GEOLOGIJA 25/2, 213—227 (1982), Ljubljana UDK 561:551761(497.12) = 836 Quantitative palynologîcal analysis of Julian clastic rocks from the lead-zinc deposit of Mežica Kvantitativna palinološka analiza julijskih klastičnih kamenin v mežiškem rudišču Bogomir Jelen Geološki zavod, 61000 Ljubljana, Parmova 37 Janko Kušej Rudnik in topilnica svinca Mežica, 62392 Mežica Abstract The calcareous-dolomitic sequence of the Karnian at Mežica is inter- bedded with three horizons of clastic rocks. Through the palynological assemblages of the 1st horizon a deltaic environment is reflected; spores of pteridophytes being abundant. An ammonoid biocoenose, reported from this horizon previously, may possibly not be autochthonous. The 2nd hori- zon is characterized by the spores of mangrove trees. In the 3rd horizon xerophytic elements prevail. By the frequency distribution of spores, pol- len, and acritarchs a decreasing deltaic influence and an ever increasing marine influence is indicated from the 1st through the 2nd to the third horizon. By the combination Camerosporites secatus and Ovalipollis pseu- doalatus the northern belt of the equatorial Karnian palynofloristic do- main is recognized. Kratka vsebina V zaporedju apneno-dolomitnih plasti karnijske stopnje v Mežici so trije horizonti klastičnih kamenin. Palinološki facies 1. horizonta kaže na okolje rečne delte. Vsebuje veliko spor pteridofitov. Amonoidna bio- cenoza, o kateri poročajo v literaturi, pa verjetno ni avtohtona. Za drugi horizont so značilne spore vegetacije mangrova. V 3. horizontu prevladu- jejo kserofitni elementi. Iz pogostnosti spor, peloda in akritarhov izhaja, da je vpliv rečne delte na sedimentaci j o postopno ponehaval od prvega prek drugega do tretjega horizonta in da je v tej smeri naraščal vpliv morskega okolja. Camerosporites secatus in Ovalipollis pseudoalatus po- menita, da je bila v karnijski dobi Mežica del severnega pasu širokega ekvatorialnega palinoflorističnega območja. 214 Bogomir Jelen & Janko Kušej Introduction Mežica lead-zinc mine is situateci north of the Periadriatic lineament in the eastern part of the Northern Karawanken Alps (fig. 1). In the Karnian deposits of this region carbonate rocks - limestone and dolomite - prevail. Between the carbonates maries, shales and sandstones are interbedded. These clastic rocks have played an important role in the genesis of ore as well as in tectonic move- ments. The miners called them "Cardita" and/or "Raibler" beds (A. Z o r c , 1955). There are three horizons of clastic rocks, recently designated as the 1st, 2nd and the 3rd shale. Since the lithology of the 1st, 2nd and the 3rd shale is not uniform it is however incorrect to apply the term "shale". I. Struci (1971) mentioned in the "shales" the following types of rocks: shales, maries, marly limestone and sandstone. For this reason in this paper the terms 1st, 2nd, and the 3rd shale are changed into the 1st, 2nd and the 3rd clastic horizon. Not only in the mining area but also in the Northern Karawanken Alps as a whole, these horizons are playing an important role in the stratigraphi- cal subdivision of Karnian rocks (fig. 2). Because the tectonic setting is rather complicated the stratigraphical and structural position of individual clastic horizons is usually not clear, even when rare micro- or macrofossils occur. The problem of the stratigraphical and structural position is well marked in exploration boreholes where a small part of rock is examined. In the Mežica mining area there are still many unsolved geological problems. For example the clastic horizon bordering the lead-zinc deposit Graben to the south has an unknown stratigraphical and tectonic