
LANGUAGE CONSIDERATIONS OF PARALLEL PROCESSING SYSTEMS
PART ONE: Concurrent microprocessing systems

INFORMATICA 2/87

UDK 681.3.06:519.682/.683
Peter Koibezen

Institut »Jožef Štefan«, Ljubljana

ASTRACT - Full parallellsm ollered by the nultl-processor is not stili fully
exploited. Huch uork that has been done In structured prograaalng to separate a
mono-processor prograa into weI1-deflned aodules, and atteapts to systeaiatlze the
interactlons betueen modules, have helped to achieve a more discipllned approach to
softuare developnent wlth much benellt to nultl-aikroprocessor softuare.

Thls paper presents various Issues relevant to language aspects ai parallel
processing sy5tB»s, The objectlve Is to present a discussion o(Issues and soie o(
ths current approaches rather than a well-developed «etodaIogy o(softuare, vhich
has yet to be developed. New approaches to parallel processing architecture are
briefly outlined too.

O JEZIKIH SISTEMOV PARALELNEGA PROCESIRANJA. PRVI DELi KonkurenCni dilkroprocesorski
sistemi. Popolna sočasnost, ki Jo onogofia materialna oprana vefiprocesorsklh siste
mov, £e ni dovolj izkoriSflena. Da bi se ta cilj dosegel, Je bilo (lad drugim vlojtano
:e veliko napora tudi v strukturlrano programiranje, ki deli snoprocesorski program
v dobro definirane module, poskuSa sistemizirati akcije med moduli, pomaga dosetfi
bolj urejen pristop k razvoju programske opreme in ji daje'številne prednosti.

Članek podaja zakljufike, ki Izhajajo iz jezikovnega vidika na sisteme paralelnega
procesiranja. Obravnavani so zgolj rezultati in noveJCl poskusi reltevanja problaaov
programske opreme. O kaki bolj dovršeni metodologiji programske oprsme pa ni' mod
govoriti, saj je le-ta Se vedno v razvojnih fazah.

Na kratko so opisane tudi nekatere najvidnejše radunalniJtkc
posebej učinkovito podpirajo paralelno procesiranje.

arhitektura, ki ite

INTRODUCTlON

Hlgh level languages and thelr translators have
become eseential for uriting applicaticn pro-
grams for mono-processor systems. The same,
houever, cannot be sald lor multi-microproces-
sor systems. The Immense varlety of appllcatl-
ons and harduare architectures, and the diver-
slty af phllosophies about hou systems shoud be
structured, makes it extreaely difficult to
design languages that are llkely to be wldely
accepted. It stili remalns a difficult chal-
lenge to design a hlgh level language uhich is
sufficiently general and modular to acconmodate
a large number of architectural types of machl-
nes /1/. In the absence of bold and fresh
ideas to express ooncurrency, it Is than natu-
ral that current thlnklng Is along the llnes
for extending or generalizing the sequential
programmlng languages /2/. At least it is
knoun that using thls approach one has sooat-
hlng that uorks for an Isolated microprocessar
uhich forms a constitutent part of. the uhola
systein. Thus a sequentlal language enables
individual softuare modules to be uritten.
Thls is a rather prlmltlve approach, houavar,
uhere concurrency (uhich rei^ulres a control and
comrnunlcatlon struoture), fiynchronlzation for
resource sharlng, efficiecy and robustness a-
spects are outside the language consideratlon.

A further dlfflculty stems froa the fact that
the language issues and runtime support aspects
cannot be Isolated totally. The attributes o(
the kernel are important in_ deolding uhether or
not certaln issues need to be dealt ulth at the
language level.

Most o(the language proposals In the concu
rrent programning area aiso have an underlylng
model of distrlbuted computlng. The aany of
these languages are in the research phase and
any have not been Implemented, also there is
little hard practlcal evperiance. Most of the
tirne the underlylng model Is not expllcltly
stated.

Event if one attempts to eKtract the underlylng
model from a proposal, it is not aluays an aasy
task. Sometlmes the model and languages issuas
become inseparable. The choice of the model
uould affect the prograaalng aethodology and
the proof techniques for a language basad on
that model. A nodel provides a conceptual
frameuork in uhich to discuss and undarstand
the behaviour of concurrent ooaputations, and
is intended to capture the underlying .phllosop-
hy of a programmlng language.

