folia biologica et geologica 58/1, 105–114, ljubljana 2017 CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE OF FREE-LIVING BIRDS CAPTURED IN SLOVENIA KULTIVABILNA BAKTERIJSKA MIKROBIOTA IZ SAPIŠČ PROSTOŽIVEČIH PTIC, UJETIH V SLOVENIJI Jure ŠKRABAN1,a, Tjaša MATJAŠIČ1,a, Franc JANŽEKOVIČ1, Gottfried WILHARM2 & Janja TRČEK1,3* http://dx.doi.org/10.3986/fbg0024 abStRact cultivable bacterial microbiota from choanae of free-liv- ing birds captured in Slovenia We have analysed the structure of cultivable choanal microbiota from free-living birds in relation to bird diet, its richness and the relative number of opportunistic bacteria acquired from the environment. For this purpose, we have taken choanal swabs from 25 free-living birds representing 13 different bird species captured in Slovenia. From the grown cultures, 98 bacterial colonies were isolated and their 16S rRNA genes sequenced. Most of the bacteria belonged to the phylum Actinobacteria (52 %), Proteobacteria (31 %), Firmicutes (15 %) and Bacteroidetes (4 %). Thirty-two per- cent of sampled birds were colonized by known human op- portunists and 44 % of birds by at least one known plant pathogen. Hierarchical clustering of the analyzed microbio- ta grouped the birds according to their predominant diet. The richness of choanal microbiota from birds feeding mainly on insects was poorer compared to the birds feeding on diverse animal and plant material. The study has shown that the free-living birds carry an important reservoir of op- portunistic human and plant pathogenic bacteria in their upper respiratory tract. To get a deeper insight into its com- position, a bigger pool of birds will have to be analyzed in the future. Keywords: birds, microbiota, choanae, pathogenic bac- teria, diet iZVleČeK Kultivabilna bakterijska mikrobiota iz sapišč prosto- živečih ptic, ujetih v Sloveniji Sestavo kultivabilne bakterijske mikrobiote v sapiščih prostoživečih ptic smo analizirali z vidika vpliva prehrane, bogatosti mikrobiote in prisotnosti oportunističnih bakterij. Petindvajsetim prostoživečim pticam, ki so bile ujete v Slo- veniji in so pripadale 13 vrstam, smo odvzeli bris sapišča. Po nacepitvi brisov na mikrobiološka gojišča in gojenju, smo izolirali 98 bakterijskih kolonij in jim določili nukleotidno zaporedje gena za 16S rRNK. Večina izoliranih bakterij je pripadala deblu Actinobacteria (52 %), Proteobacteria (31 %), Firmicutes (15 %) in Bacteroidetes (4 %). Pri približno eni tretjini ptic (32 %) smo iz sapišča izolirali vsaj eno oportunistično bakterijsko vrsto, ki lahko povzroča okužbe pri ljudeh. Pri slabi polovici ptic (44 %) pa smo v sapišču našli vsaj eno bakterijsko vrsto, ki lahko okuži rastline. Z metodo hierarhičnega združevanja smo pokazali, da imajo ptice s podobno prehrano, podobno bakterijsko mikrobioto sapišč. Ptice, ki se prehranjujejo pretežno z žuželkami so imele manj bogato mikrobioto kot ptice, ki se prehranjujejo z bolj raznoliko živalsko in rastlinsko hrano. Raziskava je tudi pokazala, da so zgornja dihala prostoživečih ptic pomemben rezervoar oportunističnih bakterij, ki lahko okužijo ljudi in rastline. Da bi dobili globji vpogled v sestavo mikrobiote zgornjih dihal, bi v prihodnosti morali povečati število analiziranih ptic. Ključne besede: ptice, mikrobiota, sapišče, patogene bakterije, prehrana 1 Department of Biology, Faculty of Natural Sciences and Mathematics, University of Maribor, Maribor, Slovenia 2 Robert Koch Institute, Wernigerode Branch, Germany 3 Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia * Corresponding author: telephone: +386 2 2293749, e-mail: janja.trcek@um.si a both authors contributed equally to the work ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 106 folia biologica et geologica 58/1 – 2017 Free-living birds are recognized vectors for spreading pathogenic bacteria across long distances with well- known transmission of various respiratory infections to humans (Murthy et al. 2008, Pan et al. 2012, Tsio- dras et al. 2008). Despite of this, our knowledge on the avian respiratory tract microbiota is very limited. While some data exist for the lower respiratory tract, almost nothing is known about the bacteria living in the upper respiratory regions. Data on microbiota of the lower respiratory tract in domestic birds have shown that it harbors poten- tially pathogenic bacteria. Majority of cultured bacte- ria found in the lungs and trachea of birds belonged to phyla Proteobacteria, Firmicutes, Tenericutes, Actino- bacteria, Bacteroidetes and Chlamydia/Verrucomicro- bia (Murthy et al. 2008, Charlton et al. 1993, Byrum & Slemons 1995). Additionally, culture independent analyses detected groups of fastidious or poorly repre- sented taxons belonging to Fusobacteria, Acidobacte- ria, Chloroflexi, Cyanobacteria and Deinococcus -Thermus in the lower respiratory tract of poultry. Among them were also potential pathogens (Myroides spp., Collinsella aerofaciens, Bacteroides fragilis, Ente- rococcus