
Advances in
Production
Engineering &
Management

Published by PEI
apem-journal.org

ISSN 1854-6250

APEM
journal

Volume 10 | Number 2 | June 2015

http://apem-journal.org/
http://apem-journal.org/
http://apem-journal.org/Archives/2015/VOL10-ISSUE02.html
http://apem-journal.org/


 

APEM  journal  is  indexed/abstracted  in  Scopus  (Elsevier),  Inspec,  EBSCO  (Academic  Search  Alumni  Edition,  Academic  Search  Complete, 
Academic Search Elite, Academic Search Premier, Engineering Source, Sales & Marketing Source, TOC Premier), ProQuest (CSA Engineering 
Research Database  – Cambridge  Scientific Abstracts, Materials Business  File, Materials Research Database, Mechanical &  Transportation 
Engineering Abstracts, ProQuest SciTech Collection), and TEMA (DOMA). Listed in Ulrich’s Periodicals Directory and Cabell's Directory. 

Advances in Production Engineering & Management 
 

Identification Statement 
 

 

Published quarterly by Production Engineering Institute (PEI), University of Maribor 
Smetanova ulica 17, SI – 2000 Maribor, Slovenia, European Union (EU) 

Phone: 00386 2 2207522, Fax: 00386 2 2207990 
Language of text: English 

APEM homepage: apem‐journal.org 
University homepage: www.um.si 

ISSN 1854‐6250 | Abbreviated key title: Adv produc engineer manag | Start year: 2006
ISSN 1855‐6531 (on‐line) 

 

APEM Editorial 
 

Editor‐in‐Chief    Desk Editors    Website Master 

Miran Brezocnik 
editor@apem‐journal.org, info@apem‐journal.org 
University of Maribor, Faculty of Mechanical Engineering 
Smetanova ulica 17, SI – 2000 Maribor, Slovenia, EU 

  Tomaz Irgolic 
desk1@apem‐journal.org

Matej Paulic  
desk2@apem‐journal.org

  Lucija Brezocnik 
lucija.brezocnik@student.um.si 

 

 
 

Editorial Board Members 
 

Eberhard Abele, Technical University of Darmstadt, Germany
Bojan Acko, University of Maribor, Slovenia 
Joze Balic, University of Maribor, Slovenia 
Agostino Bruzzone, University of Genoa, Italy 
Borut Buchmeister, University of Maribor, Slovenia 
Ludwig Cardon, Ghent University, Belgium 
Edward Chlebus, Wroclaw University of Technology, Poland 
Franci Cus, University of Maribor, Slovenia 
Igor Drstvensek, University of Maribor, Slovenia 
Illes Dudas, University of Miskolc, Hungary 
Mirko Ficko, University of Maribor, Slovenia 
Vlatka Hlupic, University of Westminster, UK 
David Hui, University of New Orleans, USA 
Pramod K. Jain, Indian Institute of Technology Roorkee, India 

Isak Karabegović, University of Bihać, Bosnia and Herzegovina
Janez Kopac, University of Ljubljana, Slovenia 
Iztok Palcic, University of Maribor, Slovenia 
Krsto Pandza, University of Leeds, UK 
Andrej Polajnar, University of Maribor, Slovenia 
Antonio Pouzada, University of Minho, Portugal 
Rajiv Kumar Sharma, National Institute of Technology, India 
Katica Simunovic, J. J. Strossmayer University of Osijek, Croatia 
Daizhong Su, Nottingham Trent University, UK 
Soemon Takakuwa, Nagoya University, Japan  
Nikos Tsourveloudis, Technical University of Crete, Greece 
Tomo Udiljak, University of Zagreb, Croatia 
Kanji Ueda, The University of Tokyo, Japan 
Ivica Veza, University of Split, Croatia 

Limited Permission to Photocopy: Permission is granted to photocopy portions of this publication for 
personal use and for the use of clients and students as allowed by national copyright laws. This per‐
mission does not extend to other types of reproduction nor to copying for  incorporation  into com‐
mercial advertising or any other profit‐making purpose. 

Subscription Rate: 120 EUR for 4 issues (worldwide postage included); 30 EUR for single copies (plus 
10 EUR for postage); for details about payment please contact: info@apem‐journal.org 

Postmaster: Send address changes to info@apem‐journal.org 

Cover and interior design by Miran Brezocnik 
Printed by Tiskarna Koštomaj, Celje, Slovenia 

Statements and opinions expressed in the articles and communications are those of the individual contributors and not necessarily those of 
the editors or the publisher. No responsibility is accepted for the accuracy of information contained in the text, illustrations or advertise‐
ments. Production Engineering Institute assumes no responsibility or liability for any damage or injury to persons or property arising from 
the use of any materials, instructions, methods or ideas contained herein. 

Copyright © 2015 PEI, University of Maribor. All rights reserved.

APEM 
journal

mailto:editor@apem%E2%80%90journal.org
mailto:info@apem%E2%80%90journal.org
mailto:desk1@apem%E2%80%90journal.org
mailto:desk2@apem%E2%80%90journal.org
mailto:lucija.brezocnik@student.um.si
mailto:info@apem%E2%80%90journal.org
http://www.um.si/en/Pages/default.aspx
http://apem-journal.org/


57 
 

 

 
Production Engineering Institute (PEI) 

	
Advances in Production Engineering & Management 

Volume 10 | Number 2 | June 2015 | pp 55–110 

	
	
Contents 

Scope and topics  58

Modeling and optimization of parameters for minimizing surface roughness and tool wear 
in turning Al/SiCp MMC, using conventional and soft computing techniques 
Tamang, S.K.; Chandrasekaran, M. 

59

Predictive analysis of criterial yield during travelling wire electrochemical discharge  
machining of Hylam based composites 
Mitra, N.S.; Doloi, B.; Bhattacharyya, B. 

73

Increasing student motivation and knowledge in mechanical engineering by using  
action cameras and video productions 
McCaslin, S.E.; Young, M. 

87

Wear characteristics of heat‐treated Hadfield austenitic manganese steel 
for engineering application 
Agunsoye, J.O.; Talabi, S.I.; Bello, O. 

97

Calendar of events  108

Notes for contributors  109

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
Journal homepage: apem‐journal.org 

ISSN 1854‐6250 
ISSN 1855‐6531 (on‐line) 

©2015 PEI, University of Maribor. All rights reserved. 

http://dx.doi.org/10.14743/apem2015.2.192
http://dx.doi.org/10.14743/apem2015.2.193
http://dx.doi.org/10.14743/apem2015.2.194
http://dx.doi.org/10.14743/apem2015.2.195
http://apem-journal.org/
http://apem-journal.org/Archives/2015/VOL10-ISSUE02.html
http://www.um.si/en/Pages/default.aspx


58 
 

Scope and topics 

Advances	in	Production	Engineering	&	Management	 (APEM	journal)	 is	an	 interdisciplinary	refer‐
eed	 international	academic	 journal	published	quarterly	by	the	Production	Engineering	Institute	
at	the	University	of	Maribor.	The	main	goal	of	the	APEM	journal	is	to	present	original,	high	quality,	
theoretical	and	application‐oriented	research	developments	in	all	areas	of	production	engineer‐
ing	and	production	management	to	a	broad	audience	of	academics	and	practitioners.	In	order	to	
bridge	 the	 gap	between	 theory	 and	 practice,	 applications	 based	 on	 advanced	 theory	 and	 case	
studies	are	particularly	welcome.	For	theoretical	papers,	their	originality	and	research	contribu‐
tions	are	the	main	factors	in	the	evaluation	process.	General	approaches,	formalisms,	algorithms	
or	techniques	should	be	illustrated	with	significant	applications	that	demonstrate	their	applica‐
bility	 to	 real‐world	 problems.	 Although	 the	APEM	 journal	 main	 goal	 is	 to	 publish	 original	 re‐
search	papers,	review	articles	and	professional	papers	are	occasionally	published.	

Fields	of	interest	include,	but	are	not	limited	to:	

Additive	Manufacturing	Processes	
Advanced	Production	Technologies	
Artificial	Intelligence	
Assembly	Systems	
Automation	
Cutting	and	Forming	Processes	
Decision	Support	Systems	
Discrete	Systems	and	Methodology	
e‐Manufacturing	
Fuzzy	Systems	
Human	Factor	Engineering,	Ergonomics	
Industrial	Engineering	
Industrial	Processes	
Industrial	Robotics	
Intelligent	Systems	
Inventory	Management	
Joining	Processes	
Knowledge	Management	
Logistics	

Machine	Tools	
Machining	Systems	
Manufacturing	Systems	
Mechanical	Engineering	
Mechatronics	
Metrology	
Modelling	and	Simulation	
Numerical	Techniques	
Operations	Research	
Operations	Planning,	Scheduling	and	Control	
Optimisation	Techniques	
Project	Management	
Quality	Management	
Queuing	Systems	
Risk	and	Uncertainty	
Self‐Organizing	Systems	
Statistical	Methods	
Supply	Chain	Management	
Virtual	Reality
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Modeling and optimization of parameters for minimizing 
surface roughness and tool wear in turning Al/SiCp MMC, 
using conventional and soft computing techniques 

Tamang, S.K.a, Chandrasekaran, M.a,* 
aMechanical Engineering Department, North Eastern Regional Institute of Science and Technology, Nirjuli, India  

 
 

A B S T R A C T  	 A R T I C L E   I N F O	

Aluminium	 alloy	with	 silicon	 carbide	 particulate	 (Al/SiCp)	 reinforced	metal	
matrix	composite	(MMC)	are	used	within	a	variety	of	engineering	applications	
due	 to	 their	 excellent	 properties	 in	 comparison	with	 non‐reinforced	 alloys.	
This	presented	work	attempted	the	development	of	predictive	modeling	and	
optimization	 of	 process	 parameters	 in	 the	 turning	 of	 Al/SiCp	MMC	 using	 a	
titanium	nitride	(TiN)	coated	carbide	tool.	The	surface	roughness	Ra	as	prod‐
uct	quality	 and	 tool	wear	VB	 for	 improved	 tool	 life	were	 considered	as	 two	
process	 responses	 and	 the	process	 parameters	were	 cutting	 speed	v,	 feed	 f,
and	depth	of	cut	d.	Two	modeling	techniques	viz.,	response	surface	methodol‐
ogy	(RSM)	and	artificial	neural	network	(ANN)	were	employed	for	developing
Ra	and	VB	predictive	models	and	their	predictive	capabilities	compared.	Four	
different	RSM	models	were	tried	out	viz.,	linear,	linear	with	interaction,	linear	
with	 square,	 and	 quadratic	 models.	 The	 linear	 with	 interaction	 model	 was
found	to	be	better	in	terms	of	predictive	performance.	The	optimum	operat‐
ing	 zone	was	 identified	 through	an	overlaid	 contour	plot	 generated	as	 a	 re‐
sponse	surface.	Parameter	optimization	was	performed	for	minimizing	Ra	and	
VB	as	a	single	objective	case	using	a	genetic	algorithm	(GA).	The	minimum	Ra
and	VB	 obtained	were	2.52	μm	and	0.31	mm,	 respectively.	Optimizations	of	
multi‐response	 characteristics	 were	 also	 performed	 employing	 desirability	
function	analysis	(DFA).	The	optimal	parameter	combination	was	obtained	as
v	=	50	m/min,	f	=	0.1	mm/rev	and	d	=	0.5	mm	being	the	best	combined	quality
characteristics.	The	prediction	errors	were	found	as	4.98	%	and	3.82	%	for	Ra
and	VB,	respectively,	which	showed	the	effectiveness	of	the	method.		
©	2015	PEI,	University	of	Maribor.	All	rights	reserved.	
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1. Introduction  

The	 application	 and	 use	 of	metal	matrix	 composites	 (MMC)	 in	manufacturing	 industries	 have	
now	become	increased	due	to	its	improved	properties	viz.,	high	strength,	low	weight,	high	wear	
resistance,	low	heat	of	thermal	expansion,	etc.	[1].	The	matrix	phase	and	reinforcement	design	of	
the	 material	 is	 responsible	 for	 the	 desired	 property	 of	 MMC.	 Among	 different	 types	 of	 MMC	
available,	aluminium	based	SiC	particulate	(SiCp)	reinforced	MMC	have	found	useful	application	
as	engineering	material	[2].	The	conversion	of	these	materials	into	an	engineering	part	or	com‐
ponent	is	obtained	by	machining	through	common	conventional	machining	processes	like	turn‐
ing,	milling,	drilling,	and	grinding.	Turning	is	considered	as	foremost	common	machining	meth‐
od	because	of	its	ability	to	machine	cylindrical	surfaces	faster	with	reasonably	good	surface	fin‐
ish.	Due	 to	 hard	 and	 abrasive	 characteristic	 of	 reinforcement	materials	 used	 in	MMC	 the	ma‐
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chinability	 study,	 development	 of	 predictive	modeling	 and	optimizing	 the	process	 parameters	
have	attracted	the	researchers.	Most	of	the	research	on	MMC	machining	is	concentrated	on	in‐
vestigation	of	cutting	tool	wear,	surface	roughness	of	the	machined	product,	delamination	factor	
of	drill	holes	produced,	and	metal	removal	rate	during	machining.		
	 Yuan	and	Dong	[3]	studied	on	surface	finish	in	precision	turning	of	MMCs	using	diamond	tool.	
They	 considered	 spindle	 speed,	 feed	 rate,	 cutting	 angle,	 volume	 percentage	 of	 reinforcement	
material	as	investigating	parameters.	Davim	[4]	used	Taguchi’s	orthogonal	array	and	analysis	of	
variance	(ANOVA)	to	investigate	the	cutting	characteristics	of	MMC	(A356/20/SiCp‐T6)	in	turn‐
ing	using	polycrystalline	diamond	(PCD)	cutting	tool.	Cutting	velocity,	feed	rate,	and	cutting	time	
are	considered	as	input	parameters	and	found	that	the	cutting	velocity	has	the	highest	physical	
and	 statistical	 influence	 on	 the	 tool	wear	 and	 cutting	 power.	 Feed	have	 high	 influence	 on	 the	
surface	roughness	of	 the	component.	Muthukrishnan	and	Davim	[5]	also	conducted	an	experi‐
mental	study	on	turning	of	Al/SiCp	(20	%)	MMC	using	the	PCD	tool	for	prediction	of	the	surface	
roughness	 and	 found	 that	 the	 feed	 rate	 is	 a	 highly	 influencing	 parameter.	 Palanikumar	 and	
Karthikeyan	[6]	have	studied	on	surface	roughness	using	Taguchi	method	combined	with	RSM	
for	minimizing	the	surface	roughness	in	machining	GFRP	composites	with	PCD	cutting	tool.	They	
concluded	 that	 fiber	 orientation	 and	machining	 time	 are	more	 influencing	parameters	 on	ma‐
chining	for	obtaining	better	surface	roughness.	Rajasekaran	et	al.	[7]	also	investigated	the	influ‐
ence	of	 surface	 roughness	 in	 turning	CFRP	composite	using	 cubic	boron	nitride	 (CBN)	 cutting	
tool	and	applied	fuzzy	logic	technique	for	modeling.	They	found	that	feed	has	the	greater	impact	
on	surface	roughness	and	fuzzy	 logic	model	predicts	better.	The	 influence	of	 tool	wear	on	ma‐
chining	glass	fibre‐reinforced	plastics	(GFRP)	composites	was	investigated	by	Palanikumar	and	
Davim	[8]	conducting	series	of	experiments.	They	used	ANOVA	technique	to	assess	the	influenc‐
ing	parameters.		
	 Chandrasekaran	and	Devarasiddappa	 [9]	used	 fuzzy	 logic	 for	developing	surface	roughness	
model	 for	end	milling	of	Al/SiCp	metal	matrix	composite	with	carbide	cutter.	They	 found	 that	
the	model	 predicts	with	 an	 average	 prediction	 error	 of	 0.31	%	when	 compared	with	 experi‐
mental	data.	The	surface	roughness	is	influenced	by	feed	rate	and	spindle	speed	while	depth	of	
cut	has	 less	 influence.	 In	comparing	the	performance	of	ANN	model	with	RSM	they	 found	that	
ANN	outperforms.	Arokiadass	et	al.	 [2]	also	developed	surface	roughness	prediction	model	 for	
end	milling	 of	 LM25Al/SiCp	MMC	using	 RSM	 technique.	 They	 also	 have	 taken	 influencing	 pa‐
rameters	as	feed	rate,	spindle	speed,	depth	of	cut	and	SiCp	percentage	and	found	that	feed	rate	is	
the	most	dominant	parameter	and	depth	of	cut	is	of	least	influence	on	the	surface	roughness.	
	 Thiagarajan	 and	 Sivaramakrishnan	 [10]	 conducted	 an	 experimental	 study	 for	 investigating	
the	grindability	of	Al/SiCp	MMC	in	a	cylindrical	grinding	process.	They	considered	wheel	veloci‐
ty,	work	piece	velocity,	feed,	depth	of	cut	and	SiCp	volume	fraction	percentage	as	input	parame‐
ters.	They	observed	that	the	improved	surface	roughness	and	damage	free	surfaces	are	obtained	
at	 high	 wheel	 and	 workpiece	 velocity	 while	 using	 white	 Al2O3	 grinding	 wheels.	 A	 numerical	
model	based	GA	optimization	methodology	has	been	applied	by	Davim	et	al.	[11]	for	determina‐
tion	 of	 optimal	 drilling	 conditions	 in	 A356/20/p	metal	 matrix	 composites.	 The	 experimental	
study	inferred	that	the	surface	finish	of	the	drilled	holes	increase	with	increase	in	feed	rate	but	
does	 not	 change	 significantly	 with	 variation	 in	 cutting	 speed.	 Basavarajappa	 et	 al.	 [12]	 have	
studied	the	variation	of	surface	roughness	on	the	drilling	of	metal	matrix	composites	using	car‐
bide	 tool.	 They	 also	 found	 that	 the	 surface	 roughness	 decreases	 with	 the	 increase	 in	 cutting	
speed	 and	 increases	with	 the	 increase	 in	 feed	 rate.	 Chandrasekaran	 and	Devarasiddappa	 [13]	
developed	a	surface	roughness	prediction	model	using	artificial	neural	network	(ANN)	for	grind‐
ing	of	MMC	components.	The	input	parameters	are	wheel	velocity,	feed,	work	piece	velocity	and	
depth	of	cut.	They	found	that	surface	roughness	is	highly	influenced	by	feed	and	wheel	velocity	
but	 least	effected	by	depth	of	 cut.	Hocheng	and	Tsao	 [14]	 compared	 the	RSM	and	 radial	basis	
function	network	 (RBFN)	 for	 core‐center	drilling	of	 composite	materials.	 They	 concluded	 that	
for	evaluating	thrust	force	RBFN	is	more	practical	and	predict	better	than	the	RSM	method.	Drill‐
ing	 CFRP	 composites	 have	 investigated	 by	 Tsao	 and	 Hocheng	 [15]	 using	 Taguchi	 and	 neural	
network	methods.	They	conducted	an	experiment	using	Taguchi	L27	orthogonal	array	of	experi‐
ments	with	 feed	 rate,	 spindle	 speed	 and	drill	 diameter	 as	 input	 parameters.	 Thrust	 force	 and	
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surface	roughness	produced	were	output	parameters	and	 it	has	been	 found	 that	 the	 feed	rate	
and	 drill	 diameter	 are	most	 significant	 factors	 for	 predicting	 the	 thrust	 force.	 They	 also	 con‐
firmed	that	RBFN	model	is	found	to	be	more	effective	than	multiple	regression	analysis	in	pre‐
dicting	the	output	responses,	i.e.	surface	roughness	and	thrust	force.	From	review	of	above	liter‐
atures	the	machining	investigation	on	turning	Al/SiCp	MMC	was	performed	by	the	researchers.	
They	were	mainly	considered	mainly	single	response	and	simultaneous	modeling	and	optimiza‐
tion	of	surface	roughness	and	tool	wear	were	not	attempted.	These	responses	are	important	for	
manufacturing	industries	on	the	basis	of	job	quality	and	longer	tool	life.	
	 In	 the	area	of	modeling	and	optimization	 the	 researchers	were	 carried	out	by	a	number	of	
traditional	and	soft	computing	techniques.	Application	of	GA	found	successful	by	number	of	re‐
searchers,	Mukherjee	and	Ray	[16],	and	Wang	and	Jawahir	[17].	Öktem	et	al.	[18]	used	RSM	cou‐
pled	with	 GA	 to	 optimize	 the	 cutting	 conditions	 for	 obtaining	minimum	 surface	 roughness	 in	
milling	of	mold	surfaces.	For	optimizing	multi‐response	characteristics,	various	researchers	use	
GRA	as	useful	tool.	The	method	does	not	require	mathematical	computation	and	can	be	applied	
easily	for	multi‐response	problems.	Pawade	and	Joshi	[19]	have	attempted	to	optimize	the	high‐
speed	 turning	of	 Inconel	718	 to	optimize	machining	parameters	using	grey	 relational	 analysis	
considering	cutting	speed,	feed,	depth	of	cut	and	edge	geometry	as	input	parameters	and	surface	
roughness	 and	 cutting	 force	as	 responses.	 Sahoo	and	Pradhan	 [20]	 carried	out	 an	experiment	
study	based	on	Taguchi	L9	orthogonal	array	in	turning	Al/SiC	MMC	using	uncoated	carbide	tool.	
Three	cutting	parameters	viz.,	cutting	speed	v,	feed	rate	f	and	depth	of	cut	d	were	optimized	to	
obtain	minimum	 flank	wear	and	surface	 roughness.	Low	and	high	cutting	 speed	was	 found	as	
optimum	parameter	for	VB	and	Ra,	respectively.	They	also	developed	a	linear	mathematical	mod‐
el	for	VB	and	Ra	and	found	statistically	significant	as	P‐value	is	less	than	0.05.	In	another	attempt,	
Sahoo	 et	 al.	 [21]	 performed	 turning	 experiments	 on	Al/SiC	MMC	 (10	%	weight)	 produced	 by	
traditional	casting	process.	Multi‐layer	coated	carbide	tool	was	used	to	investigate	tool	wear	and	
surface	roughness.	They	found	that	cutting	speed	is	the	most	influencing	machining	parameter	
on	flank	wear	and	feed	rate	on	surface	roughness.	They	also	carried	out	multi‐objective	optimi‐
zation	 using	 grey	 relational	 grade	 and	 found	 optimum	 combination	 as	 cutting	 speed	 at	 180	
m/min,	feed	at	0.1	mm/rev,	and	depth	of	cut	at	0.4	mm.	Gopalakannan	and	Thiagarajan	[22]	inves‐
tigated	on	Al/SiCp	MMC	using	EDM	process.	Pulse	current,	gap	voltage,	pulse	on	time	and	pulse	
off	time	were	considered	as	input	parameters	and	metal	removal	rate,	electrode	wear	rate	and	
surface	roughness	were	output	parameters.	The	developed	RSM	models	 show	good	predictive	
capability.	The	parameters	were	optimized	using	desirability	analysis	for	multiple	objectives.	
	 The	present	work	is	envisaged	to	develop	a	modeling	and	optimization	of	machining	parame‐
ters	on	the	performance	characteristics	in	turning	of	Al/SiCp	MMC	using	TiN	coated	cutting	tool.	
Predictive	modeling	was	developed	 for	surface	roughness	Ra	and	 tool	wear	VB	using	RSM	and	
ANN	techniques.	Machining	parameters	are	optimized	for	single‐	and	multi‐objective	case	using	
GA	and	DFA	for	minimize	Ra	and	VB	or	both	simultaneously.	

