Univerza v Mariboru Fakulteta za energetiko Journal of rNERGY TECHNOLOGY NOVEMBER 2013 JOURNAL OF ENERGY TECHNOLOGY (jet) VOLUME 6 / Issue 4 Revija Journal of Energy Technology (JET) je indeksirana v naslednjih bazah: INSPEC©, Cambridge Scientific Abstracts: Abstracts in New Technologies and Engineering (CSA ANTE), ProQuest's Technology Research Database. The Journal of Energy Technology (JET) is indexed and abstracted in the following databases: INSPEC©, Cambridge Scientific Abstracts: Abstracts in New Technologies and Engineering (CSA ANTE), ProQuest's Technology Research Database. JOURNAL OF ENERGY TECHNOLOGY Ustanovitelj / FOUNDER Fakulteta za energetiko, UNIVERZA V MARIBORU / FACULTY OF ENERGY TECHNOLOGY, UNIVERSITY OF MARIBOR Izdajatelj / PUBLISHER Fakulteta za energetiko, UNIVERZA V MARIBORU / FACULTY OF ENERGY TECHNOLOGY, UNIVERSITY OF MARIBOR Odgovorni urednik / EDITOR-IN-CHIEF Andrej PREDIN Uredniki / CO-EDITORS Jurij AVSEC Miralem HADŽISELIMOVIČ Gorazd HREN Milan MARČIČ Jože PIHLER Iztok POTRČ Janez USENIK Peter VIRTIČ Jože VORŠIČ Izdajateljski svet in uredniški odbor / PUBLISHING COUNCIL AND EDITORIAL BOARD Zasl. prof. dr. Dali DONLAGIČ, Univerza v Mariboru, Slovenija, predsednik / University of Maribor, Slovenia, President Izr. prof. dr. Jurij AVSEC, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Zasl. prof. dr. Bruno CVIKL, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. ddr. Denis DONLAGIČ, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Danilo FERETIČ, Sveučilište u Zagrebu, Hrvaška / University in Zagreb, Croatia Doc. dr. Željko HEDERIČ, Sveučilište Josipa Jurja Strossmayera u Osijeku, Hrvatska / Josip Juraj Strossmayer University Osijek, Croatia Izr. prof. dr. Miralem HADŽISELIMOVIČ, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Doc. dr. Gorazd HREN, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Roman KLASINC, Technische Universität Graz, Avstrija / Graz University Of Technology, Austria Prof. dr. Ivan Aleksander KODELI, Institut Jožef Stefan, Slovenija / Jožef Stefan Institute, Slovenia Prof. dr. Jurij KROPE, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Alfred LEIPERTZ, Universität Erlangen, Nemčija / University of Erlangen, Germany Prof. dr. Milan MARČIČ, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Branimir MATIJAŠEVIČ, Sveučilište u Zagrebu, Hrvaška / University of Zagreb, Croatia Prof. dr. Borut MAVKO, Inštitut Jožef Stefan, Slovenija / Jozef Stefan Institute, Slovenia Prof. dr. Matej MENCINGER, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Greg NATERER, University of Ontario, Kanada / University of Ontario, Canada Prof. dr. Enrico NOBILE, Universita degli Studi di Trieste, Italia / University of Trieste, Italy Prof. dr. Iztok POTRČ, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Andrej PREDIN, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Aleksandar SALJNIKOV, Univerza Beograd, Srbija / University of Beograd, Serbia Prof. dr. Brane ŠIROK, Univerza v Ljubljani, Slovenija / University of Ljubljana, Slovenia Doc. dr. Andrej TRKOV, Institut Jožef Stefan, Slovenija / Jožef Stefan Institute, Slovenia Prof. ddr. Janez USENIK, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Doc. dr. Peter VIRTIČ, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Jože VORŠIČ, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Prof. dr. Koichi WATANABE, KEIO University, Japonska / KEIO University, Japan Prof. dr. Mykhailo ZAGIRNYAK, Kremenchuk Mykhailo Ostrohradskyi National University, Ukrajina / Kremenchuk Mykhailo Ostrohradskyi National University, Ukraine, Doc. dr. Tomaž ŽAGAR, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Doc. dr. Franc ŽERDIN, Univerza v Mariboru, Slovenija / University of Maribor, Slovenia Tehniška podpora / TECHNICAL SUPPORT Tamara BREČKO BOGOVČIČ, Sonja NOVAK, Janko OMERZU izhajanje revije / PUBLISHING Revija izhaja štirikrat letno v nakladi 150 izvodov. Članki so dostopni na spletni strani revije -www.fe.um.si/si/jet.html / The journal is published four times a year. Articles are available at the journal's home page - www.fe.um.si/en/jet.html. Cena posameznega izvoda revije (brez DDV) / price per issue (VAT not included in price): 50,00 EUR Informacije o naročninah / subscription information: http://www.fe.um.si/en/jet/subscriptions.html Lektoriranje / LANGUAGE EDITING Terry T. JACKSON Oblikovanje in tisk / DESIGN AND PRINT Vizualne komunikacije comTEC d.o.o. Oblikovanje revije in znaka revije / JOURNAL AND LOGO DESIGN Andrej PREDIN Izdajanje revije JET finančno podpira Javna agencija za raziskovalno dejavnost Republike Slovenije iz sredstev državnega proračuna iz naslova razpisa za sofinanciranje