
Proceedings of the
9th Student Computing Research Symposium

(SCORES’23)

Koper, Slovenia
October 5, 2023

Ina Bašić
Nina Chiarelli
Matjaž Krnc

Domen Šoberl
(Eds.)

https://www.scores.si

Kataložni zapis o publikaciji (CIP) pripravili v Narodni in univerzitetni knjižnici v Ljubljani
COBISS.SI-ID 163810307
ISBN 978-961-293-253-4 (Univerza na Primorskem, PDF)

Proceedings of the
9th Student Computing Research Symposium

(SCORES’23)

Koper, Slovenia
October 5, 2023

Ina Bašić
Nina Chiarelli
Matjaž Krnc

Domen Šoberl
(Eds.)

Title Proceedings of the 9th Student Computing Research Symposium
(SCORES’23)

Editors Ina Bašić
(Faculty of Mathematics, Natural Sciences and Information Technologies)

Nina Chiarelli
(Faculty of Mathematics, Natural Sciences and Information Technologies)

Matjaž Krnc
(Faculty of Mathematics, Natural Sciences and Information Technologies)

Domen Šoberl
(Faculty of Mathematics, Natural Sciences and Information Technologies)

Conference 9th Student Computing Research Symposium (SCORES’23)

Venue University of Primorska
Faculty of Mathematics, Natural Sciences and Information Technologies
Glagoljaška 8, SI-6000 Koper, Slovenia

Date October 5, 2023

Program Committee Klemen Berkovič, (University of Maribor)
Zoran Bosnić, (University of Ljubljana)
Janez Brest, (University of Maribor)
Lucija Brezočnik, (University of Maribor)
Andrej Brodnik, (University of Primorska & University of Ljubljana)
Patricio Bulić, (University of Ljubljana)
Klen Čopič Pucihar, (University of Primorska)
Jani Dugonik, (University of Maribor)
Iztok Fister, (University of Maribor)
Iztok Fister ml, (University of Maribor)
Mario Gorenjak, (University of Maribor)
Branko Kavšek, (University of Primorska)
Štefan Kohek, (University of Maribor)
Matjaž Krnc, (University of Primorska)
Niko Lukač, (University of Maribor)
Uroš Mlakar, (University of Maribor)
Peter Rogelj, (University of Primorska)
Domen Šoberl, (University of Primorska)
Grega Vrbančič, (University of Maribor)
Jure Žabkar, (University of Ljubljana)
Slavko Žitnik, (University of Ljubljana)

Organizing Committee Ina Bašić (University of Primorska)
Nina Chiarelli (University of Primorska)
Matjaž Krnc (University of Primorska)
Domen Šoberl (University of primorska)

Published by University of Primorska Press
Titov trg 4, SI-6000 Koper, Slovenia
https://www.hippocampus.si/, zalozba@upr.si

Co-published by University of Maribor
Faculty of Electrical Engineering and Computer Science
Koroška cesta 46, SI-2000 Maribor, Slovenia
https://feri.um.si/en/, feri@um.si

Co-published by University of Ljubljana
Faculty of Computer and Information Science
Večna pot 113, SI-1000 Ljubljana, Slovenia
https://www.fri.uni-lj.si/en, dekanat@fri.uni-lj.si

Edition 1st

Publication type E-book

Published Koper, Slovenia, October 2023

ISBN 978-961-293-253-4

DOI https://doi.org/10.26493/scores23

Organisers and sponsors:

© University of Primorska Press

Text © Authors & Editors, 2023

This book is published under a Creative Commons 4.0 International licence (CC BY 4.0). This license
allows reusers to distribute, remix, adapt, and build upon the material in any medium or format, so
long as attribution is given to the creator. The license allows for commercial use.

Any third-party material in this book is published under the book’s Creative Commons licence unless
indicated otherwise in the credit line to the material. If you would like to reuse any third-party material
not covered by the book’s Creative Commons licence, you will need to obtain permission directly from
the copyright holder.

https://creativecommons.org/licenses/by/4.0/

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

Editors’ Foreword

In the ever-evolving landscape of computer sci-
ence, where innovation knows no bounds, we wel-
come you to the 2023 Student Computing Research
Symposium (SCORES). This annual gathering is
a testament to the unwavering commitment of
computer science faculties from all three Slovene
public universities: the University of Ljubljana,
the University of Maribor, and the University of
Primorska Faculty of Mathematics, Natural Sci-
ences, and Information Technologies (UP FAM-
NIT), which takes the helm as the primary orga-
nizer this year.

Recent years have witnessed remarkable strides
in computer science, from breakthroughs in arti�-
cial intelligence and machine learning to advance-
ments in cloud computing and quantum comput-
ing. In this rapidly evolving �eld, nurturing the
next generation of computer scientists becomes
more critical than ever. SCORES 2023 is our plat-
form to empower undergraduate and master’s stu-
dents to contribute their unique insights and so-
lutions to the ever-expanding frontiers of com-
puter science. Our mission is clear: to provide
a stage where these talented students can show-
case their research, ideas, and innovations. The

Student Computing Research Symposium is about
bridging the gap between academic knowledge
and real-world applications, and it’s an opportu-
nity for these young minds to not only present
their work but also connect with their peers and
mentors.

This year’s conference program boasts a rich
diversity of topics, all authored by students from
various academic institutions. From user inter-
face design for predicting football match results
to real-time vehicle speed estimation from video
data, the papers featured here o�er fresh perspec-
tives and practical solutions to challenges that im-
pact our lives. We also delve into areas such as
speech recognition, algorithm evaluation, commu-
nity identi�cation, procedural content generation,
and much more.

As we embark on this exciting journey through
the world of computer science, we invite you to
join us in celebrating the dedication, creativity,
and accomplishments of these emerging computer
scientists. Their work represents the future of our
�eld, and the Student Computing Research Sym-
posium is the platform where it all comes to life.

SCORES 2023 organizing committee:
Ina Bašić, Nina Chiarelli, Matjaž Krnc, Domen Šoberl

vi

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

Conference Program

Applications 2
2 Mouse cursor control using 3D head pose estimation information

Blaž Kovačič
7 App to Help Children with Special Needs to Improve Their Eye Movements and Focus

Vincent Wahyudi, Viony Tengguna and Christeena Varghese
13 Real-Time Vehicle Speed Estimation from Video

Mitko Nikov, Mitja Žalik and Domen Mongus

Evaluation and optimization 17
17 Empirical evaluation of ordered dictionary with ALGator

Jani Suban
23 Evaluation of algorithms for �nding shortest paths in a network

Dani Zugan
27 Concurrent migration of containers in decentralized cloud computing network

Andrej Erjavec and Aleksandar Tošić
31 How to Set the Maximum Number of Function Evaluations for the L-SHADE Algorithm

with the AS3D Approach?
Jana Herzog, Janez Brest and Borko Bošković

35 Two Cooperative Co-evolution Algorithms for CEC2013 Large Scale Optimization Problems
Klemen Berkovič, Borko Bošković and Janez Brest

Machine Learning and Data Science 39
39 Retrieving deleted records from Telegram

Zan Pockar and Tom Sojer
43 Slovenian command word speech recognition using transfer learning

Blaž Kovačič and Borko Bošković
47 Identifying communities and ranking the drivers’ performance in Formula One

Matej Horvat, Lan Sovinc and Domen Grzin
51 Sensitivity Analysis of Named Entity Extraction based on Deep Learning

Lea Roj, Štefan Kohek, Aleksander Pur, Niko Lukač
57 Human-assisted reinforcement learning demonstrated on the Flappy Bird Game

Jana Ristovska and Domen Šoberl

Index of Authors 61

vii

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

viii

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

Plenary Speakers

Marko Grobelnik
AiLab, Jožef Stefan Institute

Knowledge Graphs and Large Language Models

Large Language Models have many nice properties, but one which is not well spo�ed is ex-
tracting and manipulating structured knowledge. In the talk we’ll overview and demonstrate
a set of scenarios where LLMs can help transitioning between the textual content and struc-
tured knowledge based representations like knowledge graphs, first order logic and Prolog
programming language. Scenarios will include also some of the more or less standard text
manipulation tasks like entity extraction, emotion extraction, consequence generation and
reasoning with the content.

Marko Grgurovič
Triternion & UP FAMNIT

Research and Development in the Video Game Industry

In this talk we will look at the changes and challenges in the video game industry over
the last decade. With the advent of o�-the-shelf engines and tech stacks, we have seen
consolidation in terms of technology and a focus on content. But what is involved in the
creation of a modern AA to AAA cross-platform title? Do video game companies engage in
research? Do they benefit from published results? What kinds of problems do they face and
how do they solve them?

1

Mouse cursor control using 3D head pose estimation
Blaž Kovačič

blaz.kovacic@student.um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
We developed a method of computer mouse cursor control based
on 3D head pose estimation using a web camera image stream. This
method can be especially applicable in the field of Assistive Tech-
nology interfaces for disabled persons. Our approach stands out by
enabling direct conversion of head pose into an absolute position
of the mouse cursor, the stability of which was achieved using a
special approach of facial key-point filtering. In order to estimate
head pose rotation angles we made use of the iterative version
of the Perspective-n-Point algorithm together with a seven-point
(symmetric) 3D head model, that adjusts itself to the head shape
based on facial landmark positions in the starting head position.
We demonstrate the effectiveness of our approach using practical
comparative measurements.

KEYWORDS
Accessibility, 3D head pose estimation, Perspective-n-Point prob-
lem, dlib library, Human-computer interaction

1 INTRODUCTION
According to the World Health Organization, about 15 % of the
world’s population lives with some form of disability, out of which
2-4 % have significant difficulties in functioning [WHO 2011]. The
field of Assistive Technology (AT) is concerned with the devel-
opment of accessories that help persons with disabilities such as
quadriplegia or cerebral palsy, in their everyday lives, work, com-
munication, and have an impact on the general improvement of
their quality of life.

Persons with special needs can make use of their devices through
physical contact (for example using switches), with the use of fa-
cial movement (for example “Face Control” Android app [Obstino
2022]), with head movement (for example a gyroscopic mouse),
with eye gaze (eye trackers), or by using their voice (for example
Talon or Dragon Naturally Speaking [Nowogrodzki 2018]).

The choice of AT solution often depends on the type of disability
and available mobility that a person has. For example, solutions
that provide cursor control through head tracking, while requiring
mobility of the head, may provide easier and more accurate cursor
control for some disabled users compared to eye trackers [Zapała
and Bałaj 2012], where the head is often required to be held still.
Additional benefit of head trackers is that they can also be imple-
mented in software, requiring only a web camera, presenting a cost
effective AT solution.

Certain webcam head tracking solutions already exist on the
application market, for example the CameraMouse [Betke et al.

2002] and eViaCam [Mauri 2019] PC software. The downside of the
mentioned applications is that their underlying algorithm converts
relative head motion into relative cursor movement, resulting in the
effect that, with use, cursor will move to a position that is different
from the current head gaze direction. For example, when we move
the head from the starting position in a certain direction, and then
back into the starting position, the mouse cursor is not at the same
position anymore, but at a position that doesn’t coincide with the
head gaze direction, which might make it difficult for the end-user
to interact with the computer.

To the best of our knowledge, an application solution that would
remove thementioned weakness doesn’t yet exist on the application
market, so we decided to research the feasibility of the approach of
using the webcam image stream to convert 3D head pose into an
absolute mouse cursor position, such that it always corresponds to
the head gaze direction. Such an approach may potentially offer a
favorable alternative to existing implementations.

2 RELATEDWORK
[Nabati and Behrad 2010] developed an application solution for
disabled persons, which captures an image stream using a monocu-
lar camera, and uses the head pose estimate (rotation, translation)
using four marked points on the face to convert it into correspond-
ing mouse movement. In their approach they divided the solution
on a movement information retrieval module (3D head pose), and
mouse movement module. When estimating the 3D head pose they
assumed that 4 points on the face are on the same plane (a “N-point”
planar face model where the front of the face is modeled as a flat
surface) to obtain 3D rotation and translation between the web
camera and head pose. Their approach of a 4-point head model is
interesting and we expand upon the idea.

[Fu and Huang 2007] describe an approach of using the relative
position of the head’s bounding box in webcam image to set coarse
cursor position on the screen, and they fine tune cursor position by
means of estimating the head rotation. Although not specifically
aimed at disabled population, the approach is interesting as it uses
both head translation and rotation for fine cursor control.

[Tu et al. 2005] describe a 3D model based camera mouse control,
implementing what they termed “direct mode” as a one-to-one
mapping from obtained head rotations to cursor screen coordinates.
Though exhibiting a degree of cursor localization error, with ease
of implementation not being it’s strong point, the approach does
shows promise and prompts us to further research this method.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.02

2

https://doi.org/10.26493/scores23.02

Blaž Kovačič

3 PROBLEM DESCRIPTION
Our goal was to develop a solution that uses the web camera image
stream to estimate the 3D head pose and convert the obtained
head rotation angles to absolute mouse cursor position such that it
always corresponds to the direction of the head gaze.

The primary challenge that we address in this work is obtaining
very stable estimates of head rotation angles through facial key-
point filtering, and implementing a mapping function to translate
head rotations to cursor screen coordinates.

The problem can be divided into the following parts: 1) image
acquisition and face region detection, 2) detection of facial land-
marks within the face region, 3) head modeling (for example an
N-point 3D model), 4) 3D head pose estimation, 5) stabilization of
the obtained head rotation angles, and 5) conversion of the head
rotation angles into stable mouse movements.

3D head pose estimation problem
3D head pose estimation is a subset of the more general problem
called pose estimation, where the 3D pose (rotation and translation)
of an arbitrary object is being estimated. A 3D pose can be estimated
by minimizing the so-called reprojection error. A reprojection error
is the smallest at that rotation and translation of object points, such
that the difference between the positions of those points projected
from the 3D object coordinates to the 2D image plane, and between
corresponding (observed landmark) points in the captured image is
as small as possible (see Fig. 1).

The problem of reprojection error minimization is solved by
the so-called Perspective-n-Point (PnP) algorithm [OpenCV.org
2023b], which, additionally, takes into account the camera parame-
ters described by a so-called camera intrinsic matrix (containing
information about, for example, focal length and optical center) and
distortion coefficients of the matrix (describes how much straight
lines are distorted when the image is captured).

The 3D pose estimation is, therefore, obtained when we find the
appropriate rotation and translation matrix that minimizes the error
when projecting object points into the image plane (point (𝑢, 𝑣)).
This projection can be written mathematically as [OpenCV.org
2023b] the matrix product given in Eq. (1). The equation describes
the projection of world coordinate points (𝑋𝑤 , 𝑌𝑤 , 𝑍𝑤 , 1) onto the
image plane points (𝑢, 𝑣, 1), where r and t are parameters of the
rotation and translation matrix, and f and c are focal lengths and
optical centers respectively.

𝑢

𝑣

1

=

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

1 0 0 0
0 1 0 0
0 0 1 0

𝑟11 𝑟12 𝑟13 𝑡𝑥
𝑟21 𝑟22 𝑟23 𝑡𝑦
𝑟31 𝑟32 𝑟33 𝑡𝑧
0 0 0 1

𝑋𝑤

𝑌𝑤
𝑍𝑤
1

(1)

4 SOLUTION IMPLEMENTATION
The solution was implemented in the C++ programming language,
where the popular OpenCV library was used for computer vision
algorithms. To obtain 68 key-points of the facial region, also known
as facial landmarks, we used the dlib C++ library, a toolkit contain-
ing machine learning and computer vision algorithms and tools
[Dlib 2017].

Figure 1: Visualization of the Perspective-n-Point problem
(according to [OpenCV.org 2023b]).

Table 1: Computation of 7-point 3D head model given object
points in starting head position.

Point x y z
Between the eyebrows 0 27.𝑦 − 33.𝑦 0.56 · (45.𝑥 − 36.𝑥)

Left eye corner −(27.𝑥 − 36.𝑥) 36.𝑦 - 33.𝑦 0.56 · (45.𝑥 − 36.𝑥)
Right eye corner +(27.𝑥 − 36.𝑥) 36.𝑦 − 33.𝑦 0.56 · (45.𝑥 − 36.𝑥)
Tip of the nose 0 0 1.36 · (45.𝑥 − 36.𝑥)

Left mouth corner −(54.𝑥 − 48.𝑥)/2 48.𝑦 − 33.𝑦 0.70 · (45.𝑥 − 36.𝑥)
Right mouth corner +(54.𝑥 − 48.𝑥)/2 48.𝑦 − 33.𝑦 0.70 · (45.𝑥 − 36.𝑥)
Middle of the chin 0 8.𝑦 − 33.𝑦 0.56 · (45.𝑥 − 36.𝑥)

We captured the image stream with 3-channel RGB images of
resolution 640x480. First, we detected the facial region using the
widely used Viola-Jones algorithm [Viola and Jones 2001] upon
whichwe decided because of its fast OpenCV implementation, using
the default FrontalFace pre-trained model from the OpenCV library.
Then, we tracked the obtained facial region using the MOSSE (Min-
imum Output Sum of Squared Error) tracker [Bolme et al. 2010]
from the OpenCV contrib repository, which helps reduce computa-
tion time, and therefore increases the resulting frame rate, which
would otherwise have been affected negatively if we were to detect
the facial region repeatedly using the Viola-Jones algorithm. What
follows is the detection of facial landmarks using the dlib library,
which, when given an input image and location of the facial region,
returned 68 landmark points (see image 2) in the starting head
position.

When modeling the head, we used seven of those landmark
points, namely, the points corresponding to the eye corners (points
36 and 45), the point between the eyebrows (27), nosetip point (33),
corners of the mouth (48 and 54), and the point in the middle of the
chin (8). We centered the model in a way shown in Table 1. The
Table shows the 𝑥 , 𝑦, and 𝑧 coordinates of the model points, where,
for example, 27.𝑦 means the 𝑦 position of the 27th point (the point
between the eyebrows) that we obtained using the facial landmark
detector at the starting head position.

4.1 Obtaining head rotation angles using
OpenCV

In our implementation we measured the camera intrinsic matrix
and distortion coefficients using the example calibration tool that
comes with the OpenCV library package. The tool measures these

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

3

Mouse cursor control using 3D head pose estimation

Figure 2: Distribution of 68 facial landmark points 1.

parameters by being shown an image of the chessboard pattern
from different angles through the webcam image stream.

Inside the OpenCV environment we made use of the 𝑠𝑜𝑙𝑣𝑒𝑃𝑛𝑃
function [OpenCV.org 2023a], in order to obtain the rotation and
translation vector, followed by the use of the 𝑅𝑜𝑑𝑟𝑖𝑔𝑢𝑒𝑠 function
[OpenCV.org 2023a], in order to transform the rotation vector into
a rotation matrix, and, finally, we used the function 𝑅𝑄𝐷𝑒𝑐𝑜𝑚𝑝3𝑥3
[OpenCV.org 2023a], in order to transform the rotation matrix into
Euler rotation angles. Out of those angles, we made use of the yaw
(horizontal head rotation) and pitch (vertical head rotation) angles,
and converted them into the absolute position of the mouse cursor.

4.2 Filtering algorithm
With the intent of stabilizing the obtained head rotation angles, we
made use of the approach of filtering the 𝑥 and 𝑦 positions of each
of seven points (a total of 14 filters) that the dlib facial landmark
detector returns. For this purpose we implemented an exponential
smoothing (IIR) filter with difference equation given by Eq. (2).

𝑦 [𝑛 + 1] = (1 − 𝛼)𝑥 [𝑛] + 𝛼𝑦 [𝑛] (2)

We defined 𝛼 = 1− 2𝜋 𝑓0
𝑓𝑠

as the memory factor, basing the definition
on properties of the RC low-pass filter from whose Laplace transfer
function the Eq. (2) can be derived by taking the inverse Laplace
transform and substituting derivatives with finite differences. Here
𝑓0 is the filter cutoff frequency, and 𝑓𝑠 = 30Hz is our frame rate.

The final solution implementation used Eq. (2) to filter the seven
landmark coordinate points (𝑢𝑖 [𝑛], 𝑣𝑖 [𝑛]) for 1 ≤ 𝑖 ≤ 7, by applying
the filter equation to 𝑢 and 𝑣 coordinate components. After we used
these points in the PnP algorithm, we obtained estimations of the
head rotation angles. We then transformed these rotations into the
final cursor position point, and, finally applied the same filter on
this point as well, which resulted in an even more stable cursor
position.

We determined the appropriate cutoff frequency for filters ap-
plied at each point as 𝑓0 = 0.19Hz empirically, which corresponds
to 𝛼 = 0.96.

The undesired effect of filtering is the time delay introduced into
the movement of cursor during application use. From the filter’s
transfer function, the filter step response can be shown to be equal
to 𝑦 (𝑡) = 1 − 𝑒−2𝜋 𝑓0𝑡 . The time at which this function reaches
80 % of it’s maximum value can be shown to be 𝑡𝑑𝑒𝑙𝑎𝑦 = ln(0.2)

2𝜋 𝑓0 .
Using this, we could estimate the time delay of our filter at a spec-
ified cutoff frequency as 𝑡𝑑𝑒𝑙𝑎𝑦 (𝑓0 = 0.19Hz) ≈ 1.35 s, which in a

1Based on: https://www.researchgate.net/figure/The-68-landmarks-detected-by-dlib-
library-This-image-was-created-by-Brandon-Amos-of-CMU_fig2_329392737

practical setting, manifests as a time delay, that is needed in order
for the cursor to move from one side of the screen to the other,
when the head is moved quickly between the two positions.

4.3 Conversion of rotation angles into an
absolute cursor position

After having obtained the Euler rotation angles of the head, we
transformed them into an absolute cursor position according to the
equations (3) and (4) given by:

𝑥𝑝𝑖𝑥 =
𝑊

2 ×
(
1 − tan(\𝑥)

tan(\𝑥𝑚𝑎𝑥)

)
(3)

𝑦𝑝𝑖𝑥 =
𝐻

2 ×
(
1 − tan(\𝑦)

tan(\𝑦𝑚𝑎𝑥)

)
(4)

Here,𝑊 and 𝐻 are the screen width and height in pixels, \𝑥
and \𝑦 Euler angles for yaw (horizontal head rotation) and pitch
(vertical head rotation) respectively (obtained through the PnP al-
gorithm), and \𝑥𝑚𝑎𝑥 and \𝑦𝑚𝑎𝑥 are the estimated head yaw and
pitch angles at the extreme head positions (when looking at left-
most/rightmost and topmost/bottom side of the screen). In our case
we set \𝑥𝑚𝑎𝑥 = 6.5◦ and \𝑦𝑚𝑎𝑥 = 8.0◦, which enabled us to use
smaller head movements to obtain extreme positions of the cursor.

Eq. (3) was derived by observing tan(\𝑥) = 𝑥
𝐷
, where 𝑥 is the

desired cursor 𝑥 position relative to the center of the screen, \𝑥 is
the yaw angle of the head rotation, and 𝐷 is the distance of the
user’s head to the computer monitor. For example, 𝑥 = 0 would, in
this case, correspond to the center of the computer screen. Then,
we observed that, in practice, there exists a maximum yaw angle
\𝑥𝑚𝑎𝑥 , where the user is looking at the extreme side of the com-
puter screen (for example rightmost), and that there also a similar
relationship holds, namely, tan(\𝑥𝑚𝑎𝑥) = 𝑥𝑚𝑎𝑥

𝐷
= 𝑊 /2

𝐷
. Dividing

the two resulting equations eliminates 𝐷 , giving tan(\)
tan(\𝑥𝑚𝑎𝑥) =

𝑥
𝑊 /2 ,

which we can now solve easily for 𝑥 . Additionally, accounting for
the pixel offset of 𝑊2 pixels at 𝑥 = 0 resulted in 𝑥𝑝𝑖𝑥 = 𝑊

2 −𝑥 , which,
after insertion of 𝑥 , yielded Eq. (3). Without loss of generality, the
same approach can be used to derive Eq. (4).

5 MEASUREMENTS AND RESULTS
We evaluate our solution by measuring cursor stability during use
with three cursor movement tasks, and compare the results to those
when using noisy baseline head rotation estimates.

Themeasurements were performed by an able bodied test subject
at a distance of about 60cm from the screen, using a 144 PPI (Pixels
Per Inch) screen with a screen resolution of 1920x1080 pixels, using
the default parameter values described in Section 4.3 and the filter
cutoff frequency 𝑓0 = 0.19Hz.

In the first part of the measurements we compared graphs of
cursor 𝑥 and𝑦 displacement from a reference center point at the task
where the user sequentiallymoved the head in two directions: 1) left-
right, 2) up-down. We measured the stability of the cursor position
relative to horizontal axis of the computer screen (𝑥 displacement)
and vertical axis of the computer screen (𝑦 displacement). The
results can be seen in Fig. 3, where we can see that the non-filtered
cursor positions exhibited a large degree of noise.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

4

Blaž Kovačič

Table 2: Results of a t-test for cursor position when observing
a fixed point.

No filter Filter
Mean [pixels] 46.25 8.39
Variance 787.73 16.10
Number of samples 132 201
t Stat 15.39
P(T<=t) < 0.00001
t critical two-sided 1.97

Figure 3: Visualization of filtered and non-filtered cursor
displacement along the x and y axes when looking left-right
and up-down sequentially.

Figure 4: Display of filtered (red) and non-filtered (green) cur-
sor path during a detour around the reference curve (black).

In the second part of the measurements we recorded the cursor
location when observing a fixed point - first without the filtering
algorithm, and then with the filter. Measurement samples are abso-
lute values of cursor deviation from the point. Then, we performed
the t-test, where we obtained the results shown in Table 2. We can
see that filtering introduces a statistically significant difference in
the results.

In the final part of the measurements we measured cursor devia-
tion magnitude from an ellipse-like curve (with half the width and
height the screen dimensions, i.e. 25% side-margins). The subject
had the task of moving the cursor using the head mouse three times
around the curve, starting and ending in mid-right side of the curve.

For this sample of measurements we obtained the following
average values with their Standard Deviations (units are the number
of pixels of cursor deviation magnitude from the reference curve):
`no filter = 83.5 (𝜎no filter = 101.1); `filter = 17.9 (𝜎filter = 13.8).

6 CONCLUSION
In this paper we presented a promising method for computer mouse
cursor control using webcam 3D head pose estimation, based on
filtering of facial key-points. Such an approach is relevant and
applicable in the field of Assistive Technology Human-Computer
Interfaces.

Our approach stands out by it’s ability to map the head rotation
vector, (𝑦𝑎𝑤, 𝑝𝑖𝑡𝑐ℎ), directly into corresponding (𝑥,𝑦) positions of
the cursor. This differs from available application solutions on the
market, which instead translate relative head motion into relative
mouse movement, where the head gaze direction need not coincide
with cursor position.

In our experimental work we demonstrated the effectiveness of
our key-point filtering approach on cursor stability during use.
During the task of observing a fixed point, the mean absolute dif-
ference between the observed point and actual cursor position was
8.39 pixels with 𝜎2 = 16.10, as opposed to the mean of 46.25 pixels
with 𝜎2 = 787.73 without the filter. During the task of user moving
the cursor around the reference curve, we obtained a mean abso-
lute cursor position difference (relative to the curve) of 17.9 pixels
(𝜎 = 13.8 pixels), as opposed to the mean of 83.5 pixels (𝜎 = 101.1
pixels). Additionally, we demonstrated the cursor denoising ability
visually during the task of sequential head movements.

In the future work, we would like to improve the cursor stability
by increasing the filter memory factor when the head is held still,
which would allow fine-tuned cursor movements and potentially
improve the ease of use. Additionally, we would like to include the
implementation of facial gesture detection for mouse click simula-
tion and automatic fixation of cursor on UI elements (e.g. buttons).

REFERENCES
Margrit Betke, James Gips, and Peter Fleming. 2002. The camera mouse: visual tracking

of body features to provide computer access for people with severe disabilities.
IEEE Transactions on neural systems and Rehabilitation Engineering 10, 1 (2002),
1–10.

David S Bolme, J Ross Beveridge, Bruce A Draper, and Yui Man Lui. 2010. Visual object
tracking using adaptive correlation filters. In 2010 IEEE computer society conference
on computer vision and pattern recognition. IEEE, 2544–2550.

C++ Dlib. 2017. Dlib C++ Library. Dlib. net (2017).
Yun Fu and Thomas S. Huang. 2007. hMouse: Head Tracking Driven Virtual Computer

Mouse. In 2007 IEEE Workshop on Applications of Computer Vision (WACV ’07).
30–30. https://doi.org/10.1109/WACV.2007.29

Cesar Mauri. 2019. Enable Viacam Website. http://eviacam.crea-si.com/index.php
Accessed on 2023-06-30.

Masoomeh Nabati and Alireza Behrad. 2010. Camera mouse implementation using
3D head pose estimation by monocular video camera and 2D to 3D point and line
correspondences. (2010), 825–830. https://doi.org/10.1109/ISTEL.2010.5734136

ANNA Nowogrodzki. 2018. Writing code out loud. Nature 559, 7712 (2018), 141–142.
Obstino Association - Društvo Obstino. 2022. Face Control Android application. https:

//play.google.com/store/apps/details?id=com.obstino.facecontrol
OpenCV.org. 2023a. OpenCV documentation Camera Calibration and 3D Reconstruction.

https://docs.opencv.org/3.4/d9/d0c/group__calib3d.html Accessed on 2023-3-3.
OpenCV.org. 2023b. OpenCV documentation Perspective-n-Point (PnP) pose computation.

https://docs.opencv.org/4.x/d5/d1f/calib3d_solvePnP.html Accessed on 2023-3-3.
Jilin Tu, T. Huang, and Hai Tao. 2005. Face as mouse through visual face tracking.

In The 2nd Canadian Conference on Computer and Robot Vision (CRV’05). 339–346.
https://doi.org/10.1109/CRV.2005.39

P. Viola and M. Jones. 2001. Rapid object detection using a boosted cascade of simple
features. In Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, Vol. 1. I–I. https://doi.org/10.1109/CVPR.
2001.990517

WHO. 2011. World Report on Disability 2011. https://www.who.int/
teams/noncommunicable-diseases/sensory-functions-disability-and-
rehabilitation/world-report-on-disability Accessed on 2023-05-17.

Dariusz Zapała and Bibianna Bałaj. 2012. Eye Tracking and Head Tracking–The two
approaches in assistive technologies. (2012).

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

5

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

6

App to Help Children with Special Needs to Improve Their Eye
Movements and Focus

Christeena Varghese∗
christeena.varghese@study.thws.de
Technical University of Applied
Sciences Würzburg-Schweinfurt

Würzburg, Germany

Vincent Wahyudi∗
vincent.wahyudi@study.thws.de
Technical University of Applied
Sciences Würzburg-Schweinfurt

Würzburg, Germany

Viony Tengguna∗
viony.tengguna@study.thws.de
Technical University of Applied
Sciences Würzburg-Schweinfurt

Würzburg, Germany

ABSTRACT
This paper presents a low-cost eye-tracking system and training
game application aimed to improve eye gaze control of children
aged three to six, especially for those with conditions such as Dys-
praxia and Autism Spectrum Disorders. The traditional method of
manually evaluating eye movement can often result in inaccurate
results. Our application combines eye-tracking technology with a
game-like approach designed to encourage children to focus their
gaze in different directions. The application tracks their gaze using
a laptop’s built-in camera and provides comprehensive analytics.
This work has the potential for further development and application
in the field of eye gaze treatment.

KEYWORDS
Eye-tracking application, Autism SpectrumDisorder, children, Com-
puter Vision, OpenCV

1 INTRODUCTION
Eye contact plays a crucial role in human social interaction. Indi-
viduals with conditions such as Dyspraxia and Autism Spectrum
Disorders face difficulties in shifting their gaze, which leads to
difficulty in synchronizing their central and peripheral vision [9].
Impaired eye movement can increase the risk of accidents, rest-
lessness in movement, and increase stress. If detected in its early
stages, the dexterity of the eye gaze can be improved through the
implementation of therapeutic exercises, commonly referred to as
"eye gaze treatments".

Traditionally, the therapist uses an item (a stick or a pen) for
the eye gaze treatment sessions. The therapist moves the stick in
various directions, encouraging the child to focus on the object.
The therapist visually evaluates the movement of the child’s eye
and manually tracks the improvements. However, this method is
extremely imprecise and subjective.

The inaccuracy of the results can be reduced by the use of eye-
tracking systems, which are readily available for purchase and
can accurately determine the position and movement of the gaze
[10]. However, these systems can be costly and there are a limited
number of affordable eye-tracking systems on the market.

Our eye-tracking software aims to improve traditional methods
in a cost-effective way by providing more accurate results in eye
gaze treatment. The source code of this project is available on
GitHub at the following link: https://github.com/vincentw1997/
Eye_Tracking_Project_Module.git. The eye-tracking application is
covered up as an interactive game that can be appealing to children

∗Equal contribution

of ages three to six [11]. The game that is connected to the eye-
tracking system mimics the traditional treatment in an attractive
way that helps the children to improve their eye gaze in a joyful
way. The therapist can evaluate each child’s progress accurately
from the results generated by the application.

The software tracks the child’s gaze through the built-in laptop’s
camera and provides analytics about the estimated gaze for the
therapist. The system records the coordinate data of the child’s
eye movement and compares it to the recorded coordinates of the
moving characters in the game. These data are useful for therapists
to assess the speed and accuracy of the eye gaze movement during
the therapy session.

This paper is structured into four sections. The first section pro-
vides a concise overview of various eye-tracking methods and offers
explanations of similar works related to cost-effective eye-tracking
pipelines. Next, this paper describes the method used to develop the
eye-tracking application, including elements such as head-tracking,
game components, and data analytics. The third section presents
the experimental setup, the results of the controlled experiments,
and a discussion of the obtained results. Lastly, the fourth section
provides a short conclusion and potential improvements for future
works.

2 RELATEDWORK
Generally, eye-tracking methods can be categorized into two main
groups [4]: appearance-based and model-based approaches. The
appearance-based approach tackles the problem by learning a map-
ping function from eye images to gaze estimation. This approach
usually requires large training data and a properly trained model
[13]. On the other hand, the model-based approach aims to calcu-
late a 3D gaze direction vector, based on the known anatomy of the
human eye, such as the iris, sclera, and pupil. This method usually
relies on precise metric information such as camera calibration,
positioning, monitor positioning, and orientation. In this paper, we
implemented the model-based approach by simplifying assump-
tions and skipping some traditional steps in order to fit into our
specific use case. Cazzato et al. [2] approaches eye-tracking prob-
lems for soft biometrics using the model-based approach that uses
cheaper hardware such as Microsoft Kinect and ASUS Xtion Pro
Live. These are commercial depth sensors, which are considerably
more accessible to the general public compared to Tobii infrared
eye trackers or similar laboratory hardware that can cost multiple
times more. Our paper aims to leverage the concept of making eye-
tracking technology more accessible to the general public, without

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.05

7

https://doi.org/10.26493/scores23.05

Christeena Varghese, Vincent Wahyudi, and Viony Tengguna

the need for additional hardware such as commercial depth sen-
sors. However, this approach comes at the cost of lowered tracking
accuracy.

3 METHOD
In this section, we divide the description of our application into
four parts. The first description begins with an overview of the eye-
tracking architecture. Secondly, we elaborate on the head-tracking
architecture and its integration with the eye-tracking architecture.
Thirdly, we explain the game component designed to captivate
the child’s attention. Lastly, we provide data analytics based on
the data collected from the first three architectures. We visualize
the data for performance analysis evaluated by the therapist. An
overview of how the application functions can be seen in Figure
1. A flowchart of all the development processes can be seen in the
Github repository.

3.1 Eye-Tracking
The eye-tracking architecture’s main objective is to isolate the
eye with respect to the whole screen captured by the webcam of
the laptop. It starts with grayscaling [14] the frames captured to
reduce color complexity. Facial landmarks are further detected from
the grayscaled frames using dlib library [5] that assigns specific
coordinates to the facial landmarks. Masking is executed to isolate
the precise locations of the right and left eye coordinates derived
from dlib landmarks [12], thereby producing frames that exclusively
isolate the eye shape, which we call eye-only frames. The estimation
of the pupils’ position is achieved by detecting circular shapes in
the eye-only frames.

General pipelines for shape detection are implemented to esti-
mate the pupil’s position in eye-only frames. These include grayscal-
ing, filtering of the frames to emphasize contours of the iris and the
sclera (white part of the eye), and thresholding of the frames where
pixels are replaced into either black or white depending on the pixel
value being higher or lower than the predetermined threshold value.
The contours of the eye are clearly shown after the thresholding
step and the circular shape of the iris will be clearly outlined.

