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A B S T R A C T	   A R T I C L E   I N F O	

An	expert	technique	in	bearing	fault	diagnosis	is	proposed	for	the	identifica‐
tion	 of	 actual	 status.	 A	 new	 diagnosis	method	 based	 on	 a	 two‐stage	 hybrid	
modality	 in	 integrating	 generalized	 discriminant	 analysis	 (GDA)	 with	 the	
chemical	 reaction	 support	 vector	 machine	 (CRSVM)	 classification	 model,	
named	GDA‐CRSVM,	is	proposed.	The	GDA	reduces	high‐dimensional	data	to	a	
more	 compact	 data,	which	 serves	 an	 optimized	 CRSVM	 classification	model	
with	 input	 data,	 in	which	 a	 support	 vector	machine	 (SVM)	 classifier	model	
with	the	best	parameters	are	selected	by	the	meta‐heuristic	chemical	reaction	
optimization	 algorithm	 (CRO)	 to	 build	 an	 optimized	 CRSVM	 classification	
model.	The	implementation	of	the	new	proposed	method	is	based	on	a	multi‐
aspect	feature	(MAF)	set	that	presents	most	of	the	actual	aspects	of	the	com‐
plex	vibration	signal.	The	MAF	set	is	collected	from	the	statistical	features	in	
time‐domain,	 frequency‐domain,	 and	 time‐frequency	 domain	 features	 are	
extracted	 by	 local	 characteristic‐scale	 decomposition	 (LCD).	 Experiments	
have	been	 conducted	on	 two	bearing	 vibration	datasets	 by	 the	 expert	 tech‐
nique	 in	 the	bearing	 fault	diagnosis.	Results	 shown	 that	 the	effectiveness	of	
GDA‐CRSVM	in	terms	of	classification	accuracy	and	execution	time.	
©	2017	PEI,	University	of	Maribor.	All	rights	reserved.	
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1. Introduction 

The	bearing	is	a	key	component	of	rotating	machinery	and	is	closely	allied	to	system	operation.	
Any	 failure	of	bearing	may	cause	unsafe	 conditions	 for	 the	operator	and	 inefficient	operation,	
stopping	work	may	also	affect	associated	systems.	Hence,	advanced	fault	diagnosis	methods	in	
the	mechanical	maintenance	 field	 are	 a	 focus	of	 interest	 to	many	 researchers.	These	methods	
can	be	summarized	into	several	consecutive	steps	aimed	at	 identifying	patterns	of	 fault	status.	
The	first	step	is	acquisition	vibration	data,	which	may	need	pre‐processing	such	as	denoising	or	
removing	artefacts.	The	second	step	 is	 feature	extraction	step	to	get	the	most	 important	 infor‐
mation.	Then,	 these	 features	are	 transformed	 into	 the	pattern	diagnosis	model	 to	classify	pat‐
terns.	Finally,	 the	pattern	diagnosis	model	determines	the	pattern	type	to	which	the	particular	
fault	signal	belongs.		

One	the	most	important	actions	for	fault	diagnosis	technique	is	feature	extraction.	An	effec‐
tiveness	feature	set	needs	to	contain	the	most	salient	features,	beneficial	features	of	the	classifi‐
cation	stage.	This	paper	focuses	on	a	multi‐aspect	feature	extraction	(MAF),	which	many	actual	
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aspects	of	the	complex	vibration	signal.	MAF	is	based	on	statistical	features	in	time‐domain,	fre‐
quency‐domain,	which	directly	represent	the	outward	aspects	of	signal,	and	time‐frequency	do‐
main	features,	which	represent	the	intrinsic	aspects	deeply	hidden	in	the	vibration	signal.	Fea‐
tures	in	the	time‐frequency	domain	are	especially	extracted	by	local	characteristic‐scale	decom‐
position	(LCD),	a	method	that	becomes	superior	in	running	time,	restraining	the	end	effect	and	
relieving	mode	mixing	[1,	2].	The	MAF	set	can	be	extracted	from	the	original	vibration	signal	as	a	
high‐dimensional	feature	vector	including	seven	features	that	represent	the	aspect	in	the	time‐
domain,	eight	features	that	represent	the	aspect	in	frequency‐domain,	and	five	features	that	rep‐
resent	the	aspect	in	the	time‐frequency	domain.	The	obtained	MAF	can	provide	extremely	ade‐
quate	information	on	various	bearing	conditions	to	make	an	effective	diagnosis	of	performance.	

Normally,	 a	 feature	 set	 of	 an	 original	 vibration	 signal	 can	 also	 provide	more	 handy	 infor‐
mation.	Increasing	the	problem	of	using	these	features	efficaciously	 in	a	way	that	would	inter‐
fere	with	the	classification	stage,	such	as	the	computational	burden,	the	processing	time	is	slow‐
er,	 the	classification	accuracy	results	are	poorer.	This	paper	aims	at	making	classification	per‐
formance	more	effective.	The	high‐dimensional	 feature	dataset	 that	was	extracted	 from	vibra‐
tion	signals	is	mapped	onto	a	new	feature	space	to	discover	the	intrinsic	structure	in	these	non‐
linear	high‐dimensional	data	and	to	obtain	a	more	compact	feature	dataset	in	a	lower	dimension.	
Recently,	dimensionality	reduction	approaches	have	aroused	great	interest	in	the	fault	diagnosis	
research	field.	Principal	component	analysis	 (PCA)	 [3,	4]	 is	one	of	 the	most	 traditionally	used,	
along	with	multi‐dimensional	 scaling	 (MDS)	 [5]	 and	 linear	 discriminate	 analysis	 (LDA)	 [6,	 7].	
However,	while	 these	 approaches	 are	 remarkably	 effective	 on	 linear	 data,	 they	may	 not	 ade‐
quately	handle	complex	non‐linear	data.	This	may	be	cause	of	low	accuracy	or	misjudgement	of	a	
fault	diagnosis	with	non‐linear	data.	To	expand	the	field	of	non‐linear	data	of	LDA,	the	general‐
ized	discriminant	analysis	 (GDA)	method	was	proposed	by	Baudat	and	Anouar	(2000)[8].	The	
main	idea	is	to	project	the	input	space	into	an	advantageous	feature	space,	where	variables	are	
nonlinearly	related	to	the	input	space.	According	to	the	current	literature,	the	GDA	method	has	not	
been	previously	applied	for	fault	diagnosis.	In	the	case	of	medicine	[9]	and	imaging	[10],	there	
are	previous	reference	works.	An	important	contribution	in	this	study	is	the	introduction	of	the	
GDA	method	 in	 the	discovery	of	 the	 intrinsic	structure	of	 the	non‐linear	high‐dimensional	 fea‐
ture	dataset.	Its	combination	with	a	classifier	model	make	it	effective	for	classification	purposes.		