position. The question is whether the ore bearing reef limestone occurs in normal or in inverse position, and whether it is Cordevolian or Julian in age. A reliable answer to this question is important for the mining development in this area. There are more problems in the southern part of the Northern Karawanken Alps where a lagoonal facies of Longobardian and Karnian age passes laterally into a deeper facies — the Partnach facies. In the absence of realistic criteria it has always been very difficult to correlate chronostratigraphically both facies. Because of the possibilities of palynology in Triassic stratigraphy, we intro- duced palynological research as an aid to the solution of geological problems, important for the mining development. Quantitative palynological analysis Palynological research of the three clastic horizons in the Mežica mining area includes both qualitative and quantitative analysis. A paper on the qualitative analysis is in preparation. The quantitative analysis is based on relative frequencies of morphological groups of palynomorphs. This method was introduced by H. Visscher and C. J. van der Zwan (1981). Histograms, corresponding to each of the clastic horizons are presented in fig. 2. The observed range of relative frequencies for each morphological group is shown in fig. 3. Additional statistical analysis is in progress. However, the information so far available about the quantitative distri- bution of palynomorphs in the three clastic horizons in the Mežica mining area is already a sufficient base for their stratigraphical subdivision on a local scale. Quantitative palynological analysis of Julian clastic rocks from Mežica 215 The histograms of fig. 2 represent the most characteristic examples of rela- tive frequencies of morphological groups of palynomorphs found in assemblages from each of the three clastic horizons. The histograms (N = 5) from the 1st clastic horizon are characterized by the bimodal distribution of morphological groups of palynomorphs. The highest peak is on the side of the typical hygrophytic elements. The small peak is found on the side of xerophytic elements. Fig. 1. Geology (after I. Struci, 1970) and location of the palynological samples examined in the Mežica mine SI. 1. Geologija (po I. Štruclu, 1970) in lokacija palinoloških vzorcev v mežiškem rudniku 1 Upper Miocene beds Zgornjemiocenske plasti 2 Mezozoic beds Mezozojske plasti 3 Palynologically examined area Palinološko raziskano področje 4 Paleozoic mica schist, phyllite and greenschist Paleozojski sljudni skrilavec, filit in zeleni skrilavec 5 Porphyritic dacite Porfiritni dacit 6 Tonalité Tonalit 7 Diabase Diabaz 8 Granodiorite Granodiorit 9 Erosional unconformity Erozijska diskordanca 10 Fault with down thrown side Prelom z ugreznjenim krilom 11 Overthrust Nariv 216 Bogomir Jelen & Janko Kušej A Monolete acavate spores Monoletne akavatne spore B Trilete acavate laevigate or apiculate spores Triletne akavatne levigatne in apikulatne spore C Trilete acavate murornate spores Triletne akavatne murornatne spore D Trilete cingulate and zonotrilete spores Triletne cingulatne in conotriletne spore E Aratrisporites group Skupina Aratrisporites F Porcellispora complex Porcellispora kompleks G Monosulcate pollen grains Monosulkatni pelod H Ovalipollis complex Ovalipollis kompleks I Alete (proto) bisaccate pollen grains Aletni (proto) bisakatni pelod J Samaropollenites K Taeniate (proto) bisaccate pollen grains Teniatni (proto) bisakatni pelod L Triadispora complex Triadispora kompleks M Vesicate pollen grains Vezikatni pelod M фт-otoì monosaccate pollen grains '■"'^roto) monosakatni pelod O rircumpollis group Circumpollis