
 Informatica 27 (2003) 495–501 495

A Comparison Between Exact and Approximate Method for Solution
of General One-Dimensional Cutting Stock Problem
Peter Trkman and Miro Gradišar
Faculty of Economics
Kardeljeva ploscad 17
1000 Ljubljana
Slovenia

Keywords: cutting, optimisation, branch & bound, decision tree

Received: July 17, 2003

The paper describes exact solution of general one-dimensional cutting stock problem (G1D-CSP) where
all stock lengths are different. Branch & Bound (B&B) optimization method is used. The solution is
cutting plan with minimized overall trim loss in such a way that order lengths are cut in exactly required
number of pieces and only one stock length is in general not cut to the end. If it’s long enough then it
can be used later and is not treated as a waste. G1D-CSP can also be solved approximately with
Sequential Heuristic Procedure (SHP). Comparison between B&B and SHP is presented. It is shown
that exact solution is better when the size of the problem does not exceed certain limit. The question is,
how to determine this limit, which can be different in different practical situations. An approach, based
on decision trees, for the selection of appropriate method for each individual case, is proposed.
Numerous examples are calculated.

1 Introduction

 One-dimensional stock cutting occurs in many
industrial processes [4,8,9,16,19] and during the past few
years it has attracted increased attention of researchers
from all over the world [1,2,11,12,18,21]. Most standard
problems related to one-dimensional stock cutting are
known to be NP-complete and in general a solution can
be found by using approximate methods and heuristics.
However, the unbelievable development of computers
and constantly growing processing power are pushing the
complexity limit of the cutting problems, where exact
methods could be used, slightly up. Therefore importance
of exact methods is growing and the number of practical
situations, where they can be used, increases [8,14, 18].

 Dyckoff [3] classifies the solution of cutting
stock problems into two groups: pattern oriented and
item-oriented. In the pattern-oriented approach, at first,
order lengths are combined into cutting patterns, for
which - in a succeeding step - the frequencies, that are
necessary to satisfy the demands, are determined. This
approach can be applied when the stock is of the same
length [6] or of few groups of standard lengths [7].
Pattern-oriented approach is most common in practice
and therefore the type of the problem we get in this case
is designated as Standard One-Dimensional Cutting
Stock Problem (S1D-CSP) [5,12,13]. To solve (S1D-
CSP) the classic LP-based Gilmore and Gomory’s
“delayed pattern generation” [6,7] or any other LP-based
Method (LPM) is mostly used [16,18,19,22,23].

 The item-oriented approach is characterized by
individual treatment of every item to be cut. If stock
lengths are all different then frequencies others than 0

and 1 cannot be determined and only an item-oriented
solution can be found [9,10].

 An item-oriented approach is more general and
can be theoretically applied regardless of the assortment
of large objects [3,12,13]. Therefore the problem we get
in this case is designated as General One-Dimensional
Cutting Stock Problem (G1D-CSP) [11,13]. There are
two possibilities to solve G1D-CSP: exact methods
(branch and bound, dynamic programming) or
approximation algorithms in form of SHP [20]. SHP
seems to be better regarding robustness and potential
usefulness in a wide range of cases. Also time
complexity of SHP is in general lower. On the other hand
exact solution is better where the size of the problem
doesn’t exceeds acceptable limits and becomes
intractable. But even in such cases approximate solution
obtained in some acceptable time period, as a temporary
result of exact method, can be comparable with the one
of SHP.
 Many examples of exact methods for solving
different types of cutting problems are described in
literature [8,18]. But we didn’t found any exact solution
of G1D-CSP so far.
 If there are many methods available for the
solution of G1D-CSP, then it can be difficult to select the
right one. Therefore we decided to propose an approach
based on decision trees for the selection of suitable
solution method, which will take in the account the
problem size, the quality of the solver and the computer
speed.
 This paper is organized as follows: in next
section the definition of cutting problem is given. Exact
solution development, using Branch & Bound
optimization method in the form of a computer program,

496 Informatica 27 (2003) 495–501 P. Trkman et al.

 496

is presented with numerous practical examples. In
section 4 those results are compared with the results,
acquired with SHP. Finally a new approach, based on
decision trees for the selection of suitable solution
method for each individual case, is proposed. It is shown
that this approach can indeed lead to reduced trim loss.