Support	vector	machine	(SVM)	based	on	statistical	learning	theory	is	a	new	machine	learning	
algorithm	proposed	by	Vapnik	et	al.	SVM	is	a	powerful	supervised	machine	learning	tool	and	is	
used	in	a	number	of	applications	such	as	pattern	recognition	[11],	time‐series	forecasting	[12],	
robotics	[13]	and	diagnostics	[14].	When	SVM	is	used,	one	should	remark	that	the	optimal	pa‐
rameters	play	a	leading	role	for	forming	a	classification	model	with	high	classification	efficiency,	
thus	creating	something	 that	has	aroused	 the	great	 interest	of	 researchers	 for	 the	selection	of	
optimal	parameters.	Recently,	 several	 evolutionary	based	algorithms	such	as	 the	genetic	algo‐
rithm	(GA)	[15],	particle	swarm	optimization	(PSO)	[16],	ant	colony	optimization	(ACO)	[17],	the	
simulated	annealing	algorithm	(SA)	 [18]	have	been	used	 to	optimize	 the	SVM	parameters	and	
have	also	shown	promising	ability	as	learning	algorithms	that	can	be	utilized	for	diagnosis	pur‐
poses	[19].	However,	their	performance	may	vary	from	one	object	to	another	in	fault	diagnosis	
and	may	not	be	 suitable	 for	 the	different	 statuses	of	 roller	 bearings.	Besides,	 the	 efficiency	of	
these	optimization	algorithms	is	characterized	by	the	procedure	used	for	selection	the	parame‐
ters,	which	 requires	 a	deep	knowledge	of	 the	use	of	 algorithms.	The	 recent	 chemical	 reaction	
optimization	(CRO)	algorithm,	which	is	a	novel	computational	method,	is	one	optimization	of	the	
found	meta‐heuristics	introduced	in	2010	[20].	CRO	is	an	evolutionary	optimization	technique,	
which	 is	comprehended	 from	the	nature	of	chemical	 reaction.	 It	performs	very	well	 in	solving	
optimization	problems	in	a	very	short	time.	In	a	short	period,	there	have	been	a	few	applications	
of	CRO	to	the	recognition	field,	data	mining,	classification	rule	[21,	22],	and	efficiency	has	been	
demonstrated.	 Indeed,	CRO	has	been	applied	 to	solve	complex	problems	successfully,	has	out‐
performed	many	existing	evolutionary	algorithms	 in	most	of	 the	test	cases.	A	guideline	can	be	
found	in	the	tutorial	 introduced	in	[23]	to	help	readers	implement	CRO	for	optimization	prob‐
lems.	Motivated	by	the	capability	of	CRO,	an	important	contribution	in	this	study	is	the	authors’	
aim	 to	use	 the	CRO	algorithm	 to	 select	 the	best	parameters	of	 the	SVM	model,	which	 is	 a	 fre‐
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quently	used	diagnosis	technique	called	CRSVM.	Then,	the	optimized	CRSVM	model	is	used	for	
bearing	fault	diagnosis.	

Finally,	 in	this	paper,	a	two‐stage	hybrid	modality	for	integrating	GDA	with	CRSVM	is	intro‐
duced,	called	GDA‐CRSVM.	The	proposed	GDA‐CRSVM	method	is	based	on	an	expert	technique	
that	aims	 to	exploit	 the	highest	 identification	accuracy	 in	 the	 fault	diagnosis	of	 roller	bearings	
based	on	an	MAF	set.	GDA	is	first	used	to	reduce	the	high‐dimensional	feature	set	that	acts	as	the	
data	 pre‐processing	 for	 classifier	 model.	 Then,	 the	 obtained	 feature	 set	 provides	 the	 CRSVM	
model	with	input	data.	For	exploration,	experiments	have	been	conducted	on	two	bearing	vibra‐
tion	 datasets	 with	 different	 conditions	 based	 on	 the	 GDA‐CRSVM	 method.	 Moreover,	 the	 ac‐
quired	vibration	signals	have	been	analysed	to	extract	the	MAF	set.	It	is	remarkable	that	the	per‐
formance	of	the	GDA‐CRSVM	method	is	significantly	better	than	that	of	the	other	methods	and	
showed	the	most	accurate	results	for	classification	purposes	along	with	superior	execution	time.	

The	paper	 is	 constructed	 as	 follows.	 Section	2	presents	materials	 and	methods	 for	bearing	
fault	diagnosis.	In	Section	3,	the	GDA‐CRSVM	method	is	proposed	by	a	two‐stage	hybrid	modality	
by	integrating	the	GDA	method	with	the	CRSVM	classification	model	for	the	expert	fault	diagno‐
sis	technique.	In	Section	4,	we	present	experiments	for	bearing	fault	diagnosis,	where	vibration	
data	is	acquired	for	roller	bearings,	MAF	is	used	to	extract	vibration	signals,	and	the	actual	fault	
statuses	are	identified	by	our	proposed	method.	Section	5	is	the	conclusion.	Acknowledgments	
and	a	list	of	references	follow.	

2. Materials and methods 

2.1 Generalized discriminant analysis (GDA) method 

Dimensionality	 reduction	 can	 be	 done	 by	 feature	 transformation	 to	 a	 low‐dimensional	 data	
space	once	features	have	been	extracted	from	the	vibration	signals.	The	purpose	of	the	dimen‐
sionality	reduction	is	to	select	the	most	superior	features	of	the	original	feature	set,	which	can	
provide	 dominant	 actuality‐related	 information.	 Irrelevant	 or	 redundant	 factors	must	 be	 dis‐
carded	to	improve	classification	performance,	to	avoid	problems	with	dimensionality.	Therefore,	
the	GDA	method	is	presented	and	used	to	select	the	superior	features	from	the	original	feature	
set	[8].	

