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Abstract. Lattice models as well as few-body models with a finite Hilbert space do not

provide a continuum description of the two-body decay channel. Instead, the diagonal-

ization of the Hamiltonian yields a discrete spectrum which hides, however, a lot of in-

formation about the relevant continuum. We show a method which extracts the effective

pion-pion potential and applies it to the pion-pion scattering amplitude.

As a toy model to study the relation between continuum and discrete spectrum we

are using a schematic quasispin model inspired by the Nambu – Jona-Lasinio model but

restricted to a finite number of quarks occupying a finite number of states in the Dirac sea

and in the valence space.

1 Introduction

The diagonalization of the Hamiltonian in few-body models with a finite Hilbert

space yields a discrete spectrum. There is, however, a lot of hidden information

about the continuum and we have to develop a reliable method how to extract it.
For this purpose we show a possible method how to extract the effective pion-

pion potential and the pion-pion scattering amplitude from the discrete spec-
trum. The method relies on the first order Born approximation or on its suitable

generalization. The Luescher formula [1] known in the literature, for example, is

a special case of the (generalized) first order Born approximation.

The simplest two-level model of chiral symmetry breaking is a schematic

quasispin model similar to the Nambu – Jona-Lasinio model and it is developed

in the spirit of the Lipkin model [2] known from nuclear physics as a test differ-
ent approximate approaches. Our model is characterized by a finite number of

quarks occupying a finite number of states in the Dirac sea and in the valence

space (due to a sharp momentum cutoff and periodic boundary condition). This
allows us to use the first quantization and an explicit wavefunction.

Most low-lying states in the excitation spectrum can be interpreted as multi-

pion states and one can deduce the effective pion-pion interaction and scattering
length. However, the intruder states can be recognized as sigma-meson excita-

tions or their admixtures to multi-pion states.
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The lesson learned from the toy model can be useful in a similar problem in

lattice calculations – how to extract effective potential and scattering amplitudes

from the discrete excitation spectrum.

2 The two-level quasispin model

In this section we repeat some properties of the two-level quasispin model which

we have presented in previous Bled Workshops [3,4]. We partially use those re-
sults and partially add some new ones (arguments using N-dependence of spec-

tra) in order to discuss the relation between the discrete spectrum and the contin-
uum in the two-body channel.

We are aiming at a finite-dimensional N-body Hilbert space, therefore we
enclose N = N quarks in a periodic box V and use a sharp momentum cutoff Λ,

leading to a finite numberN = NxNsNcNf of states in the Dirac sea and the same

number of states in the valence “shell”. HereNx = V 4πΛ3/(3 (2π)3 is the number
of spacial states in each ”shell”, we have Ns = 2 helicities, Nc = 3 colours and

we restrict the simple model toNf = 1 flavour. Then N = N = 6Nx = VΛ3/π2.
Furthermore, we take all quark kinetic energies equal to 3

4
Λ and neglect the

interaction terms which change the individual quark momenta:

H =

N∑

k=1

(
γ5(k)h(k) 3

4
Λ+m0β(k)

)
− 2G

V

N∑

k,l=1

(
β(k)β(l)+iβ(k)γ5(k)·iβ(l)γ5(l)

)

Here h = σ ·p/p is helicity and γ5 and β are Dirac matrices. We use the pop-

ular model parameters close to [5,6],Λ = 648MeV, G = 40.6MeV fm, m0 = 4.58

MeV, which yield the phenomenological values of quark constituent mass, quark

condensate and pion mass both in full Nambu – Jona-Lasinio model as well as

in our quasispin model (using in both cases the Hartree-Fock + RPA approxima-
tions). It has been shown in [3] that in the large N limit the exact results of our

quasispin model tend in fact to the Hartree-Fock + RPA values.

It is usually overlooked that the following operators obey (quasi)spin com-

mutation relations jx = 1
2
β , jy = 1

2
iβγ5 , jz = 1

2
γ5 . The (quasi)spin com-

mutation relations are also obeyed by separate sums over quarks with right and

left helicity as well as by the total sum (α = x, y, z)

Rα =

N∑

k=1

1+ h(k)

2
jα(k) , Lα =

N∑

k=1

1− h(k)

2
jα(k) , Jα = Rα + Lα =

N∑

k=1

jα(k) .