skupina U Leiosphaeridia V Micrhystridium Z Dictyotidium Y Veryhachium U V Z Y Microphytoplankton — Acritarchs Mikrof itoplankton — akritarhi Hygrophile elements Higrofilni elementi A B C D E F GIH I JIK L M N O Xerophile elements Kserofilni elementi Fig. 2. Relative frequency distribution of the morphological groups of palynomorphs from three clastic horizons in the Mežica ore deposit (Code of the samples examined: M—7/+549, II/l and III/l). Method introduced by H. Visscher and C. I. van der Zvann (1981) Columnar section after J. Kušej SI. 2. Porazdelitev relativnih frekvenc morfoloških skupin palinomorf iz treh klastič- nih horizontov mežiškega rudišča (Oznake vzorcev: M—7/ + 549, II 1 in III/l). Metoda po H. Visscherju in C. I. van der Zwannu (1981). Stratigrafsko zaporedje po J. Kušeju Quantitative palynological analysis of Julian clastic rocks from Mežica 217 218 Bogomir Jelen & Janko Kušej The histograms (N = 3) from the 2nd clastic horizon are characterized by a third peak represented by the morphological group E (Aratrisporites). The prominence of the first and the second peaks varies considerably within indi- vidual assemblages. The peak of morphological group E is always very high. The histograms (N = 3) from the 3rd clastic horizon are characterized by the absence of a peak on the side of the typical hygrophytic elements. The increase of the relative and the absolute frequency of the microphytoplankton is a new characteristic of this horizon. Fig. 3. Range of variation of the relative frequency for morphological groups of palynomorphs from the clastic horizons at Mežica SI. 3. Variacij ske širine relativne frekvence morfoloških skupin palinomorf iz klastičnih hori- zontov v Mežici From the quantitative analysis we may conclude that the morphological groups of palynomorphs A, B, E, G, M, N, O, V, Z have a constant distributional trend from the 1st through the 2nd to the 3rd clastic horizon (fig. 3). The clear- ness of this trend is obscured by the range of variation of the relative frequency for morphological groups from the 2nd clastic horizon (for example morpholo- gical group A) as well as by the range of variation of relative frequency of morphological group in samples taken just under the top of the 1st clastic hori- zon (for example maximum values of the relative frequency of groups M, N, and O). We believe that this irregularity could well be caused by the unstable-transi- tional-conditions in the time between deposition of the 1st and the 3rd clastic horizon. The relative frequency of morphological groups A, B, and G is decreasing from the 1st to the 3rd clastic horizon. On the other hand the relative frequency of groups M, N, O, V, Z is increasing in the same direction. Stratigraphical discrimination between the 1st and the 3rd clastic horizon is possible on the base of the relative frequencies of morphologicah groups A, B, N, O, and Z. Additio- Quantitative palynological analysis of Julian clastic rocks from Mežica 219 naly we can use the maximum values of the relative frequency of groups G, M, V. The 2nd clastic horizon is discriminated from the 1st and the 3rd horizon by the value of the relative frequency of the morphological group E. Distributional trends of spores, pollen grains and acritarchs from the 1st through the 2nd to the 3rd clastic horizon is shown on a diagram of mean values of relative frequencies (fig. 4). The prevailing hygrophytic elements in the 1st clastic horizon reflect the existence of a fluviatile-deltaic environment and we can speculate about a strong influence of this environment on the sedimen- tation of the 1st clastic horizon. Among the hygrophytic elements spores of pteridophytes, typical