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Abstract

In [6] it was shown that properties of digraphs such as growth, property Z, and num-
ber of ends are reflected by the properties of certain reachability relations defined on the
vertices of the corresponding digraphs.

In this paper we study these relations in connection with certain properties of automor-
phism groups of transitive digraphs. In particular, one of the main results shows that if a
transitive digraph admits a nilpotent subgroup of automorphisms with finitely many orbits,
then its nilpotency class and the number of orbits are closely related to particular properties
of reachability relations defined on the digraphs in question.

The obtained results have interesting implications for Cayley digraphs of certain types
of groups such as torsion-free groups of polynomial growth.
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1 Introduction and preliminaries
In [2], highly arc-transitive digraphs were considered from several different viewpoints,
leading to – besides many nice results – a number of interesting problems. One of these
problems, which remained open for a very long time and was finally settled in [4], con-
cerned a certain reachability relation defined on the edges of digraphs. A subset of the
authors of this paper also worked on this ’reachability problem’ [5] and several other ques-
tions concerning highly-arc-transitive digraphs. In [6], as an offspring of our considera-
tions, we became interested in reachability relations defined on vertices rather than edges,
which we review in the sequel.

A digraph is an ordered pair D = (V (D), E(D)), where V (D) is the vertex-set and
E(D) ⊆ V (D)×V (D) is the edge-set. Note that a digraph can have loops (v, v) as well as
pairs of ‘oppositely directed’ edges of the form (u, v) and (v, u). We also emphasize that
with this definition our digraphs are always simple in the sense that between two vertices
there can be at most one edge in each direction. Digraphs considered in this paper are
connected in the sense that their underlying undirected graphs are connected.

By Aut(D) we denote the automorphism group of a digraph D. We say that D is
transitive if someH ⊆ Aut(D) acts transitively on the vertices ofD. Also, if g ∈ Aut(D),
then gv denotes the image of v ∈ V (D) under g and Hv denotes the orbit of v under some
subset H ⊆ Aut(D).

To make sure that no ambiguity arises, we explicitely define Cayley digraphs as they
are understood in this paper. The Cayley digraph Cay(G,S) of a group G with respect
to a generating set S has the group G as its vertex set and the edges are given by right
multiplication by the generators: E(Cay(G,S)) = {(g, gs)|s ∈ S}. If Cay(G,S) is
defined in this way, then G acts regularly on Cay(G,S) by left multiplication.

A walk W = (v0, ε1, v1, . . . , εn, vn) from v0 to vn of length n ≥ 0 (denoted by |W |)
is a sequence of n + 1 (not necessarily pairwise distinct) vertices v0, v1, . . . , vn ∈ V (D),
and n indicators ε1, ε2, . . . , εn ∈ {1,−1} such that for all j ∈ {1, 2, . . . , n} we have

εj = 1 ⇒ (vj−1, vj) ∈ E(W ),

εj = −1 ⇒ (vj , vj−1) ∈ E(W ).

W is called a closed walk if v0 = vn. Intuitively, a walk is a traversal in the digraph from
vertex to vertex along edges, where indicators 1 and −1 tell whether the traversal respects
the direction of edges or not. The formal definition of a walk as above has been chosen in
order to make proofs unambiguous. If the vertices of a walk W are pairwise different then
W is called a path. A walk (or a path) is directed if its indicators are all equal to 1 or to
−1, and is alternating if the values of the indicators alternate.

Let W = (v0, ε1, v1, . . . , εn, vn) be a walk. We let the inverse walk of W be W−1 =
(vn,−εn, vn−1, . . . ,−ε1, v0). Moreover, for 0 ≤ i ≤ j ≤ n, the subsequence

iWj = (vi, εi+1, . . . , εj , vj)
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of W is called a subwalk. Furthermore, let W ′ = (u0, δ1, u1, . . . , δm, um) be a walk such
that u0 = vn. Then the concatenation of W and W ′ is the walk

W ·W ′ = (v0, ε1, v1, . . . , vn−1, εn, u0, δ1, u1, . . . , δm, um)

of length n+m.
We now introduce two families of reachability relations defined on vertices of a digraph.

Let W = (v0, ε1, v1, . . . , εn, vn) be a walk. The weight of the walk W is defined as

ζ(W ) = ε1 + ε2 + . . .+ εn.