2 Problem definition and solution
method

 G1D-CSP is one-criterial minimization problem.
The criterion is overall trim loss. G1D-CSP satisfies two
general conditions:
1. If there is abundance of material order lengths are cut

in exactly required number of pieces (In S1D-CSP
this number can be greater than demanded.).

2. Only one stock length cannot be cut to the end. The
result is residual length that can be used later (In
S1D-CSP all used stock lengths are cut to the end.).

 Details in problem definition are similar to those in
[12] and [10]. The difference regarding [12] is that we
also included orders that cannot be fulfilled entirely due
to shortage of material in stock. The difference regarding
[10] is that distribution of uncut pieces by order lengths
is not included. It is more difficult to control factors other
than trim loss with exact methods than with SHP. Other
differences regarding both [12] and [10] doesn’t affect
the content of the problem but only the way of
expression, which is adapted to the solution method.
 First we need to decide whether we will use
branch and bound method or some dynamic
programming. Branch and bound (B&B) exact method
was chosen. There are two reasons for that. First B&B is
standard method and second, the market is offering many
OR computer packages with B&B. Some of them allow
using B&B as a subroutine. This means that it could be
included in some application program. In our case the
application program collects data, checks whether there
is an abundance or shortage of material, solves the
appropriate model and displays the results.
 Problem is defined as follow:
 For every customer order a certain number of
stock lengths is available. In general all stock lengths are
different. We consider the lengths as integers. If they are
not originally integers we assume that it is always
possible to multiply them with a factor and transform
them to integers. It is necessary to cut a certain number
of order lengths into required number of pieces. The
following notation is used:
si = order lengths; i = 1,...,n.
bi = required number of pieces of order length si.
dj = stock lengths; j = 1,...,m.
xij = number of pieces of order length si having been
cut from stock length j.
yj indicates whether the stock length j is used in the
cutting plan (yj=1 if stock length j is not used in the
cutting plan).

ui indicates whether the remainder of stock length j is
greater than UB (upper bound for the trim loss). uj can
equals 1, only if the remainder is greater than UB. Stock
length that is longer than UB does not necessarily count
as trim loss.
δj indicates the remainder of the stock length j.
tj indicates the extent of trim loss relating to stock length
j. tj=δj for all used stock lengths, except for one that is
longer than UB and can be returned to the stock and used
again later (where uj=1) and all unused stock lengths
(where yj=1).

 Two cases are possible:

Case 1: the order can be fulfilled as the abundance of
material is in stock.

 m
(1) min ∑ tj (minimize trim loss which is smaller than
 j=1 UB)
s.t.
 n
(2) ∑ si⋅xij +δj = dj (1-yj) ∀ j (knapsack constraints,
 i=1 the total length of pieces cut from a stock

lengths cannot be longer than the total
length of the stock)

 m
(3) ∑ xij = bi ∀ i (demand constraints, the numbers
 j=1 of pieces are all fixed)

(4) UB - δj + UB·(uj - 1) ≤ 0 ∀ j (uj can be 1, only if
 the remainder of stock length is longer
 than UB)

 m
(5) ∑ uj ≤ 1 (maximum number of used stock
 j=1 lengths that do not count as trim loss)

(6) δj - tj - (uj + yj)·(max dj) ≤ 0 ∀ j (tj equals δj for
 all stock lengths where uj = tj = 0;
 otherwise tj can be 0)

(7) UB ≤ max si

 xij ≥ 0, integer ∀ i, j
 tj ≥ 0 ∀ j
 δj ≥ 0 ∀ j
 uj ∈ {0,1}
 yj ∈ {0,1}.

