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FB Mathematik und Naturwissenschaften, Schöfferstr. 3, D-64295 Darmstadt, Germany;3Fachhochschule Jena,
FB Grundlagenwissenschaften, Carl-Zeiss-Promenade 2, D-07745 Jena, Germany
e-mail: nagel@minet.uni-jena.de
(Accepted March 7, 2008)

ABSTRACT

This paper presents a model of random tessellations that reflect several features of crack pattern. There are
already several theoretical results derived which indicate that this model can be an appropriate reference model.
Some potential applications are presented in a tentative statistical study.
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INTRODUCTION

Several methods for developing models of crack
structures – in 2 dimensions for cracks on surfaces
or thin layers – are based on the idea of line
segments that start to grow from points, and the
individual growth stops when an already existing crack
is reached. This yields a tessellation (mosaic). There
is an important model, proposed by E. N. Gilbert and
reported by Noble (1967),cf. also Cowan, http://www.
maths.usyd.edu.au/u/richardc/unsolved.html. Another
reference for this type of a tessellation is Grayet
al. (1976), cf. Stoyan et al. (1995). Recently, the
STIT model was introduced by Nagel and Weiss
(2005). This new model can be relatively well treated
theoretically, and a series of results and formulas were
already found,cf. Nagel and Weiss (2004), Nagel and
Weiss (2005), Meckeet al.(2006). This fact makes the
model attractive for application at least as a reference
model, in particular for the statistical analysis of crack
pattern. Of course, it is a crucial question how good the
model can be fitted to the data.

In the present paper the STIT tessellation is
briefly described and some properties and quantities
are summarized. Several examples of potential
applications are considered and as criteria for the
goodness-of-fit the variability of the cell sizes is used
as well as the linear contact distribution function for
the cell boundaries,i.e., the cracks.

DESCRIPTION OF THE MODEL

Here we give a short sketch of the construction
which was described in Nagel and Weiss (2005) in
full detail, in arbitrary dimension and also for the
non-isotropic case. We restrict it to the planar and

isotropic case. ByR2 we denote the euclidean plane.
All the random tessellations considered in this paper
are locally finite,i.e., any bounded subset of the plane
intersects a finite number of cells only. Such random
tessellations can be described as the random closed
set (RACS) of its cell boundaries as well as a random
ensemble of its polygonal cells,i.e., as a point process
on the space of convex polygons. LetW ⊂ R

2 be a
bounded rectangular window.

The intuitive idea of the construction is the
following: The windowW has a random exponentially
distributed ‘life time’. At the end of this time
interval a random line is thrown ontoW, which
dividesW into two new ‘cells’. These two cells have
independent and exponentially distributed life times
until they are divided further by random lines. After
any division, exponentially distributed life times of the
new cells begin. Special attention has to be paid to
the adjustment of the parameters of these exponential
distributions. In the isotropic case, these parameters
are proportional to the perimeter of the respective cells
such that smaller cells have a stochastically longer
life than larger ones. This procedure of repeated cell
division is stopped at the fixed time, say 1, and the
state at this time is interpreted as a realization of the
tessellationY(W).

Now we give a more formal and precise description
in a condensed form. Readers who are not interested
in the technical details can skip this paragraph.
Let (τi ,γi), i = 1,2, . . . be i.i.d. (independent and
identically distributed) pairs of random variablesτi
that are exponentially distributed with parameter 1/2,
and isotropic uniform random (IUR) linesγi on W;
τi and γi independent. The perimeter of a convex
polygon p is denoted byU(p). We define a set-
valued processY(t,W), t ≥ 0, with Y(t,W) = /0 for
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0 ≤ t < τ̃1 with τ̃1 = τ1/U(W). Then Y(τ̃1,W) =
W ∩ γ̃1 with γ̃1 = γ1, and Y(t,W) remains constant
until the next update. The chordW ∩ γ̃1 divides W
into two polygons,q2 andq3 say. Their lives start at
time τ̃1 and lastτ̃2 = τ2/U(q2) and τ̃3 = τ3/U(q3)
respectively. Now consider a general polygonqi that
is generated by the construction at a timeτ . It lives
from τ to τ + τ̃i with τ̃i = τi/U(qi). At the end of
its life it is divided by the line γ̃i which has the
distribution of γi restricted to the set[qi ], which is
the set of all lines that hitqi. The update at that
time is Y(τ + τ̃i ,W) =

