Keywords: detection algorithm, polyhedron

Dušan Šurla, Zoran Budimac Institute of Mathematics, dr I. Djuričićáa 4, 21000 Novi Sad

Abstract

An algorithm is described for detecting the intersection of two simple polyhedra. The corresponding programme, implemented in Modula-2, is ossentially based on a procedure developed to test the intersection of the Jiven segment and simple polygon. The tasis for this procedure is the relations between a point, a straight line and a plane, expressed in the vector form.

1. INTRODUCTION

One of the fundamental problems in computational zeometry is detection of the intersection of two polyhedra. The problem is directiy related to 1 inear programing, hidden surface elimination, computer vision, motion planning and robotics.
of the numerous publications devoted to this subject we shall mention only those dealing with the problem of intersection $[5,6,9]$ and detection of the intersection [1-4] of two polyhedra. Some of the authors have considered the computational complexity of the algorithms used for solving these problems $[3-6,9,10]$.

In 171 and $[8 \mid$ we have described an algorithm and the corresponding programme for determination whether a given point belongs to the interjor domnin of a simple polyhedron, as well as for determination of the intersection of a straight line and a simple polyhedron. The basic procedures were formed on the basis of the relations (given in the vector form), between a point, a straight line and a plane.

The present articie is a continuation of the above studies in which our considerations are being extended onto the problem of detection of the intersection of two simple polyhedra.

2. THE ALGORITHM

Let be given two simple polyhedra P and Q. Their possible relations may be as follows:
$P \cap Q=C, \quad C \neq 0, C \neq P, C \neq Q$
$P \cap Q=p$
$(P \subseteq Q)$
$P \cap Q=Q$
$(\mathrm{Q} \subseteq \mathrm{P})$
(4)

If the intersection of at least one edge of P (resp. Q) and at least one facet of Q (resp. P) is not an empty set, then condition (1) is fulfilled. If condition (1) is not fulfilled, then P and Q intersect provided that one arbitrary vertex of P (resp. Q) belongs to the interior of the polyhedron Q (resp, P), i.e. condition 2 (resp. 3) is fulfilled. Obviously, if conditions (1)-(3) are not fulfilled, then case (4) holds, i.e., P and Q do not intersect.

Thus, testing condition (1) is reduced to the multiple use of the function for detecting the intersection of the segment (polyhedron edge) and the simple polygon (polyhedron facet). This function can be formed on the basis of the relations given in their vector form.

2.1. BASIC RELATIONS

An arbitrary point $Z \in \mathbb{R}^{3}$, considered as a vector of the same coordinates, we shall denote by \vec{z}.

Let be given the points $A \in \mathbb{R}^{3}$ and $B \in \mathbb{R}^{3}$, and the plane α in \mathbb{R}^{3} : Let us form the following expression:

$$
\begin{align*}
& D_{1}=(\vec{A}-\vec{X}) \cdot \vec{N} \tag{5}\\
& D_{2}=(\vec{B}-\vec{X}) \cdot \vec{N} \tag{6}\\
& D=D_{1} \cdot D_{2} \tag{7}
\end{align*}
$$

where \vec{N} is a vector perpendicular to a and Xea. The mark "o" denotes the scalar product of vectors. If $D<0$ (resp. $D>0)$, then the points A and B are on different (resp. on the same) side of the plane a. For $D_{1}=0$ and $D_{2}=0$ point A belongs to the plane α, and for $D_{1}=0$ and $D_{2}=0$ point B belongs to the plane a. If $D_{1}=0$ and $D_{2}=0$ then the segment $A B$ belongs to the plane a. Let us form the expressions:

$$
\begin{align*}
& \vec{E}_{1}=(\vec{G}-\vec{U}) \times(\vec{V}-\vec{G}) \tag{8}\\
& \vec{E}_{2}=(\vec{H}-\vec{U}) \times(\vec{V}-\vec{H}) \tag{9}\\
& E=\vec{E}_{1} \cdot \vec{E}_{2} \tag{10}
\end{align*}
$$

where the points G, H, U and V belong to the same plane. The mark " x " stands for the vector product of vectors. If $E>0$ (resp. $E<0$), then the points G and H are on the same (resp. on different) side of the straight line determined by the points U and U. For $E_{1}=0$ (resp. $E_{2}=0$) point G (resp. H) lies on the straight line determined by the points U and V.