Case 2: the order cannot be fulfilled entirely due to
shortage of material (the distribution of uncut order
lengths is not important).
 n
(1) min ∑ δj (minimize sum of trim losses)
 i=1

s.t.
 n
(2) ∑ si⋅xij +δj = dj ∀ j (knapsack constraints)
 i=1

 m
(3) ∑ xij ≤ bi ∀ i (demand constraints)
 j=1

A COMPARISON BETWEEN EXACT AND… Informatica 27 (2003) 495–501 497

 497

(4) xij ≥ 0, integer ∀ i, j

 δj ≥ 0 ∀ j.

 Unutilized stock length that is larger than some UB
can be used further and is not considered as waste. The
question is how to determine UB. This depends on the
relation between available material and total needs.
 Let’s consider the case 1 first. If sufficient stock
lengths are available there will be cutting plans with "no
trim loss" but ever growing stocks. To prevent this an
additional condition (case 1, condition (5)) has to be set:
only one residual length may be longer than the UB. UB
can be set arbitrarily between 0 and max si. The larger
UB means greater the cutting problem and higher trim
loss. UB = min si is found in practice [9].
 In case 2, however, UB is not included in the model.
If, for example, UB is reduced to min si, this would lead
to the following problem: As the aim of the algorithm is
the minimization of overall trim loss, this could lead to
unfulfilled requirements for the longest order lengths,
even if the overall trim loss would be small and the aim
would be achieved according to the logic of the
algorithm. The trim losses, which would be longer than
UB but shorter than the longest order lengths, could
remain unutilized. For that reason UB shouldn’t be less
than max si. On the other hand if the UB would be set to
max si any trim loss longer than max si can certainly be
used to cut an additional order length, so UB equal or
longer than max si would not have any influence on the
solution. Therefore UB is not included in the 2nd model.

3 Results
 For all calculations MPL/CPLEX solver on the PC
(AMD, 1300 MHz) was used. The data was generated
and saved in MS Excel and the solver was called with
Visual Basic for Applications. In first experiment we
found a solution of a problem described in [10]. The
improved solution (Fig. 1) was obtained in 10.1 seconds
after examining 59467 integer nodes. The total trim loss
is 1 cm, while the solution in [10] has a trim loss of 2 cm.
In Fig. 1 firstly all details about order and stock lengths
are shown (length and number of pieces demanded for
each order length). Then the detailed cutting plan is
presented (which and how many order lengths are cut
from each stock length) and lastly the trim loss for each
stock length and number of realized and unrealized order
lengths.

The presented problem is relatively small (4 stock
and 5 order lengths) and therefore appropriate for exact
method. However with the growing number of integer
variables the complexity of the problem and the solution
time grow quickly. Sometimes it is not possible to find
the optimal solution within reasonable time limit.
Fortunately B&B works in such a way that it approaches
gradually to the optimal solution and in the mean time
offers temporary results, which can be near to optimum.
To test the correlation between time limit and trim loss

each problem instance in following experiments was
solved with 6 different time limits.
 For generation of problem instances we decided to
use problem generator PGEN [12,13]. With PGEN it is
possible to regenerate test data using the same seed, then
to find the solution with some other method and compare
the results. Input data are generated according to problem
descriptors as random sample of one or more test
problems. Problem descriptors are:
n - number of different order lengths
v1, v2 - lower and upper bound for order lengths, i.e.
 v1≤si ≤ v2 (i = 1,...,n)
d - average demand per order length
m - number of non-standard stock lengths
u1, u2 - lower and upper bound for non-standard stock
 length, i.e. u1 ≤ dj ≤ u2 (j = 1,...,m).
r - number of consecutive generated problem

instances.
 Test problems have been generated with the
following values of parameters:
• determination of order lengths and demands:
 By assigning different values to the problem
parameters n (n = 5, 10, 15), v1 and v2 (v1 = 100 and v2 =
200, v1 = 200 and v2 = 400, v1 = 300 and v2 = 600) and d
(d = 5, 10, 15) and combining them with each other 27
problems have been generated.
• determination of non-standard stock lengths:
 Number of non-standard stock lengths m varies from
5 to 15, lower bound u1 from 1000 to 3000 and upper
bound u2 from 2000 to 6000.
 The details about generation of problem descriptors
and determination of seed for sequences of test problems
are shown in the dynamic programming scheme of the
procedure PROGEN.
Procedure PROGEN:
for i = 1 to 3
 for j = 1 to 3
 for k = 1 to 3
 n ← i ⋅ 5
 v1 ← j ⋅ 100
 v2 ← j ⋅ 200
 d ← k ⋅ 5
 m ← k ⋅ 5
 u1 ←k ⋅ 1000
 u2 ← k ⋅ 2000
 c ← int(