Let k be a nonnegative integer. We say that a vertex u ∈ V (D) is R+
k -related to a vertex

v ∈ V (D), in symbols
uR+

k v,

if there exists a walk W from u to v such that ζ(W ) = 0, and that for every 0 ≤ j ≤ |W |
we have ζ(0Wj) ∈ [0, k]. For a given pair of vertices u, v, the set of all such walks is
denoted by R+

k [u, v]. Analogously we say that u is R−k -related to v, in symbols uR−k v,
if there exists a walk W such that ζ(W ) = 0, and that for every 0 ≤ j ≤ |W | we
have ζ(0Wj) ∈ [−k, 0]. For a given pair of vertices u, v, the set of all such walks is
denoted by R−k [u, v]. Note that R+

k and R−k are equivalence relations. Their equivalence
classes are denoted by R+

k (v) and R−k (v), v ∈ V (D), respectively. If D is transitive,
then the equivalence classes of R+

k (and similarly of R−k ) form an imprimitivity system for
Aut(D). Observe that the sequences (R+

k )k∈Z+ and (R−k )k∈Z+ are ascending: for all k we
have R+

k ⊆ R
+
k+1 and R−k ⊆ R

−
k+1. Their respective unions

R+ =
⋃
k∈Z+

R+
k and R− =

⋃
k∈Z+

R−k

are thus also equivalence relations, and their equivalence classes form imprimitivity sys-
tems for Aut(D) wheneverD is transitive. As was shown in [6],R+ = R+

k holds whenever
R+
k = R+

k+1. In this case, the smallest nonnegative integer k such that R+
k = R+ holds is

called the exponent exp+(D) ofD. IfR+
k 6= R+ for all k, then we set exp+(D) =∞. The

exponent exp−(D) is defined analogously. We say that the relation R+
k (R+, R−k , R

−) is
universal if uR+

k v (uR+v, uR−k v, uR
−v) holds for any pair u, v ∈ V (D). We mention

(see [6]) that all of the above relations are universal, provided that the digraph in question
is connected and has a loop at every vertex.

In [6] it was also shown that properties of the two sequences of equivalence relations
(R+

k )k∈Z+ and (R−k )k∈Z+ are strongly related to other properties of digraphs such as hav-
ing property Z, the number of ends, growth conditions and vertex degree.

Furthermore, in [8] the relations Ra,b were studied, where a is a non-positive integer or
a = −∞ and b is a non-negative integer or b = ∞. We say that a vertex u is Ra,b-related
to a vertex v if there exists a 0-weighted walk from u to v such that every subwalk starting
at u has weight in the interval [a, b].

The distance distD(u, v) between vertices u and v in a connected digraph D is the
length of a shortest path from u to v in the underlying undirected graph. The growth
function fD(v, n), n ≥ 0, with respect to some v ∈ V (D) is given by

fD(v, n) = |{u ∈ V (D) | distD(v, u) ≤ n}|.
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If D is transitive, then this function does not depend on a particular vertex v ∈ V (D). In
this case we denote it by fD(n).

We say that a transitive digraph D has polynomial growth if there are positive constants
c and d such that

fD(n) ≤ cnd

holds for all n ≥ 0. The digraph D has exponential growth if there is a constant c > 1 such
that

fD(n) > cn

holds for all n ≥ 0. If the growth function of a digraphD grows faster than any polynomial
but D does not have exponential growth, then we say that D has intermediate growth. In
the case of polynomial growth it can be shown that there always exist constants c1, c2 and
an integer d ≥ 1 such that

c1n
d ≤ fD(n) ≤ c2nd

holds for all n ≥ 0. We call this integer d the growth degree of D. We remark that the def-
initions concerning growth coincide with the usual definitions in the context of undirected
graphs.

Let D be a digraph and let τ be a partition of the vertex set of D. The quotient di-
graph Dτ of D with respect to τ is the digraph with vertex set τ and (uτ , vτ ) ∈ E(D)
if and only if there exist vertices u ∈ uτ and v ∈ vτ such that (u, v) ∈ E(D). If
W = (v0, ε1, v1, ε2, . . . , εn, vn) is a walk in D, then the quotient walk Wτ of W is de-
fined to be the walk W = ((v0)τ , ε1, (v1)τ , ε2, . . . , εn, (vn)τ ). Note that for every j,
0 ≤ j ≤ |W | = |Wτ |, we have ζ(0Wj) = ζ(0(Wτ )j). We emphasize that we consider
these quotient digraphs as simple digraphs in the sense that if there are several edges in
the same direction between two sets in τ , then the quotient digraph contains exactly one
directed edge between the respective vertices. But of course these quotient graphs might
contain loops if there is an edge (u, v) ∈ E(D) for some u ∈ vτ .

Let G be a group acting transitively on D and let H be a normal subgroup of G. Then
the orbits of H on V (D) give rise to an imprimitivity system τ of G on V (D). The
respective quotient digraph Dτ is usually denoted by DH .

As mentioned above, if D is transitive, then R+ and R− give rise to imprimitivity
systems of Aut(D) on D. The respective quotient digraphs are denoted by D/R+ and
D/R− and can be described easily (see e. g. [8]). The digraph D/R+ either is (1) a finite
directed cycle or (2) a two-way infinite directed line or (3) an infinite regular directed tree
with indegree 1 and outdegree > 1. Considering R− the first two possibilities are the
same, but if D/R− is neither of these digraphs, then it is a regular tree with outdegree 1
and indegree > 1.