On the basis of relations (8)-(10) it can be determined uhether the segments GH and UV intersect. Namely, if the points G and H are on the different sides of the straight 1 ine $U V$ and the points U and V are on the different sides of the straight line $G H$, the two segments intersect, otherwise not.

2.2. DETECTION OF THE INTERSECTION OF A SEGMENT AND A SIMPLE POLYGON

Let us denote the vertices of an edge of the one polyhedron by A and B, and by S a facet of the other polyhedron. Facet S is a simple polygon. Let the plane a be determined by the polygon S. Let us suppose the values in expressions (5)-(7) are as follows: $D<0 ; D_{1}=0$ and $D_{2} \neq 0 ; D_{1} \neq 0$ and $D_{2}=0$. In these cases the intersection of the segment $A B$ and the plane a is a point. Let us denote this point by R. If R belongs to the interior region or of the hull of the polygon s, then the intersection of the segment and polygon S is not an empty set. In the case when the segment $A B$ belongs to the plane a, then detection of the intersection of the segment $A B$ and polygon S consists in the following. The intersection of the segment $A B$ and all the edges of S is tested on the basis of relations (8)-(10). If this intersection is an empty set, then it is necessary to test additionally if at least one of the points A and B belongs to the interior region of S. If it does, the intersection of the segment $A B$ and polygon S is not an empty set.

Therefore, detection of the intersection of the segment $A B$ and polygon S is reduced further to solving the following task.

Given a simple polygon S in a and the point Rea, determine if the point R belongs to the interior region of s.

Let r be an arbitrary straight line lying in the plane a and passing through the point R. Let us introduce the following definitions.

Definition 1. The intersection point between r and the hull of P is a piercing point if at this point r passes from the interior into the exterior domain of P, or vice versa.

Definition 2. The edge of the simple polygon S, lying on the straight line r is a piercing edge if one vertex of this edge borders upon the internal and the other on the external region of 5 .

Then, the following theorem holds.

Theorem. point R belongs to the interior region of S if on the same side of the point R lying on the straight line r, the sum of: piercing points and plercing edges is an odd number.

Proof. Let us suppose the point Y moves along the straight ine r from infinity to the point R. Then Y belongs to the exterior domain of S until it reaches the first piercing point, or piercing edge. After passing through the first plercing point / piercing edge, the point Y enters the interior domain of s and remains in it until reaching the second piercing point / piercing edge. Afterwards, the point Y comes again to the exterior domain, and so on. Therefore, if point Y coincides with R after passing through an odd number of the sum of piercing points and piercing edges, then R belongs to the interior domain of polygon S.m Let us denote an edge of s by $V_{i-1} V_{i}$. The straight line r and the edge $V_{1-1} V_{1}$ may have one of the following relations:

$$
\begin{aligned}
& \text { (i) } r \cap V_{i-1} V_{1}=T \text {; } \\
& \text { (ii) } r \cap V_{i-1} V_{1}=V_{i} \text { or } r \cap V_{1-1} V_{1}=V_{1-1} \text {, } \\
& \text { (iii) } r \cap V_{1-1} V_{1}=V_{1-1} V_{1} . \\
& \text { (ir) } r \cap V_{i-1} V_{i}=\varnothing
\end{aligned}
$$

In case (1) T is a piercing point. Let in case (ii) the intersection be the vertex V_{1}. Then V_{1} is a piercing point if the vertices V_{1-1} and V_{1+1} are on different sides of the straight line determined by the points V_{1} and R, i.e. if the following condition is fulfilled:
$\left(\left(\vec{V}_{i-1}-\vec{V}_{i}\right) \times\left(\vec{R}-\vec{V}_{i-1}\right)\right) \cdot\left(\left(\vec{V}_{1+1}-\vec{V}_{i}\right) \times\left(\vec{R}-\vec{V}_{1+1}\right)\right)<0$ (11)