10
m)⋅ 9+1

 seed ← m+10⋅ c⋅ d+10⋅ c2⋅ v2+1000⋅ c2⋅
 v1+1000000⋅ n
 r ← 10
 call PGEN (n, v1, v2, d, m, u1, u2, seed, r)
 next k
 next j
next i

 PROGEN procedure is implemented with Visual
Basic. Problem descriptors generated with PROGEN
procedure for 27 test cases are presented in Table 1. In
the table lower and upper bounds for stock and order

498 Informatica 27 (2003) 495–501 P. Trkman et al.

 498

lengts are shown, as well as the number of different order
and stock lengths and the average demand per order
length. The seed for generation of test problems which
enables everyone to generate the same test problems is
also shown.
 For each test case procedure PGEN generates 10
consecutive problem instances (r=10). In total there are
270 problem instances, 150 with abundance and 120 with
shortage of material.
 Each of the 270 problem instances was solved 6 times
(using the appropriate model either for lack or abundance
of material) with different time limits (time limits were
set at 2, 10, 20, 30, 45 and 60 seconds)
 The generated data and the solution for first generated
instance of the first case are presented in Fig. 2. The
optimal solution with trim loss 1 cm was found in 3.9
seconds. The meaning of columns is the same as in Fig.
1.
 Stock length 2 is not used in cutting plan and stock
length 1 is not cut to the end. Since δ1=989 and UB=102,
t1=0. So stock length 1, which is larger than UB, can be
used later and is not considered a waste.
 The summarized results for all 270 instances with UB
= min si with different time limits are presented in Table
2. For each of the different time limits the total trim loss,
percent of trim loss and the number of optimally solved
instances is shown. The 3rd column indicates how many
instances were solved optimally within the given time
limit. In each row 10 problem instances are summarized.
Trim loss is calculated as the sum of trim losses of all 10
instances, the percentage is calculated as the average of
10 percentage losses.
In 2 seconds an optimal solution for 57 cases was found,
in 60 seconds for 110 cases. The average trim loss varies
from 0% to 2.4%.
 The trim loss is the largest in case number 7 although
the solution is optimal in all 10 instances. Low values of
n, d, m mean that in this case the problems are relatively
easy to solve, however due to small ratio between stock
lengths and order lengths as well as the small number of
possible combinations, the optimal solution has a
relatively high trim loss. To a lesser extent the same is
also true for case No. 4. In other cases the trim loss is 1%
or lower. Even better results could be obtained by
increasing the time limit for the solution.

4 Comparison with CUT procedure

We have compared results of proposed exact method
with the results of SHP CUT described in [10]. The
results are shown in Table 3. As in previous table 10
instances are summarized in one line. UB is set to min si.
In the second column it is indicated whether there is
enough material or not. Y/N means that in some problem
instances there is enough material, in others not. The
total trim loss and percent of trim loss with both methods
(exact and heuristic method CUT) are shown for each
case.

 In total within the given time limit (60 seconds) the
exact method found a better solution in 64 instances,
while the CUT procedure in 139 cases, in 67 cases both
methods found the solution with the same trim loss (not
necessarily the same solution though). The exact method
has better results for cases with smaller d and m (in all
cases with d<=5 and m<=5 a better solution was found
with the exact method even with small time limits), the
CUT procedure for larger cases (d>=10 and m>=10).