cecorum, Kurthia zopfii, Kushneria sp. and Bordetella sp.) (Shabbir et al. 2015). Even though the pathogen Riemerella sp. has been isolated from the upper respiratory tract of some species of domestic and free-living birds (Vancanneyt et al. 1999), a deeper insight into the structure of the upper respiratory mi- crobiota in birds is lacking. Thus far, a very limited number of research attempted to analyze the bacterial composition of the upper respiratory tract in free-liv- ing birds, besides, they used selective media for cultur- ing specific groups of pathogenic bacteria, and thus substantially limiting the overall view on microbial diversity of the upper respiratory tract (Lamberski et al. 2003, Stenkat et al. 2014). In such a way, Lamber- ski et al. (2003) analyzed two species of hawks which harbored pathogens like Salmonella sp. and Pasteurella sp.. Stenkat et al. (2014) focused more on water birds and also found potential avian and human pathogens (Klebsiella pneumoniae, Escherichia coli and Pseudo- monas aeruginosa among others). More knowledge about the microbiota of the upper respiratory tract of birds is necessary for better under- standing the influence, positive or negative, of this mi- crobiome on animal health and the risks of spreading potential infections between free-living birds, in the environment and subsequently to humans (Walden- strom et al. 2003, Abulreesh et al. 2007). 1 INTRODUCTION 2 MATERIALS AND METHODS bird sampling, culturing of bacteria and identi- fication All of the 25 healthy adult birds included in this study were captured in fine mist nets for bird ringing during fall, between September 18 and December 10, 2013 in Maribor and its surroundings (Slovenia). The birds were caught in the frame of bird ringing scheme coor- dinated by EURING. Choanal swabs (pre moistened with sterile saline) were immediately taken from each bird and put in a transport medium (Amies agar gel medium transport swabs – no charcoal, Copan) until further processing. All samples were sent to the laboratory within 2 to 3 hours after sampling and inoculated on nutrient agar (NA, Sigma). Inoculated plates were incubated 4 - 7 days at 30°C. After incubation, each colony morpho- type per bird was isolated and stored at -80°C until further processing. Colony morphotypes were differ- entiated based on form, margin and pigmentation of the colonies. Total DNA was isolated and cleaned using a com- mercial kit (NucleoSpin Tissue, Macherey-Nagel). Full lengths of 16S rRNA genes were amplified with PCR. The final concentrations of the PCR reaction mix con- tained 0.2 mM dNTP (Thermo Scientific), 1x PCR buf- fer with KCl (Thermo Scientific), 2.5 mM MgCl2 (Thermo Scientific), 1.0 µM of forward primer (5’-AAA TTG AAG AGT TTG ATC ATG GC-3’), 1.0 µM of re- verse primer (5’-AAG GAG GTG ATC CAG CCG CA- 3’) and 0.025 units/µL of Taq polymerase (Thermo Sci- entific). Amplicons were obtained using the following PCR protocol: initial denaturation at 95°C for 5 min followed by 30 cycles of denaturation at 95°C for 30 s, annealing at 56°C for 30 s and elongation at 72°C for 1.5 min, followed by a final extension at 72°C for 10 min. The PCR product was purified with a commercial kit (GeneJET PCR Purification Kit, Thermo Scientific) and sequenced (Eurofins Genomics). The obtained se- quences were compared to EMBL/GenBank/DDBJ da- tabases and identified using BLAST. The closest hits to type strains, with 98.7 or higher % similarity, were ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 107folia biologica et geologica 58/1 – 2017 identified at species level. In case of two or more differ- ent hits with similarity score above 98.7 %, the isolate was identified at the genus level. Hierarchical clustering Ward method with Euclidian distances was used for the clustering of the choanal microbiota of the investi- gated birds, for which the data on the presence or ab- sence of bacterial species were included in the analysis. Statistical analysis To test the differences in the presence of microbial groups between different species of birds, we used Fisher’s exact test, where P < 0.05 was considered sig- nificant. Where the differences in the frequencies of microbial groups were significant, odds ratio was cal- culated (P < 0.05). The differences in species richness between the groups of birds were tested with Student - T test, P < 0.05 was considered significant. 