for the coal facies of the Alpine Lunz beds and the Ger- manic "Schilfsandstein" are dominant. The Lunz beds and the "Schilfsand- stein" represent a fluviatile-deltaic coal-bearing facies within an arid climatic Fig. 4. Distribution trend of spores, pollen and acritarchs in the direction from the 1st towards the 3rd clastic horizon interbedded in the limestone and dolomite succession at Mežica SI. 4. Tendenca v porazdelitvi spor, peloda in akritarhov od 1. proti 3. klastič- nemu horizontu v Mežici 220 ^ Bogomir Jelen & Janko Kušej belt (H. Visscher & C. J. van der Zw ar, 1981, 632). A regional arid background is evident by the small peak on the side of xerophytic elements. The relative frequency of hygrophytic and xerophytic elements in the 2nd clastic horizon varies considerably. From the information on fig. 3 one may deduce interruptions in the regime of fluviatile-deltaic environment. The peak of the xerophytic elements is sometimes rather prominent. The absolute frequency of xerophytic elements is also increasing. The peak of the Aratrisporites group suggests optimal conditions for the flourishing of lycopodiophytic mangrove vegetations, a new environment during the time of sedimentation of the 2nd clastic horizon. The hygrophytic elements strongly decrease in the 3rd clastic horizon. Here we can always find a large peak on the side of the xerophytic elements. The elements of an upland flora and the flora of salt swamps of undoubted or presumed coniferalean affinity prevail. Our conclusion is that the fluviatile- -deltaic regime had disappeared. Relative and absolute frequencies of acritarchs are increasing from the 1st through the 2nd to the 3rd clastic horizon (figs. 3, 4). The formgenera Leiosphae- ridia and Micrhystridium are supposed to have lived in more agitated water near the coastline (I. K. L e n t i n & G. L. W i 11 i a m s , 1980, 13; F. L. S t a p - lin, 1961, 397). The first-mentioned authors also suggest that Leiosphaeridia and Micrhystridium characterize the beginning and the end of transgressions, the formgenus Veryhachium is not present in the 1st clastic horizon. According to A. Horowitz (1975, 75) this formgenus inhabited a more open, shallow and quiet marine environment. Some palynologists (W. A. B r u g m a n) state that the formgenus Dictyotidium had the same ecological preference as Very- hachium. According to the distribution of spores, pollen grains and acritarchs in the 1st, 2nd and the 3rd clastic horizon it is supposed that the marine influ- ence during the time of sedimentation of the 1st clastic horizon was subordinate. The marine influence was increasing in the 2nd clastic horizon, and completely prevails in the 3rd clastic horizon. We expect that the research of oxygen and carbon isotope composition of the rock and the macrofauna from the three clastic horizons will confirm the picture as based on the distribution of spores, pollen grains and acritarchs. From the 1st clastic horizon ammonoids are known (A. Ramovš, 1974, 128; B. Jurkovšek, 1978). Not only the present palynological but also sedimentological investigations (M. Pungartnik et all., in preparation) question the autochthonous nature of this ammonoid biocoenose. Palynological assemblages of the three clastic horizons belong to the northern palynofloras of the wide equatorial palynofloristic domain. These assemblages are characterized by the Camerosporites secatus-Ovalipollis pseudoalatus asso- ciation (H. Visscher & C.J. van der Zwan, 1980,629). Conclusions (1) We can use the distribution of relative frequencies of morphological groups of palynomorphs for the palynostratigraphical discrimination of the three clastic horizons