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Abstract. We report on the first calculation of excited baryons with a chirally symmetric

Hamiltonian, modeled after Coulomb gauge QCD (or upgraded from the Cornell meson

potential model to a field theory in all of Fock-space) showing the insensitivity to chiral

symmetry breaking. As has recently been understood, this leads to doubling between two

hadrons of equal spin and opposite parity. As a novelty we show that three-quark ∆ states

group into quartets with two states of each parity, all four states having equal angular mo-

mentum J. Diagonalizing the chiral charge expressed in terms of quarks we show that the

quartet is slightly split into two parity doublets by the tensor force, all splittings decreasing

to zero high in the spectrum.

Our specific calculation is for the family of maximum-spin excitations of the Delta

baryon. We provide a model estimate of the experimental accuracy needed to establish

Chiral Symmetry Restoration in the high spectrum. We suggest that a measurement of

masses of high-partial wave ∆ resonances with an accuracy of 50 MeV should be sufficient

to unambiguously establish the approximate degeneracy, and test the concept of running

quark mass in the infrared.

The idea of chiral symmetry restoration has been around for a while, for ex-
ample parity doubling was examined for the proton in the context of the linear

sigma model in [1]. By current ideas we believe that this restoration should occur

for higher excitations. Glozman and collaborators [2–8] (see also [9]) have the-
oretically examined (qq̄) mesons, and also shown marginal empirical evidence

for chiral symmetry restoration in both meson and hadron spectra, that rekin-
dles interest on intermediate energy resonances. Chiral symmetry restoration, or

more precisely, Spontaneous Chiral Symmetry Breaking Insensitivity high in the

spectrum, is established as a strong prediction of the symmetry breaking pattern
of QCD, and such prediction in an energy region where little else can be stated,

needs to be confirmed or refuted by experiment.

The baryon spectrum is a more difficult theoretical problem given the mini-
mum three-body wavefunction (as opposed to only quark-antiquark for mesons)

and in this paper we provide the necessary theoretical background to under-

stand parity doubling, in agreement with a prior study by Nefediev, Ribeiro and

⋆ Talk presented by F. J. Llanes-Estrada
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Szczepaniak [10], and give the first model estimate of what the experimental

target-precision should be. This should help quantify what “high enough” in the

spectrum means, to assist experimental planning.

We customarily employ a truncation of Coulomb-gauge QCD by ignoring

the Faddeev-Popov operator and substituting the Coulomb kernel by its vacuum

expectation value, that takes the usual linear plus Coulomb form. This can be
seen as a field theory upgrade of the Cornell potential model. The Hamiltonian

reads

H = −gs

∫
dxΨ†(x)α·A(x)Ψ(x) + Tr

∫
dx(E·E+ B·B)

+

∫
dxΨ†

q(x)(−iα·∇+ βmq)Ψq(x) +
1

2

∫
dxdyρa(x)VL(|x − y|)ρa(y) (1)

with a strong kernel containing a linear potential VL, with string tension σ =

0.135 GeV2, coupled to the color charge density ρa(x) = Ψ†(x)TaΨ(x)+fabcAb(x)·
Πc(x) . In our past work we have solved the BCS gap equation to spontaneously
break chiral symmetry. This model has the same chiral structure of QCD, satisfy-

ing the Gell-Mann-Oakes-Renner relation, the low-energy theorems for pion scat-

tering [14] and allowing computations of static pion-nucleon observables [15].We
have employed it in studies of gluodynamics [16] shown at this workshop that

agree with lattice gauge theory and are of qualitative phenomenological interest.

In any case, these play a minor role in the topic of this article, as the decreasing
of the splittings is dominated by chiral symmetry breaking alone. For a reduced

baryon sector application we are going to perform two more simplifications. We
employ only the VL linear potential, and neglect all magnetic interactions. This

makes the ∆-nucleon mass splitting too small, but does not affect the ∆ spectrum

much.

We truncate the Fock space variationally, as customary, to the |qqq〉 mini-

mum wavefunction. Since radial excitations of this system compete with multi-

quark excitations, we concentrate instead on maximum angular-momentum ex-
citations J = 3/2 + l. Chiral forces are too weak to compensate large centrifugal

forces and can hardly maintain l = 3 or l = 4, so one hopes to reduce the molec-
ular component by studying the ground state in each J-channel, so that the |qqq〉
correlation remains important high in the spectrum.