3 RESULTS AND DISCUSSION In this study we performed identification of bacteria isolated on a complex nutrient agar medium from birds’ choanae with the aim to assess microbial diver- sity from this specific niche and find a possible corre- lation with birds’ diet. For this, we have sampled 25 table 1: Richness of choanal microbiota. Preglednica 1: bogatost mikrobiote sapišč. Bird Species Number of birds Average number of different isolates per bird species European robin (Erithacus rubecula) 4 2.8 ± 2.0a Garden warbler (Sylvia borin) 1 4 Common reed bunting (Emberiza schoeniclus) 1 3 Willow warbler (Phylloscopus trochilus) 1 1 Dunnock (Prunella modularis) 4 2.5 ± 1.1a Common redstart (Phoenicurus phoenicurus) 1 5 Common chiffchaff (Phylloscopus collybita) 1 3 yellowhammer (Emberiza citrinella) 1 4 Eurasian blackcap (Sylvia atricapilla) 2 2.5 ± 1.5a Song thrush (Turdus philomelos) 1 12 Pigeon (Columba livia) 4 3.3 ± 2.3a Common chaffinch (Fringilla coelebs) 1 10 Eurasian tree sparrow (Passer montanus) 3 5.7 ± 1.9a a, standard deviation birds, from which 98 bacterial colonies were isolated and sequenced. The number of different bacterial spe- cies per bird ranged from 12 (Song thrush (Turdus phi- lomelos) to 1 (Willow warbler (Phylloscopus trochilus)) (Table 1). ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 108 folia biologica et geologica 58/1 – 2017 Majority of isolates belonged to phyla Actinobacte- ria (52 %) and Proteobacteria (31 %). The phyla Fir- micutes and Bacteroidetes were represented by only 15 % and 4 %, respectively. The isolates belonged to 22 families. The majority constituted families Microbacte- riaceae (36 %), Pseudomonadaceae (11 %), Enterobacte- riaceae (10 %), Micrococcaceae (7 %), Flavobacteriace- ae, Xanthomonadaceae and Staphylococcaceae (all 4 %). Other families were found only sporadically. Of 13 different bird species, which have been sampled, 85 % were colonized with members of Microbacteriaceae. Pseudomonadaceae, Nocardiaceae and Enterobacteria- ceae were found in 38 %, 31 % and 31 % of bird species, respectively. Xanthomonadaceae, Moraxellaceae, Staphylococcaceae were found in 23 % and Micrococ- caceae in 15 % of analyzed bird species. Other isolates were found only per single bird. Although two previous studies analyzed choanal swabs from birds, there are some substantial differences in experimental approach- es in comparison to our study and also in the birds analyzed. Lamberski et al. (2003) analyzed choanal swabs from captive and free-living red-tailed and Coo- per’s hawks, but the samples were grown on blood and MacConkey media. In this way they found the micro- biota to be composed of Bacillus sp., Corynebacterium sp., Escherichia sp., Salmonella sp., Pasteurella sp., Streptococcus sp. and coagulase positive and negative staphylococci. Since we have performed the isolation on a complex nutrient medium in order to detect a wider range of environmental bacteria our results only partially overlapped. We have also isolated the genus Bacillus sp. and coagulase negative staphylococci, but otherwise the choanal microbiota of our birds greatly differed. This can be explained also by the fact that we have sampled different species of birds, with different diets (Cooper’s hawk feeds exclusively on small and mid-sized birds and red-tailed hawk is opportunistic carnivorous feeder) and in different geographical loca- tions (Slovenia vs. Unites States). The other group, Stenkat et al. (2014) used blood, MacConkey and Bril- liant green agar to investigate pharyngeal bacterial mi- crobiota in water rails, spotted crakes, barn swallows, mute swans, reed warblers and black cormorants, and found numerous ubiquitous bacteria belonging pre- dominantly to Enterobacteriaceae, Pseudomonadaceae, Aeromonadaceae, Bacillaceae, Staphylococcaceae and Streptococcaceae which are frequently present in the environment and on food. We have also found mem- bers of the forementioned bacterial families, except the family Aeromonadaceae, which is more associated with water habitats and the family Streptococcaceae, which was absent in our study, possibly due to different growth media (nutrient agar as opposed to blood agar). Out of 98 isolates from choanal swabs, 13 (13.3 %) have been known to cause opportunistic infections in humans. Species previously described as being associ- ated with human infections were Acinetobacter calcoa- ceticus (Nonaka et al. 2014), Cellulosimicrobium fun- kei (Petkar et al. 2011), Curtobacterium citreum (Ri- vera et al. 2012), Curtobacterium flaccumfaciens (Francis et al. 2011), Exiguobacterium sibiricum (Tena et al. 2014), Hafnia alvei (Gunthard & Pennekamp 1996), Microbacterium oleivorans (Kim & Lee 2012), Microbacterium resistens (Panackal 2013), Pantoea agglomerans (Rezzonico et al. 2010), Pseudomonas ae- ruginosa (yamazaki et al. 2012), Serratia grimesii (Kumar et al. 2013), Staphylococcus epidermidis (Vuong & Otto 2002) and Staphylococcus gallinarum (Tibra et al. 2010). Eight out of 25 (32 %) sampled birds carried one or more human opportunistic bacteria in their choanae. Five out of 25 (20 %) birds were colo- nized by one, two birds were simultaneously colonized by two opportunists and the song thrush (Turdus phi- lomelos) by three different putative pathogens. Pigeons also seemed to be frequent carriers of potential patho- gens. Three out of four sampled pigeons were colo- nized by Staphylococcus gallinarum (in our study found only in pigeons) and the fourth bird was colonized by Acinetobacter