⋃

t<τ+τ̃i

Y(t,W)∪ (qi ∩ γ̃i). Thus

the process is updated by adding the new line segment
qi ∩ γ̃i , i.e., a chord inqi , whenever the lifetime of
a polygonqi is over. There arise (almost surely) two
new polygons that are generated fromqi by the chord
qi ∩ γ̃i, and they are then treated as described above.
The stateY(W) of the process at time 1 is a set of
line segments which form a random tessellation inW.
We call it a STIT tessellation. This abbreviation is
explained below. In Fig. 1 a simulation of an isotropic
STIT tessellation is shown. Further illustrations and
explanations can be found in Nagel and Weiss (2008).

Fig. 1.Simulation of a STIT tessellation.

ESSENTIAL PROPERTIES

We summarize some results for the described
construction. The proofs were given in Nagel
and Weiss (2005). The construction yields a non-
degenerate tessellation in any bounded (rectangular)
windowW. Moreover, there exists a random stationary
(i.e., spatially homogeneous) tessellationY in R

2

such thatY ∩W
D
= Y(W), i.e., the restriction ofY

to the windowW has the same distribution as the
construction insideW as described above.

This tessellation is stochasticallystable with
respect to theiteration (or nesting) of tessellations –
STIT for short. This means the following: Given an
arbitrary tessellationY with the cellsC1,C2, . . . and a
sequenceY = (Y1,Y2, . . .) of tessellations, the iteration
I (Y,Y ) is defined as the tessellation which emerges
when any cellCi is intersected with the tessellation
Yi with the same indexi = 1,2, . . . Thus theCi are
subdivided into smaller cells by the cut-outs of theYi .

Now, the STIT property of a random stationary
tessellation means that its distribution is invariant w.r.t.
iteration combined with an appropriate rescaling. More
precisely,Y is STIT if

Y
D
= I

(

cY,
c

c−1
Y

)

for all c > 1 , (1)

whereY = (Y1,Y2, . . .) is a sequence of i.i.d. random
tessellations that are independent ofY and have the
same distribution asY. The rescaling factorsc and
c/(c−1) are chosen such thatLA, the mean total
length of edges per unit area, remains constant. IfY
has the parameterLA, thencY has the length intensity
(1/c)LA.

It is easy to see that,e.g., random line tessellations
or Voronoi tessellations are not STIT. It was shown in
Nagel and Weiss (2005) that, up to the intensityLA, the
construction described above yields the only stationary
and isotropic STIT tessellation.

Hence, given the length intensityLA and the
directional distribution of the edges – in the
isotropic case the uniform distribution on[0,π) –
the distribution of a stationary tessellation is uniquely
determined by the STIT property.

We emphasize two further properties which we
will make use of in the following. The definition
of a stationary Poisson line process and of the
corresponding tessellation can be found in the books
on stochastic geometry,e.g., Matheron (1975), Serra
(1982), Stoyanet al. (1995), Schneider and Weil
(2000), Ohser and Mücklich (2000). The following
result can also be derived from Theorem 5-4-2 in
Matheron (1975). There the stability with respect to
the union of RACS is investigated which corresponds
to the superposition – in contrast to iteration – of
tessellations. But – roughly – if one considers the
interior of a single cell, there is no difference whether
superposition or iteration of tessellations is applied.
This can be expressed more precisely in terms of the
capacity functional.
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Lemma 1 The interior of the typical cell of the
stationary and isotropic STIT tessellation with edge
length intensity LA has the same distribution as the
interior of the typical cell of the stationary and
isotropic Poisson line tessellation with the same length
intensity LA.

