
  Informatica 27 (2003) 495–501 495
  

A Comparison Between Exact and Approximate Method for Solution 
of General One-Dimensional Cutting Stock Problem  
Peter Trkman and Miro Gradišar 
Faculty of Economics 
Kardeljeva ploscad 17 
1000 Ljubljana 
Slovenia 
 
Keywords: cutting, optimisation, branch & bound, decision tree 

Received: July 17, 2003 
 

The paper describes exact solution of general one-dimensional cutting stock problem (G1D-CSP) where 
all stock lengths are different. Branch & Bound (B&B) optimization method is used. The solution is 
cutting plan with minimized overall trim loss in such a way that order lengths are cut in exactly required 
number of pieces and only one stock length is in general not cut to the end. If it’s long enough then it 
can be used later and is not treated as a waste. G1D-CSP can also be solved approximately with 
Sequential Heuristic Procedure (SHP). Comparison between B&B and SHP is presented. It is shown 
that exact solution is better when the size of the problem does not exceed certain limit. The question is, 
how to determine this limit, which can be different in different practical situations. An approach, based 
on decision trees, for the selection of appropriate method for each individual case, is proposed. 
Numerous examples are calculated. 

 
 

1 Introduction 
 
 One-dimensional stock cutting occurs in many 
industrial processes [4,8,9,16,19] and during the past few 
years it has attracted increased attention of researchers 
from all over the world [1,2,11,12,18,21]. Most standard 
problems related to one-dimensional stock cutting are 
known to be NP-complete and in general a solution can 
be found by using approximate methods and heuristics. 
However, the unbelievable development of computers 
and constantly growing processing power are pushing the 
complexity limit of the cutting problems, where exact 
methods could be used, slightly up. Therefore importance 
of exact methods is growing and the number of practical 
situations, where they can be used, increases [8,14, 18].  

 Dyckoff [3] classifies the solution of cutting 
stock problems into two groups: pattern oriented and 
item-oriented. In the pattern-oriented approach, at first, 
order lengths are combined into cutting patterns, for 
which - in a succeeding step - the frequencies, that are 
necessary to satisfy the demands, are determined. This 
approach can be applied when the stock is of the same 
length [6] or of few groups of standard lengths [7]. 
Pattern-oriented approach is most common in practice 
and therefore the type of the problem we get in this case 
is designated as Standard One-Dimensional Cutting 
Stock Problem (S1D-CSP) [5,12,13]. To solve (S1D-
CSP) the classic LP-based Gilmore and Gomory’s 
“delayed pattern generation” [6,7] or any other LP-based 
Method (LPM) is mostly used [16,18,19,22,23].  

 The item-oriented approach is characterized by 
individual treatment of every item to be cut. If stock 
lengths are all different then frequencies others than 0 

and 1 cannot be determined and only an item-oriented 
solution can be found [9,10].  

 An item-oriented approach is more general and 
can be theoretically applied regardless of the assortment 
of large objects [3,12,13]. Therefore the problem we get 
in this case is designated as General One-Dimensional 
Cutting Stock Problem (G1D-CSP) [11,13]. There are 
two possibilities to solve G1D-CSP: exact methods 
(branch and bound, dynamic programming) or 
approximation algorithms in form of SHP [20]. SHP 
seems to be better regarding robustness and potential 
usefulness in a wide range of cases. Also time 
complexity of SHP is in general lower. On the other hand 
exact solution is better where the size of the problem 
doesn’t exceeds acceptable limits and becomes 
intractable. But even in such cases approximate solution 
obtained in some acceptable time period, as a temporary 
result of exact method, can be comparable with the one 
of SHP.   
 Many examples of exact methods for solving 
different types of cutting problems are described in 
literature [8,18]. But we didn’t found any exact solution 
of G1D-CSP so far. 
 If there are many methods available for the 
solution of G1D-CSP, then it can be difficult to select the 
right one. Therefore we decided to propose an approach 
based on decision trees for the selection of suitable 
solution method, which will take in the account the 
problem size, the quality of the solver and the computer 
speed. 
 This paper is organized as follows: in next 
section the definition of cutting problem is given. Exact 
solution development, using Branch & Bound 
optimization method in the form of a computer program, 
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is presented with numerous practical examples. In 
section 4 those results are compared with the results, 
acquired with SHP. Finally a new approach, based on 
decision trees for the selection of suitable solution 
method for each individual case, is proposed. It is shown 
that this approach can indeed lead to reduced trim loss. 