As a rule of thumb, one needs to keep in the Fock-space expansion |qqq〉 +

|qqqqq̄〉+ |qqqg〉+ . . . . as many states as will be competitive by phase space con-
siderations, considering the quark and gluon dynamical mass gaps established

by lattice and Dyson-Schwinger studies. When pentaquark correlations are more
abundant than three-quark correlations (see figure 1) the typical quark momen-

tumwill be lower than extrapolated from the ground-state baryons, so that chiral

symmetry restoration will not be quite so fast.

This puts pentaquark correlations above 2GeV , with the exception of possi-

ble meson-baryon resonances (as the Goldstone bosons avoid the mass-gap). In

any case it seems well established that three-quark correlations play an impor-
tant role in baryon-phenomenology, so it is worth examining the effect of a chiral

transformation on a three-quark variational wavefunction |N〉 = FijkB
†
iB

†
jB

†
k|0〉.
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Fig.1. The typical momentum of a quark in a three-quark state is (by kinetic energy con-

siderations alone, with a running mass-gap) |k〉 ∝M∆J
. Plotted is the typical momentum

in a three quarks and five quark wavefunction. At the jump the phase space for five-quark

states is larger, so it is more likely that a baryon of that mass is in a five-quark configura-

tion, and the typical momentum is therefore smaller. Hence chiral symmetry restoration

has to be somewhat slower than three-quark models would indicate.

We proceed variationally and employ several types of wavefunctions, ra-

tional and Gaussian, but the lowest energy (binding the model’s J-ground state

from above by the Rayleigh-Ritz principle) is obtained by employing the chiral
limit pion-wavefunction rescaled with two variational parameters in terms of Ja-

cobi coordinates, sinφ(kρ/αρ) sinφ(kλ/αλ)Y
ml

l (k̂ρ). We have found the angular
excitation in λ to be slightly higher in energy and neglect the correlation. Part of it

though reenters the calculation upon (anti)symmetrizing the wavefunction, since

quark exchange mixes the ρ and λ variables.

A typical variational search is represented in figure 2. Table 1 presents the
intradoublet splittings. The interdoublet splittings, as well as improved precision

on our three-body variational Montecarlo method, will be given in an upcoming
publication. As can be seen from the table, the model doublet splittings dropwith

the orbital angular momentum. This is easy to understand from the structure of

the model Hamiltonian. The kernel for baryons is proportional to

F∗s1s2s3
(k1,k2)U

†
k1s1

Uk1+qλ1
U

†
k2s2

Uk2−qλ2
(2)

×Fλ1λ2s3
(k1 + q,k2 − q)

that, upon becoming insensitive to the gap angle, sinφ(k >> ΛQCD) → 0, turns

into

F∗s1s2s3

(
δs1λ1

+ (σ·k̂1σ·k̂1 + q)s1λ1

)
· (3)

(
δs2λ2

+ (σ·k̂2σ·k̂2 − q)s2λ2

)
Fλ1λ2s3

.
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Fig.2.Variational minimum-energy search E(αρ, αλ) with a two-parameter family of func-

tions. Best results are obtained when the (chiral-limit) pion wavefunction is rescaled and

used to build the Jacobi-radial part of the ∆ wavefunctions, sinφ(kρ/αρ) sinφ(kλ/αλ).

For maximum spin∆ states, J = 3/2+ lρ the angular wavefunction before symmetrization

is Y
ml
l (k̂ρ) (we set lλ = 0 consistent with the variational approximation, but numeri-

cally symmetrize the spin-space wavefunction, which reintroduces it through exchanged-

quarks).

Table 1. Experimental and computed doublet splittings. The entire quartet degenerates

high in the spectrum, with the +− parity doubling proceeding faster due to insensitiv-

ity to χSB and the interdoublet splitting decreasing slower, as they are due to the tensor

force and dynamical. We give a preliminary calculation of the intradoublet splitting (par-

ity degeneracy). From the decreasing theory splittings we deduce that an experimental

measurement of the parity splitting M+ − M− to an accuracy of 100, or better 50 MeV,

should suffice to see the effect. Note that our excited splittings become compatible with

zero within errors in the Montecarlo 9-d integral.

J Exp. Theory

M+ −M− intradoublet

3/2 470(40) 450(100)

5/2 70(90) 400(100)

7/2 270(120) 50(100)

9/2 50(250) 200(100)

11/2 - 100(100)

13/2 - 100(100)

If instead of F∗s1s2s3
one substitutes its chiral partner F∗s ′

1
s2s3

(σ · k̂1)s ′
1
s1

(and the

same for the ket), the two states are seen to be degenerate. Also apparent in Eq.(3)

is the role of the tensor force in enforcing chiral cancellations.
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Finally, the first computation of the parity doubling for baryons is presented

in figure 3.
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Fig.3. Parity doubling in the spin-excited ∆ spectrum. Top: with infrared quark mass as

calculated in the model (probably too low). Bottom: quark mass rescaled to fit Landau-

gauge lattice data. The model clearly displays parity doubling. The experimental situa-

tion is still unclear, the degeneracy can be claimed for the 9/2 states alone, and the chiral

partners higher in the spectrum are not experimentally known.