The	objective	of	GDA	 is	 to	find	mapping	 for	 the	 input	 feature	 set	 into	 a	 lower	dimensional	
space/	new	space.	The	ratio	of	centre‐class	partner	 	to	within‐class	partner	 can	be	maxim‐
ized	[8].	A	set	of	input	patterns	S	of	training	features‐set	can	be	given	as:	

1,2, . . , ; 1,2, . . , 	 (1)

This	is	a	C‐class	problem,	 	is	the	number	of	samples	in	class	 .	The	mapping	 : ⟶ 	is	
non‐linear	for	training	patterns	in	the	new	space,	thus	 → ,	 1,2, . . , ; 1,2, . . , 	is	
represented.	

The	center‐class	partner	 	to	within‐class	partner	 	of	the	training	feature	set	can	be	calcu‐
lated	as	below:	

1 1
	 (2)

1
	 (3)

We	have	to	calculate	the	eigenvalues	and	eigenvectors	 ,	 ∈ ∖ 0 	to	satisfy	the	equation:	

	 (4)
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′
′

	 (5)

The	 eigenvectors	 	 are	 combinations	 of	 	 elements	 and	 the	 existing	 coefficients	
, 1,2, . . , ; 	 1,2, . . , 	such	that:	

	 (6)

To	simplify,	we	can	write	the	coefficient	vector	as	below:	

, ,..,
, ,..,

	 (7)

Further,	let	us	consider	this	vector.	We	used	the	kernel	technique	in	the	new	space.	Using	the	
dot	 product	 of	 a	 sample	 	 from	 class	 	 and	 another	 sample	 	 from	 class	 ,	 the	 dot	 product	

	gives	the	following:	

⋅ 	 (8)

First,	let	 	be	a	 	matrix	defined	in	terms	of	the	class	elements	by	 1,2,..,
1,2,..,

.	In	the	

new	space,	the	 	matrix	is	represented	as	below:	

, ,..,
, ,..,

	 (9)

where	 	is	a	 	matrix:	

, ,..,
, ,..,

	 (10)

Then,	a	 	matrix	 	is	introduced,	 	is	defined	as:		

, ,.., 	 (11)

where	 	is	a	 	matrix	with	all	terms	equal	to	1 .	
Finally,	 from	the	Eqs.	2,	3,	6	and	4,	we	 found	the	 inner	product	with	vector	 	on	both	

sides.	

	 (12)

There,	 	represents	a	column	vector	with	values	 , 1,2, . . , ; 1,2, . . , .	
The	solution	of	Eq.	(12)	is	satisfactory	when	the	eigenvectors	of	matrix	 	are	cal‐

culated.	

2.2 Optimal classification model 

This	section	emphasizes	the	superiority	of	the	CRO	algorithm,	which	is	then	applied	to	select	the	
best	parameters	of	the	SVM.	These	parameters	play	a	leading	role	for	building	an	optimal	CRSVM	
classification	model.	The	obtained	CRSVM	model	can	be	used	for	fault	diagnosis	of	bearing	com‐
ponents,	combining	the	input	feature	set	to	become	the	expert	classifier	model	with	high	classi‐
fication	accuracy,	stability	and	effectiveness	of	performance.	Fig.	1	depicts	the	flowchart	for	us‐
ing	the	CRO	algorithm	to	select	parameters	of	the	SVM	model.	

Principle	of	SVM	

Support	Vector	Machine	(SVM)	were	introduced	by	Vapnik	[24].	The	SVM	classifier	is	designed	
for	classification	tasks	with	two‐class	datasets.	The	data	are	separated	by	a	hyperplane	in	order	
to	maximize	distance.	The	separating	hyperplane	is	defined	by	the	closest	points	of	the	training	
dataset,	which	are	called	support	vectors.	The	details	of	SVM	are	presented	in	[14].	The	parame‐
ter	pair	 , 	in	the	RBF	kernel	function	(the	penalty	parameter	of	 	and	width	parameter	of	 )	
plays	an	important	part	in	the	classification	purpose.	The	parameter	pair	values	cover	a	broad	
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range	and	controls	the	generalization	capability	of	SVM.	The	best	selection	of	parameter	pair	is	
important	and	necessary	to	training	the	SVM	classifier.	In	this	work,	values	of	 , 	are	selected	
using	the	CRO	algorithm	for	the	best	performance	for	accurate	bearing	fault	diagnosis.	

The	optimized	SVM	model	based	on	CRO	

To	fulfil	 the	aim	to	build	an	optimal	classification	model,	CRSVM,	the	CRO	algorithm	is	used	to	
exploit	the	best	parameter	pair	 , 	of	the	SVM.	The	obtained	classification	model	is	employed	
to	identify	the	bearing	conditions.	
	

	
Fig.	1	The	architecture	of	CRSVM	classification	model	

Chemical	reaction	optimization	algorithm	

The	CRO	algorithm	 is	 introduced	 in	2010	 [20]	 in	 the	 finding	meta‐heuristics	of	 computational	
method	 which	 is	 the	 efficient	 optimization	 technique	 that	 enjoys	 the	 advantages	 of	 previous	
genetic	algorithms	and	simulated	annealing.	This	algorithm	is	not	only	inspired	by	the	elemen‐
tary	chemical	 reactions,	 that	 is	different	 from	evolutionary	algorithms	motivated	by	biological	
evolution,	but	also	easily	constructed	by	defining	the	agents	and	the	energy	directional	scheme.	
Consequently,	 algorithm	 has	 been	 deployed	 for	 different	 problems	 and	 has	 been	 successfully	
used	 to	 counteract	 complicated	 problems,	 outperforming	 other	 prevailing	 evolutionary	 algo‐
rithms	in	test	conditions.		

Furthermore,	CRO	algorithm	carried	out	parallel	of	sub‐reaction	steps	in	the	optimal	process	
which	 benefits	 the	 minimizing	 for	 accomplishing	 time.	 Algorithm	 accomplishes	 local,	 global	
search	with	elementary	reactions.	In	these,	four	types	of	elementary	reactions	are	included:	(1)	
on‐wall	ineffective	collision,	(2)	decomposition,	(3)	inter‐molecular	ineffective	collision,	and	(4)	
synthesis.	In	fact,	each	reaction	is	the	interaction	(the	combination	and	variation)	of	molecules	at	
a	high	energy	level	to	become	new	products	with	a	low	energy	level,	in	a	stable	status.	The	de‐
tails	of	the	CRO	algorithm	can	be	seen	in	[20,	23].	Motivated	by	the	superior	capability	of	CRO,	
the	authors	applied	select	parameters	of	the	SVM	model.	