calcoaceticus. Two out of three sampled eurasian tree sparrows which, as pigeons, also live in close proximity to humans, also carried opportunists (Curtobacterium citreum, Curtobacterium flaccumfaci- ens and Exiguobacterium sibiricum) in choanal micro- biota. In addition to human opportunistic bacteria, 7 po- tential plant pathogens were also isolated from choa- nae of 11 (44 %) sampled birds. These were Agrobacte- rium larrymoorei (Bouzar & Jones 2001), Clavibacter michiganensis (Xu et al. 2010), Curtobacterium fla- ccumfaciens (Francis et al. 2011), Plantoea agglome- rans (Rezzonico et al. 2010), Pseudomonas aeruginosa (yamazaki et al. 2012), Pseudomonas flavescens (Fett, Cescutti & Wijey 1996) and Rhodococcus fascians (Crespi et al. 1992). Ten (40 %) birds were colonized by one plant pathogen and only one tree sparrow by two (Agrobacterium larrymoorei and Curtobacterium fla- ccumfaciens). The most frequently isolated plant patho- gen was Rhodococcus fascians, which was isolated from four different birds belonging to four different species (Eurasian tree sparrow, Common chaffinch, yellow- hammer and Dunnock) with different feeding habits (seeds/insects, seeds/insects, insects and insects), re- spectively. This suggests that it is commonly present in bird population. Previous investigations have shown that the com- position of intestinal microbiota in birds depends on ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 109folia biologica et geologica 58/1 – 2017 Fi gu re 1 : C lu st er in g of sa m pl ed b ir d sp ec ie s b as ed o n ba ct er ia l ( fa m ily le ve l) co m po si tio n of c ho an al m ic ro bi ot a. T op : E uc lid ia n di st an ce . N um be rs a t e ac h no de d es ig na te bo ot st ra p va lu e (b oo ts tr ap n um be r 1 00 ). a (C ra m p 19 88 ); b (C ra m p et a l. 19 92 ); c (C ra m p & P er ri ns 1 99 4) ; d (C ra m p 19 85 ); e (C ra m p 19 94 ); f ( in ve rt eb ra te s) ; g (a rt ifi ci al m an -m ad e fo od ). Sl ik a 1: H ie ra rh ič no z dr už ev an je v zo rč en ih v rs t p tic g le de n a se st av o ba kt er ijs ke (n a ni vo ju d ru ži n) m ik ro bi ot e v sa pi šč ih . Z go ra j: Ev kl id sk a ra zd al ja . Š te vi lk e pr i r az ve jit va h so b oo ts tr ap v re dn os ti (š te vi lo p on ov ite v 10 0) . a (C ra m p 19 88 ); b (C ra m p et a l. 19 92 ); c (C ra m p & P er ri ns 1 99 4) ; d (C ra m p 19 85 ); e (C ra m p 19 94 ); f ( ne vr et en ča rj i); g (p re hr an a čl ov eš ke ga iz vo ra ). D IE T (w in te r) D IE T (b re ed in g se as on ) D IE T (s um m er ) D IE T (a ut um n) Eu ro pe an ro bi n (E ri th ac us r ub ec ul a) a in se ct s / s ee ds / fr ui t in se ct s in se ct s in se ct s G ar de n w ar bl er (S yl vi a bo ri n) b be rr ie s in se ct s be rr ie s be rr ie s C om m on re ed b un tin g (E m be ri za sc ho en ic lu s) c se ed s in ve rt .f se ed s se ed s W ill ow w ar bl er (P hy llo sc op us tr oc hi lu s) b in se ct s in se ct s in se ct s in se ct s / b er ri es D un no ck (P ru ne lla m od ul ar is )a in se ct s / se ed s in se ct s in se ct s in se ct s C om m on re ds ta rt (P ho en ic ur us p ho en ic ur us )a in se ct s in se ct s in se ct s in se ct s C om m on c hi ffc ha ff (P hy llo sc op us c ol ly bi ta )b in se ct s in se ct s in se ct s in se ct s Ye llo w ha m m er (E m be ri za c itr in el la )c se ed s in ve rt .f se ed s se ed s Eu ra si an b la ck ca p (S yl vi a at ri ca pi lla )b be rr ie s in se ct s be rr ie s be rr ie s So ng th ru sh (T ur du s p hi lo m el os )a in ve rt .f in ve rt .f in ve rt .f / f ru it in ve rt .f / f ru it Pi ge on (C ol um ba li vi a) d in ve rt .f / s ee ds / ar tif .g in ve rt .f / s ee ds / ar tif .g in ve rt .f / s ee ds / ar tif .g in ve rt .f / s ee ds / ar tif .g C om m on c ha ffi nc h (F ri ng ill a co el eb s) e se ed s in ve rt . se ed s se ed s Eu ra si an tr ee sp ar ro w (P as se r m on ta nu s) e in ve rt .f / s ee ds / be rr ie s in ve rt .f / s ee ds / be rr ie s in ve rt .f / s ee ds / be rr ie s in ve rt .f / s ee ds / be rr ie s 53 15 51 12 48 15 26 26 41 2 58 10 0 D is ta nc e 14 .4 12 .8 11 .2 9. 6 8. 0 6. 4 4. 8 3. 2 1. 6 0. 0 ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 110 folia biologica et geologica 58/1 – 2017 table 2: identified bacterial isolates from choanae of free-living birds. the birds were grouped based on choanal microbiota composition with hierarchical clustering on group 1 (predominantly insectivorous birds) and group 2 (birds with mixed diet of invertebrates and seeds). Preglednica 2: identificirani bakterijski izolati iz sapišč prostoživečih ptic. Ptice smo s hierarhičnim zduževanjem združili v dve skupini, skupina 1 (pretežno žužkojede ptice) in skupina 2 (ptice z mešano prehrano sestavljeno iz nevretenčarjev in semen). Bacterial isolates found in group 1 Bacterial isolates found in group 2 Bacterial isolates found in group 1 and 2 Aeromicrobium ponti/ A. tamlense Agrobacterium larrymoorei Acinetobacter calcoaceticus Aeromicrobium sp. nov.a