Let us now show that there are indeed two closely separated baryon dou-

blets, slightly split by tensor forces. We find convenient to employ the gap angle
instead of the quark mass

sinφ(k) ≡ M(k)√
M(k)2 + k2
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and the Dirac spinors can be easily parametrized as

Uκλ =
1√
2

[ √
1+ sinφκχλ√

1− sinφκσ · κ̂χλ

]
(4)

V−κλ =
1√
2

[
−
√
1− sinφκσ · κ̂iσ2χλ√
1+ sinφκiσ2χλ

]
. (5)

Substituting these spinors, and in terms of Bogoliubov-rotated quark and anti-

quark normal modes B, D, the chiral charge takes the form

Q5a =

∫
d3k

(2π)3

∑

λλ ′ff ′c

(
τa

2

)

ff ′
(6)

(cosφ(k)

(σ·k̂)λλ ′

(
B
†
kλfcBkλ ′f ′c +D

†
−kλfcD−kλ ′f ′c

)
+

sinφ(k)

(iσ2)λλ ′

(
B
†
kλfcD

†
−kλ ′f ′c + BkλfcD−kλ ′f ′c

))
.

In the presence of Spontaneous Chiral Symmetry Breaking, sinφ(k) 6= 0, and the
two terms in the second line are responsible for the non-linear realization of chiral

symmetry in the spectrum. One can see this by applying the chiral charge on a

hadron state to collect the same hadron state plus a pion. As in Jaffe, Pirjol and
Scardiccio [11],

[Qa5 , N
±
i ] = v0(π

2)ǫabcπ
cΘbijN

±
j . (7)

(Here, i and j are the chiral multiplet indices).

Eq. (7 ) is easy to derive because the iσ2 matrix couples the quark-antiquark pair
to pseudoscalar quantum numbers, so the terms in the second line of eq.(6) pro-

vide an interpolating field for the pion. In fact, if the vacuum is variationally
chosen as the BCS ground state |Ω〉 with B|Ω〉 = 0, D|Ω〉 = 0, sinφ(k) then pro-

vides precisely the RPA pion wavefunction in the chiral limit, and the terms with

sinφ(k) become the RPA pion-creation operator.

If instead Chiral Symmetrywas not spontaneously broken in QCD,M(k) ≃ 0
and sinφ(k) ≃ 0. As a consequence, it is obvious that the chiral charge would not
change the particle content since the second line of eq.(6) would vanish, and the

first line is made of quark and antiquark number operators. Then chiral sym-

metry would be linearly realized in Wigner-Weyl mode where hadrons come in
degenerate opposite-parity pairs

[Qa5 , N
+
i ] = ΘaijN

−
j

[Qa5 , N
−
i ] = ΘaijN

+
j .

The parity change follows from the σ·k̂ p-wave present in the first line of eq.(6).

In fact, the contemporary realization is that both phenomena are simulta-

neously realized in QCD. The vacuum is not annihilated by the chiral charge,
forcing spontaneous symmetry breaking, but the mass gap angle has compact

support and if, in a hadron, the typical quark momentum is high, as illustrated in
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figure 4, its wavefunction is insensitive to Chiral Symmetry Breaking. Therefore

one asymptotically recovers degenerate Glozman parity doublets. We will in the

following drop the isospin index.
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Fig.4. The sine of the gap angle M(k)/
p

(M(k)2 + k2) has limited support if the chiral-

symmetry breaking quark mass remains of orderΛQCD or less. Top: we show the running

mass from a model computation for a linear potential with string tension σ = 0.135 GeV2 ,

and its rescaling to match Landau-gauge data [12,13] (no Coulomb-gauge lattice data

for the quark mass is known to us). Bottom: Quark-momentum distributions for ∆3/2
and ∆9/2 with simple variational wavefunctions. The quark-momentum distribution for

higher hadron resonances has smaller overlap with this gap angle, and therefore the

quarks in those hadrons behave effectively as if they were massless. Hence they become

insensitive to the gap angle, and chiral symmetry is restored in Wigner-Weyl mode with

degenerate multiplets.
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If a given resonance is high enough in the spectrum so the quarks have a

momentum distribution peaked higher than the support of the gap angle, as in

figure 4, only the first line of Eq.(6) is active. Q5|N〉 contains also three quarks,
but one of them is spin-rotated from Bkλ to σ·k̂λλ ′Bkλ ′ . Successive application of

