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Abstract

The p-th power of the logarithm of the Catalan generating function is computed using
the Stirling cycle numbers. Instead of Stirling numbers, one may write this generating
function in terms of higher order harmonic numbers.
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1 Introduction
Knuth [6, 7] proposed the exciting formula

(logC(z))2 =
∑
n≥1

(
2n

n

)
(H2n−1 −Hn)

zn

n
,

where

C(z) =
1−
√
1− 4z

2z
=
∑
n≥0

1

n+ 1

(
2n

n

)
zn (1.1)

and
Hn =

∑
1≤k≤n

1

k

with the generating function of Catalan numbers and harmonic numbers.
This formula was recently extended by Chu [1] to general exponents p. Chu’s approach

is based on the use of (exponential) Bell polynomials. Note that Knuth talked about the
exponent 1 in his Christmas lecture from 2014 [5].
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We present here a very simple approach to this question using Stirling cycle numbers;
recall [3] that they transform falling powers into ordinary powers viz.

xn =
∑

0≤k≤n

[
n

k

]
(−1)n−kxk.

For the readers’ convenience it is mentioned that the numbers
[
n
k

]
(−1)n−k appear often in

the older literature as s(n, k) and are then denoted as Stirling numbers of the first kind.

2 The expansion of the p-th power
The substitution z = u

(1+u)2 was presented in [2] and it is extremely useful when dealing
with Catalan numbers and Catalan statistics. Using it in (1.1), we get C(z) = 1 + u, and,
by the Lagrange inversion formula [8],

um =
∑
n≥m

m

n

(
2n

n−m

)
zn

for m ≥ 1. For m = 0 the formula is still true when taking a limit. We now consider the
bivariate generating function

F (z, α) =
∑
p≥0

αp

p!
(logC(z))p = exp(α logC(z))

= Cα(z) = (1 + u)α =
∑
m≥0

(
α

m

)
um.

But (
α

m

)
=

1

m!
αm =

1

m!

∑
0≤k≤m

(−1)m−k
[
m

k

]
αk.

Therefore

F (z, α) =
∑

0≤k≤m≤n

1

m!
(−1)m−k

[
m

k

]
αk
m

n

(
2n

n−m

)
zn.

The desired formula follows from reading off coefficients of αp:

(logC(z))p = p![αp]F (z, α) =
∑

p≤m≤n

p!

m!
(−1)m−p

[
m

p

]
m

n

(
2n

n−m

)
zn. (2.1)

3 Special cases
For p = 1 in equation (2.1), we get the instance of the Christmas lecture:

logC(z) = [α1]F (z, α) =
∑

1≤m≤n

1

m!
(−1)m−1

[
m

1

]
m

n

(
2n

n−m

)
zn.

Since
[
m
1

]
= (m− 1)!, this leads to

logC(z) = [α1]F (z, α) =
1

2

∑
n≥1

1

n

(
2n

n

)
zn.
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Now we turn to the instance p = 2 from [6, 7]. (Note that
[
m
2

]
= (m − 1)!Hm−1.)

Equation (2.1) leads to

2[α2]F (z, α) =
∑

2≤m≤n

2

m!
(−1)m

[
m

2

]
m

n

(
2n

n−m

)
zn

= 2
∑

2≤m≤n

Hm−1(−1)m
1

n

(
2n

n−m

)
zn

= 2
∑

1≤j<m≤n

1

j
(−1)m 1

n

(
2n

n−m

)
zn

= 2
∑

1≤j<n

1

j
(−1)j−1 1

n

(
2n− 1

n− j − 1

)
zn.

In the last step we used the formula

∑
j<m≤n

(−1)m
(

2n

n−m

)
= (−1)j−1

(
2n− 1

n− j − 1

)
,

which is a standard summation for binomial coefficients [3].
To obtain the form proposed by Knuth, we still need to prove that(

2n

n

)
(H2n−1 −Hn) = 2

∑
1≤j<n

(−1)j−1

j

(
2n− 1

n− j − 1

)
.

Modern computer algebra systems readily simplify the difference of these two sides to 0,
as expected.

4 Connection with harmonic numbers — the general case
In [4], there is the general formula

1

n!

[
n+ 1

r + 1

]
= (−1)r

∑
{r}

l∏
j=1

(−1)ij
ij !

(
H

(rj)
n

rj

)ij
.

Here, the sum is over all partitions of r:

r = i1r1 + · · ·+ ilrl,

with parts r1 > · · · > rl ≥ 1 and positive integers i1, . . . , il. As an example, the partitions
of r = 4 are 4, 3+1, 2+2, 2+1+1, 1+1+1+1, written alternatively as 1 ·4, 1 ·3+1 ·1,
2 · 2, 1 · 2 + 2 · 1, 4 · 1.

There appear higher order harmonic numbers as well:

H(i)
n =

∑
1≤k≤n

1

ki
.
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Here are the first few instances:

1
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]
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1

n!

[
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2
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2
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1
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4
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1

3
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1

2
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n Hn +

1

6
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1

n!

[
n+ 1
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4
H(4)
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3
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1
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(
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)2 − 1

4
H(2)
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This allows to replace 1
(m−1)!

[
m
p

]
in

(logC(z))p =
∑

p≤m≤n

1

(m− 1)!

[
m

p

]
(−1)m−p p!

n

(
2n

n−m

)
zn

by an expression involving H(1)
m−1, . . . ,H

(p−1)
m−1 .

5 Extension
If instead of u = z(1+u)2 we work with u = z(1+u)λ, then we deal with the generating
function of extended (generalized) Catalan numbers

Cλ(z) =
∑
n≥0

(
1 + nλ

n

)
zn

1 + nλ
.

From [3], we infer that

um =
∑
n≥m

(
λn+m

n

)
m

λn+m
zn.

So

F (z, α) =
∑
p≥0

αp

p!
(logCλ(z))

p = exp(α logCλ(z)) = Cαλ (z)

= (1 + u)α =
∑
m≥0

(
α

m

)
um

=
∑

0≤k≤m≤n

1

m!
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[
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]
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m
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The desired formula follows from reading off coefficients of αp:

(logCλ(z))
p = p![αp]F (z, α) =

∑
p≤m≤n

p!

m!
(−1)m−p

[
m

p
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n

)
m
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zn.
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