The difference in the distributions of the two
mentioned cells arises when the nodes on the
boundaries are taken into account, see Lemma 3.

It is easy to see that the STIT property of a
tessellationY transfers to intersections with lines. This
yields

Lemma 2 The intersection point process that is
induced by the stationary and isotropic STIT
tessellation Y with edge length intensity LA on any line
is a stationary Poisson point process, and its intensity
is 2LA/π.

RELATIONS FOR MEAN VALUES

A variety of mean values for general stationary
random tessellations was studied systematically by
Mecke (1984),cf. also Stoyanet al. (1995) and
the references given therein. The properties of STIT
tessellations mentioned in the previous paragraph yield
several particular relations for those parameters.

The following formulas have already been
published, also for non-isotropic stationary STIT
tessellations in Nagel and Weiss (2004). We
summarize them briefly, since they provide a useful
tool also for statistical purposes.

As usual in the theory of tessellations, an edge is
a line segment inY between two nodes and without
further nodes in its relative interior. We use the
following notation for mean values.

LA – mean total edge length per unit
area, edge length intensity,

L – mean length of the typical edge,
U2, A2 – mean perimeter and mean area,

resp., of the typical cell,
N0 – mean number of nodes per

unit area,
N1 – mean number of edge midpoints

per unit area,
N2 – mean number of cell centroids per

unit area,

N01 = N02 – mean number of edges emanating
from the typical node
= mean number of cells which

contain the typical node,
N20 = N21 – mean number of nodes

= mean number of edges on
the boundary of the typical cell.

We present the formulas together with well known
results for Poisson line tessellations in order to
compare both tessellations. We will use the upper
index× to indicate that a symbol refers to the Poisson
line tessellationY×. The Poisson line tessellations
have X-shaped nodes (crossings) only.

Lemma 3 If Y is the stationary and isotropic STIT
tessellation described above and Y× the stationary
and isotropic Poisson line tessellation with the same
intensity LA then

(1) L = π
3LA

= 2
3L×,

(2) U2 = 2π
LA

= U×
2 ,

(3) A2 = π
L2

A
= A×

2 ,

(4) N0 = 2
π L2

A = 2N×
0 ,

(5) N1 = 3
π L2

A = 3
2N×

1 ,

(6) N2 = 1
π L2

A = N×
2 ,

(7) N01 = N02 = 3, N×
01 = N×

02 = 4,

(8) N20 = N21 = 6, N×
20 = N×

21 = 4.

In Meckeet al. (2006) results on the distribution
of the length of line segments in STIT tessellations
are derived. Besides the above mentioned edges also
the line segments which occur in the construction as
chords (or cracks) can be considered.

APPLICATIONS AND TENTATIVE
STATISTICAL STUDIES

In order to assess how the model of a stationary
and isotropic STIT tessellation is adapted to real
patterns consider the four images in Figs. 2 to 5 from
different applications. As a reference image we use the
simulation in Fig. 1.
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Basically, goodness-of-fit tests for random
tessellations can test the geometry of the individual
cells – in our case the distribution of Poisson typical
cells – but also test the mutual arrangement of the cells.
The latter approach seems to be very complex.

In order to obtain a first impression whether the
STIT tessellation can be a candidate model one can
check some qualitative – topological – features. One
of them is the type of nodes. In a STIT tessellation
occur T-nodes only,i.e., in each node meet exactly
three edges, and two of them are collinear, see Fig. 6.
In contrast to this,e.g., Poisson-Voronoi tessellations
have Y-shaped nodes where three edges meet but there
is no collinearity.

Fig. 2.Majolika. Ceramic surface (Photo: G. Weil).

Fig. 3. Cracks in a titanium-nitride coating on
cemented carbide (R. Ohser-Wiedemann).

Fig. 4.Simulated cracks in soil (H.-J. Vogel).

Fig. 5. The pattern of the thick black lines – the
connective tissue in a rat muscle – is studied here (I.
Eržen).
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Fig. 6. In STIT tessellations occur T -nodes only.