The determined iris shape can be used to detect the region of
interest (ROI). In the ROI frame, pupils are estimated by detecting
the circular shape using Circular Hough Transform [8] inside the
iris. The coordinates of the estimated iris and pupil are stored.
Plotting the stored coordinates with respect to time will provide
comparable data with the character movement in the game part.
The ROI is implemented by magnifying the area on only one of
the eyes as the movement of the left and right eye are assumed to
be similar. The ROI frame can be seen in Figure 1. I. Eye Tracking
(magnified version of the frame) with a green circle highlighting
the iris of the child’s eye.

3.2 Head-Tracking
The head-tracking architecture detects and follows the movement
of a person’s head, which includes the position and orientation
of the head. The integration of head-tracking with eye-tracking
ensures a controlled alignment between the camera and the child.
Good alignment provides accurate readings of the estimated eye
movements. Face detection, facial landmarks, and pose estimation

are the main components of the head-tracking part. In this model,
we use OpenCV [1] for camera live input, Dlib for the facial detector,
and solvePnP [7] for pose estimation. A warning will show in the
application if the patient is not aligned perfectly with the camera
as seen in Figure 1. II. Head Tracking.

3.3 Game
The game architecture is created to serve as a facade for eye-
tracking therapy. The game offers several settings such as cartoon
character selections, the speed of the character’s movement, and
the direction. This promotes different movement variations for eye
gaze training. The available direction options are horizontal, verti-
cal, and free movement. The movement speed of the character can
be set to slow, medium, or high.

The game was built using Python and libraries such as Pygame
and Tkinter. SQLite was used as the backend database to store infor-
mation such as game progress, patient details, and login credentials.
Therapists can register patients, view patient records, start therapy
sessions, and create an account using the "Create Account" op-
tion before logging in. These features provide secured information
storage that the therapy can use.

3.4 Data Analytics
Data analytics can be done once eye-tracking, head-tracking and
the game architecture are combined together into one integrated
application. Data analytics analyzes the eye gaze performance of
the child. Eye gaze data are only collected as long as the child
maintains good head orientation during the session. Alerts in the
application will remind the user to fix the user’s head position and
orientation as explained in the previous section.

The gathered data are represented in the form of two graphs [15]
for each therapy session. The first graph contains coordinates that
represent the pupil gaze positions in the ROI frame. It is plotted
with respect to time and shows all the positions of the pupil from
the start of the session until the session ends. This graph can be seen
in Figure 2. (Pupil position in the ROI). The second graph contains
the comparison of the cartoon character game coordinates and the
pupil gaze coordinates in the ROI frame. Matching these coordinate
systems with time will show whether the child is following the
movement of the cartoon character or not. If the child is looking
at something else besides the cartoon character, there will be a
big difference between the two coordinates. An example of the
graph can be seen in Figure 2. (Comparison between Game and Eye
Coordinates).

4 EXPERIMENTAL SETUP, RESULTS AND
DISCUSSION

In this section, we will explain the experimental setup, results,
and discussion. The experimental setup describes the implemented
settings. The result shows the data collected when implementing
the settings in the experimental setup and discussion on the results
obtained.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

8

App to Help Children with Special Needs to Improve Their Eye Movements and Focus

Figure 1: An Overview of the eye-tracking application. I. Eye Tracking shows the Region of Interest (ROI) frame that isolates
the eye and highlights the iris as a green circle. II. Head Tracking shows the head position and orientation of the user in red.
"Good" means the user is in the perfect position. "X/Y not in range means that the user needs to adjust his/her positioning. The
small rectangle on the bottom left (III. Game) is the view that the user will see when the application runs. The user must follow
the cartoon character’s movement while remaining still. IV. Data representation represents the recorded data into graphs for
analytics purposes."

4.1 Experimental Setup
The application is ideally designed for home usage and we simulate
similar conditions during our experiment. The application is run-
ning on a regular laptop with a built-in webcam with a resolution
of 720p. The room was well-lit with one warm white light in the
ceiling and a window overlooking the side of the laptop. Experi-
ments were done with no direct sunlight shining into the room.
The tester is required to remove glasses during the experiment as
it adds noise to the data.

The application was run on 5 different settings. The first and
second setups run at medium speeds with different movement,
which is horizontal and vertical respectively. The third and fourth
setups have the same horizontal movement with different speed
settings, low speed, and high speed respectively. The fifth setup
will have the cartoon character moving at medium speed with a
free movement function. These setups aim to show the effect of
different parameters on a common use case.

The tester must be perpendicular to the camera, remain still,
and maintain his left eye in between the pink diamonds in the
ROI frame during the testing session. If the tester is maintaining an
ideal position, the application display will show "Good!" in red color.
Otherwise, the application will show warnings, which the tester
must adjust their position similar to Figure 2. II. Head Tracking.
X not in range means the tester is not in the right orientation
horizontally.

4.2 Result
Figure 2. shows the recorded result for the first experimental setup
(Horizontal movement andmedium speed). The first graph in Figure
2. represents the estimated pupil position in the ROI frame. Both
axes are in pixel units. The time recorded for the estimated pupil
position is determined by the color. Darker colors represent earlier
time stamps in the session and color lightens as time increases. The
second graph in Figure 2. shows the movement data of the cartoon

character (Game X and Y coordinate) and the eye movement in the
ROI frame (Eye X and Y coordinate).

Figure 3. shows the recorded result for the second experimental
setup (Vertical movement and medium speed). The two graphs
in Figure 3. follows the same format as explained in the previous
paragraph. The second setup maintains the same speed parameter
while changing the cartoon character’s movement from horizontal
to vertical to test the tracking capabilities of the application. Results
from the third to the fifth experimental setup are not shown here
and can be seen in the GitHub repository.

4.3 Discussion
Figure 2. and Figure 3. demonstrates the effect of different move-
ment directions. The pupil position in the ROI graph in Figure 2.
shows the initial dots of the estimated pupil positions start moving
from the bottom left corner of the screen which suggests the tester
is trying to find the cartoon character on the screen. In the fol-
lowing time stamps, the positions moved toward the center of the
ROI frames and oscillated horizontally between 250 to 300 pixels
X position. These movements indicate that the tester is trying to
follow the movement of the cartoon character that is moving hori-
zontally. The horizontal movement of the pupil is further supported
by the result of the Eye X coordinate in the second graph of Figure
2. (green line). The Eye X coordinate mimics the oscillating move-
ment of the Game X coordinate (blue line) and has similar peaks.
As this setup only evaluates the horizontal movement, the Game
Y coordinate (orange line) remains in place for the whole session.
The Eye Y coordinate (red line) will never be as constant as the
Game Y coordinate (orange line) as humans have micro-movement
in their gaze when tracking any moving object. The first graph in
Figure 3. shows similar behavior in the first few dots. It started to
move from the bottom left towards the center of the ROI frame
which suggests the tester trying to track the cartoon character on
the screen. Subsequent movements suggest that the estimated pupil

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

9

Christeena Varghese, Vincent Wahyudi, and Viony Tengguna

Figure 2: Results for the first experimental setup. Parameter
settings for this setup are horizontal movement and medium
speed. The first graph represents the tracked estimated pupil
position in the ROI frame. The axes are in pixels. Darker
points mean an earlier time stamp. The tracked pupil po-
sitions are more horizontally spread, and oscillations from
left to right can be observed between 250 to 300 pixels X
Position. The second graph illustrates the movement of the
cartoon characters in the game as Game X/Y coordinates and
the tracked eye movement as Eye X/Y coordinates. The Eye
X coordinate (green line) mimics the pattern of the Game X
coordinate (blue line) when the user tracks the horizontally
moving character.

position also centers around 200 to 250 pixels X position. Due to
the vertical movement of the cartoon character, the estimated pupil
positions oscillate vertically between 100 and 200 Y pixels position.
This is further reinforced by the result in the second graph in Fig-
ure 3. Eye Y coordinate (red line). It mimics the movement of the
Game Y coordinates (orange line) and has similar peaks. However,
these peaks and nearly constant values of the Eye coordinates are
not as obvious as in the previous horizontal setup. This shows the
weakness in the application in capturing the estimated vertical
movement of the eye. Another point to address is the difference
between the Eye X coordinate and the Game X coordinate very far
apart. This is due to the difference in the coordinate values during
the development and the limitation of the application in capturing
the extreme values on the edge of the ROI frames. This means that

Figure 3: Results of the second experimental setup. Parameter
settings for this setup are vertical movement and medium
speed. The representation is the same as the previous Figure 2.
The estimated pupil positions in the ROI are more vertically
spread between 100 to 200 Y pixels Position. The estimated
pupil positions generally remain centered on the X-axis. The
second graph shows the Eye Y coordinate (red line) mimics
the Game Y coordinate (orange line). The movements on the
vertical plane are not as defined as the movements on the
horizontal plane as in Figure 2.

the Eye coordinates will have less range compared to the Game
coordinates.

5 CONCLUSION AND FUTUREWORKS
This paper develops an affordable game-like eye-tracking appli-
cation that does not need additional hardware. The application
provides analytics for the therapist to track the performance of
the child. Based on the experimental results, the application per-
forms better in tracking horizontal movement compared to vertical
movement. Other results testing the effect of speed suggest that the
application performs best in a medium-speed environment. The
free movement setup shows the limitation of the application in
capturing extreme coordinates in the ROI frames. Based on the
discussion section, the application still has a lot of sectors to im-
prove. Children with glasses cannot use this application due to the
effect of glass on the recorded video. Gwon et al. [3] use additional
hardware to solve this limitation. Differences in the Game and Eye
coordinate values can be tackled by building both coordinates of

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

10

App to Help Children with Special Needs to Improve Their Eye Movements and Focus

the same magnitude making it easier to compare both values. The
application has limited controls (no pause or run time settings)
during the data recording session which made it hard to operate
the application. The implemented approach in this paper is a naive
approach that has its limitations in the accuracy and usability sector.
Rebuilding the whole architecture using the appearance-based ap-
proach [6] requires a larger pre-trained model with a larger dataset
might be a better solution that can improve the tracking accuracy
of the application.

6 ACKNOWLEDGEMENTS
The authors express great appreciation to Prof. Dr. Magda Gre-
gorová for her constructive suggestions during the experiments
and writing of this paper.

REFERENCES
[1] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools

(2000).
[2] Dario Cazzato, Andrea Evangelista, Marco Leo, Pierluigi Carcagnì, and Cosimo

Distante. 2015. A low-cost and calibration-free gaze estimator for soft biometrics:
An explorative study. Pattern Recognition Letters 82 (11 2015). https://doi.org/10.
1016/j.patrec.2015.10.015

[3] Su Gwon, Chul Cho, Eui Chul Lee, Won Lee, and Kang Park. 2014. Gaze Tracking
System for User Wearing Glasses. Sensors (Basel, Switzerland) 14 (02 2014),
2110–34. https://doi.org/10.3390/s140202110

[4] Dan Witzner Hansen and Qiang Ji. 2010. In the Eye of the Beholder: A Survey of
Models for Eyes and Gaze. IEEE Transactions on Pattern Analysis and Machine
Intelligence 32, 3 (2010), 478–500. https://doi.org/10.1109/TPAMI.2009.30

[5] Davis E. King. 2009. Dlib-ml: A Machine Learning Toolkit. Journal of Machine
Learning Research 10 (2009), 1755–1758.

[6] Kyle Krafka, Aditya Khosla, Petr Kellnhofer, Harini Kannan, Suchendra Bhan-
darkar, Wojciech Matusik, and Antonio Torralba. 2016. Eye Tracking for Every-
one. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[7] Eric Marchand, Hideaki Uchiyama, and Fabien Spindler. 2016. Pose Estimation
for Augmented Reality: A Hands-On Survey. IEEE Transactions on Visualization
and Computer Graphics 22, 12 (Dec. 2016), 2633 – 2651. https://doi.org/10.1109/
TVCG.2015.2513408

[8] Jiri Matas, C. Galambos, and J. Kittler. 2000. Robust Detection of Lines Using
the Progressive Probabilistic Hough Transform. Computer Vision and Image
Understanding 78 (04 2000), 119–137. https://doi.org/10.1006/cviu.1999.0831

[9] Michael Miller, Leanne Chukoskie, Marla Zinni, Jeanne Townsend, and Doris
Trauner. 2014. Dyspraxia, motor function and visual–motor integration in autism.
Behavioural brain research 269 (2014), 95–102.

[10] Pramodini A. Punde, Mukti E. Jadhav, and Ramesh R. Manza. 2017. A study of
eye tracking technology and its applications. In 2017 1st International Conference
on Intelligent Systems and Information Management (ICISIM). 86–90. https:
//doi.org/10.1109/ICISIM.2017.8122153

[11] Tony Renshaw, Richard Stevens, and Paul Denton. 2009. Towards understanding
engagement in games: An eye-tracking study. On the Horizon 17 (09 2009),
408–420. https://doi.org/10.1108/10748120910998425

[12] Christos Sagonas, Georgios Tzimiropoulos, Stefanos Zafeiriou, and Maja Pantic.
2013. 300 Faces in-the-Wild Challenge: The First Facial Landmark Localization
Challenge. 397–403. https://doi.org/10.1109/ICCVW.2013.59

[13] Yusuke Sugano, Yasuyuki Matsushita, and Yoichi Sato. 2014. Learning-by-
Synthesis for Appearance-Based 3D Gaze Estimation. In 2014 IEEE Conference on
Computer Vision and Pattern Recognition. 1821–1828. https://doi.org/10.1109/
CVPR.2014.235

[14] C. Tomasi and R. Manduchi. 1998. Bilateral filtering for gray and color images.
In Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).
839–846. https://doi.org/10.1109/ICCV.1998.710815

[15] Antony Unwin. 2020. Why Is Data Visualization Important? What Is Impor-
tant in Data Visualization? Harvard Data Science Review 2, 1 (jan 31 2020).
https://hdsr.mitpress.mit.edu/pub/zok97i7p.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

11

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

12

Real-Time Vehicle Speed Estimation from Video
Mitko Nikov

mitko.nikov@student.um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Mitja Žalik
mitja.zalik@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Domen Mongus
domen.mongus@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
Vehicle tracking and speed estimation are essential in many in-
telligent traffic management systems. In this paper, we propose
a new real-time architecture for estimating the speed of the vehi-
cles from monocular video streams. While following traditional
steps, including vehicle detection, its tracking, and mapping of co-
ordinates from pixel to real-world space, notable progress beyond
state-of-the-art is achieved by introducing a new filtering schema
with a camera calibration that allows for speed estimations from
arbitrary viewing angles. This enables monitoring to be performed
from moving platforms, such as Unmanned Aerial Vehicle (UAV),
while also observing multiple vehicles at once. As confirmed by
the results, even in these circumstances, the proposed approach
achieves comparable results to state-of-the-art techniques applied
on stationary video streams.

KEYWORDS
vehicle speed estimation, video stream processing, unmanned aerial
vehicle, traffic management systems

1 INTRODUCTION
With the increase in traffic density, real-time vehicle speed estima-
tion is actively used in traffic-aware route planning and forecasting
[11], speed limit enforcement [13] and other intelligent traffic man-
agement systems’ services. Traditionally, methods used for vehicle
speed estimation from video streams, adopt a so-called tracking-by-
detection framework [20], that consists of vehicle detection, vehicle
tracking and speed estimation steps [14, 15, 19, 25, 26].

In general, vehicles are detected and annotated with bound-
ing boxes on a frame-by-frame basis. In pipelines of older work
[8, 27, 29] this was achieved using histograms, thresholds, and
other means of separating moving objects from static backgrounds.
Accordingly, these methods are susceptible to noise and need ex-
tensive manual calibrations for specific environments and setups.
Nevertheless, deep learning approaches proved to be efficient in
dealing with these issues, and state-of-the-art today rely almost ex-
clusively on variations of Convolutional Neural Networks (CNNs)
such as YOLO1 [23], Faster-RCNN2 [7] and Mask-RCNN2 [10] for
detection as well as classification of vehicles [9, 15, 18, 25, 26, 30].

Speed estimation, however, requires vehicle tracking over a set
of successive frames even in those cases when occlusions occur.
Predicting their movements is, therefore, inevitably required for
successfully associating their detected positions. The Simple Online

1YOLO: You Only Look Once
2RCNN: Region-based Convolutional Neural Network

Realtime Tracking (SORT) algorithm [2] and different variations
of the Kalman filter are commonly used for this purpose [20]. In
order to enhance vehicle matching robustness across frames, the
recently introduced DeepSORT further extends the SORT algorithm
by extracting vehicle features using a pre-trained CNN [18, 28],
while increased accuracy of vehicle tracking and the extraction
of movement parameters using optical flow was also examined
[4, 14, 19, 22]. In all of these cases, however, movement vectors are
estimated in pixel-space. Their mapping into real-world coordinates
is, therefore, addressed next.

Mapping of movement vectors inevitably requires camera cal-
ibration that establishes a correlation between the pixel and the
real-world displacement of the vehicle. In most cases, calibration
approaches are based either on manually defined coefficients [14,
19, 22, 24, 27, 29] and intrusion lines [16] or linear image trans-
formations [15, 18]. However, these approaches require extensive
environment-specific parameter calibrations and measurements,
due to factors such as lighting conditions, camera angles, occlusions
or car-specific parameters [19, 29]. Therefore, they often remain
limited to the video-streams from stationary cameras. On the other
hand, some recently introduced approaches address these issues
by using CNNs and optical flow to estimate the average speed of
traffic rather than individual vehicles. [5, 31]

Figure 1: High-level architecture of the proposed vehicle
speed estimation method.

Accordingly, while vehicle detection, tracking and even average
speed estimation of traffic are already well-researched, estimating

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.14

13

https://doi.org/10.26493/scores23.14

Mitko Nikov, Mitja Žalik, and Domen Mongus

speed of individual vehicles poses a greater challenge. The non-
linear effects stemming from the perspective projection of real-
world objects onto the 2D image space, coupled with the intricate
terrain configurations, further aggravates the problem, preventing
applications of the discussed methods for processing video-streams
from moving platforms, such as Unmanned Aerial Vehicle (UAV).

In order to address these issues, we propose a new camera
calibration technique that is based on an iterative solver for the
Perspective-n-Point (PnP) problem [6], together with several im-
provements made upon the known movement vector estimation
with ray tracing and Kalman filtering [17]. Details on the proposed
method are explained in the next section. Section 3 provides the
achieved results, while conclusions are presented in section 4.

2 METHOD
Following the pattern of tracking-by-detection frameworks, the
processing pipeline of the proposed method consists of detection,
tracking and space transformation steps, as shown in Figure 1.

2.1 Vehicle Detection
In the detection step, the stream data is first decoded, resized and
preprocessed before being fed into the CNN for object detection.
Processing the image in the CNN is the most computationally inten-
sive task of the proposed pipeline. For the real-time object detection,
we obtained a YOLOv4 model [3], pretrained on the ImageNet and
MS COCO datasets. Since the mentioned datasets contain mostly
images of different objects from the ground level, the pretrained
model performed badly in our high elevation and high meter-to-
pixel domain, where objects are captured from above and appear
relatively small. Therefore, we improved the model via transfer
learning using custom created dataset. The training dataset con-
sists of approximately 61500 images and 550000 annotated vehicles.
Vehicle annotation was performed manually over 6 month period
and aided by general object tracking [1, 12, 21] in order to ob-
tain multiple samples of vehicles from different angles. The model
reached convergence after being trained on 35000 batches of 64
images in order to fine tune its weights and, thus, transfer the
knowledge to the required domain.

Further improvements on object detection are achieved by apply-
ing several filters for removal of duplicate objects and objects that
are irrelevant for speed estimation because of their class or size. Still,
this does not solve the commonly present shift of bounding-boxes
over consecutive frames, as indicated by Hua et al. [14]. Neverthe-
less, the integration of the Kalman filter substantially mitigates this
error during vehicle tracking, as discussed.

2.2 Vehicle Tracking
The proposed implementation of tracking is based on the SORT
algorithm [2] for Multi-Object Tracking (MOT). Given the informa-
tion about prior movement of objects [¤𝑥, ¤𝑦]𝑇 , the SORT algorithm
uses a Kalman filter with the following state vector:

x = [𝑥,𝑦, 𝑠, 𝑟, ¤𝑥, ¤𝑦, ¤𝑠]𝑇 , (1)
where the point (𝑥,𝑦) is the center of the bounding box, 𝑠 is the

area and 𝑟 - the aspect ratio of the bounding box. Moreover, the
displacement vector [¤𝑥, ¤𝑦]𝑇 in 2D space can be directly extracted

from the state. However, the perspective projection of the 3D world
makes the problem of object tracking in the 2D image space non-
linear. Therefore, with the use of the mapping function 𝑅 that
projects image coordinates onto a real-world plane, formally defined
in section 2.3, we are able to model the problem directly in 3D space
with the following Kalman filter state:

xours =
[
𝑅0 (𝑐)𝑥 , 𝑅0 (𝑐)𝑦, 𝑠, 𝑟 , ¤𝑅0 (𝑐)𝑥 , ¤𝑅0 (𝑐)𝑦, ¤𝑠

]𝑇
, (2)

where 𝑐 is a corner of the bounding box whose projection on the
ground plane is the closest to the camera. The vehicle velocity is
directly described by the vector 𝑣 =

[¤𝑅0 (𝑐)𝑥 , ¤𝑅0 (𝑐)𝑦]𝑇 . Moreover,
the inclusion of the 𝑧 coordinate from the 3D domain in the Kalman
filter state is unnecessary and will always be 0 (ground plane).

Following the prediction of the Kalman filter and re-projection
of the object’s position in the current frame, we proceed to match
the predicted bounding box with a bounding box obtained by object
detection, prioritizing the highest Intersection over Union (IOU)
metric. We also impose a 𝐼𝑂𝑈𝑚𝑖𝑛 threshold that restricts the match-
ing algorithm from linking bounding boxes that have a really low
IOU correspondence. Furthermore, we implement an object age
heuristic, which assigns priority to older objects in cases where a
single bounding box exhibits similar Intersection over Union (IOU)
correspondence with two or more tracked objects.

2.3 Space Transformations
As already mentioned in the previous section, space transformation
from the 2D image space to the 3D world captured by the camera,
is necessary for tracking as well as the actual vehicle speed estima-
tion. Additionally, to project the ground plane and bounding box
predictions from 3D to 2D space, a reverse transformation is also
required.

We propose an effective methodology that requires only 6 pairs
of image-to-world correlation coordinates. With the use of PnP
iterative solver, we manually provide 4 image-to-world correlation
coordinate pairs on the ground plane (𝑧 = 0) and 2 more on the 𝑧 = 1
plane. This results in translation and rotation vectors describing
the relative 3D space. We use landmarks with approximately equal
length, width and height to ensure uniformity across all units in
the 3D space (𝑥 , 𝑦 and 𝑧). Although subpixel precision is required
for extremely precise calibration, we found the Kalman filter to
be sufficiently flexible, delivering comparable results even in its
absence.

Using the camera matrix, translation and rotation vectors pro-
vided by our camera calibration, it is possible to define a function
𝑅𝑧 : R2 → R2 that maps the 2D image space to some predefined
𝑧 plane in the 3D space. It is implemented using a ray-plane inter-
section. By defining the 𝑅 function in regards to a fixed 𝑧 plane,
we can show that 𝑅𝑧 is a bijectional mapping from the 2D image
space to the predefined plane in the 3D world. Let us assume that
all vehicles are driving on the ground plane where 𝑧 = 0 and thus
only be interested in 𝑅0.

Nevertheless, establishing a correlation between the 2D and 3D
space remains incomplete until the equivalence of one unit in our
3D space to a specific distance in meters is determined. Using our
forementioned functions, we can introduce a routine to calibrate
the "world units coefficient" as follows: pick two points 𝑝1 and 𝑝2

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

14

Real-Time Vehicle Speed Estimation from Video

in the 2D image space for which, you know the real-world distance
between their projections in the 𝑧 = 0 plane. The 3D world unit
coefficient is the ratio of the known distance between the two points
in the real world and the Euclidean distance of the projected points
𝑅0 (𝑝1) and 𝑅0 (𝑝2).

At last, using time data and the world unit coefficient, we can
convert the mentioned velocity vector 𝑣 =

[¤𝑅0 (𝑐)𝑥 , ¤𝑅0 (𝑐)𝑦]𝑇 to a
speed measurement.

3 RESULTS
This research is a part of the development of the GeMMa Fusion
Machine Learning (GFML) application written in C++, where all of
our tests were also conducted. For the given results, we evaluated
the pipeline on Intel Core i7-9700K @ 3.6GHz with 32GB RAM and
NVIDIA GeForce RTX2070 SUPER GPU.

3.1 Test Data

(a) (b) (c)

Figure 3: Test (a) Stream 1, (b) Stream 2, and (c) Stream 3 with
estimated vehicle speed.

ADJIMini 3 Pro and aDJI Phantom 4Advanced droneswere used
to recordmost of our test footage. The footagewas initially recorded
in 4K resolution, with 25 frames per second (FPS) D-Cinelike 8-bit
color profile, then resized for comparison to 1920 × 1080 px and
720×576 px resolution without applying a color lookup table (LUT).
The ground truth data is calculated using a Global Positioning
System (GPS) measurement device with 30 connected GPS satellites
and synced to the footage using time codes.

Amongst these, three different scenes were selected for testing.
Stream 1 (shown in Fig. 3a) monitors vehicle during acceleration,

Stream 2 (shown in Fig. 3b) monitors vehicle during driving with
constant speed, while Stream 3 (shown in Fig. 3c) monitors individ-
ual vehicle in heavy traffic.

3.2 Time complexity
With our custom dataset, a pipeline integrating the YOLOv4 model,
as well as its reduced version YOLOv4-tiny, was examined. As
presented in Table 1, we achieved speed estimation of 11-18 frames
per second (FPS). Most of the computing time is spent in the YOLO
CNN, requiring 20-50 milliseconds, as seen in the OD column in
Table 1, depending on the model and the input image size. There
were no significant time differences with and without the use of
our modified Kalman state.

Table 1: FPS rates and object detection times (OD) achieved
on tested video streams with 1920 × 1080 px and 720 × 576 px
resolutions and two different CNNs, namelly YOLOv4 and
YOLOv4-tiny.

Stream
size
[px]

CNN
Stream 1 Stream 2 Stream 3

FPS OD
[ms] FPS OD

[ms] FPS OD
[ms]

1920×
1080

YOLO
v4 9 28 9 29 9 33

YOLO
v4-tiny 11 26 11 26 10.5 27

720×
576

YOLO
v4 11 22 11 22 14 47

YOLO
v4-tiny 18 36 17 33 17 33

3.3 Accuracy
In Figure 2a, we can observe a sample measurement of a vehicle
acceleration from aerial footage in Stream 1, in order to compare
the initial SORT state [2] of the Kalman filter with our modified
3D-based state. The accuracy of the ground truth and measurement
data, is further corroborated by the fact that one can notice the
two initial gear shifts. A second sample of measurement of a very

(a) (b) (c)

Figure 2: Comparison of the results achieved using SORT and the proposed method with ground truth data on (a) Stream 1, (b)
Stream 2, and (c) Stream 3.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

15

Mitko Nikov, Mitja Žalik, and Domen Mongus

small speed variation across a 10 second period can be seen on
Figure 2b.When the SORT’s 2D-based Kalman state is used, because
of its linear nature, we found that it will quite often overshoot,
especially when the camera’s elevation angle is relatively small.
Nevertheless, we can see that even with imprecise camera and
world unit calibration, one can achieve comparable results to the
ground truth. Furthermore, as shown by Fig. 2c, comparable results
are achieved also when observing an individual vehicle within a
heavy traffic. It should, however, be noted that inaccuracies in the
GPS and time data, camera and world unit calibration and bounding
box detections are unavoidable.

4 CONCLUSION
In this paper, we presented our pipeline for vision-based vehicle
speed estimation with many improvements of the algorithms used,
both in object tracking and space transformations. We can conclude
that camera andworld unit calibration combinedwithmodifications
of the Kalman state, can yield results comparable to state-of-the-art
custom space transformation methodologies. We note however, that
due to the specificity of the problem, the lack of proper datasets
and the amount of external factors involved, fully testing and com-
paring our method to closed-source state-of-the-art is practically
impossible.

In the future, we also plan to work on adaptive camera calibration
for airborne vehicles with KLV gyroscopic sensor streams and
fully automatic intrinsic and extrinsic parameter camera calibration
using convolutional neural networks.

ACKNOWLEDGMENTS
This work was supported by DARS d.d. as a part of the project
"System for short and long-term traffic prediction with the use of
artificial intelligence" and funded by Slovenian Research Agency
grant number P2-0041 and L7-2633.

REFERENCES
[1] Boris Babenko, Ming-Hsuan Yang, and Serge Belongie. 2009. Visual tracking

with online Multiple Instance Learning. In 2009 IEEE Conference on Computer
Vision and Pattern Recognition. IEEE, 983–990. https://doi.org/10.1109/CVPR.
2009.5206737

[2] Alex Bewley, Zongyuan Ge, Lionel Ott, Fabio Ramos, and Ben Upcroft. 2016.
Simple Online and Realtime Tracking. arXiv (Feb. 2016). https://doi.org/10.1109/
ICIP.2016.7533003 arXiv:1602.00763

[3] Alexey Bochkovskiy, Chien-YaoWang, and Hong-YuanMark Liao. 2020. YOLOv4:
Optimal Speed and Accuracy of Object Detection. arXiv (April 2020). https:
//doi.org/10.48550/arXiv.2004.10934 arXiv:2004.10934

[4] Sedat Doğan, Mahir Serhan Temiz, and Sıtkı Külür. 2010. Real Time Speed
Estimation of Moving Vehicles from Side View Images from an Uncalibrated
Video Camera. Sensors (Basel, Switzerland) 10, 5 (May 2010), 4805–24. https:
//doi.org/10.3390/s100504805

[5] Huanan Dong, Ming Wen, and Zhouwang Yang. 2019. Vehicle Speed Estimation
Based on 3D ConvNets and Non-Local Blocks. Future Internet 11, 6 (May 2019),
123. https://doi.org/10.3390/fi11060123

[6] Martin A. Fischler and Robert C. Bolles. 1981. Random sample consensus: a
paradigm for model fitting with applications to image analysis and automated
cartography. Commun. ACM 24, 6 (June 1981), 381–395. https://doi.org/10.1145/
358669.358692

[7] Ross Girshick. 2015. Fast R-CNN. , 1440–1448 pages.
[8] Lazaros Grammatikopoulos, George Karras, and Elli Petsa. 2005. Automatic

estimation of vehicle speed from uncalibrated video sequences. ResearchGate
(Jan. 2005).

[9] Alexander Grents, Vitalii Varkentin, and Nikolay Goryaev. 2020. Determining
vehicle speed based on video using convolutional neural network. Transp. Res.
Procedia 50 (Jan. 2020), 192–200. https://doi.org/10.1016/j.trpro.2020.10.024

[10] Kaiming He, Georgia Gkioxari, Piotr Dollar, and Ross Girshick. 2017. Mask
R-CNN. , 2961–2969 pages.

[11] Zongjian He, Jiannong Cao, and Tao Li. 2012. MICE: A Real-time Traffic Es-
timation Based Vehicular Path Planning Solution Using VANETs. In 2012 In-
ternational Conference on Connected Vehicles and Expo (ICCVE). IEEE, 172–178.
https://doi.org/10.1109/ICCVE.2012.39

[12] João F. Henriques, Rui Caseiro, Pedro Martins, and Jorge Batista. 2012. Exploiting
the Circulant Structure of Tracking-by-Detection with Kernels. In Computer
Vision – ECCV 2012. Springer, Berlin, Germany, 702–715. https://doi.org/10.
1007/978-3-642-33765-9_50

[13] StephaneHess. 2004. Analysis of the Effects of Speed Limit Enforcement Cameras:
Differentiation by Road Type and Catchment Area. Transp. Res. Rec. 1865, 1 (Jan.
2004), 28–34. https://doi.org/10.3141/1865-05

[14] Shuai Hua, Manika Kapoor, and David C. Anastasiu. 2018. Vehicle Tracking
and Speed Estimation from Traffic Videos. In 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW). IEEE, 153–1537.
https://doi.org/10.1109/CVPRW.2018.00028

[15] Tingting Huang. 2018. Traffic Speed Estimation From Surveillance Video Data. ,
161–165 pages.

[16] Saleh Javadi, Mattias Dahl, and Mats I. Pettersson. 2019. Vehicle speed mea-
surement model for video-based systems. Comput. Electr. Eng. 76 (June 2019),
238–248. https://doi.org/10.1016/j.compeleceng.2019.04.001

[17] Rudolph Emil Kalman. 1960. A New Approach to Linear Filtering and Prediction
Problems. Transactions of the ASME–Journal of Basic Engineering 82, Series D
(1960), 35–45.

[18] Amit Kumar, Pirazh Khorramshahi, Wei-An Lin, Prithviraj Dhar, Jun-Cheng
Chen, and Rama Chellappa. 2018. A Semi-Automatic 2D Solution for Vehicle
Speed Estimation From Monocular Videos. , 137–144 pages.

[19] Jing Li, Shuo Chen, Fangbing Zhang, Erkang Li, Tao Yang, and Zhaoyang Lu. 2019.
An Adaptive Framework for Multi-Vehicle Ground Speed Estimation in Airborne
Videos. Remote Sens. 11, 10 (May 2019), 1241. https://doi.org/10.3390/rs11101241

[20] David Fernández Llorca, Antonio Hernández Martínez, and Iván García Daza.
2021. Vision-based vehicle speed estimation: A survey. IET Intel. Transport Syst.
15, 8 (Aug. 2021), 987–1005. https://doi.org/10.1049/itr2.12079

[21] Alan Lukežič, Tomáš Vojíř, Luka Čehovin Zajc, Jiří Matas, andMatej Kristan. 2018.
Discriminative Correlation Filter Tracker with Channel and Spatial Reliability.
Int. J. Comput. Vision 126, 7 (July 2018), 671–688. https://doi.org/10.1007/s11263-
017-1061-3

[22] Diogo Carbonera Luvizon, Bogdan Tomoyuki Nassu, and Rodrigo Minetto. 2016.
A Video-Based System for Vehicle Speed Measurement in Urban Roadways. IEEE
Trans. Intell. Transp. Syst. 18, 6 (Sept. 2016), 1393–1404. https://doi.org/10.1109/
TITS.2016.2606369

[23] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. 2015. You
Only Look Once: Unified, Real-Time Object Detection. arXiv (June 2015). https:
//doi.org/10.48550/arXiv.1506.02640 arXiv:1506.02640

[24] Divya Sharma, Shilpa Sharma, and Vaibhav Bhatnagar. 2022. Automated Vehicle
speed Estimation and License Plate Detection for Smart Cities Development. In
2022 IEEE World Conference on Applied Intelligence and Computing (AIC). IEEE,
378–383. https://doi.org/10.1109/AIC55036.2022.9848890

[25] Zheng Tang, Gaoang Wang, Tao Liu, Young-Gun Lee, and Jenq-Neng Hwang.
2017. Multiple-Kernel Based Vehicle Tracking Using 3D Deformable Model and
Camera Self-Calibration. ResearchGate (Aug. 2017).