In case (iii), the edge $V_{i-1} V_{i}$ is a piercing edge if the vertices V_{1-2} and V_{1+1} are on different sides of the straight line $r, i . e$. if the following condition is fulfilled:

$$
\begin{equation*}
\left(\left(\vec{V}_{1-2}-\vec{V}_{1-1}\right) \times\left(\vec{V}_{1}-\vec{V}_{1-1}\right)\right) \cdot\left(\left(\vec{V}_{1+1}-\vec{V}_{i-1}\right) \times\left(\vec{v}_{1}-\vec{V}_{1+1}\right)\right)<0 \tag{12}
\end{equation*}
$$

Obviously, in case (ix), the edge $V_{1-1} V_{1}$ is not a piercing edge and there are no piercing points on it.

Figure 1 shows an illustrative example of the intersection of the straight line r and polygon S. The corresponding intersection points are $K_{1}, K_{2}, K_{3}, K_{4}$ and V_{16}, and the piercing edge is $V_{10} V_{11}$. Additionally, the edges $V_{2} V_{3}$ and $V_{6} V_{7}$ and the vertex V_{13} are lying on the straight line r. On the basis of these data, it is possible to determine if a point Rer is on the hull of S, or it belongs to the interior, exterior region of S. First, if the point R coincides with one of the piercing points K_{1}. K_{2}, K_{3}, K_{4} and V_{15}, or with the vertex V_{13}, or it belongs to one of the edges $V_{2} V_{3}, V_{6} V_{7}$ and $V_{10} V_{11}$, then R is on the hull of S. Second, let us suppose that the point R is between K_{3} and v_{10}. Then, on the one side of this point are found the piercing points $K_{1}, K_{2} 1 K_{3}$, and on the other side, the piercing edge $V_{10} V_{11}$ and the piercing points K_{4} and v_{15}. Obviously, on the basis of the given theorem, in both cases point R belongs to the interior region of S.

Let us consider now the segment $R R_{\infty}$, where
the point A_{∞} is chosen to belong to the exterior region of S, which is easily achieved by taking that absolute values of the coordinates of the point R_{∞} are large. The algorithm for determining if R belongs to the interior region of S, can be formed as a Modula-2 function procedure Internal in the following way:

PROCEDURE Internal(R, S): BOOLEAN;

[Procedure Internal returns TRUE if point R belongs to the interior region or to the hull of the simple polygon S, whose vertices are denoted by $V_{1}, i=1,2, \cdots, n$, where it is assumed that $V_{n}=V_{0}, V_{n+1}=V_{1}, V_{n+2}-V_{2}$.
K is the sum of piercing points and piercing edges. 1

BEGIN

$K:=0$;
Determination of point R_{∞};
FOR $1:=1$ TO n DO
IF $\left(R \leq V_{i} V_{i+1}\right)$ THEN
RETURN TRUE
ELSIF $\left(V_{1} V_{i+1} \subset R R_{\infty}\right)$ AND
$\left(V_{i-1}, V_{j+2}\right.$ are on different sides of the
straight line $R R_{\infty}$) THEN
INC(K)
ELSIF $\left(V_{i} \in R R_{\infty}\right)$ AND
$\left(V_{i-1}, V_{i+1}\right.$ are on different sides of the
straight 11 ne $R_{c o}$) THEN
INC(K)
ELSIF $\left(V_{i} V_{1+1} \cap R_{\infty} * 6\right)$ THEN

$$
\operatorname{INC}(K)
$$

END
END
RETURN $K<>0$ AND $\operatorname{ODD}(\mathrm{K})$
END Internal;
In the given algorithm, the relations between two segments, and between a point and a segment are determined on the basis of relations (8)-(10).

The algorithm for determining if an edge and a facet intersect is the auxiliary one, and will be used in the final step. It is formed as the Modula-2 function procedure Intersect.