on a local scale. (2) The possibility of a palynostratigraphi- cal discrimination may be practically applied with regard to the solution of stra- Kvantitativna palinološka analiza julijskih klastičnih kamenin v Mežici 221 tigraphical and tectonic problems related to mining geology. (3) Hygrophytic elements from the 1st clastic horizon, among which the spores of pteridophytes typical for the coal bearing facies of the Lunz beds and the "Schilfsandstein" prevail, reflect a fluviatile-deltaic environment. (4) By the frequency distri- bution of spores, pollen grains, and acritarchs an decreasing deltaic influence and an ever increasing marine influence is indicated from the 1st trough the 2nd to the 3rd horizon. (5) A new environment is reflected in the 2nd clastic horizon by the flourishing of a mangrove vegetation. (6) The influence of the fluviatile-deltaic regime disappears at the end of the 3rd clastic horizon. (7) At the time of deposition of the 3rd horizon prevail the xerophytic elements of an upland flora and the flora of salt swamps with an undoubted or presumed coniferalean affinity. (8) There is a question, whether the ammonoids from the 1st clastic horizon represent an autochthonous biocoenose. (9) Palynological assemblages belong to the northern palynofloras of the equatorial domain of Ladinian-Karnian times. Acknowledgments One of the authors (B. Jelen) obtained a scholarship from the Govern- ment of the Netherlands for study at the Laboratory of Paleobotany and Paly- nology, State University of Utrecht. He received much aid from the staff and students. He has benefited greatly from the courtesy and kind advice of mentors Prof. Dr. H. Visscher, Dr. W. A. Brugman and Dr. R. E. B e s e m s. They transmited their original ideas to him without any hesitation. Kvantitativna palinološka analiza julijskih klastičnih kamenin v mežiškem rudišču Povzetek V mežiškem rudišču se večkrat srečujemo s problemom določitve prave geološke lege določenih plasti. Kot primer naj navedemo problematiko v zvezi z nezanesljivo stratigrafsko uvrstitvijo klastičnega pasu, ki omejuje rudišče Graben proti jugu. бе vedno je sporno, ali gre v tem rudišču za normalno lego rudonosnega grebenskega apnenca pod klastičnim horizontom, ali za inverzno. Možnih je več interpretacij, ni pa potrebno posebej poudarjati, kako pomembna je za nadaljnje raziskave stratigrafska uvrstitev rudonosnega grebenskega apnenca. Se več problemov se pojavlja v južnih delih severnih Karavank, kjer lagunske karbonatne sedimentne kamenine langobardske in cordevolske podstopnje za- menjujejo globokomorski sedimenti partnaškega faciesa. Kjer so te sedimentne kamenine v stiku z julijskimi plastmi, je njihova stratigrafska razmejitev pro- blematična. Da bi prispevali k reševanju geološke problematike, smo se lotili kvantita- tivne palinološke analize klastičnih horizontov v krovnini rudonosnega apnenca mežiškega rudišča. Pripravlja pa se tudi kvalitativna analiza inventarja (B. Je- len & J. Kušej neobjavljeno poročilo). Uporabljena kvantitativna metoda temelji na določevanju relativnih frek- venc morfoloških skupin palinomorf. Metodo sta uvedla H. Visscher in 222 Bogomir Jelen & Janko Kušej C. J. van der Zwan. Ustrezni histogram je za vsak klastični horizont pri- kazan na si. 2. Variacijska širina vrednosti relativne frekvence posameznih morfoloških skupin palinomorf pa je dana na si. 3. Statistična analiza je še v delu. Toda že sedanja stopnja poznavanja kvantitativne porazdelitve palinomorf v treh horizontih klastičnih kamenin mežiškega rudišča je omogočila njihovo razlikovanje na lokalnem nivoju tudi v primerih, ko njihov stratigrafski položaj ni bil določen. Na si. 2 vidimo histograme, ki kažejo značilno porazdelitev morfoloških skupin palinomorf v klastičnih horizontih julijske podstopnje na območju mežiškega rudišča. Za histograme 1. klastičnega horizonta (N = 5) sta značilna dva viška; prvi, večji, na strani tipičnih higrofitnih elementov in drugi, manjši, na strani tipič- nih kserofitnih elementov. V histogramih 2. klastičnega horizonta (N = 3) se pojavi še tretji višek. Velikosti prvega in drugega viška sta lahko zelo razli.