 

2 Problem definition and solution 
method 

 
 G1D-CSP is one-criterial minimization problem. 
The criterion is overall trim loss. G1D-CSP satisfies two 
general conditions: 
1. If there is abundance of material order lengths are cut 

in exactly required number of pieces (In S1D-CSP 
this number can be greater than demanded.).    

2. Only one stock length cannot be cut to the end. The 
result is residual length that can be used later (In 
S1D-CSP all used stock lengths are cut to the end.). 

 Details in problem definition are similar to those in 
[12] and [10]. The difference regarding [12] is that we 
also included orders that cannot be fulfilled entirely due 
to shortage of material in stock. The difference regarding 
[10] is that distribution of uncut pieces by order lengths 
is not included. It is more difficult to control factors other 
than trim loss with exact methods than with SHP. Other 
differences regarding both [12] and [10] doesn’t affect 
the content of the problem but only the way of 
expression, which is adapted to the solution method. 
 First we need to decide whether we will use 
branch and bound method or some dynamic 
programming.  Branch and bound (B&B) exact method 
was chosen. There are two reasons for that. First B&B is 
standard method and second, the market is offering many 
OR computer packages with B&B. Some of them allow 
using B&B as a subroutine. This means that it could be 
included in some application program. In our case the 
application program collects data, checks whether there 
is an abundance or shortage of material, solves the 
appropriate model and displays the results.  
 Problem is defined as follow: 
 For every customer order a certain number of 
stock lengths is available. In general all stock lengths are 
different. We consider the lengths as integers. If they are 
not originally integers we assume that it is always 
possible to multiply them with a factor and transform 
them to integers. It is necessary to cut a certain number 
of order lengths into required number of pieces. The 
following notation is used:  
si =  order lengths; i = 1,...,n. 
bi =  required number of pieces of order length si. 
dj =  stock lengths; j = 1,...,m. 
xij = number of pieces of order length si having  been 
cut from stock length j. 
yj indicates whether the stock length j is used in the 
cutting plan (yj=1 if stock length j is not used in the 
cutting plan). 

ui indicates whether the remainder of stock length j is 
greater than UB (upper bound for the trim loss). uj can 
equals 1, only if the remainder is greater than UB. Stock 
length that is longer than UB does not necessarily count 
as trim loss. 
δj indicates the remainder of the stock length j. 
tj indicates the extent of trim loss relating to stock length 
j. tj=δj for all used stock lengths, except for one that is 
longer than UB and can be returned to the stock and used 
again later (where uj=1) and all unused stock lengths 
(where yj=1).  
 
 Two cases are possible:  
 
Case 1: the order can be fulfilled as the abundance of 
material is in stock. 
 
     m 
(1)   min ∑ tj      (minimize trim loss which is smaller than  
     j=1         UB) 
s.t. 
         n 
(2)   ∑ si⋅xij +δj = dj (1-yj)    ∀ j      (knapsack   constraints,     
         i=1       the total length of pieces cut from a stock 

lengths cannot be longer than the total 
length of the stock)                                         

 
         m 
(3)   ∑ xij = bi     ∀ i     (demand constraints, the numbers  
   j=1   of pieces are all fixed) 
    
 

(4)    UB - δj + UB·(uj - 1) ≤ 0    ∀ j    (uj can be 1, only if  
   the remainder of stock length is longer  
   than UB) 
           
    m 
(5)   ∑ uj  ≤ 1      (maximum number of used stock 
        j=1     lengths that do not count as trim loss) 
 
(6)   δj - tj - (uj + yj)·(max dj) ≤ 0    ∀ j     ( tj equals δj for  
     all stock lengths where uj = tj = 0;  
     otherwise tj can be 0) 
 
(7)   UB ≤ max si 

        xij ≥ 0, integer  ∀ i, j 
    tj ≥ 0               ∀ j 
    δj ≥ 0              ∀ j 
    uj ∈ {0,1} 
    yj ∈ {0,1}. 
 