32

A hlgh level language is a nedium which not
only enables us to obtain a nachina eKeoutable
cede but, perhaps more inportantl/ allous us to
tormulate an application preclsely. In this
sense, there is a greate vacuun for a vshicle
to describe concurrent applicatios {araally.

Anather difficulty in using languagas applica-
ble to inulti-mioroprocessor sy8tens Is the
neceš5ity for a transiator. Translator urlting
ifflinediataly requires the speoif ioation oi the
target nachine. It is desirabla that the
translator also runs on the target aaohines.
Since there is no arohltectural uniiorBity,
this rei]uires a translator design uhioh is
capable of running on uidal/ varying oondgura-
tions. Ideally, a translator also should taka
advantage of the structure and hence bo aodu-
lar. This requires significant departure iroa
coapiler uiriting for mono-procsssor oyBtQaa.

FEATURES OF CONCURRENT LANGUAGE

Sone of the desired features of a concurrant
language can be listed as follous /3/i

- eKpressive pover or richness - provability
ease and efficiency of implementation - Qasy of
use - readabilit/ of resulting prograaa
impact of changes - entant of ooncurrenoy
possible

EKpressive pover or riohnass This refaro to the
abitity of the medel/1anguaga in being abls to
express certain behaviours, l.e. the richness
to be able to modal certain coaputations like
recursion, non-deterninlsn, and so on. This
praperty is also referred to as ooapleteness or
adequancy. An increase in SKpressive pouer is
likely to be accompanied by an increase in the
difficulty of proving prograias. Uhile it ia
desirable to have simplicity as ona of the
goals, it is not advisabls to hava that as the
overriding criterion.

ProvabiIlty One aiay bs Intsrested in proving
(nany propertias, like partial correotnoss, (re-
edoin frofii daadlocks, teninatlon, fairnass,
etc. The presense of some construots uould
make it eHtrenely difficult, if not laposalble,
ta prove certain properties. For SKaople, at
the current state of the art ol program pro
ving, the presence of tine-outs oould oake the
achievement of the traotability af proofs
alaost inpossible. Of course, an iaportant
consideration is the pouer of the language
used for specifyng assertions about prograa
properties. Tha assertion language or the
logic used should be rich enough to be able to
specify forfflally varioue desired properties
/i,/.

Fornal ization of the semaritics of constructs is
an important prerequlsite for prograa proving.
Uhile researches have been discussing ali of
the above properties for a long tine, there are
very feu w e n defined techniques or foraal
methods to illustrate the exlstenc8 of the
necessary properties.

good. The practicality of raechanisas uould be
measured by the efficlenoy of thelr iapleaanta-
tions.

Ease and •ffiolanoy o{
plementation of certa
difficult to achieve
nierely to define primit
nakes thein uorth impleim
posslble to deliver
reasonable efficiency
ef(iciency, or costli
Important consideration
might be irnplenented e
.such Inplenientations a

laplaaantatlon The ia-
in features Qay be quite
It is not Buffioient

ives uhose funotionality
entlng. It auet also be
that functinality uith
In nost apllcations tha

ness, is likely to be an
Uhile somo oonstruots

a6ily, the efficienoy of
ay not necessarily bo

Eas« ot uit The presence o
does not mean that they woul
Noriiially high level oonst
stractlons capabilittes aake
se of use and eKpressive pow
ry criteria. A model/langua
ugh to exprees a certain
does not autoii)atically aean
done in an easy uay-csrtain
and obscure uaye have to
Constructs uhich reflect
abstractions uould be appeal

f powerful features
d be easy ta use.
ructs and good «b-
thing easier. Ea-

er are coapleaenta-
ge being rich eno-
type of ooaputation
that it could be
ingenious, aukvard
be resorted to.

intuitive uaya of
ing to ths user.

While uriting prograns, language primitives
should allou ccherent combinations. Avoiding
subtle interactions among primitives would aake
then easier to use and help reduce errors. The
fleKibillty cf the constructs is also an iapor-
tant factor in the ease of their use.