čni. Tretji, ki ga da morfološka skupina E, je vedno visok. Za histograme 3. klastičnega horizonta (N = 3) je značilno, da nimajo več viška tipičnih higrofitnih elementov. Dvig relativne frekvence mikrofitoplank- tona je naslednja značilnost 3. klastičnega horizonta. Kvantitativna analiza je pokazala, da imajo morfološke skupine palinomorf A, B, E, G, M, N, O, V, Z stalno porazdelitveno tendenco, ki je vidna iz zbirnega diagrama variacijskih širin na si. 3. Razločnost porazdelitvene tendence v smeri od 1. proti 3. klastičnemu horizontu motijo variacijske širine relativne frek- vence morfoloških skupin v 2. klastičnem horizontu (npr. morfološka skupina A 2. klastičnega horizonta) in relativne frekvence morfoloških skupin tik pod krovnino 1. klastičnega horizonta (npr. maksimalne vrednosti morfoloških sku- pin M, N, O). Motnje so verjetno posledica nestabilnih — prehodnih — razmer v dobi med 1. in 3. klastičnim horizontom. Za morfološke skupine A, B, G je značilno upadanje relativne frekvence od 1. proti 3. klastičnemu horizontu, medtem ko relativna frekvenca morfoloških skupin M, N, O, V, Z v isti smeri narašča. 1. in 3. klastični horizont se ločita med seboj po relativnih frekvencah mor- foloških skupin A, B, N, O in Z. Dodatno so uporabne tudi visoke vrednosti relativnih frekvenc G, M in V. Drugi klastični horizont se loči od prvega in tretjega po vrednosti relativne frekvence morfološke skupine E. Porazdelitveno težnjo spor, peloda in akritarhov od 1. proti 3. klastičnemu horizontu kaže diagram srednjih vrednosti njihove relativne frekvence na si. 4. V prevladovanju higrofitnih elementov v 1. klastičnem horizontu se odraža močan vpliv fluviatilno-deltnega okolja na sedimentacijo. Med elementi pre- vladujejo spore pteridofitov, tipične za premogov facies, npr. za lunškega ali schilfsandsteinskega, ki sta fluviatilna faciesa aridnega klimatskega pasu (H. Visscher & C. J. van der Zwan, 1981, 632). V manjšem višku na strani kserofitnih elementov in v njihovi majhni absolutni frekvenci se odra- ža vpliv aridnega zaledja. Vrednosti relativne frekvence higrofitnih in kserofitnih elementov v drugem horizontu so zelo različne. Slika 3 kaže, da je v času njegove sedimentacije ponehaval vpliv fluviatilno-deltnega okolja. Zato se višek na strani kserofitnih Kvantitativna palinološka analiza julijskih klastičnih kamenin v Mežici 223 elementov poveča, na levi pa zmanjša. Poveča se tudi absolutna frekvenca ksero- fitnih elementov. Veliki višek skupine Aratrisporites, tj. spor likopodofitov, tvorcev vegetacije mangrova, kaže na optimalno okolje za njihov razcvet, torej na novo okolje. Higrofitni elementi so popolnoma nazadovali v času sedimentacije 3. klastič- nega horizonta. Veliki višek se preseli na stran kserofitnih elementov. Prevladu- jejo elementi kopenske flore in flore slanih močvirij, ki bi mogli pripadati iglavcem. Vpliv fluviatilno-deltnega okolja na sedimentacije je prenehal. Relativna in absolutna frekvenca akritarhov naraščata od prvega proti tret- jemu horizontu (si. 3 in 4). Oblikovna rodova Leiosphaeridia in Micrhystridium sta značilna za energijsko razgibani priobalni pas in naj bi označevala začetek in konec transgresije (J. K. Lentin & G. L. Williams, 1980,13; F. L. S