2. Development of RSM mathematical model 

The	 statistical	 tools	 such	 as	 multiple	 regression	 analysis,	 response	 surface	 methodology	 and	
Taguchi	method	are	widely	used	for	development	of	conventional	predictive	modeling.	RSM	is	a	
collection	of	mathematical	and	statistical	techniques	for	empirical	model	building.	It	is	used	for	
the	problems	in	which	an	output	parameter	 is	 influenced	by	several	 input	parameters	and	the	
objective	 is	 to	optimize	the	output	response.	 In	this	work	RSM	model	 is	developed	in	order	to	
investigate	the	influence	of	machining	parameters	(i.e.,	cutting	speed	v,	feed	rate	f,	and	depth	of	
cut	d	on	the	surface	roughness	Ra	and	tool	flank	wear	VB	in	turning	Al/SiCp	MMC.	All	the	machin‐
ing	 parameters	 were	 chosen	 as	 independent	 input	 variables	 while	 desired	 responses	 are	 as‐
sumed	to	be	affected	by	the	cutting	parameters.	The	predicted	surface	roughness	(response	sur‐
face)	of	turning	process	can	be	expressed	in	term	of	the	investigating	independent	variables	as	
	

ܴ ൌ ௫݂௬݀௭ݒܥ (1)
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where	Ra	is	the	predicted	surface	roughness	in	μm,	v	is	the	cutting	speed	in	m/min,	f	is	the	feed	
in	mm/rev,	and	d	is	the	depth	of	cut	in	mm.	C	is	the	constant	and	x,	y,	and	z	are	the	exponents	to	
be	estimated	from	experimental	results.	Eq.	1	is	linearized	using	logarithmic	transformation	and	
can	be	expressed	as	
	

ln ܴ ൌ ݔ ln ݒ  ݕ ln ݂  ݖ ln ݀ (2)
	

Eq.	2	is	re‐expressed	into	generalized	linear	model	as:	
	

ݕ ൌ ݔߚ  ଵݔଵߚ  ଶݔଶߚ  ଷݔଷߚ ൌ ߚ ߚݔ

ଷ



	 (3)

	

where	y	is	true	(measured)	response	surface	on	logarithmic	scale,	x0	is	dummy	variable	and	its	
value	is	equal	to	1,	and	x1,	x2,	and	x3	are	logarithmic	transformation	of	input	variables,	i.e.	cutting	
speed,	feed,	and	depth	of	cut,	respectively.	β0,	β1,	β2,	and	β3	are	the	parameters	to	be	estimated.	If	
ε	is	the	experimental	error	between	estimated	response	y’	and	measured	response	y	then	
	

ᇱݕ ൌ ݕ െ ߝ ൌ ܾݔ  ܾଵݔଵ  ܾଶݔଶ  ܾଷݔଷ	 (4)
	

where	the	b	values	are	 the	estimate	of	β	parameters.	The	 linear	model	of	Eq.	4	 is	extended	as	
second‐order	polynomial	response	surface	model	(i.e.,	quadratic	model)	and	is	expressed	as		
	

ᇱݕ ൌ ݕ െ ߝ ൌ ܾݔ  ܾଵݔଵ  ܾଶݔଶ  ܾଷݔଷ  ܾଵଵݔଵ
ଶ  ܾଶଶݔଶ

ଶ  ܾଷଷݔଷ
ଶ  ܾଵଶݔଵݔଶ  ܾଵଷݔଵݔଷ	

																												ܾଶଷݔଶݔଷ	
(5)

	

or	
	

ᇱݕ ൌ ܾ ܾݔ

ଷ

ୀଵ

ܾݔ
ଶ

ଷ

ୀଵ

ܾݔݔ

ଷ

ୀଶ

ଶ

ୀଵ

	 (6)

	

where	b0	is	constant	or	free	term,	bi,	bii,	and	bij	represent	the	coefficients	of	linear,	quadratic,	and	
cross	product	(i.e.,	 interaction)	terms.	The	Eq.	5	can	be	written	as	to	build	the	relationship	be‐
tween	turning	parameters	and	responses	(i.e.,	surface	roughness	and	tool	wear)	as	
	

ோೌݕ ൌ ܾ  ܾଵݒ  ܾଶ݂  ܾଷ݀  ܾଵଵݒଶ  ܾଶଶ݂ଶ  ܾଷଷ݀ଶ  ܾଵଶݔଵݔଶ  ܾଵଷݔଵݔଷ  ܾଶଷݔଶݔଷ	 (7)
	

VBݕ ൌ ܾܾଵݒ  ܾଶ݂  ܾଷ݀  ܾଵଵݒଶ  ܾଶଶ݂ଶ  ܾଷଷ݀ଶ  ܾଵଶݔଵݔଶ  ܾଵଷݔଵݔଷ  ܾଶଷݔଶݔଷ	 (8)
	

Where	b0	is	constant	or	free	term,	bi,	bii,	and	bij	represent	the	coefficients	of	linear,	quadratic,	
and	cross	product	(i.e.,	interaction)	terms.	The	experimental	work	carried	out	by	Kılıçkap	et	al.	
[23]	in	turning	Al/SiCp	MMC	using	K10	TiN	coated	cutting	tool	for	investigating	surface	rough‐
ness	and	tool	wear	is	used	in	this	work.	For	modeling	and	analysis	of	machining	parameters	RSM	
model	 is	 developed	 using	MINITAB	 15®	 statistical	 software.	 Table	 1	 show	 various	machining	
parameters	used	at	three	levels.		

The	RSM	predictive	model	is	developed	using	20	data	sets	selected	based	on	central	compo‐
site	design	(CCD).	The	CCD	experimental	design	matrix	and	responses	are	given	in	the	Table	2.	It	
is	used	for	analyzing	the	measured	response	and	determining	the	mathematical	model	with	best	
fits.	The	fit	summary	for	surface	roughness	and	tool	wear	suggests	that	the	quadratic	relation‐
ship	where	the	additional	terms	are	significant	and	the	model	is	not	aliased.		
	

Table	1		Assignment	of	levels	and	parameters	
Factor	 Units Symbol Levels	

	 	 ‐1 0	 1
Cutting	speed	 m/min v 50 100	 150

Feed	 mm/rev f 0.1 0.2	 0.3
Depth	of	cut	 mm d 0.5 1.0	 1.5
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Table	2		Experimental	result	

	
Sl.	
No	

Cutting	speed,	
v	(m/min)	

Tool	feed,	
f	(mm/min)	

Depth	of	cut,	
d	(mm)	

Experimental	responses	

Code	
(A)	

Actual	
value	

Code	
(B)	

Actual	
value	

Code	
(C)	

Actual	
value	

Surface	
roughness,	
Ra	(µm)	

Tool	
wear,	

VB	(mm)	
1	 ‐1	 50	 1	 0.3	 1	 1.5	 4.13	 0.601	

2	 1	 150	 1	 0.3	 1	 1.5	 3.17	 1.050	
3	 ‐1	 50	 1	 0.3	 1	 1.5	 3.95	 0.447	
4	 0	 100	 ‐1	 0.1	 0	 1.0	 3.21	 0.603	

5	 0	 100	 1	 0.3	 0	 1.0	 4.03	 0.702	

6	 1	 150	 1	 0.3	 ‐1	 0.5	 3.47	 0.902	

7	 ‐1	 50	 ‐1	 0.1	 1	 1.5	 3.34	 0.502	

8	 0	 100	 0	 0.2	 ‐1	 0.5	 3.47	 0.630	

9	 0	 100	 0	 0.2	 0	 1.0	 3.40	 0.651	

10	 ‐1	 50	 ‐1	 0.1	 ‐1	 0.5	 3.24	 0.327	

11	 1	 150	 0	 0.2	 0	 1.0	 3.27	 0.896	

12	 0	 100	 0	 0.2	 0	 1.0	 3.40	 0.651	

13	 0	 100	 0	 0.2	 0	 1.0	 3.40	 0.651	

14	 1	 150	 ‐1	 0.1	 0	 1.0	 3.17	 0.623	

15	 0	 100	 0	 0.2	 1	 1.5	 3.43	 0.698	

16	 1	 150	 ‐1	 0.1	 1	 1.5	 3.14	 0.602	

17	 0	 100	 0	 0.2	 0	 1.0	 3.40	 0.651	

18	 0	 100	 0	 0.2	 0	 1.0	 3.40	 0.651	

19	 0	 100	 0	 0.2	 0	 1.0	 3.40	 0.651	

20	 ‐1	 50	 0	 0.2	 0	 1.0	 3.68	 0.477	
	

Four	 different	 types	 of	 RSM	mathematical	 models	 viz.,	 linear,	 linear	 with	 interaction,	 and	
quadratic	are	obtained	for	prediction	of	surface	roughness	yRa	and	tool	wear	yVB	were	obtained.	
	
a)	Linear	model:	
	

ோೌݕ ൌ 3.367 െ ݒ0.0042  2.65݂ െ 0.018݀ (9)
	

VBݕ ൌ െ0.0093  ݒ0.00344  1.045݂  0.1045݀	 (10)
	
b)	Linear	with	interaction	models:	
	

ோೌݕ ൌ 2.382  ݒ0.00217  8.41݂  0.313݀ െ ݂ݒ0.034 െ ݀ݒ0.00009 െ 1.95݂݀	 (11)
	

VBݕ ൌ 0.320  ݒ0.0018 െ 1.63݂  0.127݀  ݂ݒ0.018 െ ݀ݒ0.00149  0.612݂݀	 (12)
	
c)	Linear	with	square	models:	
	

ோೌݕ ൌ 3.28 െ ݒ0.0026 െ 2.13݂  0.88݀ െ ଶݒ0  12.17݂ଶ െ 0.423݀ଶ	 (13)
	

VBݕ ൌ െ0.053  ݒ0.0037  2.46݂ െ 0.039݀ െ ଶݒ0 െ 3.63݂ଶ  0.044݀ଶ	 (14)
	

d)	Quadratic	models:	
	
ோೌݕ ൌ 2.55  ݒ0.0022  4.086݂  0.737݀ െ ଶݒ0.000  12.84݂ଶ െ 0.227݀ଶ െ 	݂ݒ0.035

																െ	0.0009݀ݒ െ 2.47݂݀  
	

(15)

ݕ ൌ 0.103  ݒ0.0026 െ 0.55݂  0.288݀ െ 4.114݂ଶ െ 0.066݀ଶ  ݂ݒ0.0203 െ 	݀ݒ0.002
													0.877݂݀	

(16)
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where	v,	f,	and	d	are	cutting	speed,	feed	and	depth	of	cut,	respectively.	From	these	model	equa‐
tions,	it	is	observed	that	the	factor	with	highest	value	of	coefficient	posses	the	most	dominating	
effect	over	the	response.	Feed	has	most	significant	effect	over	surface	roughness	and	tool	wear	
followed	by	the	depth	of	cut	and	cutting	speed.		

2.1 Checking adequacy of the model 

The	test	of	significance	of	all	the	models	was	carried	out	using	analysis	of	variance	(ANOVA)	
and	their	predictive	capability	 is	analyzed.	ANOVA	find	the	 influence	of	machining	parameters	
(v,	f,	and	d)	on	the	total	variance	of	the	experimental	findings.	The	test	is	performed	by	calculat‐
ing	the	ratio	between	the	regression	mean	square	and	the	mean	square	error	(i.e.,	F‐ratio).	The	
ratio	measures	the	significance	of	the	model	in	respect	of	variance	of	the	parameters	included	in	
the	error	term	for	particular	level	of	significance	α.	The	analysis	was	carried	out	at	95	%	confi‐
dence	level	and	the	result	is	presented	in	Table	3.	The	adequacy	of	the	model	is	decided	upon	the	
value	of	S	and	coefficient	of	determination	R2.	S	value	being	the	measurement	of	error,	it	is	the	
smaller	value	that	gives	better	results.	If	R2	approaches	unity	the	response	model	fits	better	with	
the	actual	data	and	less	difference	exists	between	predicted	and	actual	data.	To	compare,	more	
precisely	adjusted	R2	(Adj	R2)	is	used,	which	is	adjusted	for	the	degrees	of	freedom.	The	close‐
ness	of	the	Adj	R2	with	R2	determines	the	fitness	of	the	model.		

The	higher	value	of	R2	is	obtained	for	linear	with	interaction	model.	This	shows	the	predictive	
capability	of	linear	with	interaction	model	is	found	better	and	is	selected	among	all	models.	The	
model	equation	used	for	prediction	of	surface	roughness	and	tool	wear	is	given	in	Eq.	11	and	Eq.	12,	
respectively.	
	

Table	3	Test	of	significance	of	RSM	models	

Sl.	
No.	

RSM	model	
S‐Value	 R2	 Adj	R2	

Ra	 VB	 Ra	 VB	 Ra	 VB	

1	 Linear	 0.15	 0.073	 76.09	 82.51	 71.01	 79.21	
2	 Linear	with	interaction	 0.089	 0.052	 96.00	 92.16	 94.12	 90.00	
3	 Linear	with	square	 0.15	 0.078	 80.17	 83.59	 70.94	 76.02	
4	 Full	quadratic	 0.089	 0.046	 94.86	 95.63	 89.78	 91.69	

	

2.2 Contour plots 

Fig.	1	shows	two	dimensional	surface	plot	that	shows	the	effect	of	influencing	parameters	on	the	
output	 responses.	 Fig.	 1(a)	 reveals	 that	 higher	 cutting	 speed	 and	 lower	 feed	 produces	 better	
surface	 finish.	 Increased	 feed	 increases	 the	 surface	 roughness	 value.	 This	 is	 due	 to	 rapid	 tool	
movement	which	deteriorates	the	quality	of	the	machined	surface.	The	analysis	of	contour	plot	
shows	improved	surface	roughness	is	obtained	at	higher	v	and	lower	f.	The	combination	of	pa‐
rameters	with	cutting	speed	at	150	m/min,	feed	at	0.1	mm/rev,	and	depth	of	cut	at	0.5	mm	pro‐
duces	minimum	surface	roughness	of	3.17	μm.	

	 The	tool	wear	contour	plots	are	shown	in	Fig.	1(b).	Cutting	speed	is	the	influencing	pa‐
rameter	followed	by	depth	of	cut	and	feed.	Higher	tool	wear	is	noticed	at	increased	v.	This	is	due	
to	 increased	 temperature	 causing	 flank	wear	 at	 tool	 nose.	 Tool	wear	plot	 shows	 reduced	 tool	
wear	is	obtained	at	lower	values	of	v,	f,	and	d.	The	combination	of	parameters	with	cutting	speed	
at	50	m/min,	feed	at	0.1	mm/rev,	and	depth	of	cut	at	0.5	mm	produces	tool	wear	less	than	0.4	
mm	found	as	minimum.		

The	 comparison	 of	 experimental	 and	 RSM	 prediction	 for	 the	 parameters	 combination	 that	
produces	minimum	 surface	 roughness	 and	minimum	 tool	wear	 are	 presented	 in	 the	 Table	 4.	
However,	the	optimum	region	for	combined	minimization	of	surface	roughness	and	tool	wear	is	
obtained	by	overlaying	contour	plot	presented	in	the	next	subsection.	
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(a)	For	surface	roughness																																																										(b)	For	tool	wear	

Fig.	1		Contour	plots	for	interaction	effect	(at	d	=	0.5	mm)	
	

	
Table	4	Optimum	parameter	combination	

Sl.	No.	 Turning	parameters	(v–f–d)	 Expt.	 RSM	prediction	 Error	(%)	

1	 For	minimum	Ra	(150–0.1–0.5)	 3.17	μm	 3.18	μm	 0.32	
2	 For	minimum	VB	(50	–0.1–	0.5)	 0.33	mm	 0.38	mm	 13.15	

2.3 Overlaying contour plot for optimum operating zone 

Fig.	2	shows	the	region	for	the	selection	of	optimum	cutting	speed	and	feed	for	different	value	of	
surface	 roughness	with	minimum	 tool	wear.	 The	 range	 of	 cutting	 speed	 as	 50‐80	m/min	 and	
feed	as	0.1‐0.14	mm/rev	with	0.5	mm	depth	of	cut	produce	surface	roughness	less	than	3.4	μm	
with	tool	wear	less	than	0.5	mm.	It	may	be	considered	as	optimum	operating	zone.	Similar	trend	
have	been	seen	at	all	values	of	depth	of	cut.	The	method	of	overlaying	contour	plot	pictorially	
obtains	the	optimum	operating	zone	and	easy	selection	of	cutting	parameters	for	different	val‐
ues	of	Ra.	
	