2 Motivation and main result
The aim of this paper is to investigate the interplay between properties of groups and prop-
erties of reachability relations in their Cayley digraphs.

For example, as a consequence of the last paragraph of the previous section, we im-
mediately see that the quotient digraphs with respect to R+ of Cayley digraphs of finitely
generated groups with polynomial or intermediate growth are either finite directed cycles
or directed lines. Further, from [6, Theorem 4.12] we know that a finitely generated group
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G has exponential growth if for at least one Cayley digraph D of G, at least one of the
exponents exp+(D) or exp−(D) is infinite.

Additionally, by Gromov’s important result [3], a finitely generated group has polyno-
mial growth if and only if it contains a normal nilpotent subgroup of finite index. Hence the
following question arises naturally: What can be said about properties of our reachability
relations in Cayley digraphs of finitely generated groups with polynomial growth?

In fact we carry out our considerations by assuming that nilpotent groups act with
finitely many orbits on digraphs. The results for Cayley digraphs of groups with polynomial
growth are then obtained as corollaries. The main result of this paper is the following
theorem.

To avoid ambiguity, we recall the definition of nilpotent groups: For a group G = G0,
let Gi+1 = [G0, Gi] for i ≥ 0. If G = G0 . G1 . . . . . Gr . Gr+1 = 1 then we say that G
is nilpotent of class r.

Theorem 2.1. Let a group G act transitively on a connected digraph D, and let N E G
be a normal nilpotent subgroup of class r acting with m orbits on D, where 1 ≤ m <∞.
Then exp+(D) = exp−(D) ≤ m(r + 2)− 1.

Although we are mainly interested in properties of our relations in Cayley digraphs of
finitely generated groups, we emphasize that - with the exception of those results explicitely
formulated for finitely generated groups - we never assume that the graphs in consideration
are locally finite.

3 Auxiliary results
In this section we prove several results which will be useful for our main investigations,
carried out in Section 4.

Lemma 3.1. Let D be a digraph with minimal in- and outdegree at least 1 and let k ≥
1 be an integer. Then for any two vertices u, v ∈ V (D) we have that uR+

k v if and
only if there exists a walk W ∈ R+

k [u, v] that is a concatenation of walks of the form
(u0, 1, u1, 1, . . . , 1, uk,−1, uk+1,−1, . . . ,−1, u2k). An analogous result holds for the re-
lation R−k .

Proof. We prove the assertion for the relation R+
k and leave the analogous proof for R−k to

the reader.
To this end suppose uR+

k v and letW ′= (u0, ε1, u1, ε2, u2, ε3, . . . , εn, un) ∈ R+
k [u, v].

Observe that, since the minimal in- and outdegrees of D are at least 1, there is a directed
walk of any prescribed positive or negative weight starting at any vertex of D.

A walkW ∈ R+
k [u, v], as described in the statement of the lemma, can now be obtained

from W ′ inductively by inserting a concatenation of such a directed walk of appropriate
length with its inverse at each vertex ui for which εi 6= εi+1 and ζ(0W

′
i ) is not 0 or k.

For a group G, a positive integer k, and subsets S, T ⊆ G let ST = {st|s ∈ S, t ∈ T},
Sk = S · · ·S︸ ︷︷ ︸

k

and S−k = S−1 · · ·S−1︸ ︷︷ ︸
k

.

Corollary 3.2. Let D = Cay(G,S) be a Cayley digraph of a group G with respect to
the generating set S. Then for any integer k ≥ 1 and any g ∈ G we have that R+

k (g) =
gR+

k (1) = g〈SkS−k〉 and R−k (g) = gR−k (1) = g〈S−kSk〉.
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Proof. We prove the assertions for R+
k and leave the analogous proof for R−k to the reader.

The fact that R+
k (g) = gR+

k (1) is obvious since G has a natural left regular action on D
while R+

k (1) = 〈SkS−k〉 follows from Lemma 3.1.

Lemma 3.3. Let D be a digraph and let τ be a partition of the vertex set of D. Suppose
that for each u, v ∈ V (D) with (uτ , vτ ) ∈ E(Dτ ) there exist u′ ∈ uτ and v′ ∈ vτ such
that (u, v′) and (u′, v) are arcs of D. Then for each k ≥ 1 and each u, v ∈ V (D) we have
that uτR+

k vτ if and only if there exists some w ∈ vτ such that uR+
k w. An analogous result

holds for the relation R−k .

Proof. We prove the result for R+
k and leave the analogous proof for R−k to the reader. Let

k ≥ 1 and let u, v ∈ V (D).
Suppose first that for some w ∈ vτ we have that uR+

k w and let W ∈ R+
k [u,w]. Since

vτ = wτ , the walk Wτ is contained in R+
k [uτ , vτ ]. This proves one implication.