the chiral charge spin-rotates further quarks, changing each time the parity of the
total wavefunction. However the sequence of states ends since σ·k̂σ·k̂ = I. In fact,

starting with an arbitrary such wavefunction, one generates a quartet

|NP0 〉 =
∑

FPijkB
†
iB

†
jB

†
k|Ω〉

|N−P
1 〉 =

1

3

∑
FPijk

((
σ·k̂iB†

)
i
B
†
jB

†
k + permutations

)
|Ω〉

|NP2〉 =
1

3

∑
FPijk

((
σ·k̂iB†

)
i

(
σ·k̂jB†

)
j
B
†
k + permutations

)
|Ω〉

|N−P
3 〉 =

∑
FPijk(

σ·k̂iB†
)
i

(
σ·k̂jB†

)
j

(
σ·k̂kB†

)
k

|Ω〉

that is the natural basis to discuss chiral symmetry restoration in baryons, through

wavefunctions that are linear combinations |N〉 =
∑
ci|Ni〉.

Because the Hamiltonian and the chiral charge commute, they can be diago-

nalized simultaneously.

The quartet then separates into two doublets connected by the chiral charge

Q5(N0 −N2) = N1 −N3 (8)

Q5(N1 −N3) = N0 −N2

Q5(N0 + 3N2) = 3(3N1 +N3)

Q5(3N1 +N3) = 3(N0 + 3N2)

Since the quartet can be divided into two two-dimensional irreducible representa-

tions of the chiral group, (with different eigenvalues of Q25, 1 and 9 respectively),
the masses of the two doublets may also be different, and the interdoublet split-

ting becomes a dynamical question. However, the splitting within the doublet

must vanish asymptotically. This is a prediction following from first principles-
understanding of QCD alone. Should it not be borne experimentally, it would

falsify the theory.

Of course, parity doubling is a property of a more general class of theories

than QCD. Even for fixed (not running) quark mass, when the typical momenta

are high enough 〈k/〉 >> m in the kinetic energy, the effects of the quark mass are
negligible. Parity doubling then comes down to whether the interaction terms are

also chiral symmetry violating or not.

To round off this work, let us look ahead to what the highly excited spin

spectrum may reveal. The J-dependence of the fall-off of the splittingsM+ −M−
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is an observable that reveals the underlying chiral theory. If precise data becomes

available at ELSA or Jefferson Lab (note the EBAC, Excited Baryon Analysis Cen-

ter effort [19]), in particular for the ∆J with J = 7/2, 9/2, 11/2 parity doublets,
one should be able to distinguish between the typical 1/

√
l fall-off for non-chiral

models and the faster drop for chiral theories. (Higher yet in the spectrum, also
the chiral theory may take on the 1/

√
l behavior due to the small remaining cur-

rent quark mass that falls only logarithmically)1.

Since the two doublets are closely degenerate, both positive and negative

parity ground states will have a nearby resonance with identical quantum num-
bers. Given the width of those states, it is likely they will only be distinguished

by very careful exclusive decay analysis. Meanwhile, if interpreted as only one
resonance, their decay pattern will defy intuition.

It is also worth remarking that the spin-orbit interaction is very small in the

low-lying spectrum, due to cancellations between scalar and vector potentials
and the Thomas precession [20]. However, higher in the spectrum, the vector

γ0γ0 potential comes forward, and it is known to present larger spin-orbit split-

tings than found to date. Therefore not all splittings in a given baryon shell will
disappear alike: while parity splittings must decrease fast by chiral symmetry,

other spin-orbit splittings will stay constant or even grow. This is demanded by a

necessary cancellation between L·S, centrifugal forces l(l + 1) and tensor forces.
This has been explicitly shown for mesons in [21].

Table 2. Total width, exclusive pion-nucleon width and semiinclusive pion width (decay

to one pion plus any other particles excluding pions) for the ground state ∆J resonances.

All unitsMeV . Data adapted from PDG[23] .