	
Fig.	2		Optimum	operating	region	
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3. Multi‐response artificial neural network modeling 

Artificial	neural	network	(ANN)	 is	 the	system	that	acquire,	store	and	utilize	knowledge	gained	
from	experience.	It	is	motivated	by	the	biological	neurons	that	work	in	human	brain.	Research‐
ers	have	employed	ANN	for	modeling	of	machining	processes	and	found	that	ANN	provides	rea‐
sonable	accuracy.	The	network	is	built	with	number	of	layers	(input,	hidden	and	output)	having	
specific	number	of	neurons	(also	called	nodes).	All	the	neurons	are	interconnected	with	weights	
and	bias	 is	added	at	each	node.	The	number	of	neurons	in	the	input	and	output	 layers	depend	
upon	input	and	output	parameters	of	the	proposed	model.	The	number	of	neurons	of	the	hidden	
layer	is	decided	during	network	training.	The	network	architecture	is	trained	with	the	number	
of	real	life	experimental	datasets.	Each	dataset	consists	of	input	parameters	and	the	correspond‐
ing	output	responses.	The	optimum	network	is	obtained	with	the	selection	of	appropriate	trans‐
fer	 functions	 and	number	of	neurons	 in	 the	hidden	 layer.	The	mean	square	error	between	 the	
experimental	 response	 and	 ANN	 prediction	 is	 the	 criteria	 for	 deciding	 the	 optimum	 network	
architecture.	Once	network	is	trained	then	it	is	ready	for	prediction.	The	trained	network	is	test‐
ed	with	unseen	datasets	for	model	validation	and	the	predictive	results	are	compared	with	ex‐
perimental	results.	
	 The	size	and	selection	of	training	and	testing	datasets	are	very	crucial	 in	the	design	of	ANN	
model.	There	is	no	well‐	established	formula	for	finding	out	the	number	of	training	and	testing	
data	[24].	Kohli	and	Dixit	[25]	have	used	19	datasets	for	training	9	datasets	for	testing	in	devel‐
oping	ANN	model	used	for	prediction	surface	roughness	in	turning	process.	Nearly	66	%	of	total	
experimental	data	sets	are	selected	is	the	training	phase.	The	data	sets	are	selected	appropriate‐
ly	 including	 extreme	datasets	 (i.e.,	vmin,	 fmin,	 and	dmin;	vmax,	 fmax,	 and	dmax).	The	 remaining	34	%	
datasets	were	used	in	the	testing	phase.	The	predictive	results	of	the	tested	data	sets	are	com‐
pared	with	experimental	datasets.		
	 In	 this	work,	 a	 soft	 computing	based	artificial	neural	network	model	 for	predicting	 surface	
roughness	and	 tool	wear	as	a	 function	of	 three	 input	parameters	viz.,	 cutting	 speed,	 feed,	 and	
depth	of	cut	is	developed.	The	multi‐layer	perceptron	(MLP)	network	comprised	of	an	input	lay‐
er	with	three	neurons,	a	hidden	layer,	and	an	output	layer	with	two	neurons.	The	networks	with	
neurons	(nodes)	 in	each	layer	are	interconnected	with	nodes	of	the	subsequent	and	preceding	
layer	with	synaptic	weights.	Additionally	a	bias	is	added	to	each	neurons	of	the	hidden	and	out‐
put	 layer.	The	output	of	each	neuron	is	obtained	by	summing	up	weighted	inputs	of	neuron	in	
preceding	 layer	 and	 its	 own	bias.	 The	 output	 of	 each	 neuron	 in	 the	 hidden	or	 output	 layer	 is	
computed	by	the	equation		
	

ܱ ൌ ݂ሺܫሻ ൌ ݂ ൭ݓݔ



ୀଵ

 ܾ൱	 (17)

	
where	wij	is	the	associated	weights	with	jth	neurons	of	the	layer	and	ith	neurons	of	the	preceding	
layer,	bj	is	the	bias	of	jth	neurons,	n	is	the	total	number	of	neurons	of	the	preceding	layer	and	f	is	
the	appropriate	transfer	 function	used.	In	this	work,	the	ANN	model	 is	trained	with	19	experi‐
mental	datasets	and	tested	with	eight	unseen	datasets.	

Fig.	3	shows	the	architecture	of	two	layered	feed	forward	neural	network	system	used	in	this	
work.	The	network	is	modeled	with	neural	network	tool	box	available	in	MATLAB®	that	working	
on	back	propagation	learning	algorithm.	The	algorithm	use	gradient	decent	technique	and	min‐
imize	mean	square	error	(MSE)	between	actual	network	outputs	with	desired	output	pattern.		
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		Wij	and	bi	are	weights	and	bias	of	hidden	layer,	respectively	
Vij	and	ci	are	weights	and	bias	of	output	layer,	respectively	

Fig.	3		ANN	architecture	
	

The	network	is	optimized	with	varying	number	of	neurons	in	the	hidden	layer	and	activation	
transfer	function	used	so	as	to	obtain	minimum	MSE.	The	network	architecture	with	five	hidden	
layer	 neurons	with	 tansig	 transfer	 function	 obtains	 least	MSE	 of	 0.0001	 and	 is	 considered	 as	
optimum	 network.	 The	 output	 layer	 uses	 purelin	 transfer	 function	 to	 evaluate	 the	 estimated	
outputs	of	surface	roughness	and	tool	wear.	The	validation	of	the	network	is	performed	by	pre‐
dicting	surface	roughness	and	tool	wear	 for	unseen	data	sets	and	ANN	prediction	is	compared	
with	experimental	result.	

3.1 Comparison of RSM and ANN model performance 

The	ANN	and	RSM	predicted	values	for	surface	roughness	and	tool	wear	is	compared	with	the	
experimental	 values.	 The	 comparison	 of	 predictive	 performance	 of	 both	 the	models	 with	 the	
experimental	value	is	given	in	Table	5.	The	prediction	accuracy	PA	of	each	datasets	was	calculat‐
ed	using	Eq.	18.	
	

ܣܲ ൌ ቈ1 െ
absሺ݁ݑ݈ܽݒ_ݐݔܧ െ ሻ݀݁ݎ_݈݁݀ܯ

݁ݑ݈ܽݒ_ݐݔܧ
 ൈ 100	 (18)

	
Finally,	the	model	accuracy	MA	 is	computed	as	the	average	of	individual	accuracy	on	confir‐

mation	data	set.	It	is	obtained	using	Eq.	19.	
	

ܣܯ ൌ
1
݊
ሺܲܣሻ


ୀଵ

ൈ 100	 (19)

	
The	model	accuracy	of	the	ANN	and	RSM	model	are	95.38	%	and	92.90	%	for	surface	rough‐

ness	and	92.16	%	and	91.56	%	for	tool	wear.	It	can	be	concluded	that	the	correlation	between	
the	prediction	of	developed	models	and	experimental	result	is	very	good.	The	prediction	accura‐
cy	in	ANN	for	surface	roughness	and	tool	wear	is	more	than	95.00	%.	The	prediction	accuracy	
for	RSM	based	on	linear	with	interaction	model	found	more	than	91.00	%	for	predicting	surface	
roughness	with	a	maximum	PA	of	99.69	%.	While	for	tool	wear	PA	is	more	than	90.0	%	with	the	
maximum	of	98.64	%.	This	shows	that	neural	network	based	prediction	model	has	been	found	
better	than	the	response	surface	model	for	turning	Al/SiCp	metal	matrix	composite	using	coated	
TiN	tool.	
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Table	5		Comparison	of	ANN	and	RSM	predictive	model	

Sl.	
No.	

Surface	roughness,	Ra Tool	wear,	VB	
	 ANN	 RSM ANN RSM

Expt.	
(μm)	

Pred.	
(μm)	

Pred.	acc.	
(%)	

Pred.	
(μm)	

Pred.	acc.
PA	
(%)	

Expt.	
(mm)	

Pred.	
(mm)	

Pred.	acc.	
PA	
(%)	

Pred.	
(mm)	

Pred.	acc.
PA	
(%)	

1	 3.27	 3.48 93.96	 3.28 99.69 0.508 0.405 79.72	 0.45	 88.58
2	 3.87	 4.16 93.02	 3.79 97.93 0.400 0.453 88.30	 0.35	 87.50
3	 4.67	 4.49 96.15	 4.20 89.93 0.521 0.493 94.63	 0.43	 82.53
4	 4.04	 3.59 88.86	 3.68 91.08 0.799 0.783 97.99	 0.81	 98.64
5	 4.16	 4.37 95.88	 3.96 95.19 0.685 0.707 96.89	 0.63	 91.97
6	 3.08	 3.00 97.40	 3.14 98.08 0.653 0.677 96.46	 0.66	 98.93
7	 3.79	 3.78 99.74	 3.32 87.59 0.750 0.792 94.70	 0.81	 92.59
8	 4.06	 4.02 99.01	 3.41 83.99 0.951 0.842 88.54	 1.04	 91.44

Model	accuracy	 95.50	 92.94 Model	accuracy 92.15	 	 91.52

4. Optimization of cutting parameters 

The	selection	of	best	or	right	combination	of	cutting	parameters	for	obtaining	optimum	process	
response	is	still	the	subject	of	many	studies.	In	this	work	the	parameter	optimization	for	single	
as	well	as	multiple	objectives	is	carried	out.	Optimization	for	minimum	Ra	and	minimum	VB	are	
performed	using	the	non‐traditional	techniques	of	genetic	algorithm	(GA).	The	optimum	param‐
eters	 are	 also	obtained	 for	 simultaneous	optimization	of	Ra	 and	VB	 using	desirability	 function	
analysis	(DFA).	

4.1 Single‐objective optimization with GA 

GA	 is	 one	 of	 the	 popular	 optimization	 technique	 performed	 by	 the	 natural	 evolution	 process	
inspired	on	the	principle	of	survival	of	fitness	[26].	GA	works	on	the	mechanism	of	genetics	and	
evolution	 and	 has	 been	 found	 as	 a	 very	 powerful	 algorithm	 for	 obtaining	 global	 minima	 by	
Chandrasekaran	et	al.	[27].	In	GA	the	different	process	parameters	are	represented	either	binary	
or	decimal	numbers,	called	as	string	or	chromosome.	A	set	of	chromosomes	is	called	population.	
A	population	is	evolved	through	several	generations	using	different	genetic	operations	such	as	
reproduction,	crossover,	and	mutation.	The	best	chromosome	in	the	population	is	identified	by	
the	closeness	of	fitness	value	with	the	objective	function.	The	process	is	repeated	till	the	optimi‐
zation	function	converges	to	the	required	accuracy	after	many	generations	and	optimum	param‐
eter	is	obtained.	Researchers	have	found	GA	as	powerful	optimization	tool/procedure	to	obtain	
global	optima	and	the	mathematical	derivative	of	the	function	is	not	required	in	this	procedure.	

In	this	work,	 the	 fitness/objective	 function	of	 the	optimization	problem	is	 formulated	using	
the	best	regression	model	given	 in	Eq.	20	and	Eq.	21	 for	surface	roughness	and	 tool	wear,	 re‐
spectively.	The	formulated	single‐objective	optimization	function	is	given	as	follows:	
	

Minimize	ܴሺݒ, ݂, ݀ሻ	
ൌ ሺ2.382݊݅ܯ  ݒ0.00217  8.41݂  3.313݀ െ ݂ݒ0.034 െ ݀ݒ0.00009 െ 1.95݂݀ሻ	 (20)

	
Minimize	ܸܤሺݒ, ݂, ݀ሻ	
ൌ ሺ0.320݊݅ܯ  ݒ0.0018 െ 1.63݂  0.127݀  ݂ݒ0.018 െ ݀ݒ0.00149  0.612݂݀ሻ	 (21)

	
The	variables	of	the	function	are	limited	by	its	upper	and	lower	bounds	and	are	given	as		
	

50  ݒ  150 (22)
	

0.1  ݂  0.3 (23)
	

0.5  ݀  1.5 (24)
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The	problem	is	optimized	using	the	GA	parameters:	number	of	population	size	was	20,	max‐
imum	number	of	 iterations	was	1000,	 crossover	probability	was	0.7	and	mutation	probability	
was	 0.05.	 Optimization	 is	 performed	 for	 obtaining	 minimum	Ra	 and	minimum	 VB	 within	 the	
range	of	parameters	available	and	it	takes	54	and	61	iterations	for	Ra	and	VB,	respectively.		

4.2 Multi‐objective optimization with DFA 

The concept of desirability function was first introduced by Derringer and Suich [28] in the year 1980. 
The method is used for optimization of multiple quality characteristics and found popular among man-
ufacturing industries. The desirability function analysis (DFA) evaluates a composite desirability value 
of the various responses from its individual desirability.	 The	method	makes	 use	 of	 an	 objective	
function	called	 the	desirability	 function	and	 transform	an	estimated	response	 into	a	scale‐free	
value	di	called	desirability.	The	desirability	value	varies	from	0	to	1.	A	value	of	1	represents	the	
ideal	case;	0	indicates	that	one	or	more	responses	are	outside	their	acceptable	limits.	Composite	
desirability	is	the	weighted	geometric	mean	of	the	individual	desirability	evaluated	against	each	
response.	The	parameter	settings	with	maximum	composite	desirability	are	considered	to	be	the	
optimal	cutting	conditions.	
	 In	order	to	optimize	the	Ra	and	VB,	DFA	is	adopted.	In	DFA	optimization	of	multiple	response	
characteristics	 is	 converted	 into	 single	 composite	 desirability	 grade	 [29].	 The	 procedure	 in‐
volves:	1)	evaluation	of	individual	desirability	di,	2)	evaluation	of	composite	desirability	dG,	and	
3)	ranking	of	composite	desirability.	Experimental	data	sets	based	on	full	factorial	design,	33	=	27	
data	sets	are	used.		

In	this	work,	since	both	the	responses	are	to	be	minimized,	Eq.	25	is	used	to	evaluate	the	in‐
dividual	desirability	di	
	

݀ ൌ ൞

1, ݕ  ݕ

൬
ݕ െ ௫ݕ

ݕ െ ௫ݕ
൰


0, ݕ  ௫ݕ

, ݕ  ݕ  ௫ݕ , ݎ  0ൢ	 (25)

	

where	r	is	weight,	ymin	and	ymax	are	the	lower	and	upper	value,	respectively.	
The	next	step	is	to	select	the	parameter	combination	that	will	maximize	overall	desirability	dG	

using	Eq.	26	
	

݀ீ ൌ ሺ݀ଵ ൈ ݀ଶ ൈ ݀ଷ ൈ …ൈ ݀ሻ
ଵ ൗ ൌ ൭ෑ݀



ୀଵ

൱

ଵ ൗ

	 (26)

	

where	di	 is	 the	 individual	desirability	of	 the	 response	 and	n	 is	 the	number	of	 response	 in	 the	
measure.	The	desirable	ranges	from	zero	to	one.	If	any	of	the	response	falls	outside	the	desirabil‐
ity	range,	the	overall	function	becomes	zero.	To	reflect	the	difference	in	the	importance	of	differ‐
ent	response	the	equation	can	be	extended	to	
	

݀ீ ൌ ݀ଵ
௪ଵ ൈ ݀ଶ

௪ଶ ൈ ݀ଷ
௪ଷ ൈ …ൈ ݀௪	 (27)

	

where	the	weight	wi	satisfies	0	<	wi	<	1,	and	sum	of	weights	is	equal	to	one.	In	this	work,	w1	and	
w2	is	taken	equal	as	0.5.	Fig.	4	shows	the	scatter	plot	of	the	composite	desirability	grade	for	the	
different	set	of	parameter	combination.	The	 larger	 the	grade	 the	better	 is	 the	multiple	perfor‐
mance	 characteristics.	 The	 grade	 is	 0.92	 and	 it	 corresponds	 to	 the	 first	 experimental	 run.	The	
parameter	combination	as	v1	(50	m/min),	f1	(0.1	mm/rev)	and	d1	(0.5	mm)	is	optimal	parameter	
set.	The	surface	roughness	and	tool	wear	predicted	by	DFA	at	optimal	parameter	is	3.24	μm	and	
0.327	mm,	respectively.	The	confirmation	experiments	show	the	surface	roughness	of	3.41	μm	
and	 tool	wear	 of	 0.34	mm.	 The	 increased	 surface	 roughness	 of	 3.24	 μm	 notifies	 that	 there	 is	
slight	loss	of	quality	in	simultaneous	optimization	for	multiple	responses.	However,	the	confir‐
mation	test	shows	the	prediction	error	percentage	is	4.98	%	and	3.82	%	for	Ra	and	VB,	respec‐
tively,	which	shows	the	effectiveness	of	the	method.	Table	6	shows	the	optimum	parameters.	
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Table	6		Comparison	of	various	optimization	techniques	

Method	 Optimization	technique	 Optimal	parameter	combination Optimal	responses

Single‐objective	
optimization	

GA	

Minimizing	Ra:
v	(134.98	m/min),	f	(0.1	mm/rev),	d	(0.5	mm)	

Ra	=	2.52	µm	

Minimizing	VB:
v	(50	m/min),	f	(0.21	mm/rev),	d	(0.5	mm)	

VB	=	0.31	mm	

Multi‐objective	
optimization	 DFA	

Minimizing	Ra and	VB:
v	(50	m/min),	f	(0.1	mm/rev),	d	(0.5	mm)	

Ra	=	3.24	µm
VB	=	0.327	mm	

	

	
Fig.	4		Scatter	plot	for	composite	desirability	

5. Conclusion 

In	this	paper	the	predictive	modeling	for	surface	roughness	(Ra)	and	tool	wear	(VB)	 in	turning	
Al/SiCp	MMC	was	developed	using	RSM	and	ANN.	The	predictive	capability	was	compared.	The	
three	turning	parameters	viz.,	cutting	speed,	feed,	and	depth	of	cut	are	considered	as	input	pa‐
rameters.	The	model	behavior	was	analysed	through	contour	plot	and	optimum	operating	zone	
is	 obtained.	 The	 parameters	 are	 optimized	 for	 single‐	 and	multi‐response	 characteristics	 em‐
ploying	 GA	 and	 DFA	 techniques.	 From	 the	 research	 result	 the	 following	 conclusions	 are	 ob‐
tained:	

1. The	surface	 roughness	 is	highly	 influenced	by	 feed.	Tool	wear	 is	 influenced	by	 feed	and	
cutting	speed.	The	increase	of	feed	and	cutting	speed	increases	VB.	

2. Among	different	RSM	models,	 the	 linear	with	 interaction	model	 found	 better	 in	 term	of	
predictive	performance.	The	combination	of	parameters	with	cutting	speed	as	150	m/min	
and	 feed	 as	 0.1	mm/rev	 produce	minimum	 surface	 roughness	 of	 3.3	 μm.	Minimum	 tool	
wear	of	0.38	mm	is	obtained	at	50	m/min,	feed	as	0.1	mm/rev,	and	depth	of	cut	0.5	mm.	
The	experimental	confirmations	show	an	error	of	0.32	%	and	13.14	%	for	Ra	and	VB,	re‐
spectively.	

3. The	response	contour	plot	provides	the	cutting	speed	ranges	from	50‐80	m/min	with	the	
feed	ranges	from	0.1‐0.14	mm/rev	producing	surface	roughness	less	than	3.4	μm	with	tool	
wear	less	than	0.5	mm.	It	may	be	considered	as	the	optimum	operating	zone.	

4. Multi‐response	 predictive	modeling	 developed	 using	 ANN	with	 3–5–2	 as	 optimum	 net‐
work	 architecture	 providing	 best	 prediction	 accuracy.	 The	 model	 adequacy	 for	 surface	
roughness	and	tool	wear	is	more	than	92	%.	On	comparison	of	both	RSM	and	ANN	model,	
the	latter	is	found	to	be	slightly	better.	ANN	shows	good	generalization	ability	and	found	
as	useful	artificial	intelligence	tool	for	monitoring	machining	process.	