Agromyces terreus Chryseobacterium indoltheticum Agrococcus versicolor Agromyces sp. nov.b Frigoribacterium faeni Agromyces allii Arthrobacter aurescens Microbacterium hydrocarbonoxydans/M. phyllosphaerae Bacillus aryabhattai Arthrobacter nitroguajacolicus/A. aurescens Microbacterium phyllosphaerae Citrobacter gillenii Arthrobacter oxydans Micrococcus sp. Clavibacter michiganensis Brochothrix campestris Paenibacillus xylanexedens/ P. amylolyticus/ P. tundra Curtobacterium plantarum Cellulosimicrobium funkei Pseudomonas flavescens Enterococcus plantarum Chryseobacterium daecheongense Rathayibacter festucae Hafnia alvei Chryseobacterium sp. nov.c Rhodococcus fascians Microbacterium hominis Curtobacterium citreum Stenotrophomonas rhizophila Microbacterium oleivorans Curtobacterium flaccumfaciens Microbacterium oxydans Exiguobacterium sibiricum Microbacterium sp. Leucobacter exalbidus Microbacterium xylanilyticum Microbacterium hydrocarbonoxydans Micrococcus yunnanensis Microbacterium resistens Ochrobactrum thiophenivorans Microbacterium testaceum Pantoea agglomerans Oerskovia sp. Pantoea anthophila Okibacterium fritillariae Plantibacter flavus Pantoea agglomerans Pseudomonas aeruginosa Pseudoclavibacter helvolus Pseudomonas moraviensis Pseudomonas cedrina Pseudomonas orientalis Pseudomonas extremorientalis Pseudomonas psychrotolerans Pseudoxanthomonas koreensis Sanguibacter keddieii Sphingobacterium faecium Serratia grimesii Staphylococcus gallinarum Staphylococcus epidermidis Staphylococcus sp. Stenotrophomonas chelatiphaga Variovorax paradoxus a,b,c, potentially new species isolated from garden warbler (Sylvia borin)a, song thrush (Turdus philomelos)b and Eurasian tree sparrow (Passer montanus)c various factors, among them being the host species and feeding patterns. The differences extend to functional properties such as the greater capacity for amino acid metabolism and energy harvest in carnivores com- pared to herbivores (Waite & Taylor 2014). There- fore, since the gastrointestinal and respiratory tracts are connected, it is reasonable to assume that these fac- tors also influence the composition of the respiratory microbiota. To assess the differences in the choanal microbiota of the sampled birds, we have performed hierarchical clustering which grouped the birds into two groups (Fig. 1). Choanal microbiota of the birds with similar diet grouped together. Birds which feed predominantly on insects or have more monotonous ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 111folia biologica et geologica 58/1 – 2017 diet clustered in one group, those that have more mixed diet of animals (invertebrates) and seeds throughout the year formed a separate group (Fig. 1). The number of bacterial species was used to assess the difference in choanal microbiota richness between the two groups. The first group which contains the birds predominant- ly feeding on insects, or which have a more monoto- nous diet in general, had a significantly lower average number of species (2.9 ± 1.6) in comparison to birds enjoying a more mixed diet of animals and plants throughout the season (7.8 ± 3.4) (P = 0.0002) (Table 1). The choanal microbiota differed between the two groups not only in terms of species richness, but also in terms of bacterial composition. Majority of isolates were found in only one of the two groups of birds (29 – the first group, 27 – the second group) and only 11 bacterial species colonized choanae of birds belonging to both groups (Table 2). Stenkat et al. (2014) have previously found cor- relations between certain bacterial families and feed- ing habits, although they targeted specific pathogenic groups of bacteria. Enterobacteriaceae and Aeromon- adaceae were correlated to piscivores, Staphylococca- ceae and Streptococcaceae to aerial insectivores, and Pseudomonadaceae and Bacillaceae to herbivores. Our findings corroborate this, as hierarchical clustering grouped the choanal microbiota of the sampled birds into two groups based on the bird diet. When comparing the presence or absence of indi- vidual bacterial species, pigeons showed to be far more likely colonized with Staphylococcus gallinarum than other sampled birds (Fisher’s exact test (P = 0.013); odds ratio (pigeons/other birds) = 31.5, P = 0.012). Fur- thermore, the presence of the genus Staphylococcus sp. was indicative of the birds with a more diverse diet throughout the season; these birds also clustered in one of the two groups (Fig. 1, Fisher’s exact test (P = 0.040); odds ratio (second group/first group) = 12.0; P = 0.044). Apart from finding numerous human and plant opportunists, we have also isolated one novel species from garden warbler (Sylvia borin) (Aeromycrobium choanae sp. nov.) (Ber et al. 2017), and two potentially novel species from song thrush (Turdus philomelos) (Agromyces sp., 16S rRNA gene sequence similarity < 97 %) and Eurasian tree sparrow (Passer montanus) (Chryseobacterium sp., 16S rRNA sequence similarity < 98.7 %). Their description is part of ongoing research. 