t a p 1 i n, 1961, 397). Oblikovni rod Veryhachium v 1. horizontu ne nastopa. Veryhachium je značilen za bolj odprto plitvo mirno morsko okolje (A. H o r o - witz, 1975, 75). Nekateri raziskovalci so mišljenja, da je imel oblikovni rod Dictyotidium podobno ekološko preferenco (W. A. Brugman, v razgovoru). Na podlagi porazdelitve spor, peloda in akritarhov predpostavljamo, da je bil morski vpliv v času sedimentacije prvega klastičnega horizonta neznaten. Porastel je v drugem in je bil najmočnejši v tretjem horizontu. V 1. klastičnem horizontu so našli amonite (A. Ramovš, 1974, 128; B. Jurkovšek, 1978). Vendar palinološko-facialne in sedimentološke (Pungartnik et all., v pripravi za tisk) raziskave nasprotujejo možnosti obstoja avtohtone amonitne biocenoze v 1. klastičnem horizontu. Združba peloda v julijskih klastičnih horizontih mežiškega rudišča pripada severnemu pasu širokega ekvatorialnega palinoflorističnega področja karnijske dobe, ki ga karakterizira palinoflora Camerosporites secatus-Ovalipollis pseudo- alatus. Na jugu meji na osrednji pas mešane palinoflore z elementi severnega in južnega ekvatorialnega pasu Camerosporites secatus-Ovalipollis pseudoalatus- - Samar opollenites speciosus, ki se razteza čez južno in zahodno obrobje Paleo- tetide (H. Visscher & C. J. van der Zwan, 1981, 629). References Horowitz, A. 1975, Espèces du genre Veryhachium du Permo-Trias du Sud d'Israel. Rev. Micropaléontologie, 17, 2, 75—80, Paris. Jurkovšek, B. 1978, Biostratigrafija karnijske stopnje v okolici Mežice. Geo- logija, 21, 2, 173—208, Ljubljana. Lentin, J. K. & Williams, G. L. 1980, Dinoflagellate provincialism with emphasis on Companian Peridiniaceans. A ASP, Cont. Ser. 7, 1—46, pl. 1, Dallas. Ramovš, A. 1974, Paleontologija. 155 str., Univerza Edvarda Kardelja, Ljub- ljana. S t a p 1 i n , F. L. 1961, Reef-controlled distribution of Devonian microplancton in Alberta. Paleontology, 4, 3, 392—424, pis. 48—51, London. Struci, I. 1970, Stratigrafske in tektonske razmere v vzhodnem delu severnih Karavank. Geologija, 13, 5—20, Ljubljana. Visscher, H. & van der Zwan, C. J. 1981, Palynology of the Circum- Mediterranean Triassic: Phytogeographical and paleoclimatological implications. Geol. Rundschau, 70, 2, 625—636, Stuttgart. Struci, I. 1971, On the Geology of the Eastern Part of the Northern Karawan- kes with Special Regard to the Triassic Lead-Zinc-Deposits. In: Sedimentology of parts of Central Europe. Guidebook. Verlag Waldemar Kramer Frankfurt am Main. Z o r c, A. 1955, Rudarsko geološka karakteristika rudnika Mežica. Geologija, 3, 24—28, Ljubljana. 224 Bogomir Jelen & Janko Kušej Plate 1 — Tabla 1 1. Leschikisporis aduncus (morph. gr. A) X 600 2. Aulisporites astigmosus (morph. gr. B) X 600 3. Rogalskaisporites cicatricosus (morph. gr. C) X 900 4. Camerozonosporites rudis (morph. gr. D) X 600 5. Aratrisporites sp. (morph. gr. E) X 600 6. Porcellispora sp. (morph. gr. F) X 600 7. Cycadopites sp. (morph. gr. G) X 900 8. Ovalipollis pseudoalatus (morph. gr. H) X 600 morph. gr. = morphological group — morfološka skupina Plate 1 — Tabla 1 2 — Geologija 25/2 226 Bogomir Jelen & Janko Kušej Plate 2 — Tabla 2 1 Alete (proto) bisaccate pollen grain (morph. gr. I) X 600 Aletni (proto) bisakatni pelod 2 Lunatisporites acutus/noviaulensis (morph. gr. K) X 600 3 Enzonalasporites vigens (morph. gr. M) X 600 4 Patinasporites densus (morph. gr. N) X 600 5 Paracirculina maljawkinae (morph. gr. O) X 600 6 Leiosphaeridia sp. (morph. gr. U) X 600 7 Micrhystridium sp. (morph. gr. V) X 600 8 Veryhachium sp. (morph. gr. Y) X 900 9 Dictyotidium tenuiornatum (morph. gr. Z) X 600 morph. gr. = morphological group — morfološka skupina Plate 2 — Tabla 2