5. Parameter	optimization	for	single	objective	using	GA	obtains	minimum	Ra	and	VB	as	2.52	
μm	and	0.31	mm,	respectively.	DFA	based	multi‐response	optimization	obtain	optimal	pa‐
rameter	combination	as	v1	(cutting	speed,	50	m/min),	f1	(feed,	0.1	mm/rev)	and	d1	(depth	
of	cut	0.5	mm)	having	highest	desirability	grade	of	0.92.	Confirmation	test	shows	the	per‐
centage	of	error	as	4.98	%	and	3.82	%	for	Ra	and	VB	,	respectively,	which	shows	the	effec‐
tiveness	of	the	method.		
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A B S T R A C T	   A R T I C L E   I N F O	

Travelling	wire	 electrochemical	 discharge	machining	 (TW‐ECDM)	 has	 great	
potential	for	machining	advanced	non‐conducting	materials	such	as	zirconia,	
alumina,	 silicon	 nitride,	 diamond	 glass,	 rubies	 and	 composites	 such	 as	 FRP	
etc.	Composite	materials	possess	higher	strength,	stiffness,	and	fatigue	limits
which	enable	structural	design	more	 flexible	 than	with	conventional	metals.	
Over	 recent	years	precision	machining	of	 composite	materials	has	gained	 in	
importance.	The	presented	research	paper	includes	a	description	of	an	indig‐
enously	developed	TW‐ECDM	set‐up	 for	performing	experiments	on	compo‐
site	materials	such	as	fibre	reinforced	plastic.	This	paper	also	presents	anal‐
yses	of	machining	parameters	such	as	material	removal	rate	and	radial	over‐
cut	for	different	input	parameters	such	as	pulse	on	time,	frequency	of	power	
supply,	 applied	 voltage,	 concentration	 of	 electrolyte	 and	 wire	 feed	 rate.	
Taguchi	 method‐based	 optimization	 analysis	 was	 also	 done	 for	 achieving	
minimum	 radial	 overcut	 and	 maximum	 material	 removal	 rate	 during	 the	
cuttings	 of	 grooves	 on	 Hylam	 based	 fibre	 reinforced	 composites.	 Multiple	
regression	models	were	also	established	 for	both	material	 removal	rate	and	
radial	 overcut	 by	 considering	 the	 more	 important	 process	 parameters	 for	
cutting	grooves	on	Hylam	based	 fibre	 reinforced	composites.	Finally,	 a	back	
propagation	 neural	 network	 was	 applied	 for	 predicting	 the	 responses	 and	
those	predictions	are	compared	with	the	experimental	results.		
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1. Introduction 

The	 researchers	 are	urgently	 looking	 for	 techniques	 to	keep	up	with	 the	development	of	 new	
materials	such	as	engineering	ceramics	and	composites	etc.	[1].	The	demand	for	machining	hard	
and	 brittle	 materials	 is	 steadily	 increasing	 in	 many	 applications.	 Presently	 various	 non‐
traditional	machining	processes	are	available	but	 the	 inherent	problems	associated	with	 these	
processes	are	thermal	damage	due	to	large	heat	affected	zone,	high	tool	wear	rate,	low	material	
removal	 rate,	 high	 surface	 roughness,	 poor	 dimensional	 accuracy	 etc.	 Precision	machining	 of	
fibre	reinforced	plastic	(FRP)	is	also	a	challenge.	Hylam	is	a	mixture	of	cellulose,	adhesive	based	
on	modified	epoxy	resin	and	hardener,	the	tensile	strength	and	Young’s	modulus	of	which	vary	
with	fibre	content.	It	has	important	properties	like	electrical	insulation,	moisture	resistance	and	
corrosion	 resistance.	 Fibre	 reinforced	 composites	 are	 widely	 accepted	 in	 structural	 and	 non‐
structural	 applications	 like	 household	 goods,	 switchboards	 and	 control	 panels.	 With	 conven‐
tional	 machining	 the	 laminated	 structure	 of	 FRP	 is	 damaged	 and	machined	 surface	 becomes	

mailto:nsmitra@rediffmail.com
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rough.	To	cope	up	with	 these	challenges,	manufacturing	scientists	are	making	use	of	 the	com‐
bined	hybrid	machining	process,	which	also	reduces	some	adverse	effects	of	individual	process.	
Electrochemical	arc	machining	(ECAM)	is	found	to	have	scope	for	electrically	conductive	materi‐
als.	Electrochemical	discharge	machining	(ECDM)	[2‐4]	can	be	used	 for	electrically	conducting	
engineering	 materials.	 Further	 the	 traditional	 method	 of	 slicing	 ceramics	 depends	 upon	 the	
grinding	force	of	hard	particles	and	grinding	results	in	micro‐cracks.	For	slicing	electrically	non‐
conducting	materials,	Traveling	wire	electrochemical	discharge	machining	(TW‐ECDM)	is	a	via‐
ble	 option	 [5,	 6].	 TW‐ECDM	 is	 a	 complex	 combination	 of	 ECM	and	wire‐EDM.	 In	 TW‐ECDM,	 a	
pulsed	DC	power	is	supplied	between	the	wire	and	auxiliary	electrode.	In	this	process,	the	con‐
ducting	wire	 is	 used	 as	 cathode	 and	 auxiliary	 electrode	 is	 used	 as	 anode.	 In	 this	 process,	 the	
conducting	wire	is	always	in	contact	with	the	non‐conducting	workpiece	material.	As	the	pulsed	
DC	power	is	supplied,	hydrogen	and	vapour	bubbles	are	formed	and	accumulated	near	the	wire	
surface.	With	the	further	increase	of	applied	voltage,	the	electric	spark	discharge	occurs	between	
the	wire	and	the	electrolyte	across	the	insulating	layers	of	gas	bubbles.	As	the	job	surface	is	kept	
in	the	sparking	zone,	material	is	removed	mainly	due	to	melting	and	vaporization	of	the	work‐
piece	material.	The	 feasibility	 study	of	machining	FRP	with	ECSM	was	made	 [7].	Machining	of	
non‐conducting	materials	such	as	alumina,	glass	is	still	a	major	problem	and	although	ECSM	is	
most	popular	machining	technique	for	those	material	 it	has	certain	difficulties.	If	ordinary	cut‐
ting	 tools	 are	 used,	 the	 results	 are	 not	 so	 good	 like	 electrochemical	 spark	 abrasive	 drilling	 of	
alumina	and	glass	[8].	An	attempt	was	made	to	measure	the	true	time	varying	current	of	ECSM	
to	reveal	the	basic	mechanism,	temperature	rise	and	material	removal	[9].	Spark	assisted	chemi‐
cal	 engraving	 (SACE)	 had	 been	 investigated	 using	 current/voltage	 measurement	 and	 photo‐
graphs	[10].	A	preliminary	study	of	a	pulse	discriminating	system	was	carried	out	for	developing	
a	control	strategy	of	ECDM	[11].	A	thermal	model	was	developed	for	the	calculation	of	the	mate‐
rial	removal	rate	during	ECSM	[12].	Micromachining	of	non‐conductive	ceramics	and	composites	
has	been	attempted	by	ECSM	and	TW‐ECSM	[13‐18].	Parametric	analysis	of	TW‐ECDM	process	
using	developed	setup	has	also	been	attempted	[19].	

From	 the	above	past	 research	activities	 it	 is	understood	 that	 focus	was	mainly	on	 the	TW‐
ECDM	or	ECDM	process	and	developing	a	model	based	on	statistical	experimental	design.	But	no	
attempt	was	made	to	determine	the	dominant	and	recessive	parameters	of	the	process	and	there	
was	no	attempt	to	reduce	the	cost	while	increasing	the	quality.	Also	there	were	very	few	efforts	
in	predicting	 the	output	 from	a	 set	of	 input	variables.	Further	FRP	 is	 a	new	material	which	 is	
extremely	important	for	application.		

Keeping	 the	 above	 past	 research	 activities	 in	 view,	 this	 research	 paper	 includes	 Taguchi	
method	 based	 parametric	 analysis	 on	 TW‐ECDM	 cutting	 of	 groove	 on	 flat	 surfaces	 of	 Hylam‐	
based	 fibre	 reinforced	 composite	 workpiece.	 Multiple	 nonlinear	 regression	 analysis	 has	 also	
been	done	to	find	out	the	empirical	relationship	between	the	responses	and	the	most	important	
process	 parameters	 of	 TW‐ECDM.	 The	 verification	 experiments	 have	been	performed	 to	 com‐
pare	 between	 predicted	 results	 and	 experimental	 results.	 Finally	 a	 3‐9‐1	 feed	 forward	 back	
propagation	 neural	 network	 has	 been	 used	 to	 predict	 the	 responses	 for	 different	 parametric	
combinations	and	those	are	compared	with	the	actual	results.		

2. Experimental setup of TW‐ECDM system 

TW‐ECDM	system	has	been	developed	to	carry	out	experimental	investigation	and	optimal	anal‐
ysis	of	machining	characteristics	of	TW‐ECDM	process.	Fig.	1	 shows	 the	 schematic	diagram	of	
the	 TW‐ECDM	 setup.	 The	 TW‐ECDM	 system	 consists	 of	 subsystems	 such	 as	mechanical	 hard‐
ware	unit,	control	limit	for	wire	feeding	and	electrical	power	supply	unit.	The	photographic	view	
of	the	setup	is	shown	in	Fig.	2.	
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Legends:	 (1)	Input	spool,	(2)	Output	spool	with	stepper	motor,	(3)	Pulley	for	gravity	feed
mechanism,	 (4)	Wire	 electrode	 (cathode),	 (5)	Workpiece	 in	 vertical	 position,
(6)	Workpiece	holding	Perspex	piece,	(7)	Auxiliary	electrode	(anode)	

	

Fig.	1		Schematic	view	of	the	TW‐ECDM	setup	
	

     	
							(a)																																																																																	(b)	

Fig.	2		Photographic	view	of	the	TW‐ECDM	setup	along	with	control	units	
	

Mechanical	hardware	unit	consists	of	wire	feeding	unit,	wire	positioning	unit,	job	holding	unit	
and	these	units	are	fitted	inside	the	main	machining	chamber.	The	wire	feeding	unit	consists	of	
input	spool,	output	spool	and	a	set	of	 intermediate	pulleys.	The	output	spool	is	coupled	with	a	
motor	and	as	the	motor	rotates	it	draws	the	wire	out	of	the	input	spool	through	the	intermediate	
pulleys.	 The	wire	 feeding	 unit	 feeds	 the	wire	 continuously	 as	 per	 the	 required	 feed	 rate.	 The	
wire	positioning	unit	consists	of	three	parts	such	as	wire	guide	unit,	wire	guide	positioning	unit	
and	effective	wire	length	adjusting	mechanism.	It	helps	to	keep	the	wire	in	touch	with	the	work‐
piece.	The	 job	holding	unit	 holds	 the	 job	 and	 controls	 the	 inter	 electrode	 gap.	 It	 also	helps	 to	
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facilitate	the	contact	between	the	hydrogen	bubbles	evolved	and	the	workpiece.	The	movement	
of	the	job	holding	unit	can	be	controlled	by	means	of	gravity	feed	mechanism.	Minimum	gap	be‐
tween	wire	and	auxiliary	electrode	is	kept	at	30	mm.	For	the	purpose	of	experiment,	the	inter‐
electrode	gap	is	fixed	at	45	mm.	The	entire	assembly	is	fitted	in	a	machining	chamber	made	up	of	
Perspex	which	is	kept	in	the	lower	platform	of	a	two‐storied	wooden	table.	A	hole	is	made	at	the	
bottom	of	the	machining	chamber	and	the	lower	platform	of	the	wooden	table,	through	which	a	
lower	Perspex	piece	with	a	central	hole	is	attached.	On	the	other	side	of	the	Perspex	piece	a	plas‐
tic	 nozzle	 and	 gate	 valve	 assembly	 is	 attached.	With	 this	 assembly	 a	 polyvinyl	 chloride	made	
water	spraying	pipe	is	attached.	The	open	end	of	the	pipe	is	immersed	in	a	big	size	plastic	pail	
which	collects	the	used	electrolyte.	Aqueous	solution	of	KOH	salt	is	used	as	electrolyte.	The	mi‐
cro	 controller	 based	 stepper	motor	 unit	 is	 a	menu	 based	 operational	 system	where	 both	 the	
speed	and	direction	of	rotation	of	stepper	motor	can	be	varied.	The	feed	rate	of	wire	can	be	set	
from	0.05‐0.4	m/min.	The	rpm	of	the	stepper	motor	can	be	varied	from	1	to	80.	The	input	volt‐
age	of	the	stepper	motor	is	12	V	and	the	current	to	the	stepper	motor	is	4	A.	The	traveling	wire	
electrochemical	discharge	machining	system	demands	 for	voltage	of	5‐150	V,	current	of	0‐7	A	
and	 frequency	of	50‐2000	Hz	depending	on	 the	rate	of	material	 removal	and	other	machining	
criteria.	Keeping	in	view	of	this	need	a	pulsed	dc	power	supply	is	developed.	It	provides	the	sup‐
ply	voltage	from	0‐100	V.	

3. Planning for experimentation 

Keeping	in	view	the	fact	of	properly	controlling	the	machining	performances,	the	objective	of	the	
present	research	has	been	to	study	the	main	influencing	factors	among	pulse	on	time	as	a	per‐
centage	of	total	time	(A),	frequency	(B),	applied	voltage	(C),	concentration	of	electrolyte	(D)	and	
wire	feed	rate	(E)	affecting	the	responses	like	material	removal	rate	(MRR)	and	radial	overcut	
(ROC).	Taguchi	method	based	robust	design	principles	[20]	have	been	used	for	the	purpose	of	
employing	a	L25	 (55)	orthogonal	array	to	study	the	effect	of	process	parameters.	Each	 factor	 is	
assigned	5	levels	as	listed	in	Table	1.		

Considering	 the	 required	properties	 like	 tensile	 strength,	melting	point	 of	 the	material	 etc.	
brass	wire	of	0.25	mm	diameter	was	 chosen	as	 cathode	or	 tool.	Hylam	based	 fibre	 reinforced	
composites	of	3	mm	thickness	were	used	as	workpiece.	Solution	of	KOH	salt	was	used	as	electro‐
lyte.	The	weight	of	the	job	before	and	after	machining	was	measured	and	the	difference	was	di‐
vided	by	machining	time	to	get	the	material	removal	rate.	For	each	experiment	the	time	taken	
was	10	min.	Olympus	STM6	optical	measuring	microscope	was	used	to	measure	the	radial	over‐
cut.	 The	 weight	 of	 the	 workpiece	 before	 and	 after	 machining	 was	 measured	 by	 SARTORIUS	
GC103	digital	balance.	Each	experiment	is	replicated	3	times	to	observe	the	readings	of	material	
removal	rate	and	radial	overcut.		
	

Table	1		Factors	with	their	levels	

Control	Factors	
Levels

1	 2 3 4	 5

Pulse	on	
Time	–	A,	(%)		

50	 55	 60	 65	 70	

Frequency	of	power	
supply	–	B,	(Hz)	

55	 65	 75	 85	 95	

Applied		
voltage	–	C,	(V)	 30	 35	 40	 45	 50	

Electrolyte		
concentration	–	D,	(%)	

10	 15	 20	 25	 30	

Wire	feed	rate	–	E,	
(mm/min)	

50	 125	 175	 225	 300	
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4. Taguchi method based optimal parametric analysis 

Taguchi	method	of	robust	design	makes	use	of	orthogonal	arrays	to	determine	the	effect	of	vari‐
ous	process	parameters	based	on	analysis	of	 signal	 to	noise	 (S/N)	 ratio	 (η).	Mathematically	 it	
can	be	computed	as		
	

ߟ ൌ െ10 log ሺܦܵܯሻ (1)
	

where	MSD	is	the	mean	square	deviation	and	commonly	known	as	quality	loss	function.	Depend‐
ing	on	experimental	objective	the	quality	loss	function	can	be	of	three	types:	smaller	the	better,	
larger	 the	better	 and	nominal	 the	best.	The	values	of	 signal	 to	noise	 ratio	were	 calculated	 for	
material	removal	rate	based	on	larger	the	better	quality	principle	and	for	radial	overcut	based	
on	smaller	the	better	principle.	The	data	summary	 in	terms	of	S/N	ratios	are	given	 in	Table	2,	
and	the	results	of	analysis	of	variance	for	material	removal	rate	and	radial	overcut	are	shown	in	
Table	3	and	Table	4,	respectively.	

	
	

Table	2		Data	summary	
Experiment	No.	 Factor	Levels S/N	ratios	(dB)

	 A B	 C D E MRR	 ROC
1	 1 1	 1 1 1 ‐11.7005	 22.9748
2	 1 2	 2 2 2 ‐10.1728	 17.2024
3	 1 3	 3 3 3 ‐9.1186	 18.3443
4	 1 4	 4 4 4 ‐7.3306	 19.0156
5	 1 5	 5 5 5 ‐7.3306	 14.8945
6	 2 1	 2 3 4 ‐10.1728	 19.4939
7	 2 2	 3 4 5 ‐9.1186	 19.3315
8	 2 3	 4 5 1 ‐6.5580	 10.2290
9	 2 4	 5 1 2 ‐7.7443	 17.3933
10	 2 5	 1 2 3 ‐10.4576	 23.6091
11	 3 1	 3 5 2 ‐7.5380	 16.5948
12	 3 2	 4 1 3 ‐8.1737	 18.7860
13	 3 3	 5 2 4 ‐7.1309	 19.5762
14	 3 4	 1 3 5 ‐10.1728	 18.5624
15	 3 5	 2 4 1 ‐7.1309	 16.0269
16	 4 1	 4 2 5 ‐7.9588	 17.8588
17	 4 2	 5 3 1 ‐5.8486	 15.8097
18	 4 3	 1 4 2 ‐7.5350	 18.8619
19	 4 4	 2 5 3 ‐7.1309	 17.2656
20	 4 5	 3 1 4 ‐8.4043	 17.7882
21	 5 1	 5 4 3 ‐4.5830	 14.1993
22	 5 2	 1 5 4 ‐7.3306	 19.4123
23	 5 3	 1 2 5 ‐8.4043	 20.7242
24	 5 4	 3 2 1 ‐6.1961	 15.1890
25	 5 5	 4 3 2 ‐5.1927	 16.4205

	
	

Table	3		ANOVA	for	MRR	

Factors	
Degrees	of	
freedom	

Sum	of	squares	 Mean	square	 F‐Value	 Contribution	(%)	

TON	–	A	 4	 25.2875 6.3219 13.1378	 35.9804
Frequency	–	B	 4	 1.9085 0.4771 0.9915	 2.7155
Applied	voltage	–	C	 4	 27.5150 6.8788 14.2951	 39.1498
Concentration	–	D	 4	 11.7040 2.9260 6.0806	 16.6531
WFR	–	E	 4	 3.7470 0.9368 1.9468	 5.3314
Error	 4	 0.1193 0.0298 ‐ 0.1698
Pooled	error	 12	 5.7748 0.4812 ‐ 8.2170
Total	 24	 70.2813 2.9284 ‐ 100.0000
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Table	4		ANOVA	for	ROC	

Factors	
Degrees	of	
freedom	

Sum	of	squares	 Mean	square	 F‐Value	 Contribution	(%)	

TON	–	A	 4	 4.8940 1.2235 0.2436	 2.5509
Frequency	–	B	 4	 2.1930 0.5483 0.1902	 1.1430

Applied	voltage	–	C	 4	 61.8995 15.4749 3.0807	 32.2634
Concentration	–	D		 4	 41.9480 10.4870 2.0877	 21.8642

WFR	–	E		 4	 27.7315 6.9329 1.3802	 14.4543
Error		 4	 53.1908 13.2977 ‐‐‐ 27.7242

Pooled	error		 12	 60.2778 5.0232 ‐‐‐ 31.4181
Total		 24	 191.8568 7.9940 ‐‐‐ 100.0000

	
	

 
Fig.	3		S/N	ratio	plot	for	MRR	

	
	

	 	
Fig.	4		S/N	ratio	plot	for	ROC	

	
The	corresponding	factor	effects	at	different	levels	for	material	removal	rate	and	radial	over‐

cut	in	terms	of	S/N	ratios	are	plotted	in	Fig.	3	and	Fig.	4,	respectively.	
From	S/N	ratio	plot	it	has	been	observed	that	for	achieving	maximum	MRR	the	optimal	par‐

ametric	 setting	 is	A5B5C5D4E1,	 i.e.	pulse	on	 time	as	70	%	of	 the	 total	pulse	duration,	pulse	 fre‐
quency	of	95	Hz,	applied	voltage	of	50	V,	electrolyte	concentration	of	25	%	by	weight	and	wire	
feed	rate	of	50	mm/min.	For	achieving	minimum	radial	overcut	the	optimal	parametric	setting	is	
A1B1C1D1E4,	i.e.	pulse	on	time	as	50	%	of	the	total	pulse	duration,	pulse	frequency	of	55	Hz,	ap‐
plied	 voltage	 of	 30	 V,	 electrolyte	 concentration	 of	 10	%	 by	weight	 and	wire	 feed	 rate	 of	 225	
mm/min.	Comparing	the	variances	and	degrees	of	contribution	for	each	control	factor	it	is	real‐
ized	that	pulse	on	time,	applied	voltage	and	concentration	of	electrolyte	are	the	most	influencing	
factors	for	material	removal	rate	and	applied	voltage,	concentration	of	electrolyte	and	wire	feed	
rate	are	most	 influencing	 factors	 for	radial	overcut.	The	percentage	 improvements	 in	 the	opti‐
mum	condition	based	on	signal	to	noise	ratio	is	listed	in	Table	5.	
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Table	5		Improvements	based	on	S/N	ratio	
Responses	 Starting	condition	(dB)	 Predicted	optimum	condition	(dB) Percentage	improvement (dB)
MRR	 ‐11.5831	 ‐3.4484 70.23	
ROC	 21.7309	 24.7422 13.86	

	

Table	6		Results	of	verification	experiment	

Responses	
Optimal	parametric	settings

Values	
A	 B C D E	

MRR	(mg/min)	 70	 95 50 25 50	 0.620
ROC	(mm)	 50	 55 30 10 225	 0.065

	
It	 is	observed	that	 the	percentage	 improvement	of	material	 removal	rate	 is	70.23	%	and	of	

radial	overcut	is	13.86	%.	The	results	of	verification	experiments	are	shown	in	Table	6.	