Rea(!abillty oi rsaultlng prograaa Any propasal
for neu language featurss should be Borutlnized
closely to deterrnine the effeot of tha proposed
facility on program structure. The aschaniseas
should be such that they discourage ooapleii and
confusing structures. The presense of high
level and very pouerful constructs could lead
to ea5ily comprehensible prograas. Of coursa,
this may not always be the ease. The ability
to compose the process structure hierarchioaHy
should be of great benefit. In general, con
structs that are easily verified are likQly to
be easily understood.

lapaot oC ohanges If the constructs do not
include or force a high degreo of isiodularity, a
change in the deflnition of one process aay
necessitate iDany changes throughout ths rest of
the systeiii. This uould be highly undesirable,
particularly if the number of the processas
Involved is quite large. Persiitting s graat
degree of autonoiiiy in the definition of procss-
ses would help a good deal in rcduclng and
localizing the impact of ohanges.

Eut^tit oS ooncHirrcno^ pocsibi* The groater the
degree of conQurr3noy the constructs psralt to
be eKpressed, the better. But the overhead«
involved in supporting such concurranc/ should
not be such as to offsst the advantage« gained
through the Increase in parallelisa.

HIGH PARALLEL PROCESSING ARCHITECTURE3

It is
fifth
much
incorp
llkely
paral 1
inents
infere
ons, 1
stems
stribu
netuor

At pre
paral 1
5ing a
are v
uhioh
opreat
used f
floati
ment o
.operat

agreed by a H concerned that the kiy to
generation conputer arohiteoturas is a
higher degree of parallelita than is
orated into cosiputers at prasent. It is
that there will be a nuaber of layers of

elisni! closely coupled processing ele-
reflecting the parallelisa inherant in

nce or knouledge base processing operatl-
ooser coupling betueen ths various subsy-
in a fifth generaton conputer, and di-
ted processing acrosB local and uide area
ks o(computers /3/.

sent there
ellsm inp
rrays and
ectors of
act synohr
lons on
or multi-s
ng-point n
f the pipe
ion, and

are tuo typ
lemented in
pipelines.

identical
onausly to
arrays of d
tage operat
ultiplicatlo
line oarries
passes its

es of ctose-coupled
coaputersi procet-
Processing arrays

processing eleaants
perfora identical
ata. Pipelines are
ions /7/ such as
ns, uhera each ala-
out one step of
interaediate result

33

to the next element, Operations on succeBSive
sets at data can take plače at intervals ol one
step. Parallel processing of thls type, known
as "regular" paraHellsm, utU undoubtedl/ find
a plače in fifth generattion computers, but
necbanisms to deal wlth irregular parallelism
are the oiain topio (or research. Three appro-
aches are present today! parallel control flou,
dataflou and graph reductlon /9,10/.

Trad itionany, by
step o(a progr
under the control
whlch determines
carried 'out next.
implicit in the st
statement in the it
detailed prooessin
parallel computer
age were availab
are called at the
parallel, and th
ali processing pro
continuing, Progr
current Pascal an
operations of th
remains to be seen
is only a sligh
sequentlal process
radical demands ot
res.

parallel control (Iaw eaoh
am is e^Bcuted in sequence,
at a single prograa oounter
the loulevel operation to be

The flou of control is
ructure of the progra«. Each
odule is a call to a aore
g procedure. Thersfors, if i
systea and programning langu-
le, the processing procedure
same tine. They executsd in
e control module uaits until
cedure are coaplete before
anming languages such as con-
d Ada have facilitias far
is sort conputers, but it
whether this approach, whioh

t variation on conventional
ing, yill be ade^uate far the
fifth generation arohitectu-

For
promlsi
the inf
' generat
It can
close-c
extensl
data t
level,
inferen
dataf la
sing e
logical
out, a
nents
and wa
Interme
are tw
netuork
eaoh
ve, uh
element
when it
compute
irement

number of reasons, one of the. most
ng archltectural »odels, oertainly for
erence processing subsyste(»s of a fifth
ion Computer, is dataflaw architecturs,
čope with Irregular as well as regular
oupled parallelism, it is flexible and
hle, it has the potencial for very high
hroughputs, and it refleots, at hardware
the type of parallelisa Inherant in
ce processing. The central idea of
w archltecture is: a netviork of proces-
tements is set up, which refleots ths
structure of the task to ba oarried

nd items of data flou betuaen the ele-
Each elenents operates at its oun paca,

its until it has a complete set of
dlate Inputs before it "fires". Thero
o techniques for the control of »uoh a