Suppose now that uτR+
k vτ and let W̄ = (uτ , ε1, x̄1, ε2, . . . , x̄n, εn+1, vτ ) ∈ R+

k [uτ ,
vτ ]. Then by assumption one can successively find representatives xi ∈ x̄i and w ∈ vτ
such that W = (u, ε1, x1, ε2, x2, ε3, . . . , xn, εn+1, w) ∈ R+

k [u,w].

Remark 3.4. Observe that the condition of the above lemma is satisfied if τ consists of the
orbits of some group acting on D.

Lemma 3.5. Let a groupG act transitively on a digraphD and letH be a normal subgroup
of G such that each of its subgroups is normal in G. Then exp+(D) ≤ exp+(DH) + 1 and
exp−(D) ≤ exp−(DH) + 1.

Proof. We prove the result for exp+(D). The proof for exp−(D) is analogous and is left
to the reader. If exp+(DH) = ∞, there is nothing to prove. We may thus assume that
exp+(DH) = k for some integer k ≥ 0.

To show that exp+(D) ≤ k + 1 let u ∈ V (D) and v ∈ R+(u) be arbitrary. Consider
the equivalence class B = R+

k+1(u) and the H-orbit Hu. Note that both of these sets
are blocks of imprimitivity for the action of G on V (D). Let K be the setwise stabilizer
in H of the set B. Note that the K-orbit of u is Ku = Hu ∩ B and is thus a block of
imprimitivity for G. Moreover, by assumption on H the subgroup K is normal in G, and
so the block system generated by the block Ku coincides with the block system given by
the orbits of K. Consequently, any two vertices within the same H-orbit are R+

k+1 related
if and only if they belong to the same K-orbit.

We first show that exp+(DK) ≤ k. If this is not the case, then there exists Kw ∈
V (DK) such that Kw ∈ R+

k+1(Ku) \R+
k (Ku). By Lemma 3.3 there exists w′ ∈ Kw such

that uR+
k+1w

′. Moreover, since exp+(DH) = k there exists z ∈ Hw′ = Hw such that
uR+

k z. But then zR+
k+1w

′, and so Kz = Kw′ = Kw, implying that Kw ∈ R+
k (Ku), a

contradiction.
Hence exp+(DK) ≤ k. But then Kv ∈ R+

k (Ku) = R+
k+1(Ku) in DK , and by

Lemma 3.3 there exists some x ∈ Kv such that uR+
k+1x. Since x ∈ Kv we have that

xR+
k+1v, and so uR+

k+1v holds.
Since u and v were arbitrary subject to the condition that uR+v, this shows that

exp+(D) ≤ k + 1.

Lemma 3.6. Let a group G act transitively on a digraph D with finite exponents exp+(D)
and exp−(D). Furthermore, let τ denote the imprimitivity system of G on V (D) which is
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induced by the equivalence classes with respect to R+ or R−. Then every g ∈ G which
leaves invariant at least one block of τ leaves invariant all blocks of τ .

Proof. Since the exponents exp+(D) and exp−(D) are both finite, [6, Corollary 3.5] im-
plies that R+ = R−, and so the discussion from the last paragraph of the first section
implies that Dτ is a finite cycle or the two-way infinite directed line. Hence, the only
automorphism of Dτ which fixes a vertex is the identity. On the other hand, every au-
tomorphism g ∈ G which leaves invariant a block of τ induces an automorphism of Dτ

fixing a vertex of Dτ , and the result follows.

4 R+ and R− in transitive digraphs
We start with a simple observation concerning Cayley digraphs of abelian groups.

Proposition 4.1. Let G be an abelian group acting transitively on a digraph D. Then
exp+(D) = exp−(D) = 1.

Proof. Since G is abelian, D is a Cayley graph of G. Then Corollary 3.2 implies that
R+

1 = R−1 and [6, Corollary 3.4] implies that R+ = R+
1 = R−1 = R−, as claimed.

We now generalise this result to nilpotent groups.

Theorem 4.2. Let G be a nilpotent group of class r acting transitively on a digraph D.
Then exp+(D) = exp−(D) ≤ r + 1.

Proof. We first show that exp+(D) ≤ r+ 1. The proof is carried out by induction on r. If
r = 0, then G is an abelian group and Proposition 4.1 applies.

Suppose now that r ≥ 1. As G(r+1) = 1, we have that H = G(r) is contained in the
center of G, and so each of its subgroups is normal in G. Hence Lemma 3.5 implies that
exp+(D) ≤ exp(DH) + 1. Now, the quotient group G/H is a nilpotent group of class
r − 1 and acts transitively on the quotient digraph DH . By induction hypothesis we thus
have that exp+(DH) ≤ r. Consequently, exp+(D) ≤ r + 1, as claimed.