Case 2: the order cannot be fulfilled entirely due to 
shortage of material (the distribution of uncut order 
lengths is not important). 
                n 
(1)   min ∑  δj          (minimize sum of trim losses)   
               i=1 

s.t. 
         n 
(2)   ∑ si⋅xij +δj = dj     ∀ j      (knapsack constraints) 
         i=1        

 
    m 
(3)   ∑ xij  ≤ bi      ∀ i       (demand constraints) 
        j=1 
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(4)    xij ≥ 0, integer  ∀ i, j 
 
   δj ≥ 0              ∀ j. 
 
     

 Unutilized stock length that is larger than some UB 
can be used further and is not considered as waste. The 
question is how to determine UB. This depends on the 
relation between available material and total needs.  
 Let’s consider the case 1 first. If sufficient stock 
lengths are available there will be cutting plans with "no 
trim loss" but ever growing stocks. To prevent this an 
additional condition (case 1, condition (5)) has to be set: 
only one residual length may be longer than the UB. UB 
can be set arbitrarily between 0 and max si. The larger 
UB means greater the cutting problem and higher trim 
loss. UB = min si is found in practice [9]. 
   In case 2, however, UB is not included in the model. 
If, for example, UB is reduced to min si, this would lead 
to the following problem: As the aim of the algorithm is 
the minimization of overall trim loss, this could lead to 
unfulfilled requirements for the longest order lengths, 
even if the overall trim loss would be small and the aim 
would be achieved according to the logic of the 
algorithm. The trim losses, which would be longer than 
UB but shorter than the longest order lengths, could 
remain unutilized. For that reason UB shouldn’t be less 
than max si. On the other hand if the UB would be set to 
max si any trim loss longer than max si can certainly be 
used to cut an additional order length, so UB equal or 
longer than max si would not have any influence on the 
solution. Therefore UB is not included in the 2nd model. 

 

3 Results  
 For all calculations MPL/CPLEX solver on the PC 
(AMD, 1300 MHz) was used. The data was generated 
and saved in MS Excel and the solver was called with 
Visual Basic for Applications. In first experiment we 
found a solution of a problem described in [10]. The 
improved solution (Fig. 1) was obtained in 10.1 seconds 
after examining 59467 integer nodes. The total trim loss 
is 1 cm, while the solution in [10] has a trim loss of 2 cm. 
In Fig. 1 firstly all details about order and stock lengths 
are shown (length and number of pieces demanded for 
each order length). Then the detailed cutting plan is 
presented (which and how many order lengths are cut 
from each stock length) and lastly the trim loss for each 
stock length and number of realized and unrealized order 
lengths. 

The presented problem is relatively small (4 stock 
and 5 order lengths) and therefore appropriate for exact 
method. However with the growing number of integer 
variables the complexity of the problem and the solution 
time grow quickly. Sometimes it is not possible to find 
the optimal solution within reasonable time limit. 
Fortunately B&B works in such a way that it approaches 
gradually to the optimal solution and in the mean time 
offers temporary results, which can be near to optimum. 
To test the correlation between time limit and trim loss 

each problem instance in following experiments was 
solved with 6 different time limits. 
 For generation of problem instances we decided to 
use problem generator PGEN [12,13]. With PGEN it is 
possible to regenerate test data using the same seed, then 
to find the solution with some other method and compare 
the results. Input data are generated according to problem 
descriptors as random sample of one or more test 
problems. Problem descriptors are: 
n   - number of different order lengths 
v1, v2  - lower and upper bound for order lengths, i.e. 
  v1≤si ≤ v2  ( i = 1,...,n) 
d  - average demand per order length 
m   - number of non-standard stock lengths 
u1, u2  - lower and upper bound for non-standard stock  
  length, i.e. u1 ≤ dj ≤ u2  ( j = 1,...,m). 
r   - number of consecutive generated problem 

instances. 
 Test problems have been generated with the 
following values of parameters: 
• determination of order lengths and demands:  
 By assigning different values to the problem 
parameters n (n = 5, 10, 15), v1 and v2 (v1 = 100 and v2 = 
200, v1 = 200 and v2 = 400, v1 = 300 and v2 = 600) and d 
(d = 5, 10, 15) and combining them with each other 27 
problems have been generated.  
• determination of non-standard stock lengths: 
 Number of non-standard stock lengths m varies from 
5 to 15, lower bound u1 from 1000 to 3000 and upper 
bound u2 from 2000 to 6000.  
 The details about generation of problem descriptors 
and determination of seed for sequences of test problems 
are shown in the dynamic programming scheme of the 
procedure PROGEN.  
Procedure PROGEN: 
for i = 1 to 3  
  for j = 1 to 3  
     for k = 1 to 3 
     n ← i ⋅   5  
     v1 ← j ⋅   100 
     v2 ← j ⋅   200 
     d  ← k ⋅  5 
     m  ←  k ⋅  5 
     u1 ←k ⋅  1000 
     u2 ← k ⋅  2000 
   c ← int(