[26] Zheng Tang, Gaoang Wang, Hao Xiao, Aotian Zheng, and Jenq-Neng Hwang.
2018. Single-Camera and Inter-Camera Vehicle Tracking and 3D Speed Esti-
mation Based on Fusion of Visual and Semantic Features. In 2018 IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).
IEEE, 108–1087. https://doi.org/10.1109/CVPRW.2018.00022

[27] Jin-xiang Wang. 2016. Research of vehicle speed detection algorithm in video
surveillance. In 2016 International Conference on Audio, Language and Image
Processing (ICALIP). IEEE, 349–352. https://doi.org/10.1109/ICALIP.2016.7846573

[28] Nicolai Wojke, Alex Bewley, and Dietrich Paulus. 2017. Simple Online and
Realtime Tracking with a Deep Association Metric. arXiv (March 2017). https:
//doi.org/10.48550/arXiv.1703.07402 arXiv:1703.07402

[29] Jianping Wu, Zhaobin Liu, Jinxiang Li, Caidong Gu, Maoxin Si, and Fangyong
Tan. 2009. An algorithm for automatic vehicle speed detection using video
camera. In 2009 4th International Conference on Computer Science & Education.
IEEE, 193–196. https://doi.org/10.1109/ICCSE.2009.5228496

[30] WenchengWu, Vladimir Kozitsky, Martin E. Hoover, Robert Loce, and D. M. Todd
Jackson. 2015. Vehicle speed estimation using amonocular camera. In Proceedings
Volume 9407, Video Surveillance and Transportation Imaging Applications 2015.
Vol. 9407. SPIE, 17–30. https://doi.org/10.1117/12.2083394

[31] Xiaodong Yu, Ping Xue, Lingyu Duan, and Qi Tian. 2007. An algorithm to
estimate mean vehicle speed from MPEG Skycam video. Multimed. Tools Appl.
34, 1 (July 2007), 85–105. https://doi.org/10.1007/s11042-006-0073-8

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

16

Empirical evaluation of time complexity of ordered dictionaries
with ALGator

Jani Suban
89222015@student.upr.si

Faculty of Mathematics, Natural Sciences
and Information Technologies,

University of Primorska
Glagoljaška 8

SI-6000 Koper, Slovenia

ABSTRACT
This paper presents an empirical evaluation of different implemen-
tations of an abstract data structure, the ordered dictionary. The
implemented data structures are Binary Search Tree, AVL Tree, Red-
Black Tree, Zip Tree, Skip List and 2-3 Tree. The paper aims to take
a step forward in evaluating of data structures with ALGator. It also
compares the Zip Tree with other ordered dictionaries to encourage
the use of it as a simpler and comparable implementation.

The result of the testing the data structures, both with strictly
increasing (worst case scenario) and random updates and query
operations, shows that the time complexity is the same as expected.

KEYWORDS
Binary Search Trees, AVL Tree, Red-Black Tree, 2-3 Tree, Zip Tree,
Skip List, ALGator

1 INTRODUCTION
There are various approaches to implement the abstract data struc-
ture dictionary. But all of them try to minimise the time complexity
of the operations. The first approach is to use hash tables. Hash
tables have an expected time complexity 𝑂 (1), but at the cost of
losing the order of the data.

If the goal of the data structure is to preserve the order of the
data, the appropriate implementation of a dictionary is a kind of
Link List where all elements to the left of element 𝑥 are less than
𝑥 and all elements to the right of 𝑥 are greater than 𝑥 . The best
possible time complexity for implementing such a dictionary is
𝑂 (log𝑛)1. This can be achieved with Balanced Binary Search Trees
(BBST).

This paper presents an empirical comparison between different
implementations of ordered dictionaries such as Balanced Binary
Search Trees, a 2-3 Tree, a Binary Search Trees and a Skip List.
Furthermore, the time complexities of all tested implementations of
ordered dictionary will be empirically evacuated and compared. All
data structures were tested with an open source test suite ALGator
[5].

2 RELATEDWORKS
The motivation for the paper, comes from the lack of data structure
comparison with the test suit ALGator. The only comparison was
done in [6] where the author comperes Binary and Fibonacci Heap.

1log𝑛 stands for log2 𝑛 unless otherwise specified

The AVL Tree and the Red-Black Tree were compered in [9]. The
authors found that the height of the AVL Tree is lower than that
of the Red-Black Tree and therefor it is faster. In the paper [7] the
author compares the Skip List with the AVL Tree and the 2-3 Tree.
The author could not find any significant difference in the time
needed to perform operations.

3 ORDERED DICTIONARY
A dictionary is an abstract data structure that has three operations:
find an element in the structure, insert an element into the structure,
and delete an element from the structure. In addition to these three
operations, the ordered dictionary has two additional operations to
go through all the elements in order. The two additional operations
are next element, which returns the next element in order, and has
next, which returns whether a next element exists or not. Although
there are internal/passive and external/active types of iterators,
in the paper we will mainly focus on the find, delete and insert
operations.

Table 1: Worst time complexity of insert, delete and find for
all implemented data structures

Operations Binary Search Tree AVL Tree Red-Black Tree 2-3 Tree Zip Tree Skip List
Insert 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)
Delete 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)
Find 𝑂 (𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛) 𝑂 (log𝑛)

There are many different ways to implement an ordered dic-
tionary that also has a time complexity of 𝑂 (log𝑛) . This paper
compares the performance of the following data structures with
respect to real words: Binary Search Tree, AVL Tree, Red-Black
Tree, 2-3 Tree, Skip List and Zip Tree. All of the above data struc-
tures, with the exception of the Binary Search Tree, have a time
complexity of 𝑂 (log𝑛), as can be seen in the Table 1. In the rest of
the chapter, the most important ideas behind the implemented and
tested data structures are presented and described.

3.1 Binary Search Tree
The binary search tree (BST) is the simplest of all the data structures
presented in this paper. The idea behind is to split the data into two
parts. The left part (left subtree) stores all nodes whose value is less
than that of the current node2, and the right part (right subtree)
stores all nodes whose value is greater than that of the current node
[11].
2the root node of the subtree

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.06

17

https://doi.org/10.26493/scores23.06

Jani Suban

The time complexity of insertion, deletion and search operations
in a binary search tree is 𝑂 (𝑛) . This is because the tree becomes a
linked list if the data is inserted into the tree in the worst possible
way, e.g. in a strictly increasing way [11]. However, if the data
stored in the tree was inserted randomly, then the time complexity
of all three operations is 𝑂 (log𝑛) with a high probability [8].

3.2 AVL Tree
The AVL tree is the first balanced binary search tree presented
in this paper. AVL trees achieve balance by limiting the height
difference between the left and right subtree to a maximum of 1,
|𝐿.ℎ𝑒𝑖𝑔ℎ𝑡 − 𝑅.ℎ𝑒𝑖𝑔ℎ𝑡 | ≤ 1. The tree can only become unbalanced
during updates (insertion and deletion). That for when the tree is
updated, it checks if it is still balanced, and if not, the nodes are
rotated so that the tree is balanced again [1].

The time complexity of insert, delete and find operations in an
AVL tree is 𝑂 (log𝑛). This is because in the worst case is need to
reach the leaves. Since the difference in height of the subtrees is at
most 1, this means that all levels except the two lowest are full, so
the height of the tree is at most log𝑛 + 1 = 𝑂 (log𝑛) [1].

3.3 Red-Black Tree
The red-black tree is another balanced binary search tree where the
leaf nodes are always NIL . The balance is achieved by colouring
the nodes red or black. The colouring is done with the following
roles:

(1) each node is either black or red,
(2) all leaf nodes are black,
(3) red nodes have no red children,
(4) each path from the root to the leaf has the same number of

black nodes,
(5) the root is always black.

The balance is achieved by requiring that the black height (number
of black nodes on the path from root to leaf) is the same for each
leaf. This means that the lowest leaf is at most 2 times lower than
the highest. This means that 𝑛 ≥ 2𝑏 (𝑏 is the black height and 𝑛 is
the number of elements in the data structure) that for 𝑏 = 𝑂 (log𝑛)
and also height ℎ ≤ 2𝑏 = 𝑂 (log𝑛) [2].

The time complexity of insert, delete and find operations in a
Red-Black tree is 𝑂 (log𝑛) . This is because, in the worst case, is
needed to reach the level before the leaves, and the height of the
tree is 𝑂 (log𝑛) [2].

3.4 2-3 Tree
The 2-3 tree is the only tree presented in this paper that is not a
Binary Search Tree, but a B-Tree, where 𝐵 = 3 [3]. The 2-3 Tree
has two types of nodes: a 2-node, which has two children (left and
middle) and one key, and a 3-node, which has three children (left,
middle and right) and 2 keys. All leaf nodes are on the same level.
The insertion in the 2-3 trees and also in the B trees is done in the
leaf node. If the node overflows, it has 3 keys, the node is split and
the middle key is inserted into the parent node. If the parent node
does not exist, the middle key becomes the new root node. Deletion
is done by exchanging the value to be deleted with the minimum
value in the right subtree: the middle one if the left key is deleted,
or the right one if the right key is deleted. If the leaf node becomes

empty, the tree must be corrected by rearranging the parent node
so that it becomes a 2-node, or by splitting and rotating a sibling
tree [4].

This way of insert and delete operation guarantees that the leaves
are always on the same level, therefor the tree is balanced. Since
the tree is balanced, all three operations have the time complexity
of 𝑂 (log𝑛) [4].

3.5 Skip List
A skip list is the only non-tree dictionary implementation we will
examine in this paper. Skip list is a probabilistic data structure.
Probability is used to define the number of pointers to the next
nodes in the list. A pointer at height 𝑥 always points to the next
node that has at least 𝑥 pointers and skips all nodes with fewer
pointers. The number of pointers is calculated with the Algorithm
1. The probability that a node has one pointer is 1/2, two is 1/4,
... The value max in the line 3 of the Algorithm 1 is the maximum
number of pointers a node can have, and it its log1/𝑝 𝑛 = log𝑛,
since 𝑝 = 1/2 is the probability that the Pseudo Random Number
Generator (PRNG) returns a Boolean value 𝑇𝑅𝑈𝐸 [7].

Output: Number of pointer to the next node
1 i = 1 ;
2 k = PRNG.boolean;
3 while k ∧ i< max do
4 i = i + 1;
5 k = PRNG.boolean;
6 end
7 return i

Algorithm 1: Algorithm for calculating the number of
pointer to the next node

Because of node skipping, the expected time complexity is𝑂 (log𝑛)
with high probability for all three operations. In the worst case, if
the skipping in the skip list is small, the time complexity of all three
operations is the same as for the normal link list, 𝑂 (𝑛) [7].

3.6 Zip Tree
The zip tree is a probabilistic data structure. It uses the idea of the
skip list to "balance the list." So each node in the tree also stores its
rank value. The rank of the node is assigned in the same way as the
number of pointers a node has in the skip list, that for Algorithm 1
can be used for assigning the rank of the node. A new element is
always inserted as a leaf of the tree, as in all binary search trees. On
the way from the leaf to the root, the newly added node becomes
the root of the subtree if its rank is greater than the rank of the root
of the subtree. If both nodes have the same rank, the node with the
smallest value becomes the new root. Deleting an element from the
tree is done by finding the correct node, removing the pointer to
the node and then combining the children of the node to create a
new subtree. The operation of combining subtrees is called zipping
[10].

Given the ranks of the nodes, the expected time complexity is
𝑂 (log𝑛) with high probability. In the worst case, if all nodes have
the same rank and the data is inserted, strictly increasing, the time
complexity is 𝑂 (𝑛) [10].

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

18

Empirical evaluation of time complexity of ordered dictionaries with ALGator

4 TESTING
The test method used in this paper is to measure the time duration
for performing all insert, find or delete operations. Each test can
have a different number of operations. The number of operations
for test 𝑖 can take the following forms:

𝑁𝑖 = (𝑛𝐼 , 𝑛𝐹 , 𝑛𝐷),
𝑁𝑖 = (𝑛𝐼 , 𝑛𝐷) = (𝑛𝐼 , 0, 𝑛𝐷),
𝑁𝑖 = (𝑛𝐼 , 𝑛𝐹) = (𝑛𝐼 , 𝑛𝐹 , 0),
𝑁𝑖 = (𝑛𝐼) = (𝑛𝐼 , 0, 0),

(1)

where 𝑛𝐼 is the number of insert operations performed in the test,
𝑛𝐹 is the number of find operations performed in the test and 𝑛𝐷
is the number of delete operations performed in the test.

Similarly, each test has its own set of timers, one for each opera-
tion. The time taken to execute all the operations of test 𝑖 can take
the following forms:

𝜏𝑖 = (𝑡𝐼 , 𝑡𝐹 , 𝑡𝐷)
𝜏𝑖 = (𝑡𝐼 , 𝑡𝐷) = (𝑡𝐼 , 0, 𝑡𝐷)
𝜏𝑖 = (𝑡𝐼 , 𝑡𝐹) = (𝑡𝐼 , 𝑡𝐹 , 0)
𝜏𝑖 = (𝑡𝐼) = (𝑡𝐼 , 0, 0)

(2)

where 𝑡𝐼 represents the time taken for all 𝑛𝐼 insert operations, 𝑡𝐹
represents the time taken for all 𝑛𝐹 search operations and 𝑡𝐷 repre-
sents the time taken for all 𝑛𝐷 delete operations. To get only the
total time of a particular operation from the timer 𝜏𝑖 , call 𝜏𝑖 (𝑋),
where 𝑋 is the selected operation. For example, the timer for dele-
tion is obtained as follows: 𝜏𝑖 (𝐷) = 𝑡𝐷 .

As can be seen in the Equation 1 and the Equation 2, each test
must always contain the insert operations, otherwise the delete and
find operations cannot be measured in a proper way. The tests in
this paper always perform two operations, either insert and find or
insert and delete. The tests are divided into two parts. In the first
part of the test, all values are inserted into the data structure. In
the second part of the test, either the find operation or the delete
operation is performed. This testing method focused on a stated
simple scenario that could be real but is not a typical real world
scenario.

4.1 ALGator
ALGator is used for testing the implemented ordered dictionaries
(see Section 3). ALGator is a test programme introduced in the
paper [5]. ALGator allows the user to implement, test and evaluate
algorithms and data structures with a single tool. At the moment,
only the Java programming language is supported for the imple-
mentation of the algorithms and data structures.

In ALGator, the implementation of the tested algorithms and data
structures is done with the help of an abstract class in which the
entire test logic and the structure of the implemented algorithms or
data structures are defined and written in Java. Although the test
logic is implemented in the abstract class, the tests to be performed
are written in a separate file. All implemented data structures or
algorithms extend the abstract class. The evaluation of the test
results is done by allowing the user of ALGator to visualise the test
results in a way that best represents the results. The visualisations
can be saved for further use.

4.2 Testing Sequences
In this paper, two scenarios are tested. The first is the worst case,
or in this case the strictly increasing sequence presented in the
section 4.2.1. The second is the expected scenario or in this case
the random sequence presented in the section 4.2.2.

4.2.1 Strictly Increasing Sequence. This test is to show how the
data structures behave when the data is stored in the worst possible
way. One way to store the data in this way is to have a strictly
increasing sequence of data. The sequence is strictly increasing if
for each 𝑖, 𝑗 ∈ N∧ 𝑖 < 𝑗 ∧ 𝑥𝑖 , 𝑥 𝑗 ∈ N∧ 𝑥𝑖 < 𝑥 𝑗 , where 𝑥𝑖 and 𝑥 𝑗 are
the elements stored in the data structure.

4.2.2 Random Sequence. This test is designed to show how data
structures behave when data is stored in a random manner. Data
stored in this way is not stored optimally, but it represents all
possible ways of storing it. In this case, for each 𝑖, 𝑗 ∈ N ∧ 𝑖 <

𝑗 ∧ 𝑥𝑖 , 𝑥 𝑗 ∈ N ∧ 𝑥𝑖 ≠ 𝑥 𝑗 where 𝑥𝑖 and 𝑥 𝑗 are the elements stored in
the data structure.

5 EVALUATION
The tests were performed on a computer with an AMD Ryzen 7
2700, with 8 cores and 16 threads, 16 GB RAM and Fedora 36 with
Linux kernel 6.2.14-100. The ALGator version was 0.985, created in
a Docker container running Ubuntu with Java 11.0.18. The imple-
mentation of Binary Search Tree, AVL tree3, Red-Black Tree4, 2-3
Tree5, Skip list6 and Zip tree were done in Java 7.

In order to eliminate the interference caused by background
operation as much as possible, all tests were carried out 5 times,
although the estimate must certainly can be improved by a larger
number of test runs. The tests can be divided into two groups: ran-
dom insertions, deletions and find operations and strictly increasing
insertions, deletions and find operations.

All tests use integers in the range [0, 100000] as input for the
operation. The test is performed for a different number of elements
stored in the data structure. The number of elements in the data
structure goes from 50 to 400 elements in steps of 50. In a next step,
the implemented data structures can be generalised to a generic
data type.

The small size of the test set is due to the Java stack size overflow-
ing while testing with ALGator. The reason for the Stack Overflow
error is the recursive implementation of the data structures.

5.1 Random Tests
The random tests were implemented using the Java library java.ut-
il.Random. The library was used to generate the pseudo-random
numbers that were used as input for the insert, find and delete
operations. At the beginning of each part of the test, the seed was
set to 0 so that the number of variables affecting the execution time
of each round was minimised.

3Modification of the https://www.javatpoint.com/avl-tree-program-in-java
4Modification of the https://algorithmtutor.com/Data-Structures/Tree/Red-Black-
Trees/
5Modification of the https://github.com/SValentyn/2-3-tree
6Modification of the https://www.baeldung.com/cs/skip-lists#bd-how-to-insert-into-a-
skip-list
7Link to the implementation https://github.com/GioGiou/BinarySearchTree

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

19

Jani Suban

Figure 1: The time taken to perform all random insert, find
and delete operations. The time is measured in milliseconds.

The results of the testing can be seen in the Figure 1. In the
top left graph it can be seen the change in total time for a given
number of insertions. In the top right graph it can be seen the
change in total time for performing a certain number of deletions.
In the bottom left graph it can be seen the change in total time for
performing a certain number of find operations. Each point in the
graph represents an average of all 5 runs of the same test.

From all three graphs in the Figure1, it is evident that time
𝑂 (𝑛 log𝑛). This means that the time for all operations 𝑂 (log𝑛) .
This result confirms that all implemented data structures have
𝑂 (log𝑛) time complexity for insert, delete and find operations
when the data is randomly inserted into the structure. The high
execution time for the skip list, seen mainly in bottom left graph,
is due to the probability with which the skip list is balanced, but
the time for all operations is still 𝑂 (log𝑛).

5.2 Strictly Increasing Tests
The strictly increasing test is the implementation of the test method
presented in the section 4.2.1. Sequential numbers were chosen over
a more generic strictly increasing numbers because they are easier
to implement. The result is expected to be the same as for the strictly
increasing sequence, since a sequence of consecutive numbers is
also a strictly increasing sequence.

The strictly increasing test consists of inserting, finding and
deleting 𝑛 consecutive numbers. This was implemented with a
counter that starts with the value 0 and increases after each op-
eration. The numbers that are inserted into the data structure are
therefore integers from 0 to 𝑛 − 1. For the deletion, the counter was
initialised with the value 𝑛 − 1 and after each deletion, the counter
was decreased. If the counter for the deletion was not implemented
in this way, the deletion is performed in a time of 𝑂 (1), because
the deleted element is stored in the root of the tree each time.

The results of the testing can be seen in the Figure 2. In the
top left graph it can be seen the change in total time for a given
number of insertions. In the top right graph it can be seen the
change in total time for performing a certain number of deletions.
In the bottom left graph it can be seen the change in total time for
performing a certain number of find operations. Each point in the
graph represents an average of all 5 runs of the same test.

Figure 2: The time taken to perform all strictly increasing
insert, find and delete operations. The time is measured in
milliseconds.

From all three graphs in the Figure 2, it is evident that time
is rising 𝑂 (𝑛 log𝑛). This means that the time for all operations
is 𝑂 (log𝑛) . The only exception is the binary search tree, where
the time increases faster, 𝑂 (𝑛2), which means that the time com-
plexity of all tree operations is 𝑂 (𝑛). This result confirms that all
implemented data structures have a time complexity of 𝑂 (log𝑛)
for insert, delete and find operations, except for the binary search
tree, which has a time complexity of 𝑂 (𝑛) .

The reason why the time for inserting into the binary search
tree is smaller than the time of the AVL tree and the Red Black tree
is due to the rebalacing of the AVL and Red Black trees. For a larger
test set, the time of the binary search tree will exceed the time of
the AVL and Red-Black tree. The reason that the skip list with a
time complexity of 𝑂 (log𝑛) performs worst is the lack of skipping,
which can be seen especially in the top right graph in the Figure 2.

6 CONCLUSIONS AND FUTUREWORKS
This paper presented the empirical evaluation of time complexity
for different implementations of ordered dictionaries. More specifi-
cally, balanced trees (AVL, Red-Black, Zip, 2-3 Tree), Skip List and
Binary Search Tree. All data structures were tested using the AL-
Gator test suit. Although the size of the test set was small, it can
be seen from Figure 1 and Figure 2 that the time complexity of all
data structures is 𝑂 (log𝑛), except for the binary search tree with
strictly increasing insertion, deletion and search, where the time
complexity is 𝑂 (𝑛), as expected from the theoretically proven time
complexity.

Our aim is to improve the outcome of this work in the future
by increasing the size of the test sets. By doing so, we hope to
obtain more accurate results and to better identify the differences
in time complexity of all data structures. Furthermore, we plan to
generalise the idea of Zip Trees from working with Binary Search
Trees to working with k-ary Search Trees.

REFERENCES
[1] Georgii Maksimovich Adelson-Velskii and Evgenii Mikhailovich Landis. 1962. An

algorithm for organization of information. In Doklady Akademii Nauk, Vol. 146.
Russian Academy of Sciences, 263–266.

[2] Rudolf Bayer. 1972. Symmetric binary B-Trees: Data structure and maintenance
algorithms. Acta Informatica 1, 4 (1972), 290–306. https://doi.org/10.1007/

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

20

Empirical evaluation of time complexity of ordered dictionaries with ALGator

bf00289509
[3] R. Bayer and E.McCreight. 1970. Organization andMaintenance of Large Ordered

Indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD) Workshop on
Data Description, Access and Control (Houston, Texas) (SIGFIDET ’70). Association
for Computing Machinery, New York, NY, USA, 107–141. https://doi.org/10.
1145/1734663.1734671

[4] Thomas H. Cormen, Charles Eric Leiserson, Ronald Linn Rivest, and Clifford Seth
Stein. 2009. Introduction to Algorithms (third ed.). MIT Press. https://mitpress.
mit.edu/books/introduction-algorithms-third-edition

[5] Tomaz Dobravec. 2019. Implementation and Evaluation of Algorithms with
ALGator. Informatica (Slovenia) 43 (2019).

[6] ALEKSANDAR GEORGIEV. 2022. Primerjava implementacij dvojiške in Fibonac-
cijeve kopice. https://repozitorij.uni-lj.si/IzpisGradiva.php?lang=slv&id=140423

[7] William Pugh. 1990. Skip Lists: A Probabilistic Alternative to Balanced Trees.
Commun. ACM 33, 6 (jun 1990), 668–676. https://doi.org/10.1145/78973.78977

[8] Bruce Reed. 2003. The Height of a Random Binary Search Tree. J. ACM 50, 3
(may 2003), 306–332. https://doi.org/10.1145/765568.765571

[9] Svetlana Strbac-Savic and Milo Tomasevic. 2012. Comparative performance eval-
uation of the AVL and red-black trees. ACM International Conference Proceeding
Series, 14–19. https://doi.org/10.1145/2371316.2371320

[10] Robert E. Tarjan, Caleb Levy, and Stephen Timmel. 2021. Zip Trees. ACM
Transactions on Algorithms 17, 4 (oct 2021), 1–12. https://doi.org/10.1145/3476830

[11] P. F. Windley. 1960. Trees, Forests and Rearranging. Com-
put. J. 3, 2 (01 1960), 84–88. https://doi.org/10.1093/comjnl/3.2.84
arXiv:https://academic.oup.com/comjnl/article-pdf/3/2/84/1358330/030084.pdf

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

21

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

22

Evaluation of algorithms for finding shortest paths in a network
Dani Zugan

89212060@student.upr.si
Faculty of Mathematics, Natural Sciences and Information Technologies

Computer Science
University of Primorska

Glagoljaška 8
SI-6000 Koper, Slovenia

ABSTRACT
The paper evaluates three different algorithms for computing all-
pairs shortest paths. We compare the well-known Floyd-Warshall
algorithm with two simple modifications of it. The key difference
lies in the fact that the relaxations are done in a smarter way. We
evaluate the algorithms on three different graph models - uniform
Erdős-Rényi, binomial Erdős-Rényi, and Albert-Barabási. Based on
the results, we can observe that both modified algorithms outper-
form the Floyd-Warshall algorithm.

KEYWORDS
Tree algorithm, Hourglass algorithm, Floyd-Warshall algorithm,
all-pairs shortest path.

1 INTRODUCTION
Graph theory has long grappled with the timeless challenge of find-
ing the shortest paths within graphs, making it a classic problem
in algorithmic studies. The key idea revolves around navigating a
(directed) graph, where each arc carries a specific weight, in search
of paths that minimize the sum of these arc weights. This funda-
mental problem finds applications in various real-world scenarios,
including bioinformatics, logistics, telecommunications and so on
[1].

Two prominent variations of this problem are the single-source
shortest path and the all-pairs shortest path (APSP) problems. The
single-source variant focuses on discovering paths from a fixed
starting vertex to all other vertices in the graph, while the APSP
entails finding the shortest path between every possible pair of
vertices [4].

In this work, focus will be solely on the APSP variant, aiming to
evaluate three different algorithms which offer effective solution.
Generally, the APSP problem can be tackled using the technique
of relaxation. The core concept of relaxation involves evaluating
whether we can enhance the weight of the shortest path from ver-
tex 𝑢 to 𝑣 by routing it through vertex 𝑤 , updating it whenever
necessary. Among the well-known relaxation-based solutions, one
of the most straightforward approaches is the Floyd-Warshall dy-
namic programming algorithm which is among algorithms being
evaluated. This algorithm boasts a time complexity of 𝑂 (𝑛3) when
dealing with graphs containing 𝑛 vertices. While its ease of im-
plementation is commendable, two alternative algorithms will be
evaluated which potentially improve efficiency and scalability for
solving the APSP problem [4].

In this article, two modifications of the Floyd-Warshall algorithm
are introduced and evaluated: the Tree algorithm and the Hourglass

algorithm, described in paper Modifications of the Floyd-Warshall
algorithm by Andrej Brodnik, Marko Grgurovič and Rok Požar.
These modifications offer a notable difference from the original
Floyd-Warshall algorithm by implementing a more intelligent ap-
proach to carrying out relaxations. This is achieved by introducing a
tree-like structure that enables the algorithms to avoid unnecessary
relaxations that do not contribute to the final result.

It’s important to note that despite these enhancements, both
the Tree algorithm and the Hourglass algorithm maintain a worst-
case time complexity of 𝑂 (𝑛3), which is the same as the classic
Floyd-Warshall algorithm. However, their expected performance is
significantly improved in practical scenarios [3].

Algortihms are evaluated on graphs generated by using Erdős-
Rényi and Albert-Barabási method [2]. Specifically graphs are di-
rected with uniformly distributed arc weights on [0, 1].

2 PRELIMINARIES
A directed graph (digraph), denoted as G, is represented as a pair (V,
A), where V is a finite, non-empty set of vertices, and A is a set of
arcs that are a subset of V × V. V is denoted as {𝑣1, 𝑣2,..., 𝑣𝑛 } where
n is a positive integer greater than or equal to 2 [3].

A path, denoted as 𝑃 , within a digraph𝐺 connecting vertices 𝑣𝑃,0
to 𝑣𝑃,𝑚 is a finite sequence of distinct vertices 𝑃 = 𝑣𝑃,0, 𝑣𝑃,1, ..., 𝑣𝑃,𝑚 .
It is important to note that for 𝑖 = 0, 1, ...,𝑚1, the pair (𝑣𝑃,𝑖 , 𝑣𝑃,𝑖+1)
must represent an arc in the graph G. The length of a path 𝑃 , repre-
sented as |P|, is simply the count of vertices along the path. A 𝑘-path
refers to a path in which all intermediate vertices are selected from
a specific subset {𝑣1, 𝑣2, ..., 𝑣𝑘 }, where 𝑘 is a positive integer greater
than or equal to 2 [3].

A weighted digraph G is defined as (𝑉 ,𝐴) with the inclusion
of a weight function denoted as𝑤 . This function assigns a weight
𝑤 (𝑎) to each arc 𝑎 within the set𝐴. In essence, a shortest path from
vertex 𝑢 to vertex 𝑣 is a path in G whose total weight is the lowest
among all possible paths from 𝑢 to 𝑣 . The distance between any
two vertices, 𝑢 and 𝑣 , is defined as the weight of shortest path from
𝑢 to 𝑣 within the graph G [3].

3 ALGORITHMS
3.1 The Floyd-Warshall algorithm
The Floyd-Warshall algorithm is a well-known algorithm which
uses simple dynamic programming approach to solve APSP on a
weighted, directed graph.The key idea behind the Floyd-Warshall
algorithm is that it considers all possible paths between pairs of ver-
tices and gradually refines the shortest distances until it computes
the shortest paths for all pairs. Its time complexity is 𝑂 (|𝑉 |3) due

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.07

23

https://doi.org/10.26493/scores23.07

Dani Zugan

to three nested for loops and does not depend on number of arcs.
The pseudocode of Floyd-Warshall algorithm is given in Algortihm
1 [3, 4].

1 for 𝑘 := 1 to 𝑛 do
2 for 𝑖 := 1 to 𝑛 do
3 for 𝑗 = 1 to 𝑛 do
4 if𝑊𝑖𝑘 +𝑊𝑘 𝑗 <𝑊𝑖 𝑗 then
5 𝑊𝑖 𝑗 :=𝑊𝑖𝑘 +𝑊𝑘 𝑗 ;
6 end
7 end
8 end
9 end

Algorithm 1: Floyd-Warshall(𝑊)

3.2 The Tree algorithm
The Tree algorithm is the first version of themodified Floyd-Warshall
algorithm. Consider the 𝑘-th iteration, and let 𝑂𝑈𝑇𝑘 represent a
shortest path tree originating from vertex 𝑣𝑘 . It is based on the ob-
servation that the relaxation in lines 4-5 would not always succeed
in lowering the value of𝑊𝑖 𝑗 . Instead of simply looping through
every vertex of V in line 3, we perform the depth-first traversal of
𝑂𝑈𝑇𝑘 . This allows us to skip iterations where it’s guaranteed that
they won’t reduce the current value of𝑊𝑖 𝑗 [3].

The pseudocode for the enhanced algorithm, known as the Tree
algorithm, can be found in Algorithm 2. The first step involves
the construction of the tree 𝑂𝑈𝑇𝑘 using the ConstructOUT proce-
dure outlined in Algorithm 3. Subsequently, a depth-first search
operation is carried out [3].

1 Initialize 𝜋 , an 𝑛 × 𝑛 matrix, as 𝜋𝑖 𝑗 := 𝑖;
2 for 𝑘 := 1 to 𝑛 do
3 𝑂𝑈𝑇𝑘 := 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑈𝑇𝑘 (𝜋);
4 for 𝑖 := 1 to 𝑛 do
5 Stack := empty;
6 Stack.push(𝑣𝑘);
7 while Stack ≠ empty do
8 𝑉𝑘 := Stack.pop();
9 forall children 𝑣 𝑗 of 𝑣𝑥 in 𝑂𝑈𝑇𝑘 do
10 if𝑊𝑖𝑘 +𝑊𝑘 𝑗 <𝑊𝑖 𝑗 then
11 𝑊𝑖 𝑗 :=𝑊𝑘 𝑗 +𝑊𝑘 𝑗 ;
12 𝜋𝑖 𝑗 := 𝜋𝑘 𝑗 ;
13 Stack.push(𝑣 𝑗);
14 end
15 end
16 end
17 end
18 end

Algorithm 2: Tree(𝑊)

In Algorithm 2 vertices of 𝑂𝑈𝑇𝑘 are visited in DFS order, which
is facilitated by using the stack.We can avoid pushing and poping of

1 Initialize 𝑛 empty trees: 𝑇1,𝑇2, ...,𝑇𝑛 .;
2 for 𝑘 := 1 to 𝑛 do
3 𝑇1 .𝑅𝑜𝑜𝑡 := 𝑣1;
4 end
5 for 𝑖 := 1 to 𝑛 do
6 if 𝑖 ≠ 𝑘 then
7 Make 𝑇𝑖 a subtree of the root of 𝑇𝑘𝑖 .
8 end
9 end

10 return 𝑇𝑘

Algorithm 3: 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑈𝑇𝑘 (𝜋)

each vertex by precomputing two read-only arrays 𝑑 𝑓 𝑠 and 𝑠𝑘𝑖𝑝 to
support the traversal of𝑂𝑈𝑇𝑘 . The array 𝑑 𝑓 𝑠 comprises the vertices
of 𝑂𝑈𝑇𝑘 that have been visited during the depth-first search (DFS)
traversal. In contrast, the array 𝑠𝑘𝑖𝑝 serves the purpose of bypassing
the subtree of 𝑂𝑈𝑇𝑘 when relaxation of edges in that subtree does
not yield successful results [3].

3.3 The Hourglass algorithm
The Tree algorithm can be further improved by using another tree.
The second tree, represented as 𝐼𝑁𝑘 , resembles a shortest path tree,
with the difference being that it serves as a shortest path "graph"
for routes from 𝑣𝑖 to 𝑣𝑘 for every 𝑣𝑖 ∈ 𝑉 except 𝑣𝑘 . Precisely 𝐼𝑁𝑘
is not a tree, but if direction of arcs is reversed, it shifts it into a
tree with 𝑣𝑘 as the root. This is actually a substitute of the for loop
on variable 𝑖 in line 2 of Algorithm 1 and in line 4 of Algorithm
2. This modification of Floyd-Warshall algorithm is named the
Hourglass algorithm, the name comes from placing 𝐼𝑁𝑘 tree atop
the𝑂𝑈𝑇𝑘 tree, which gives it an hourglass-like shape, with 𝑣𝑘 being
at the neck. The pseudocode of the Hourglass algorithm is given in
Algorithms 4 and 5. Additional algorithm constructs 𝐼𝑁𝑘 similarly
to the construction of 𝑂𝑈𝑇𝑘 , except that the matrix 𝜙𝑖𝑘 is used
instead [3].

1 Initialize 𝜋 , an 𝑛 × 𝑛 matrix, as 𝜋𝑖 𝑗 := 𝑖;
2 Initialize 𝜙 , an 𝑛 × 𝑛 matrix, as 𝜙𝑖 𝑗 := 𝑖;
3 for 𝑘 := 1 to 𝑛 do
4 𝑂𝑈𝑇𝑘 := 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑂𝑈𝑇𝑘 (𝜋);
5 𝐼𝑁𝑘 := 𝐶𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝐼𝑁𝑘 (𝜙) forall children 𝑣𝑖 of 𝑣𝑘 in 𝐼𝑁𝑘

do
6 RecurseIN(𝑊, 𝜋, 𝐼𝑁𝑘 ,𝑂𝑈𝑇𝐾 , 𝑣𝑖);
7 end
8 end

Algorithm 4: 𝐻𝑜𝑢𝑟𝑔𝑙𝑎𝑠𝑠 (𝑊)

In practice, the algorithm’s efficiency can be enhanced by em-
ploying an additional stack instead of recursion. This optimization
significantly speeds up the implementation process. It’s important
to highlight that the worst-case time complexity of the Hourglass
and Tree algorithm stays at𝑂 (𝑛3). This scenario is evident when all
shortest paths are direct arcs themselves, resulting in a tree struc-
ture where all leaves are children of the root, and this configuration
remains unchanged throughout the algorithm’s execution [3].

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

24

Evaluation of algorithms for finding shortest paths in a network

1 Stack := empty;
2 Stack.push(𝑣𝑘);
3 while Stack ≠ empty do
4 𝑣𝑥 := Stack.pop();
5 forall children 𝑣 𝑗 of 𝑣𝑥 in 𝑂𝑈𝑇𝑘 do
6 if𝑊𝑖𝑘 +𝑊𝑘 𝑗 <𝑊𝑖 𝑗 then
7 𝑊𝑖 𝑗 :=𝑊𝑖𝑘 +𝑊𝑘 𝑗 ;
8 𝜋𝑖 𝑗 := 𝜋𝑘 𝑗 ;
9 𝜙𝑖 𝑗 := 𝜙𝑖𝑘 ;

10 Stack.push(𝑣 𝑗);
11 else
12 Remove the subtree of 𝑣 𝑗 from 𝑂𝑈𝑇𝑘 ;
13 end
14 end
15 end
16 forall children 𝑣𝑖′ of 𝑣𝑖 in 𝐼𝑁𝑘 do
17 RecurseIN(𝑊, 𝜋, 𝜙, 𝐼𝑁𝑘 ,𝑂𝑈𝑇𝐾 , 𝑣𝑖′);
18 end
19 Restore 𝑂𝑈𝑇𝑘 by reverting changes done by all iterations of

line 12;
Algorithm 5: 𝑅𝑒𝑐𝑢𝑟𝑠𝑒𝐼𝑁 (𝑊, 𝜋, 𝐼𝑁𝑘 ,𝑂𝑈𝑇𝐾 , 𝑣𝑖)

4 EVALUATION
4.1 Testing environment
All algortihms and graph generators were implented in C and C++
and compiled using gcc version 6.3.0. The tests were ran on an AMD
Ryzen 7 5700U with 16GB RAM running on Windows 11 64-bit.