5. Development of empirical models 

The	 empirical	models	 have	 been	 developed	 by	 non‐linear	multiple	 regression	 analysis	 on	 the	
basis	of	L25	 (55)	orthogonal	array	of	robust	design.	 In	 the	analysis	based	on	Taguchi	method	 it	
was	found	that	for	material	removal	rate	the	most	significant	parameters	are	pulse	on	time	as	a	
percentage	of	 total	 time,	applied	voltage	and	concentration	of	electrolyte.	Empirical	model	 for	
material	removal	rate	is	developed	by	considering	the	most	significant	process	parameters.	Em‐
pirical	model	 for	 radial	 overcut	 is	 also	 developed	by	 considering	 the	most	 significant	 process	
parameters	such	as	applied	voltage,	concentration	of	electrolyte	and	wire	feed	rate.	The	mathe‐
matical	relationship	between	material	removal	rate	and	most	significant	process	parameters	is	
established	as	follows:	
	

ܻ ൌ 0.4170  0.0326 ଵܺ  0.0264ܺଶ  0.0206ܺଷ  0.0013 ଵܺ
ଶ െ 0.0004ܺଶ

ଶ െ 0.0041ܺଷ
ଶ	 (2)

	

where	 ଵܺ ൌ
ሺ்ைேିሻ

ହ
, ܺଶ ൌ

ሺିସሻ

ହ
, 	ܺଷ ൌ

ሺைேିଶሻ

ହ
		and		ܻ ൌ MRR	ሺmg/minሻ	

	
The	mathematical	relationship	between	radial	overcut	and	the	corresponding	significant	pro‐

cess	parameters	is	as	follows:	
	

ܻ ൌ 0.0651  0.0157 ଵܺ  0.0150ܺଶ െ 0.0051ܺଷ െ 0.0043 ଵܺ
ଶ  0.0033ܺଶ

ଶ  0.0062ܺଷ
ଶ	 (3)

	

where	 ଵܺ ൌ
ሺିସሻ

ହ
, 	ܺଶ ൌ

ሺைேିଶሻ

ହ
, 	ܺଷ ൌ

ሺௐிோିଵହሻ

ଶହ
		and		ܻ ൌ ROC	ሺmmሻ	

	

As	pulse	on	 time	 increases	more	pulse	energy	 is	obtained	per	spark	resulting	 in	more	heat	
generation	during	melting	 and	hence	material	 removal	 rate	 also	 increases.	As	 applied	 voltage	
increases	more	pulse	energy	 is	obtained	per	spark	and	more	heat	 is	generated	during	melting	
and	material	removal	rate	also	increases.	More	concentration	of	electrolyte	means	more	conduc‐
tivity	of	electrolyte	and	extent	of	chemical	reaction	also	increases	with	the	concentration	of	elec‐
trolyte.	 As	 degree	 of	 chemical	 reaction	 increases,	more	 hydrogen	 vapour	 bubbles	 are	 formed	
resulting	in	more	sparking	and	more	heat	generation	in	melting	resulting	 in	more	material	re‐
moval	rate.		

At	low	value	of	applied	voltage,	pulse	energy	per	spark	is	less	resulting	in	less	heat	generation	
during	sparking.	Rate	of	melting	of	material	also	decreases.	As	applied	voltage	increases	energy	
per	spark	also	increases	resulting	in	more	generation	of	heat	during	melting	and	radial	overcut	
also	 increases.	With	 the	 increase	 in	 concentration	 of	 electrolyte,	 radial	 overcut	 first	 increases	
and	then	decreases.	At	less	value	of	concentration,	vapour	blanketing	of	wire	is	incomplete	and	
irregular	 sparking	 causes	 more	 radial	 overcut.	 At	 moderate	 value	 of	 concentration	 extent	 of	
chemical	 reaction	 is	more	 resulting	 in	 proper	 vapour	 blanketing	 of	wire	 and	more	 controlled	
and	localized	sparking	resulting	in	minimum	overcut.	At	higher	values	of	concentration	extent	of	
chemical	reaction	is	still	greater	than	that	of	at	a	moderate	electrolyte	concentration	and	uneven	
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and	thicker	blanketing	of	wire	causes	unstable	and	violent	sparking	and	hence	radial	overcut	is	
also	maximum.	 As	wire	 feed	 rate	 increases	 radial	 overcut	 first	 increases	 and	 then	 decreases.	
This	 is	 due	 to	 the	 reason	 that	 initially	 when	 chemical	 reaction	 occurs	 hydrogen	 bubbles	 are	
evolved	and	those	bubbles	form	an	insulating	layer	around	the	wire	electrode.	Then	due	to	uni‐
form	sparking	more	materials	 are	melted	and	hence	 radial	 overcut	 is	 also	more.	As	wire	 feed	
rate	increases,	bubbles	are	swept	away	with	the	wire	thus	adversely	affecting	the	sparking	and	
hence	less	material	is	melt	resulting	in	less	radial	overcut.	

In	the	two	equations	derived	above	the	resultant	overall	effect	of	all	the	above	mentioned	pa‐
rameters	are	reflected.	

Applied	voltage	was	found	to	be	most	influential	process	parameter	of	TW‐ECDM.	Fig.	5	and	
Fig.	6	show	the	actual	and	estimated	values	of	MRR	and	ROC	for	different	levels	of	applied	voltage.	

	

	
Fig.	5		Comparison	of	actual	MRR	and	estimated	MRR	based	on	model	

	

	
Fig.	6		Comparison	of	actual	ROC	and	estimated	ROC	based	on	model	

6. Artificial neural network 

An	artificial	neural	network	(ANN)	is	a	massively	parallel	distributed	processor	made	up	of	sig‐
nal	 processing	 units,	 which	 has	 a	 natural	 propensity	 for	 storing	 experiential	 knowledge	 and	
making	 it	 available	 for	 use.	 A	 neural	 network	 derives	 its	 computing	 power	 through,	 first,	 its	
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massively	parallel	distributed	structure	and,	second,	its	ability	to	learn	and	therefore	generalize.	
Generalization	means	producing	reasonable	outputs	from	inputs	not	encountered	during	learn‐
ing	or	 training.	These	 two	 information	processing	capabilities	make	 it	possible	 for	neural	net‐
works	 to	solve	 large	scale	problems	 that	are	currently	 intractable.	 In	practice	however	neural	
network	cannot	provide	solution	by	working	individually.	Rather	they	need	to	be	integrated	into	
a	consistent	system	engineering	approach.	Specifically	a	complex	problem	of	interest	is	decom‐
posed	into	a	number	of	relatively	simple	tasks	and	neural	networks	are	assigned	to	a	subset	of	
the	tasks	that	match	their	inherent	capabilities.	Different	kinds	of	ANN	architectures	are	single	
layer	feed	forward	network,	multilayer	feed	forward	network,	recurrent	network	etc.	In	multi‐
layer	 feed	 forward	network	 one	 or	more	hidden	 layers	 are	 present.	 The	 free	 parameters	 of	 a	
neural	network	are	 adapted	 through	a	process	 of	 stimulation	by	 the	environment	 in	 learning.	
Learning	may	be	error	correction	learning,	memory	based	learning,	Hebbian	learning,	competi‐
tive	learning,	Boltzmann	learning	etc.	according	to	methods.	The	model	of	environment	in	which	
the	neural	 network	operates	 is	 known	as	 learning	paradigm.	 Learning	process	may	be	 super‐
vised	or	unsupervised.	Supervised	learning	algorithms	employ	an	external	reference	signal	and	
generate	an	error	signal	by	comparing	the	reference	with	the	obtained	response.	Based	on	the	
error	 signal	 the	 synaptic	weights	 are	modified.	 In	 back	 propagation	 neural	 network	we	 have	
used	back	propagation	supervised	learning	algorithm.		

7. Prediction using ANN 

In	the	feedforward	backpropagation	neural	network	model	or	perceptron	there	is	an	input	layer,	
an	output	layer	and	one	or	more	hidden	layer.	Each	input	layer	has	an	input	and	an	output.	Like	
input	layer	each	hidden	layer	and	output	layer	has	an	input	and	an	output.	Weights	are	applied	
between	outputs	of	 input	 layer	and	 inputs	of	hidden	 layer	and	and	between	output	of	hidden	
layer	and	inputs	of	output	layer.		

For	input	layer	if	linear	transfer	function	is	used,	then	
	

ሾܱሿூ ൌ ሾܫሿூ (4)
	

If	hidden	layer	neurons	are	connected	by	synapses	to	input	neurons	then		
	

ሾܫሿு ൌ ሾܸሿሾܱሿூ (5)
	

where	[V]	is	weight	matrix	applied	to	output	of	input	layer.	
The	unipolar	sigmoidal	transformation	function	is	used	for	transformation	of	input	of	hidden	

layer	to	output	of	hidden	layer.	The	unipolar	sigmoidal	transformation	function	is	given	by	
	

ܱு ൌ
1

1  ݁ିఒூಹ
	 (6)

	

where	λ	is	sigmoidal.	
For	transformation	of	output	of	hidden	layer	to	input	of	output	layer	is	accomplished	by	

	

ሾܫሿை ൌ ሾܹሿሾܱሿு (7)
	

where	[W]	is	weight	matrix	applied	to	output	of	hidden	layer.	
The	transformation	of	input	of	output	layer	to	output	of	output	layer	is	given	by	the	following	

unipolar	sigmoidal	function	
	

ܱை ൌ
1

1  ݁ିఒூೀ
	 (8)

After	 the	output	 is	obtained	 it	 is	compared	with	the	 target	value	which	 is	 the	experimental	
value	and	error	is	calculated	as	

ܧ ൌ
1
2
ሺܶ െ ܱሻଶ	 (9)
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where	E	is	error,	T	is	target	value,	and	O	is	output	value.	
Based	on	 the	error	 and	 the	 learning	algorithm,	by	 trial	 and	error	methods	 the	weights	 are	

changed	again	and	again	and	the	neural	network	is	trained	using	the	weights.	A	large	number	of	
iterations	are	performed	until	the	values	of	error	are	sufficiently	small	and	the	required	results	
are	obtained.		

Here	a	3‐9‐1	feed	forward	back	propagation	network	is	used	to	analyze	the	performance	sep‐
arately	 for	each	output.	The	values	of	 the	machining	parameters	are	 taken	as	 input	and	actual	
experimental	values	are	treated	as	target	values.	The	outputs	of	each	experimental	parametric	
setting	are	compared	with	the	target	values	and	errors	are	calculated.	In	this	model	of	multilayer	
perceptron,	linear	activation	function	is	used	in	input	layer	while	unipolar	sigmoidal	function	is	
used	in	both	hidden	layer	and	output	layer.	For	material	removal	rate	the	value	of	sigmoidal	gain	
is	taken	as	0.125	and	for	radial	overcut	the	value	of	sigmoidal	gain	is	taken	as	0.130.	Using	pro‐
gramming	 through	MATLAB	 the	 outputs	 and	 errors	 are	 generated.	 Table	 7	 shows	 the	predic‐
tions	for	material	removal	rate	while	Table	8	shows	the	predictions	for	radial	overcut.	

Fig.	7	 shows	 the	relation	between	ANN	values	and	experimental	values	 for	MRR	and	Fig.	8	
shows	relation	between	ANN	values	and	experimental	values	for	ROC.	Combining	the	tables	and	
the	figures	it	can	be	concluded	that	this	theoretical	model	can	satisfactorily	explain	the	complex	
experimental	behaviour	of	the	TW‐ECDM	process	although	there	is	still	sufficient	room	for	im‐
provements.	Fig.	9	shows	variations	 in	theoretical	and	experimental	values	in	different	experi‐
ments	for	MRR	while	Fig.	10	shows	variations	in	theoretical	and	experimental	values	in	different	
experiments	for	ROC.	Fig.	11	shows	microscopic	view	of	one	machined	workpiece.	
	

Table	7		Prediction	for	MRR	using	ANN	

Experiment	No.	
Theoretical	
values	

Actual	
values	

Errors	
Experiment

No.	
Theoretical	
values	

Actual	
values	

Errors	

1	 0.5665	 0.2600 0.0470 14 0.5671 0.3100	 0.0331
2	 0.5669	 0.3100 0.0330 15 0.5673 0.4400	 0.0081
3	 0.5671	 0.3500 0.0236 16 0.5673 0.4000	 0.0140
4	 0.5672	 0.4300 0.0094 17 0.5673 0.5100	 0.0016
5	 0.5673	 0.4300 0.0094 18 0.5673 0.4200	 0.0108
6	 0.5671	 0.3100 0.0331 19 0.5673 0.4400	 0.0081
7	 0.5672	 0.3500 0.0236 20 0.5672 0.3800	 0.0175
8	 0.5673	 0.4700 0.0047 21 0.5674 0.5900	 0.0002
9	 0.5671	 0.4100 0.0123 22 0.5673 0.4300	 0.0094
10	 0.5669	 0.3000 0.0356 23 0.5672 0.3800	 0.0175
11	 0.5673	 0.4200 0.0109 24 0.5673 0.4900	 0.0030
12	 0.5671	 0.3900 0.0157 25 0.5673 0.5500	 0.0001
13	 0.5672	 0.4400 0.0081 	

	
	

Table	8		Prediction	for	ROC	using	ANN	
Experiment	

No.	
Theoretical	
values	

Actual	
values	

Errors	
Experiment

No.	
Theoretical
values	

Actual	
values	

Errors	

1	 0.5929 0.071	 0.1362 14 0.5935 0.118	 0.1130
2	 0.5934 0.138	 0.1037 15 0.5933 0.158	 0.0948
3	 0.5935 0.121	 0.1116 16 0.5935 0.128	 0.1083
4	 0.5935 0.112	 0.1159 17 0.5934 0.162	 0.0931
5	 0.5935 0.180	 0.0855 18 0.5934 0.114	 0.1149
6	 0.5935 0.106	 0.1188 19 0.5935 0.137	 0.1042
7	 0.5935 0.108	 0.1178 20 0.5935 0.129	 0.1079
8	 0.5934 0.308	 0.0407 21 0.5935 0.195	 0.0794
9	 0.5934 0.135	 0.1051 22 0.5935 0.107	 0.1183
10	 0.5934 0.066	 0.1391 23 0.5935 0.092	 0.1257
11	 0.5935 0.148	 0.0992 24 0.5933 0.174	 0.0879
12	 0.5935 0.115	 0.1145 25 0.5934 0.151	 0.0979
13	 0.5935 0.105	 0.1193 	
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Fig.	7		Relation	between	ANN	values	and	experimental	values	in	MRR	

	

	
Fig.	8		Relation	between	ANN	values	and	experimental	values	in	ROC	

	

 
Fig.	9		Variation	in	MRR	for	different	experiments	
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Fig.	10		Variation	in	ROC	for	different	experiments	

	
	

	

Fig.	11		Microscopic	view	of	machined	workpiece	

8. Conclusion 

The	TW‐ECDM	system	has	ability	to	perform	the	machining	operation	such	as	cutting	electrically	
non‐conductive	 engineering	materials	 like	 fibre	 reinforced	 composites.	 From	 the	observed	 re‐
sults	 and	 analysis	 on	 TW‐ECDM	 process,	 it	 is	 clear	 that	 for	 maximum	material	 removal	 rate	
(MRR)	the	parametric	combination	is	pulse	on	time	as	70	%	of	the	total	time,	pulse	frequency	of	
95	Hz,	applied	voltage	of	50	V,	electrolytic	concentration	of	25	%	by	weight	and	wire	feed	rate	of	
225	mm/min.	For	minimum	radial	overcut	(ROC)	the	optimal	parametric	combination	is	obtained	
as	pulse	on	time	as	50	%	of	the	total	pulse	time,	frequency	of	55	Hz,	applied	voltage	of	30	V,	elec‐
trolyte	concentration	of	10	%	by	weight	and	wire	feed	rate	of	225	mm/min.	From	the	analysis	of	
variance	pulse	on	time,	applied	voltage	and	concentration	of	electrolyte	are	found	as	more	sig‐
nificant	process	parameters	affecting	material	removal	rate	and	applied	voltage,	concentration	
of	electrolyte	and	wire	feed	rate	as	more	significant	process	parameters	affecting	radial	overcut.	
Earlier	researches	on	ECDM	and	TW‐ECSM	focused	mainly	on	developing	experimental	setup	for	
machining	ceramics	and	composites	etc.	and	determining	the	nature	of	pulse,	having	an	insight	
of	material	 removal	mechanism	 and	mathematical	modelling	 of	 the	 process	 to	 determine	 the	
response	of	the	outputs	against	individual	process	parameters,	but	very	few	attempts	have	been	
made	to	classify	the	process	parameters	as	dominant	or	recessive.	Verification	experiment	has	
also	been	conducted	to	test	the	validation	of	experiments	based	on	orthogonal	array	and	it	was	
proved	that	improvement	in	the	machining	output	has	occurred.	The	authors	have	earlier	con‐
ducted	 research	on	TW‐ECDM	[19]	but	 the	 scope	of	 that	 research	was	only	 confined	 to	 single	
response	and	multi‐response	optimization	though	a	hybrid	method	of	Taguchi	method	and	prin‐
cipal	component	analysis	(PCA)	and	 it	also	revealed	the	complex	 interaction	between	the	pro‐
cess	parameters.	But	that	analysis	did	not	predict	the	behaviour	of	the	responses	against	process	
parameters	and	no	mathematical	relation	have	been	developed.	In	the	current	research	an	anal‐
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ysis has been made enlightening the non-linear relationship of a single response like material 
removal rate and radial overcut. From the plot of material removal rate and radial overcut 
against applied voltage it was observed that in case of material removal rate the response in-
creases with applied voltage and experimental values matches with estimated values to maxi-
mum extent between 35 V and 45 V where as both experimental and estimated values show sim-
ilar trend of change between 35 V and 45 V. Thus it is observed that if material removal rate 
increases, radial overcut will also increase thus putting a restriction on arbitrarily increasing the 
material removal rate and reasonably good result can be obtained by machining with 35 V to 45 
V, although maximum MRR is obtained for 50 V and minimum ROC is obtained for 30 V. Owing 
to the complexity arising out of using multiple parameters together, an effort has been made to 
fit a feed forward back propagation neural network model between the parameters and re-
sponses and after sufficient training of the network the results obtained showed similar results 
as in the case of multiple regression analysis. This effort has never been made in earlier re-
searches. Prediction using ANN shows that as actual values increases the predicted values also 
increases and the errors indicate the degree of fitness of the ANN. Prediction by both multiple 
regression and ANN gives an idea that best value of machining with respect to MRR will occur at 
the higher end of the parameter ranges, which exactly matches with the earlier research by the 
authors. This necessitates the redesign of electrical and electronic circuits of the present setup. 
Also different kind of optimization of the responses can be attempted with the same set of pa-
rameters and with the same experimental setup. Different kind of electrolyte solution and dif-
ferent work materials can also be used with the present setup with modification. The present 
setup can also be modified for micromachining of ceramics and composites. 
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A B S T R A C T	   A R T I C L E   I N F O	

Action	cameras	were	used	 in	 a	material	 science class	 laboratory	 setting	 for	
improving	student	motivation	and	understanding	of	material	failure	mecha‐
nisms.	The	design,	implementation,	and	student	perceptions	were	examined
when	 using	 cameras.	 The	 students	 recorded	 video	 footage	 of	 destructive	
material	testing	using	GoPro	Hero	action	cameras	in	order	to	evaluate	mate‐
rial	 failure	and	develop	a	video	presentation.	The	use	of	 action	 cameras	al‐
lowed	 students	 to	 view	 and	 record	 their	 experiments	 without	 the	 risk	 of	
damage	to	a	more	expensive	camera,	view	their	experiments	in	slow	motion,
and	improve	technical	communication	skills.	An	assessment	of	the	innovation	
was	conducted	through	student	feedback	and	existing	performance	measures	
related	to	continuous	quality	improvement.	Students	participated	in	develop‐
ing	a	grading	rubric	for	video	laboratory	presentations.	Five	criteria	in	order	
of	importance	were	content,	clarity,	organization,	format,	and	creativity.	The	
students’	surveys	were	positive	regarding	increased	understanding	of	course	
material	 and	 improved	 technical	 communication	 skills.	 The	 students	 were	
satisfied	with	the	variety	of	laboratory	experiments.	They	perceived	increas‐
es	 in	 their	 abilities	 to	 share	 technical	 information	 through	 a	medium	other	
than	written	reports.	Implications	included	needing	more	training	in	camera
usage,	 editing,	 and	 video	 production	 techniques	 in	 order	 to	 improve	 the	
learning	process.	This	innovation	could	be	extended	to	other	engineering	and	
management	classes.	
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1. Introduction  

1.1 Technology and engineering education 

In	the	past	two	decades,	more	and	more	attention	has	been	devoted	to	the	evaluation	and	ap‐
praisal	of	technology	in	the	classroom.	Likewise,	studies	have	examined	methods	of	instruction,	
student	motivation,	and	improved	learning.	Such	studies	suggest	that	technology	and	hands‐on	
experiences	in	the	classroom	may	improve	learning	and	motivation.	The	classroom	innovation	
using	technology	described	in	this	study	is	using	GoPro	Hero2	action	cameras	as	an	additional	
project	for	the	required	course,	Materials	Science	and	Manufacturing.	