10
m )⋅ 9+1 

    seed ← m+10⋅ c⋅ d+10⋅ c2⋅ v2+1000⋅ c2⋅  
        v1+1000000⋅ n 
       r ← 10 
      call PGEN (n, v1, v2, d, m, u1, u2, seed, r) 
    next k 
  next j 
next i       
 
 PROGEN procedure is implemented with Visual 
Basic. Problem descriptors generated with PROGEN 
procedure for 27 test cases are presented in Table 1. In 
the table lower and upper bounds for stock and order 



498 Informatica 27 (2003) 495–501  P. Trkman et al. 
 

 498

lengts are shown, as well as the number of different order 
and stock lengths and the average demand per order 
length. The seed for generation of test problems which 
enables everyone to generate the same test problems is 
also shown. 
 For each test case procedure PGEN generates 10 
consecutive problem instances (r=10). In total there are 
270 problem instances, 150 with abundance and 120 with 
shortage of material.  
 Each of the 270 problem instances was solved 6 times 
(using the appropriate model either for lack or abundance 
of material) with different time limits (time limits were 
set at 2, 10, 20, 30, 45 and 60 seconds) 
 The generated data and the solution for first generated 
instance of the first case are presented in Fig. 2. The 
optimal solution with trim loss 1 cm was found in 3.9 
seconds. The meaning of columns is the same as in Fig. 
1. 
 Stock length 2 is not used in cutting plan and stock 
length 1 is not cut to the end. Since δ1=989 and UB=102, 
t1=0. So stock length 1, which is larger than UB, can be 
used later and is not considered a waste. 
 The summarized results for all 270 instances with UB 
= min si with different time limits are presented in Table 
2. For each of the different time limits the total trim loss, 
percent of trim loss and the number of optimally solved 
instances is shown. The 3rd column indicates how many 
instances were solved optimally within the given time 
limit. In each row 10 problem instances are summarized. 
Trim loss is calculated as the sum of trim losses of all 10 
instances, the percentage is calculated as the average of 
10 percentage losses.  
In 2 seconds an optimal solution for 57 cases was found, 
in 60 seconds for 110 cases. The average trim loss varies 
from 0% to 2.4%.  
 The trim loss is the largest in case number 7 although 
the solution is optimal in all 10 instances. Low values of 
n, d, m mean that in this case the problems are relatively 
easy to solve, however due to small ratio between stock 
lengths and order lengths as well as the small number of 
possible combinations, the optimal solution has a 
relatively high trim loss. To a lesser extent the same is 
also true for case No. 4. In other cases the trim loss is 1% 
or lower. Even better results could be obtained by 
increasing the time limit for the solution. 
 

4 Comparison with CUT procedure 
  
We have compared results of proposed exact method 
with the results of SHP CUT described in [10]. The 
results are shown in Table 3. As in previous table 10 
instances are summarized in one line. UB is set to min si. 
In the second column it is indicated whether there is 
enough material or not. Y/N means that in some problem 
instances there is enough material, in others not. The 
total trim loss and percent of trim loss with both methods 
(exact and heuristic method CUT) are shown for each 
case. 

 In total within the given time limit (60 seconds) the 
exact method found a better solution in 64 instances, 
while the CUT procedure in 139 cases, in 67 cases both 
methods found the solution with the same trim loss (not 
necessarily the same solution though).  The exact method 
has better results for cases with smaller d and m (in all 
cases with d<=5 and m<=5 a better solution was found 
with the exact method even with small time limits), the 
CUT procedure for larger cases (d>=10 and m>=10). 
 