JP Γ ΓπN ΓπX
3
2

+
118(2) 118(2) 118(2)

3
2

−
300(100) 50(30) 190(90)

5
2

+
330(60) 42(18) < 80(20)

5
2

−
350(150) 40(30) -

7
2

+
285(50) 115(35) 170(30)

7
2

−
400(150) 30(20) -

9
2

+
400(150) 30(20) -

9
2

−
400(180) 35(25) -

11
2

+
450(150) 50(40) -

11
2

−
- - -

13
2

+
- - -

13
2

−
400(200) 20(12) -

13
2

+
550(300) 30(25) -

1 Other authors have argued that flattening of the potential in a non-relativistic quark

model for large distances due to screening (string-breaking) also leads to parity degen-

eracy [18]. We are preparing an additional paper that will provide the necessary detail

for chiral models to distinguish them.
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It has also been pointed out [8,22,10] that the pion decouples from the very

excited resonances due to the falling overlap between the ∆∗ wavefunctions and

sinφ(k) (the pion wavefunction in the chiral limit). This might already be observ-
able in the known widths for pion decays, that decrease even with larger phase

space, see table 2. There are lattice calculations addressing low-excited baryons
[24], but it is still a long way to go until highly excited states can be examined.

AcknowledgementWe are indebted to many colleagues for useful conversations,
among them Leonid Glozman, Emilio Ribeiro, Alexey Nefediev, Atsushi Hosaka,

and Makoto Oka. Work supported by spanish grants MCYT FPA 2004-02602,
2005-02327, and Accion Integrada Spain-Portugal HP2006-0018. TVC acknowl-

edges the support from the Fund for Scientific Research - Flanders.

References

1. C. E. Detar and T. Kunihiro, Phys. Rev. D 39, 2805 (1989).
2. L. Y. Glozman, Phys. Lett. B 475 (2000) 329.
3. L. Y. Glozman, Prog. Part. Nucl. Phys. 50 (2003) 247.
4. R. F. Wagenbrunn and L. Y. Glozman, Phys. Lett. B 643, 98 (2006).
5. T. D. Cohen and L. Y. Glozman, Mod. Phys. Lett. A 21, 1939 (2006).
6. T. D. Cohen and L. Y. Glozman, Phys. Rev. D 65, 016006 (2002) [arXiv:hep-ph/0102206].
7. T. D. Cohen and L. Y. Glozman, Int. J. Mod. Phys. A 17, 1327 (2002) [arXiv:hep-

ph/0201242].
8. L. Y. Glozman, A. V. Nefediev and J. E. F. Ribeiro, Phys. Rev. D 72, 094002 (2005).
9. D. Jido, T. Hatsuda and T. Kunihiro, Phys. Rev. Lett. 84, 3252 (2000) [arXiv:hep-

ph/9910375].
10. A. V. Nefediev, J. E. F. Ribeiro and A. P. Szczepaniak, JETP Lett. 87, 271 (2008).
11. R. L. Jaffe, D. Pirjol and A. Scardicchio, Phys. Rev. Lett. 96, 121601 (2006); Phys. Rev. D

74, 057901 (2006).
12. P. O. Bowman, U. M. Heller, D. B. Leinweber, M. B. Parappilly and A. G. Williams,

Nucl. Phys. Proc. Suppl. 161, 27 (2006).
13. M. B. Parappilly, P. O. Bowman, U. M. Heller, D. B. .. Leinweber, A. G. Williams and

J. B. Zhang, Phys. Rev. D 73, 054504 (2006).
14. P. Bicudo, S. Cotanch, F. J. Llanes-Estrada, P. Maris, E. Ribeiro and A. Szczepaniak,

Phys. Rev. D 65 (2002) 076008.
15. P. J. A. Bicudo, G. Krein and J. E. F. Ribeiro, Phys. Rev. C 64 (2001) 025202; P. Bicudo

and J. Ribeiro, Phys. Rev. C 55 (1997) 834.
16. P. Bicudo, S. R. Cotanch, F. J. Llanes-Estrada and D. G. Robertson, Eur. Phys. J. C 52

(2007) 363; F. J. Llanes-Estrada, P. Bicudo and S. R. Cotanch, Phys. Rev. Lett. 96 (2006)

081601.
17. M. Shifman and A. Vainshtein, Phys. Rev. D 77, 034002 (2008).
18. J. Segovia, D. R. Entem and F. Fernandez, Phys. Lett. B 662 (2008) 33.
19. B. Julia-Diaz, T. S. Lee, A. Matsuyama, T. Sato and L. C. Smith, Phys. Rev. C 77 (2008)

045205.
20. N. Isgur, Phys. Rev. D 62 (2000) 014025 [arXiv:hep-ph/9910272].
21. P. Bicudo, Phys. Rev. D 76 (2007) 094005 [arXiv:hep-ph/0703114].
22. L. Y. Glozman, Phys. Rev. Lett. 99, 191602 (2007) [arXiv:0706.3288 [hep-ph]].
23. W. M. Yao et al. [Particle Data Group], J. Phys. G 33 (2006) 1.
24. T. T. Takahashi and T. Kunihiro, Phys. Rev. D 78, 011503 (2008) [arXiv:0801.4707 [hep-

lat]].