5 Selection of the method

Although it is clear from table 3 that exact

method is more suitable for smaller cases and heuristics
for larger, we need more precise criteria for the selection
of solution method in each individual case. The main
question that needs to be answered is, what is the
maximum size of the problem that can be solved
optimally within the given time limit. The question can
be answered by using mathematical analysis of
computational complexity. But for precise answer we
would need a very precise data of speed of particular
processor executing specific instructions generated by
specific compiler and detailed data about solver. This
data is usually not available. Even if they would be, the
mathematical analysis would be extremely complicated.
Therefore we decided to answer the question by using
statistics. The new approach based on the creation of
decision tree and its use for the selection of the right
method is presented in this chapter.
 The main idea of our approach is to generate a large
number of cases with different parameters by using the
problem generator and then solve them with the selected
method and the given time limit. The time limit can be
chosen arbitrarily and depends on what is considered as a
maximum acceptable solution time in some specific
practical situation.
Each case is than assigned either a class value 1 (if
optimal solution was found within selected time limit) or
0 (otherwise). Those parameters and class values are then
used as the data for decision tree classifiers. Decision
trees were chosen as our kind of the problem fulfills the
key requirements that are needed for successful
implementation of decision trees (as listed by Quinlan
[17]):

- attribute-value description: each test case in our
example can be described with the same
attributes (number of stock and order length,
average demand per order length etc.),

- predefined classes: each case is assigned to one
of the two predefined classes (either the case
can be solved optimally within time limit or
not),

- discrete classes: both classes in our example are
discrete,

- sufficient data: sufficient number of problem
instances can be automatically generated and
solved using problem generator and solving
procedure,

A COMPARISON BETWEEN EXACT AND… Informatica 27 (2003) 495–501 499

 499

- “logical” classification models: our example can
be expressed as decision trees or sets of
production rules.

 This approach can be used in various cases:
- to determine whether a certain problem should be
solved optimally or heuristically. An example is shown
in detail in this section,
- to determine which factors have the greatest influence
on time complexity of the problem for the proposed
solution method,
- to determine the appropriate size of the sub problem.
Sometimes it is possible to either divide a problem in a
set of smaller sub problems and solve each sub problem
optimally or to solve the majority of the problem
heuristically and only the small part optimally (the part
that is the most important or can cause higher loss). In
order to use his kind of a method, an appropriate size of
the sub problem can be determined with this approach.
The example of the latter is shown in [15].
 As stated earlier we have decided to test the cases
with number of stock and order lengths between 5 and
10. The following procedure was used to determine 243
test cases. 5 test instances were generated for each case
so we had 1215 problem instance in total:
for g=1 to 3
 for h=1 to 3
 for i=1 to 3
 for j=1 to 3
 for k=1 to 3
 u1 ← 1000 . g
 u2 ← 2000 . g
 m ← (j . 2)+3
 d ← (i . 2)+3
 v1 ← h . 100
 v2 ← h . 200
 n ← (g . 2)+3
 seed ← 1000000 .n+1000 .v1+10 .v2+10 .d+m
 r ← 5
 call PGEN (n, v1, v2, d, m, u1, u2, seed, r)
 next k
 next j
 next i
 next g
next h
The meaning of the variables is the same as in the
previous example.
 Each problem instance was then solved with the
MPL/CPLEX solver and for every instance the solution
time, total trim loss and the fact whether the problem
instance was solved optimally or not was recorded. All
cases were then distributed into two classes: 1 (optimally
solved cases) and 0 (cases not solved optimally).
 The whole experiment, which means generating the
data and solving all problem instances within the time
limit of 1 minute, took just over 10 hours. MS Excel was
used for collecting and saving the results. The procedure
for the whole experiment was written in Visual Basic for
Application. The first 150 problem instances (5 problem
instances are summarized in one line) and their solutions