5 Selection of the method 
 
Although it is clear from table 3 that exact 

method is more suitable for smaller cases and heuristics 
for larger, we need more precise criteria for the selection 
of solution method in each individual case.  The main 
question that needs to be answered is, what is the 
maximum size of the problem that can be solved 
optimally within the given time limit. The question can 
be answered by using mathematical analysis of 
computational complexity. But for precise answer we 
would need a very precise data of speed of particular 
processor executing specific instructions generated by 
specific compiler and detailed data about solver. This 
data is usually not available. Even if they would be, the 
mathematical analysis would be extremely complicated. 
Therefore we decided to answer the question by using 
statistics. The new approach based on the creation of 
decision tree and its use for the selection of the right 
method is presented in this chapter.  
  The main idea of our approach is to generate a large 
number of cases with different parameters by using the 
problem generator and then solve them with the selected 
method and the given time limit. The time limit can be 
chosen arbitrarily and depends on what is considered as a 
maximum acceptable solution time in some specific 
practical situation.  
Each case is than assigned either a class value 1 (if 
optimal solution was found within selected time limit) or 
0 (otherwise). Those parameters and class values are then 
used as the data for decision tree classifiers. Decision 
trees were chosen as our kind of the problem fulfills the 
key requirements that are needed for successful 
implementation of decision trees (as listed by Quinlan 
[17]): 

- attribute-value description: each test case in our 
example can be described with the same 
attributes (number of stock and order length, 
average demand per order length etc.), 

- predefined classes: each case is assigned to one 
of the two predefined classes (either the case 
can be solved optimally within time limit or 
not), 

- discrete classes: both classes in our example are 
discrete, 

- sufficient data: sufficient number of problem 
instances can be automatically generated and 
solved using problem generator and solving 
procedure, 
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- “logical” classification models: our example can 
be expressed as decision trees or sets of 
production rules. 

 This approach can be used in various cases: 
- to determine whether a certain problem should be 
solved optimally or heuristically. An example is shown 
in detail in this section, 
- to determine which factors have the greatest influence 
on time complexity of the problem for the proposed 
solution method, 
- to determine the appropriate size of the sub problem. 
Sometimes it is possible to either divide a problem in a 
set of smaller sub problems and solve each sub problem 
optimally or to solve the majority of the problem 
heuristically and only the small part optimally (the part 
that is the most important or can cause higher loss). In 
order to use his kind of a method, an appropriate size of 
the sub problem can be determined with this approach. 
The example of the latter is shown in [15]. 
 As stated earlier we have decided to test the cases 
with number of stock and order lengths between 5 and 
10. The following procedure was used to determine 243 
test cases. 5 test instances were generated for each case 
so we had 1215 problem instance in total: 
for g=1 to 3 
  for h=1 to 3 
    for i=1 to 3 
      for j=1 to 3 
        for k=1 to 3 
  u1 ← 1000 . g 
  u2 ← 2000 . g 
  m ←  (j . 2)+3 
  d ←  (i . 2)+3 
  v1 ← h . 100 
  v2 ← h . 200 
  n ← (g . 2)+3 
  seed ← 1000000 .n+1000 .v1+10 .v2+10 .d+m 
  r ← 5 
  call PGEN (n, v1, v2, d, m, u1, u2, seed, r) 
      next k 
       next j 
     next i 
   next g 
next h 
The meaning of the variables is the same as in the 
previous example. 
 Each problem instance was then solved with the 
MPL/CPLEX solver and for every instance the solution 
time, total trim loss and the fact whether the problem 
instance was solved optimally or not was recorded. All 
cases were then distributed into two classes: 1 (optimally 
solved cases) and 0 (cases not solved optimally). 
 The whole experiment, which means generating the 
data and solving all problem instances within the time 
limit of 1 minute, took just over 10 hours. MS Excel was 
used for collecting and saving the results. The procedure 
for the whole experiment was written in Visual Basic for 
Application. The first 150 problem instances (5 problem 
instances are summarized in one line) and their solutions 