The	solution	 to	optimize	 the	CRO	algorithm	 involves	using	 the	natural	chemical	 reaction	of	
reactants	to	solve	problems.	The	beginning	of	the	algorithm	establishes	initial	reactants,	which	
play	an	 important	role	 in	a	solution.	Then,	 the	reactants	react	and	produce	 four	 types	of	reac‐
tions.	 The	 algorithm	 is	 stopped	when	 the	 termination	 criterion	 reaches	 final	 status,	when	 no	

Parameters	of	SVM:	
Initial	values	( , )	

CRO	

Training	SVM	model	

Evaluate	fitness	by	deterioration	
parameter	Eq.	(13)	

Update	parameters	( , )	

Trained	SVM	model	with	best	parame‐
ters	 , 	

Start	

Termination	
criterial	

Training	
set	

End	

Y	

N	
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more	reactions	can	take	place.	In	this	work,	the	parameter	pair	 , 	of	SVM	is	set	as	reactants	in	
four	types	of	reactions.	According	to	this,	the	CRO	algorithm	consists	of	the	following	steps	[21]:		

Step	1:	Initialize	the	parameters.	
Step	2:	Set	the	initial	reactants	and	evaluate	enthalpy.	
Step	3:	Apply	chemical	reactions	to	reactants.	
Step	4:	Update	and	select	reactants.	
Step	5:	Go	to	step	3	if	termination	criterion	not	satisfied.	
Step	6:	Output	reactant	with	best	enthalpy.	

Classification	model	CRSVM	

The	 optimization	 parameter	 pair	 , 	of	 the	 SVM	 can	 be	 obtained	 using	 the	 CRO	 algorithm.	
This	CRO	algorithm	conducts	stochastic	searches	using	a	population	of	molecules,	each	of	which	
represents	a	possible	solution	to	a	problem.	A	population	includes	a	finite	number	of	molecules,	
with	each	molecule	defined	by	an	evaluating	mechanism	to	obtain	its	potential	energy.		

The	principled	training	phase	of	the	CRSVM	model	includes	seven	main	steps,	which	are	im‐
plemented	as	follows:	

Step	1:	Training	and	testing	datasets	are	prepared	after	 feature	extraction	from	original	vibra‐
tion	signals.	

Step	2:	This	is	initialization	step.	The	initial	 , 	parameters	are	random	for	SVM.	Set	the	maxi‐
mum	 iteration	number	 .	 Set	 the	 iterative	 variable:	 0	 and	perform	 the	 training	
process	for	the	next	steps.	The	parameters	for	this	optimization	algorithm	are	iteration	

50,	population	size	 5,	upper	bound	 2 	and	lower	bound	 2 .	
Step	3:	Increase	the	iteration	variable	by	set	 1	
Step	4:	Deterioration	evaluation.	The	deterioration	function	is	employed	to	evaluate	the	quality	

of	every	element.	Eq.	(13)	shows	the	classification	accuracy	of	an	SVM	classifier:	

% 100 %	 (13)

where	 	is	false	classified	samples,	 	is	total	samples	in	the	testing	process.	The	desirable	
value	is	small	for	high	classification	accuracy.	

Step	5:	Stop	criteria	checking.	If	the	deterioration	function	satisfies	Eq.	(13)	or	iteration	is	max‐
imal,	go	to	step	7.	If	not,	go	to	the	next	step.	

Step	6:	Update	the	new	 , 	parameters	based	on	conditions.	Go	to	step	3.	
Step	7:	End	of	the	training	procedure.	Fitting	parameters	are	optimal	output	values.	

The	 efficient	 search	 capability	 of	 the	 chemical	 reaction	 algorithm	 is	 incorporated	with	 the	
generalization	capability	of	SVM	to	bring	out	synergies	of	the	classification	accuracy.	The	archi‐
tecture	for	CRSVM	is	presented	in	Fig.	1.	Each	reactant	represents	the	candidate	solution	for	the	
model,	which	includes	the	parameters	 , .	

3. An expert technique based on the proposed GDA‐CRSVM method 

In	this	section,	the	authors	propose	a	new	diagnosis	method	based	on	a	two‐stage	hybrid	modal‐
ity	for	integrating	GDA	with	the	CRSVM,	called	the	GDA‐CRSVM.	This	takes	special	consideration	
of	 improved	 computational	 time,	 reduction	 of	 calculation	 memory	 and	 enhanced	 recognition	
accuracy	of	 fault	data.	The	methodology	of	dimensionality	reduction	(GDA)	 is	close,	which	can	
obtain	 the	 total	 intrinsic	 emergent	 information	 of	 the	 original	 high‐dimensional	 feature	 set.	
Combined,	the	optimized	CRSVM	model	can	obtain	effective	classification	performance.	

The	process	of	the	proposed	method	consists	of	two	parts:	dimensionality	reduction	and	pat‐
tern	recognition.	First,	 the	authors	used	 the	GDA	method	 to	reduce	 the	high‐dimensional	 fault	
feature	dataset	by	taking	out	the	most	responsive	features	to	produce	a	low‐dimensional	feature	
set.	The	obtained	feature	set	increased	the	overall	reliability	of	the	fault	diagnosis	technique	as	
well	 as	 the	 accuracy	 of	 diagnosis	 of	 an	 actual	 fault	 condition.	 Second,	 the	 reduced	 feature	 is	
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served	 as	 input	 to	 the	optimized	 classification	mode,	which	was	 elaborately	 optimized	by	 the	
CRO	algorithm	based	on	the	SVM,	namely	CRSVM.	

Overall,	the	expert	bearing	fault	diagnosis	technique	based	on	the	GDA‐CRSVM	hybrid	meth‐
od	 aims	 to	 further	 improve	 fault	 diagnosis	 performance	 and	 ensure	 diagnosis	 reliability.	 It	 is	
presented	in	Fig.	2.	From	this	figure,	the	technique	includes	four	main	steps	as	follows:	Step	1	is	
vibration	signal	acquisition,	Step	2	is	MAF	extraction,	Step	3	is	dimensionality	reduction,	Step	4	
is	pattern	classification.	The	implementation	process	is	described	below:	

Step	1:	In	the	first	step,	the	original	vibration	signals	are	acquired	from	acceleration	sensors.		
Step	2:	Feature	extraction	 is	an	urgent	step	of	 the	diagnosis	process.	The	extracted	 feature	set	

represents	 important	 information	 about	 the	 actual	 bearing	 conditions,	 which	 governs	
the	final	results	of	the	diagnosis	process.	This	feature	set	contains	the	time‐domain,	fre‐
quency‐domain	features,	and	time‐frequency	domain	features	are	extracted	by	the	LCD	
method,	which	is	used	to	form	the	MAF	set	of	the	original	vibration	signal.	