4.2 Graph generation
Three different variant of random graphs were generated using
Erdős-Rényi model and Albert-Barabási model1. At the beginning
of generating each variant seed was set to 1 and was incremented
by +1 for each new graph. All graphs generated underwent a DFS
search to ensure strong connectivity2.

Firstly, using binomial Erdős-Rényi model the input values to
random graphs were the number of vertices, denoted as 𝑛, and
probability, denoted as 𝑝 . Each possible arc (𝑛 ∗ (𝑛−1)) in a directed
graph is included with probability 𝑝 , independently from every
other arc. Weights are added uniformly from the interval [0,1]. Four
different sizes of graphs (512, 1024, 2048 and 4096 vertices) and five
different probabilities (0.1, 0.3, 0.5, 0.7, 0.9) were selected as input.
For each instance of the input five different graphs were created,
all together 100 different graphs were created using this model.

Secondly, a different variant was used, called uniform Erdős-
Rényi model. Input values for creating graphs were number of
vertices and number of arcs, denoted by𝑚. Out of all 𝑛 ∗ (𝑛 − 1)
possible arcs in a directed graph a random permutation was made to
select the desired number of arcs.Weights are added uniformly from
the interval [0,1]. Again the sizes of graphs were 512, 1024, 2048 and

1Link to code for generating random graphs is available here: GitHub Repository
2In Albert-Barabási model some seeds did not produce strongly connected graph and
therefore more than 80 seeds were used.

4096 vertices and inputs for𝑚 were 5 ∗𝑛, 10 ∗𝑛, 20 ∗𝑛, 50 ∗𝑛, 100 ∗𝑛.
All together 100 different graphs were created using this model.

Finally, using Albert-Barabási model the input values for creating
random graphs were number of vertices of final graph, number of
vertices of initial graph, denoted by 𝑐 , and number of arcs added in
each round, denoted by𝑚. Initially a clique of size 𝑐 is created. At
each step, one new vertice is added, with𝑚 new arcs to the vertices
already in the graph. With preferential attachment the vertices with
higher degree have a higher probability to receive new arcs. The
graph constructed after 𝑛 − 𝑐 steps is undirected. To determine the
direction of each arc, a function similar to a coin flip is employed.
This function randomizes the orientation of the arcs, ensuring an
equal distribution where half of the arcs lie above the main diagonal
in the adjacency matrix, and the other half lie below it. For this
evaluation the𝑚 value was fixed at 15 and 𝐶 value was fixed at 30.
Again the sizes of graphs were 512, 1024, 2048 and 4096 vertices and
for each instance 20 different graphs were generated (80 together).
Weights are added uniformly from the interval [0,1].

4.3 Evaluation
As mentioned, Tree and Hourglass algorithm were compared with
Floyd-Warshall algorithm. The results on graphs generated by bi-
nomial Erdős-Rényi model are shown in figure 1, by uniform Erdős-
Rényi model are shown in figure 2 and by Albert-Barabási model are
shown in figure 3. To better visualize the results, natural logarithm
of arcs is used on the x axis. Both modifications performed much
better than Floyd-Warshall algorithm, especially as the number of
vertices gets higher. It is worth noting that, between the Tree and
Hourglass algorithms, the Tree algorithm demonstrated slightly
better results in the performance comparison.

Figure 1: Binomial Erdős-Rényi model results

In figure 4 results of all three variants of graphs are shown. As
expected both modifications were slower as the graph got more
dense and the number of vertices stayed the same. Moreover also
Floyd-Warshall algorithm was a little bit slower as graph got denser
which is unexpected.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

25

Dani Zugan

Figure 2: Uniform Erdős-Rényi model results

Figure 3: Albert-Barabási model results

5 CONCLUSIONS
In this paper, a straightforward evaluation of three algorithms for
finding shortest paths in a network was presented. Random net-
works were generated using the Erdős-Rényi and Albert-Barabási
models. The paper’s results showed that both modifications of the
algorithms performed better than the Floyd-Warshall algorithm,
especially when the size of the graphs (vertices) was larger.

To further enhance the comprehensiveness of the evaluation,
the Tree and the Hourglass algorithms will be further assessed
on graphs that are not strongly connected. By incorporating non-
strongly connected graphs into the assessment, deeper insights
into the behavior and robustness of the algorithms in real-world
scenarios, are expected to be gained.

REFERENCES
[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. 1993. Network Flows: Theory, Algorithms,

and Applications. Prentice-Hall, Inc., USA.
[2] Albert-Laszlo Barabasi and Rita Albert. 1999. Albert, R.: Emergence of Scaling in

Random Networks. Science 286, 509-512. Science (New York, N.Y.) 286 (11 1999),

Figure 4: Combined results

509–12. https://doi.org/10.1126/science.286.5439.509
[3] A. Brodnik, M. Grgurovič, and R. Požar. 2021. Modifications of the Floyd-Warshall

Algorithm with Nearly Quadratic Expected-Time. ARS MATHEMATICA CON-
TEMPORANEA (2021). https://amc-journal.eu/index.php/amc/article/view/2467

[4] R. W. Floyd. 1962. Algorithm 97: Shortest path. Commun. ACM 5 (1962), 345.
https://doi.org/10.1145/367766.368168

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

26

Concurrent migration of containers in decentralized cloud
computing network

Andrej Erjavec
89201090@student.upr.si

Faculty of Mathematics, Natural Sciences and
Information Technologies,
University of Primorska

Glagoljaška 8
SI-6000 Koper, Slovenia

Aleksandar Tošić∗
aleksandar.tosic@upr.si

Faculty of Mathematics, Natural Sciences and
Information Technologies,
University of Primorska

Glagoljaška 8
SI-6000 Koper, Slovenia

ABSTRACT
In this paper we propose a new algorithm for decentralized ap-
plication orchestration in Nion Network. The proposed algorithm
improves on the existing implementation by performing multi-
ple migrations between nodes such that it does not create race
conditions. Moreover, we show experimental data testing various
statistical measures of fitness in an effort to find the most suitable
one. Our results show a significant improvement over the existing.

KEYWORDS
Decentralization, blockchain, edge computing, cloud computing,
decentralized orchestration, application migration, containeriza-
tion.

1 INTRODUCTION
The evolution of the internet and a growing number of its services
started to reveal the shortcomings of centralized service architec-
ture that has become unsuited to certain emerging trends [6]. Cloud
computing, which is, like other internet services, highly centralized,
is one of the major fields where the disadvantages of centralization
are the most obvious [5]. Among these are low fault tolerance, a
significant amount of processing load on data centers, and a difficult
process of service migration between cloud infrastructure providers
(vendor lock-in). Edge computing aims to address some of these
challenges by distributing system resources as well as data across a
multitude of nodes [3], but soon it was realized that edge devices are
significantly underutilized in terms of system resource consump-
tion and the coordination required for consistent system operation
still relies on a centralized orchestrator. These findings have driven
the development of a blockchain-based protocol for decentralized
cloud computing, named Nion Network [4]. The protocol addresses
multiple issues of existing solutions, the most significant change
it delivers is support for fully decentralized orchestration. In ad-
dition, it aims to solve the issue of edge device heterogeneity by
enabling their homogeneous operation that is independent of hard-
ware configuration. The latter is achieved by packing applications
into containers and performing migrations of containers during
run-time. The migrations are validated by a consensus mechanism
and are recorded on the blockchain in order to provide a verifiable
and transparent log of system state changes.

∗Also with InnoRenew CoE.

2 MOTIVATION
The migrations of containers in Nion Network are determined by
a deterministic algorithm that produces a migration plan based
on system resource statistics of nodes inside a network. These are
collected and propagated to a block producer in each slot when
a new block is created. The main goal of migrations is to evenly
distribute a resource load across the network. However, the current
implementation of the algorithm only supports up to one migration
to be performed in each block, which significantly increases the time
needed for the network to stabilize and hence reduces its overall
performance. The operation of the algorithm is based on the concept
of minimizing the load of most loaded nodes while maximizing the
load of least loaded nodes to achieve an even distribution of system
resources. Each migration can be represented as a vector containing
three values:

{𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒, 𝑠𝑜𝑢𝑟𝑐𝑒𝑁𝑜𝑑𝑒, 𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛𝑁𝑜𝑑𝑒}
The algorithm always takes the most loaded node as a source and
the least loaded node as a destination. Among containers from the
most loaded node, the one with the highest CPU usage is selected
to be migrated. In addition, the impact of the proposed migration is
calculated before the execution to evaluate whether the migration
would improve the state of the system. As a measure of system
stability, the difference between the most and the least loaded node
is taken and compared before and after migration. For simplicity,
the CPU load is expressed in percentage where we assume the value
is normalized by hardware performance.

The migration is executed only in case the difference is lower af-
ter execution. In case the migration is performed, its goal is reached
since the migration contributes to a more even distribution of re-
source consumption. However, when observing the possible sce-
narios, we noticed that the proposed migration might not be ideal
since only one container is considered in the process of selection.
There might exist another migration between the same nodes that
would produce a lower difference once executed. Additionally, by
not considering all possible containers from the most loaded node,
there is a possibility of migration not being performed in the cur-
rent slot due to a calculated negative impact on system stability,
which leaves the system deprived of a possible improvement.

3 CONTRIBUTION
In the practical part of this study, we implement an algorithm that
addresses the issues of the current implementation. The problem

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.10

27

https://doi.org/10.26493/scores23.10

Andrej Erjavec and Aleksandar Tošić

Data: BlockData
Result:Migration plan

1 if !AppQueue.isEmpty() then
2 while !AppQueue.isEmpty() do
3 𝑀𝑖𝑛 ⇐ 𝐹𝑖𝑛𝑑𝑀𝑖𝑛𝐿𝑜𝑎𝑑𝑒𝑑𝑁𝑜𝑑𝑒 (𝐵𝑙𝑜𝑐𝑘𝐷𝑎𝑡𝑎);
4 𝑀𝑖𝑛.𝑎𝑑𝑑𝐴𝑝𝑝 (𝐴𝑝𝑝𝑄𝑢𝑒𝑢𝑒.𝑑𝑒𝑞𝑢𝑒𝑢𝑒 ());
5 end
6 else
7 𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ⇐ 𝑀𝑎𝑥.𝑀𝑎𝑥𝐿𝑜𝑎𝑑𝐴𝑝𝑝 ;
8 𝐷𝑒𝑙𝑡𝑎𝑆𝑐𝑜𝑟𝑒 ⇐ (𝑀𝑎𝑥.𝑠𝑐𝑜𝑟𝑒 −𝑀𝑖𝑛.𝑠𝑐𝑜𝑟𝑒);
9 𝑁𝑒𝑥𝑡𝐷𝑒𝑙𝑡𝑎𝑆𝑐𝑜𝑟𝑒 ⇐

(𝑀𝑎𝑥.𝑠𝑐𝑜𝑟𝑒 −𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒.𝑠𝑐𝑜𝑟𝑒) − (𝑀𝑖𝑛.𝑠𝑐𝑜𝑟𝑒 +
𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒.𝑠𝑐𝑜𝑟𝑒);

10 end
11 if 𝑀𝑎𝑡ℎ.𝑎𝑏𝑠 (𝐷𝑒𝑙𝑡𝑎𝑆𝑐𝑜𝑟𝑒 > 𝑁𝑒𝑥𝑡𝐷𝑒𝑙𝑡𝑎𝑆𝑐𝑜𝑟𝑒) then
12 Migrate(𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ,𝑀𝑖𝑛);
13 end

Algorithm 1: Deterministic migration algorithm

we are dealing with is similar to process scheduling with the goal
of minimizing the total time required to complete all tasks. In this
context, optimization algorithms like Longest-processing-time-first
(LPT) and Shortest-processing-time-first (SPT) are often used [2].
However, these algorithms are designed for systems where the
number and difficulty of all tasks are known prior to execution
making them unsuitable for a dynamic network like Nion where
the load distribution is constantly changing with new applications
entering the network in each slot.

3.1 Implementation
The proposed solution is designed to compute a migration plan
based on the current state of the network. To provide a separate test-
ing environment for new solutions, we implemented a simplified
simulation of the Nion protocol, which tries to mimic the dynamic
nature of the real network to ensure similar conditions. The imple-
mentation is executed in three steps where each aims to improve a
different aspect of the algorithm, while the main focus is reducing
the time needed for the network to stabilize.

3.1.1 Improvement 1: Enabling multiple migrations per block. First,
we focus on solving the most significant limitation of the algorithm
while keeping the existing concept for container selection. As a
measure of system stability, the difference between the most and
the least loaded node is taken as in the case of the original algorithm.
Multiple migrations per block are enabled by building a migration
plan inside a loop, which iterates as long as the migration proposed
in the current iteration still improves the system stability. We also
observed that once the local minimum of a difference is reached,
at the same time the global minimum for that slot is reached as
well which allows us to break the loop and return the produced
migration plan.

3.1.2 Improvement 2: Improved procedure of container selection.
The previous change to the algorithm enables multiple migrations
per block but still leaves room for improvement. In this step, we
address the problem of non-ideal migrations that can slow down

the process of load balancing between nodes or miss a chance
for stability improvement. The goal of this step is to consider all
containers from the most loaded node in the process of selection,
not only the one with the highest CPU usage. Instead of directly
selecting the most loaded container, We first evaluate the impact of
migration for each of these containers and select the one that has
the greatest impact on system stability when migrated. As in the
previous improvement, the migrations are being added to the plan
as long as the migration in the current iteration produces a lower
difference compared to the previous iteration.

3.1.3 Improvement 3: Use of standard deviation as a measure of
system stability. Since the problem involves evenly distributing
system resources, the use of standard deviation as a measure of
system stability seems reasonable. With this approach, network
stability is obtained by calculating the standard deviation of CPU
usage across all containers on the network using the following
formula:

𝑠𝑡𝑑𝐷𝑒𝑣 =

√︄
1
|𝑁 | ∗

∑︁
𝑛∈𝑁
(𝑛𝑐𝑝𝑢𝑁𝑐𝑝𝑢)2 (1)

In the previous versions of an algorithm, the execution of mi-
gration is decided based on comparing the difference between the
most and the least loaded node in the current and the previous
iteration. However, these nodes are most likely to be different once
a migration is performed which makes such a comparison method
inappropriate and may result in sooner than desired termination of
the algorithm. The use of standard deviation enables us to evaluate
the impact of individual migrations not only on nodes involved in
migration but on the network as a whole. The migration plan is still
generated inside a loop with the difference in standard deviation
now taking the role of a measure. Similar to previous cases the
loop continued as long as the standard deviation was lower than
the one in the previous iteration. In the previous cases, we were
able to evaluate the impact of migration before the execution since
only the involved nodes were considered. In the case of standard
deviation, however, the same can not be achieved since the calcula-
tion of standard deviation involves all nodes and containers on the
network. It is therefore not possible to make an evaluation before
the migration is executed. For this reason, the migration has to
be simulated prior to calculation in order to assess its impact on
the network. An important note is that the integration of such an
algorithm into an actual network would require the block producer
node to have the ability to perform a simulation of migration. That
can be achieved by implementing a system able of making a copy
of the network state based on received resource statistics and using
this model as a simulation environment.

This step also completes the final version of our solution (Algo-
rithm 2).

4 RESULTS
In this section, we present the results obtained during the testing of
improved versions of the migration algorithm. The tests are done
for each of the mentioned improvements to compare its perfor-
mance against previous implementations. Each test is performed
based on average and worst-case scenarios. In the average case, a

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

28

Concurrent migration of containers in decentralized cloud computing network

Data: BlockData
Result:Migration plan[]

1 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛 ⇐ [];
2 𝐷𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ⇐ 𝐵𝑙𝑜𝑐𝑘𝐷𝑎𝑡𝑎;
3 𝑆𝑡𝑑𝐷𝑒𝑣 ⇐ 𝐺𝑒𝑡𝑆𝑡𝑑𝐷𝑒𝑣 ();
4 𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝑟𝑒𝑣 ⇐ 𝑆𝑡𝑑𝐷𝑒𝑣 ;
5 while 𝑆𝑡𝑑𝐷𝑒𝑣 <= 𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝑟𝑒𝑣 & 𝐷𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑠𝑖𝑧𝑒 > 0

do
6 𝑀𝑎𝑥 ⇐ 𝐹𝑖𝑛𝑑𝑀𝑎𝑥𝐿𝑜𝑎𝑑𝑒𝑑𝑁𝑜𝑑𝑒 (𝐵𝑙𝑜𝑐𝑘𝐷𝑎𝑡𝑎);
7 𝑀𝑖𝑛 ⇐ 𝐹𝑖𝑛𝑑𝑀𝑖𝑛𝐿𝑜𝑎𝑑𝑒𝑑𝑁𝑜𝑑𝑒 (𝐷𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠);
8 𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ⇐ 𝑀𝑎𝑥.𝑀𝑎𝑥𝐿𝑜𝑎𝑑𝑒𝑑𝐴𝑝𝑝 ;
9 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 ⇐ 𝑀𝑎𝑥.𝑔𝑒𝑡𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 ();

10 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠.𝑠𝑜𝑟𝑡 (𝐶𝑃𝑈);
11 𝐿𝑜𝑎𝑑𝐷𝑒𝑙𝑡𝑎 ⇐ 𝑀𝑎𝑥.𝑐𝑝𝑢 −𝑀𝑖𝑛.𝑐𝑝𝑢;
12 for 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 : 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟𝑠 do
13 𝑁𝑒𝑥𝑡𝐷𝑒𝑙𝑡𝑎𝑆𝑐𝑜𝑟𝑒 ⇐

(𝑀𝑎𝑥.𝑐𝑝𝑢 −𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒.𝑐𝑝𝑢) − (𝑀𝑖𝑛.𝑐𝑝𝑢 +
𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒.𝑐𝑝𝑢);

14 if 𝑁𝑒𝑥𝑡𝐿𝑜𝑎𝑑𝐷𝑒𝑙𝑡𝑎 > 𝐷𝑒𝑙𝑡𝑎 then
15 𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒 ⇐ 𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑒𝑟 ;
16 break;
17 end
18 𝐿𝑜𝑎𝑑𝐷𝑒𝑙𝑡𝑎 ⇐ 𝑁𝑒𝑥𝑡𝐿𝑜𝑎𝑑𝐷𝑒𝑙𝑡𝑎;
19 end
20 𝑆𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛(𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒, 𝑀𝑎𝑥,𝑀𝑖𝑛);
21 𝐷𝑠𝑡𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠.𝑟𝑒𝑚𝑜𝑣𝑒 (𝑀𝑖𝑛);
22 𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝑟𝑒𝑣 ⇐ 𝑆𝑡𝑑𝐷𝑒𝑣 ;
23 𝑆𝑡𝑑𝐷𝑒𝑣 ⇐ 𝐺𝑒𝑡𝑆𝑡𝑑𝐷𝑒𝑣 ();
24 if 𝑆𝑡𝑑𝐷𝑒𝑣 < 𝑆𝑡𝑑𝐷𝑒𝑣𝑃𝑟𝑒𝑣 then
25 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛 ⇐ {𝐴𝑝𝑝𝑇𝑜𝑀𝑖𝑔𝑟𝑎𝑡𝑒, 𝑀𝑖𝑛,𝑀𝑎𝑥};
26 𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛𝑃𝑙𝑎𝑛.𝑎𝑑𝑑 (𝑀𝑖𝑔𝑟𝑎𝑡𝑖𝑜𝑛);
27 end
28 end

Algorithm 2: Final version of migration algorithm

fixed number of containers is added to a randomly selected node in
each iteration while in the worst case, the containers are always
added to the same node. When a desired number of containers on
the network is reached, the adding stops. We take the standard devi-
ation of CPU load across the network as a measure of performance
for all tests. The testing is performed on a simulated network with
1000 containers and 256 nodes.

After the first improvement, which enabled multiple migrations
per block, we see significant improvement in terms of time required
for stabilization (Figure 1). While it took around 200 blocks for the
original algorithm to complete the stabilization, the new version
required around 100 blocks, which makes it reach the minimum
standard deviation almost two times faster. As shown in the figure,
the standard deviation starts to decline much sooner when per-
forming multiple migrations per block. However because of rapid
stabilization in the early phases of the process when new blocks are
still entering the network, the standard deviation is not in constant

20

40

60

0 50 100 150 200
block

st
dd

ev
C

P
U

algorithm MULTI_DIFF SINGLE

test case: AVERAGE

Standard deviation of CPU usage across blocks

Figure 1: Comparison of performance between single and
multiple migrations per block

10

20

30

0 25 50 75 100 125
block

st
dd

ev
C

P
U

algorithm MULTI_DIFF MULTI_DIFF_IMPROVED

test case: AVERAGE

Standard deviation of CPU usage across blocks

Figure 2: The effect of improved container selection on stan-
dard deviation

decline. When a stable-enough state is reached, new migrations can
not improve the stability for the next sequence of blocks making
the standard deviation rise again. The rising ends when enough
new containers enter the network and an algorithm is again able
to produce migrations that start improving the stability.

The next version of the algorithm where we implemented an
improved routine for container selection shows an improved per-
formance when compared to the initial multi-migration-per-block
algorithm (Figure 2). Since the selection is such that the proposed
migration has the largest impact on the stability, we are able to
reach a lower standard deviation as in the previous case when a
more naive approach for selection was used.

Changing the method for measuring stability with the use of
standard deviation as a measure further contributed to reaching
better stability of the network (Figure 3). The cause for the improve-
ment is widening the scope on which the new algorithm is able

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

29

Andrej Erjavec and Aleksandar Tošić

10

20

30

0 25 50 75 100 125
block

st
dd

ev
C

P
U

algorithm MULTI_DIFF_IMPROVED MULTI_STDDEV_IMPROVED

test case: AVERAGE

Standard deviation of CPU usage across blocks

Figure 3: The effect of improved container selection on stan-
dard deviation

to evaluate the impact of migrations. This contributes to a higher
number of migrations per block as we show in Table 1 resulting in
a lower standard deviation reached.

Another important indicator, that can be used to assess the per-
formance of our algorithm, is the number of migrations per block an
algorithm is able to produce. We observe that the last improvement
where the standard deviation is used in combination with improved
container selection produces the highest number of migrations.

Table 1: Migrations per block based on algorithm

number of migrations per block
algorithm min mean max
SINGLE 1 1 1
MULTI DIFF 1 2.79 9
MULTI DIFF IMPROVED 1 2.75 9
MULTI STDDEV 1 2.66 10
MULTI STDDEV IMPROVED 1 4.60 18

4.1 Quality of proposed solution
In the end, we want to measure the quality of our proposed solution.
In this case, the algorithms for process scheduling represent a good
reference for comparison. Even though their usage is unsuitable
for our use case, the fact they provide an optimal distribution of re-
sources enables us to make an evaluation of how close our solution
is to being optimal. We took the Longest processing time algorithm
(LPT) [1] as a reference since it provided the finest results. We tested
the final version of our algorithm and collected the results of 20
tests where a new simulation network was generated in each test
to provide variability in conditions. We present the results in Table
2.

As expected there is a gap in performance between algorithms,
but considering the different use cases these algorithms are intended
for, we conclude that the outcome generated by our solution is
acceptable.

Table 2: Comparison of our algorithm with LPT

std. dev. of CPU usage (%)
case/algorithm our implementation LPT
average case 13.85 2.31
worst case 16.09 4.07

5 CONCLUSION
In this paper, we presented the main operational concept of the
Nion protocol and highlighted the main drawbacks of its migration
algorithm. We extended our findings by proposing an improved
version of the algorithm that helps to achieve faster network stabi-
lization times. Our solution enables multiple migrations per block
and improves the concept of selecting the container to be migrated.

In the future, we could continue our work on improving the al-
gorithm by implementing more advanced optimization techniques
to further improve its performance and tune its operation to more
specific requirements. One possible step in the evolution of our
algorithm would be the use of multi-criteria optimization where
multiple parameters are considered as opposed to the current solu-
tion where decisions are made based on CPU usage only. By setting
priorities on the parameters we would get an algorithm that is more
flexible and adjustable to current network needs and features.

ACKNOWLEDGMENTS
The authors gratefully acknowledge the European Commission
for funding the InnoRenew CoE project (H2020 Grant Agreement
#739574) and the PHArA-ON project (H2020 Grant Agreement
#857188) and the SRC-EDIH project (DIGITAL-2021-EDIH-01 call,
project number: 101083351) and the Republic of Slovenia (Invest-
ment funding of the Republic of Slovenia and the European Union of
the European Regional Development Fund), as well as the Slovenian
Research Agency (ARRS), for supporting project number J2-2504.

REFERENCES
[1] Asep Anwar, Didit Damur Rochman, and Rendiyatna Ferdian. 2021. Parallel

Machine Scheduling with Shortest Processing Time (SPT) and Longest Processing
Time (LPT) TOMinimize MAKESPAN at PT. ABC. Geographical Education (RIGEO)
11, 6 (2021), 403–407.

[2] Jun-Ho Lee and Hoon Jang. 2019. Uniform Parallel Machine Scheduling with
Dedicated Machines, Job Splitting and Setup Resources. Sustainability 11, 24
(2019). https://doi.org/10.3390/su11247137

[3] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. 2016. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal 3, 5 (2016),
637–646. https://doi.org/10.1109/JIOT.2016.2579198

[4] Aleksandar Tošić, Jernej Vičič, Michael Burnard, and Michael Mrissa. 2022. A
Blockchain-based Edge Computing Architecture for the Internet of Things. (2022).
https://doi.org/10.20944/preprints202111.0489.v2

[5] Magnus Westerlund and Nane Kratzke. 2018. Towards Distributed Clouds: A
Review About the Evolution of Centralized Cloud Computing, Distributed Ledger
Technologies, and A Foresight on Unifying Opportunities and Security Implica-
tions. In 2018 International Conference on High Performance Computing Simulation
(HPCS). 655–663. https://doi.org/10.1109/HPCS.2018.00108

[6] Wenli Yang, Erfan Aghasian, Saurabh Garg, David Herbert, Leandro Disiuta, and
Byeong Kang. 2019. A Survey on Blockchain-Based Internet Service Architecture:
Requirements, Challenges, Trends, and Future. IEEE Access 7 (2019), 75845–75872.
https://doi.org/10.1109/ACCESS.2019.2917562

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

30

How to Set the Maximum Number of Function Evaluations for the
L-SHADE Algorithm with the 𝐴𝑆3𝐷 Approach?

Jana Herzog
jana.herzog1@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Janez Brest
janez.brest@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Borko Bošković
borko.boskovic@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
The control parameter, maximum number of function evaluations
plays two important roles during the optimization process. It can
determine the population size of some evolutionary algorithms and
it also serves as a stopping condition of an optimization process. In
this paper, we focus on setting the value of the control parameter
for the L-SHADE algorithm for a chosen large-scale benchmark
function. For this purpose we utilized a recently proposed approach
𝐴𝑆3𝐷 , which enables us to predict a stopping condition with a
certain probability for a given solver and optimization problem,
while using the fixed-target approach.

KEYWORDS
stopping condition, evolutionary algorithm, target approach

1 INTRODUCTION
Recently proposed algorithms, such as jSO [6], L-SHADE [19], iL-
SHADE [5] and MadDE [4] use the maximum number of function
evaluations (maxFEs) as a control parameter. This has two roles
during an optimization process. It influences the population size
and it serves as a stopping criteria.When a specific value of function
evaluations as a stopping condition is set, this is the fixed-budget
approach [13].

In competitions, such as CEC [1], the maximum number of func-
tion evaluations is set as a stopping condition. The value of it is
predetermined or set according to the past years competitions. How-
ever, it can occur that the improper setting of the stopping condition
can affect the performance of the evolutionary algorithms. It can
happen that the budget is too small, which can result in premature
convergence and the solution which is not of optimal quality. Some
mishaps during a new experiment can happen if the predetermined
budget is different from the one used in the original paper. This can
affect the comparison of the algorithms, since a bigger budget can
help the algorithm reach a solution of a better quality. However,
the stopping criteria does not only terminate the algorithm, but it
also plays an important role in the analysis and comparison of the
evolutionary algorithms. The stopping condition can produce a sig-
nificant differences in the ranking of evolutionary algorithms [18].
Before an experiment, it is crucial to set the correct stopping con-
dition due to all aforementioned points. It is unknown how many
number of function evaluations an algorithm will need to reach
the solution of a wanted quality. The question which we propose
in this paper is: how to determine a maximum number of function
evaluations for a chosen evolutionary algorithm and problem?

For this purpose, we focus on setting a stopping condition/control
parameter for a given evolutionary algorithm on a chosen bench-
mark function. We chose a 7-nonseparable, 1-separable Shifted and
Rotated Elliptic Function from CEC’2013 Large-Scale Global Op-
timization benchmark functions [16] and L-SHADE. L-SHADE is
considered as the state-of-the-art algorithm from the previous CEC
competitions with the success-history based parameter adaptation
and linear population size reduction [19]. To be able to set the value
of a control parameter (maxFEs), we will utilize a recently proposed
approach 𝐴𝑆3𝐷 (Analysis of the Stochastic Solvers based on the
Statistical Distribution) [12]. This approach is based on the statis-
tical distribution and parameters of the observed variable. In our
case, this is the number of function evaluations needed to reach a
specific target. With this approach, we will not only set a stopping
condition/control parameter for the higher dimensions of the given
optimization problem, but also provide these values with a specific
probability. Identifying the statistical distribution and its parame-
ters enables us to establish a predictive model. The predictive model
helps in estimating the stopping condition according to the char-
acteristics of the chosen evolutionary algorithm and optimization
problem.

The paper is organized as follows. In Section 2, the related work
is described. In Section 3, the experiment and analysis are provided.
Section 4 concludes our paper.

2 RELATEDWORK
In this paper, we focus on three aspects of the evolutionary computa-
tion: on setting the stopping condition, the analysis and comparison
of evolutionary algorithms, and the statistics behind it all.

Firstly, we focus on setting the control parameter of the optimiza-
tion process for a specific evolutionary algorithm and optimization
problem. In our case, when analyzing the L-SHADE algorithm,
the control parameter serves also as a stopping condition. This is
the fixed-budget approach [3]. This means that the value of it is
predetermined and the algorithm stops, when the budget is spent.
Contrary to the fixed-budget approach, with the fixed-target ap-
proach [10], we set a certain quality of solutions, which should be
reached by the evolutionary algorithm. In this case we observe the
number of function evaluations or runtime needed to reach this
quality of solutions.

Setting the stopping condition represents a demanding task.
In [14], authors argue that setting a higher number of function
evaluations as a stopping condition may not present a higher com-
putational cost and should be considered in benchmarking. They

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.11

31

https://doi.org/10.26493/scores23.11

Jana Herzog, Janez Brest, and Borko Bošković

examine the effect of a higher evaluation budget on the perfor-
mance, mean, convergence of the algorithms, and population di-
versity. In [18], the authors show that using different stopping
criteria produces different results while comparing the state-of-the-
art algorithms. They argue that this fact is often overlooked by the
researchers.

One of the most recent approaches, which offers several aspects
of the algorithm’s comparison and analysis is𝐴𝑆3𝐷 approach, which
will be utilized in this paper. This approach does not only rely on
statistics, but it takes into consideration the characteristics of an
algorithm and also of an optimization problems. It offers a deeper
insight into the performance of an algorithm based on the statistical
distribution of the observed variables [12]. It does not only provide
a statistical distribution of the observed variable as it is described
in [17], but also establishes predictive models with which we can
predict stopping conditions with any wanted probability.

However, one should not neglect the basis for every fair com-
parison of the evolutionary algorithms: the parametric and non-
parametric statistical tests [8], [9]. Several statistical approaches
have been proposed as an answer to only using the statistical tests.
Those are the following [7], [15], [20] and [9].

3 EXPERIMENT
In this paper, we focused on analysing the L-SHADE algorithm on
a 7-nonseparable, 1-separable Shifted and Rotated Elliptic Function.
The main intention is to show how to set the control parameter for
L-SHADE for a larger dimension of the chosen benchmark function.

We made 100 independent runs for each chosen dimension
𝐷 = {5, 10, ..., 40} of the large-scale function. We applied the target-
approach with the optimal quality of solutions. The proposed ap-
proach𝐴𝑆3𝐷 requires that the given evolutionary algorithm reaches
the target in all runs, so that the hit ratio is 100%. We show how to
set/predict the control parameter/stopping condition maxFEs for
the dimension 𝐷 = 50 based on the model established from the
smaller dimensions. Then we will empirically validate the results
by running the L-SHADE for 𝐷 = 50 and comparing the empirical
and predicted values.

Firstly, we analysed the statistical distribution of 100 indepen-
dent runs of each dimension 𝐷 = {5, 10, ..., 40}. For this purpose,
we used the Shapiro Wilk’s statistical test, where the p-value needs
to be less than 0.005 (𝑝 < 0.005). We observed how many number
of function evaluations 𝑁𝐹𝐸𝑠 are needed that L-SHADE reaches
the set optimal solution in each of the independent runs. We show
that the statistical distribution is normal for each of the chosen
dimensions. The Fig. 1 depicts the normal distribution for the di-
mension 𝐷 = 10. Histogram can be a good visualization tool for
determining the statistical distribution of the given sample [11].

Normal distribution has two parameters: mean and standard
deviation, which are calculated as shown in Eq. (1) and Eq. (2).

𝑥 =
1
𝑛

(
𝑛∑︁
𝑖=1

𝑥𝑖

)
(1)

The 𝑥 in Eqs. (1) and (2) represents the NFEs. The 𝑛 represents the
sample size (number of independent runs), which is in this case
100.

Figure 1: The normal distribution for the dimension 𝐷 = 10.

𝜎 =

√︂
Σ(𝑥𝑖 − `)2

𝑛
(2)

To be able to predict the stopping condition/the control param-
eter for 𝐷 = 50, we need to establish the predictive model based
on the parameters of the statistical distribution. The parameters
follow a trend, in our case they follow a polynomial trend shown in
Eq. (3). The 𝑎, 𝑏, and 𝑐 are the real numbers. To be able to correctly
determine, which trend line is being followed by the data we use
the 𝑅2 value. This serves as a valuable indicator to determine the
optimal curve fit for the provided parameters [2]. If the 𝑅2 is close
to 1, this indicates a very good fit. In our case, 𝑅2 was 0.9931. In
Eq. (4) the predictive model for the parameter ` is established. The
established predictive model is shown in Fig. 2. Eq. (5) shows the
trend line fitted to the data and will be used for further calculations.

ysolver = a · x2 + b · x + c (3)
`L−SHADE (D) = 426.31 · D2 − 2382 · D + 24,716 (4)

The second parameter of the statistical distribution is the stan-
dard deviation (𝜎). We also established a predictive model for (𝜎)
following the same procedure for 𝐷 = {5, 10, ..., 40}. The predictive
model is shown in Eq. (5) and in Fig. 3.

𝜎L−SHADE (50) = 87 .774 · D2 − 2146.2 · D + 11,957 (5)

Firstly, we will predict ` and 𝜎 for the 𝐷 = 50. The calculations
are shown in Eqs. (6) and (7).

`L−SHADE (50) = 426.31 · 502 − 2382 · 50 + 24,716 = 971,391 (6)
𝜎L−SHADE (50) = 87 .774 · 502 − 2146.2 · 50 + 11,957 = 112,136 (7)

We predicted both parameters ` and 𝜎 . However, to determine
the stopping condition, we also need to know with what probability
do we want the optimal solutions to be reached. Here, we will need
the 𝑍 -score table [11], with which we can estimate the probability.
In our case, we are calculating the control parameter/stopping

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

32

How to Set the Maximum Number of Function Evaluations for the L-SHADE Algorithm with the𝐴𝑆3𝐷 Approach?

Figure 2: Prediction model for the mean (`) of 𝑁𝐹𝐸𝑠 for L-
SHADE on observed dimensions 𝐷 = {5, 10, ..., 40}. The 𝑅2 is
0.99.

Figure 3: Prediction model for the standard deviation (𝜎) of
𝑁𝐹𝐸𝑠 for L-SHADE on observed dimensions 𝐷 = {5, 10, ..., 40}.
The 𝑅2 is 0.98.

condition, so wewill use the Eq. (8). Wewant to predict the stopping
condition with 99% probability. For this purpose, we will use the
Z-score table and check what the value is for 99% probability. The
value at 99% probability is 3.1, so we will use this value for our
further calculations.