The	mechanical	engineering	course	has	a	 significant	 laboratory	portion	which	 involves	de‐
structive	material	testing.	Goals	of	this	project	 in	utilizing	GoPro	HD	Hero2	action	camera	kits	
were	to:	(1)	stimulate	 interest	and	enthusiasm	in	 the	 laboratory	material;	 (2)	 increase	under‐
standing	of	material	 failures;	and	 (3)	 improve	 technical	 communication	 skills.	This	paper	will	
discuss	the	design,	implementation,	and	results	of	adding	this	technology	to	an	engineering	la‐
boratory	setting.	

http://apem-journal.org/
mailto:myoung@uttyler.edu
http://www.uttyler.edu/
http://www.uttyler.edu/
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1.2 Background 

Students	had	commented	previously	that	performing	repeated	material	 tests	had	become	mo‐
notonous.	In	addition,	similar	tests	had	to	be	run	on	different	types	of	materials	to	understand	
how	 failure	mechanisms	 differ	 among	material	 types.	 Therefore,	 this	 initiative	 included	 both	
new	and	informative	methods	in	conducting	the	experiments.	A	major	premise	of	the	study	was	
not	all	laboratory	reports	in	the	industry	are	limited	to	paper.	However,	with	the	lower	costs	of	
digital	cameras	and	videos	plus	available	easy‐to‐use	editing	software,	presenting	results	with	
video	productions	has	become	feasible.	

This	study	focused	on	using	the	GoPro	Hero	action	cameras	to	assess	student	learning,	moti‐
vation,	and	teambuilding.	GoPro	Hero	2	cameras	were	purchased	to	enable	120	frames	per	sec‐
ond	digital	recording	of	destructive	material	tests,	such	as	impact,	tensile,	and	compression	and	
bending	tests.	Students	used	the	footage	to	further	evaluate	the	damage	mechanisms	and	obtain	
additional	 data.	 In	 addition,	 the	 project	 provided	 students	 both	 visual	 and	 traditional	 data	 to	
review	and	analyse.	

A	specific	objective	of	this	initiative	was	to	prepare	students	to	present	scientific	results	in	a	
format	that	goes	beyond	professors	and	classmates.	To	this	end,	students	took	the	footage	from	
the	experiments	and	prepared	video	laboratory	reports.	These	videos	were	uploaded	to	a	dedi‐
cated	YouTube	channel.	Also,	students	participated	in	developing	a	rubric	to	enhance	an	effec‐
tive	evaluation	of	their	team	projects.	

Student	 surveys	 indicated	 that	 students	 generally	 did	 indeed	 benefit	 from	 the	 experience	
with	some	exceptions.	Accordingly,	implementation,	findings,	and	evaluation	of	the	camera	pro‐
ject	in	a	materials	science	laboratory	setting	are	examined.		

2. Using technology in a materials science laboratory setting 

2.1 Literature review	

Goodhew	and	Bullough	[1]	believed	a	goal	in	a	materials	science	laboratory	should	not	only	be	
that	the	students	correctly	obtain	a	proper	measurement	but	also	encouraged	to	do	something	
useful	with	 their	results.	As	new	technology	 is	made	available	 to	educators	and	students,	 it	 is	
possible	to	find	new	ways	to	encourage	students	to	take	a	closer	look	at	what	they	are	studying,	
whether	it	is	in	the	classroom	or	in	the	laboratory.	

Davies	and	Ringer	[2]	examined	a	flexible	learning	studio	with	equipment	for	both	studying	
and	 preparing	 presentations	 for	 materials	 science	 engineering	 students.	 He	 recognized	 that	
modern	engineering	students	need	skills	not	only	to	obtain	results	but	present	them	to	others	
as	well.	

Pinder‐Grover	 et	 al.	 [3]	 used	 screencasts	 to	 overcome	 the	 difference	 in	 academic	 back‐
grounds	and	interests	of	students	coming	into	a	large	materials	science	course.	Likewise,	Laoui	
and	O’Donoghue	[4]	implemented	a	multimedia	virtual	learning	environment	to	achieve	a	simi‐
lar	goal.	Another	web‐based	approach	was	developed	by	Kurt,	Kubat,	and	Oztumel	using	a	con‐
ceptual	model	of	a	virtual	materials	testing	laboratory	simulation	for	students	[5].		

The	applications	of	GoPro	cameras	in	research	have	been	numerous	in	several	areas	over	the	
past	few	years.	For	example,	the	action	camera	was	used	to	capture	the	remote	control	monitor‐
ing	of	a	robotic	arm	[6],	and	motion	capture	in	microgravity	[7].	Kindt	used	a	head‐mounted	Go‐
Pro	camera	to	gain	a	better	understanding	of	the	student’s	point	of	view	during	a	class	lecture	[8].	
Tugrul		(2012)	studied	using	a	camera	in	the	classroom	The	research	conducted	in	a	marke‐

ting	course	in	a	private	university	in	Turkey	found	video‐recorded	presentations	in	the	learning	
environment	were	highly	effective	in	learning	outcomes	and	enriching	the	education	[9].	
	Schultz	reported	examples	of	using	video	productions	in	other	disciplines	including	the	use	of	

student‐produced	videos	in	management	classes.	Interacting	with	the	management	content	was	
believed	to	give	students	a	greater	chance	of	understanding	and	synthesizing	the	material	[10].	
Although	video	assignments	have	been	used	in	the	classroom	in	other	disciplines,	none	have	

implemented	 the	particular	needs	of	mechanical	engineering	materials	 laboratories.	Cochrane	
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and	O’Donoghue	found	that	engineering	students	created	video	productions	to	present	to	their	
peers	 [11].	Armstrong,	Tucker,	and	Massad	 investigated	an	 innovative	project	where	students	
developed	and	produced	podcasts,	giving	students	hands‐on	experience	with	modern	tools	[12].		
A	recent	study	hypothesized	that	in	engineering	classes,	student	learning	is	more	effective	with	

interactive	 activities	 than	 constructive,	 passive	 activities.	 The	 researchers	 measured	 student	
knowledge	and	understanding	of	materials	science	and	engineering	concepts.	The	results	showed	
that	students	scored	higher	in	all	post‐tests	while	participating	in	interactive	activities	[13].	

2.2 Purpose of material science and manufacturing laboratory 

Materials	Science	and	Manufacturing,	a	required	course	in	the	mechanical	engineering	program,	
consists	of	two	hours	of	lecture	and	one	hour	of	laboratory	per	week.	The	course	description	is	
as	 follows:	 “Introduction	 to	materials	 science	 including	 the	 structure	of	metals	and	polymers,	
the	testing	of	mechanical	properties	of	materials,	the	relationship	between	material	properties,	
structure	and	processing	 techniques,	 and	 the	capabilities	and	 limitations	of	modern	manufac‐
turing	methods.”	

The	laboratory	portion	of	the	course	allows	students	the	opportunity	to	gain	“hands‐on”	ex‐
perience	with	materials	testing,	focusing	on	tensile,	impact,	hardness,	and	bending	tests.	Inher‐
ent	within	this	type	of	experience	is	learning	to	create	professional,	high‐quality	reports.	Three	
of	the	12	course	learning	objectives	related	to	the	innovation	are	to:	

1. Analyse	the	effect	of	heat	treatment	on	metal	alloys.	
2. Perform	standard	hardness,	tensile,	and	impact	tests	on	metals	and	polymers.	
3. Present	experimental	results	in	laboratory	reports.	

Traditional	testing	allowed	students	to	perform	numerous	tests	of	material	properties	using	
only	 visual	 aids	 at	 normal	 camera	 speeds	 using	 cellular	 phone	 cameras.	However,	 due	 to	 the	
destructive	nature	of	 some	of	 the	 lab	 tests,	 the	 recording	may	contain	risks	 for	both	students	
and	camera.	

3. The action camera experiment 

3.1 The action camera GoPro Hero2 

This	pilot	study	 implemented	a	high	definition	GoPro	HD	Hero2	action	camera	kit	 in	order	 to	
capture	more	than	just	numbers	in	the	materials	testing	lab	session.	According	to	CNET	editors,	
the	GoPro	HD	Hero2	has	a	glass	lens,	a	mini‐USB	port	for	charging,	a	2.5	mm	microphone	input,	
a	full‐size	SD	card	slot,	an	HDMI	video	output,	and	a	1,100	mAh	lithium	ion	battery	[14].	In	addi‐
tion,	it	ships	with	a	clear	polycarbonate	waterproof	housing	with	spring‐loaded	waterproof	but‐
tons	giving	the	user	access	to	all	buttons	needed	for	recording	and	modifying	settings	[14].	The	
camera	kit	used	contained	housings	to	facilitate	its	secure	attachment	to	almost	anything	from	a	
helmet	to	a	piece	of	swinging	lab	equipment	(see	Fig.	1).	
	

	
Fig.	1		GoPro	HD	Hero2	action	camera	(Source:	GoPro	website)	
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The	 innovative	 aspects	 of	 this	 approach	 consisted	 of	 using	 a	 lower	 cost,	 more	 student‐
friendly	medium	to	capture	relatively	high‐speed	videos.	While	the	video	quality	may	not	be	as	
excellent	as	a	1000	 fps,	multi‐thousand	dollar	camera,	 it	 seemed	sufficient	 to	perform	experi‐
ments	in	material	failure	and	to	capture	exciting	visual	results.	

3.2 Usage in the laboratory 

The	action	cameras	captured	120	fps	footage	of	material	failure	in	impact	tests,	tensile	tests,	and	
tensile	tests	of	metal	and	plastic	specimens	(including	heat	treated	metal	specimens).	Cameras	
were	set	up	to	record	the	failure	of	the	material	for	all	three	types	of	tests	and	placed	in	a	posi‐
tion	which	allowed	ease	in	switching	off	and	on	during	the	test.	Yet,	because	of	its	small	size,	its	
position	was	assured	a	safe	area	from	the	equipment.	Two	similar	setup	recorded	impact	tests	
were:	(1)	camera	faces	the	specimen	as	it	comes	out	of	the	impact	tester;	and	(2)	camera	rec‐
ords	the	trajectory	of	the	specimen	as	it	leaves	the	impact	tester.	For	example,	its	usage	is	de‐
scribed	in	connection	with	a	Charpy	V‐notch	impact	test,	using	a	pendulum	testing.		
Students	were	 tasked	with	not	only	 recording	 the	 impact	 strength	 indicated	by	 the	 impact	

tester,	but	to	(1)	estimate	the	speed	of	the	specimen	as	it	left	the	tester	and	(2)	comment	on	the	
breakage	of	the	specimen	as	it	left	the	tester.	This	data	was	then	supplemented	with	digital	pho‐
tos	of	the	before	and	after	specimen.	
To	maintain	a	smooth	operation	of	the	laboratory	sessions,	the	teams	took	turns	performing	

and	recording	their	experiments.	To	achieve	the	simultaneous	recording	of	the	experiment	from	
multiple	 angles,	 a	WiFi	BacPac	+	ComboKit	 allowed	 the	 recordings	 to	begin	at	 the	 same	 time	
while	removing	the	students	from	hazardous	moving	equipment	(e.g.,	the	impact	tester	pendu‐
lum	arm)	as	recording	begins.		

4. Creating video productions 

4.1 Student teamwork 

In	 order	 to	 increase	 student	 interest	 in	 video	 production,	 a	 dedicated	 YouTube	 channel	 was	
created	[15].	This	channel	included	videos	of	the	impact	test	of	a	metal	specimen	from	two	dif‐
ferent	views	and	recorded	at	120	 fps,	 in	 lieu	of	 the	30	 fps	 that	 is	 typical	of	a	 standard	digital	
video	camera.	

An	in‐class	demonstration	on	editing	footage	in	Windows	MovieMaker	was	given	[16].	In	ad‐
dition,	 students	were	 provided	 information	 on	 downloading	 the	 free	 trial	 of	 Camtasia	 Studio	
from	TechSmith,	which	supports	integration	of	PowerPoint	slides	with	video	and	imaging	[17].	
Each	laboratory	team	chose	a	team	name	and	was	assigned	a	Blackboard	team	page	for	sharing	
and	editing	files.	Their	team	names	were	used	with	the	laboratory	videos	posted	on	YouTube	to	
protect	privacy.	

After	 the	 experiment	was	 performed,	 the	 video	 files	 were	 uploaded	 to	 the	 team	 page	 on	
Blackboard.	If	issues	arose	with	the	file	exchange	on	Blackboard,	the	file	was	posted	to	another	
online	 file	 sharing	 system.	Next,	 the	 student	 teams	 completed	 the	 video	 lab	 editing	 and	 then	
submitted	their	video	productions	for	grading.	

4.2 Student expectations and evaluation 

Students	were	given	the	opportunity	 to	assist	 in	developing	the	rubric	 for	effective	grading	of	
the	video	productions.	They	agreed	that	the	most	important	weights	for	the	evaluation	should	
be	content	(45	%),	clarity	(30	%),	organization	(10	%),	format	(9	%),	and	creativity	(5	%).	The	
video	production	grade	was	assigned	as	a	team	grade.	Also,	 this	same	rubric	was	used	during	
the	second	year	of	using	the	cameras	and	is	shown	in	Table	1.	
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Table	1		Rubric	for	video	laboratory	reports		
Criteria	 Novice	 Competent Proficient	

Content	
0–10	points	
Missing	over	½	the	required	
content	

11–30	points	
Includes	at	least	half	of	the	
required	content	

31–45	points	
Contains	all	the	required	
content	

Clarity	

0–5	points	
Excessive	use	of	technical	
jargon	without	explanation,	or	
incorrect	explanation	

6–20	points	
Use	of	technical	terms	fully	
explained	with	correct	explana‐
tion,	but	requires	a	strong	
background	in	science	to	un‐
derstand	

20–30	points	
Technical	terms	fully	ex‐
plained	with	correct	explana‐
tion	understandable	to	some‐
one	without	a	physics	back‐
ground	

Organization	
0–1	point	
Poorly	organized	

2–6	points	
Organization	is	present,	but	
flow	is	not	logical	

7–10	points	
Shows	evidence	of	careful	
organization	with	logical	flow	

Format	
0–2	points	
Unprofessional	formatting	

3–7	points	
Professional	formatting,	but	
minimal	effort	put	into	appear‐
ance	

8–9	points	
Professional	formatting	with	
considerable	effort	put	into	
appearance	

Creativity	
0–1	points	
Minimal	creativity	exhibited	

2–4	points	
Some	level	of	creativity,	but	
showing	little	evidence	of	
thought	or	skill	

5	points	
High	level	of	creativity,	show‐
ing	evidence	of	thought	and	
skill	

(Source:	Developed	by	instructor	and	students	in	the	Materials	Science	and	Manufacturing	class)	

4.3 Impact testing and video production 

The	first	video	laboratory	covered	impact	testing	and	required	students	to	use	the	video	footage	
to	 estimate	 the	 speed	 of	 the	 specimen	 as	 it	 flew	 out	 of	 the	 impact	 testing	machine.	 This	 re‐
quirement	assisted	the	students	in	viewing	video	footage	as	part	of	the	actual	experimental	da‐
ta,	rather	than	as	a	visual	supplement	to	data.	

Next,	students	recorded	video	footage	for	an	experiment	of	their	own	choosing.	The	follow‐
ing	tests	were	performed:	

 impact	testing	of	a	polymer	specimen,	
 tensile	testing	of	a	polymer	specimen,	
 tensile	testing	of	an	aircraft	bolt,	
 bending	tests	of	steel,	
 compression	tests	of	tests	of	steel,	
 bending	test	of	heat	treated	Damascus	steel.	

	
Each	 team	 video	 submitted	 for	 the	 second	 video	 laboratory	was	 shown	 in	 class.	 Students	

commented	on	all	team	videos	and	were	shared	via	the	Blackboard	team	page	and	used	in	final	
grading.	

4.4 Videos on YouTube 

When  the	 submitted	videos	were	posted	on	YouTube,	keywords	were	 impact	 testing,	material	
testing,	bending	testing,	and	Hero	GoPro.	Accordingly,	the	videos	became	more	useful	to	a	wide	
variety	 of	 audiences.	 A	 screenshot	 of	 the	 videos	 posted	 on	 the	dedicated	YouTube	 channel	 is	
shown	in	Fig.	2.	
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Fig.	2		Video	team	production	presentations	on	YouTube	

5. Assessment of the action camera experiment 

Three	 types	 of	 assessment	were	used	 to	 determine	 the	 effectiveness	 of	 this	 innovation.	 They	
were	(1)	student	surveys	 from	laboratory;	(2)	departmental	surveys	on	student	perception	of	
understanding	 of	 course	 learning	 objectives;	 and	 (3)	 mechanical	 engineering	 faculty	 ratings	
according	to	student	performance	and	accreditation	standards.	
The	last	two	methods	are	an	inherent	part	of	the	accreditation	process	of	the	Department	of	

Mechanical	Engineering	by	the	Accreditation	Board	for	Engineering	and	Technology	(ABET)	and	
are	related	directly	to	an	existing	continuous	quality	improvement	process	implemented	within	
the	department.	The	faculty	reviews	student	achievement	on	course	objectives	on	a	regular	ba‐
sis	and	using	student	data	related	to	their	understanding	of	the	course	learning	objectives	and	
performance	on	embedded	indicators	within	graded	course	assignments.	

5.1 Student perceptions of the camera project 

Students	 completed	 a	 short,	 anonymous	 survey	 regarding	 their	 experiences	with	 the	 camera	
project.	Using	a	7‐point	scale,	student	understanding,	satisfaction,	and	improvement	of	technical	
communication	skills	were	examined.	Also,	open‐ended	comments	were	obtained	on	the	effec‐
tiveness	of	the	experiment	and	methods	to	improve	the	camera	project.	For	this	pilot	project,	11	
completed	surveys	were	analysed	with	a	response	rate	of	31	%.		

A	majority	of	the	respondents	(73	%)	indicated	that	they	were	satisfied	with	the	variety	of	
lab	experiments	(see	Fig.	3).	The	mean	score	on	satisfaction	was	4.9,	with	7	being	very	satisfied.		