Step	3:	The	GDA	method	is	used	to	discover	the	intrinsic	structure	of	the	MAF	set.	The	reduced	
feature	set	as	a	low‐dimensional	feature	vector	has	more	effective	classification	perfor‐
mance,	such	as	reduced	calculation	memory,	computational	time,	and	the	best	classifica‐
tion	accuracy	results.	

Step	4:	The	reduced	feature	set	is	divided	into	training	set	and	testing	set.	Each	low‐dimensional	
training	sample	in	its	respective	class	labelled	as	the	training	set	is	used	to	discover	the	
best	parameter	pair	 , 	of	 the	SVM	by	CRO.	The	obtained	CRSVM	classifier	model	 is	
then	used	 to	 recognize	 the	 samples	 in	 the	 testing	 set.	For	 reliable	diagnosis	 capability,	
the	diagnosis	technique	based	on	this	proposed	GDA‐CRSVM	method	is	applied	for	bear‐
ing	fault	diagnosis.	

	

	
Fig.	2	Struct	diagram	of	expert	fault	diagnosis	technique	
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Fig.	5	The	schematic	drawing	of	test	rig	

4. Results and discussion for bearing fault diagnosis performance case study 

In	this	section,	two	datasets	of	bearing	conditions	were	collected.	They	are	used	for	the	experi‐
ments	based	on	the	proposal	of	proposed	expert	technique	in	actual	status	identification.	

4.1 Data acquisition 

The	 first	 dataset	 is	 vibration	 signals	 of	 bearing	 component	 fault	 cross	 from	 the	 Bearing	 Data	
Center	at	Case	Western	Reserve	University	(Loparo,	2013).	Fig.	3	shows	the	experimental	setup	
model,	which	consists	of	a	two‐HP	reliance	electric	motor,	a	torque	transducer	and	a	dynamom‐
eter.	The	 test	bearings	were	 installed	on	 the	motor	shaft,	which	was	 loaded	by	dynamometer.	
The	accelerometer	data	at	DE	were	used	as	original	signals	for	the	detection	of	four	bearing	con‐
ditions:	 healthy	 bearing	 (HB),	 inner	 race	 (IR)	 fault,	 outer	 race	 (OR)	 fault,	 and	 rolling	 element	
(RE)	 fault.	A	defect	was	 tested	on	 the	 IR,	OR,	RE	of	 test	bearing	using	defect	sizes	0.5334	mm	
(0.021	 inches)	 in	 diameter	 with	 a	 depth	 of	 0.2794	mm	 (0.011	 inches)	 generated	 by	 electro‐
discharge	 machining.	 Four	 vibration	 signal	 datasets	 were	 acquired	 from	 the	 bearings	 with	 a	
sampling	frequency	of	12	kHz,	tested	under	motor	load	of	two‐HP	at	a	speed	of	1750	RPM.	Fig.	4	
presents	the	vibration	signals	in	time‐domain,	in	frequency‐domain	from	four	signal	samples	of	
the	bearing	conditions.	In	each	fault	pattern,	25	samples	were	acquired	from	vibration	signals.	
Each	 sample	 includes	 4096	 continuous	 data	 points	 in	 the	 time‐domain.	 The	 results	 obtained	
groups	with	100	vibration	signals	at	various	bearing	conditions.	

To	further	test	the	efficacy	of	the	fault	detection	technique,	the	second	dataset	was	acquired	
from	test	rig,	as	shown	in	Fig.	5	[25].	The	bearing	faults	were	introduced	by	laser	cutting	in	the	
IR	or	RE	with	slot	width	of	0.15	mm	and	depth	of	0.13	mm,	respectively.	The	three	experimental	
conditions	tested	were	healthy	bearing	(HB),	bearing	with	IR	fault	and	bearing	with	RE	fault.	A	
total	of	15	acceleration	measuring	signals	with	sampling	frequency	of	4096	Hz	were	acquired	for	
each	bearing	condition.	

Fig.	3	Schematic	of	the	experimental	 Fig.	4 The	bearing	conditions	in	the	time	domain	and	frequency	
domain	

										‐	a,	b)	Normal	bearing	 																				‐	c,	d)	Inner	bearing	fault	
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Fig.	6	The	time‐domain	features	of	a	bearing	sample	in	different	conditions 

4.2 Multi‐aspect feature extraction 

The	MAF	set	extracted	 from	original	vibration	signals	plays	an	 important	role	 for	 the	achieve‐
ment	 of	 the	 diagnosis	model.	 The	MAF	 includes	 time‐domain	 features,	 frequency‐domain	 fea‐
tures	and	features	in	the	time‐frequency	domain,	which	are	considered	a	high‐dimensional	fea‐
ture	vector.	

 Time‐domain	features	

The	 signal	was	 analysed	 to	 extract	 seven	 time‐domain	 statistical	 features	 	 	 .	 Table	 1	
shows	the	seven	feature	definitions.	In	this	table,	the	first	five	dimensions	 	 	reflect	the	
vibration	amplitude	and	energy	 in	 the	 time‐domain,	 the	 last	 two	dimensions	 , 	 are	 the	
crest	factor	and	clearance	factor,	which	represent	the	time‐series	distribution	of	the	signals.	Fig.	
6	describes	the	time‐domain	features	of	the	bearing	samples	in	the	different	conditions.	