𝑍 =
𝑚𝑎𝑥𝐹𝐸𝑠 − `

𝜎
(8)

maxFEs(99%) = ` + 𝑍 · 𝜎 = 971,391 + 3.1 · 112,136 = 1,319,012
(9)

In Eq. (9), we show the prediction of the stopping condition/cont-
rol parametermaxFES. The stopping conditionmaxFES to reach the
optimal solutions with L-SHADE on the given benchmark function
and 99% probability is 1,356,045 maxFES.

NFEs

F
re

qu
en

cy

400000 800000 1200000

0
10

00
0

Predicted Distribution
Empirical Distribution
Predicted Distribution
Empirical Distribution
Predicted Distribution
Empirical Distribution

Figure 4: The comparison of the empirical and predicted
statistical distribution for 𝐷 = 50.

To empirically validate these results, we measured the hit ratio.
Hit ratio represents the relationship between the number of success-
ful runs and all runs. With a 99% hit ratio, we obtained 1,118,419
maxFEs. With this, we show the usefulness of the proposed ap-
proach. The gap between the empirical and predicted values is 15%.
We can apply this approach for any probability. For this purpose,
we also show predicted and empirical results for the probability
of 50%. The predicted and empiricalmaxFEs for the probability/hit
ratio 50% for 𝐷 = 50 are 971,391 and 877,252. The gap between the
empirical and predicted value is 10%. In our examples, it is evident
that the predicted values are higher than the empirical ones. This
shows that our predictive model is slightly pessimistic.

To show how well the predicted and empirical mean (`) of the
NFEs match, we will utilize another aspect of the 𝐴𝑆3𝐷 approach.
Since we predict the parameters of the statistical distribution, we
also predict the statistical distribution. In Fig. 4, we show how well
the predicted and empirical statistical distributions match.

This experiment indicates that the control parameter for L-SHADE
on the chosen benchmark function can be predicted by utilizing
the 𝐴𝑆3𝐷 approach. However, this approach also enables us to:

• Estimate the probability with which a (sub)-optimal solu-
tion can be reached according to the preset stopping condi-
tions.

• Analyze and compare the chosen evolutionary algorithms
and optimization problems.

Still, we need to take into the account some limitations of the
approach. Firstly, the hit ratio needs to be 100%. This means that
the algorithm reaches a given quality of solutions for each inde-
pendent run. Since the predictive model is established on smaller
dimension of the optimization problem and the prediction is made
for the larger dimensions, the chosen optimization problem needs
to be multidimensional. It can also occur that the parameters of the
statistical distribution do not follow any recognizable trend line.
This means that the prediction cannot be made.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

33

Jana Herzog, Janez Brest, and Borko Bošković

Overall, the control parameter/stopping condition can be set by
the proposed approach.

4 CONCLUSION
In conclusion, the control parameter maximum number of function
evaluations (maxFEs) holds a significant role in the optimization
process. It impacts the parameter population size of an evolutionary
algorithm and it serves as a stopping criteria. This paper focused on
setting the control parameter maxFEs for the L-SHADE algorithm
and selected Large-Scale benchmark function. Through the experi-
ment, we show that the recently proposed approach is appropriate
for predicting the control parameter of L-SHADE by establishing a
predictive model based on smaller dimensions of the chosen bench-
mark function. The stopping condition is predicted by considering
the 99% probability. The calculations were empirically validated
by comparing the empirical and predicted values of the control
parameter.

In conclusion, by using this approach, we not only set stopping
condition, but also provide probability with which the chosen qual-
ity of solution can be reached.

ACKNOWLEDGEMENT
This work was supported by the Slovenian Research Agency (Com-
puter Systems,Methodologies, and Intelligent Services) under Grant
P2-0041.

REFERENCES
[1] A. W. Mohamed, A. A. Hadi, A. K. Mohamed, P. Agrawal, A. Kumar, P. N. Sugan-

than. December 2021. Problem Definitions and Evaluation Criteria for the CEC 2022
Special Session and Competition on Single Objective Bound Constrained Numerical
Optimization. Technical Report. Nanyang Technological University, Singapore.
https://github.com/P-N-Suganthan/2022-SO-BO

[2] Sandra Arlinghaus. 1994. Practical handbook of digital mapping terms and concepts.
CRC Press.

[3] Anne Auger and Nikolaus Hansen. 2023. An Introduction to Scientific Experi-
mentation and Benchmarking. In Proceedings of the Companion Conference on
Genetic and Evolutionary Computation. 854–877.

[4] Subhodip Biswas, Debanjan Saha, Shuvodeep De, Adam D Cobb, Swagatam Das,
and Brian A Jalaian. 2021. Improving Differential Evolution through Bayesian Hy-
perparameter Optimization. In 2021 IEEE Congress on Evolutionary Computation
(CEC). IEEE, 832–840.

[5] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. 2016. iL-SHADE:
Improved L-SHADE algorithm for single objective real-parameter optimization.
In 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 1188–1195.

[6] Janez Brest, Mirjam Sepesy Maučec, and Borko Bošković. 2017. Single objective
real-parameter optimization: Algorithm jSO. In 2017 IEEE Congress on Evolution-
ary Computation (CEC). IEEE, 1311–1318.

[7] Borja Calvo, Ofer M Shir, Josu Ceberio, Carola Doerr, Hao Wang, Thomas Bäck,
and Jose A Lozano. 2019. Bayesian performance analysis for black-box optimiza-
tion benchmarking. In Proceedings of the Genetic and Evolutionary Computation
Conference Companion. 1789–1797.

[8] Joaquín Derrac, Salvador García, Daniel Molina, and Francisco Herrera. 2011. A
practical tutorial on the use of nonparametric statistical tests as a methodology
for comparing evolutionary and swarm intelligence algorithms. Swarm and
Evolutionary Computation 1, 1 (2011), 3–18.

[9] Salvador García, Alberto Fernández, Julián Luengo, and Francisco Herrera. 2010.
Advanced Nonparametric Tests for Multiple Comparisons in the Design of Exper-
iments in Computational Intelligence and Data Mining: Experimental Analysis
of Power. Information sciences 180, 10 (2010), 2044–2064.

[10] Nikolaus Hansen, Anne Auger, Dimo Brockhoff, and Tea Tušar. 2022. Any-
time performance assessment in blackbox optimization benchmarking. IEEE
Transactions on Evolutionary Computation 26, 6 (2022), 1293–1305.

[11] Homer Thornton Hayslett. 2014. Statistics. Elsevier.
[12] Jana Herzog, Janez Brest, and Borko Bošković. 2023. Analysis based on statistical

distributions: A practical approach for stochastic solvers using discrete and
continuous problems. Information Sciences 633 (2023), 469–490. https://doi.org/
10.1016/j.ins.2023.03.081

[13] Thomas Jansen. 2020. Analysing stochastic search heuristics operating on a
fixed budget. Theory of evolutionary computation: recent developments in discrete
optimization (2020), 249–270.

[14] Anezka Kazikova, Michal Pluhacek, and Roman Senkerik. 2021. How Does
the Number of Objective Function Evaluations Impact Our Understanding of
Metaheuristics Behavior? IEEE Access 9 (2021), 44032–44048. https://doi.org/10.
1109/ACCESS.2021.3066135

[15] Antonio LaTorre, Daniel Molina, Eneko Osaba, Javier Poyatos, Javier Del Ser,
and Francisco Herrera. 2021. A Prescription of Methodological Guidelines for
Comparing Bio-inspired Optimization Algorithms. Swarm and Evolutionary
Computation (2021). https://doi.org/10.1016/j.swevo.2021.100973

[16] Xiaodong Li, Ke Tang, Mohammad N Omidvar, Zhenyu Yang, Kai Qin, and
Hefei China. 2013. Benchmark Functions for the CEC 2013 Special Session and
Competition on Large-scale Global Optimization. gene 7, 33 (2013), 8.

[17] Mattos, David Issa and Bosch, Jan and Olsson, Helena Holmström. 2021. Sta-
tistical Models for the Analysis of Optimization Algorithms With Benchmark
Functions. IEEE Transactions on Evolutionary Computation 25, 6 (2021), 1163–1177.
https://doi.org/10.1109/TEVC.2021.3081167

[18] Miha Ravber, Shih-Hsi Liu, MarjanMernik, andMatej Črepinšek. 2022. Maximum
number of generations as a stopping criterion considered harmful. Applied Soft
Computing 128 (2022), 109478. https://doi.org/10.1016/j.asoc.2022.109478

[19] Ryoji Tanabe and Alex S. Fukunaga. 2014. Improving the search performance
of SHADE using linear population size reduction. In 2014 IEEE Congress on
Evolutionary Computation (CEC). 1658–1665. https://doi.org/10.1109/CEC.2014.
6900380

[20] Niki Veček, Marjan Mernik, and Matej Črepinšek. 2014. A chess rating system
for evolutionary algorithms: A new method for the comparison and ranking of
evolutionary algorithms. Information Sciences 277 (2014), 656–679.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

34

Group Contribution Cooperative Co-Evolution Framework for
CEC’2013 Large-Scale Optimization Problems

Klemen Berkovič
klemen.berkovic1@um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

Borko Bošković
borko.boskovic@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Janez Brest
janez.brest@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
Solving black-box large-scale global optimization problems presents
a significant challenge for conventional optimization algorithms. In
this article, we introduce a new cooperative co-evolution framework
and a modified component grouping algorithm. The new frame-
work employs a divide-and-conquer strategy based on the modified
component grouping algorithm. The modified component group-
ing algorithm breaks down a complex problem into manageable
groups. These smaller groups are then optimized efficiently using
an algorithm from the NiaPy framework. The proposed framework
is highly versatile, it is capable of utilizing various optimization and
component grouping algorithms. To assess its performance, we con-
ducted a comparative study against multiple algorithms. We used
fifteen benchmark functions from the CEC’2013 large-scale global
optimization benchmark. Our findings highlight the potential of
our framework in enhancing optimization algorithms’ effective-
ness when dealing with black-box large-scale global optimization
problems.

KEYWORDS
Large-scale global optimization, black-box optimization, CEC’2013
LSGO, component grouping, cooperative co-evolution

1 INTRODUCTION
In the field of optimization, we encounter intricate challenges, de-
manding inventive solutions for real-world issues. Four intercon-
nected domains stand out: 1) Black-Box (BB) optimization, 2) Large-
Scale Global Optimization (LSGO), 3) Cooperative Co-evolution
(CC) frameworks and 4) Component Grouping (CG) methods.

BB optimization deals with a hidden formulation of a fitness func-
tion, so it relies exclusively on evaluations of the fitness function,
for finding solutions. This mirrors complex real-world scenarios
where traditional methods have difficulties. LSGO tackles the com-
plexities of a problem that has a high number of components and
is very time-consuming to optimize. The high number of compo-
nents need to be optimized in search of a good solution to the
problem. LSGO problems can be found in fields like urban plan-
ning [2] and healthcare [10]. CG methods provide a crucial thread,
disentangling a complex problem with overlapping components.
Our goal is to combine the CG method within the CC framework
to effectively optimize the BB LSGO problems. We will use the
idea of recursive differential grouping as a CG method to generate
groups that represent sub-problems for easier problem-solving. The

proposed framework is implemented for the NiaPy optimization
framework [11], which includes many nature-inspired algorithms.
Our goal is to be able to use any optimization algorithm from that
framework within the proposed CC framework.

The rest of the paper is organized as follows:The related work on
used algorithms, CC and CG methods are introduced in Section 2.
Then, the proposed CC framework and modified CG algorithm
are described in Section 3. Experimental studies are presented in
Section 4. Finally, conclusions and future work are described in
Section 5.

2 RELATEDWORK
In the field of tackling BB optimization challenges, CC frameworks
have emerged as a powerful tool. In [7] authors used the combined
strengths of CC framework with genetic algorithm (GA) to navigate
the complexities inherent in such problems. The CCGA-1 algorithm
was developed and tested on known optimization functions, where
the number of components was set to 10 and 30. They showed that
the CCGA-1 algorithm was better than the original GA algorithm.

The CG method focuses on efficient problem decomposition
through problems’ components interaction understanding. An ef-
fective CG method minimizes inter-group and maximizes intra-
group interactions [12]. Two primary methods for detecting these
interactions are: 1) non-monotonicity [5] and 2) non-linearity [9]
detection.

Authors in [6] introduced a CC algorithm with a differential CG
method for LSGO, laying the foundation for integrating a differ-
ential CG method as a central mechanism in the CC framework.
They introduced the Differential Grouping algorithm, which uses
non-linearity components interaction detection. With automated
decomposition of the problem through CG, this pioneering ap-
proach set a precedent for subsequent research. They showed that
a near-optimal CG can significantly improve the solution quality
for the BB LSGO problems.

In [8] a recursive CG method for large-scale continuous opti-
mization was introduced, called the Recursive Differential Grouping
3 (RDG3) algorithm. The RDG3 algorithm uses non-linearity de-
tection to identify components interactions by detecting changes
in a fitness function when perturbing components. The RDG3 al-
gorithm showed that a recursive method can break down a com-
plex optimization problem into more manageable sub-problems,
without explicitly examining all pairwise components interactions.
Notably, the RDG3 algorithm reduces the CG time complexity of
=-dimensional problem to O(= log=). To validate the effectiveness

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.15

35

https://doi.org/10.26493/scores23.15

Klemen Berkovič, Borko Bošković, and Janez Brest

of the RDG3 algorithm, a CC algorithm with the RDG3 algorithm
was used on CEC’2013 LSGO benchmark.

In summary, these works collectively illustrate the evolution of
CC algorithms. They showcase the role of the CG in addressing the
challenges of BB LSGO problems. Approaches like recursive CG,
adaptive parameter estimation and handling overlapping compo-
nents underline the versatility and effectiveness of the CC frame-
work. Therefore CC frameworks are highly desirable for optimizing
complex systems across various real-world applications.

3 METHODOLOGY
In this section, we describe our Group Contribution CC (GCCC)
framework and the Modified Recursive Differential Grouping 3
(MRDG3) algorithm.The advantage of the MRDG3 algorithm is that
it has fewer parameters than the RDG3 algorithm.The advantages of
the GCCC framework are as follows: 1) it can use any optimization
algorithm implemented in the Python programming language for
the NiaPy optimization framework, 2) it is capable of using any
CG method implemented in the Python programming language
for the NiaPy optimization framework and 3) based on previous
advantages it enables the rapid testing of new optimization and CG
algorithms within the GCCC framework.

3.1 Modified Recursive Differential Grouping 3
algorithm

The MRDG3 algorithm was implemented in the Python program-
ming language for the NiaPy optimization framework and is shown
in Algorithm 1. The MRDG3 algorithm has four input parame-
ters: 1) BB fitness function �, 2) lower bound of the search space
lb, 3) upper bound of the search space ub and 4) threshold value
n= . The function ℓ returns the number of components in a vector
or a set. MRDG3 starts by checking interactions with component
G1, recursively identifying interacting components with algorithm
Interact [8]. A threshold n= controls the group size for optimiza-
tion, which can be seen in line 6. When all interactions between
component G1 and the remaining components in set s are identi-
fied, MRDG3 continues with the first remaining component in set
s, what is seen in line 12. Finally, the MRDG3 outputs set b with
separable components and set a with non-separable component
groups, what is seen in line 16.

3.2 Group Contribution Cooperative
Co-evolution framework

As the CG method aims to decompose and divide the BB LSGO
problem into smaller subgroups for smarter optimization, this part
describes the GCCC framework. GCCC uses decomposition in-
formation for optimization algorithms a initialization, algorithms
populationX initialization, and for running a generation of an algo-
rithm. Our proposed GCCC framework’s pseudocode is shown in
Algorithm 2. GCCC was implemented in the Python programming
language for the NiaPy optimization framework.

The GCCC framework works as follows. First, groups of compo-
nents for independent optimizations are retrieved with the help of
the CG method, seen in line 1. In line 2, algorithms a and starting
populations X are initialized based on groups g. All algorithms a
initialize their initial population, which is used and updated by the

Input: �, lb, ub, n=
1 a, b, x1, s, xl,l, ~;,; ← [], [], [1], [1], lb, � (lb) ;
2 x2 ← [for 8 = 2 to ℓ(lb) do 8];
3 while s not empty do
4 s← [];
5 x∗1 ← Interact(�, lb, ub, x1, x2, xl,l, ~;,; , s);
6 if ℓ(x∗1) < n= and ℓ(x∗1) ≠ ℓ(x1) then
7 x1, x2 = x∗1, s;
8 if ℓ(s) = 0 then Append(b, x1) and break;
9 else
10 if ℓ(x∗1) = 1 then Append(a, x∗1) else Append(b, x∗1);
11 if ℓ(s) > 1 then
12 x1 ← [s[0]];
13 Delete(s, s[0]);
14 x2 ← s;
15 else if ℓ(s) = 1 then Append(a, x1) and break;

16 return a, b;

Algorithm 1: Modified Recursive Differential Group-
ing 3 (MRDG3) algorithm.

Input: �, lb, ub, n=
1 g← MRDG3(�, ub, lb, n=); // Algorithm 1

2 a, X ← [foreach 6 in g do Initialize algorithm 0 with starting
population based on group 6];

3 X∗ ← Get best individuals from initialized populations X for each
algorithm based on fitness values;

4 x∗ ← Get best individual from X∗ based on fitness values;
5 while ¬ stopping condition meet do
6 for 8 = 1 to ℓ(a) do
7 X[8], x∗l ← RunGeneration(a[8], X[8], �, ub, lb);
8 if � (x∗l) < � (X∗ [8]) then
9 X∗ [8] ← x∗l ;

10 if � (x∗l) < � (x∗) then x∗ ← x∗l ;

11 if Any group found new local best individual then
12 foreach 6 in g do x∗n [6] ← X∗ [6];
13 if � (x∗n) < � (x∗) then x∗ = x∗n;

14 return x∗, � (x∗) ;

Algorithm 2: Group Contribution Cooperative Co-
evolution (GCCC) framework.

algorithms a during the execution of one generation of the algo-
rithm. In line 3 for each initialized population local best individual
is found so that every algorithm has it’s own local best individual.
Then global best individual is found from all the local best individ-
uals. Search for global best is faster because we are using only a
small part of all individuals, which is depicted in line 4.

Our main novelty of the GCCC framework is seen when the
optimization stage begins in line 5. In line 7, we perform only
one generation of the algorithm 0. After the algorithm 0 ends a
generation, a new population for the algorithm 0 is returned with
the new local best individual x∗l . Line 10 checks if the new local
best individual is the new global best individual and updates the
global best individual if that is true. After all algorithms in a finish
their own generation, line 11 checks if the new individual has to
be constructed. If so, the new individual is composed of all local

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

36

Group Contribution Cooperative Co-Evolution Framework for CEC’2013 Large-Scale Optimization Problems

{ , , }

{ , , }x4x3x2

{ , }x5

x7 x2 x4x3

Decomposition

Separables grouping

Individuals

x = x1

{ , }x6

x6

x5

x5

{ , }x7x1

x2 x3 x4 x5 x6

x6

x7

x7x1 x2 x3 x4

x1

{ }, , , , , ,

{ { }}

Figure 1: Components grouping and individual construction
for Equation 1.

best individuals X∗ components values, which is seen in line 12.
Line 13 updates the global best individual if the composed individual
is better than the current global best individual. After the GCCC
returns to line 5 and starts the new iteration of the algorithm and
conducts previous steps until the stopping condition is not achieved.

To demonstrate how the GCCC constructs the individuals of
optimization algorithms and how it evaluates an individual, let’s
take the optimization problem formulated as:

5 (x) = G21 + (G2 − G3)2 + (G3 − G4)2 + (G5 + G6)2 + G7 . (1)

We will optimize Equation 1 as a BB problem with a lower bound
equal to −1 and an upper bound equal to 1 for all seven components.
First, the GCCC decomposes the problem into four groups and then
joins separable components into one group. So after the decompo-
sition stage, we have three groups. This is depicted in Figure 1. In
the initialization stage, three algorithms are initialized with initial
populations. Each algorithm in a initialized individuals with the
length of one individual equal to the number of components in a
group that the algorithm is going to optimize. When the algorithm
0 in a runs one generation of the optimization algorithm, fitness
function �, fills the missing components with the lower bound of
the search space. In this example, for the first algorithm, which is
optimizing group containing components G1 and G7, components
G2, G3, G4, G5 and G6 are filled with value −1. In line 12 the GCCC
constructs an individual x∗n that has all seven components filled. So
when evaluating an individual x∗n at line 13, there is no need to fill
any components.

4 EXPERIMENT
In this section, the results of the GCCC framework with two dif-
ferent optimization algorithms from the NiaPy framework are pre-
sented. Test functions were taken from the CEC’2013 LSGO bench-
mark competition [3] and are implemented in the C++ program-
ming language. Python code of the performed experiments in this
work is available via a connection1. For comparison, we used algo-
rithms PSO [1] and SCA [4], which are implemented in the NiaPy
framework. Algorithms’ parameters are presented in Table 1 and
were set based on experimental results on test functions that are
part of the NiaPy framework.

In Table 2, the obtained results of CG for each test function in
the CEC’2013 LSGO benchmark are shown. The results show that
1https://github.com/kb2623/scores23

Table 1: Algorithms’ parameters for conducted experiment.

Algorithm Parameter values

MRDG3 n= = 50
SCA np = 25, 0 = 3, Amin = 0, Amax = 2

PSO np = 25, 21 = 2, 22 = 2, F = 0.7,
Emin = −1.5, Emax = 1.5

Table 2: Results of the CG for the MRDG3 algorithm on the
CEC’2013 LSGO benchmark functions.

Number of
groups

Number of
separable components

Number of
evaluations

51 1 0 5992
52 0 1000 2998
53 2 1 5987
54 1 0 5992
55 6 800 8287
56 5 750 8569
57 1 0 5992
58 1 0 5992
59 1 0 5992
510 21 151 19357
511 1 0 5992
512 1 0 5992
513 1 0 5992
514 1 0 5992
515 1 0 5992

the number of evaluations is fairly small. MRDG3 does not need
=2 number of evaluations to decompose a BB problem, where =
represents the number of components and for the CEC’2013 LSGO
benchmark = = 1000. For fully separable functions, only 52 is 100%
correct. The result of decomposition on function 54 is missing seven
groups. MRDG3 has incorrect results on function 510 because this
function has no separable sub-components. CG results for functions
514, 513 and 512 are 100% correct, because functions have overlapping
sub-components. The result of decomposition for the function 515
is 100% correct because that function is fully non-separable.

For each function from the CEC’2013 LSGO benchmark, we per-
formed 50 runs for each algorithm. Results are shown in Table 3
where we reported three values for each benchmark function. The
top value in each cell represents the minimum, the middle value
is the median and the bottom value is the standard deviation. Un-
derlined values represent better results when comparing the basic
algorithm to its CC-based algorithm. For each of the algorithms
used with the GCCC framework, we added a sign that indicates if
the GCCC framework is better (+), similar (∼), or worse (−). This
assumption was made based on the Wilcoxon signed-rank test from
SciPy2. We used U = 0.05 for detecting statistical differences. The
only similarity we detected was between algorithm SCA and SCA-
GCCC on function 59. From the last row in Table 3, we can see that
SCA-GCCC compared to SCA is better on eleven functions, worse
on three functions, and one function had a similar result. When
comparing PSO-GCCC to PSO, we detected that PSO-GCCC was
better on twelve functions, and on three functions was worse than
PSO.

2https://scipy.org/

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

37

Klemen Berkovič, Borko Bošković, and Janez Brest

Table 3: Algorithms results for the CEC’2013 LSGO bench-
mark.

SCA SCA-GCCC PSO PSO-GCCC

51

3.2116e+11
3.5997e+11
1.7041e+10

2.0983e+11
2.0983e+11
6.1654e-05

+
2.2449e+11
2.5767e+11
1.4521e+10

1.8236e+11
2.0881e+11
4.4700e+09

+

52

1.0988e+05
1.1765e+05
4.0256e+03

4.7598e+04
4.7598e+04
7.3498e-12

+
1.8498e+04
2.0399e+04
9.9743e+02

2.0991e+04
2.4994e+04
1.7148e+03

−

53

2.1625e+01
2.1660e+01
1.0164e-02

2.1625e+01
2.1659e+01
1.0796e-02

+
2.1540e+01
2.1565e+01
1.4204e-02

2.1514e+01
2.1559e+01
1.8726e-02

+

54

6.7784e+12
3.0918e+13
9.6588e+12

1.4182e+13
3.4167e+13
1.1140e+13

−
4.5338e+12
7.5541e+12
1.2660e+12

4.1230e+12
6.9831e+12
1.6166e+12

+

55

5.4753e+07
7.0849e+07
5.2834e+06

4.8419e+07
4.8419e+07
0.0000e+00

+
5.5953e+06
8.9464e+06
1.9627e+06

5.1143e+06
8.2784e+06
1.7852e+06

+

56

1.0688e+06
1.0717e+06
1.8314e+03

1.0688e+06
1.0704e+06
6.2956e+02

+
1.0530e+06
1.0587e+06
1.8514e+03

1.0518e+06
1.0594e+06
2.4651e+03

−

57

5.3201e+14
8.3849e+15
6.1855e+15

9.9382e+14
9.9382e+14
0.0000e+00

+
1.5502e+14
4.3684e+14
2.3930e+14

1.0261e+14
3.4803e+14
1.8312e+14

+

58

9.6025e+17
1.8327e+18
5.9387e+17

9.6025e+17
1.9011e+18
5.6790e+17

−
1.5852e+17
3.6707e+17
1.0251e+17

1.0169e+17
3.0508e+17
8.8785e+16

+

59

4.0665e+09
5.7516e+09
7.2037e+08

4.0665e+09
5.6652e+09
5.1872e+08

∼
4.6629e+08
6.8898e+08
1.3255e+08

5.0571e+08
7.7170e+08
1.4362e+08

−

510

9.4583e+07
9.6401e+07
4.8204e+05

9.4583e+07
9.5732e+07
1.8366e+05

+
9.2361e+07
9.3658e+07
4.2994e+05

9.2574e+07
9.4114e+07
4.4469e+05

−

511

6.3357e+16
6.4911e+17
4.4896e+17

6.3357e+16
1.0331e+17
6.2676e+15

+
1.0835e+16
3.7431e+16
1.5817e+16

8.1720e+15
3.5241e+16
2.1938e+16

+

512

7.8795e+12
8.3439e+12
2.1357e+11

1.7039e+12
1.7039e+12
0.0000e+00

+
5.4019e+12
6.1512e+12
2.8899e+11

1.7039e+12
1.7039e+12
0.0000e+00

+

513

5.0621e+16
7.5321e+17
4.7974e+17

6.3339e+16
9.4042e+16
5.2137e+15

+
1.1161e+16
3.8680e+16
1.7411e+16

1.0884e+16
3.1150e+16
1.3835e+16

+

514

9.3147e+16
1.0716e+18
7.2936e+17

9.3147e+16
1.1121e+18
7.6183e+17

−
1.2127e+16
6.5235e+16
3.2750e+16

2.1257e+16
5.3469e+16
2.3430e+16

+

515

1.4057e+17
7.7989e+17
3.1321e+17

5.6572e+11
5.6572e+11
0.0000e+00

+
3.7352e+16
6.9690e+16
2.1668e+16

5.6572e+11
5.6572e+11
0.0000e+00

+

Overall +/∼ /−: 11/1/3 12/0/3

5 CONCLUSIONS
We tackled the BB LSGO problems with overlapping components
from the CEC’2013 LSGO benchmark suit, using a divide-and-
conquer method. We used the GCCC framework, that we imple-
mented in the Python programming language for the NiaPy opti-
mization framework. We demonstrate that the GCCC can be used
with many existing algorithms from the same optimization frame-
work. For the decomposition of overlapping problems, we used

the MRDG3 algorithm, that we implemented in the Python pro-
gramming language for the NiaPy optimization framework. To
systemically evaluate the efficacy of our CC algorithm, we used
multiple algorithms and tested them on the CEC’2013 LSGO bench-
mark which consists of fifteen test functions. Experimental results
showed that the GCCC framework facilitated problem-solving, and
outperformed its base versions of used algorithms on some of the
test functions.

For the feature work, we suggest designing more benchmark
problems with a more flexible variable interaction structure and
richer sources of overlap. Developing a CC framework that has an
option of sharing the same population between all algorithms that
are working cooperatively in solving BB LSGO problems.

ACKNOWLEDGMENTS
This work was supported by the Slovenian Research Agency (Com-
puter Systems,Methodologies, and Intelligent Services) under Grant
P2-0041.

REFERENCES
[1] J. Kennedy and R. Eberhart. 1995. Particle swarm optimization. In Proceedings of

ICNN’95 - International Conference on Neural Networks, Vol. 4. IEEE, 1942–1948
vol.4. https://doi.org/10.1109/ICNN.1995.488968

[2] Douglass B. Lee. 1994. Retrospective on Large-Scale Urban Models. Journal of
the American Planning Association 60, 1 (1994), 35–40. https://doi.org/10.1080/
01944369408975549

[3] Xiaodong Li, Ke Tang, Mohammad N Omidvar, Zhenyu Yang, Kai Qin, and
Hefei China. 2013. Benchmark functions for the CEC 2013 special session and
competition on large-scale global optimization. gene 7, 33 (2013), 8.

[4] Seyedali Mirjalili. 2016. SCA: A Sine Cosine Algorithm for solving optimization
problems. Knowledge-Based Systems 96 (2016), 120–133. https://doi.org/10.1016/
j.knosys.2015.12.022

[5] MasaharuMunetomo andDavid E. Goldberg. 1999. Linkage Identification byNon-
monotonicity Detection for Overlapping Functions. Evolutionary Computation 7,
4 (1999), 377–398. https://doi.org/10.1162/evco.1999.7.4.377

[6] Mohammad Nabi Omidvar, Xiaodong Li, Yi Mei, and Xin Yao. 2014. Coop-
erative co-evolution with differential grouping for large scale optimization.
IEEE Transactions on evolutionary computation 18, 3 (2014), 378–393. https:
//doi.org/10.1109/TEVC.2013.2281543

[7] Mitchell A Potter and Kenneth A De Jong. 1994. A cooperative coevolutionary
approach to function optimization. In International conference on parallel problem
solving from nature. Springer, 249–257. https://doi.org/10.1007/3-540-58484-
6_269

[8] Yuan Sun, Xiaodong Li, Andreas Ernst, and Mohammad Nabi Omidvar. 2019.
Decomposition for large-scale optimization problems with overlapping compo-
nents. In 2019 IEEE congress on evolutionary computation (CEC). IEEE, 326–333.
https://doi.org/10.1109/CEC.2019.8790204

[9] Masaru Tezuka, Masaharu Munetomo, and Kiyoshi Akama. 2004. Linkage Iden-
tification by Nonlinearity Check for Real-Coded Genetic Algorithms. In Genetic
and Evolutionary Computation – GECCO 2004, Kalyanmoy Deb (Ed.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 222–233. https://doi.org/10.1007/978-3-
540-24855-2_20

[10] Jerry D VanVactor. 2011. Cognizant healthcare logistics management: ensuring
resilience during crisis. International Journal of Disaster Resilience in the Built
Environment 2, 3 (2011), 245–255. https://doi.org/10.1108/17595901111167114

[11] Grega Vrbančič, Lucija Brezočnik, Uroš Mlakar, Dušan Fister, and Iztok Fister Jr.
2018. NiaPy: Python microframework for building nature-inspired algorithms.
Journal of Open Source Software 3 (2018). Issue 23. https://doi.org/10.21105/joss.
00613

[12] Tian-Li Yu, David E. Goldberg, Kumara Sastry, Claudio F. Lima, and Martin
Pelikan. 2009. Dependency Structure Matrix, Genetic Algorithms, and Effective
Recombination. Evol. Comput. 17, 4 (dec 2009), 595–626. https://doi.org/10.1162/
evco.2009.17.4.17409

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

38

Retrieving deleted records from Telegram
Žan Počkar

zp68409@student.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

Tom Sojer
ts22842@student.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

ABSTRACT
Mobile applications utilize their own mechanism of storing data on
a local mobile device. One interesting instant messaging platform
that provides a mobile client is Telegram. In this paper, we focus
on some of the research [5] done on the matter of how Telegram
encodes and stores data. We present results of a forensic analysis
made on two devices that used the application.

KEYWORDS
Mobile forensics, Telegram, SQLite, Write-Ahead log

1 INTRODUCTION
Telegram is a cloud based messaging service. It was first released
for Android in 2010 and by now works on every major operating
system. By far the most usage represents Android, as 85% of all
the users use this OS. It supports different communication options,
such as so-called normal chats, secret chats, video calling, chat
rooms, etc. Normal chats do not support end-to-end encryption,
but instead use an internal protocol MTProto that encrypts data
on Telegram’s servers. For end-to-end encryption, the secret chat
method is mostly used.

As claimed by Telegram in June of 2022, they were one of the
top 5 downloaded apps of that year with more than 700 million
monthly users. This is why research is crucially needed to catch
any potential flaw that could be exploited in a malicious manner.

In our article, the following will be presented: the background
section (2), where we will go into details of Telegram Messenger
and how the app stores data, then we will present some related
work (section 3). The follows a review of how the authors of the
discussed article prepared for the investigation (subsection 4.1) and
analysis (subsection 4.2). We will show forensic tools useful for
research (section 5) and discuss methods utilized in the reference
article (section 6).

2 BACKGROUND
2.1 Database
To understand the behavior of the app’s storage, we need to go into
details about how it handles the database. The examined application
version was 7.9.3, released in August, 2021. Telegram Messenger
client stores data with SQLite. This database’s method of storing
is using a Write-Ahead log file (WAL) with a checkpoint of 1000
pages (a database in SQLite is divided into pages, each of size at
least 512 bytes). Using the WAL file is a method of ensuring that
data doesn’t get lost. Before anything is written to a database, it
is first logged. This ensures that any transaction can be repeated

if some failure appears. The checkpoint of 1000 pages notes that
all data before it reaches that point has been written to disk. In
case of a crash, the recovery procedure would include finding the
checkpoint and recovering anything until reaching the checkpoint.
Meanwhile the main database is left intact and changed after that
point has been reached. This means that recently deleted data can
be found in the WAL file, but not in the main database file.

2.2 Telegram Data Structure
While Telegram stores some local data in clear text, such as the name
of the sender/recipient, more volatile data is stored into complex
data structures that appear in a binary serialized form. Fields in
the structure are stored as a sequence of bytes, where they appear
in specific positions. Retrieving information from such a structure
demands first to deserialize it and then decode each useful field. The
main problem is that only for a limited set of such structures, the
structure and serialization scheme is known. The exact decoding
scheme is not made public by the brand, which is why the process
of figuring out the correct structure is left to the community. The
structures are constantly redefined or removed after new features
are released, which makes it harder to maintain tools that decode
all the different variations.
Since a part of the application is open source, Anglano et al. [2]
performed a source code analysis to identify all the different data
structures used by the app as well as to reconstruct the structure
and serialization schemes. The cited article named these structures
Telegram Data Structures or TDSs. We will take a look at TDSs later
in the analysis.

3 RELATEDWORK
Although many different tools and solutions were used in this
paper, individual use cases, justifications for the choices of tools
and procedural workflows were not documented in detail. The
related work section helps to explain some of those uncertainties
as it lists works that depict guidelines, techniques, protocols, and
standardized procedures in the field of mobile forensics, records
retrieval, and data carving. They also credit works explaining (then
relevant) Telegram’s folder and database structure and the possible
forensic analysis approaches, as well as works on similar messaging
applications.

Some articles have already dealt with TDSs on other platforms.
One instance is a paper, written by Gregoio et al. [3], which deals
with and investigates the app on aWindows phone. The importance
of forensic analysis has also been introduced on other messaging
platforms such as WhatsApp [1] and WeChat [6].

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.03

39

https://doi.org/10.26493/scores23.03

Žan Počkar and Tom Sojer

As it was mentioned in the paper, with each version of Telegram
released, the structure of its database, data structures, objects and, in
general, the way data is handled and processed by the app, change
as a result of added or removed features. This means that most, if
not all, of the previously designed protocols and tools will have
reduced success rates of analyzing the data. There has however
been some previous research on the SQLite structures for data
carving [4].

Despite the app’s rapidly changing internal structure, older tools,
documentation and works remain relevant due to the cross valida-
tion of the results which has proven itself to be essential. Using a
plethora of tools and various versions of the same tools could yield
significantly better results.