The fact that exp−(D) ≤ r + 1 follows by analogous arguments. Then [6, Corollary
3.5], implies that exp+(D) = exp−(D).

The next example shows that the bound from the above theorem is tight, that is, for
every positive integer r there exists a nilpotent group G of class r and a digraph D on
which G acts transitively such that exp+(D) = r + 1 = exp−(D) holds.

Example 4.3. Already for the smallest nonabelian finitely generated nilpotent group, the
dihedral group D8 of order 8 (of nilpotency class 1), this is the case. Let us write D8 =
〈f, a1, a2|f2 = a21 = a22 = 1, fa1f

−1 = a1a2, fa2 = a2f, a1a2 = a2a1〉. Then for the
Cayley digraph D = Cay(D8, {f, fa1}) we clearly have that exp+(D) = exp−(D) = 2.

In fact, this example happens to be the smallest member of the following infinite family.
Let n ≥ 1 be an integer and let Gn be the semidirect product of the elementary abelian
group Zn2 by the cyclic group Z2n−1 generated by Gn = 〈f, a1, a2, . . . , an〉, where f is
of order 2n−1, the ai are involutions commuting with each other and faif−1 = aiai+1

holds for all i, 1 ≤ i < n, while f and an commute. One can verify that for S =
{f, fa1a2 · · · an} we have that 〈SiS−i〉 = 〈a1, a2, . . . , ai〉 holds for all i, 1 ≤ i ≤ n, and
so Corollary 3.2 implies that exp+(Cay(Gn, S)) = n. Moreover, it can be verified that
Gn is nilpotent of class n− 1. Indeed, we have that G(i) = 〈ai+1, ai+2, . . . , an〉 holds for
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each i, 1 ≤ i ≤ n − 1, and of course then G(n) = 1. The Cayley graph Cay(Gn, S) thus
attains the bound from the above theorem.

We shall now see, that the above theorem cannot be generalized to solvable groups.

Example 4.4. The lamplighter group L is the wreath product Z2 o Z. The standard repre-
sentation for L is

〈a, t|a2, [tmat−m, tnat−n],m, n ∈ Z〉.

If we consider the Cayley digraph of L with respect to the generating set S = {t, at},
then this Cayley digraph is the horocyclic product of two directed trees with indegree 1 and
outdegree 2. In this digraph R+

k 6= R+ clearly holds for all k ∈ Z+. This shows that for
solvable groups we cannot expect a result like Theorem 4.2.

As was shown in [6], a connected, locally finite, transitive digraph D has exponential
growth if at least one of the exponents exp+(D) or exp−(D) is infinite. Hence these ex-
ponents must be finite if a connected, locally finite, transitive digraph D does not have ex-
ponential growth. So the question arises if we can find a bound on exp+(D) and exp−(D)
which depends on the growth rate ofD or on certain properties of groups acting transitively
on D. In the sequel we show that this is indeed possible.

We first consider the case where a digraph D allows a transitive action of a group G
containing a normal abelian subgroup, acting with finitely many orbits on D, thereby ob-
taining a tight bound for exp+(D) and exp−(D). We then explore a more general situation
where a transitive group G contains a normal nilpotent subgroup acting with finitely many
orbits on D. We start by proving two auxiliary results.

Lemma 4.5. Let D be a connected digraph, and let G be a transitive subgroup of Aut(D)
having a normal subgroup H / G with m, 1 ≤ m < ∞, orbits on D. If for some (and
hence every) u ∈ V (D) the set R+

1 (u) is contained in Hu, then the following hold:

(i) For every v ∈ V (D) the set R+(v) is contained in Hv.

(ii) The quotient digraph DH is a directed cycle.

Proof. Observe that if m = 1 there is nothing to prove, so we may assume m ≥ 2.
To prove (i) we show that R+

k (v) ⊆ Hv for all v ∈ V (D) and all k. We do that by in-
duction on k. The base of induction (k = 1) holds by assumption. Let now k ≥ 1 and sup-
pose that R+

j (v) ⊆ Hv holds for all j ≤ k. Pick an arbitrary vertex v ∈ V (D) and let w ∈
R+
k+1(v). Let v = v0, w = vn and choose a walk W = (v0, 1, v1, . . . , vn−1,−1, vn) ∈

R+
k+1[v, w]. Suppose first that for all i, 0 < i < n, we have that ζ(0Wi) > 0. In this case

v1R
+
k vn−1, and so induction hypothesis implies that vn−1 ∈ Hv1, that is, vn−1 = hv1

for some h ∈ H . Then (hv0, vn−1) ∈ E(D), and so hv0R
+
1 vn. Then, by assumption, we

have that hv0 ∈ Hvn, and so v ∈ Hw (recall that v = v0 and w = vn). Suppose now that
0 < i1 < i2 < · · · < it = n are such that ζ(0Wij ) = 0. By the above argument vi1 ∈ Hv,
vi2 ∈ Hvi1 ,... , w ∈ Hvit−1