domačih znanstvenih periodičnih publikacij / The Journal of Energy Technology is co-financed by the Slovenian Research Agency. Metanov klatrat - nov energetski vir? Iz Japonske poročajo, da so marca letos (2013) uspešno pridobili zemeljski plin iz metanovega klatrata z dna oceana. Metanov klatrat poznamo tudi pod imenom metanov led - metan je ujet v zamrznjenih kristalih vode. V svetovnem merilu se ocenjuje, da je zalog metanovega klatrata med 10.500 do 42.000 milijonov kubnih metrov, kar pomeni, da bi zadostilo potrebe po plinu, seveda glede na trenutno porabo, za 3.000 do 12.000 let. To pomeni, da so zaloge metanovega klatrata vsaj dvakrat tolikšne kot vse svetovne zaloge premoga, nafte in naravnega plina skupaj. Nahajališča ležijo pod vodo večinoma na mejah kontinentalnih plošč. V primeru ležišča na robu strmo padajočega roba kontinentalne plošče, bi lahko bilo nepremišljeno odstranjevanje metanovega klatrata nevarno. Sprožil bi se namreč lahko podvodni plaz peščenih plasti v večje globine, kar pa bi lahko na površini vode ustvarilo močne cunamije. Japonska vrtalna ladja je v Nankajski udorini, južno od Tokia, testno načrpala 120.000 kubičnih metrov zemeljskega plina. Vrtina poteka skozi 1.000 m morske vode, ter skozi 270 m morskih usedlin (v glavnem so to peščene usedline). Pod temi usedlinami leži 60 m debela plast metanovega klatrata. Črpanje poteka tako, da se voda izčrpava iz plasti metanovega klatrata, s čimer se zniža tlak vode in omogoči odtajanje ledu, ki tako omogoča sproščanje metana v plinasti obliki. Vrtalno/transportna cev je dvoslojna, oz. kolobarjaste oblike. Notranja cev je uporabljena za črpanje vode, med zunanjim obodom notranje cevi in notranjim obodom zunanje cevi, pa se omogoča črpanje metana. Druga možnost sproščanja metana bi bila s segrevanjem plasti metanovega klatrata, kar pa bi bilo energetsko gledano precej bolj potratno. Tehnološko gledano je potrebno črpanje in sam transport plina še izpopolniti. Pri črpanju se namreč pojavljajo problemi zamašitve črpalk, v katere zaide pesek. Pri transportu plina sta možni dve izvedbi, in sicer skladiščenje in utekočinjanje plina na plavajoči platformi ob samem črpališču, ali izgradnja plinovoda po ceveh, nameščenih po morskem dnu. Slednja je seveda precej dražja rešitev od prve; ima pa to prednost, da bi se lahko ploščad »selila« od nahajališča do nahajališča. Ocena zalog v Nankajski udorini je dobrih sedem milijonov kubičnih metrov zemeljskega plina -metana, kar pomeni, da bi Japonska samo s tem virom lahko zadovoljila svoje potrebe po energentih za naslednjih 100 let. Podatki so povzeti po »Nov Vir Energije, Science Illustrated, november 2013«. Krško, november 2013 Andrej PREDIN Methane clathrate - a new energy source ? In March 2013, it was reported that natural gas from methane clathrate had been successfully obtained from the bottom of the ocean near Japan. Methane clathrate (also known as ice methane) is methane trapped in crystals of frozen water. Globally, it is estimated that the world's sources of methane clathrate are between 10,500 to 42,000 million cubic meters, which means that it could cover the world's needs for gas (calculated according to current consumption) for 3,000 to 12,000 years. This means that the stock of methane clathrate is at least twice that of the world's combined coal, oil and natural gas stocks. Deposits lie under water, mostly at the limits of the continental plates. Pumping at the plate edge could be dangerous, possibly triggering underwater avalanches of sand layers at substantial depths, which could create powerful tsunamis on the water surface. A Japanese drill ship in the Nankai depression, south of Tokyo, test extracted 120,000 cubic meters of natural gas, boring through 1,000 meters of sea water, and through 270 m of mostly sandy sediment. Under these deposits is a 60-m thick layer of methane clathrate. Pumping is carried out so that the water is depleted from the layer of methane clathrate, thereby reducing the water pressure and allowing the ice to defrost, thus allowing the release of methane in the gaseous form. The drilling/conveying pipe layer has an annular shape. The inner pipe is used for the pumping of water, while methane is extracted via the outer periphery of the inner tube and the inner circumference of the outer tube. Alternatively, the release of methane would be by heating the layer of methane clathrate, which would be much more wasteful with regard to energy usage. Technologically speaking, there must be improved absorption and transport of gas itself. When pumping, some problems exist with the clogging of pumps with sand. When transporting gas, two possibilities exist: storage and liquefaction of gas on a floating platform next to the pumping station, or the construction of a pipeline installed on the seabed. The latter is, of course, a much more expensive solution than the former, but the former has the advantage that the platform can be moved from deposit to deposit. It is estimated that the Nankai depression holds more than seven million cubic meters of natural gas (i.e. methane), which means that it is the only source capable of meeting Japan's energy demand for the next 100 years. This information is taken from the "New Source of Energy, Science Illustrated", November 2013. Krško, November, 2013 Andrej PREDIN Table of Contents / Kazalo Optimization method for control of voltage level and active power losses based on optimal distributed generation placement using Artificial Neural Networks and Genetic Algorithms / Optimizacijska metoda za nadzor napetostnih nivojev in izgub z upoštevanjem optimalne implementacije razpršene proizvodnje s pomočjo nevronskih mrež in genetskih algoritmov Marko Vukobratovic, Predrag Maric, Željko Hederic..................................................................11 Numerical analysis of flow over a wind turbine airfoil / Numerična analiza toka okoli lopatičnega profila vetrne turbine Janez Bitenc, Brane Širok, Ignacijo Biluš.....................................................................................31 A sulphur hexafluoroide gas leakage detection system using wireless sensor networks / Sistem odkrivanja uhajanja plina žveplovega heksaflourida z uporabo brezžičnih senzorskih mrež Damir Šoštaric, Goran Horvat, Srete Nikolovski.........................................................................47 The Velenje Coal Mine's spatial monitoring of surface and structure movements / Spremljanje premikov površine in objektov na območju Premogovnika Velenje Drago Potočnik, Janez Rošer, Milivoj Vulic.................................................................................59 Impact of stainless steel guide tubes on the reactivity parameters of the NPP Krško core / Vpliv vodil iz nerjavnega jekla na reaktivnostne parametre sredice Nuklearne elektrarne Krško Marjan Kromar, Bojan Kurinčič...................................................................................................75 Instructions for authors...............................................................................................................83 [JET Journal of Energy Technology JET Volume 6 (2013), p.p. 11 - 30 Issue 4, November 2013 http://www.fe.um.si/sl/jet OPTIMIZATION METHOD FOR CONTROL OF VOLTAGE LEVEL AND ACTIVE POWER LOSSES BASED ON OPTIMAL DISTRIBUTED GENERATION PLACEMENT USING ARTIFICIAL NEURAL NETWORKS AND GENETIC ALGORITHMS OPTIMIZACIJSKA METODA ZA NADZOR NAPETOSTNIH NIVOJEV IN IZGUB Z UPOŠTEVANJEM OPTIMALNE IMPLEMENTACIJE RAZPRŠENE PROIZVODNJE S POMOČJO NEVRONSKIH MREŽ IN GENETSKIH ALGORITMOV Marko Vukobratovicw, Predrag Maric, Željko Hederic Keywords: distributed generation, Artificial Neural Network, Genetic Algorithm, voltage control Abstract This paper presents a method for reducing active power system losses and voltage level regulation by implementing adequate distributed generation capacity on the appropriate terminal in a distribution system. Active power losses are determined using an Artificial Neural Network (ANN) using simultaneous formulation for the determination process based on voltage level control and injected power. Adequate installed power of distributed generation and the appropriate terminal for distributed generation utilization are selected by means of a genetic m Corresponding author: Marko Vukobratovic, Tel.: +385 31 224 656, Fax: +385 31 224 605, Mailing address: vukobratovic@etfos.hr algorithm (GA), performed in a distinct manner that fits the type of decision-making assignment. The training data for Artificial Neural Network (ANN) is obtained by means of load flow simulation performed in DIgSILENT PowerFactory software on a part of the Croatian distribution network. The active power losses and voltage conditions are simulated for various operation scenarios in which the back propagation artificial neural network model has been tested to predict the power losses and voltage levels for each system terminal, and GA is used to determine the optimal terminal for distributed generation placement. Povzetek V članku je predstavljena metoda za zmanjšanje izgub v sistemu in regulacijo napetostnih nivojev z implementacijo razpršenih proizvodnih kapacitet na primernih terminalih distribucijskega sistema. Izgube delovne moči so določene z uporabo Umetne Nevronske Mreže (UNM), kjer je uporabljena sočasna