Quantitative goodness-of-fit tests can be based on
Lemma 1,i.e., on the fact that the interior of the typical
cell is the same as for a Poisson line tessellation. Here
we use as test criteria the coefficient of variationf of
the area of the typical cell and furthermore the linear
contact distribution functionFC of the cells. As above,
denote the random area of the typical cell of the STIT
tessellation byA2. Since its distribution coincides with
that one of a Poisson line tessellation, we can apply
the corresponding formulas which are given in Stoyan
et al. (1995).
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Table 1.Estimated values of the coefficient of variation
for the area of the typical cell.

Theoretical
value f for the
isotropic model .................. 1.98

Simulation 1.69

Ti-nitride coating 1.28

Majolika 0.90

Rat muscle 0.53

Soil 0.45

For the stationary and isotropic caseEA2 =
π/L2

A and varA2 = (π2/2− 1)π2/L4
A and hence the

coefficient of variance of the area is

f =

√
varA2

EA2
=

√

π2

2
−1≈ 1.9836.

For the simulations and the real structures the areas
of the cells were measured. The estimated values of
the coefficient f are listed in Table 1. It is obvious
that the variability of the cell areas in all the samples
is considerably smaller than the theoretical value for
STIT tessellations. In particular, in the soil sample the
cells are of almost the same size. For the titanium-
nitride coating and the majolika data it can be worth
to investigate more and larger samples, and also the
anisotropy of the structure has to be taken into account,
i.e., the comparison should not be made with the
isotropic STIT tessellation but with an appropriate
anisotropic one.

In order to study contact distribution functions
(for a definition seee.g., Ohser and Mücklich (2000),
Stoyanet al. (1995)) the set of all edge points of the
tessellation has to be considered as a random closed
setY. Since the interior of the typical cell of the STIT
tessellation is distributed as that one of a Poisson line
tessellation it is known that the contact distribution
functions are exponential ones. Here we consider the
linear contact distribution function as a function of the
lengthℓ> 0 for horizontal segmentssℓ. With the notion
a = (2/π)LA, we obtain for the isotropic case:

FC(ℓ) = P(Y∩sℓ 6= /0) = 1−e−aℓ

and hence ln(1−FC(ℓ)) = −aℓ.

Fig. 7. Logarithm of the linear contact distribution
function: simulated image.

Thus one can check for the samples whether the
logarithm of the corresponding estimated function is
approximately linear. Figs. 7, 8 and 9 show these
estimates for the simulated image, the titanium-
nitride coating and the majolika, respectively. A linear
function with an estimated slope was drawn into each
figure in order to allow a rough comparison. The
deviations of the estimates from a linear function for
the larger values of the lengthℓ are partly due to edge
effects in the relatively small images. Also here, the
work will be continued by considering larger samples
and taking into account the anisotropy in the observed
structures. Furthermore, the study will be extended
to contact distributions which use other structuring
elements. Since in applications the cell boundaries are
not linear but curved, it seems to be more appropriate
to use circles instead of linear segments or squares.
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Fig. 8. Logarithm of the linear contact distribution
function: Titanium-nitride coating.

Fig. 9. Logarithm of the linear contact distribution
function: Majolika.

CONCLUDING REMARKS

As already mentioned the presented statistical
results are tentative ones and they illustrate a work
in progress. It is already obvious that some of the
structures (soil, majolika) cannot be appropriately
fitted by a STIT model. Therefore it is an aim to make
the model more flexible,e.g., by endowing the STIT
probability distribution with a density.

In Nagel and Weiss (2005) the STIT tessellation
model was developed for arbitrary dimension and
arbitrary directional distributions of the cell facets.
Thus, in particular, 3-dimensional crack structures as
they can emergee.g., in rocks can be studied.

The STIT tessellation model is suitable for
stereology since the STIT property of a stationary
– and not necessarily isotropic – STIT tessellation
in any dimension transfers to intersections with
lower dimensional planes or lines. Since we have a
complete characterization of STIT tessellations the
relations between the section profiles and the higher
dimensional structure is relatively easy to describe.
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