. Hence v ∈ Hw, which proves (i).
We now prove (ii). Let Hv be an H-orbit. Since D is connected and H has at least two

orbits which are blocks of imprimitivity for G, there exists an H-orbit Hw 6= Hv such that
(Hw,H v) ∈ E(DH). It follows that there exists a vertex w′ ∈ Hw with (w′, v) ∈ E(D).
Consequently, the quotient digraph DH must have indegree one (for otherwise we obtain
a vertex x /∈ Hw which is R+

1 -related to w′). Since DH is finite, it is a simple directed
cycle.
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Lemma 4.6. Let D be a digraph, and let G be a transitive subgroup of Aut(D) having an
abelian normal subgroup H /G with m, 1 ≤ m <∞, orbits on D. If for some (and hence
any) u ∈ V (D) the set R+

1 (u) is contained in Hu, then exp+(D) = exp−(D) ≤ m.

Proof. We prove that exp+(D) ≤ m and leave the analogous proof that exp−(D) ≤ m to
the reader.

If m = 1, then D is a Cayley digraph of an abelian group, so Proposition 4.1 applies.
We can thus assume that m ≥ 2. Let ∆ = Hu for some u ∈ V (D).

We first construct an auxiliary digraph D∗ with vertex set ∆ and an edge (w, v) when-
ever there exists a directed path of length m in D from w to v. The restriction of H on ∆
acts regularly on ∆. The digraphD∗ thus is a Cayley digraph of an abelian group (possibly
disconnected). Therefore exp+(D∗) ≤ 1 by Proposition 4.1.

Now, let vR+w for some v, w ∈ V (D) and let us show that in this case vR+
mw holds.

By definition ofR+ we have that vR+
k w holds for some integer k. Then Lemma 3.1 implies

that there exists a walk in R+
k [v, w] which is a concatenation of walks of the form W =

(v0, 1, v1, 1, . . . , 1, vk,−1, vk−1,−1, . . . , −1, v2k). By transitivity it suffices to prove that
v0R

+
mv2k. Let t, r with 0 ≤ r < m be the integers such that k = tm + r. By Lemma 4.5

the vertices v0, vm, v2m, . . . , vtm and v2k, v2k−m, v2k−2m, . . . , v2k−tm all belong to the
H-orbit Hv0. Hence v2k = hv0, vtm = h1v0 and v2k−tm = h2v0 for some h, h1, h2 ∈ H .
Now, 0Wtm · (h1h

−1
2 ((2k−tm)W2k)) is a walk from v0 to x = h1h

−1
2 v2k = h1h

−1
2 hv0. As

H is abelian, x = hh−1
2 h1v0. Therefore, hh

−1
2 (tmW2k−tm) ∈ R+

r [x, v2k], and so r < m
implies that v0R+

mv2k if and only if v0R+
mx, that is, we can assume r = 0. Since v0 ∈ Hv,

we have v0 = h0v for some h0 ∈ H . It follows that the walk W corresponds to a walk
W ∗ ∈ R+

t [h0, h1h
−1
2 hh0] in D∗. Since exp+(D∗) ≤ 1, the walk W ∗ can be replaced by

a walk in R+
1 [h0, h1h

−1
2 hh0], implying that W can be replaced by a walk in R+

m[v0, v2k].
Therefore, R+ ⊆ R+

m, implying that R+ = R+
m. Analogously, it can be shown that

R− = R−m. Then [6, Corollary 3.5] completes the proof.

To prove the next theorem we need the following result from [6].

Proposition 4.7. ([6], Proposition 3.11) LetD be a digraph, let τ be the set of equivalence
classes of R+

1 , and let u ∈ V (D). Then, for any v ∈ V (D) and any k ≥ 2 we have that
uR+

k v if and only if uτR+
k−1vτ . An analogous assertion holds for R−k when taking the

quotient with respect to R−1 .

Theorem 4.8. Let D be a digraph and let G ≤ Aut(D) be a transitive subgroup having
an abelian normal subgroup H acting with m, 1 ≤ m < ∞, orbits on V (D). Then
exp+(D) = exp−(D) ≤ m.

Proof. We prove that exp+(D) ≤ m and leave the analogous proof for exp−(D) to the
reader. We proceed by induction on m. If m = 1, then the result follows from Proposi-
tion 4.1. Suppose the assertion holds for all n < m, m ≥ 2, and suppose that H has m
orbits on D. If for some u ∈ V (D) the set R+

1 (u) is contained in Hu, then Lemma 4.6
applies.