A	majority	(55	%)	of	students	reported	they	were	satisfied	with	the	understanding	of	course	
material,	while	45	%	indicated	no	change.	
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Fig.	3		Degree	of	satisfaction	with	the	variety	of	laboratory	experiments	

	
When	asked	if	their	technical	communication	skills	had	improved	as	a	result	of	the	videos	in	

lieu	of	a	written	report,	55	%,	indicated	a	perceived	improvement	as	shown	in	Fig.	4.	In	addition,	
a	wide	majority	of	the	respondents	(75	%)	reported	a	perceived	increase	in	their	ability	to	share	
technical	information	through	a	medium	other	than	written	reports.	

	

	
Fig.	4		Perception	of	technical	communication	skills	after	the	experiment		

	
Students	offered	the	following	comments	during	the	assessment	process.	

 The	cameras	showed	great	resolution	and	helped	with	all	of	our	projects	
 When	we	had	to	turn	in	 lab	reports,	 I	didn't	prefer	the	videos.	You	won't	necessarily	do	

that	in	the	future,	whether	it	is	in	another	class	or	in	your	job,	and	I	would	like	to	see	the	
lab	reports	help	prepare	you	for	the	future	more	or	even	better	represent	what	you	would	
be	doing	in	future	classes	or	your	job.	Other	than	that,	I	loved	the	lab!	

 I	loved	them!	
 They	were	great	–	more	would	improve	the	lab.	
 The	video	quality	wasn't	as	great	as	I	had	hoped	for,	but	it	got	the	job	done.	
 I	enjoyed	using	them;	however,	there	is	a	need	to	learn	some	form	of	digital	editing	soft‐

ware	beforehand.	Until	some	familiarity	with	the	software	was	gained,	the	video	reports	
were	somewhat	more	time	consuming.	Using	the	footage	to	analyse	failure	tests,	however,	
was	quite	useful	in	watching	for	fine	detail.	

 I	enjoyed	using	them;	however,	there	is	a	need	to	learn	some	form	of	digital	editing	soft‐
ware	beforehand.	Until	some	familiarity	with	the	software	was	gained,	the	video	reports	
were	somewhat	more	time	consuming.	Using	the	footage	to	analyse	failure	tests,	however,	
was	quite	useful	in	watching	for	fine	detail.	

 I	would	enjoy	some	hands‐on	experience	with	the	GoPro	cameras.	I	did	enjoy	the	last	cou‐
ple	of	experiments	where	we	were	able	to	choose	our	own	material,	test,	and	present	it.	I	
also	wish	 the	GoPros	were	 capable	 of	 better	 high‐speed	 capture.	 The	 impact	 testing,	 in	
particular,	was	hard	to	document	and	analyse	because	of	blurry	shots.	
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5.2 Mechanical engineering faculty reviews 

The	Department	of	Mechanical	Engineering	faculty	reviews	course	objectives	and	student	per‐
formance	 as	 part	 of	 the	 continuous	 quality	 improvement	 process.	 Table	 2	 summarizes	mean	
scores	of	 faculty	ratings	before	 the	cameras	were	 introduced	(spring	2012)	and	 the	 following	
two	years	when	cameras	were	used.	A	substantial	 improvement	 in	 learning	objectives	accom‐
plished	on	treatment	on	metal	alloys	and	a	smaller	improvement	were	recorded	for	the	course	
objectives	 2	 and	3.	This	data	 is	 directly	based	on	 embedded	 indicators	within	 graded	 assign‐
ments	by	taking	the	average	over	the	entire	class	for	that	assignment/embedded	indicator.	The	
scale	was	A	=	5,	B	=	4,	C	=	3,	etc.	with	the	average	of	these	scaled	grades	taken	over	the	entire	
class	for	the	embedded	indicators.	
	

Table	2		Faculty	ratings	of	course	learning	outcomes	

Learning	Objectives	
Spring	
2012	

Spring	
2013	

Spring	
2014	

1.	Analyse	the	effect	of	heat	treatment	on	metal	alloys.	 3.7	 4.5	 4.7	

2.	Perform	standard	hardness,	tensile,	and	impact	tests on	metals	and	polymers. 3.4	 3.4	 3.5

3.	Present	experimental	results	in	laboratory	reports. 3.4	 3.5	 3.5

	
As	part	of	ABET	continuous	quality	improvement,	students	rate	their	level	of	knowledge	re‐

lated	to	course	objectives	on	a	scale	of	0	to	3.	After	the	cameras	were	used,	ratings	were	very	
high	in	the	three	learning	objectives	as	shown	in	Table	3.	Students	had	a	high	average	score	of	
2.87	in	in	performing	hardness,	tensile,	and	impact	tests.	These	mean	score	were	quite	encour‐
aging	and	support	other	student	perceptions	and	faculty	reviews.	
	

Table	3		Student	perceptions	of	achievement	from	first	semester	of	camera	usage	(scale	is	0‐3,	n	is	15) 

Course	Learning	Objective MIN AVG	 MAX	 σ

Analyse	the	effect	of	heat	treatment	on	metal	alloys 1.0 2.47	 3.0	 0.64

Perform	standard	hardness,	tensile,	and	impact	tests	on	metals	and	polymer 2.0 2.87	 3.0	 0.35

Present	experimental	results	in	laboratory	reports 2.0 2.67	 3.0	 0.49

6. Conclusion, limitations, and future research 

6.1 Conclusion and discussion 

Results	 from	 using	 the	 action	 camera	 and	 video	 productions	 are	 very	 encouraging	 regarding	
student	 learning	and	motivation.	 Students	perceived	 their	 technical	 communication	 skills	had	
increased	as	a	result	of	the	action	camera	experiment.	Use	of	these	cameras	and	associated	vid‐
eo	editing	helped	prepare	these	students	for	future	coursework.	Video	reports	are	becoming	an	
integral	part	of	undergraduate	courses,	including	the	capstone	Senior	Design	class	for	mechani‐
cal	and	electrical	engineering	majors.	

Students	seemed	to	be	enthusiastic	and	asked	permission	to	use	the	cameras	for	other	clas‐
ses	where	they	needed	to	use	the	120	fps	video	to	determine	how	high	an	object	bounced	after	
being	dropped	 from	 the	walk	 through	between	buildings	on	 campus.	A	graduate	 student	also	
used	 the	 cameras	 to	 record	 the	 deformation	 of	 an	 aluminium	 honeycomb	 nosecone	material	
during	a	simulated	impact	study.	Also,	these	cameras	seem	ideal	for	other	purposes,	since	they	
are	all	break‐resistant,	water‐resistant,	and	student‐resistant.	

The	use	of	the	GoPro	cameras	in	the	materials	science	laboratory	was	a	success,	marred	only	
by	the	first	effort.	Students	indicated	an	improved	understanding	of	material	failure	by	visualiz‐
ing	the	breakage	and	replaying	the	video.	The	video	provided	an	opportunity	to	see	a	metal	spec‐
imen	undergo	ductile	or	brittle	failure	over	a	span	of	seconds	as	opposed	to	the	blink	of	an	eye.	

This	 technology	may	be	used	 in	other	 classes,	 such	as	business	and	 technology,	 i.e.	Opera‐
tions	Management.	Likewise,	while	this	innovative	technique	was	used	in	a	materials	manage‐
ment	 class,	 the	 process	may	 be	 expanded	 to	 other	 courses	 such	 as	 Entrepreneurship.	 For	 in‐
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stance, a business plan may show a new product with only a picture, but students could imple-
ment this technique in their presentations. In addition, this video would bring the project to life 
and allow demonstration of the manufacturing process, testing, and being used by consumers. 
Presentations of strengths and features of many new ventures and products could be improved 
by using this technology. 

6.2 Limitations and directions for future research 

Since the research was designed to be exploratory in nature and thus was broad based in scope, 
only one laboratory experiment was conducted. The validity of the projects were measured by 
student perceptions, faculty ratings, and course evaluations. However, assessment of using 
cameras and video production should be measured in other classes with larger sample sizes. 

Though the research provides interesting insights into student learning, limitations do exist. 
Although this innovation proposed in this study may have extended applications, the empirical 
tests rely on data collected from one mechanical engineering class. While no research has iden-
tified that this project in this class is fundamentally different, differences may exist in other 
classes. Future research would do well to integrate lessons learned in this experiment to other 
classroom settings and other disciplines. Specific examples are: 

• Computer Integrated Manufacturing – Study the application of computer-aided design, 
computer-aided manufacturing, computer numeric control, robotics, programmable logic 
controllers and communication networks to achieve automated manufacturing. 

• Lean Production – Explore applications of metal materials processing with an emphasis on 
lean manufacturing tools for reducing waste and streamlining production. 

• Advanced Manufacturing Processes – Complete a survey of the latest manufacturing pro-
cesses that are used in order to produce products that cannot be created with conven-
tional manufacturing processes. Processes covered will include non-traditional machining 
methods, abrasive machining, advanced casting methods, specialized welding methods, 
and other high-end processes used in manufacturing industries. 

• Total Quality Management – A study of the principles and practices of TQM to include 
leadership in quality, customer satisfaction, employee involvement, and continuous pro-
cess improvement. Such TQM tools and techniques as quality function deployment and 
experimental design are studied. 
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A B S T R A C T	   A R T I C L E   I N F O	

The	wear	behaviour	was	investigated	of	heat	treated	Hadfield	austenitic	man‐
ganese	steel	(HAMnS).	The	wear	test	was	carried	out	using	spin	on	disc	appa‐
ratus	under	different	loading	loads	and	speed	conditions.	A	scanning	electron	
microscopy	 (SEM),	 an	 X‐ray	 diffractometer	 and	micro‐hardness	 testing	ma‐
chines	were	used	for	examining	the	morphology,	compositions	and	to	meas‐
ure	the	hardness	of	the	manganese	steel,	respectively.	The	results	of	the	wear	
test	 showed	 that	 the	 sliding	 speed‐time	 interactions	 effect	 gave	 the	 most	
significant	 effect	 on	 the	 austenitic	manganese	 steel.	The	 solution	heat	 treat‐
ment	 programme	 increased	 the	wear	 resistance	 of	 the	 alloy	 steel	 under	 in‐
creasing	 load,	speed	and	time.	The	as‐cast	microstructure	was	characterized	
by	heterogeneously	dispersed	chromium	carbides	second	phase	particle,	and	
was	 responsible	 for	 the	 observed	 non‐uniform	 wear	 rate.	 In	 regard	 to	 the	
solution	 heat	 treated	 HAMnS,	 the	 segregated	 carbides	 were	 dissolved	 at	
1050	°C	and	uniformly	dispersed	within	the	matrix	of	its	microstructure	after	
rapid	 water	 quenching	 to	 room	 temperature.	 This	 later	 development	 was	
responsible	for	the	uniform	and	improved	wear	resistance	of	the	manganese	
steel	casting.	This	work	demonstrated	significantly	that	there	is	a	direct	rela‐
tionship	between	the	second	phase	carbides,	their	distribution	and	the	wear	
rate	pattern	of	HAMnS	casting.	
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1. Introduction  

A	lot	of	money	has	been	spent	on	using	electricity	and	explosive	to	break	rocks.	The	motivation	
to	reduce	energy	consumption	has	led	to	the	use	of	non‐explosive	means	to	break	rocks	and	ex‐
tract	valuable	minerals	[1].	The	non‐explosive	means	has	advantage	of	avoiding	sudden	removal	
of	plastic‐elastic	energy	that	can	cause	fracture	by	blasting.	But	due	to	wear,	the	materials	used	
in	 breaking	 this	 rocks	 usually	 required	 early	 replacement.	 The	 replacement	 of	 item	 involves	
both	material	and	manpower	cost.	There	are	different	kinds	of	wear‐resistant	materials	that	are	
used	 for	 processing	 of	 solid	mineral	 vis‐a‐vis	 crushing	 and	 grinding.	The	 traditional	materials	
include	wear	 resistance	 high	 chromium	 iron,	 hyper‐steel,	medium	 carbon	 steel	 that	 are	 case‐
hardened,	manganese	steel	etc.	 In	general	 terms,	the	high	chromium	iron	suitable	 for	wear	re‐
sisting	applications	fall	within	the	compositional	limits	bounded	by	the	austenitic	phase	field	of	
the	ternary	liquidus	surface	of	the	iron,	chromium,	carbon	diagram	[2].	However	the	use	of	high	
chromium	wear	resistant	iron	comes	at	a	huge	cost.	The	material	is	also	known	to	be	character‐
istically	very	hard	and	brittle.	Consequently	 this	grade	of	material	 is	prone	 to	 crack	under	 re‐
peated	impact	load	in	areas	where	impact	is	common	[3].	They	are	usually	used	in	the	quarry	as	
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cast	 plate	 for	 bottom	 liners	 and	 as	 side	 plate	 for	 crushing	 of	 hard	 solid	minerals.	 Regrettably	
once	they	are	broken,	there	is	no	possibility	of	salvage	through	hard‐facing	with	wear	resistance	
electrodes.	Because	of	the	frequent	breakage	of	high	chromium	resistant	iron,	there	is	a	need	for	
the	 development	 of	 a	wear‐resistant	 alloy	 steel	 that	will	 have	 high	wear	 resistant,	 tough	 and	
hard	at	 the	same	time.	So	 in	1882,	austenitic	manganese	rich	steel	 (Hadfield	steel),	 containing	
between	11	%	and	14	%	manganese	and	about	1.2	%	carbon,	was	developed	about	13	decades	
ago	 and	 its	 consequent	 use	 for	 high‐wear	 applications	 [4].	 Major	 advantages	 of	 this	 material	
include	its	toughness	and	ductility,	and	the	fact	that	continuous	surface	impacts	result	in	work‐
hardening	without	 any	 increase	 in	brittleness.	Consequently,	Hadfield	 steels	 and	 their	 techno‐
logical	descendants	provide	both	 strength	and	abrasion	 resistance;	qualities	 that	 are	 essential	
for	wear	parts	that	can	withstand	the	rigors	of	the	crushing	process	[5].	It	has	also	the	requisite	
toughness	to	undergo	plastic	deformation	without	cracking.	Presently,	the	major	challenge	fac‐
ing	the	quarrying	industry	in	Nigeria	is	the	high	cost	associated	with	worn‐out	wear	plate	that	
are	predominantly	made	or	manufactured	from	manganese	steel.	

Researchers	have	performed	many	studies	to	improve	the	wear	resistance	of	Hadfield	steels	
[6‐9].	Microstructural	phase	transformation	which	 is	 temperature	dependent	can	be	employed	
as	a	route	for	enhancing	the	wear	characteristics	of	Hadfield	austenitic	manganese	steel	through	
the	interplay	of	heat	treatment.	In	the	heat	treatment	process,	the	grain	size	in	austenitic	man‐
ganese	steels	before	quenching	is	tremendously	influenced	by	diffusive	and	diffusionless	phase	
transformations,	 and	 precipitation	 [10].	 The	 austenite	 grain	 size	 affects	 overall	 mechanical	
properties	 such	 as	 strength,	 hardness	 and	 ductility,	 hence	 its	 wear	 behaviour.	 Therefore,	 the	
influence	of,	solution	heat	treatment	on	the	wear	resistance	of	a	typical	Hadfield	austenitic	man‐
ganese	use	in	quarrying	industry	was	investigated.	

2. Materials and methods 

2.1 Material preparation 

A	sample	representative	from	Hadfield	austenitic	manganese	steel	with	composition	of	equiva‐
lent	 specification	 to	NFMn128C	was	 taken	 from	 a	 batch	 of	 500	 kg	 electric	 induction	 furnace	
melt	to	cast	4	bar	of	200		11	×	11	mm	to	conduct	the	experiment.	The	charged	materials	used	
consist	of	203	kg	foundry	returns,	220	kg	low	carbon	steel,	10	kg	of	low	carbon	Ferro	manga‐
nese,	65	kg	high	carbon	Ferro	manganese,	8	kg	low	carbon	Ferrochromium,	2.19	kg	Ferro	silicon	
and	2.24	kg	graphite	powder	respectively.	The	melting	was	carried	out	in	a	neutral	lined	refrac‐
tory	furnace.	A	digital	pyrometer	with	disposable	thermocouple	tip	was	used	for	temperature	
measurement	during	melting	 and	pouring.	The	molten	metal	was	poured	 into	 an	 improvised	
CO2	moulds	in	a	mechanized	foundry	situated	in	Sango‐Otta	at	the	outskirt	of	Lagos,	Nigeria.	

2.2 Method 

Patterns	of	dimension	202		11.2		11.2	mm	were	produced	for	the	sand	casting	of	the	experi‐
ment.	The	sand	used	for	the	moulds	was	prepared	by	mixing	dried	silica	sand,	sodium	silicate,	
water	and	bentonite	in	compliance	to	British	standard.	Thereafter,	CO2	gas	was	passed	through	
the	moulds	for	80	seconds	to	cure	the	mould	sand.	To	ensure	correct	mould	identification,	the	
moulds	were	labelled	as	A,	B,	C	and	D	respectively.	The	charge	make‐up	for	the	melt	consist	of	
Mn‐Steel	foundry	returns	(1.1	%	C,	0.64	%	Si,	12.4	%	Mn,	1.2	%	Cr,	0.006	%	S,	0.005	%	P,	and	
84.65	%	Fe),	Steel	(0.20	%	C,	0.35	%	Si,	0.42	%	Mn,	0.005	%	S,	0.005	%	P,	and	99.02	%	Fe),	Low	
Carbon	Ferro	Manganese	(0.23	%	C,	75	%	Mn),	High	Carbon	Ferro	Manganese	(1.1	%	C,	62	%	
Mn),	Medium	Carbon	Ferro	Chromium	(0.5	%	C,	67	%	Cr),	Ferro	Silicon	(0.02	%	C,	70	%	Si)	and	
Graphite	Powder	(67	%).	

The	estimated	charge	make	was	calculated	from	Eq.	1.	

%ሺܯሻ ൌ
ሺܣ݁ܨ/ܵሻ%

ܨ
ܳ	

	

(1)
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In	Eq.	1,	M	denotes	melt,	FeA	denotes	ferroalloy,	S	denotes	scrap	and	Fc	denotes	furnace	ca‐
pacity.	The	furnace	capacity	represents	the	total	charge	in	(kg),	the	Q	represents	the	quantity	of	
charge	and	%	melt	represent	elemental	concentration	in	the	melt.	

The	standard	compositions	containing	the	lower	and	upper	ranges	of	the	specification	for	the	
melt	of	equivalent	standard	to	NFMN128C	is	presented	in	Table	1.		

Manganese	as	an	element	exhibits	high	oxidation	tendency,	therefore	the	manganese	compo‐
sition	was	deliberately	calculated	to	be	higher	than	the	upper	limit	to	ensure	that	the	percentage	
of	manganese	is	within	the	limit	as	a	result	of	expected	oxidation	during	holding	of	the	molten	
metal	in	the	furnace	and	de‐slagging.	

The	raw	materials	as	contained	in	the	charge	make‐up	in	Table	2	for	the	melt	were	charged	
into	the	furnace	in	a	particular	order.	The	low	carbon	steel	was	charged	first	into	a	500	kg	medi‐
um	frequency	electric	furnace	lined	with	a	neutral	refractory	material	and	allowed	to	melt	com‐
pletely.	 The	 selection	 of	 a	 neutral	 refractory	was	made	 deliberately	 to	minimize	 furnace	wall	
erosion	as	a	result	of	slag	attack.	This	was	followed	by	the	charging	of	the	foundry	returns,	Ferro	
silicon,	High	carbon	and	Low	carbon	Ferro	manganese	and	lastly	graphite	powder.	The	melting	
was	 completed	 after	 94	minutes.	 The	 temperature	 of	 the	molten	 bath	was	 taken	 by	 a	 digital	
probe	pyrometer	with	a	disposable	tip	and	recorded	on	an	improvised	daily	furnace	report.	All	
procedures	including	personnel	safety	were	observed	during	the	melting	and	pouring	operation.	

The	actual	composition	obtained	after	melting	is	presented	in	Table	3.	The	molten	metal	was	
poured	at	1410	°C	into	the	improvised	CO2	moulds,	and	allowed	to	solidify	to	room	temperature	
after	12	h	before	they	were	knocked	out	and	shot	blasted.	The	4‐number	castings	were	carefully	
fettled	on	a	 table	grinding	machine	to	the	required	dimensions	200		10		10	mm.	During	the	
grinding,	care	was	taken	to	avoid	work	hardening	on	the	surface	of	the	casting.	