formulacija v procesu odločanja na osnovi nadzora napetostnih nivojev in injiciranih moči. Ustrezne inštalirane moči razpršene proizvodnje in primerni terminali za izkoriščanje razpršene proizvodnje so izbrani na osnovi Genetskih Algoritmov (GA) izvedenih na poseben način, ki ustreza nalogam v procesu odločanja. Podatki za Umetno Nevronsko Mrežo so pridobljeni na osnovi simulacije pretoka energij v programskem paketu ''DIgSILENT PowerFactory'' na delu Hrvaškega distibucijskega omrežja. Simulacije izgub delovne moči in napetostnih razmer so izvedene za različne obratovalne scenarije, v katerih je testiran model ''vzratnega učenja'' umetne nevronske mreže za predvidevanje izgub moči in napetostnih nivojev za vsak sistemski terminal. Genetski algoritem je uporabljen za določitev optimalnega terminala za umestitev razpršene proizvodnje. 1 INTRODUCTION The presence of distributed generation (DG) changes the load characteristics of the distribution network, which gradually becomes an active load network and implies changes in the power flow. Current-voltage conditions are now not only dependent on the current consumption but also on the production from DG. If sized and selected properly, DG can improve electrical conditions, such as improvement of voltage, loss reduction, relieved transmission and distribution congestion, improved utility system reliability and power quality in the distribution network, [1]. In order to determine the impact on the power system of each DG, it is necessary to perform the power flow analysis on a daily or hourly (or even 10-minute) basis. Due to the increased number of small DG, mostly from intermittent sources, it is necessary to implement an advanced management power distribution system to make the distribution network significantly automated. Accordingly, it is necessary to develop mathematical optimization models that can be implemented in the distribution network management system to enable optimal management. According to [2], an automated distribution network has to provide a fast and the accurate solution for power flow and current-voltage conditions control. As an ideal solution, artificial neural networks (ANN) are imposed due to their ability to solve nonlinear problems in a short period of time, and if quality organized and made, they are able to perform real-time calculations necessary for the optimization of the distribution network. ANN have considerable potential in control systems because they can learn and adapt, they can approximate nonlinear functions, they are suited for parallel and distributed processing and model multivariable systems naturally, [3]. Since they are based on human experience and on logical links between inputs and outputs, they can adopt various learning mechanisms and self-organization or training concepts, pattern recognition, forecasting etc. ANN can be trained to generate control parameters for minimizing power losses and determining the optimal solution for DG implementation in the distribution network. This paper proposes an online real-time power flow optimization and voltage regulation method using ANN and a Genetic Algorithm (GA). ANN are highly robust and provide satisfactory solutions if provided with quality data and can dynamically determine the most appropriate DG solution by means of installed power and position in the system. The GA is used for solving constrained and constrained optimization problems and is based on a natural selection process that mimics biological evolution. The algorithm generates a population of individual solutions that are randomly selected from the population and used as parents for the next generation. Over several generations, the optimal population solution appears. 2 THE PROBLEM FORMULATION Optimization problem can be generally shown with a model of the objective function and associated restrictions: Minf(x,u) So that g(x,u) = 0 (2.1) h(x,u)< 0 Where vector u is a vector of control variables, x is a vector of state variables; scalar f(x) is the objective function, while restrictions are given by the system of equation g(x, u) and inequalities h(x,u). The main goal of the proposed method is to determine the best locations in the distributed system for distributed generation by minimizing different functions related to project goals which are: 1. Reduction of active power losses 2. Voltage profile improvement 2.1 Objective function The main objective function could be described as: F = M»%sses (2.2) Where Plosses are losses of active power in a system. Minimization of active power losses is an essential requirement in a distribution system for efficient power system operation, [3]. Power losses can be calculated as: NB NB i \ i \ P*».