Assume now that the equivalence classes with respect to R+
1 are not contained in the

orbits of H and consider the quotient digraph D/R+
1 . Let K be the kernel of the action of

G on D/R+
1 and let N = HK/K ∼= H/(H ∩K) be the induced faithful action of H on

D/R+
1 . Observe that, since the R1-equivalence classes are not fully contained in the H-

orbits, N acts with at most m2 orbits on D/R+
1 . By induction hypothesis (note that N is an
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abelian normal subgroup of G/K) we have that exp+(D/R+
1 ) ≤ m

2 . By Proposition 4.7 it
follows that exp+(D) = exp+(D/R+

1 ) + 1 ≤ m+2
2 ≤ m.

Analogously it can be shown that exp−(D) ≤ m. Then again [6, Corollary 3.5] com-
pletes the proof.

Proof of Theorem 2.1
Let a group G act transitively on a connected digraph D, and let N E G be a normal

nilpotent subgroup of class r acting with m orbits on D, where 1 ≤ m <∞.
We first prove that exp+(D) ≤ m(r + 2)− 1. The proof is done by induction on m.
If m = 1, then the result holds by Theorem 4.2. If m ≥ 2 we distinguish two cases,

depending on the structure of DN .

Case 1. DN is not isomorphic to a directed cycle on m ≥ 2 vertices.
In this case Lemma 4.5 implies that, for any v ∈ V (D), the setR+

1 (v) is not completely
contained in one orbit of N . Let τ denote the imprimitivity system of G on D consisting
of the equivalence classes with respect to R+

1 . Then the permutation group Gτ , induced
by the action of G on τ , acts transitively on Dτ . Furthermore, Nτ acts with at most m

2
orbits. In addition Nτ is nilpotent of class at most r. Then, by induction hypothesis,
exp+(Dτ ) ≤ m

2 (r + 2)− 1 holds and the result follows by Proposition 4.7.

Case 2. DN is isomorphic to a directed cycle C = (c1, . . . , cm) on m ≥ 2 vertices.
Let O1, . . . , Om denote the orbits of N on V (D) which correspond to the vertices

c1, . . . , cm ∈ DN . Then of course there is no edge in D which connects two vertices
which are both contained in the same orbit. Furthermore, all edges of D are directed from
Oi to Oi+1, 1 ≤ i ≤ m, where indices are taken modulo m. Then for every v ∈ Oi,
1 ≤ i ≤ m, R+(v) ⊆ Oi holds. Of course exp+(D) ≤ m− 1 holds if R+

m−1(v) = Oi for
some v ∈ Oi and some i, 1 ≤ i ≤ m.

Hence we only have to consider the case when R+
m−1(v) is properly contained in Oi

for every i, 1 ≤ i ≤ m, and every vertex v ∈ Oi. By Bι, ι ∈ I, we denote the equivalence
classes of R+

m−1 on O1. For v ∈ O1, let P(v) denote the set of all directed paths starting
at v and containing exactly one vertex from each orbit Oi, 1 ≤ i ≤ m. Since DN is
isomorphic to a directed cycle with m vertices and N acts transitively on each of its orbits,
P(v) 6= ∅ for all v ∈ O1. Furthermore, for ι ∈ I let Sι be the subdigraph of D induced by
the vertices of the union

⋃
v∈Bι P(v). Note that since the sets Bι are different equivalence

classes with respect to R+
m−1, the digraphs Sι, ι ∈ I, are pairwise disjoint.

We first define Pm as the set of all directed paths P = (v1, . . . , vm+1) in D where
vj ∈ Oj for 1 ≤ j ≤ m and vm+1 ∈ O1. Analogously we define P−m as the set of all
inverses of the paths in Pm. Furthermore, let R+

m−1 denote the set of all walks which are
contained in R+

m−1[u, v] for some vertices u, v ∈ O1.
Let v1, v2 ∈ O1 now satisfy v1R+v2. If v1 and v2 are both contained in one and the

same set Bι, ι ∈ I, then of course v1R+
m−1v2 holds.

Now let v1 ∈ Bι1 and v2 ∈ Bι2 , ι1 6= ι2. Then there is a walk W ∈ R+[v1, v2] which
is the concatenation of finitely many paths and walks which are contained in Pm, P−m
or R+

m−1. Let D′ now be the digraph with vertex set I with (ι1, ι2) ∈ E(D′) whenever
there exists a path P ∈ Pm with origin in Bι1 and terminal vertex in Bι2 . Observe that,
in general, the digraph D′ might not be locally finite. Nevertheless, the restriction of N
to O1 induces a transitive group acting on D′ which is nilpotent of class at most r. Thus
Theorem 4.2 implies that exp+(D′) ≤ r + 1.
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Observe that, by Lemma 3.1, we can assume that the walk W is the concatenation of t
paths from Pm, followed by a walk in R+

m−1 and then t paths from P−m, for some non-
negative integer t. Let u0, u1, . . . , u2t+1 be the vertices ofW , contained inO1, given in the
order they are met when traversing W . Thus u0, u1, . . . , ut−1 are the origins of the paths
fromPm while the vertices ut+1, ut+2, . . . , u2t are the origins of the paths fromP−m. The
walk W thus naturally gives rise to the walk W ′ = (ι0, ι1, . . . , ιt−1, ιt+1, ιt+2, . . . , ι2t+1)
in D′, where for each i we have that ui ∈ Bιi (observe that ut ∈ Bιt+1

= Bιt ). Of
course W ′ ∈ R+[ι0, ι2t+1], and so exp+(D′) ≤ r + 1 implies that there is a walk
W̄ ′ ∈ R+

r+1[ι0, ι2t+1]. Since the sets Bιi are equivalence classes of the relation R+
m−1

on D it is now clear that this walk gives rise to some walk in R+
m(r+2)−1[v1, v2].