4 CONCLUSIONS Our study has shown that the choanal microbiota of free-living birds with a diet composed predominantly of insects, or with a generally monotonous diet, was poorer in terms of species richness, compared to birds with a more diverse diet during the year. Previously, correlation between selected bacterial families and diet has been determined, however our analyses have shown that the differences in microbiota extend be- yond selected bacterial families. Hierarchical cluster- ing of bacteria showed a correlation between the birds feeding patterns and the upper respiratory microbiota composition. Our study has also shown that free-living birds carry a wide array of known human and plant pathogens in their upper respiratory tract, but also possible novel species. Given the impact microbiota has on the bird ś health and bird ś potential for spread- ing pathogens in the environment, it will be necessary to extend the analysis of choanal microbiota and fac- tors that shape its structure, on more free-living bird species. 5 POVZETEK Da bi ocenili mikrobno diverziteto v sapiščih prostoži- večih ptic, smo 25 pticam odvzeli brise sapišč, ki smo jih nacepili na hranilni agar. Po gojitvi smo izolirali 98 bakterijskih kolonij in jih na podlagi nukleotidnega zaporedja za 16S rRNK identificirali. Število različnih bakterijskih izolatov pri posamezni ptici se je gibalo med 12 (cikovt, Turdus philomelos) in 1 (severni kova- ček, Phylloscopus trochilus). Večina izolatov je pripada- la deblom Actinobacteria (52 %), Proteobacteria (31 %), Firmicutes (15 %) in Bacteroidetes (4 %). Izolati so ve- činoma pripadali družinam Microbacteriaceae (36 %), Pseudomonadaceae (11 %), Enterobacteriaceae (10 %), Micrococcaceae (7 %), in Flavobacteriaceae, Xantho- monadaceae in Staphylococcaceae (vse 4 %). Največ ptic (11) je bilo koloniziranih z bakterijami, ki so pri- padale družini Microbacteriaceae, nato Pseudomona- daceae (pet ptic), Nocardiaceae (štiri ptice), Enterobac- teriaceae (štiri ptice), Xanthomonadaceae (tri ptice), ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 112 folia biologica et geologica 58/1 – 2017 Moraxellaceae (tri ptice), Staphylococcaceae (tri ptice) in Micrococcaceae (dve ptici). Ostale družine bakterij smo detektirali le pri posamezni ptici. Od skupno 98 bakterijskih izolatov, smo našli 13 (13,3 %) takih, ki lahko povzročajo okužbe pri ljudeh: Acinetobacter calcoaceticus, Cellulosimicrobium funkei, Curtobacterium citreum, Curtobacterium flaccumfaci- ens, Exiguobacterium sibiricum, Hafnia alvei, Micro- bacterium oleivorans, Microbacterium resistens, Panto- ea agglomerans, Pseudomonas aeruginosa, Serratia gri- mesii, Staphylococcus epidermidis in Staphylococcus gallinarum. Pri osmih pticah (32 %) smo v sapišču našli vsaj eno oportunistično bakterijo. Petina ptic je bila koloniziranih z eno, dve ptici z dvema, cikovt pa hkra- ti s tremi oportunističnimi vrstami bakterij. Tudi ptice urbanih okolij (golob in domači vrabec) so bile koloni- zirane s človeškimi oportunisti. Golobi s Staphyloco- ccus gallinarum in Acinetobacter calcoaceticus, vrabci pa s Curtobacterium citreum, Curtobacterium flaccum- faciens in Exiguobacterium sibiricum. Poleg oportunističnih bakterij, ki povzročajo okužbe pri ljudeh, smo pri 44 % vzorčenih ptic našli bakterije, ki so patogene za rastline: Agrobacterium larrymoorei, Clavibacter michiganensis, Curtobacteri- um flaccumfaciens, Plantoea agglomerans, Pseudomo- nas aeruginosa, Pseudomonas flavescens in Rhodoco- ccus fascians. Največkrat smo detektirali bakterijo Rhodococcus fascians, ki je bila prisotna pri štirih raz- ličnih vrstah ptic (domači vrabec, ščinkavec, rumeni strnad in siva pevka). Prvi dve vrsti se prehranjujeta z raznovrstno hrano sestavljeno iz semen in žuželk, za- dnji dve pa pretežno z žuželkami, kar bi lahko pome- nilo, da je bakterija med pticami splošno prisotna. Na sestavo in delovanje črevesne mikrobiote pri pti- cah vplivajo različni dejavniki, kot sta vrsta gostitelja in vrsta hrane (mesojedci/rastlinojedci). Ker so prebavila in dihala povezana, ti dejavniki verjetno vplivajo tudi na sestavo in delovanje mikrobiote v dihalih. Z metodo hierarhičnega združevanja smo ptice na podlagi sestave bakterijske mikrobiote sapišč združili v dve skupini. V prvi skupini so bile pretežno žužkojede ptice, v drugi pa ptice z bolj raznovrstno prehrano rastlinskega in žival- skega izvora. Tudi bogatost mikrobiote, ki smo jo oceni- li na podlagi števila prisotnih bakterijskih vrst, je med obema skupinama ptic bila različna. Pri žužkojedih pti- cah smo zaznali manjše število vrst (2,9 ± 1,6) v primer- javi s pticami, ki se hranijo z bolj raznovrstno hrano ži- valskega in rastlinskega izvora (7,8 ± 3,4) (P = 0,0002). Obe skupini ptic sta imeli tudi različno sestavo mikrobi- ote, saj smo večino bakterijskih vrst našli le pri eni ali drugi skupini (29 bakterijskih vrst pri žužkojedih pti- cah, 27 