are shown in Table 4. The meaning of the variables is the
same as in Table 1.
These 1215 cases were then used as the inputs for
building a decision tree. First we had to decide which
variables to use as attributes. Obviously the variables that
are expected to have the influence on the computational
complexity of the model should be used. However the
number of variables and constraints alone is not a
sufficient indicator of time complexity of the problem.
Therefore we have chosen the following variables:
- m, n, d - obviously those variables have the influence
on the size of the model as m and n influence the number
of variables and constraints in the model, while d
influence the number of possible combinations.
- v1, v2, u1, u2 were not included as absolute values but as
part of the following ratios:
- r - the ratio between the average stock length and
average order length (u1+u2)/(v1+v2). Earlier it was
statistically established that higher ratio means better
solutions with heuristic method [10], however the
influence of this ratio on exact solution method was not
yet studied,
 - q - the ratio between the available material and total
needs. Problems with higher q should be easier to solve
than those with this ratio closer to 1.
 70% of the data was used as training, 30% as test
data. To avoid over fitting of the data the test required
two branches with at least 10 cases. The decision tree
shown in Fig. 3 was generated using C5 program. The
numbers in the brackets mean how many of the training
cases belong to this leaf. The first number is the number
of correctly and the second of incorrectly classified
cases.
For example: the problems where the ratio between
available material and total needs is greater than 2.18239
and number of stock lengths is less or equal to 7 the
problem should be solved with exact method. Out of 128
test problems, that fulfill those conditions, a better
solution with exact method was found in 126 cases.
Other conditions can be explained similarly.
 From Fig. 3 it is obvious that for this sort and size of
the problem q has the greatest influence on the
complexity of the problem, followed by n. On the other
hand the influence of the number of order lengths and
average demand per order length is surprisingly low.
That finding was also used in the selection of sub
problem for the C-CUT algorithm [15] where only
number of stock lengths and partly the ratio between total
material and total needs are pre-set for all sub problems
while the number of order lengths and average demand
per order length are determined on a case by case basis.
To avoid over fitting of the data the decision tree was
tested on the problems mentioned in the first part of the
paper. The comparison of the results between CUT and
exact method was shown in Table 3. Obviously it would
be possible to solve each problem with both methods and
keep the best result. However that would require
additional time and effort. On the other hand it is
possible to solve each problem just once with the method
chosen with decision tree.

500 Informatica 27 (2003) 495–501 P. Trkman et al.

 500

Using decision tree we’ve got interesting results.
The following cases were solved with the exact method:
1,4,7,11,12,13,16,19,21,22 and 25 while others were
solved heuristically. The right decision was made in 21
out of 25 cases (2 cases have the same results with both
methods). From the 4 mistakes 3 were resulted in only a
marginally higher trim loss. In case 21 the trim loss was
considerably higher (438 cm instead of 0).

The most important result is that the total trim
loss would be 5593 cm if we would solve all problems
with CUT, 32268 cm with exact method and 5310 cm if
we solve each problem with the method chosen by the
decision tree. This shows that proposed approach can
indeed lead to improved results, compared to the results
acquired with just one of the available methods.

The other advantage of proposed approach is
that it takes both the processing power of the computer
and the quality of the solver into account. Obviously the
exact method would be selected more often if the
experiments would be carried out on considerably faster
computer or with better integer programming solver.

6. Conclusion

 The article firstly examines the exact solution of
G1D-CSP in cases with surplus and lack of material.
B&B method and a problem generator PGEN for
generation of G1D-CSP instances were used.
 Three experiments are presented. In the first a better
solution for previously published problem is shown. In
the second the proposed method was tested by solving
270 problem instances. In the third the comparison with
SHP CUT was made. We find out that our method gives
better solution for smaller problems, the CUT procedure
for larger. The proposed method also approximately
shows how close the solutions are to the optimum, while
CUT gives no such indication.
 The new approach based on decision trees is
introduced in order to establish which cutting method
should be used. Using a decision tree an appropriate
method can be chosen for each individual case based on
its size and the probability that the problem of this size
can be solved optimally within the given time limit.
 The practical implementation of the approach was
shown on the example of G1D-CSP, however it can be
applied on other types of cutting problems as well.
Numerous examples are calculated. The results show a
high degree of certainty that the chosen method is the
best for specific problem, which reflects in lower trim
loss.

Remark. The problem generator PGEN may be obtained
from the authors of this article both in source-code and as
subroutine executable under Windows. The source code
(in VBA) for all experiments, presented in this paper, is
also available.