Since exp−(D) ≤ m(r+ 2)− 1 holds by similar arguments, [6, Corollary 3.5] implies
that exp+(D) = exp−(D). �

Corollary 4.9. Let G be a finitely generated group, let N be a normal nilpotent subgroup
of finite index m in G and let D denote a Cayley digraph of G with respect to some finite
generating set S. Then exp+(D) = exp−(D) ≤ m(r + 2) − 1 holds, where r is the
nilpotency class of N .

It is natural to ask if this bound is tight. All examples we know in fact satisfy the
inequality exp+(D) ≤ m(r + 1). We thus pose the following problem.

Problem 4.10. Is it true that exp+(D) = exp−(D) ≤ m(r + 1) holds for the Cayley
digraphs of groups described in Corollary 4.9?

For Cayley digraphs D of finitely generated torsion-free groups G with polynomial
growth we even obtain bounds for exp+(D) and exp−(D) which only depend on the
growth degree. To formulate the result we first have to consider GL(n,Z).

Theorem 4.11. (see e.g. [7]) The orders of the finite subgroups of GL(n,Z) are bounded
by some function g(n) of n alone.

Theorem 4.12. (see e.g. [7]) Let G be a finitely generated torsion-free group with polyno-
mial growth of degree d. Then G contains a normal nilpotent subgroup of class less than√

2d and index at most g(d), where g(d) is the function of Theorem 4.11.

Corollary 4.13. Let G be a finitely generated torsion-free group with polynomial growth
of degree d. Then for any Cayley digraph D of G, exp+(D) and exp−(D) are bounded by
g(d)(

√
2d+ 2)− 1, where g(d) is the function of Theorem 4.11

We conclude the paper with the following observations. Let G ≤ Aut(D) act transi-
tively on a digraph D with finite exponents exp+(D) and exp−(D). Then Lemma 3.6 im-
plies that the equivalence classes of the relation R+ = R− are orbits of a normal subgroup
of G. Thus, if this relation is not universal and if the digraph has indegree or outdegree at
least 2, then this normal subgroup of G is proper and not trivial. As a consequence, if G is
simple, the relation R+ = R− is universal on D. As was already mentioned above it was
shown in [6, Theorem 4.12] that a connected infinite locally finite transitive digraph D has
exponential growth if at least one of the exponents exp+(D) or exp−(D) is infinite. At
this point we recall the following problem from combinatorial group theory (see e.g. [1]),
which was originally posed by R. I. Grigorchuk.
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Problem 4.14. Does every finitely generated infinite simple group have exponential
growth?

The following proposition then allows to formulate a conjecture which closely relates this
problem to reachability relations.

Proposition 4.15. If a finitely generated infinite simple group G does not have exponential
growth, then for every finite generating set S of G there is a finite integer kS ≥ 1, such that
R+
kS

= R−kS is universal in C(G,S).

Proof. Follows immediately from [6, Theorem 4.12] and Lemma 3.6.

Conjecture 4.16. Let G be a finitely generated infinite group. Then there is a finite gen-
erating set S of G such that for the Cayley digraph D of G with respect to S one of the
following holds:

• At least one of the exponents exp+(D) or exp−(D) is infinite and hence D has
exponential growth.

• Both, exp+(D) and exp−(D) are finite and the reachability relations R+ and R−

are not universal on D.

Observe that by Proposition 4.15 the validity of this conjecture would provide a positive
answer to Grigorchuk’s problem.

References
[1] G. Baumslag, A. G. Myasnikov and V. Shpilrain, Open problems in combinatorial group the-

ory. Second edition, Combinatorial and geometric group theory, S. Cleary, R. Gilman, A. G.
Myasnikov, V. Shpilrain, eds., Contemporary Mathematics 296, AMS 2002.

[2] P. J. Cameron, C. E. Praeger and N. C. Wormald, Infinite highly arc transitive digraphs and
universal covering digraphs, Combinatorica 13 (1993), 377–396.

[3] M. Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Etudes Sci. Publ.
Math. 53 (1981), 53–78.

[4] M. DeVos, B. Mohar and R. Samal, Reachability in highly arc-transitive digraphs, arXiv:1110.
2945.
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