In the totaIly data-driven approaoh,
lement uaits passlvely for data to arri-
reas in the demand-driven reglne eaoh

issues requests "upstreas" for data
is ready lor it. In general a dataflou
or Computer 5ubsystens has three requ-

to store representations of prograa graphs,
to implement some form of data tokens to
flou through the graphs, and
to provide suitable instruotlon processing
facilities.'

Three lines of research are belng folloued in
response to these diff Iculties. The first is
to regard a dataflou task as fiiied at coaplle
tirne, and to prohiblt re-entrat code /12,13/.
This statlc approach is ilustrated in Fig.1,
uhich ušes a netuork of binary processors each
uith tuo alternative output channels.

Processing
elamenl

Processing
element

processing
element

Processing
element

Fig.1-A static dataflow network<delta network).

The dynamic approach gets round the proble* of
re-entrat code by allowlng repllcation of por-
tions of the network at run tliie. This has the
virtue of slmpl icity, and may beconte increasin-
gly feasible as hardware constralns slacken.
Fig.2. illustrated one possible configuration
using this technique /1A/,

1 lnte''processor nework j

i 1
A M

f
A C

. i

P

1 .

1

E

_r~i
A M

\
AC

• •

PE

,
f—1

A M

1
A C

1

'

.,

PE

Inief-acttvity newof1(

Artjitration neTworV

i . '
s M

. '
S M

Dl5 nbu
L

lon network

'
S M

1 1

•
S M

. , '
S M

A M Activilv memory
A C Activily contfotler
P E Processing eiemeni
S M Slfucture memorv module

Fig.2-A dynamic dataflou arohitaoture.

The line of developaent uhich holds out the
most promise in the short ter« is the taggad
syštem, varlatlons of uhich are under develop-
ment at MIT and Manchester Unlver»lty. Each

34

data Itens flouiog through the netuork oaprles
ulth It an Identification tag, uhioh speolfiBB
its type (Jor exa»plB it «ay ha a pointBC to a
large data structure held in llxed store) and
its position in ths program. ThB tags enabl*
data items to be palred and matohed with
apnropriate instructions for ppocessing. Th«
tags also indlcata the ievel of racuraian il
re-entrant oode is used. One node of a data-
(low systei«s using this approach /15/ is Hlu-
strated in Fig.3.

Taner,

/ '
f

04t l Htm

•

TokBn - —

(

Program
grapn

• •

*l»ljfi

/ '

j
P , . . . « ,

(
Dala >ic

Flg.3-A tagged dataflow arohitecture.

The graph reduction arohitecture /16/ is the
ne)it variation on the dataflow approaoh dlsous-
sed above. This variation is to evaluate
functions by working direotly on their graphi-
cal representations. As various portions of
the graph are evaluated, they ara repleacad by
their internediate results. Evaluation of aaoh
of° the louest nodes (uhloh bacoaes a saarch to
sae uhether such a node is present in the given
relatlons), can prooeed in parallel. The in
ternediate boolean results are then fad back
through .the graph as it is raduced, until a
single result eaerges. ALICE /17/ is the
conputer uhloh inoorporates graph reduction
directly into its basic arohitecture. It is
designed to be programned In the applloative
language HOPE, but can also support declarativa
languages such as PROLOS. The architeoture of
ALICE enables the parallel operations to be
performed uithout any explioit instructions
from the program. Each node in a prograa graph
is represented as a pachet uithin Alioa. A
packet consists of an identifier fialds, a
lunction or operator fleld, and ona or aore
argument fields, uhich ffiay be data values or
reterences to other packets. Thare are also
control fields used by the oonputer in its
operatlon.

D<slribution network |

'
PA

•

1
PA

'

•

PA

I

1

PA

•

•

PA

-.

lnterconnect«n networK
1 .