4 METHODOLOGY
4.1 Preparation and collection
To prepare for an examination and analysis and get a sense of
how deleted records are handled by the application using different
forensic tools, an investigative environment was first established.
Two Android phones were examined: an LG G6 with Android 9
and Samsung A50 with Android 11. Both phones had a SIM card
activated and Telegram Messenger client installed. Root access was
gained on both devices in order to collect data used by the app. All
data on the two phones that was unrelated to the observed app was
deleted. This allowed the researchers to focus on relevant data only.

After finishing with the experimental setup, messages were ex-
changed between the clients. The preparation for the analysis in-
cluded the exchange of media files, such as images and videos. All
of the media were later deleted both from the app and the trash bin
folder. In total, around 2200 messages were exchanged during this
process [5].

The research focused on retrieving data in different scenarios.
Criteria included (1) elapsed time since the device had been acquired,
(2) whether the device is powered on, off or in airplane mode and
the state of the application (3), i.e. if messages are created or deleted.
As many different conditions were tested, several images of the
devices were produced. For instance, in one of the images acquired,
the phone was powered off and the researchers gained data from
that state. By comparing different criteria, some potential real world
scenarios were simulated.

4.2 Examination and analysis
As part of the forensic analysis, some open source and commercial
forensic tools were used. This includes software for SQLite analysis
and image acquisition software. We will discuss other tools later in
the article.

There are a few forensically relevant data sources on the device.
Firstly, the main local database, named cache4.db. In one of the
scenarios, the size of cache4.db was 1336 kB, while the related WAL
file had the size of 4475 kB. This is a consequence of using the
Write-Ahead log. The local database included 52 tables, containing
user data, messages, contacts and phone numbers. There is also
a user configuration file that stores details of the account on the
device, profile photos of user’s contacts and also copies of files
the user interacted with. The latter is stored in the media folder.
From the normal chat messages table, several table entries could

be read in clear text, such as the name of sender/receiver, date
sent, the message status and direction. Info and body entries of this
table were in the form of the Telegram Data Structure, which as
previously defined, is in a binary form. Using forensic tools, some
data was queried and the initial conclusions were:

• The same message may appear in the WAL file several
times.

• The Auto-delete feature of Telegram, that removes mes-
sages after a certain period, did not affect the ability to
recover messages.

• The body of messages is in a TDS form and not easily in-
terpreted.

Experiments concluded that while different states of the device
result in the cache4.db and WAL file changes, they do not alter
the data inside of the messages table. For instance, when a phone
has a network connection, both files might be altered after a short
amount of time. They will remain in the same state if a phone is
in airplane mode or the SIM card is removed. While cache4.db and
the WAL file change very frequently, the messages tables inside
doesn’t. The researchers then observed events when the messages
table was modified, and this happened when:

• a message was created, even if not successfully sent
• a message was received
• a message was opened
• a message was deleted

Hex editor was used to retrieve information. Now let’s describe
some other observations. Firstly, there was more storage needed to
record an event when an outgoing message appeared compared to
an incoming message.
Secondly, the main database file does not have the auto vacuum
feature enabled which keeps the file size at the minimum. This po-
tentially means that some of the deleted records might be retrieved.
This was tested by the examiners on both devices. They deleted
hundreds of records and attempted to recover them. Immediately
after deletion, most of the messages were recoverable, but after new
messages were created, all the deleted messages were not recover-
able anymore. This was verified in the database file and the WAL
file using a hex editor. Records are also not recoverable after the
user has logged out.
Here, we can also make an observation with the WAL file. Since
the file makes a commit to the database after a 1000 pages have
been reached, a lot of data can be restored for a while if the commit
doesn’t occur for a longer period of time. In this sense, deleted
records may be retrievable for a while, but here an element of luck
is involved.
After deletion of media files that were used in any message ex-
change, some artifacts were still available on both the devices. This
was observed by first deleting pictures and by comparing their
artifacts with the records in cache4.db.

Lastly, we can ask ourselves and observe when records are not
available anymore. This is the case on two occasions:

• when a user logs out and the database is deleted
• when the local database is deleted in the settings menu

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

40

Retrieving deleted records from Telegram

5 TOOLS
Tools used for this research can be split into forensic and non-
forensic tools. Non-forensic tools were used mainly for preparing
thewhite box environment for the experiment, screen capturing and
monitoring purposes. On the other hand, forensic tools were used
mainly for extraction and analysis of both devices and Telegram
app data.

5.1 Non-forensic tools
Among the non-forensic tools used for setting up the devicesMagisk
Manager was used for rooting and Team Win Recovery Project -
TWRP for creating a custom recovery menu. In addition to the third-
party solutions, an inbuilt android feature was used for creating
additional user on each of the two devices. Dual apps or Dual
messenger are features of contemporary Android devices which
enable creating a virtual copy of an app that can then be used with a
separate account as an independent user with their own file system,
databases and permissions.

5.2 Forensic tools
A total of 26 tools were used, of which 13 were commercial use
tools, 9 either open source or free and 4 were commercial tools with
some form of a free version. As it was previously mentioned, the
version of the tool used often significantly impacted the quality of
the obtained results. Which is why in addition to exploring different
software solutions, a combined use of multiple versions of the same
tools was utilized.

All of the tools used were categorized according to their use case
into forensic analysis, SQLite analysis and image acquisition tools.
But not all tools were equally successful. Due to the rapid changes
to the Telegram Data Structure, most tools were not up to date with
the latest changes and could not decode any data. Some tools were
successful, but not in all cases, some could successfully decode only
the normal chat messages while some worked only with the secret
messages. As the changes in the TDS are unlikely to backtrack,
newer versions of forensic tools had higher success rates as they
were more compatible with the latest TDS encoding. Examples of
the above mentioned cases are Cellebrite UFED Physical Analyzer
7.50, Oxygen Forensics 14.1, and AXIOM v5.7 and v6.0.

Cellebrite UFED Physical Analyzer is a commercial tool used
for uncovering digital evidence, trace events, and examine digital
data. It allows for import and decoding of a specific application
through its selective decoding, and it speeds up many aspects of
the investigation including automatized report generation. Despite
all the quality of life features, in this case, it was able to decode
only normal messages.

Oxygen Forensics tools used in this research are marketed as all-
in-one solutions for extraction, decoding, and analysis of both data
and artifacts for both computer and mobile forensic investigations.
Although convenient, these tools were able to decode only the
secret messages.

When it came to AXIOM, built for remote acquisitions, collection
and evidence analysis from different sources including mobile de-
vices, the older version could not decode any data while the newer
could decode only normal messages.

On the other hand, tools on which the researchers had relied the
most were SQLite Analysis tools. Especially tools for inspecting,
querying, carving and parsing the database. Although these tools
also followed the trend of newer versions yielding better results.

6 DISCUSSION
This attempt to retrieve the telegram data can’t be considered as
nothing but a proof of concept and even that done in extreme
laboratory conditions.While the article uses some novel approaches
to retrieve stored data and does achieve some success. We must
raise some questions about the methodology and the fine result of
retrieving the data. We can generally split our questions into two
categories. The first categories deal with the methodology of the
used device and acquired data. The second category deals with the
final results and readability of said data.

We first must raise questions about the devices used. The team
decided to use two completely wiped devices on which the first
installed a custom recovery menu and gained root access. Secondly,
they installed the same version of the telegram app, a version which
is now discontinued. Lastly, while the team did simulate conversa-
tion with the telegram app no other application was running on
the devices prior, during or after communications.

It is true that the article itself freely admits that the device setup
wasn’t forensically sound but more of a whitebox proof of concept.
And yet even after this question arise if the test wasn’t done in too
many perfect conditions and if such results even carry any weight
in real world practice.

Let’s begin with the devices themselves. The rationale for not
using other applications to reduce during the test is sound but in
our opinion flawed. Multiple times the data was retrieved only
because the team was able to identify changes after the messages
were exchanged, in addition the article states that the data is in
certain instances volatile and can be lost if the changes occur on the
operating device. It is true the team did test three different changes
such as turning the device on and off that did not change the data.
But the same test did show that actions inside the applications
lead to such change. The question arises if the running of similar
applications at the same time could lead to trigger such changes.
In this vein of questioning is the decision to use just a limited
amount of accounts while we understand that because of limited
time and money for any such research smaller sample sizes must be
used. During the research, the team has shown that a message from
any source using the telegram application will modify the already
stored data. That means that an average user’s message would be
much harder to retrieve especially if the user is an active user of
the application.

While the usage of the same version of the application is ideal,
this is a likely event for users which use the application regularly
so we don’t see much problem with this approach even if it is a
little idealistic. Another problem with the usage of this version of
application is the fast change rate for the application. As many
application telegram changes quickly and frequently this means
that approaches that work on one version may not work on newer
versions.

And lastly gaining root access in advance and installing custom
recovery software before installing the telegram application is a

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

41

Žan Počkar and Tom Sojer

problem in the methodology. As we can’t be sure how gaining root
access or installing the recovery menu, could change the data we
are trying to access but this could be mitigated through a usage
of multiple copies used in any forensic investigation even if it is
extremely time consuming.

Gaining root access may also raise extra problems regarding
who and why it is being done. Gaining access during a lawful police
investigation with proper warrants is no concern, but gaining root
access by a private individual for other purposes may be illegal and
subject to punitive actions from local authorities.Meaning that any
method that requires such access can’t always be used reliably in
all circumstances.

The other major category of the question raised is pertaining
to the results themselves. They have had moderate success in re-
trieving different data from the telegram application, they freely
admit that they have much greater success with text messages in
comparison to the pictures. But the thing one must question is if the
success from retrieving text data shouldn’t be classified more as a
partial or limited success. The problem which is already mentioned
in the articles is the format of encoding used in telegram text data.
While the team was on multiple occasions able to retrieve the raw
data they couldn’t read large or even in some cases whole portions
of retrieved data as data was parsed inside the TDSs structure. One
must then ask themselves if retrieved data that can’t be decoded in
reasonable timeframes can’t even be considered retrieved or must
it at most be just used as proof of communication between par-
ties. The whole question of usability of the retrieved data does not
only rests with the team conducting the research as the research
has shown that most modern and available current forensic tools
aren’t capable of decrypting the data. In the future, if better tools
for decrypting the retrieved data are developed, such a method for
retrieval may be used for more than just proof of communication.

7 CONCLUSION
We find that the article has a straight forward goal, clear methodol-
ogy and a concise plan for proving its findings. In the article, the
team thoroughly presents the Telegram applications, the methodol-
ogy they used, their process and their results.

Conclusions regarding volatility of cache4.db database and the
Write-Ahead log file alongwith the data collected from other articles
on Telegram could be used in further investigations. In conclusion,
we believe this article is an important first step at looking into
retrieving the deleted records from the Telegram Messenger client.
Further analysis would be needed in regards to discovering possible
vulnerabilities of the application as too many tradeoffs and ideal
conditions were used in the primary research for this article.

REFERENCES
[1] Cosimo Anglano. 2014. Forensic analysis of

WhatsApp Messenger on Android smartphones.
https://www.sciencedirect.com/science/article/pii/S1742287614000437. Digital
Investigation 11, 3 (2014), 201–213. Special Issue: Embedded Forensics.

[2] Cosimo Anglano, Massimo Canonico, and Marco Guazzone. 2017.
Forensic analysis of Telegram Messenger on Android smartphones.
https://www.sciencedirect.com/science/article/pii/S1742287617301767. Digital
Investigation 23 (2017), 31–49.

[3] J. Gregorio, A. Gardel, and B. Alarcos. 2017. Foren-
sic analysis of Telegram Messenger for Windows Phone.
https://www.sciencedirect.com/science/article/pii/S1742287617301032. Digital

Investigation 22 (2017), 88–106.
[4] Dirk Pawlaszczyk and Christian Hummert. 2021. Making the Invisi-

ble Visible – Techniques for Recovering Deleted SQLite Data Records.
https://conceptechint.net/index.php/CFATI/article/view/17. International JOUR-
NAL of Cyber Forensics and Advanced Threat Investigations 1, 1-3 (2021).

[5] Alexandros Vasilaras, Donatos Dosis, Michael Kotsis, and Panagi-
otis Rizomiliotis. 2022. Retrieving deleted records from Telegram.
https://www.sciencedirect.com/science/article/pii/S2666281722001287. Forensic
Science International: Digital Investigation 43 (2022), 301447.

[6] Songyang Wu, Yong Zhang, Xupeng Wang, Xiong Xiong, and Lin
Du. 2017. Forensic analysis of WeChat on Android smartphones.
https://www.sciencedirect.com/science/article/pii/S1742287616301220. Digital
Investigation 21 (2017), 3–10.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

42

Slovenian command word speech recognition using
transfer learning

Blaž Kovačič
blaz.kovacic@student.um.si

Faculty of Electrical
Engineering and Computer Science,

University of Maribor
Koroška cesta 46

SI-2000 Maribor, Slovenia

Borko Bošković
borko.boskovic@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
In this work, we present a speech recognition system using con-
volutional neural networks that are able to differentiate between
four different Slovenian command words: naprej, nazaj, levo, desno.
In neural network training, we intentionally limited ourselves to
only 20 audio recordings per command word from a single speaker.
We used transfer learning in conjunction with audio augmentation
on a pre-trained model that we previously trained on 10 differ-
ent English words with a total of about 25000 recordings from
the Google Speech Commands Dataset v0.01. Using the transfer
learning approach, we achieved highly accurate results on the test
set with an accuracy of 0.988. Additionally, we demonstrate the
soundness of our approach by comparing the results with those
obtained when training an empty model from scratch, observing a
substantial difference in results.

KEYWORDS
Speech recognition, transfer learning, human-computer interaction

1 INTRODUCTION
Speech recognition is an important interdisciplinary field that is
present at every step of our everyday lives. It is used in home au-
tomatization with virtual assistants, in the transcription of medical
documentation, in smart telephone answering machines, in the
automatic generation of subtitles for deaf and hard of hearing, and
in the speech controlled assistive technologies for disabled people.

Speech recognition technology goes back to the 50s of the pre-
vious century [5] when Bell Laboratories developed a system that
was able to recognize spoken digits for a single speaker. We can
generally differentiate between continuous speech recognition and
isolated-word speech recognition, where the latter task is concerned
with the recognition of a single word at a time. Today the technol-
ogy in use for continuous speech recognition is mostly based on
deep neural networks, convolutional neural networks (CNNs), and
statistical models such as the Hidden Markov Model [1].

In our work, we focus on isolated-word speech recognition using
CNNs, which means we recognize a single word in isolation. When
building customized speech-controlled systems, such as an assis-
tive technology solution for a specific person with special needs,
we may be faced with limited availability of training data for our
speech recognition system. This is especially true for the Slove-
nian language, where, to the best of our knowledge, doesn’t exist
a large database containing recordings of short command words.
We address this issue in our work, by limiting ourselves to only

20 recordings per command word from a single speaker, and then
use transfer learning and data augmentation techniques to develop
a highly accurate speaker-dependent Slovenian command word
speech recognition system.

The first step we take to develop such a system is to build a
base model using large amounts of one-second-long recordings
(about a total of 25000 recordings) using the Speech Commands
Dataset v0.01 by Google [7]. We then use the technique of transfer
learning on this model, by freezing all neural network layers except
for the layers in last 5 blocks (corresponding to 14 out of a total
of 27 layers) and then training those top layers using the limited
data that we have. We demonstrate that using such an approach
yields very favorable results and allows the model to generalize
much better to the test data.

2 RELATEDWORK
In the related work [6] on which we build upon and extend it us-
ing the idea of transfer learning, the authors used a deep learning
approach for isolated-word speech recognition using CNNs. The
authors recognized 10 different keywords such as “left”, “right”,
“on”, “off”. They compared different approaches of neural network
training: In the first approach they used raw audio data in con-
junction with 1D CNN, whereas in the other two approaches they
used Mel-spectrograms and Mel-frequency cepstral coefficients
(MFCCs) as features that were input into a 2D CNN, where the
latter approach yielded the best results (accuracy of 0.9619).

In [2], the authors used transfer learning for an automated speech
recognition task, adapting aWav2Letter CNN. They used an English
base model to train a German model that outperformed the German
baseline model trained from scratch. This can be especially helpful
when limited amounts of training data and limited GPU memory
are available; in addition, the training time is significantly reduced,
and the final model accuracy is much higher.

In [3] the authors worked on a problem of keyword detection
(similar to “Ok Google” detection in Google Assistant) where they
compared three approaches: neural network with one hidden layer
(a so-called “vanilla” neural network), a deep neural network with
three hidden layers, and a CNN. The first approach is very fast,
but such oversimplified network architecture did not yield optimal
results; using the second approach the authors obtained an accuracy
of 0.719, whereas using CNN yielded an accuracy of 0.945.

In [4] the authors worked on a task of large-vocabulary continu-
ous speech recognition. Using raw audio signals, the authors trained
a CNN to extract features (using convolutional filters) of basic word

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.04

43

https://doi.org/10.26493/scores23.04

Blaž Kovačič and Borko Bošković

units - phonemes. They relayed the output of the CNN to the next
part of the neural network containing linear units that returned
conditional probabilities of phonemes for each frame of speech
recording. The authors then decoded this sequence of phonemes
using a hidden Markov model into final words.

3 EXPERIMENTAL SETUP
3.1 Environment
We performed the experiment on Windows 11 using the GeForce
RTX 3070 GPU with 8GB VRAM and central processing unit AMD
Ryzen 7 5800H, 3.20GHz. We installed the TensorFlow 2.10 package
for Python and executed code on WSL2 Ubuntu (Windows Subsys-
tem for Linux). We used librosa library to obtain MFCC features,
and audiomentations library for audio data augmentation.

3.2 Base model design
In the first part of the experiment, we build upon the work of
Soliman, et. al. [6]. We use the Speech Commands Dataset v0.01
which contains one-second-long recordings of short English words
such as “Happy” or “Marvin”. For each word class there are a total
of about 2500 recordings from various speakers. Just as authors
in [6], we limit ourselves to the following 10 word classes: “yes”
(2377), “no” (2375), “up” (2375), “down” (2359), “left” (2353), “right”
(2367), “on” (2367), “off” (2357), “go” (2372) and “stop” (2380). In
addition to these classes, we include the class for “Silence” (6 × 60𝑠
split into 360 one-second-long recordings) and “Other”. The class
“Silence” includes recordings of environmental noise, whereas the
class “Other” contains 1000 one-second-long recordings of words
from 10 classes other than those we trained it upon, such as “Happy”
or “nine”; we used 100 recordings for each of 10 out-of-vocabulary
classes. In the implementation, we use the 2D CNN architecture
from [6] which is shown in Table 1. We sample the audio using
a 16 kHz sampling frequency. We first put each audio recording
through a pre-processing phase where we use a pre-emphasis high-
pass filter to put more emphasis on higher frequencies of the audio,
after which we z-normalize the audio by subtracting the mean
and dividing each audio sample by the standard deviation. We
then proceed with feature extraction where we use Mel-frequency
cepstral coefficients (MFCCs) as features. For each time window,
we extract 40 MFCC coefficients from the audio, using a window
length of 25 ms and a hop length of 10 ms. The resulting CNN input
shape is (40, 101, 1). We split data into training, validation and test
sets using the ratios of 70:10:20. The neural network was trained in
200 epochs with a batch size of 64.

3.3 Transfer learning approach
We recorded and classified one-second-long audio recordings into
five classes that correspond to command words spoken in Slovenian
language, namely: “naprej” (forward), “nazaj” (backward), “levo”
(left), “desno” (right), and Silence class. The Silence class is composed
of one-second-long recordings of environmental noise.

By design, we limited our training and validation data to 20
unique recordings per class, recorded with a smartphone for a sin-
gle speaker. Additionally, we expanded the training and validation
data (but not the test data) using audio augmentation technique,
generating 100 additional recordings for each class. We used the

Block Layer Type Units Kernel Size
1 Conv2D, BN, DO 32 (3, 3)
2 Conv2D, BN, MP, DO 32 (3, 3)
3 Conv2D, BN, DO 64 (3, 3)
4 Conv2D, BN, DO 64 (3, 3)
5 Conv2D, BN, MP, DO 64 (3, 3)
6 Conv2D, BN, DO 128 (3, 3)
7 Conv2D, BN, MP, DO 128 (3, 3)

8 Flatten - -
Dense 1000 -

9 Dense L2 (Softmax) -
Table 1: Base model CNN architecture based on [6], where
Conv2D corresponds to 2D convolutional layer, BN is Batch
Normalization layer, MP is the Max Pooling 2D layer, and
DO is 0.5 Dropout layer

audiomentations Python library to augment the recordings, vary-
ing the pitch by −2 to +2 semitones with a probability of 0.5, time
stretching the audio by a rate between 0.8 and 1.25 with a probabil-
ity of 0.5, and shifting the audio recordings by a fraction between
−0.3 and 0.3 with a probability of 0.5. We split the resulting 120
recordings per class in ratio 85:15 among training and validation
sets (giving us 102 samples/class in the training set, and 18 sam-
ples/class in the validation set).

The test data was recorded by the same speaker, but from a laptop
microphone and at a different distance. In addition, the test data
contains unique (not augmented) recordings, namely 100 unique
recordings per class, each containing a range of natural variations
in pitch and speed of pronunciation, which was done to obtain a
sure estimate of model accuracy.

We then used the pre-trained base model and replaced the last
softmax layer with a new one (for our 4+1 classes), and froze all
layers in blocks 1-4 (see Table 1), training only layers from last 5
blocks (layers fromConv2D 64 toDense 5 Softmax).We decided upon
training exactly 5 blocks empirically, as much fewer or much more
than that had a negative affect on accuracy. In our experimental
results, we demonstrate the significant difference that this approach
makes in comparison to training all layers of a pre-trained model,
as well as in comparison to model training from scratch.

For training, we used the Adam optimizer with a learning rate
of 1e-3, batch size of 64, an early stopping callback with patience
of 10, that monitors validation loss and prevents overfitting.

4 EXPERIMENTAL RESULTS
4.1 Base model
Training the base model persisted until the 105-th epoch, when it
was interrupted by an early stopping mechanism, resulting in a
training accuracy of 0.973, validation accuracy of 0.950, and a test
accuracy of 0.954. The average class F1 measure on the test set was
0.956. Model accuracy with respect to the epoch number is given
in Figure 1, and the confusion matrix is shown in Figure 2.

The obtained results are very much in line with those of the
reference paper [6], and serve as a good basis on which to build
upon using transfer learning.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

44

Slovenian command word speech recognition using transfer learning

Figure 1: Base model train and validation accuracy with re-
spect to the epoch number for 2D CNN using MFCC features.

Figure 2: Base model confusion matrix for 2D CNN using
MFCC features.

4.2 Transfer learning approach
We demonstrate the soundness of our approach by first display-
ing results of transfer learning when freezing all layers except for
those in the last 5 blocks of the pre-trained base model, and then
comparing that with the results obtained by training all layers of
the pre-trained base model, which results in a worse model that ex-
hibits lower accuracy on the test data. Finally, we demonstrate the
unfeasibility of the approach where the model is trained without
transfer learning using uninitialized weights, showing a substantial
difference in accuracy.

4.2.1 Results when training last 5 blocks of the pre-trained model.
The pre-trained base model was used and all layers except for those
in last 5 blocks were frozen. The training was early-stopped after
99 epochs and lasted less than a minute. Training and validation
accuracy of 1.00 were obtained, with a test accuracy of 0.988. The
average class F1 score on the test set was 0.988. Model accuracy
with respect to the epoch number is shown in Figure 3, and the
confusion matrix is shown in Figure 4.

Figure 3: Transfer learning model (trained on layers from
last 5 blocks) train and validation accuracy with respect to
the epoch number for 2D CNN using MFCC features.

Figure 4: Transfer learning model (trained on layers from
last 5 blocks) confusion matrix.

4.2.2 Results when training all layers of a pre-trained model. The
pre-trained base model was used and all layers were trained. The
training was early-stopped after 125 epochs. The obtained test ac-
curacy of 0.930 was lower than when using the previous approach.
The average class F1 score on the test set was 0.928. The confu-
sion matrix for this setting is shown in Figure 5, demonstrating a
somewhat degraded accuracy when compared to the model that
was trained only on layers from the last 5 blocks.

4.2.3 Results without transfer learning. The original model archi-
tecture was used and all layers were trained from scratch. It was
observed from high variations in validation accuracy with respect
to the epoch number, that overfitting occurred, and that the model
didn’t generalize to the test data, which was observed from train
accuracy being 0.9, validation accuracy of 0.92, and a test accuracy
of 0.418, with an average F1 score on test set being 0.352. The large
difference between the test and validation accuracy is most likely
due to the fact that the test set was generated in a different way
than the train and validation sets, and was thus more challenging.

To further test the feasibility of training from scratch with such a
small dataset, we decided to implement a much smaller model with

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

45

Blaž Kovačič and Borko Bošković

Figure 5: Transfer learning model (trained on all layers) con-
fusion matrix.

the architecture consisting of Conv2D layer with 32 units, followed
by MaxPolling2D layer and by Conv2D with 64 units, followed by
MaxPooling2D layer, and then by Flattening and Dense 64 layer,
and finally a Softmax layer with 5 units. The model was trained
for 106 epochs; from the learning curve it was observed that model
validation accuracy converged quickly and without large variations.
Training accuracy and validation accuracy were both 1.0, whereas
test accuracy was merely 0.695, and the average F1 score of 0.696
on the test set. Even though the validation accuracy was very high,
the model wasn’t able to predict the test data very well.

5 DISCUSSION
In summary, we can see that it is possible to make use of transfer
learning in combination with audio data augmentation to train a
convolutional neural network with very small amounts of training
data, yielding a useful model that can be utilized in a command
word speech recognition system with favorable accuracy.

We could see that by freezing an optimal amount of bottom CNN
layers, which contain filters that detect less complex features than
top layers, we can fine tune the base model and improve accuracy.

The approach, however, is not without limitations. One limi-
tation that we observed was that the choice of command words
that we decided to recognize could influence the system’s ability
to differentiate between them. Additionally, it was observed that
the neural network seems to overgeneralize, assigning overly con-
fident classification probability scores to erroneous classes when
presented with “out-of-vocabulary” words, although this was ob-
served to occur with the base model as well. This leaves room for
further research into methods of out-of-vocabulary word detection
when utilizing CNNs for spoken word command recognition.

6 CONCLUSION
We presented a speaker-dependent speech recognition system that
is successfully able to differentiate between four different Slovenian
command words (including a class for silence), trained on very
limited amounts of training data, namely 20 recordings per word
class. We achieved a high recognition accuracy of 0.988 by making

use of the transfer learning approach, in combination with the
audio data augmentation technique.

First we augmented the 20 recordings in each class by additional
100 recordings, by synthetically varying the pitch, time stretch-
ing and time shifting the audio recordings, giving a total of 120
recordings for each class in the training and validation sets. For
training, wemade use of a pre-trained convolutional neural network
model which we previously trained on large amounts of recordings
of 10 different word classes from the Google Speech Commands
Dataset, using MFCCs as features. Obtained model accuracy was
0.954, which was very much in line with results of the reference
paper [6]. We then used this model by training only the layers from
its last 5 blocks (14 layers out of a total of 27 layers). To obtain a
realistic classification accuracy score, we built a separate test set,
using a different microphone and a different recording distance
than in recordings utilized for the training and validation sets. This
test set consisted of 100 unique recordings for each class, from a
single speaker, and was not augmented.

We demonstrated that freezing the optimal amount of bottom
layers yields better training results (accuracy of 0.988) than when
training all layers of a pre-trained model (accuracy of 0.930). We
have also shown that when using our small dataset, model train-
ing without transfer learning yielded much lower test accuracy
scores, namely, 0.418 and 0.695 for the larger and smaller models,
respectively.

We can conclude that by making use of the transfer learning in
combination with data augmentation, we can compensate for small
amounts of training data, allowing us to build a potentially useful
system that can respond to the Slovenian spoken word commands
from a single speaker. In future work we would like to research
and compare methods that would allow for accurate detection of
“out-of-vocabulary” words, such as the use of Mahalanobis distance
or Bayesian neural networks. Additionally, we would like to re-
search the model prediction accuracy and the optimal amount of
recordings that would be required under the condition that same
commands are spoken by different speakers.

REFERENCES
[1] Geoffrey Hinton, Li Deng, Dong Yu, George E. Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Tara N.
Sainath, and Brian Kingsbury. 2012. Deep Neural Networks for Acoustic Modeling
in Speech Recognition: The Shared Views of Four Research Groups. IEEE Signal
Processing Magazine 29, 6 (2012), 82–97. https://doi.org/10.1109/MSP.2012.2205597

[2] Julius Kunze, Louis Kirsch, Ilia Kurenkov, Andreas Krug, Jens Johannsmeier, and
Sebastian Stober. 2017. Transfer learning for speech recognition on a budget.
arXiv preprint arXiv:1706.00290 (2017).

[3] Xuejiao Li and Zixuan Zhou. 2017. Speech command recognition with convolu-
tional neural network. CS229 Stanford education (2017), 31.

[4] Dimitri Palaz, Mathew Magimai.-Doss, and Ronan Collobert. 2015. Convolutional
Neural Networks-based continuous speech recognition using raw speech signal.
In 2015 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). 4295–4299. https://doi.org/10.1109/ICASSP.2015.7178781

[5] Melanie Pinola. 2011. Speech Recognition Through the Decades: How We Ended
Up With Siri. https://www.pcworld.com/article/477914/speech_recognition_
through_the_decades_how_we_ended_up_with_siri.html Accessed on 2023-03-
19.

[6] Aljenan Soliman, Salah Mohamed, and Iman Abuelmaaly Abdelrahman. 2021.
Isolated Word Speech Recognition Using Convolutional Neural Network. In 2020
International Conference on Computer, Control, Electrical, and Electronics Engineer-
ing (ICCCEEE). 1–6. https://doi.org/10.1109/ICCCEEE49695.2021.9429684

[7] Pete Warden. 2018. Speech Commands: A Dataset for Limited-Vocabulary Speech
Recognition. CoRR abs/1804.03209 (2018). arXiv:1804.03209 http://arxiv.org/abs/
1804.03209

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

46

Identifying communities and ranking the drivers’ performance in
Formula One

Matej Horvat
mh3418@student.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

Lan Sovinc
ls7312@student.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

Domen Grzin
dg6781@student.uni-lj.si
Faculty of Computer and
Information Science,

University of Ljubljana
Večna pot 113

SI-1000 Ljubljana, Slovenia

ABSTRACT
This paper explores an approach for ranking the performance of
Formula One drivers across different eras using network analysis
methods, namely PageRank combined with community detection
algorithms. Typically, attempts to rank driver performance have
been limited, focusing solely on the evolution of technology and
rules in the sport, and attempting to find the best individual dri-
ver, ignoring the fact that numerous good drivers never competed
directly. To address these challenges, we collected data from all
Formula One races since its inception in 1950 through 2022 and
used network analysis to create communities of drivers based on
their direct competition with each other. Within these communi-
ties, we then applied the PageRank algorithm to rank the drivers.
Our approach has been shown to produce more meaningful and
relevant driver rankings compared to the full graph PageRank re-
sults, and effectively recognises the dominance of drivers in their
respective eras. Our methodology provides the basis for more so-
phisticated performance comparisons in sports with long histories
and changing conditions.

KEYWORDS
Network Analysis, Formula One, Community Detection, Perfor-
mance Comparison, PageRank, Leiden Algorithm

1 INTRODUCTION
The FIA Formula One World Championship was introduced in 1950.
The word "Formula" in the name refers to the set of rules laid down
by the FIA (Fédération Internationale de l’Automobile), to which
all cars must conform. Over the years, the championship has been
subject to numerous changes in order to keep it at the cutting edge
of technology, maintain popularity and spectator numbers, and
remain relevant in the world of motorsport.

Technology, engineering and rule changes play a very important
role in the sport, but it is often said that the driver makes the biggest
difference in the final performance of a constructor. Fans of the
sport often compare their favourite drivers to others and try to
make them seem better than others, or even hail them as the best
ever. Since the beginning of the championship, there have been
more than 800 drivers. We believe that the talent and performance
of different drivers over the years cannot be objectively compared.
Their results can only be compared with the results of those who
have raced alongside them. There are some eras in the sport that are
not formally defined, which refer to certain technological changes

or changes in the rules of the sport. The results of the most suc-
cessful drivers can often be linked to these eras, but the results still
depend too much on the work of engineers and race car designers,
rather than on the performance of the individual driver. To solve
this problem, we used the principles of network analysis to find an
objective way to classify the performance of drivers using the help
of Leiden algorithm and node importance classification algorithm.

2 RELATEDWORK
Network analytic methods have become a valuable tool in sports
research [12]. Their use spans several areas of sports research; in
sports management, they can be used to study the relationships
between teams and their sponsors [5]. They can help understand
the success and performance of teams in competitions [9] or social
structures of sports organisations, e.g., what characteristics cause a
tennis match to be abandoned [2].

One of the most important methods in network analytics are
centrality measures. They provide quantitative metrics for assessing
the importance and centrality of nodes in a network. In a network of
passes between members of a basketball team, centrality measures
rank players according to their importance to the team [6]. We
focused our research on PageRank [3]. PageRank was originally
developed by Google to rank web pages. It focuses on the idea
that important nodes in a network are mainly connected to other
important nodes. This is achieved by counting the number and
quality of edges of a node, which estimates the importance of the
node. Another important method of network analysis is community
detection. With these methods, the network is divided into multiple
node communities based on criteria such as similarity measures,
modularity, or optimization algorithms. In a network of basketball
players, players can be grouped based on their performance [4].
Discovering the optimal communities in a network (modularity
optimization) is a well-known NP-hard problem [1], so when we
talk about community discovery algorithms, we talk about heuristic
algorithms. As such, they differ in their speed and correctness of
detected communities [8].We decided to use the Leidenmodularity
optimization algorithm since it gives excellent results and computes
them quickly [11].

In recent years, the use of modularity to improve the results of
centrality measures has received some attention [7]. Since most
real-world networks are modular, this logically leads to better re-
sults. There is much work demonstrating the usefulness of such
centrality measures, including in social networks, e.g., for identify-
ing influential spreaders during an epidemic.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.08

47

https://doi.org/10.26493/scores23.08

Matej Horvat, Lan Sovinc, and Domen Grzin

3 RESULTS
3.1 Graph without communities

Table 1: Top drivers by Pagerank

Driver Active years Titles won Wins Podiums

Juan Fangio 1950 − 1958 5 24 35
Graham Hill 1958 − 1975 2 14 36
Jack Brabham 1955 − 1970 3 14 31
Stirling Moss 1951 − 1961 0 16 24
Bruce McLaren 1958 − 1970 0 4 27
Lewis Hamilton 2007− 7 103 192
Alberto Ascari 1950 − 1955 2 13 17
Nino Farina 1950 − 1956 1 5 20
Alain Prost 1980 − 1993 4 51 106
Niki Lauda 1971 − 1985 3 25 54

Looking at the results of running the PageRank algorithm on the
graph without communities, we see some very high-performing
drivers in the table 1. 8 of the top 10 nodes represent drivers who
have won at least one drivers’ championship title in their time
on the circuit. We can quickly see that many very good drivers
are missing from the list (the most prominent example being the
legendary Michael Schumacher). The second obvious problem is
that we are comparing drivers who raced in completely different
eras of the sport. The list includes some of the earliest winners, like
Juan Fangio, and some of the most recent, like Lewis Hamilton. The
amount of information we can extract from this list is relatively
small and is the reason we prefer to analyse PageRank results for
each of the communities we detected.

3.2 Detected communities
The Leiden community detection algorithm has identified 6 commu-
nities of drivers that have raced with each other the most. Applying
the PageRank algorithm to each community yields promising re-
sults compared to the data without communities. Results of the
PageRank algorithm and detected communities are shown on figure
1.

3.2.1 Community 1. The first community identified contains the
drivers who raced from the beginning of Formula One in the 1950s
to the 1970s. Of the first 10 top drivers by PageRank, 6 out of 10
drivers became drivers’ world champions at least once.

The top 3 drivers from this community were:
• JuanManuel Fangio: The driver dominated in the early days

of Formula One, winning the drivers’ championship five
times in the 1950s. His record remained undefeated until
2003, when Michael Schumacher became world champion
for the sixth time.

• Jack Brabham: Three-time world champion in the late 1950s
and 1960s who was also knighted for his racing successes.

• Graham Hill: Two-time world champion in the 1960s and
the only driver to win the Triple Crown of Motorsport (the
24 Hours of Le Mans, Indianapolis 500 and Monaco Grand
Prix).