bakterijskih vrst pri pticah z raznoliko prehra- no) in le 11 bakterijskih vrst smo detektirali pri obeh skupinah ptic. Pri vrtni penici (Sylvia borin), cikovtu (Turdus philomelos) in vrabcu (Passer montanus) smo v sosledju našli tudi novo in dve domnevno novi vrsti bakterij; Aeromycrobium choanae sp. nov., Agromyces sp. in Chryseobacterium sp.. Z metodo hierarhičnega združevanja smo poka- zali, da imajo ptice s podobno prehrano, podobno bakterijsko mikrobioto sapišč. Ptice, ki se prehranju- jejo pretežno z žuželkami, so imele manj bogato mi- krobioto kot ptice, ki se prehranjujejo z bolj raznoliko živalsko in rastlinsko hrano. Raziskava je tudi poka- zala, da so zgornja dihala prostoživečih ptic pomem- ben rezervoar oportunističnih bakterij, ki lahko oku- žijo ljudi in rastline, in tudi novih vrst bakterij. Da bi dobili globji vpogled v sestavo mikrobiote zgornjih dihal, bi v prihodnosti morali povečati število analizi- ranih ptic. ACKNOWLEDGEMENTS – ZAHVALA This research was funded by the Slovenian Research Agency through programs IP-0552 and P2-0006. For help with bird sampling, we thank bird ringing researcher Iztok Vreš (Slovenian Museum of Natural History). REFERENCES - LITERATURA Abulreesh, H. H., R. Goulder & G. W. Scott, 2007: Wild birds and human pathogens in the context of ringing and migration. Ringing Migration. (Oxford) 23: 193–200. http://dx.doi.org/10.1080/03078698.2007.9674363 Ber, P., S. Van Trappen, P. Vandamme & J. Trček, 2017: Aeromicrobium choanae sp. nov., an actinobacterium isolated from the choana of a garden warbler. Int. J. Syst. Evol. Microbiol. (Reading) 67: 357-361. https://doi. org/10.1099/ijsem.0.001632 ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 113folia biologica et geologica 58/1 – 2017 Bouzar, H. & J. B. Jones, 2001: Agrobacterium larrymoorei sp. nov., a pathogen isolated from aerial tumours of Ficus benjamina. Int. J. Syst. Evol. Microbiol. (Reading) 51: 1023-1026. https://doi.org/10.1099/00207713-51-3-1023 Byrum, B. R. & R. D. Slemons, 1995: Detection of proteolytic bacteria in the upper respiratory-tract flora of poultry. Avian. Dis. (Ithaca) 39: 622-626. https://doi.org/10.2307/1591817 Charlton, B. R., S. E. Channing-Santiago, A. A. Bickford, C. J. Cardona, R. P. Chin, G. L. Cooper, R. Dro- ual, J. S. Jeffrey, C. U. Meteyer, H. L. Shivaprasad & R. L. Walker, 1993: Preliminary characterization of a pleomorphic Gram-negative rod associated with avian respiratory-disease. J. Vet. Diagn. Invest. (Columbia) 5: 47-51. https://doi.org/10.1177/104063879300500111 Cramp, S., 1985: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Pale- arctic. Volume 4: terns to woodpeckers. Oxford. Cramp, S., 1988: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Pale- arctic. Volume 5: tyrant flycatchers to thrushes. Oxford. Cramp, S., D. J. Brooks, E. Dunn, R. Gillmor, J. Hall-Craggs, P. A. D. Hollom, E. M. Nicholson, M. A. Ogilvie & C. S. Roselaar, 1992: Handbook of the birds of Europe, the Middle East and North Africa. The birds of the Western Palearctic. Volume 6: warblers. Oxford. Cramp, S., 1994: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Pale- arctic. Volume 9: buntings and New World warblers. Oxford. Cramp, S. & C. M. Perrins, 1994: Handbook of the birds of Europe, the Middle East and North Africa: the birds of the Western Palearctic. Volume 8: crows to finches. Oxford. Crespi, M., E. Messens, A. B. Caplan, M. V. Montagu & J. Desomer, 1992: Fasciation induction by the phyto- pathogen Rhodococcus fascians depends upon a linear plasmid encoding a cytokinin synthase gene. EMBO J. (Eynsham) 11: 795-804. Fett, W. F., P. Cescutti & C. Wijey: 1996: Exopolysaccharides of the plant pathogens Pseudomonas corrugata and Ps. flavescens and the saprophyte Ps. chlororaphis. J. Appl. Bacteriol. (Oxford) 81: 181-187. http://dx.doi. org/10.1111/j.1365-2672.1996.tb04497.x Francis, M. J., R. R. Doherty, M. Patel, J. F. Hamblin, S. Ojaimi & T. M. Korman, 2011: Curtobacterium fla- ccumfaciens septic arthritis following puncture with a Coxspur Hawthorn thorn. J. Clin. Microbiol. (Washing- ton) 49: 2759-2760. https://doi.org/10.1128/JCM.00340-11 Gunthard, H. & A. Pennekamp, 1996: Clinical significance of extraintestinal Hafnia alvei isolates from 61 patients and review of the literature. Clin. Infect. Dis. (Chicago) 22: 1040-1045. Kim, B. H. & M. Lee, 2012: A Case of Bacteremia Due to Microbacterium oleivorans Identified by 16S rRNA Sequen- cing Analysis. Korean J. Clin. Microbiol. (Iksan) 15: 110-113. https://doi.org/10.5145/KJCM.2012.15.3.110 Kumar, S., M. Bandyopadhyay, M. Chatterjee, P. Mukhopadhyay, S. Pal, S. Poddar & P. Banerjee, 2013: Red discoloration of urine caused by Serratia rubidae: a rare case. Avicenna J. Med. (Mumbai) 3: 20-22. https:// doi.org/10.4103/2231-0770.112790 Lamberski, N., A. C. Hull, A. M. Fish, K. Beckmen & T. y. Morishita, 2003: A survey of the choanal and cloacal aerobic bacterial flora in free-living and captive red-tailed hawks (Buteo