The model Hamiltonian can then be written as

H = 2P(Rz − Lz) + 2m0Jx − 2g(J2x + J2y) . (1)

It commutes with R2 and L2 but not with Rz and Lz. Nevertheless, it is conve-

nient to work in the basis |R, L, Rz, Lz 〉.The Hamiltonian matrix elements can be
easily calculated using the angular momentum algebra. By diagonalisation we

then obtain the energy spectrum of the system.
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Table 1. The spectrum of the quasispin model withN = 144 andN = 192, and the ground

state quantum numbers R + L = N/4

n Parity (E − E0)[MeV] (E − E0)[MeV] V̄ [MeV] V̄ [MeV]

N=144 N=192 N=144 N=192

10 + 932 (942) -9.5 (-5.4)

9 − 803 (805) -11.7 (-7.2)

8 + 771 861 -11.3 -8.3

7 − 767 802 -8.8 -7.3

6 + 646 709 -11.4 -7.3

6 + 634 655 -12.2 -10.9

5 − 580 611 -10.0 -7.2

4 + 482 503 -10.5 -7.1

3 − 378 388 -10.1 -7.1

2 + 261 266 -10.3 -7.1

1 − 136 137

0 + 0 0

3 Extraction of pion-pion interaction

The average effective pion-pion potential V̄ given in Table 1 has been extracted

from the energy levels of n-pion states

Enπ = nmπ +
n(n − 1)

2
V̄.

An important test to distinguish one-pion and two-pion properties is the
volume-dependence (N-dependence). In a larger volume, pions are more dilute

pions leading to a proportionally smaller V̄ . In fact, the ratio of V̄ in Table 1 for

N = 144 and N = 192 is 10.3/7.1 = 1.45, close to 192/144 = 1.33. (The small dis-
crepancy does indicate that we are not yet quite in the large-N limit and further

corrections might be needed).

We calculate the s-state scattering length in the first-order Born approxima-
tion (”Lüscher formula” [1])

a0 =
mπ/2

2π

∫
V(r)d3r =

mπ

4π
V̄V . (2)

In our example for N = 192 we have V̄ = −7.1MeV and V = π2N/Λ3 =

53 fm3. This gives

a0mπ =
m2π
4π
V̄V = −0.077. (3)

Since there are no experiments with one-flavour pions it is tempting to com-

pare with the two-flavour value (I = 2). The chiral perturbation theory (soft pi-

ons) suggests in leading order aI=20 mπ = −m2π/16πf
2
π = −0.0445. Our almost

twice larger value might be due to the artifact that we made up for the second

flavour by replacing Gwith 2G. Further investigation is in progress.
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4 The intruder state - the sigma meson

In the spectrum in Table 1 one can clearly distinguish the presence of the sigma

meson by noticing the doubling of the positive parity states at 634 and 646 MeV

for N = 144 (655 and 709 MeV for N = 192). Moreover, the states at 646 MeV
(655 MeV)indicated in boldface have strong one-body transition matrix elements

from the ground state. Note that going from N=144 to 192 the ordering of the
two positive parity states (”σ” and ”6π”) has reversed because for larger N the

six pions are more dilute and the energy is less depressed by attractive effective

interactions between pions.

5 Relation to lattice calculations

The discrete single-particle space in ourmodel is analogous to a lattice. Themodel
assumption 0 ≤ |pi| ≤ Λ corresponds to the cell size (resolution)

a = 3

√
V
Nx

=

3
√
6π2

Λ
= 1.2 fm .

Here V/Nx = V/(N/6) is the ”land” available per particle in case of 2 helicities, 3
colours and one flavour.

The periodic boundary condition in V corresponds to the block size

L =
3
√
V =

3
√
6π2Nx
Λ

= 3.7 fm ≈ 3a.

It is surprising that such a poor resolution and block size yields excellent results.

One reason is that the model interaction is not very sensitive to the number of
dimensions, there are no spacial correlations. In one dimension, the ratio between

the block size and the cell size Nx = 32 is much larger than 3
√Nx ≈ 3 but the

structure of results is the same. This is a general feature of Nambu – Jona-Lasinio
models.

Furthermore, we were dealing with soft pion excitations and we get an im-

pression that in this case a high resolution is not crucial.
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