PPS PPS

'
PPS

TI
PPS

1.
Us

PA Processing Apent

PPS Packet pool segment

Fig.^-Alioe: overall structure.

Also llnking each processing agent is a low
banduidth distributlon netuork, uhich contains
addresses of processable packets and aapty
packets, This netuork includes simple procas-
sing elements uhich transfer these addresses
fron one processing agent to anothar, in ordar
to even out the queue of uork uaitlng at each
processor. ALICE ušes the INnOS transputar
/12,13 / as its basic processing alenenti aach
inaln processing agent cointains a nuaber of
transputers, and additionat transputers provide
the intelllgence in the distributlon netuork.
The transputer is designed as a singte-chip
processing elenent for parallel oonputer archi-
tectures. It has an one-board »a«ory, uith
hlgh-speed DHA <for input and output channals,
bypa5eing the processor) facilities and recep-
tion and transnission regiaters for dat* trans
fer betueen transputers. Its single sequantial
processor has a reduced instructlon set (RISC
processor) for inaxiinuiii speed (instructlon cyola
tltne of 50 nanosecond). Transputer is designed
for a very high throughput of data, even if tha
processing rate is not so high.

The transputer is designed to be prograaaable
directly in Occam progranming language /18/.
It is intended to be incorporated in a distri-
buted arohitecture, uith individual transputers
connected by a v8ry high speed local area
netuork. As such it is an ideal building block
for inany oonponents of a Bulti-alcroprocesor
flfth generatlon oomputer system.

A. CONCLUSION

The general layaut of an ALICE conputer is
shoun in Fig.*.. It conslsls of a large BBgaan-
ted me«ory serving as a packet pool, and a
numher of processing agents. The processor«
and the (ne«ory segments are connaoted by a
hlgh-speed sultching netuork uhloh enables any
processor to access any «e«ory sagaant uith
ninlmal delay due to other access path. Tha
confIguratlon chcsen is a delta netuork, coa-
prlsing a large nuaber of simple sultching
elenents uith four inputs and four outputs in «
regular array. (Fig.1 shous a delta netuork of
elenents uith tuo Inputs and tuo outputs.) Tha
netuork operates asynohronously, so that each
request for a packet is propagated through tha
sultches as rapldly as possible, and the paokat
is returned to tha processor as soon as tha
access path Is open.

Wlth the increased interest
cessor and distrlbuted coapu
is enterging a large number
approach to handle them. I
cessor design the architectu
qulres the interrelated cons
catlon requlreaents, hardua
and softuare aspects. Wh
treatment of softuare Issu
second part uhich succeed
of the considerations, as ar
nioations, prlority, oo-or
ses, procesE-procesor alloca
bllity, control Issues, a
/19/ should be seen as havin
to the structure, harduare
system. '

in aulti-aicropro-
tlng systeas, thera
of proposals and

n a aulti-aloropro-
ral phllosophy re-
IdBration of appli-
re coaaunications,
lle aore detalled
es is left until
of this paper, each
e: types of coaau-
dinatlon of procas-
tlon, netuork vlsi-
nd synchronlzatlon
g Impllcatlons as

and softuara o(a

35

In multl-mlcroprooessor systems the arohltaotu-
ral structure, appllcatlons requlrsnent>, and
varled sa{tware aspects like the operatlng
s/stems /20/, conniunlcations Inf rastructure,
and tools to ald appllcatlon programalng such
as high level languages suitable for parallel
programmlng, a H form a tlghtly knlt sltuatlon
in which it is far more difficult to isolata
the constltuent parts and arrive at unlversally
accepted solutlons.

The requlreffients of the fifth generation for
la/ers af parallelIsm and an enphasls on infa-
rence rather than nunerlcal coaputation look
like providlng sufficient incentive. Even i(
the objectlve of a computer with enhanced
intelligeoe is not attained, the new architec-
tures ulll provide englnes of unpreoendsnt
pover for conventional conputing. The aove
auay from general-purpose processors to aggre-
gations of special-purpose chips is likely to
affect ali branches of infornatian .technology.
The increase In the scale of integration, and
the advanced CAD systens for mlcrochip produc-
tlon wiH lind appllcatlons in every branoh of
ntlcroelectronlcs. The Industrlal, econoitlo and
polltical conseciuences of having access to, or
not having acoess to the new generation of
Silicon toundries are farreachlng.