jamaicensis) and Cooper’s hawks (Acci- piter cooperii). J. Avian. Med. Sur. (Boca Raton) 17: 131-135. https://doi.org/10.1647/2002-025 Murthy, T. R. G. K., N. Dorairajan, G. A. Balasubramaniam, A. M. Dinakaran, & K. Saravanabava, 2008: Pathogenic bacteria related to respiratory diseases in poultry with reference to Ornithobacterium rhinotracheale isolated in India. Vet. Arhiv (Zagreb) 78: 131–140. Nonaka, y., M. Nagae, T. Omae, S. yamamoto, R. Horitani, D. Maeda & T. yoshinaga, 2014: Community- -acquired necrotizing fasciitis caused by Acinetobacter calcoaceticus: a case report and literature review. J. Infect. Chemother. (Amsterdam) 20: 330-335. https://doi.org/10.1016/j.jiac.2013.12.011 Pan, Q., A. Liu, F. Zhang, y. Ling, C. Ou, N. Hou & C. He, 2012: Co-infection of broilers with Ornithobacterium rhino- tracheale and H9N2 avian influenza virus. BMC Vet. Res. (London) 8:104. https://doi.org/10.1186/1746-6148-8-104 Panackal, A. A., 2013: Microbacterium resistens prosthetic joint infection: a case report due to a vancomycin-resis- tant coryneform and brief literature review of infections due to the genus. Infect. Dis. Clin. Pract. (Philadelphia) 21: 349-354. https://doi.org/10.1097/IPC.0b013e31828d73db Petkar, H., A. Li, N. Bunce, K. Duffy, H. Malnick & J. J. Shah, 2011: Cellulosimicrobium funkei: first report of infection in a nonimmunocompromised patient and useful phenotypic tests for differentiation from Cellulosi- microbium cellulans and Cellulosimicrobium terreum. J. Clin. Microbiol. (Washington) 49: 1175-1178. https:// doi.org/10.1128/JCM.01103-10 ŠKRABAN, MATJAŠIČ, JANŽEKOVIČ, WILHARM & TRČEK: CULTIVABLE BACTERIAL MICROBIOTA FROM CHOANAE 114 folia biologica et geologica 58/1 – 2017 Rezzonico, F., G. Vogel, B. Duffy & M. Tonolla, 2010: Application of whole-cell matrix-assisted laser desorption ionization-time of flight mass spectrometry for rapid identification and clustering analysis of pantoea species. Appl. Environ. Microbiol. (Washington) 76: 4497-4509. https://doi.org/10.1128/AEM.03112-09 Rivera, R., A. Cheema, J. Mai, R. L. Oehler, R. L. Sandin & J. N. Greene, 2012: Curtobacterium brain abscess: case report. Infect. Dis. Clin. Pract. (Philadelphia) 20: 17-19. https://doi.org/10.1097/IPC.0b013e318255d5bc Shabbir, M. Z., T. Malys, y. V. Ivanon, J. Park, M. A. Shabbir, M. Rabbani, T. yagub & E. T. Harvill, 2015: Microbial communities present in the lower respiratory tract of clinically healthy birds in Pakistan. Poultry Sci. (Oxford) 94: 612-620. https://doi.org/10.3382/ps/pev010 Stenkat, J., M. E. Krautwald-Junghanns, A. Schitz-Ornes, A. Eilers & V. Schmidt, 2014: Aerobic cloacal and pharyngeal bacterial flora in six species of free-living birds. J. Appl. Microbiol. (Oxford) 117: 1564-1571. https://doi.org/10.1111/jam.12636 Tena, D., N. M. Martinez, J. Casanova, J. L. Garcia, E. Roman, M. J. Medina & J. A. Saez-Nieto, 2014: Possi- ble Exiguobacterium sibiricum skin infection in human. Emerg. Infect. Dis. (Atlanta) 20: 2178-2179. https:// dx.doi.org/10.3201/eid2012.140493 Tibra, N. K., S. Jalali, A. K. Reddy, R. Narayanan & R. Agarwal, 2010: Traumatic endophthalmitis caused by Staphylococcus gallinarum. J. Med. Microbiol. (London) 59: 365-366. https://doi.org/10.1099/jmm.0.011551-0 Tsiodras, S., T. Kelesidis, I. Kelesidis, U. Bauchinger & M. E. Falagas, 2008: Human infections associated with wild birds. J. Infect. (London) 56: 83-98. https://doi.org/10.1016/j.jinf.2007.11.001 Vancanneyt, M., P. Vandamme, P. Segers, U. Torck, R. Coopman, K. Kersters & K. H. Hinz, 1999: Riemerel- la columbina sp. nov., a bacterium associated with respiratory disease in pigeons. Int. J. Syst. Bacteriol. (Reading) 49: 289-295. https://doi.org/10.1099/00207713-49-1-289 Vuong, C. & M. Otto, 2002: Staphylococcus epidermidis infections. Microbes Infect. (Paris) 4:481-489. https://doi. org/10.1016/S1286-4579(02)01563-0 Waite, D. W. & M. W. Taylor, 2014: Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. (Lausanne) 5: 223. https://doi.org/10.3389/fmicb.2014.00223 Waldenstrom, J., S. L. W. On, R. Ottvall, D. Hasselquist, C. S. Harrington & B. Olsen, 2003: Avian reser- voirs and zoonotic potential of the emerging human pathogen Helicobacter canadensis. Appl. Environ. Micro- biol. (Washington) 69: 7523-7526. https://doi.org/10.1128/AEM.69.12.7523-7526.2003 Xu, X., S. A. Miller, F. Baysal-Gurel, K. H. Gartemann, R. Eichenlaub & G. Rajashekara, 2010: Biolumi- nescence imaging of Clavibacter michiganensis subsp. michiganensis infection of tomato seeds and plants. Appl. Environ. Microbiol. (Washington) 76: 3978-3988. https://doi.org/10.1128/AEM.00493-10 yamazaki, A., J. Li, Q. Zeng, D. Khokhani, W. C. Hutchins, A. C. yost, E. Biddle, E. J. Toone, X. Chen & C. H. yang, 2012: Derivatives of plant phenolic compound affect the type III secretion system of Pseudomonas ae- ruginosa via a GacS-GacA two-component signal transduction system. Antimicrob. Agents. Chemoth. (Wash- ington) 56: 36-43. https://doi.org/10.1128/AAC.00732-11