Table	1	The	feature	definition	equations	in	time‐domain	

No.	
Time	Domain	(TD)	 Remark	

Feature	 Equation	

1	 Mean	
1

	 is	a	vibration	signal	in	time	
domain	 1,2, . . , ,	 	is	the	
number	of	data	points.	
	2	 Standard	deviation	

1
1

̅ 	

3	 Root	Mean	Square	
1

	

4	 Skewness	
1

1
̅ 	

5	 Kurtosis	
1

1
̅ 	

6	 Crest	factor	
| |

	

7	 Clearance	Factor	
1

| | 	

 Frequency‐domain	features	

Some	 signal	 information	 is	 also	 described	 in	 the	 frequency‐domain	 and	 reveals	 information	
about	the	demodulation	spectrum,	amplitude	frequency	or	distribution,	which	cannot	be	found	
in	the	time‐domain.	To	extract	these	features,	the	Hilbert	transform	was	first	used	to	transform	
the	vibration	signals.	Eight	frequency‐domain	features	 	 	 	were	then	extracted	from	the	
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frequency	spectrum	of	vibration	signals,	as	shown	in	Table	2.	The	obtained	features	 	
describe	 the	convergence	or	divergence	of	 the	spectrum	power,	 , 	 indicate	a	change	 in	
position	 frequency.	 The	 spectrum	power	 energy	 degree	 can	 centralize	 or	 de‐centralize	 as	 de‐
scribed	by	parameter	 	 	 	can	quantitatively	measure	disorder	in	the	system.	The	fre‐
quency‐domain	features	of	the	bearing	conditions	in	an	inner	race	fault,	outer	race	fault,	roller	
element	fault	and	healthy	fault	are	depicted	in	Fig.	7.	The	features	of	the	conditional	outer	race	
fault	and	inner	race	fault	are	shown	especially	clearly.		

 Time‐frequency	domain	features	

LCD	 is	 a	 self‐adaptive	method	used	 in	data	decomposition.	 LCD	has	been	 successfully	used	 to	
analyse	 non‐linear,	 non‐station	 signals,	 especially	 fault	 signals	 [2].	 Obviously,	 LCD	 can	 extract	
the	deeply	hidden	features	 in	bearing	fault	data,	as	these	features	are	very	hard	to	distinguish	
only	 from	 the	 time‐domain	 and	 frequency‐domain	 statistical	 characteristics.	 In	 this	 study,	 the	
authors	investigated	the	energy	correlation	coefficients	between	the	first	several	intrinsic	scale	
components	 (ISC),	which	were	decomposed	by	 the	LCD	method.	These	 coefficients	 can	 reveal	
the	original	vibration	signal	in	the	time‐frequency	amplitude	and	distribution	view,	which	is	well	
and	good	for	accurate	diagnosis	of	a	bearing	fault.	Further,	any	complex	vibration	signal	 	is	
decomposed	into	ISC	and	the	residue	by	LCD,	as	in	the	equation	below	[1]:		

	 (14)

where	 	is	the	 	ICS	of	original	signal	obtained	by	LCD,	the	residue	is	 .	
	

Table	2	The	feature	definition	equations	in	frequency‐domain	

No.	
Frequency	domain	(FD) 

Remark	
Feature	 Equation	

1	 Mean	frequency	
1

 
is	the	energy	probability	

distribution	defined	as:		
| |

∑ | | 	

where	 	is	the	spectrum	of	
	vibration	signal,	
1,2, . . , ,	M	is	the	number	of	

spectrum	lines.	
	
	is	the	frequency	value	of	the	
	spectrum	line.	

	

2	
Standard	deviation	fre‐
quency	

1
1

 

3	 Skewness	frequency	
1 ∑

1
1∑

 

4	 Kurtosis	frequency	
1 ∑

1
1∑

 

5	 Frequency	centre	
∑

∑  

6	
Root	mean	square	fre‐
quency	

∑
∑  

7	 Root	variance	frequency	 ∑
 

8	 Shannon	Entropy	 log  
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The	first	several	ISCs	contain	almost	all	valid	fault	information	that	characterizes	the	original	
signal.	There,	ISCs	have	higher	energy	than	the	rest.	In	this	work,	the	first	five	ISCs	were	used	to	
calculate	the	correlation	of	energy	with	the	original	vibration	signal.	These	five	energy	correla‐
tion	 coefficients	 formed	 a	 feature	 subset	 representing	 the	 time‐frequency	 domain	 features	 of	
bearing	fault	status.	These	following	steps	were	taken:	

Step	1:	The	original	vibration	signals	were	collected	from	fault	samples	of	the	roller	bearing.	
Step	2:	The	LCD	method	decomposed	the	vibration	signals	into	ISCs.	The	first	h	ISCs	were	chosen.	
Step	3:	The	energy	 	of	the	first	 	ISCs	was	calculated,	as	related	in	Eq.	15	and	Eq.	16:	

	 (15)

where	 1,2, . . , ,	 	is	data	length	of	 	ISC,	 	is	the	amplitude	of	point	 	in	the	 	compo‐
nent,	and	 	is	the	obtained	amplitude	of	the	 	ISC	by	Hilbert	transform:	

	 (16)

Step	4:	A	feature	vector	 	was	constructed	with	the	energy	correlation	coefficient	as	element:	

, , . . , 	 (17)

where	 , 1,2, . . , 	are	the	energy	correlation	coefficients.	

∑
	 (18)

Fig.	8	also	shows	time‐frequency	domain	features	of	the	bearing	conditions.	The	deeply	hid‐
den	features	in	the	bearing	fault	signal	were	extracted	by	LCD.	The	feature	values	show	that	the	
energy	level	of	ISCs	gradually	decreased.	

The	obtained	time‐frequency	domain	 features	were	added	 into	 the	 feature	set	and	thus	 the	
complete	MAF	was	formed	containing	20	features.	The	obtained	MAF	represents	a	bearing	fault	
condition	as	a	high‐dimensional	 feature	vector	that	serves	the	GDA‐CRSVM	method	with	 input	
data.	

 4.3 Diagnosis analysis based on GDA‐CRSVM 

The	high‐dimensional	MAF	discovered	non‐linear	characteristics	by	the	GDA	method	as	dimen‐
sionality	 reduction,	 which	 can	 be	 given	 as	 a	 low‐dimensional	 feature	 set.	 The	 obtained	 low‐
dimensional	feature	set	was	then	randomly	divided	into	a	training‐testing	partition,	70	%	:	30	%.	
Finally,	as	mentioned	in	Section	3,	the	training	set	was	used	to	train	the	optimal	CRSVM	diagno‐
sis	model	in	actual	bearing	conditions.	The	obtained	optimal	diagnosis	model	was	employed	to	
classify	the	samples	in	the	testing	set.	