=E E a P P j+ß, ß)+Bjfe P j+P, ß) (2-3) 1=1 j=1 Where: P,Q : real power and reactive power injection at respected terminal Nb : terminal number And A jj Bjj are represented respectively: Ci_RuMß,-Sj) ^ Ai_ Rytos (ßi-Sj) (24) '' ViVj '' ViVj Rjj : line resistance between terminal; and terminal; V ,S : voltage and load angle at the selected terminal 2.2 Constraints The objective function of active power loss minimization is not sufficiently suitable without technical restrictions and correct formulation of optimization constraints. Optimal placement of distributed generation and the solution provided with the proposed method must be realistic and should not produce negative impacts on other system aspects. In order to achieve this goal, operational constraints should be properly evaluated and chosen, not only to enable proper operation of the proposed algorithm, but also to support the regular operation of the power system. 2.2.1 Power constraints For the safe operation of the power system, the active power constraints are given by the expression: Pa - Pa - Vt EV j • (^sin(^)+ ^sm(^)) (2.5) 7=1 Where: i^n : number of nodes in network Pa : active power production in node i P a : active power consumption in node i 0 i i : angle of mutual admittance ^ of nodes i and j Gjj : mutual conductance of nodes i and j Bij : mutual susceptance of nodes i and j Gn : self-conductance of node i Bu : self-susceptance of node i Reactive power restrictions are given by the expression: Qg~Qo-Vt (2.6) 7=1 Where: i^n : number of nodes in network : reactive power production in node i Qti : reactive power consumption in node i Besides active and reactive power constraints, the apparent power that is transmitted through each branch has to be below the physical limit of the branch transformer in steady-state operation. The constraint of apparent power is given by: S, < S,,max (2.7) Where: S, : apparent power in ith branch S,,max : maximum allowed apparent power in ith branch 2.2.2 Voltage levels constraints Voltage level restrictions are given by the expression: F/-mln< V/< Vi-max (2.8) Where: i^n : number of nodes in network Vi-min, Vi-max : voltage limitations Vi : voltage level in node i 2.2.3 Constraints of reactive power production in generator node The generator has the capability curve and the technical operational limits, so the reactive power production is given by the expression: Qa-min^ Qa< Qt /e{jV pv,N o} (2.9) Where: -max : reactive power production limits in node i N pv : number of PV node No : node of DG The objective function including the reduction of active power losses only could provide the solution without predicting a sufficient amount of reactive power reserves in case of the failure of one or more components in a power system. The appropriate optimization solution has to provide the optimization of voltage levels, voltage reduction, loss of stability risk and the reduction of power losses. Bearing in mind all restrictions and the objective of the optimization, a useful algorithm has to be developed. Because of the complexity and nonlinear interdependence of controlled variables, it is difficult to provide a fast and correct solution using classic (exact) optimization techniques, such as linear programming, the interior point method or mixed integer programming, [5]. ANN can be appropriate for solving such non-linear problems. There are several different types of ANN, including feed-forward neural network, radial basis function (RBF) network, Kohonen self-organizing network, recurrent neural network (RNN), bi-directional RNN, stochastic neural networks, etc. The appropriate neural network has to be properly selected since not every type of neural network will give the best solution for a certain problem. Back-propagation (BP) ANN can be used for the optimization problems since it meets the specific criteria: a flow chart of the problem can be described; there is a relatively easy way to generate a significant or at least necessary number of input and output examples; the problem appears to have considerable complexity but there is a clear solution; outputs may be unambiguous in some extreme cases. The typical back-propagation network has an input layer, an output layer, and at least one hidden layer. The numbers of hidden layers are theoretically infinite but usually one to four layers is adequate to solve any kind of complex problems. Each layer has to be fully connected to the vicinal layer by every neuron, as shown in Figure 1. The relationship between input and output values of multi-layer ANN can be represented as [6]: 3 ARTIFICIAL NEURAL NETWORK DESIGN