5. REFERENCES

/1/ Bedlna M,, Dlstante F. SH i HH Resources
Allocation in a Multiprocessor sy8te«t An Aro-
hitectural Problem, Advances in Microprocessing
and Mlcroprogramming, EUROMICRO, 198'i.

/2/ Tucker A.B., Jr. Progranming languages
(Second editlon), ncGraw-Hill Book Coi>pany,
1986.

/3/ Stankovifc J.A., A Perspeotlve on Distrlbu-
ted Computer Systens, IEEE Trans. on Conp.,
vol.C-33, NO.12, December 198^.

/A/ Chandy M., Mlsra J. Distrlbutad slaulati-
on: A čase study in design and verificatlon of
distributed prograns, IEEE Trans.
Engineerlng, September 1978.

on Software

/5/ lia P.R., Lee E.V.S., Tsuohya H. "A task
allocation model for distributed conputing sy-
stems", IEEE Trans, on Conp., pp. A1-47, Jan.
1982.

/6/ Flynn N.J. Directions and Issues in Arc-
hltecture and Language", Coaputer IEEE, October
1980.

/7/ Mllutinavi6 V. A High Level Language
Archltecturei Bit-SlIce-Based Processor and As
sociated Systein Software, Bicroprocessing and
•Mlcroprogramming 12, 1983.

/8/ Kogge P.M. The Arohltecture of Plpelined
Computers, llcGrau-Hill Book Cofflpany, 1981.

/9/ Treleaven P. Fifth generation coaputer
arohltecture analysis, in Moto-Oka, 1982, pp.
265-275.

/10/ Huang K., Briggs F. Computer Arohltectu
re and Parallel Processing (International Štu
dent Editlon), ncGraw-Hill Book Conpany, 198C>.

/11/ Brajak P. Paralelno procesiranje: arhi
tektura 90-tih godina. Zbornik jugoslovenskog
savjetovanja o novima generacijama raSunala,
MIPRO 86, Rijeka, Maj 1986, str.33-A6.

/12/ Smith K. New computer breed ušes tran-
sputers for parallel processing, Electronics
56,«,, 1983, pp.67-68.

/13/ nihovllovli; B., Mavrie S, KolH.e2en P.
Transputer-osnovnl gradnik vetlprooesorskih si
stemov, Informatica 4/86, LJubljana, 1986.

14/ Tanaka H., et.al. The preli«inary rese-
arch on the data flou machine and the data base
machine as the baslc arohltecture of fifth
generation computer systeB, in Moto-Oka, 1982.

/15/ Gurd J. Developments in dataflow arohl
tecture, In SPL Internaoional, 1962.

/16/ Cripps M., Field A.J., Reeve M.J. The
design and Implementation of Alicet a parallel
graph reduction machine, Byta Magazine, June
1985.

/17/ Darlington J,, Reeve H.J. Alicei a aul-
tiprocessor reduction machine for the parallel
evaluatlon of appllcative languages, ACM Con-
fernce on Functional Programnlng and Computer
Arohltecture, October 1981, pp.65-75.

/18/ Inmos. Ocean Progranming Manuel, Prenti-
ce-Hall, 1984.

/19/ Kolbezen P. Analiza multiprocesorskega
sistema, IJS Delovno poroliilo Dp-4461, Univerza
E.Kardelja, IJS, LJubljana, December 1986.

/20/ Kolbezen P, Problemi naBrtovanJa aulti-
procesorskega sistema, IJS Delovno poroCilo
Dp-',<>62, Univerza E.Kardelja, IJS, Ljubljana,
December 1986.

/21/ Foster M.J., Kung H.T. The design of
special-purpose VLSI chips, IEEE Coaputer Maga
zine 13,1, 1980, PP.26-A0.

/22/ Seitz C.L. Conoourent VLSI Archlteoturas
IEEE Trans, on Comp., Vol.C-33, No.12, Oec.
1984.