Fig.	7	The	frequency‐domain	features	of	a	bearing	
sample	in	different	conditions	

Fig.	8 Time‐frequency	domain	features
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Feature‐dimensional	reduction	by	GDA	method	

Practically,	 the	 high‐dimensional	 feature	 dataset	 involves	 too	 much	 memory	 for	 parameters,	
which	results	in	a	complicated	and	inefficient	for	classification	model.	For	this	goal,	the	extracted	
MAF	 of	 original	 vibration	 signals	was	 reduced	 to	 three	 features	 using	 the	 GDA	method	men‐
tioned	in	Section	2.	To	demonstrate	the	superiority	of	the	introduced	GDA	dimensionality	reduc‐
tion	method,	when	GDA	is	used	in	the	process	of	the	training	pattern	labelled	into	C	classes,	Sc	
number	of	samples	in	each	class,	C	is	set	to	4,	Sc	is	set	to	25.	

An	experiment	was	 conducted	on	 the	 feature	 set,	 the	authors	 explored	 this	 to	evaluate	 the	
GDA	method’s	dimensionality	reduction	performance	on	the	sample	 feature	set.	We	compared	
GDA	with	PCA	and	LDA	as	 representative	methods.	The	 experimental	 results	 of	 the	PCA,	 LDA	
and	GDA	methods	 are	 shown	 in	 Fig.	 9	 to	 Fig.	 11,	 respectively,	which	 show	 that	 PCA	 and	LDA	
have	dim	pattern	classification	performance,	with	three	classes	of	overlap.	Compared	with	these,	
GDA	can	obtain	a	clearer	separation	on	the	mapping.	Therefore,	GDA	can	accurately	separate	the	
bearing	fault	status	for	the	extracted	MAF	set.	In	fact,	this	is	because	the	GDA	has	greater	ability	
to	discover	the	maximal	ratio	of	centre‐class	partner	to	within‐class	partner	in	the	multi‐aspect	
data	by	employing	 class	 label	 information.	Overall,	 the	best	GDA	method	 is	used	 for	 the	high‐
dimensional	MAF	dataset	to	obtain	the	low‐dimensional	feature	dataset	with	prominent	features	
as	a	dimensionality	reduction	task.	

	
Fig.	11	Scatter	plot	for	the	reduced	feature	set	by	GDA	

		

	 	

Fig.	9	Scatter	plot	for	the	reduced	feature	set	by	PCA Fig.	10 Scatter	plot	for	the	reduced	feature	set	by	LDA
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CRSVM	training	

In	this	study,	CRSVM	classifier	models	were	designed	to	identify	various	bearing	conditions.	In	
fact,	CRSVM1	was	designed	to	identify	normal	bearing	conditions,	with	normal	bearing	condition	
data	assigned	to	 1,	other	data	assigned	to	 1.	CRSVM2	was	designed	to	identify	inner	
race	 faults	 of	 bearings,	with	 inner	 race	 fault	 data	 assigned	 to	 1,	 other	 data	 assigned	 to	

1.	CRSVM3	was	designed	to	identify	outer	race	faults,	with	outer	race	fault	data	assigned	
to	 1,	other	data	assigned	to	 1.	In	the	same	work,	CRSVM4	was	designed	to	identify	
roller	element	faults	of	bearings.	To	evaluate	the	performance	of	the	diagnosis	technique	based	
on	the	proposed	GDA‐CRSVM	method,	the	SVM	was	adopted	to	perform	bearing	condition	diag‐
nosis.	 This	 is	 a	 traditional	 model,	 with	 the	 parameter	 set	 selected	 to	 follow	 experience	 at	

200, 1.	These	classifiers	were	trained	on	both	the	reduced	feature	set	and	the	original	
MAF	set	to	evaluate	the	recognition	accuracy	results	and	time	of	diagnosis.	

Table	3	shows	the	MAF‐GDA‐CRSVM	diagnosis	techniques.	They	were	designed	to	identify	the	
different	 bearing	 conditions	 of	 the	 first	 dataset	 based	 on	MAF	 and	 the	 proposed	GDA‐CRSVM	
method.	In	the	experimentation	in	this	dataset,	these	classifiers	were	trained	with	the	reduced	
feature	set,	with	18	samples	per	class	selected	randomly	as	the	training	set,	meaning	72	samples	
were	 collected	 as	 the	 training	 set.	 They	were	 used	 to	 calculate	 the	 deterioration	 function	 Eq.	
(13)	and	construct	the	optimized	classifiers.	The	seven	rest	samples	per	class	were	used	to	test	
the	obtained	classifier	with	the	best	parameters.	The	archived	diagnosis	results	for	bearing	con‐
ditions	are	shown	in	Tables	4	and	5.	

To	demonstrate	the	effectiveness	of	the	MAF‐GDA‐CRSVM	diagnosis	technique,	we	designed	
diagnosis	models	based	on	GDA‐CRSVM	to	identify	bearing	conditions	of	 the	second	dataset	 in	
Table	6.	Similar	to	the	process	for	the	first	dataset,	the	bearing	fault	diagnosis	results	are	listed	
in	Tables	7	and	8.	

Table	3	The	MAF‐GDA‐CRSVM	diagnosis	technique	of	the	first	dataset.	

Bearing	
condition	

A	sample	feature	vector	
Diagnosis	technique	

MAF‐ 							
GDA‐CRSVM1	

MAF‐ 						
GDA‐CRSVM2	

MAF‐							
GDA‐CRSVM3	

MAF‐							GDA‐
CRSVM4	

HB	 ‐53.2173	 0.2071	 0.1407 (+1) (‐1) (‐1)	 (‐1)
IR	fault	 49.6764	 8.0919	 ‐0.2715 (‐1) (+1) (‐1)	 (‐1)
OR	fault	 35.4594	 ‐8.7378	 0.8780 (‐1) (‐1) (+1)	 (‐1)
RE	fault	 ‐31.0524	 2.6843	 ‐0.4135 (‐1) (‐1) (‐1)	 (+1)
	

Table	4	The	diagnosis	accuracy	result	(%)	of	first	dataset	with	various	feature	sets	

Bearing	condition		
Samples	 Original	feature	set Reduction	feature	set

Training	 Test SVM CRSVM GDA‐SVM	 GDA‐CRSVM
HB	 72	 28 75 99.35 98.70	 100
IR	fault	 72	 28 75 97.08 92.85	 99.03
OR	fault	 72	 28 75 96.42 85.71	 99.67
RE	fault	 72	 28 75 88.63 96.42	 98.70