References
 [1] Antonio J., Chauvet F., Chu C., Proth J., The

cutting stock problem with mixed objectives:
Two heuristics based on dynamic programming,
European Journal of Operational Research 114
(1999) 395-402.

[2] Bischoff E. E, Wascher G., Cutting and Packing,
European Journal of Operational Research 84
(1995) 503-505.

[3] Dyckhoff H., A typology of cutting and packing
problems, European Journal of Operational
Research 44 (1990) 145-159.

[4] Ferreira J. S., Neves M. A. and Fonseca P., A
two-phase roll cutting problem, European
Journal of Operational Research 44 (1990) 185-
196.

[5] Gau T., Wascher G., CUTGEN1: A problem
generator for the Standard One-dimensional
Cutting Stock Problem, European Journal of
Operational Research 84 (1995) 572-579.

[6] Gilmore P. C. and Gomory R. E., A linear
programming approach to the cutting stock
problem, Operations Research 9 (1961) 849-
859.

[7] Gilmore P. C. and Gomory R. E., A linear
programming approach to the cutting stock
problem, Part II, Operations Research 11 (1963)
863-888.

[8] Goulimis C., Optimal solutions for the cutting
stock problem European Journal of Operational
Research 44 (1990) 197-208.

[9] Gradišar M., Jesenko J., Resinovič G.,
Optimization of roll cutting in clothing industry,
Computer & Operation Research 24 (1997) 945-
953.

[10] Gradišar M., Resinovič G., Jesenko J., Kljajić
M.: A sequential heuristic procedure for one-
dimensional cutting, European Journal of
Operational Research 114 (1999) 557-68.

[11] Gradišar M., Kljajić M., Resinovič G., A hybrid
approach for optimization of one-dimensional
cutting, European Journal of Operational
Research 119 (1999) 165-174.

[12] Gradišar M., Resinovič G., Kljajić M.,
Evaluation of algorithms for one-dimensional
cutting, Working paper No. 90, Faculty of
economics, University of Ljubljana, 1999.

[13] Gradišar M., Resinovič G., Kljajić M.,
Evaluation of algorithms for one-dimensional
cutting, Computers & Operations Research 29
(2002) 1207-1220.

[14] Gradišar M, Trkman P., Indihar Štemberger M.:
Exact solution of general one-dimensional
cutting stock problem. Working paper No. 123,
Faculty of Economics, University of Ljubljana,
2001

[15] Gradišar M., Trkman P.: A combined approach
for solution of general one-dimensional cutting
stock problem. Working paper No. 124, Faculty
of Economics, University of Ljubljana, 2002.

A COMPARISON BETWEEN EXACT AND… Informatica 27 (2003) 495–501 501

 501

[16] Haessler R. W., Vonderembse M. A., A
procedure for solving the master slab cutting
stock problem in the steel industry, AIIE Trans
11 (1979) 160-165.

[17] Quinlan J. R.: C 4.5: Programs for Machine
Learning. Morgan Kaufmann Publishers, 1993.

[18] Schilling G., Georgiadis M., C., An Algorithm
for the Determination of Optimal Cutting
Patterns, Computers & Operations Research 29
(2002) 1041-1058.

[19] Stadtler H., A one-dimensional cutting stock
problem in the aluminium industry and its
solution, European Journal of Operational
Research 44 (1990) 209-23.

[20] Sweeney P. E. and Paternoster E. R., Cutting
and packing problems: A Categorised,
Application-Orientated Research Bibliography,
Journal of the Operational Research Society 43
(1992) 691-706.

[21] Vance P.H., Branch-and-Price Algorithms for
the One-Dimensional Cutting Stock
Problem,Computational optimization and
applications 9 (1998) 211-28.

[22] Vanderbeck F., Computational Study of a
Column Generation Algorithm for Bin Packing
and Cutting Stock Problems, Research Papers in
Management Studies, No 14, University of
Cambridge, 1996.

[23] Wascher G., Gau T., Generating Almost
Optimal Solutions for the Integer One-
dimensional Cutting Stock Problem, Working
Paper No. 94/06, Institut fur
Wirtschaftswissenshaften, Technische
Universitat Braunschweig, 1994.

