means that if the average QRS complex is less than 
100 milliseconds, which is 25 data samples at 250 
samples per second, none of the polygons comprised of 
10 data samples is intersecting. This can be generalized 
for using different sampling frequencies: the number of 
sample points comprising the polygons is less than half 
of the number of sample points representing an average 
QRS complex of 100 milliseconds. Therefore, in our 
experiments the number of samples was equal to 
approximately one third of the QRS complex duration, 
e.g. from 60 – 120 ms. For example, if an ECG signal is 
sampled at 250 Hz, it is recommended to take at least 5 
- 10 points for polygon description.  
Once the detection function is ready the QRS complexes 
can now be detected by using the threshold function. 
However, the detected QRS complexes are indicators of 
a present heart beat and give no information about exact 
locations of the Q, R and S specific points. Therefore, 
the next step in the algorithm is to determine exact 
locations of the R points in the signal.  

Locations of the R points are determined by using the 
detected QRS complex locations and the duration of the 
normal QRS complex. The algorithm checks for the 
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Table 2: Specific-point detection results using phase space area calculation.  
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(TP+FP) 

[%] 

3193 3333 3622 3622 3541 3542 99.19 95.02 99.67 99.67 94.58 94.55
 
maxima in a defined time window with the detected 
QRS complex of the analysed ECG signal positioned as 
the centre point. The highest maximum in this time 
window is recognized as the R point. The width of the 
time window is twice the width of the maximum normal 
QRS complex, which is 120 milliseconds [37]. Both 
neighbouring Q and S points are detected as the local 
minima before (Q point) and after (S point) the R point 
in the same interval.  
 Detection of the T points is similar to detection of the 
R points. Indicators of the T peaks are extracted from 
the detection function on intervals between the QRS 
complexes as a local maximum. So, the exact locations 
of the T points are detected in the signal in the time 
window around the indicator. The time window is 200 
milliseconds wide, which is the maximum value for the 
T wave [37, 38]. The first fiducial point of the ECG 
cycle is detected last from the signal according to the 
known locations of the previously detected fiducial 
points. The P point is detected as a local maximum in 
the time window between the Q point and 200 
milliseconds before the Q point, which corresponds to 
the maximum value of the P-R interval [37]. 
 

4 RESULTS  

Results of our experiment for the algorithm using the 
polygon area calculation in phase portraits for fiducial 
point detection are given in Table 2. The first, third and 
fifth column give the total number of the annotated P, 
QRS and T points in the entire QT Database [35]. The 
second, fourth and sixth column give the total number 
of the detected P, QRS and T points, respectively. The 
last six columns present sensitivity (Se [%]) and 
positive predictivity (PPV [%]) for the detected P, QRS 
and T points. The values of parameter Se are 99.19 % 
for the P points, 99.67 % for the QRS complexes and 
94.58 % for the T points. The values for parameter PPV 
are 95.02 % for the P points, 99.67 for the QRS 
complexes and 94.55 % for the T points.  

5 DISCUSSION  

Records used in this paper are from the QT Database 
[35] designed to evaluate algorithms detecting 
waveform boundaries in ECG. Signals from the QT 
Database [35] include a broad variety of the QRS and 
ST-T morphologies. All these variations are 
representing real clinical conditions.  

The standard performance measures, such as 
sensitivity (Se) and positive predictivity (PPV) are 
tested for the algorithm for fiducial points detection. Se 
represents the percentage of the true fiducial points 
correctly detected by the algorithm and the PPV 
represents the percentage of fiducial points detections 
which were in reality true. The Se and PPV tests reflect 
detection performance for fiducial points detection 
using phase-space area calculation.  

The algorithm using area calculation in the phase 
space performs well and stable in average for all signals 
from the database (Table 2). Its performance for QRS 
detection is comparable with other methods [26, 31, 32]. 
Efficiency is excellent as it achieves 100 % in all signals 
but one. The only signal the algorithm failing to detect 
all the QRS complexes correctly is sel102 containing 
pacemaker heart beats. In all, 12 QRS complexes were 
false detected (detected as FP) in the signal sel102 and 
the entire QT Database [35].  

Compared to methods from [31, 32], there is room for 
improvement in the performance of the algorithm for P 
and T point detection, which is slightly lower because of 
false detections due to the missing waves and inverted 
or biphasic waves, occurring due to the abnormalities of 
the heart function, such as atrial block, etc. Out of the 
3333 detected P points there are 166 false detections 
(FP), which is the reason for lower PPV. On the other 
hand, Se is over 99 % because only 26 P points were 
missed (FN). This means that the algorithm has a good 
detection rate for the P points, nevertheless it is 
sensitive for the missing P waves in abnormal events in 
the ECG signals, such as atrial blocks. In addition, there 
were 3542 detected T points out of which 193 were 
false detections (FP) and consequently 192 missed T 
points (FN). This results in lower Se and PPV values 
being mainly due to the biphasic T waves. The 
algorithm determined the peak of the positive part of a 
biphasic wave as the T point, while the manual 
annotation was set in the middle of the wave. 
 

6 CONCLUSION  

The paper proposes an extension of an established 
algorithm used in detection of heart beats with area 
calculation of phase portrait polygons for fiducial points 
detection in ECG signals. Testing on the QT Database 
[35] gives comparable results to the state-of-the-art.  
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