	
Table	5	The	time	cost	(s)	of	first	dataset	with	various	feature	sets	

	Bearing	condition		
Original	feature	set Reduction	feature	set	

SVM	 CRSVM GDA‐SVM GDA‐CRSVM
HB	 1.3249	 1.4095 1.2473 1.3035
IR	fault	 1.1137	 1.4454 1.0277 1.0883
OR	fault	 0.9838	 1.4490 0.9833 1.2997
RE	fault	 0.8671	 1.5266 0.8869 1.5039

According	to	these	results,	the	MAF	set	extracted	from	original	vibration	signals	can	cope	well	
with	both	the	SVM	and	CRSVM	diagnosis	models	 for	all	 four	bearing	conditions.	The	use	of	all	
input	features	does	not	ensure	an	improvement	in	the	classification	accuracy	results	for	the	var‐
ious	classifiers.	In	fact,	the	diagnosis	accuracy	results	in	Tables	4,	7	shown	that	evaluation	on	the	
conventional	SVM	model	with	the	high‐dimensional	feature	set	obtained	the	very	poor	accuracy,	
the	 accuracy	 is	 only	 75	%	 in	 every	 bearing	 condition.	 Thus,	 this	 diagnosis	 technique	 usually	
tends	 to	 produce	 a	 rejection	 and	 not	 reuse	 the	model.	 It	 should	 be	 emphasized	 that	 the	 low‐
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dimensional	feature	set	gained	from	GDA	generated	the	better	results	in	comparison	with	high‐
dimensional	feature	set	by	the	same	SVM	models,	the	accuracy	got	maximum	of	98.70	%	for	the	
first	dataset	and	getting	maximum	of	90	%	for	the	second	dataset.	

Additionally,	 in	 this	 work,	 we	 explored	 the	 CRSVM	 model	 to	 exploit	 accuracy	 results	 for	
classification	 purpose.	 The	 CRSVM	model	 has	 achieved	 good	 diagnosis	 accuracy	 result	 in	 the	
healthy	bearing	(HB)	and	inner	race	(IR)	fault	conditions	even	with	using	the	high‐dimensional	
feature	set.	Thus,	this	CRSVM	model	is	more	appropriate	with	diagnosis	technique	for	individual	
condition	of	bearing.	 In	particular,	Table	4	and	7	also	showed	 that	 the	proposed	GDA‐CRSVM‐
based	 diagnosis	 technique	 provides	 the	 best	 results	 for	most	 bearing	 conditions.	 Its	meaning	
that	GDA	method	generated	the	compact	feature	set	that	inputted	the	optimized	CRSVM	classifi‐
cation	model	in	integrating	to	produce	effectiveness.	Consequently,	this	diagnosis	technique	can	
be	more	used	 in	 the	mechanical	engineering	environment	 to	satisfy	with	 the	expected	results.	
Fig.	12,	13	presented	the	results	in	comparison	the	proposed	method	with	the	other	methods.	

Moreover,	the	execution	time	of	the	CRSVM	classifier	for	bearing	fault	diagnosis	is	faster	than	
other	classifiers	for	both	the	original	feature	set	and	the	reduced	feature	set,	as	the	results	show	
in	Tables	5	and	8.	The	considerable	usefulness	of	reducing	the	original	input	feature	space	de‐
fined	by	 the	GDA	was	combined	with	 the	optimal	 classifier	CRSVM	to	build	an	expert	bearing	
fault	diagnosis	technique.	

	
	

Table	6	The	MAF‐GDA‐CRSVM	diagnosis	technique	of	the	second	dataset	

Bearing	condition	 A	sample	feature	vector		
Diagnosis	technique	

MAF‐ 							
GDA‐CRSVM1	

MAF‐											
GDA‐CRSVM2	

MAF‐ 							
GDA‐CRSVM4	

HB	 ‐52.6982	 0.2977 ‐5.8266 (+1) (‐1)	 (‐1)
IR	fault	 15.0308	 ‐2.0533 ‐1.4911 (‐1) (+1)	 (‐1)
RE	fault	 ‐25.3478	 0.9476 9.9225 (‐1) (‐1)	 (+1)

	
Table	7	The	diagnosis	accuracy	result	(%)	of	second	dataset	with	various	feature	sets 

Bearing	condition	
Samples	 Original	feature	set Reduction	feature	set	

Training	 Test SVM CRSVM GDA‐SVM	 GDA‐CRSVM
HB	 30	 15 75 99.09 90 100
IR	fault	 30	 15 75 95.45 86.81	 96.82
RE	fault	 30	 15 75 93.18 87.27	 95	

	
Table	8	The	time	cost	(s)	of	second	dataset	with	various	feature	sets 

Bearing	condition	
Original	feature	set Reduction	feature	set

SVM	 CRSVM GDA‐SVM	 GDA‐CRSVM
HB	 1.0190 1.0456 0.8793	 1.0240
IR	fault	 1.0800 1.1376 0.9420	 1.1522
RE	fault	 1.0495 1.1607 0.8901	 0.9278
	
	

	 	 	

   

Fig.12	The	classification	accuracy	of	different	diagnosis
techniques	for	the	first	dataset	

Fig.13	The	classification	accuracy	of	different	diagnosis
techniques	for	the	second	dataset	
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5. Conclusion 
In this paper, a GDA-CRSVM-based expert fault diagnosis technique is proposed. The GDA-
CRSVM method is a two-stage hybrid method that integrates GDA with CRSVM for an expert di-
agnosis technique. The original vibration dataset is firstly extracted the high-dimensional fea-
ture set by the MAF extraction. This feature set then provides GDA-CRSVM, in which the GDA 
method exploits to produce a reduced feature set which serves as input to the CRSVM classifica-
tion model. The most of reduced feature set is used for training the optimized CRSVM classifier 
and the rest use for evaluation. The experimental results demonstrate the high efficiency of the 
proposed method and its expertness in bearing fault diagnosis. 

In fact, the MAF extraction produces features in the different domain to represent the bearing 
status which can restrain the effect of proposed method. Furthermore, the proposed method 
capacity can be restricted due to the operating of GDA method depends on the classes label 
which reveals the non-objective condition in supervised feature learning. Thus, a feature reduc-
tion method is very useful and necessary for un-supervised feature learning in the future. Never-
theless, we have unshaken confidence that the GDA-CRSVM method can help to improve the 
fault classification performance of any diagnosis technique with different subjects. The practical 
applications of GDA-CRSVM is enquired and attached the most of features corresponding to the 
real subject status. 
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