Lewis Hamilton

Nick Heidfeld

Nico Rosberg

Fernando Alonso
Heikki Kovalainen

Kazuki Nakajima

Sébastien Bourdais

Kimi Räikkönen

Robert Kubica

Timo Glock

Takuma Sato

Nelson Piquet Jr.

Felipe Massa

David Coulthard

Jarno Trulli

Adrian Sutil

Mark Webber

Jenson Button

Anthony Davidson

Sebastian Vettel

Giancarlo Fisichella

Rubens Barrichello

Ralf Schumacher

Vitantonio Liuzzi

Alexander Wurz

Scott Speed

Christijan Albers

Markus Winkelhock

Sakon Yamamoto

Michael Schumacher

Juan Pablo Montoya

Christian Klien

Tiago Monteiro

Yuji Ide

Jacques Villeneuve

Franck Montagny

Pedro de la Rosa

Robert Doornbos

Narain Karthikeyan

Patrick Friesacher

Ricardo Zonta

Antônio Pizzonia

Cristiano da Matta

Olivier Panis

Giorgio Pantano

Gianmaria Bruni

Zsolt Baumgartner

Marc Gené

Heinz-Harald Frentzen
Jos Verstappen

Justin Wilson

Ralph Firman

Nicolas Kiesa

Luciano Burti

Jean Alesi

Eddie Irvine

Mika Häkkinen

Tarso Marques

Enrique Bernoldi

Gastón Mazzacane

Tomáš Enge

Alex Yoong

Mika Salo

Pedro Diniz

Johnny Herbert

Allan McNish

Sébastien Buemi

Toranosuke Takagi

Luca Badoer

Alessandro Zanardi

Damon Hill

Stéphane Sarrazin

Ricardo Rosset

Esteban Tuero

Shinji Nakano

Jan Magnussen

Gerhard Berger

Nicola Larini

Ukyo Katayama

Vincenzo Sospiri

Gianni Morbidelli

Norberto Fontana

Pedro Lamy

Martin Brundle

Andrea Montermini

Giovanni Lavaggi

Mark Blundell

Aguri Suzuki

Taki Inoue

Roberto Moreno

Karl Wendlinger

Bertrand Gachot

Domenico Schiattarella

Pierluigi Martini

Nigel Mansell

Jean-Christophe Boullion

Massimiliano Papis

Jean-Denis Délétraz

Gabriele Tarquini

Érik Comas
David Brabham

Ayrton Senna

Éric Bernard

Christian Fittipaldi

Michele Alboreto

Olivier Beretta

Roland Ratzenberger

Paul Belmondo

Jyrki Järvilehto

Andrea de Cesaris

Jean-Marc Gounon

Philippe Alliot

Philippe Adams

Yannick Dalmas

Hideki Noda

Franck Lagorce

Alain Prost

Derek Warwick

Riccardo Patrese

Fabrizio Barbazza

Michael Andretti

Ivan Capelli

Thierry Boutsen

Marco Apicella

Emanuele Naspetti

Toshio Suzuki

Maurício Gugelmin

Eric van de Poele

Olivier Grouillard

Andrea Chiesa

Stefano Modena

Giovanna Amati

Alex Caffi

Enrico Bertaggia

Perry McCarthy

Jan Lammers

Nelson Piquet

Satoru Nakajima
Emanuele Pirro

Stefan Johansson

Julian Bailey

Pedro Chaves

Michael Bartels

Naoki Hattori

Alessandro Nannini

Bernd Schneider

Paolo Barilla

Gregor Foitek

Claudio Langes

Gary Brabham

Martin Donnelly

Bruno Giacomelli

Jaime Alguersuari

Romain Grosjean

Kamui Kobayashi

Jonathan Palmer

Christian Danner

Eddie Cheever

Luis Pérez-Sala

Piercarlo Ghinzani

Volker Weidler

Pierre-Henri Raphanel

René Arnoux

Joachim Winkelhock

Oscar Larrauri

Philippe Streiff

Adrián Campos

Jean-Louis Schlesser

Pascal Fabre

Teo Fabi

Franco Forini

Jacques Laffite

Elio de Angelis

Johnny Dumfries

Patrick Tambay

Marc Surer

Keke Rosberg

Alan Jones

Huub Rothengatter

Allen Berg

Manfred Winkelhock

Niki Lauda

François Hesnault

Mauro Baldi

Stefan Bellof

Kenny Acheson

John Watson

Johnny Cecotto

Jo Gartner

Corrado Fabi

Mike Thackwell

Chico Serra

Danny Sullivan

Eliseo Salazar

Roberto Guerrero Raul Boesel

Jean-Pierre Jarier

Jacques Villeneuve Sr.

Carlos Reutemann

Jochen Mass

Slim Borgudd

Didier Pironi

Gilles Villeneuve

Riccardo Paletti

Brian Henton

Derek Daly

Mario Andretti

Emilio de Villota

Geoff Lees

Tommy Byrne

Rupert Keegan
Hector Rebaque

Beppe Gabbiani

Kevin Cogan

Miguel Ángel Guerra

Siegfried Stohr

Ricardo Zunino

Jean-Pierre Jabouille

Giorgio Francia

Patrick Depailler
Jody Scheckter

Clay Regazzoni
Emerson Fittipaldi

Dave Kennedy

Stephen South

Tiff Needell

Desiré Wilson

Harald Ertl

Vittorio Brambilla

James HuntArturo Merzario

Hans-Joachim Stuck

Gianfranco Brancatelli

Jacky Ickx

Patrick Gaillard

Alex Ribeiro

Ronnie Peterson

Brett Lunger

Danny Ongais

Lamberto Leoni

Divina Galica

Rolf Stommelen

Alberto Colombo

Tony Trimmer

Hans Binder

Michael Bleekemolen

Carlo Franchi

Bobby Rahal

Carlos Pace

Ian Scheckter

Tom Pryce

Ingo Hoffmann

Renzo Zorzi

Gunnar Nilsson

Larry Perkins

Boy Lunger

Patrick Nève

David Purley

Conny Andersson

Bernard de Dryver

Jackie Oliver

Mikko Kozarowitzky

Andy Sutcliffe

Guy Edwards

Brian McGuire

Vern Schuppan

Hans Heyer

Teddy Pilette

Ian Ashley

Loris Kessel

Kunimitsu Takahashi

Kazuyoshi Hoshino

Noritake Takahara

Lella Lombardi

Bob Evans

Michel Leclère

Chris Amon

Emilio Zapico

Henri Pescarolo

Jac Nelleman

Damien Magee

Mike Wilds

Alessandro Pesenti-RossiOtto Stuppacher

Warwick Brown

Masahiro Hasemi

Mark Donohue

Graham Hill

Wilson Fittipaldi

Guy Tunmer

Eddie Keizan

Dave Charlton

Tony Brise

Roelof Wunderink

François Migault

Torsten Palm

Gijs van Lennep

Hiroshi Fushida

John Nicholson

Dave Morgan

Jim Crawford

Jo Vonlanthen

Denny Hulme

Mike Hailwood

Jean-Pierre Beltoise

Howden Ganley

Richard Robarts

Peter Revson

Paddy Driver

Tom Belsø

Brian Redman

Rikky von Opel

Tim Schenken

Gérard Larrousse

Leo Kinnunen

Reine Wisell

Bertil Roos

José Dolhem

Peter Gethin

Derek Bell

David Hobbs

Dieter Quester

Helmuth Koinigg

Carlo Facetti

Eppie Wietzes

François Cevert

Jackie Stewart

Mike Beuttler

Nanni Galli

Luiz Bueno

George Follmer

Andrea de Adamich

Jackie Pretorius

Roger Williamson

Graham McRae

Helmut Marko

David Walker

Alex Soler-Roig

John Love

John Surtees

Skip Barber

Bill Brack

Sam Posey

Pedro Rodríguez

Jo Siffert

Jo Bonnier

François Mazet

Max Jean

Vic Elford
Silvio Moser

George Eaton

Pete Lovely

Chris Craft

John Cannon

Jack Brabham

John Miles

Jochen Rindt

Johnny Servoz-Gavin

Bruce McLaren

Piers Courage

Peter de Klerk

Ignazio Giunti

Dan Gurney

Hubert Hahne

Gus Hutchison

Peter Westbury

Sam Tingle

Basil van Rooyen

Richard Attwood

Al Pease

John Cordts

Jim Clark

Mike Spence

Ludovico Scarfiotti

Lucien Bianchi

Jo Schlesser

Robin Widdows

Kurt Ahrens

Frank Gardner

Bobby Unser

Moisés Solana

Bob Anderson

Luki Botha

Lorenzo Bandini

Richie Ginther
Mike Parkes

Chris Irwin

Guy Ligier

Alan Rees

Brian Hart

Mike Fisher

Tom Jones

Giancarlo Baghetti

Jonathan Williams

Bob Bondurant

Peter Arundell

Vic Wilson

John Taylor

Chris Lawrence

Trevor Taylor

Giacomo Russo

Phil Hill

Innes Ireland

Ronnie Bucknum

Paul Hawkins

David Prophet

Tony Maggs

Trevor Blokdyk

Neville Lederle

Doug Serrurier

Brausch Niemann

Ernie Pieterse

Clive Puzey

Ray Reed

David Clapham

Alex Blignaut

Masten Gregory

John Rhodes

Ian Raby

Alan Rollinson

Brian Gubby

Gerhard Mitter

Roberto Bussinello

Nino Vaccarella

Giorgio Bassi

Maurice Trintignant

Bernard Collomb

André Pilette

Carel Godin de Beaufort

Edgar Barth

Mário de Araújo Cabral

Walt Hansgen

Hap Sharp

Willy Mairesse

John Campbell-Jones

Ian Burgess

Tony Settember

Nasif Estéfano

Jim Hall
Tim Parnell

Kurt Kuhnke

Ernesto Brambilla

Roberto Lippi

Günther Seiffert

Carlo Abate

Gaetano Starrabba

Peter Broeker

Rodger Ward

Ernie de Vos

Frank Dochnal

Thomas Monarch

Pierre Gasly

Jackie Lewis
Ricardo Rodríguez

Wolfgang Seidel

Roy Salvadori

Ben Pon

Tony Marsh

Gerry Ashmore

Heinz Schiller

Colin Davis

Jay Chamberlain

Tony Shelly

Keith Greene

Heini Walter

Ernesto Prinoth

Roger Penske

Rob Schroeder

Timmy Mayer

Bruce Johnstone

Mike Harris

Gary Hocking

Syd van der Vyver

Stirling Moss

Wolfgang von Trips
Cliff Allison

Hans Herrmann

Tony Brooks

Michael May

Henry Taylor

Olivier Gendebien
Giorgio Scarlatti

Brian Naylor

Juan Manuel Bordeu

Jack Fairman

Massimo Natili

Peter Monteverdi

Renato Pirocchi

Geoff Duke

Alfonso Thiele

Peter Ryan

Lloyd Ruby

Ken Miles

Carlos Menditeguy

Alberto Rodriguez Larreta

José Froilán González

Roberto Bonomi

Gino Munaron

Harry Schell

Alan Stacey

Ettore Chimeri

Antonio Creus

Chris Bristow

Bruce Halford

Chuck Daigh

Lance Reventlow

Jim Rathmann

Paul Goldsmith

Don Branson

Johnny Thomson

Eddie Johnson

Bob Veith

Bud Tingelstad

Bob Christie

Red Amick

Duane Carter

Bill Homeier

Gene Hartley

Chuck Stevenson

Bobby Grim

Shorty Templeman

Jim Hurtubise

Jimmy Bryan

Troy Ruttman

Eddie Sachs

Don FreelandTony Bettenhausen

Wayne Weiler

Anthony Foyt

Eddie Russo

Johnny Boyd

Gene Force

Jim McWithey

Len Sutton

Dick Rathmann

Al Herman

Dempsey Wilson

Mike Taylor

Ron Flockhart

David Piper

Giulio Cabianca

Piero Drogo

Fred Gamble

Arthur Owen

Horace Gould

Bob Drake

Ivor Bueb

Alain de Changy

Maria de Filippis

Jean Lucienbonnet

André Testut

Jean Behra

Paul Russo

Jimmy Daywalt

Chuck Arnold

Al Keller

Pat Flaherty

Bill Cheesbourg

Ray Crawford

Jack Turner

Chuck Weyant

Jud Larson

Mike Magill

Carroll Shelby Fritz d'Orey

Azdrubal Fontes

Peter Ashdown Bill Moss

Dennis Taylor

Harry Blanchard

Alessandro de Tomaso

George Constantine

Bob SaidPhil Cade

Luigi Musso

Mike Hawthorn

Juan Fangio

Paco Godia

Peter Collins

Ken Kavanagh

Gerino Gerini

Bruce Kessler

Paul Emery

Luigi Piotti

Bernie Ecclestone

Louis Chiron

Stuart Lewis-Evans

George Amick

Jimmy Reece

Johnnie Parsons
Johnnie Tolan

Billy Garrett

Ed Elisian

Pat O'Connor

Jerry Unser

Art Bisch

Christian Goethals

Dick Gibson

Robert La Caze

André Guelfi

François Picard

Tom Bridger

Alfonso de Portago

Cesare Perdisa

Eugenio Castellotti

André Simon

Les Leston

Sam Hanks

Andy Linden

Marshall Teague

Don Edmunds

Fred Agabashian

Elmer George

Herbert MacKay-Fraser

Bob Gerard

Umberto Maglioli

Paul England

Chico Landi

Alberto Uria

Hernando da Silva Ramos

Élie Bayol

Robert Manzon

Louis Rosier

Bob Sweikert

Cliff Griffith

Duke Dinsmore

Keith Andrews

Paul Frère

Luigi Villoresi

Piero Scotti

Colin Chapman

Desmond Titterington

Archie Scott Brown

Ottorino Volonterio

André Milhoux

Toulo de Graffenried

Piero Taruffi

Nino Farina

Roberto Mieres

Sergio Mantovani

Clemar BucciJesús Iglesias

Alberto Ascari

Karl Kling

Pablo Birger

Jacques Pollet

Lance Macklin

Ted Whiteaway

Jimmy Davies

Walt Faulkner

Cal Niday

Art Cross

Bill Vukovich

Jack McGrath

Jerry Hoyt

Johnny Claes

Peter Walker

Mike Sparken

Ken Wharton

Kenneth McAlpine

Leslie Marr

Tony Rolt

John Fitch

Jean Lucas

Prince Bira

Onofre Marimón

Roger Loyer

Jorge Daponte

Mike Nazaruk

Larry Crockett

Manny Ayulo
Travis Webb

Ernie McCoy

Jacques Swaters
Georges Berger

Don Beauman

Leslie Thorne

Bill Whitehouse

John Riseley-Prichard

Reg Parnell
Peter Whitehead

Eric Brandon

Alan Brown
Rodney Nuckey

Hermann Lang

Theo Helfrich

Fred Wacker

Oscar Gálvez

John Barber

Felice Bonetto

Adolfo Cruz

Duke Nalon

Carl Scarborough

Bill Holland

Bob Scott

Arthur Legat

Yves Cabantous

Tony Crook

Jimmy Stewart

Ian Stewart

Duncan Hamilton
Ernst Klodwig

Rudolf Krause

Oswald Karch

Willi Heeks

Theo Fitzau

Kurt Adolff

Günther Bechem

Erwin Bauer

Hans von Stuck

Albert Scherrer

Max de Terra

Peter Hirt

Piero Carini

Rudi Fischer

Toni Ulmen

George Abecassis

George Connor

Jim Rigsby

Joe James

Bill Schindler

George Fonder

Henry Banks Johnny McDowell

Chet Miller

Bobby Ball

Charles de Tornaco

Roger Laurent

Robert O'Brien

Tony Gaze

Robin Montgomerie-Charrington

Franco Comotti

Philippe Étancelin

Dennis Poore

Eric Thompson

Ken Downing

Graham Whitehead

Gino Bianco

David Murray

Eitel Cantoni

Bill Aston

Adolf Brudes

Fritz Riess

Helmut Niedermayr

Hans Klenk

Marcel Balsa

Rudolf Schoeller

Paul Pietsch

Josef Peters

Dries van der Lof

Jan Flinterman

Piero Dusio

Alberto Crespo

Franco Rol

Consalvo Sanesi

Guy Mairesse

Henri Louveau

Lee Wallard

Carl Forberg

Mauri RoseBill Mackey

Cecil GreenWalt Brown

Mack Hellings

Pierre Levegh

Eugène Chaboud

Aldo Gordini

Joe Kelly

Philip Fotheringham-Parker

Brian Shawe Taylor

John James

Toni Branca

Ken Richardson

Juan Jover

Georges Grignard

David Hampshire

Geoff Crossley

Luigi Fagioli

Cuth Harrison

Joe Fry

Eugène Martin

Leslie Johnson

Clemente Biondetti

Alfredo Pián

Raymond Sommer

Myron Fohr

Walt Ader

Jackie Holmes

Jimmy Jackson

Nello Pagani

Bill Cantrell

Johnny Mantz

Danny Kladis

Óscar González

Nico Hülkenberg

Vitaly Petrov

Lucas di Grassi

Bruno Senna

Karun Chandhok

Pastor Maldonado

Paul di Resta

Sergio Pérez

Jérôme d'Ambrosio

Daniel Ricciardo

Jean-Éric Vergne

Charles Pic

Max Chilton

Esteban Gutiérrez

Valtteri Bottas

Giedo van der Garde

Jules Bianchi

Kevin Magnussen

Daniil Kvyat
André Lotterer

Marcus Ericsson

Will Stevens

Max Verstappen

Felipe Nasr

Carlos Sainz

Roberto Merhi

Alexander Rossi

Jolyon Palmer

Pascal Wehrlein

Rio Haryanto

Stoffel Vandoorne
Esteban Ocon

Lance Stroll

Antonio Giovinazzi

Brendon Hartley

Charles Leclerc

Sergey Sirotkin

Lando NorrisGeorge Russell

Alexander Albon

Nicholas Latifi

Pietro Fittipaldi

Jack Aitken

Yuki Tsunoda

Nikita Mazepin

Mick Schumacher

Guanyu Zhou

Nyck de Vries

Figure 1: Formula One drivers performance network. The
bigger the node, the better the driver’s performance. Colored
by the detected communities.

The other top finishers include some of the most successful
drivers of the era. While not all drivers became world champions,
they won many times, scored many points in their careers, and
contributed greatly to the sport.

3.2.2 Community 2. The second community contained nodes of
drivers that competed from the 1970s to the early 1980s (table 2).
4 of the top 10 nodes represent the drivers, who became world
champions. Interestingly, only one of the first three drivers on the
list was a world champion, showing that our approach does not

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

48

Identifying communities and ranking the drivers’ performance in Formula One

identify the drivers performance only by the number of titles they
won. However, it should be noted that the results of the first 5
drivers in the ranking are very similar.

Table 2: Top drivers by Pagerank in community 2

Driver Active years Titles won Wins Podiums

Emerson Fittipaldi 1970 − 1980 2 14 35
Carlos Reutemann 1972 − 1982 0 12 45
Clay Regazzoni 1970 − 1980 0 5 28
Niki Lauda 1971 − 1985 3 25 54
Jody Scheckter 1972 − 1980 1 10 33
Ronnie Peterson 1970 − 1978 0 10 26
John Watson 1973 − 1985 0 5 20
Jacques Laffite 1974 − 1986 0 6 32
James Hunt 1973 − 1979 1 10 23
Patrick Depailler 1972 − 1980 0 2 19

The top 3 drivers in the list:
• Emerson Fittipaldi: One of the most famous drivers of this

era and 2-time champion.
• Carlos Reutemann: Never became world champion, but

finished at the top of the championship in the late 1970s
and early 1980s, winning 12 Grand Prix.

• Clay Regazzoni: The driver won 5 times, but never became
champion. His other achievements include 28 podiums and
209 points.

Also notable are three-time world champion Niki Lauda and
one-time world champion James Hunt, who were known for their
rivalry in the 1970s.

3.2.3 Community 3. This group consists of drivers from the 1980s
to early 1990s and includes many icons of motorsport. In this period
there were 6 different world champions and 4 of them are the first 4
on the ranking. The other two were Keke Rosberg and Niki Lauda,
which the algorithm assigned to the previous community.

The top finishers were:
• Alain Prost: He was a four-time world champion and also

held the record for most Grand Prix wins until 2001.
• Ayrton Senna: One of the sport’s greatest legends and a

three-time world champion. He is also known for his rivalry
with Prost.
• Nelson Piquet: Also won the drivers’ championship three

times and is considered one of the best drivers of the era.

3.2.4 Community 4. The fourth community is very interesting
because it contains drivers from the 1950s and 1960 who competed
in Formula One only for the Indianapolis 500 race, which is now
exclusively part of the IndyCar Series. The race was on the Formula
One calendar from 1950 to 1960. Visualizing the network those
drivers stand out by creating a lot of edges between each other
and very little between "regular" F1 drivers as they only raced with
them once a year. Also, none of those racers ever won the drivers’
championship.

The top performers of the community are:
• Jim Rathmann: Winner of the Indianapolis 500 in 1960.

• Duane Carter: Scored a third place in the Indianapolis 500
in 19533.

• Jimmy Bryan: Winner of the Indianapolis 500 in 1958.

3.2.5 Community 5. This community includes drivers from the
recent Formula One era (table 3). We have 6 world champions in
the top 10 places.

Table 3: Top drivers by Pagerank in community 5

Driver Active years Titles won Wins Podiums

Lewis Hamilton 2007− 7 103 192
Sebastian Vettel 2007 − 2022 4 53 122
Fernando Alonso 2001− 2 32 102
Kimi Räikkönen 2001 − 2021 1 21 103
Valtteri Bottas 2013− 0 10 67
Max Verstappen 2014− 2 38 82
Nico Rosberg 2006 − 2016 1 23 57
Felipe Massa 2002 − 2017 0 11 41
Daniel Ricciardo 2011 − 2022 0 8 32
Sergio Pérez 2011− 0 6 30

In the top 3 we find:
• Lewis Hamilton: Considered one of the greatest drivers in

Formula One, he is a seven-time world champion. He holds
many records, including sharing the record for the most
drivers’ world titles with Schumacher and the most total
Grand Prix victories.

• Sebastian Vettel: Four-time consecutive world champion,
dominating in the early 2010s.

• Fernando Alonso: The driver with the longest racing expe-
rience in the sport and a two-time world champion who
regularly scores points in races.

Other important names are Max Verstappen with 2 world titles
in 6th place and Valtteri Bottas and Sergio Perez in 5th and 10th
place. These two are interesting because they have never been
world champions, but have competed for teams that have won
many constructors’ titles in recent years.

3.2.6 Community 6. The last community identified contains dri-
vers whose careers span from the 1990s to the early 2000s (table 4).
There are only 3 world champions in the top 10, but this is mainly
due to the dominance of Michael Schumacher.

Table 4: Top drivers by Pagerank in community 6

Driver Active years Titles won Wins Podiums

Michael Schumacher 1991 − 2012 7 91 55
David Coulthard 1994 − 2008 0 13 62
Rubens Barrichello 1993 − 2011 0 11 68
Mika Häkkinen 1991 − 2001 2 20 51
Ralf Schumacher 1997 − 2007 0 6 27
Giancarlo Fisichella 1996 − 2009 0 3 19
Jacques Villeneuve 1996 − 2006 1 11 23
Jean Alesi 1989 − 2001 0 1 32
Heinz-Harald Frentzen 1994 − 2003 0 3 18
Eddie Irvine 1993 − 2002 0 4 26

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

49

Matej Horvat, Lan Sovinc, and Domen Grzin

The 3 most powerful drivers were:
• Michael Schumacher: For many, Formula One’s greatest

legend, sharing the record for most world titles won with
Lewis Hamilton. He won his first two titles in the nineties,
but his dominance on the track was the greatest in the early
2000s, when he won five more in a row.

• David Coulthard: Never won the title, but finished in the
top three five times between 1995 and 2001.

• Rubens Barrichello: Also never won the drivers’ title, but
finished in the top 5 every year between 2000 and 2004.

Other important drivers on the list include two-time world cham-
pion Mika Häkkinen and one-time title winner Jacques Villeneuve.

4 METHODS
The research was started by collecting the drivers data. We acquired the
open source dataset from the platform Kaggle [10]. It contained data about
all the Formula One races, drivers, constructors, qualifying, circuits, lap
times, pit stops, championships from 1950 till the present day.

The dataset was composed of 14 tables in the form of .csv text files, where
we decided to only include completed championships so we cut out data
from the year 2023 onwards. We processed the raw data using Python and
the data manipulation and analysis library pandas, using the results of all
provided races. For each race we calculated the number of drivers, as some
earlier races had multiple drivers racing with the same vehicle.

Then the graphs and networks library NetworkX was used to construct a
directed multigraph.Wewanted to create a graph that represented who com-
peted with whom, for how long and how good their relative performance
was. The graph was composed of nodes, where each node represented a
driver. Edges between the drivers represented their ranking in the champi-
onship. For each race of every season we made edges based on the following
principle: If driver A had a better final position than driver B, then we
formed a directed edge from the node representing driver B to A. Each
edge has a weight associated with it, depending on the final position in the
race of the driver forming the directed edge. We normalised the weights to
equalise the effect of each race and prevent some unexpected outliers. This
means that the last driver formed directed edges to every other driver that
competed in that race, the second last to every other except the last and so
forth until the first driver, who did not form any edges.

After creating the graph we continued by detecting communities. For the
proof of concept we used the built-in function of NetworkX to detect commu-
nities using the Louvain algorithm (nx.community.louvain_communities).
We later switched to the Ledien algorithm in the final implementation using
the library cdlib.

Once we gathered the detected communities of the drivers who competed
together, we continued by classifying driver node performance by using
the Pagerank algorithm, for which we used the NetworkX built-in function
(nx.pagerank). We also ran the algorithm on the graph without communities
to get a baseline performance for each.

To visualise the communities created by the Leiden algorithm, we used
the library igraph to create a plot to represent the outcome. We used the
Fruchterman-Reingold force-directed graph drawing for the plot, where the
node size represents the performance of the node representing the driver
and color represents the comunity the driver belongs to.

5 CONCLUSION
Many times, PageRank has proven to be one of the most successful
methods of determining the importance of nodes. However, in the
case of Formula One, which has been held for decades, the algo-
rithm was insufficient because the result of the calculation was a

list of drivers from different eras, and many of the top candidates
have never participated in a race. Such ranking of drivers is largely
unfounded. We solved the problem by identifying communities.
In layman’s terms, the approach to grouping drivers into commu-
nities is to create communities based on technical improvements
or rule changes. Our approach was more systematic, as we calcu-
lated communities algorithmically based on the number of races
the drivers raced against each other. This allowed us to compare
the relative performance of each driver to those they actually raced
against. The Leiden algorithm also detected the one special group
of racers who only raced at a single event each year, which was
not explicitly noted anywhere in the dataset. When we applied
PageRank to each of the calculated communities, the results were
much more meaningful than the results of the first algorithm run.
Each of the communities contains mainly world champion drivers
and their close competitors. Most importantly, the drivers in the
list all raced together and their careers overlapped to a large extent.
This allowed us to create a fair driver ranking, and the amount of
knowledge we could extract from the data increased significantly.

In the future, the ranking system could be improved even more.
At the moment, we do not compare all drivers directly with each
other, but only the drivers in detected communities. After eval-
uating the performance of the drivers for every community, the
analysis could continue. Ideally, a method that compares the relative
performance of the top ranked nodes in each community should
be developed to compare the drivers in absolute terms.

REFERENCES
[1] Ulrik Brandes, Daniel Delling, Marco Gaertler, Robert Görke, Martin Hoefer,

Zoran Nikoloski, and DorotheaWagner. 2006. OnModularity - NP-Completeness
and Beyond.

[2] Kristijan Breznik and Vladimir Batagelj. 2012. Retired Matches Among Male
Professional Tennis Players. Journal of sports science & medicine 11 (06 2012),
270–8.

[3] S. Brin and L. Page. 1998. The anatomy of a large-scale hypertextual Web search
engine. Comput. Networks ISDN 30, 1-7 (1998), 107–117.

[4] Alessandro Chessa, Pierpaolo D’Urso, Livia De Giovanni, Vincenzina Vitale, and
Alfonso Gebbia. 2022. Complex networks for community detection of basketball
players. Annals of Operations Research (08 2022).

[5] Joe Cobbs. 2011. The dynamics of relationshipmarketing in international sponsor-
ship networks. Journal of Business & Industrial Marketing 26 (10 2011), 590–601.

[6] Jennifer Fewell, Dieter Armbruster, John Ingraham, Alexander Petersen, and
James Waters. 2012. Basketball Teams as Strategic Networks. PloS one 7 (11
2012), e47445.

[7] Zakariya Ghalmane, Mohammed El Hassouni, Chantal Cherifi, and Hocine Cher-
ifi. 2019. Centrality in modular networks. EPJ Data Science 8, 1 (may 2019).

[8] Gnce Keziban Orman, Vincent Labatut, and Hocine Cherifi. 2011. On Accuracy of
Community Structure Discovery Algorithms. Journal of Convergence Information
Technology 6, 11 (nov 2011), 283–292.

[9] Luca Pappalardo and Paolo Cintia. 2017. Quantifying the relation between
performance and success in soccer. Advances in Complex Systems 21 (05 2017).

[10] Rao R. 2023. Formula 1 World Championship (1950 - 2023). Re-
trieved from https://www.kaggle.com/datasets/rohanrao/formula-1-world-
championship-1950-2020. Accessed on May 9, 2023.

[11] V. A. Traag, LudoWaltman, and Nees Jan Van Eck. 2019. From Louvain to Leiden:
Guaranteeing well-connected communities. Sci. Rep. 9 (2019), 5233.

[12] Hagen Wäsche, Geoff Dickson, Alexander Woll, and Ulrik Brandes. 2017. Social
network analysis in sport research: an emerging paradigm. European Journal for
Sport and Society 14 (05 2017), 1–28.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

50

Sensitivity Analysis of Named Entity Extraction based on Deep
Learning

Lea Roj
lea.roj1@student.um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Štefan Kohek
stefan.kohek@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

Aleksander Pur
aleksander.pur@policija.si
Ministry of the Interior,

Štefanova ulica 2
SI-1000 Ljubljana, Slovenia

Niko Lukač
niko.lukac@um.si
Faculty of Electrical

Engineering and Computer Science,
University of Maribor

Koroška cesta 46
SI-2000 Maribor, Slovenia

ABSTRACT
In the ever-evolving landscape of data visualization and extraction,
deep learning techniques have become increasingly pivotal. Ad-
dressing this, our paper conducts a sensitivity analysis of Named
Entity Extraction on text related to the infamous Panama Papers.
We combine the Rebel and Natural Language Processing models
to extract entities and relations. To visualize the extracted knowl-
edge, we employ the NetworkX library to transform this data into
intuitive graphs. These are then compared to a predefined expected
graph to assess the influence of various parameters during the
creation process. To ensure an accurate comparison, the graphs
are transformed into vectors using the Graph2Vec method after
undergoing pre-processing tasks, such as the removal of self-loops,
isolated nodes, and node renaming. The similarity with our bench-
mark graph is determined using Euclidean distance metrics. Results
highlight the influence of span length, length penalty, and the num-
ber of beams on graph generation. Notably, span length emerges
as the most impactful factor, in determining graph detail and com-
plexity.

KEYWORDS
Entity Extraction, Relation Extraction, Graph Generation, Embed-
dings, Graph Similarity

1 INTRODUCTION
Graphs provide an intuitive, more appealing visualization of data, re-
vealing patterns and correlations that are not instantly visible from
raw data. An alternative to graphs are relational and non-relational
databases. Relational databases store data in structured tables and
use primary and foreign keys to interconnect data. Through these
connections, relational databases can generate valuable insights by
merging tables [10]. On the other hand, non-relational databases,
often called NoSQL databases [18], are non-tabular databases and
excel in horizontal scalability, allowing more machines to be easily
integrated. Their maintenance is cheap as they do not depend on

expensive hardware and the accommodation of changes is easier.
Moreover they are designed to store simple data structures as a key
and a value.

Graphs, relational databases, and NoSQL databases are funda-
mental in data management but differ significantly. In graphs, data
is stored as nodes, edges, and properties, offering flexibility when
adding new relationships or nodes. In contrast, relational databases
use tables with rows and columns, potentially requiring substan-
tial redesigns when introducing new data relationships and data
models. On the other hand NoSQL databases are more adaptable
and can easily handle changes and a variety of data types, making
them a scalable solution. While graphs employ query languages
like Neo4j’s Cypher [20], relational databases predominantly use
SQL [14], and NoSQL databases use a variety of query languages.
Extracting semantic relationships using relational databases for
documents is challenging. Representing data with graphs emerges
as an effective solution. A primary challenge is determining the
optimal parameters for graph construction, which is the focus of
our paper.

The concept of a "Named Entity" and relation extraction was first
put forward during the Sixth Message Understanding Conference
[5] in 1995. Recent advancements were described by Lung-Hao et al.
in [11]. Insights from the publications indicate the development and
evaluation of the capability of a Chinese healthcare NER recognizer.
The best results were achieved by the MIGBaseline team using the
BERT-BiLSTM-CRF model [3].

While Named Entity Extraction (NEE) identifies entities, Rela-
tion Extraction (RE) seeks to determine relationships between these
identified entities. In the article from 2023, Moscato et al. [15] pre-
sented a multi-task framework for biomedical relation extraction
using a transformer-based model trained on three publicly avail-
able datasets related to drug, protein, and medical relationships.
Expanding on this theme of advancements in RE, the Collaborative
Oriented Relation Extraction (CORE) system offers another note-
worthy contribution. Introduced in 2023 by Marchesin et al. [13],

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.12

51

https://doi.org/10.26493/scores23.12

Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač

the CORE system was specifically designed to extract multi-aspect
relationships from scientific texts.

In this paper, we introduce a novel workflow for testing hy-
perparameters and performing sensitivity analysis in the context
of entity resolution, using Wikipedia summaries. Our approach
employs Term Frequency - Inverse Document Frequency (TF-IDF)
vectorization combined with cosine similarity in the specific con-
text of entity resolution. While contemporary methods, such as
Word2Vec [4] and BERT, provide more advanced ways to compute
word similarity by capturing semantic meanings of the words, we
opted to use the TfidfVectorizer [16] to transform textual data into
a TF-IDF representation. Even though it is not the state-of-the-art
it is effective and simple to use, due to its simplicity.

We perform a detailed comparison by converting these sum-
maries into TF-IDF vector representations and subsequently calcu-
lating their cosine similarity. This strategy enables us to efficiently
describe entities that various names could refer to while essentially
denoting the same concept. Furthermore, by embedding the co-
sine similarity as an attribute of the relationship, we introduce a
direct metric for quantifying the relevance between linked entities.
Our method combines advanced NLP methods. The process begins
with tokenization to prepare the text, followed by model-based
generation to structure the information. A distinctive feature of
our approach is the overlap strategy we have adopted in tandem
with relation extraction. By segmenting long texts with overlaps,
we maintain context and ensure relationships are not missed or
fragmented.

The structure of this paper spans four sections. After the intro-
duction, the following section delineates the methods and functions
employed. The third section presents the results, including a sensi-
tivity analysis concerning different parameters and their impact on
NEE. The last section concludes the paper.

2 METHODOLOGY
The following subsections will provide a comprehensive breakdown
of important methods implemented in the project.

2.1 Named entity extraction
Firstly, the input text is initially processed using the en_core_web_lg,
an English language model, from the spacy library [7]. This pre-
trained model supports various NLP tasks such as NER, RE, and
tokenization. Tokenization involves separating the raw text into
smaller units known as tokens. Each token ID represents a unique
word in the text, while same words share the same ID. By dividing
text into manageable spans, determining the start and end tokens
of those spans based on span and overlap length, this process con-
verts the human-readable text into a format that machine-learning
models can understand and prepares the text for further handling.

The span length determines the size of the processed text seg-
ments and is associated with the number of words. Opting for a
lower number results in a more detailed graph, because more in-
dividual spans are analyzed. However, selecting an optimal span
length is crucial because if the value is too small, the text can be-
come too fragmented, rendering the represented nodes meaningless.
The influence of span length is exemplified in Fig. 1. The graph
in Fig. 1a contains 9 entities, whereas the graph in Fig. 1b has 35

entities. As can be seen, in graph Fig. 1a, an increased span length
results in fewer spans being analyzed. Consequently, it may over-
look some entities or relations that might be present in smaller
spans.

On the other hand, the overlap length ensures a certain degree of
continuity between consecutive text segments, preserving context.
Through this overlap, we minimize the risk of losing essential
contextual information at segment boundaries. The value represents
the number of words from the previous span, that are also used at
the beginning of the next one.