AND IMPLEMENTATION (3.1) Where: y : output value Xj : input value Wj : weighting factor k : threshold value N : layer number f : nonlinear function When the network is created, the process of teaching has to be done in order to organize the neurons. This teaching makes usage of a learning rule, which is the variant of the Delta Rule, [3] The teaching starts with determining the error, which is the difference between the actual outputs and the desired outputs given in the training data. Based on this error, the weighting factor is changed in proportion to the error for the global accuracy. The algorithm for the weighting factor changing based on training data is, [6]: A p Wji = dpPj-o pj)ipi = nöpj ipi (3.2) Where: n : learning rate tPj : j component of pth target output Opj : j component of pth computed output i pi : i component of pth input pattern 8 ■ : error of target and computed output If well trained, an ANN can provide reasonable outputs for a new set of inputs enabling network training on a representative set of inputs with output correction. The training should be done on the largest possible set. Generally, the precision of ANN is increased by the larger training set with more input variables. Figure 1: Structure of Artificial Neural Network 3.1 Neural network training For the purpose of ANN training, a training data set has to be generated. Selecting the amount and type of training data is extremely important since the wrong selection could reduce the learning ability of the ANN or even provide an incorrect solution. For better accuracy, all dependent parameters have to be taken into account. The training data for the ANN consists of: DG active power production changed by operation scenarios from 0 kW (no production) to 1.350kW (excessive production) in 10kW increments, injected current from DG production given in kA, and the voltage level on the low-voltage side and the voltage level on the mediumvoltage side, given in per-unit (p.u.) values. Targeted data for the ANN training are total feeder losses for each operation scenario. Accordingly, ANN has four input units and one output unit connected with nine hidden layer units. The training is performed by the Levenberg-Marquardt algorithm for nonlinear least square problems, [7]. Calculations of each operation scenario for the training data generation are performed using DIgSILENT PowerFactory software, a leading power system analysis tool for applications in generation, transmission, distribution and industrial systems, [8]. The ANN is first trained on sample values for one terminal, and later it is tested on all proposed terminals. The results of each operation scenario are introduced into tables. The power losses in the electrical network can be computed by means of load flow simulation generated in the DIgSILENT PowerFactory software. Quantification and determination of power losses is essential due to the impact on the power system economic operation and the lifetime of the included equipment, [9]. Performance of ANN training is shown in Figure 2. Figure 2: Performance of ANN training For the purpose of electrical network modelling, data is obtained from the Croatian grid company HEP-ODS Elektroslavonija for a part of distribution network with a nominal voltage 35(20)kV and 0.4 kV with 48 terminals, 23 transformers and 25 different low-voltage loads. The distribution network is connected to the transmission network on two sides, but it is never doubly-fed due to operator technical conditions. If fully loaded, the voltage drops under 0.89 p.u. Of course, the normal operating conditions for this distribution network are not fully loaded terminals, and it is never doubly-fed, but it is necessary to observe what happens to voltage values. One possible solution for the increase of voltage values is planning for an adequate distributed generation on the convenient terminal in the system. In this case, the continuous electric power production would be as adequate a type as the stable source the network operator could rely on. 4 LOSSES ESTIMATION BY ANN The ANN is modelled in MATLAB, which is a high-level language and interactive environment for numerical computation, visualization, and programming. After the ANN training, the fitting function and associated graph that shows how the results given by the ANN correspond to the control variables and results provided by DIgSILENT PowerFactory could be realized, as shown in Figure 4. The results provided by DIgSILENT PowerFactory power flow calculation are taken as correct real-life values since this software has previously and frequently proven its reliability and precision. 0.44 0.42 0.4