	
Table	1		Chemical	analysis	result	of	melt	of	equivalent	standard	to	NFMN128C	

Specification	
Elemental	composition (%)

C	 Si	 Mn Cr S	 P
Upper	limit	 1.30 0.80	 14.00 1.50 0.005	 0.005
Lower	limit	 1.00 0.60	 12.00 1.00 0.005	 0.005
Aim	 1.28 0.70	 14.34 1.52 0.004	 0.005
	

Table	2		The	Estimated	charge	make‐up	for	Hadfield	austenitic	manganese	steel	

Description	
Charge	(kg)	 Elemental	composition	(%)	

	 C Si Mn Cr S	 P	 Fe
Foundry	returns	 203	 0.437 0.25 4.84 0.47 0.002	 0.002	 bal
Steel	 220	 0.085 0.15 0.18 ‐ 0.002	 0.002	 bal
Low	Carbon	Fe‐Mn	 10	 0.004 ‐ 1.46 ‐ ‐	 ‐	 ‐
High	Carbon	Fe‐Mn	 65	 0.139 ‐ 7.87 ‐ ‐	 ‐	 ‐
Ferro	Chromium	 8	 0.007 ‐ ‐ 1.05 	 	 ‐
Ferro	Silicon	 2.19	 0.000 0.30 ‐ ‐ ‐	 ‐	 ‐
Graphite	 2.24	 0.555 ‐ ‐ ‐ ‐	 ‐	 ‐
Total	 512	 1.278 0.70 14.34 1.52 0.004	 0.005	 bal

	
Table	3		The	compositional	results	obtained	from	bench	top	arc	spectrometer	

Elemental	composition (%)
C	 Si	 Mn Cr S P	

1.29	 0.68	 13.72 1.49 0.005	 0.005
	

2.3 Heat treatment 

The	solution	heat	treatment	process	involves	heating	the	sample	at	a	particular	heating	rate.	The	
choice	of	the	heating	rate	depends	on	some	factors	such	as	the	composition	of	the	sample,	shape	
of	 casting	 and	 the	 section	 thickness	 among	 other.	 For	 low	 carbon	 alloys	 and	 other	 alloy	 like	
manganese	steels,	their	propensity	to	crack	is	extremely	low,	as	such,	the	heating	rate	of	75	°C	
per	 hour.	 For	 high	 carbon	 specification	 or	 casting	where	warping	 of	 the	 sample	may	 occur,	 a	
lower	heating	is	adopted.	The	sample	was	heated	to	1050	°C	and	held	at	this	temperature	for	24	
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min	 to	 allow	 the	 segregated	 carbides	 dissolve	 completely	 in	 solution	 in	 accordance	 to	 British	
standard.	There	after	it	was	quenched	quickly	in	a	500	l	agitated	water	tank	and	allowed	to	cool	
room	temperature.	

2.4 Microstructural determination 

A	sample	representative	was	taken	from	one	as‐cast	and	one	heat	treated	cast	bar.	The	surfaces	
were	 carefully	 prepared	 grinding	 on	 a	 tehrapol‐31	machine,	 then	 polished	with	 Allegrol	with	
diamond	 suspension	 using	 a	 colloidal	 suspension	 of	 0.04	 µm	 silicon	 dioxide	 before	 they	 are	
etched	in	a	solution	of	100	ml	alcohol	and	3	ml	HNO3	acid	at	the	Metallographic	laboratory,	De‐
partment	of	Mechanical	Engineering.	University	of	Ottawa,	Ontario,	Canada.	An	optical	inverted	
Metallurgical	microscope	was	used	 to	 study	 the	microstructures.	On	 the	other	hand,	 the	mor‐
phology	of	the	as‐cast	and	heat	treated	samples	were	carried	out	using	Scanning	Electron	Micro‐
scope	(SEM)	and	Energy	Dispersive	Spectrum	(EDS).	The	surface	morphology	of	 the	worn	out	
sample	was	also	examined.	

2.5 Micro‐hardness value determination 

Sample	representatives	were	cut	from	the	as‐cast	and	heat	treated	bars	for	hardness	testing.	The	
samples	were	casted	into	resin	mould,	ground	flat	and	polished.	The	hardness	test	was	carried	
out	on	a	Duramin‐1	micro‐hardness	tester	struers.	An	average	of	five	measurements	of	hardness	
values	was	taken	for	as	cast	and	heat	treated	manganese	steel.	

2.6 Wear test  

Abrasive	wear	test	were	carried	out	on	two	prepared	manganese	steel	castings	(as‐cast	and	heat	
treated)	 samples	using	pin‐on‐disc	 type	equipment	 [11].	The	wear	 test	was	 carried	out	under	
varied	load,	and	speed.	After	test	each	cycle	of	wear	test,	the	mass	of	the	worn	out	samples	was	
measured	with	the	aid	of	a	digital	weighing	device	with	0.001	mg	accuracy	to	obtain	the	weight	
lost.	Weight	 lost	 from	the	tests	was	used	to	calculate	specific	wear	rate	W,	a	parameter	which	
defines	wear	severity	from	Eq.	1.	From	Eq.	1,	V	denotes	volume	loss	of	worn	out	sample,	ds	de‐
notes	sliding	distance,	and	L	denotes	applied	load.	
	

ܹ ൌ
ܸ
݀௦ܮ

	
	

(2)

	
The	surface	morphology	of	the	worn	out	sample	after	the	wear	test	was	examined	using	opti‐

cal	microscope.	The	examined	microstructure	of	the	worn	out,	heat	treated	sample	under	high	
speed	4.72	m/s	and	16	kN	load	is	presented	in	Fig.	10.	The	surface	morphology	is	characterized	
by	needle	like	martensitic	structure.	

3. Results and discussion 

3.1 Hardness and XRD test results 

The	result	of	the	hardness	test	is	presented	in	Table	4.		
The	indentation	photo	taken	during	the	micro‐hardness	test	is	shown	in	Fig.	1(a)	and	Fig.	1(b)	

for	heat	 treated	and	as‐cast	samples	respectively.	The	solution	heat	 treatment	process	 inrease	
the	hardness	of	the	HAMnS	sample.	The	increase	in	hardness	might	be	due	to	fairly	uniform	dis‐
tribution	of	the	carbide	phase	in	the	austenite	phase	[2].	

	
Table	4		Results	of	micro‐hardness	measurement	

Description	 Hardness,	(HB)
As‐cast	Mn‐steel	 188	
Heat	treated	Mn‐steel	 220	
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	 	 	 (a)	 	 	 	 	 	 (b)	

Fig.	1		(a)	Heat	treated	HAMnS	indentation;	(b)	As‐cast	HAMnS	indentation	
	

The	identified	phases	and	compound	formula	from	the	XRD	test	for	the	manganese	steel	cast‐
ing	is	presented	in	Table	5.	

	

Table	5		Identified	phases	and	their	chemical	formula	
Score	 Compound	name Chemical	formula	
38	 Manganese Mn	
23	 Carbon C	
21	 Iron Fe	
21	 Iron	Silicon	Carbide Fe9	Si	C0.4	
14	 Manganese	Silicon	Carbide Mn22.6	Si5.4	C4	
12	 Chromium	Carbide Cr4	C1.06	
17	 Manganese	Silicon Mn	Si	

	
	

	

Fig.	2		The	XRD	profile	of	elemental	segregation	of	manganese	steel	
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3.2 Comparism between wear results and microstructure of as‐cast manganese steel 

Fig.	3	represents	a	graphical	behaviour	of	the	wear	test	results	obtained	for	different	load	at	the	
speed	of	2.36	m/s	for	as‐cast	HAMnS.	There	is	a	general	decrease	in	wear	rate	with	increase	in	
load.	 These	 phenomena	may	 be	 attributable	 to	 increase	 interlocking	 of	 dislocation	movement	
and	to	some	extend	work‐	hardening	characteristics	of	the	alloy.	This	same	observed	behaviour	
is	replicated	 in	a	similar,	but	 in	a	more	pronounced	manner	at	higher	speed	4.72	m/s	(Fig.	6).	
Hence,	it	can	be	infer	that	speed	has	significant	effect	on	the	wear	behaviour	of	the	manganese	
steel	sample.	

The	observed	non‐uniformity	in	the	wear	profile	curves	of	Fig.	1	and	Fig.	2	can	be	attributed	
to	the	in‐homogeneity	of	the	as‐cast	HAMnS	as	revealed	by	the	microstructure	see	Fig.	3.	A	non‐	
uniform	 dispersion	 of	 the	 second	 phase	 (inter‐metallic	 carbide)	 in	 the	microstructure	 can	 be	
observed.	The	more	heterogeneous	the	distribution	of	second	phase	particles,	the	more	irregu‐
lar	the	wear	pattern	of	the	as‐cast	HAMnS.	This	revealed	that	there	is	a	strong	relationship	be‐
tween	distribution	of	second	phase	(Chromium	carbide)	and	the	wear	nature	of	manganese	steel.	

	
	

	
Fig.	3		Wear	rate	of	as‐cast	HAMnS	with	time	at	2.36	m/s	and	varying	loads	

	

	
Fig.	4		Wear	coefficient	of	as‐cast	HAMnS	with	time	at	4.72	m/s	for	varying	load	
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Fig.	5		Wear	rate	of	As‐cast	HAMnS	with	time	at	2.36	m/s	and	4.72	m/s	for	load	6N	

	
	

	
Fig.	6		The	Optical	micrograph	of	as‐cast	manganese	steel	showing	significant	heterogeneously		

dispersed	chromium	carbide	within	the	austenite	matrix	of	the	microstructure	at	100x	

The	wear	rate	of	the	HAMnS	reduces	significantly	as	the	speed	increases	(Fig.	5).	This	further	
justifies	the	earlier	assumption	that	speed	has	significant	on	the	wear	rate	of	the	HAMnS	sample.	
Increasing	speed	tends	to	improve	the	wear	behaviour	of	the	Mn‐steel	sample.	

3.3 Comparison between wear results and microstructure of heat treated manganese steel	

Fig.	7	shows	smoother	wear	profile	compared	to	Fig.	3.	This	can	be	attributed	to	the	homogenei‐
ty	 of	 the	 heat	 treated	manganese	 steel	 as	 revealed	 in	 the	microstructure	 obtained	 after	 heat	
treatment	(Fig.	9).	The	second	phase	particle	(chromium	carbide)	as	shown	in	Table	5	and	Fig.	2	
in	the	Xray‐Diffraction	result	is	uniformly	dispersed	with	the	austenite	matrix.	This	development	
was	attained	after	heat	treatment	(hardening)	operation	was	carried	out	when	the	heterogene‐
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ously	segregated	second	phase	chromium	carbide	(Cr4C1.06)	particle	were	dissolved	in	solution	
at	1050	°C,	and	quench	in	agitated	water	to	trap	the	carbide	within	the	matrix	of	the	austenite.	

A	marked	effect	of	load	which	became	almost	constant	with	increasing	can	also	be	observed.	
Time	has	no	significant	effect	on	the	wear	rate	of	Mn‐steel	sample.	Similar	to	the	as‐cast	sample,	
Fig.	8	shows	that	speed	has	significant	effect	on	the	wear	behaviour	of	the	heat	treated	sample.	

			 	
Fig.	7		Wear	rate	of	Heat	treated	Mn‐Steel	with	time	at	2.36	m/s	for	varying	load	

	
	

	
Fig.	8		Wear	rate	of	Heat	treated	Mn‐Steel	with	time	at	2.36	m/s	and	4.72	m/s,	load	6N	
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Fig.	9		The	Optical	micrograph	(100x)	of	heat‐treated	manganese	steel	showing	highly	homogenous	structure	
	

The	 examined	microstructure	 of	 the	worn	 out,	 heat	 treated	 sample	 under	 high	 speed	 4.72	
m/s	and	16	kN	load	is	presented	in	Fig.	10.	The	surface	morphology	is	characterized	by	needle	
like	martensitic	structure.	

	

 

Fig.	10		Optical	micrograph	at	100x	magnification	of	heat‐treated	manganese	steel	worn	out‐	surface		
with	evidence	of	high	work	hardenability	after	wear	test	

	
Fig.	11	shows	the	result	of	SEM	and	EDS	analysis	of	the	as‐cast	HAMnS.	It	was	observed	from	

Fig.	11	 that	 the	SEM	micrograph	 is	heterogamous	 in	nature.	This	observation	 is	 similar	 to	 the	
Optical	microstructure	obtained	in	Fig.	6.	The	corresponding	EDS	corroborate	the	high	degree	of	
carbide	segregation	of	iron	and	manganese.	

	

	

Fig.	11		The	SEM	micrograph	and	EDS	of	As‐cast	manganese	steel	
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The	 SEM	 micrograph	 with	 the	 corresponding	 EDS	 of	 the	 heat	 treated	 manganese	 steel	 is	
shown	in	Fig.	12.	It	was	observed	from	the	micrograph	that	the	second	phase	chromium	carbide	
particle	 is	uniformly	dispersed	with	 the	austenitic	matrix.	Again,	 this	observation	collaborated	
the	earlier	results	obtained	in	Fig.	9	and	agreed	with	the	result	of	[5].	The	degree	of	carbide	seg‐
regation	had	been	reduced	considerably	from	the	corresponding	energy	dispersion	spectrum	for	
heat	treated	HAMnS.	
	

			 	

Fig.	12		The	SEM	and	EDS	micrograph	of	heat	treated	manganese	steel	

4. Conclusion 

The	wear	behaviour	of	heat	treated	Hadfield	austenitic	manganese	steel	has	been	investigated.	
From	the	results	of	the	investigations	on	the	heat	treated	HAMnS	the	following	conclusion	were	
drawn.	

1. The	morphology	and	size	of	carbide	phase	has	significant	effect	on	the	wear	resistance	of	
austenitic	manganese	steel.	

2. The	sliding	speed‐time	interactions	effect	gave	the	most	significant	effect	on	the	austenitic	
manganese	steel	

3. The	solution	heat	 treatment	programme	 increased	 the	wear	 resistance	of	 the	alloy	steel	
under	increasing	load,	speed	and	time.	

4. The	improved	wear	resistance	of	the	manganese	steel	obtained	was	due	to	the	formation	
of	hard	carbide	phase	within	the	matrix	structure	of	austenitic	manganese	steel.	

5. The	wear	behaviour	of	austenitic	manganese	steel	can	considerably	be	optimized	by	solu‐
tion	heat	treatment	and	adequate	quenching	to	redistribute	the	heterogeneous	and	segre‐
gated	 second	 phase	 chromium	 carbide	 to	 form	 a	more	 homogenous	 and	 uniformly	 dis‐
persed	second‐phase	particle	to	enhance	the	wear	resistance	of	the	manganese	steel.	
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 10th	International	Conference	on	Additive	Manufacturing	&	3D	Printing,	Nottingham,	UK,	July	
7‐9,	2015.	

 AIM	 –	 2015	 IEEE	 International	 Conference	 on	 Advanced	 Intelligent	 Mechatronics,	 Busan,	
South	Korea,	July	7‐11,	2015.	

 27th	European	Conference	on	Operational	Research,	Glasgow,	UK,	July	12‐15,	2015.	

 ICME	2015:	International	Conference	on	Manufacturing	Engineering,	Stockholm,	Sweden,	July	
13‐14,	2015.	

 17th	 International	 Conference	 on	 Industrial	 and	 Intelligent	 Information	 Engineering,	 Oslo,	
Norway,	July	17‐18,	2015.	

 The	5th	 International	Conference	on	Simulation	and	Modeling	Methodologies,	Technologies	
and	Applications,	Colmar,	France,	July	21‐23,	2015.	

 Additve	Manufacturing	+	3D	Printing	Conference	&	Expo,	Boston,	United	States,	August	2‐5,	
2015.	

 17th	 International	 Conference	 on	 Internet	 Manufacturing	 and	 Services,	 Amsterdam,	 The	
Netherlands,	August	6‐7,	2015.	

 17th	 International	Conference	on	Modelling,	Optimization	and	Simulation,	Venice,	 Italy,	Au‐
gust	13‐14,	2015.	

 XXIV	International	Materials	Research	Congress,	Cancon,	Mexico,	August	16‐20,	2015.	

 17th	International	Conference	on	Emerging	Trends	in	Engineering	and	Technology,	Geneva,	
Switzerland,	September	7‐8,	2015.	

 IEEE	20th	Conference	on	Emerging	Technologies	&	Factory	Automation,	 Luxembourg,	 Lux‐
embourg,	September	8‐11,	2015.	

 ICMSE	 2015:	 International	 Conference	 on	 Manufacturing	 Science	 and	 Engineering,	 Berlin,	
Germany,	September	14‐15,	2015.	

 23rd	 International	Conference	on	Materials	 and	Technology,	Portorož,	 Slovenia,	 September	
27‐30,	2015.		

 IEEE/RSJ	International	Conference	on	Intelligent	Robots	and	Systems	(IROS	2015),	Hamburg,	
Germany,	September	28	–	October	2,	2015.	

 26th	DAAAM	International	Symposium	2015,	Zadar,	Croatia,	October	21‐24,	2015.	

 17th	 International	 Conference	 on	 Engineering	 Systems	Modeling,	 Simulation	 and	 Analysis,	
Paris,	France,	October	29‐30,	2015.	

 ASME	–	International	Mechanical	Engineering	Congress	&	Exposition	(IMECE),	Houston,	Tex‐
as,	United	States,	November	13‐19,	2015.	

 17th	International	Conference	on	Supply	Chain	and	Logistics	Management,	Dubai,	UAE,	No‐
vember	24‐25,	2015.	

 17th	 International	 Conference	 on	 Automotive	 Engineering	 and	 Intelligent	 Manufacturing,	
Bangkok,	Thailand,	December	17‐18,	2015.	
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should	not	be	under	consideration	for	any	other	publication	at	the	same	time.	Extended	versions	
of	articles	presented	at	conferences	may	also	be	submitted	for	possible	publication.	Manuscript	
should	be	written	in	English.	Responsibility	for	the	contents	of	the	paper	rests	upon	the	authors	
and	not	upon	the	editors	or	the	publisher.	Authors	of	submitted	papers	automatically	accept	a	
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Miran Brezocnik, Editor‐in‐Chief 
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Smetanova ulica 17, SI – 2000 Maribor 
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Manuscript preparation 

Manuscript	 should	 be	 prepared	 in	Microsoft	Word	2007	 (or	 higher	 version)	 word	 processor.	
Word	.docx	 format	 is	required.	Papers	on	A4	format,	single‐spaced,	 typed	in	one	column,	using	
body	text	font	size	of	11	pt,	should	have	between	8	and	12	pages,	including	abstract,	keywords,	
body	 text,	 figures,	 tables,	 acknowledgements	 (if	 any),	 references,	 and	appendices	 (if	 any).	The	
title	of	the	paper,	authors'	names,	affiliations	and	headings	of	the	body	text	should	be	in	Calibri	
font.	 Body	 text,	 figures	 and	 tables	 captions	 have	 to	 be	written	 in	Cambria	font.	Mathematical	
equations	and	expressions	must	be	set	in	Microsoft	Word	Equation	Editor	and	written	in	Cambria	
Math	font.	For	detail	instructions	on	manuscript	preparation	please	see	instruction	for	authors	
in	the	APEM	journal	homepage	apem‐journal.org.	
 

The review process 

Every	manuscript	submitted	for	possible	publication	in	the	APEM	journal	is	first	briefly	reviewed	
by	the	editor	for	general	suitability	for	the	journal.	Notification	of	successful	submission	is	sent.	
After	initial	screening	the	manuscript	is	passed	on	to	at	least	two	referees.	A	double‐blind	peer	
review	process	ensures	 the	content's	validity	and	relevance.	Optionally,	authors	are	 invited	 to	
suggest	up	to	three	well‐respected	experts	in	the	field	discussed	in	the	article	who	might	act	as	
reviewers.	The	review	process	can	take	up	to	eight	weeks.	Based	on	the	comments	of	the	refer‐
ees,	the	editor	will	take	a	decision	about	the	paper.	The	following	decisions	can	be	made:	accept‐
ing	 the	 paper,	 reconsidering	 the	 paper	 after	 changes,	 or	 rejecting	 the	 paper.	 Accepted	 papers	
may	not	be	offered	elsewhere	for	publication.	The	editor	may,	in	some	circumstances,	vary	this	
process	at	his	discretion.	

	
Proofs 

Proofs	will	be	sent	to	the	corresponding	author	and	should	be	returned	within	3	days	of	receipt.	
Corrections	should	be	restricted	to	typesetting	errors	and	minor	changes.	
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