are shown in Table 4. The meaning of the variables is the 
same as in Table 1. 
These 1215 cases were then used as the inputs for 
building a decision tree. First we had to decide which 
variables to use as attributes. Obviously the variables that 
are expected to have the influence on the computational 
complexity of the model should be used. However the 
number of variables and constraints alone is not a 
sufficient indicator of time complexity of the problem. 
Therefore we have chosen the following variables: 
- m, n, d - obviously those variables have the influence 
on the size of the model as m and n influence the number 
of variables and constraints in the model, while d 
influence the number of possible combinations. 
- v1, v2, u1, u2 were not included as absolute values but as 
part of the following ratios: 
- r - the ratio between the average stock length and 
average order length (u1+u2)/(v1+v2). Earlier it was 
statistically established that higher ratio means better 
solutions with heuristic method [10], however the 
influence of this ratio on exact solution method was not 
yet studied, 
 - q - the ratio between the available material and total 
needs. Problems with higher q should be easier to solve 
than those with this ratio closer to 1.  
 70% of the data was used as training, 30% as test 
data. To avoid over fitting of the data the test required 
two branches with at least 10 cases. The decision tree 
shown in Fig. 3 was generated using C5 program. The 
numbers in the brackets mean how many of the training 
cases belong to this leaf. The first number is the number 
of correctly and the second of incorrectly classified 
cases. 
For example: the problems where the ratio between 
available material and total needs is greater than 2.18239 
and number of stock lengths is less or equal to 7 the 
problem should be solved with exact method. Out of 128 
test problems, that fulfill those conditions, a better 
solution with exact method was found in 126 cases. 
Other conditions can be explained similarly. 
 From Fig. 3 it is obvious that for this sort and size of 
the problem q has the greatest influence on the 
complexity of the problem, followed by n. On the other 
hand the influence of the number of order lengths and 
average demand per order length is surprisingly low. 
That finding was also used in the selection of sub 
problem for the C-CUT algorithm [15] where only 
number of stock lengths and partly the ratio between total 
material and total needs are pre-set for all sub problems 
while the number of order lengths and average demand 
per order length are determined on a case by case basis. 
To avoid over fitting of the data the decision tree was 
tested on the problems mentioned in the first part of the 
paper. The comparison of the results between CUT and 
exact method was shown in Table 3. Obviously it would 
be possible to solve each problem with both methods and 
keep the best result. However that would require 
additional time and effort. On the other hand it is 
possible to solve each problem just once with the method 
chosen with decision tree. 
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Using decision tree we’ve got interesting results. 
The following cases were solved with the exact method: 
1,4,7,11,12,13,16,19,21,22 and 25 while others were 
solved heuristically. The right decision was made in 21 
out of 25 cases (2 cases have the same results with both 
methods).  From the 4 mistakes 3 were resulted in only a 
marginally higher trim loss. In case 21 the trim loss was 
considerably higher (438 cm instead of 0).  

The most important result is that the total trim 
loss would be 5593 cm if we would solve all problems 
with CUT, 32268 cm with exact method and 5310 cm if 
we solve each problem with the method chosen by the 
decision tree. This shows that proposed approach can 
indeed lead to improved results, compared to the results 
acquired with just one of the available methods. 

The other advantage of proposed approach is 
that it takes both the processing power of the computer 
and the quality of the solver into account. Obviously the 
exact method would be selected more often if the 
experiments would be carried out on considerably faster 
computer or with better integer programming solver.  

 
6. Conclusion 
 
 The article firstly examines the exact solution of 
G1D-CSP in cases with surplus and lack of material. 
B&B method and a problem generator PGEN for 
generation of G1D-CSP instances were used.  
 Three experiments are presented. In the first a better 
solution for previously published problem is shown. In 
the second the proposed method was tested by solving 
270 problem instances. In the third the comparison with 
SHP CUT was made. We find out that our method gives 
better solution for smaller problems, the CUT procedure 
for larger. The proposed method also approximately 
shows how close the solutions are to the optimum, while 
CUT gives no such indication.  
 The new approach based on decision trees is 
introduced in order to establish which cutting method 
should be used. Using a decision tree an appropriate 
method can be chosen for each individual case based on 
its size and the probability that the problem of this size 
can be solved optimally within the given time limit. 
 The practical implementation of the approach was 
shown on the example of G1D-CSP, however it can be 
applied on other types of cutting problems as well. 
Numerous examples are calculated. The results show a 
high degree of certainty that the chosen method is the 
best for specific problem, which reflects in lower trim 
loss. 
 
Remark. The problem generator PGEN may be obtained 
from the authors of this article both in source-code and as 
subroutine executable under Windows. The source code 
(in VBA) for all experiments, presented in this paper, is 
also available. 
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