(a) (b)

Figure 1: Impact of span length on graph generation when
a) Span length = 120 and b) Span length = 50.

For Named Entity Recognition (NER), RE, and knowledge base
creation [19] the rebel-large [9] model is used. It is a sequence-to-
sequence (seq2seq) architecture, which is based on BART [12]. The
seq2seq design enables the model to perform end-to-end RE tasks.
It takes an input sequence, processes it, and produces an output
sequence. In the context of "rebel-large," these output sequences
represent triplets, where each triplet consists of a "head," a "tail," and
the "relation" between them. The rebel-large model is prevalent in
deep learning applications as it can identify and categorize named
entities from raw text [1]. In conjunctionwith themodel, initializing
a corresponding tokenizer is critical, as it transforms raw text into
a format the model can effectively process.

Handling vast amounts of data effectively is critical in optimiz-
ing the performance of deep learning models. The approach we
took enables models to manage varying sizes of data by configur-
ing specific parameters, such as input text, span length, overlap
length, maximum length, length penalty, number of beams, number
of return sequences, and the tokenizer’s maximum length. Length
penalty plays a pivotal role in sequence range determination. A
positive value encourages longer sequences, a zero value maintains
neutrality, and a negative value leans towards shorter sequences
[21]. The number of beams influences the quality of the results by
determining how many top sequences undergo exploration at each
decision point or iteration during the search process. By employ-
ing the beam search algorithm, the number of return sequences
determines how many top sequences are retrieved. The parameter
maximum length defines the upper limit for the length of pro-
cessed sequences, while the maximum length tokenizer indicates
the maximum allowed length of text following tokenization. Given

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

52

Sensitivity Analysis of Named Entity Extraction based on Deep Learning

the length of the processed text, span, and overlap, the text is di-
vided into manageable segments, with each segment subsequently
undergoing tokenization.

2.2 Relation Classification (RC)
When provided with a span of text, which was pre-processed using
a NLP function, the rebel-large model predicts potential relation-
ships, which are represented in token sequences. These sequences
are subsequently decoded back into textual representations using
the tokenizer. Within these textual representations, specific tokens
("<triplet>", "<subj>", "<obj>") help delineate and structure the re-
lationship. We represent these potential relationships with "head",
"tail", and "type". The "head" corresponds to the starting entity, while
the "tail" refers to the ending entity of the relationship. The "type"
characterizes how the two entities are related. For instance, as illus-
trated in Fig. 2, the "type" serves as the label on the relationship’s
edge.

"After more than a year of analysis, the first news stories
were published on April 3, 2016, along with 150 of the docu-
ments themselves."

Panama Papers

HEAD

April 3, 2016

TAIL

publication date
TYPE

Figure 2: Illustration of relationship extraction from text.

2.3 Entity Filtering and Normalization
Entities undergo validation onWikipedia via an HTTP GET request
targeting a specific entity through Wikipedia’s API. In response,
the API returns data in JSON format, which includes the official title
or name of the entity as recognized by Wikipedia, a link leading to
the detailed Wikipedia page for the entity, and a brief overview of
the entity. If entity data is found, then the entity title is the same as
the one on the Wikipedia page. On the other hand, if data is not
found, then it uses the provided entity name.

Cosine similarity is a common metric for measuring document
similarity. By comparing summaries of entities from Wikipedia, we
determine the degree of similarity between them. Using the Tfid-
fVectorizer [16], textual data is transformed into a TF-IDF repre-
sentation. Subsequently, the function find_similar_entity com-
putes the cosine of the angle between the given summary and the
Wikipedia summary of each stored entity, and returns the entity
with the highest similarity score. Both summaries are vectors, repre-
senting the weighted word frequencies in a document [8]. A cosine
similarity of 1 indicates that the vectors are identical, while a cosine
similarity of 0 indicates that the vectors are completely dissimilar.
Using Eq. 1 we solved the challenge of multiple entities sharing
common names or terms. For example "Napoleon Bonaparte" and
"Napoleon I" are two names for the same entity. Cosine Similarity
is calculated as:

®𝐴 · ®𝐵
| | ®𝐴| | | | ®𝐵 | |

, (1)

where ®𝐴 and ®𝐵 present TF-IDF vectors of each summary.

2.4 Similarity calculation
The objective was to identify graphs resembling a predefined or
expected graph. Before calculating similarity using embeddings
from Graph2Vec [17], we preprocess each graph to ensure uni-
formity. This process includes removing self-loops, eliminating
isolated nodes, and renaming nodes based on their sorted order
in the node list of the graph. Subsequently, the get_embedding
function obtains the desired embeddings.

Representing each graph as a vector in high-dimensional space
enables more efficient graph comparison and analysis. Embeddings
can be plotted in a coordinate system, where the proximity between
points corresponds to their similarity. The Euclidean distance offers
a measure of this distance by calculating the vector length between
two points [2].

Using the graph embeddings, we define the Euclidean distance
as:

𝑑𝑖 =

√︄ ∑︁
𝑗∈𝐼−𝑖

(𝐴 𝑗 − 𝐵𝑖, 𝑗)2, (2)

where 𝐴 𝑗 denotes the expected graph’s embedding and 𝐵𝑖, 𝑗 repre-
sents the embeddings from other graphs. 𝐼 is the set of all dimen-
sions or indices in the high-dimensional space.

3 RESULTS
The analysis was conducted using a range of fixed and variable
parameters. Those were chosen by heuristically testing parameters,
based on which had the greatest influence on the graph genera-
tion and its quality. The variable parameters include span length,
length penalty, and number of beams. On the other hand, the fixed
parameters were set as:

• overlap length = 25
• maximum length = 130
• tokenizer’s maximum length = 512

Table 1: Parameter configurations and similarity.

Span length Length penalty Number of beams Similarity
90 -3 12 81.05%
60 -5 6 68.46%
50 0 6 66.73%
60 0 8 54.63%
90 0 6 52.20%
40 -5 6 46.60%
60 0 12 46.57%
50 5 12 45.88%
60 -1 6 41.78%
60 1 6 36.94%
40 -3 6 36.28%
40 1 6 35.12%
60 3 6 29.66%
60 5 6 21.40%
30 0 6 0.00%

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

53

Lea Roj, Štefan Kohek, Aleksander Pur, and Niko Lukač

representative of

The project

data
journalism

software tools
and mobile

collaboration

Russian
intelligence

instance of

David and
Josh Baazov

has links
tohas links to

person of interest to

Jan Marsalek

European
governments

immunity from
prosecution

remains

requests
leaked

documents to

pseudonym for

reason for leaking

John Doe

Germany
country

Süddeutsche
Zeitung

country of
citizenship

employee of

Bastian
Obermayer

whistleblower

Anonymous

income
inequality

April 3, 2016

data
journalism

the 1970s

11.5 million
documents

150
documents

more than
214,488
offshore
entities

refers to

financial and
attorney-client

information

searchable
database

International
Consortium of
Investigative
Journalists

wealthy
individuals
and public

officials

Panama

used for

shell
corporations

offshore
business

provides
field of work

country

Mossack
Fonseca

taken from

named after

reveal information
on

publisher

compiled into

detail

includes

consist of

originate from

genre

published on

leaked by

Panama
Papers

Financial
fraudster

including

fraud

including

tax evasion

including

evading of
international

sanctions

illegal
purposes

(a)

April 3, 2016

whistleblower

2016 data
journalism

leaked

occupation

John Doe
International

Consortium of
Investigative
Journalists

instance of
genre

point in time

point in time

Panama
Papers

Fonsecaparticipantparticipant similar leaksemployer Jan MarsalekRussian
intelligence

relative

David

Josh Baazov

subclass of

ilegal

offshore
business

subclass of

subclass oftax evasion

fraud

country

Süddeutsche
Zeitung

country of citizenship

employer
Bastian

Obermayer

German

publisher

notable work

author
notable work

(b)

Figure 3: Graph comparison: a) Ground truth and b) Graph with similarity score 81.05%.

By exploring given variations of different parameters, we aim at
analyzing sensitivity impact of them on generated graphs. In the
table 1 are represented main results in terms of similarity. The table
doesn’t show systematic way of changing the parameters values
because there was a lot of duplication and minor differences. Based
on the Panama Papers text, the predefined graph in Fig. 3a consists
of 34 nodes and 33 edges. This graph was constructed manually
and contains a detailed representation of the data. All graphs were
visualized using NetworkX [6].

The analysis was conducted on a system with Intel Core i7-
13700K CPU, GeForce RTX 3070 Ti GPU, and 32 GB of RAM.

Upon comparison of the most similar graph (Fig. 3b) and the
predefined graph (Fig. 3a), distinct parallels emerge. Both contain
pivotal entities such as "Panama Papers", "John Doe", "Bastian Ober-
mayer", and "Jan Marsalek". Other entities are mostly grouped
around those main nodes. However, distinctions are evident. The
generated graph explores diverse relationship types, featuring cate-
gories like "relative" and "subclass of". In contrast, the ground truth
graph has more descriptive relationships, including terms such as
"originate from", "compiled into", "leaked documents to", "reason
for leaking", and "representative of". The predefined graph also con-
tains more detailed entities, for example "11.5 million documents"
and provides specific information behind John Doe’s leaks ("income
inequality"). The generated graph has a broader focus, considering
relationships between various entities and their relevance to the
Panama Papers. Meanwhile, the predefined graph delves deeper
into specific details, like the services "Mossack Fonseca" provides
and the nature of "shell corporations".

4 CONCLUSION
Named entity extraction is essential for extracting specific details
from large sets of documents, making them clearer and easier to
understand. Such extraction techniques can be used in journalism
or intelligence systems to automatically identify pivotal events and
their associated key entities. The proposed solution is presented on
one dataset, but the samemethodological approach could be applied
to different data. This forms the foundation for the use of optimiza-
tion algorithms and for selecting optimal hyper-parameters of the
graph. The generated graphs, as observed, offer a panoramic view
of the textual data and a quick overview, in contrast to predefined
graph that delves into specifics.

Future advancements in this domain hold great promise. Con-
sidering a potential node coloring based on NER categories and
introduction of more detailed relations, which would provide us
with more information. For instance, a model trained on medical
data, would not perform well on financial data without additional
training. Therefore, training models to specific domains can vastly
improve extraction accuracy. Ultimately, while current NER systems
provide invaluable insights and streamline information processing,
continuous improvement and domain-specific adaptations will be
the cornerstone for achieving remarkable precision and clarity in
the future.

ACKNOWLEDGMENTS
The authors acknowledge joint financial support from the Slovenian
Research Agency and Slovenian Ministry of the Interior (target
research program No. V2-2260).

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

54

Sensitivity Analysis of Named Entity Extraction based on Deep Learning

REFERENCES
[1] Tareq Al-Moslmi, Marc Gallofré Ocaña, Andreas L. Opdahl, and Csaba Veres.

2020. Named Entity Extraction for Knowledge Graphs: A Literature Overview.
IEEE Access 8 (2020), 32862–32881. https://doi.org/10.1109/ACCESS.2020.2973928

[2] Christopher M Bishop and Nasser M Nasrabadi. 2006. Pattern recognition and
machine learning. Vol. 4. Springer.

[3] Zhenjin Dai, Xutao Wang, Pin Ni, Yuming Li, Gangmin Li, and Xuming Bai. 2019.
Named Entity Recognition Using BERT BiLSTM CRF for Chinese Electronic
Health Records. In 2019 12th International Congress on Image and Signal Processing,
BioMedical Engineering and Informatics (CISP-BMEI). 1–5. https://doi.org/10.
1109/CISP-BMEI48845.2019.8965823

[4] Yoav Goldberg and Omer Levy. 2014. word2vec Explained: deriving Mikolov et
al.’s negative-sampling word-embedding method. arXiv preprint arXiv:1402.3722
(2014).

[5] Ralph Grishman and Beth Sundheim. 1996. Message Understanding Conference-
6: A Brief History. In COLING 1996 Volume 1: The 16th International Conference
on Computational Linguistics. https://aclanthology.org/C96-1079

[6] Aric Hagberg, Pieter J. Swart, and Daniel A. Schult. [n. d.]. Exploring network
structure, dynamics, and function using NetworkX. ([n. d.]). https://www.osti.
gov/biblio/960616

[7] Matthew Honnibal and Ines Montani. 2017. spaCy 2: Natural language under-
standing with Bloom embeddings, convolutional neural networks and incremen-
tal parsing. To appear 7, 1 (2017), 411–420.

[8] Anna Huang, David Milne, Eibe Frank, and Ian H Witten. 2008. Clustering
documents with active learning using wikipedia. In 2008 Eighth IEEE International
Conference on Data Mining. IEEE, 839–844.

[9] Pere-Lluís Huguet Cabot and Roberto Navigli. 2021. REBEL: Relation Extraction
By End-to-end Language generation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2021. Association for Computational Linguistics, Punta
Cana, Dominican Republic, 2370–2381. https://aclanthology.org/2021.findings-
emnlp.204

[10] Nishtha Jatana, Sahil Puri, Mehak Ahuja, Ishita Kathuria, and Dishant Gosain.
2012. A survey and comparison of relational and non-relational database. Inter-
national Journal of Engineering Research & Technology 1, 6 (2012), 1–5.

[11] Lung-Hao Lee, Chao-Yi Chen, Liang-Chih Yu, and Yuen-Hsien Tseng. 2022.
Overview of the ROCLING 2022 Shared Task for Chinese Healthcare Named

Entity Recognition. In Proceedings of the 34th Conference on Computational Lin-
guistics and Speech Processing (ROCLING 2022). The Association for Computa-
tional Linguistics and Chinese Language Processing (ACLCLP), Taipei, Taiwan,
363–368. https://aclanthology.org/2022.rocling-1.46

[12] Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mo-
hamed, Omer Levy, Ves Stoyanov, and Luke Zettlemoyer. 2019. Bart: Denoising
sequence-to-sequence pre-training for natural language generation, translation,
and comprehension. (2019).

[13] Stefano Marchesin, Laura Menotti, Fabio Giachelle, Gianmaria Silvello, and Omar
Alonso. 2023. Building a Large Gene Expression-Cancer Knowledge Base with
Limited Human Annotations. Database (2023), 1–19.

[14] Jim Melton and Alan R Simon. 1993. Understanding the new SQL: a complete
guide. Morgan Kaufmann.

[15] Vincenzo Moscato, Giuseppe Napolano, Marco Postiglione, and Giancarlo Sperlì.
2023. Multi-task learning for few-shot biomedical relation extraction. Artificial
Intelligence Review (2023), 1–21.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M.
Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cour-
napeau, M. Brucher, M. Perrot, and E. Duchesnay. 2011. Scikit-learn: Machine
Learning in Python. Journal of Machine Learning Research 12 (2011), 2825–2830.

[17] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Karate Club: An
API Oriented Open-source Python Framework for Unsupervised Learning on
Graphs. In Proceedings of the 29th ACM International Conference on Information
and Knowledge Management (CIKM ’20). ACM, 3125–3132.

[18] Christof Strauch, Ultra-Large Scale Sites, and Walter Kriha. 2011. NoSQL
databases. Lecture Notes, Stuttgart Media University 20, 24 (2011), 79.

[19] Milena Trajanoska, Riste Stojanov, and Dimitar Trajanov. 2023. Enhancing
Knowledge Graph Construction Using Large Language Models. arXiv preprint
arXiv:2305.04676 (2023).

[20] Aleksa Vukotic, Nicki Watt, Tareq Abedrabbo, Dominic Fox, and Jonas Partner.
2015. Neo4j in action. Vol. 22. Manning Shelter Island.

[21] Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi,
Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al.
2016. Google’s neural machine translation system: Bridging the gap between
human and machine translation. arXiv preprint arXiv:1609.08144 (2016).

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

55

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

56

Human-assisted reinforcement learning demonstrated on the
Flappy Bird Game

Jana Ristovska
89191025@student.upr.si

Faculty of Mathematics, Natural
Sciences and Information Technologies

University of Primorska
Glagoljaška ulica 8

SI-6000 Koper, Slovenia

Domen Šoberl
domen.soberl@famnit.upr.si

Faculty of Mathematics, Natural
Sciences and Information Technologies

University of Primorska
Glagoljaška ulica 8

SI-6000 Koper, Slovenia

ABSTRACT
In model-free reinforcement learning, the agent usually starts learn-
ing by blind exploration, which can take a significant amount of
time before starting to experience positive reinforcement that drives
further progress. In this paper, we address the following question:
Can the learning time be reduced if the agent first observes suc-
cessful behaviors demonstrated by humans, before commencing its
independent learning? We propose an adaptation of the traditional
Q-learning algorithm, so that it can gradually integrate recorded
demonstrations into the learning process, and demonstrate this
method on the well-known Flappy Bird game. We recorded 1496
gameplays of Flappy Bird played by 22 volunteers, and selected 941
successful recordings to assist the Q-learning algorithm. The results
show that such human assistance speeds up the learning process in
a logarithmic manner, which means that the biggest gain is made
in the initial stages of learning and becomes almost negligible later
on. We show experimentally that in the initial stages of learning,
human demonstrations contain more useful information than the
agent can acquire independently.

KEYWORDS
Reinforcement learning, Q-learning, Learning by demonstration,
Imitation learning

1 INTRODUCTION
Using reinforcement learning [9], computers can learn, by trial
and error, how to play simple video games. The learning process
typically takes several hours, after which the computer can reach,
or even surpass the human level of playing [6]. However, an in-
teresting question arises: Can the learning time be reduced if the
computer is given the opportunity to observe a number of success-
fully played games by humans, before commencing its independent
learning? Incorporating player gameplay data has already been
considered as a potential way to enhance the learning process in
the domain of video games. In this paper, we aim to research possi-
ble improvements in the training time of the traditional Q-learning
algorithm when integrating into the learning process a successfully
played game by humans. We demonstrate our approach on the
well-known Flappy Bird Game. The Flappy Bird Game serves as a
suitable platform to investigate this research question due to its sim-
plicity and well-defined gameplay mechanics. We study if and how
the training improves with the quality of the recorded playthroughs
i.e. the number of scores reached by the human. Throughout the

paper, we will use the term human-assisted reinforcement learning
to label any approach in the field of machine learning, specifically
reinforcement learning, where human demonstrations are incorpo-
rated into the learning process to aid the reinforcement learning
agent’s decision-making, although similar ideas have been tried
under various names.

2 RELATEDWORK
Reinforcement learning has garnered significant interest in the
domain of playing video games. Traditional approaches like Q-
learning and Deep Q-Networks (DQNs) have demonstrated the
ability to train agents to achieve superhuman performance in var-
ious games. More recent advancements, such as Proximal Policy
Optimization (PPO) [8] and Asynchronous Advantage Actor-Critic
(A3C) [2], have shown improved stability and sample efficiency.
These algorithms have been employed to train agents in a range
of games, including Atari 2600 games, Gymnasium environments,
and custom game simulations [6, 9].

The concept of human-assisted reinforcement learning, where
agents learn from demonstrations provided by humans, has gained
traction in recent research. One approach in this research area
is called “Imitation Learning” or “Behavioral Cloning”, where the
agent tries to mimic the expert’s behavior directly [11]. However,
this approach can suffer from issues like compounding errors, re-
sulting in sub-optimal performance.

Another prominent approach is “Inverse Reinforcement Learn-
ing” (IRL), where the agent attempts to infer the underlying reward
function from expert demonstrations [1]. This allows the agent to
learn the task’s structure without requiring exact expert actions.
However, Inverse Reinforcement Learning can be challenging due
to the need to model the reward function accurately.

Researchers have applied human-assisted reinforcement learning
to various tasks, such as robotic manipulation [12], autonomous
driving [4, 13], and game playing [8]. Studies have shown that
leveraging human demonstrations can lead to faster convergence
and better performance compared to training from scratch [3, 8].
In the context of video games, human demonstrations have been
used to teach agents to play games like Super Mario Bros, Dota 2,
and Montezuma’s Revenge, showing promising results in reducing
learning time and improving performance [5]. Similar research em-
ploying learning from demonstrations in combination with transfer
learning has been showcased in a soccer simulator called Keep-
away [10], investigating the effects of both the quality of recorded

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

DOI: https://doi.org/10.26493/scores23.13

57

https://doi.org/10.26493/scores23.13

Jana Ristovska and Domen Šoberl

demonstrations and the integration of demonstrations from multi-
ple instructors.

3 IMPLEMENTATION
As the training environment, we adapted an existing Flappy Bird
implementation, which was written in Python and released under
the MIT license [7]. This open-source implementation offers a sim-
plified version of the classic Flappy Bird game, to which we added
a state discretization feature and a reward function. The state is
composed of the horizontal distance from the bird to the right side
of the closest lower pipe and the vertical distance from the bird to
the top side of the closest lower pipe. We discretize the state by split-
ting the horizontal distance into 10 and the vertical distance into 25
equidistant intervals. This way we obtain 250 discrete states, which
we uniquely map into their integer representations {0, . . . , 249}.
The rewarding system returns the negative reward of -1000 when
the bird dies (which also terminates the episode), and the positive
reward of +10 points at every step when the bird stays alive. This
reward system was influenced by similar research in the field.

We implemented two types of Q-learning algorithms: the tradi-
tional Q-learning algorithmwith discrete states and actions to serve
as the performance baseline, and our proposed human-assisted Q-
learning algorithm that can integrate recorded gameplay data into
the learning process.

Figure 1 shows the data flow with the traditional (baseline) Q-
learning approach. Based on the current state, as received from the
environment, the agent selects and executes the most prominent
action according to the current Q-table policy. When the action
is executed, a new state (state’) is received from the environment,
together with the obtained reward. The previous state, the executed
action, the reward, and the new state are then used to update the
Q-table using the Bellman equation:

𝑄 (𝑠, 𝑎) ← 𝑄 (𝑠, 𝑎) + 𝛼 ·
(
𝑟 + 𝛾 ·max

𝑎′
𝑄 (𝑠′, 𝑎′)

)
, (1)

where 𝑠 is the current state, 𝑎 the executed action in state 𝑠 , 𝑟 the
received reward, 𝑠′ the next state, 𝑎′ a future action, 𝛼 the learning
rate and 𝛾 the discount factor. We set the learning rate 𝛼 to 0.45,
and the discount factor 𝛾 to 0.9. We selected these values through
meticulous fine-tuning, aiming to achieve the best training results
we could.

Env Q
table

Env Q
table

exploit update

state action
state′
reward

state

action

Figure 1: The learning process of the baseline Q-learning
algorithm.

The human-assisted Q-learning algorithm that we propose in
this paper works as shown in Figure 2.We use two separate Q-tables
to implement the policy that is used by the intelligent agent during
the Q-learning process: the (trainable) Q-table𝑄 , which is the same

as the Q-table used by the traditional Q-learning algorithm, and
the user Q-table 𝑄𝑈 , which is populated with the recorded human
gameplays.

Env QU
table

Q
table

Env Q
table

exploit

if state not in𝑄𝑈

update

state action
state′
reward

state

action

remove state

Figure 2: The learning process of our human-assisted Q-
learning algorithm.

The process of populating the 𝑄𝑈 table is as follows: For every
step of the recorded game, we discretize the game state as described
above, read the action that the user made in that state, the obtained
reward and the consequent state, which we also discretize. We then
compute the 𝑄 (𝑠, 𝑎) value similarly as in the online training using
Equation 1, however, there is no interaction with the environment
in the process. The computed 𝑄 (𝑠, 𝑎) value is inserted into the 𝑄𝑈

table at the [𝑠, 𝑎] position. Because the computation relies on the
existing 𝑄𝑈 entries for 𝑠′ and 𝑎′, the process is repeated two times
for the same recording. Our experiments showed that doing more
than two passes does not improve the training performance.

During the online training, the 𝑄𝑈 table is utilized as follows:
If an entry for the current state 𝑠 exists in the 𝑄𝑈 table, the action
is decided based on this entry, after which the entry for state 𝑠
is removed from 𝑄𝑈 . If there is no entry for 𝑠 in 𝑄𝑈 , table 𝑄 is
used as with the traditional Q-learning algorithm. We may say that
the knowledge from the recorded human gameplay is gradually
being integrated into the learned policy. When the executed action
is based on the values from the user Q-table 𝑄𝑈 , the agent has
followed the human’s strategy. Presuming that the human player
played a feasible strategy, such a choice should indicate a certain
advantage over blind exploration.

4 OBTAINING HUMAN GAMEPLAY DATA
In order to obtain a pool of recorded gameplays, we got 22 volun-
teers to play the game of Flappy Bird. They were instructed to play
the game as many times as they want and to aim to score as many
points as they can. They played 1496 games in total, 555 of which
scored 0. Since our methodology is based on providing successful
human demonstrations, we only used the recordings with at least
1 point reached, which was 941 gameplays. The maximum score
reached was 53 and the second best was 33. The distribution of all
the recorded gameplays is shown in Figure 3.

A gameplay recording is composed of a tuple (ℎ, 𝑣, 𝑎, 𝑟, 𝑠) for each
consecutive game step. Variables ℎ and 𝑣 represent the horizontal
and the vertical distances in pixels from the next pipe. Values 𝑎,
𝑟 and 𝑠 respectively represent the executed action, the obtained
reward and the current score. The resulting state can be obtained
from the subsequent tuple in the recording.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

58

Human-assisted reinforcement learning demonstrated on the Flappy Bird Game

0 5 10 15 20 25 30 35 40 45 50 53
0

100

200

300

400

500

600

Game score reached

N
um

be
ro

fg
am

ep
la
ys

Figure 3: Distribution of the recorded human gameplays ac-
cording to the reached game score.

5 EXPERIMENTAL RESULTS
In reinforcement learning, the usual approach to measuring the
performance is to count the number of episodes over which the
learning curve converges. In our case, an episode ends only with the
bird’s death, so the episodes vary in length considerably. Moreover,
after the agent learns how to play optimally, an infinitely long
episode follows until terminated manually. Therefore, as a measure
of performance, we count the number of training steps needed
for the agent to reach a specific score, after which the training is
concluded. The initial experiments showed that the agent always
learned an optimal policy before reaching 60 points, therefore we
set the training goal to reaching 100 points.

We conducted a single experiment as follows.We ran the learning
algorithm and let it play for as many training episodes as needed,
until the bird scored 100 points. Afterward, the training was stopped
and we recorded the total number of training steps taken during
all the episodes together.

5.1 Traditional Q-learning
We conducted 100 independent experiments using our implementa-
tion of the traditional Q-learning algorithm, which we took as the
baseline method. The average number of training steps to learn an
optimal policy was 17872.18, with the standard deviation of 5912.22.
The maximum number of training steps was 41426 and the mini-
mum was 10158. To put this into perspective, with the frequency of
60 frames (actions) per second, the average training time took 296.4
seconds, which is 4 minutes and 56.4 seconds. Individual results are
shown in Figure 4, where the red line denotes the average number
of training steps. Different outcomes are due to the fact that the
pipes are generated randomly by the environment.

5.2 Human-assisted Q-learning
When assisting the learning algorithm with a single recorded hu-
man gameplay, the duration of that gameplay is of crucial impor-
tance. Not only more data is provided by a longer gameplay, the
playing skills and therefore the employed strategy might also be
better, since the player managed to ‘survive’ longer. In our case,
the duration of the game is strongly correlated with the final score
achieved in that game, since the speed of the bird is constant and

1 50 100
0

10,000

20,000

30,000

40,000

Individual experiments

Tr
ai
ni
ng

st
ep
st
o
op

tim
al
po

lic
y

Figure 4: The results of 100 experiments using the traditional
Q-learning algorithm.

the pipes are spaced equally. We therefore conducted the experi-
ments as follows: We grouped the recorded gameplays according
to their duration — gameplays with the total score of 1 were put
into the first group, gameplays with the total score of 2 into the
second group, etc. This way we formed 30 groups of recorded game-
plays with the same distribution as shown in Figure 3 (note that
for some scores in the range of 1 to 53, no gameplay was recorded).
We then ran the learning algorithm independently 100 times for
each group, each time selecting randomly a gameplay from the
current group to assist in training. We measured how much the
training time decreased on average for each group in relation to
the average training time of the baseline learning algorithm. We
were interested in whether and in which cases the decrease in the
training time would be greater than the duration of the assisted
human gameplay.

The left plot in Figure 5 shows the average decrease in train-
ing time for all 30 gameplay groups, which are denoted with red
dots. Gameplay durations are averages for each group, although
variations within a group are negligible (up to the amount of time
needed to travel between two adjacent pipes). The improvement
increases with the duration of the used gameplay recording in a
near-logarithmic manner. We can notice that the improvement rate
slows down significantly when the duration of the gameplay ex-
ceeds 30 seconds. This indicates that the majority of the human
skill is encoded into the first 30 seconds of gameplay, after which
the same strategy is very likely repeated, with less probability of
novelty in the recorded data.

The right plot in Figure 5 shows the same data from a different
perspective. Instead of the absolute reduction in the training time,
the difference between the reduced time and the average duration
of the used recordings is shown along the y-axis. A positive value
indicates that the training time was reduced more than the duration
of the recording. This means that there wasmore useful information
in the recorded gameplay than could be obtained by independent
training in the same amount of time. Shorter recordings show a
higher ratio, the highest being with the first group of recordings,
where the human player managed to pass only one obstacle and
lasted for about 3 seconds. The ratio is dropping with longer games
and reaches 0 at about 15 seconds mark.

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

59

Jana Ristovska and Domen Šoberl

3 10 20 30 40 50 60 70 80

5

10

15

20

25

30

Duration of the recorded human gameplays (s)

Re
du

ct
io
n
in

tra
in
in
g
tim

e
(s)

3 10 20 30 40 50 60 70 80
−60

−50

−40

−30

−20

−10

0

10

Duration of the recorded human gameplays (s)

Re
la
tiv

e
tra

in
in
g
tim

e
im

pr
ov
em

en
t(
s)

Figure 5: Improvement in the training time when using human gameplay recordings of different durations.

6 CONCLUSION
The results of our study demonstrate the potential of human-assisted
reinforcement learning in improving the performance of training
an agent. The main premise of this paper is that a human demon-
stration of a successful playing strategy contains more useful in-
formation than an agent can in the same amount of time obtain
independently. We verified this idea on the well-known Flappy
Bird game by first implementing a traditional Q-learning algorithm,
which was able to learn an optimal strategy in about 5 minutes
on average. We then proposed an adaptation to the traditional Q-
learning algorithm that can integrate gameplay recordings into the
learning process. We obtained 941 useful gameplay recordings from
22 volunteers that we used with our adapted learning algorithm
and compared the reduction of the training time in comparison to
the traditional Q-learning approach.

The results confirmed our hypothesis and showed that the most
useful information regarding a successful Flappy Bird playing strat-
egy is encoded in the first 30 seconds of human gameplay, after
which the improvement still somewhat increases, but at an insignif-
icant rate. We may conclude that in those first 30 seconds, a human
player encounters most of the possible situations, after which it
mostly repeats already seen playing maneuvers.

Such absolute training time improvement alone may suffice in
cases where offline data is abundant and online training is expen-
sive. However, to assess whether a human demonstration actually
contains more information than blind exploration, we analyzed
relative improvement in the training time, which showed that on
average, the first 15 seconds of human demonstration provided
more useful information than could independently be obtained by
the agent.

Themain limitation of our research is the simplicity of the chosen
training environment. After discretization, we obtained a state space
spanning 250 possible states, which can fairly quickly be explored by
the traditional Q-learning algorithm, as we have also demonstrated.
This leaves little room for improvement through human assistance.
We believe that in more complex domains, where it takes an agent
hours or even days to train, human assistance could prove much
more beneficial. Moreover so when the reward is sparse and the

agent must rely on pure luck to obtain the reward for the first time.
Human demonstrations of obtaining a reward could significantly
speed up this initial part of the training.

Our approach is currently limited to discrete states and actions,
which is the limitation of the traditional Q-learning algorithm with
tabulated Q-values. As a part of our future work, we aim to move to-
wards continuous environments and explore the possibilities to inte-
grate human assistance into modern deep Q-learning architectures.
This way we may be able to tackle more complex environments
and even real-world control problems.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship Learning by Inverse Re-

inforcement Learning. In Proceedings of the Twenty-First International Conference
on Machine Learning (ICML-2004) (Banff, Alberta, Canada). ACM, New York, NY,
USA, 1–8.

[2] M. Babaeizadeh, I. Frosio, S. Tyree, J. Clemons, and J. Kautz. 2016. Reinforcement
Learning through Asynchronous Advantage Actor-Critic on a GPU.

[3] P. Christiano, J. Leike, T. B. Brown, M. Martic, S. Legg, and D. Amodei. 2018. Deep
reinforcement learning from human preferences. arXiv:1706.03741 [stat.ML]

[4] F. Codevilla, M. Müller, A. López, V. Koltun, and A. Dosovitskiy. 2018. End-to-end
Driving via Conditional Imitation Learning.

[5] J. Leike, M. Martic, and S. Legg. 2017. Learning through human feedback.
DeepMind Blog. https://www.deepmind.com/blog/learning-through-human-
feedback

[6] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and
M. Riedmiller. 2013. Playing Atari with Deep Reinforcement Learning.

[7] Russs123. 2020. Flappy Bird. https://github.com/russs123/flappy_bird.
[8] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. 2017. Proximal

Policy Optimization Algorithms. arXiv:1707.06347 [cs.LG]
[9] R. S. Sutton and A. G. Barto. 2018. Reinforcement learning: An introduction (2 ed.).

The MIT Press, Cambridge, MA, USA.
[10] M. E. Taylor, H. B. Suay, and S. Chernova. 2011. Integrating reinforcement

learning with human demonstrations of varying ability. In 10th International
Conference on Autonomous Agents and Multiagent Systems 2011, AAMAS 2011,
Vol. 1. FAAMAS, Richland, SC, 617–624.

[11] F. Torabi, G. Warnell, and P. Stone. 2019. Recent Advances in Imitation Learning
from Observation. arXiv:1905.13566 [cs.RO]

[12] M. Vecerik, T. Hester, J. Scholz, F. Wang, O. Pietquin, B. Piot, N. Heess, T.
Rothörl, T. Lampe, and M. Riedmiller. 2017. Leveraging Demonstrations for
Deep Reinforcement Learning on Robotics Problems with Sparse Rewards.
arXiv:1707.08817 [cs.RO]

[13] J. Wu, Z. Huang, C. Huang, Z. Hu, P. Hang, Y. Xing, and C. Lv. 2021. Human-
in-the-Loop Deep Reinforcement Learning with Application to Autonomous
Driving. arXiv:2104.07246 [cs.RO]

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

60

Proc. of the 9th Student Computing Research Symposium (SCORES’23), Koper, Slovenia, October 5, 2023

Index of Authors

Berkovič, Klemen, 35
Bošković, Borko, 31, 35, 43

Brest, Janez, 31, 35

Erjavec, Andrej, 27

Grzin, Domen, 47

Horvat, Matej, 47

Jana, Herzog, 31
Jani, Suban, 17

Kohek, Štefan, 51
Kovačič, Blaž, 2, 43

Lea, Roj, 51
Lukač, Niko, 51

Mongus, Domen, 13

Nikov, Mitko, 13

Pockar, Zan, 39
Pur, Aleksander, 51

Ristovska, Jana, 57

Sojer, Tom, 39
Sovinc, Lan, 47

Tengguna, Viony, 7
Tošić, Aleksandar, 27

Varghese, Christeena, 7

Wahyudi, Vincent, 7

Zugan, Dani, 23

Šoberl, Domen, 57
Žalik, Mitja, 13

	SCORES'23
	Editors’ Foreword
	Conference Program
	Applications
	Mouse cursor control using 3D head pose estimation information
	App to Help Children with Special Needs to Improve Their Eye Movements and Focus
	Real-Time Vehicle Speed Estimation from Video

	Evaluation and optimization
	Empirical evaluation of ordered dictionary with ALGator
	Evaluation of algorithms for finding shortest paths in a network
	Concurrent migration of containers in decentralized cloud computing network
	How to Set the Maximum Number of Function Evaluations for the L-SHADE Algorithm with the AS3D Approach?
	Two Cooperative Co-evolution Algorithms for CEC2013 Large Scale Optimization Problems

	Machine Learning and Data Science
	Retrieving deleted records from Telegram
	Slovenian command word speech recognition using transfer learning
	Identifying communities and ranking the drivers' performance in Formula One
	Sensitivity Analysis of Named Entity Extraction based on Deep Learning
	Human-assisted reinforcement learning demonstrated on the Flappy Bird Game

	Index of Authors