PROCEDURE Intersect(E, F): BOOLEAN;
1 Procedure Intersect returns TRUE if the edge E and the facet F intersect, otherwise it returns FALSE J
BEGIN
IF $(E \cap$ plane $(F) \neq \emptyset)$ THEN
IF ($\mathrm{E} \subset \mathrm{plane}(\mathrm{F}))$ THEN
IF (E n hull $1(F) \neq \varnothing)$ THEN
RETURN TRUE
ELSE
R is one of the vertices of E
IF Internal (R, F) THEN
RETURN TRUE
END
END
ELSE
$\mathrm{B}:=\mathrm{E}$ ก plane (F)
IF Interna1(R, F) THEN
RETURN TRUE
END
END
END;
RETURN FALSE
END Intersect:

2.3. PROCEDURE FOR DETECTING THE INTERSECTION OF TWO SIMPLE POLYHEDRA

Let us denote by $E P_{1}, 1=1,2, \ldots,|E P|$ and $F P_{i} i=1,2, \ldots,|F P|$ the edges and facets of the simple polyhedron P, and by $E Q_{1}, 1=$ $1,2, \ldots,|E Q|$ and $F Q_{1} 1=1,2, \ldots,|F Q|$ the corresponding edges and facets of the polyhedron Q. Then, the algorithm for detecting the intersection of P and Q may be presented in the form of Modula-2 function procedure PolyhedraIntersection.

PROCEDURE PolyhedraIntersection(P, Q): BOOLEAN; 1 Procedure PolyhedraIntersection returns TRUE if Polyhedra P and Q intersect, otherwise returns FALSE \}

```
BEGIN
```

 FOR \(1:=1\) TO IEP| DO
 FOR \(j:=1\) TO \(|F Q|\) DO
 IF Intersect (EP \({ }_{i}, \mathrm{FQ}_{j}\)) THEN
 RETURN TRUE
 END
 END
 END
 FOR \(i:=1\) TO |EQ| DO
 FOR \(\mathrm{j}:=1\) TO \(|F P|\) DO
 IF Intersect \(\left(E Q_{i}, F_{j}\right.\)) THEN
 RETURN TRUE
 END
 END
 END
 IF (any vertex(\(P\)) \(\in Q)\) OR \(\{P \subseteq Q\), cond. (2) \}
 (any vertex(\(Q\)) \(\in P\)) \((Q S P\), cond. (3) \}
 THEN
 RETURN TRUE
 ELSE
 RETURN FALSE
 END:
 END Polyhedralntersection;

The modules for testing whether any vertex of one polyhedron belongs to the interior domain of the other polyhedron has been given in [8].

3. TEST EXAMPLE

Data structure of the simple polyhedra P, Q and R is given in Tables 1,-3.

Figure 1

Table 1

Ordinal no. of vertex	P	Polyhedra		
1	$(0,0,0)$	$(1,1,1)$	$(0,0,6)$	
2	$(5,0,0)$	$(6,1,1)$	$(5,0,6)$	
3	$(3,2,0)$	$(4,3,1)$	$(3,2,6)$	
4	$(4,4,0)$	$(5,5,1)$	$(4,4,6)$	
5	$(2,2,5)$	$(3,3,6)$	$(2,2,11)$	

Table 2

Ordinal	Edge determined
no. of edge	by vertices
1	1,2
2	2,3
3	3,4
4	4,5
5	4,1
6	1,5

Table 3

Ordinal no. of facet	Facet determined by ordered vertices
1	$1,2,5$
2	$2,3,5$
3	$4,5,4$
4	$1,2,5$
5	

$P \cap Q \times \varnothing$ and $P \cap R=\varnothing$.

4. CONCLUSION

On the basis of the relations derived in vector form, a function can be easily formed for testing of the intersection of a given segment and a simple polygon. The multiple use of this function can serve for detecting the intersection of two simple polyhedra P and Q for the cases when $P \cap Q=C, C \neq, C \neq P$ and $C M$ Q. The introduced vector relations may be suited for solving other problems in computational geometry.

References:

1. J. W. Boyse, Interference Detection Among Sollds and Surfaces, Communications of the ACM 22(1), 3-9(1979).
2. G. Davis, Computing Separating Planes for a Pair of Disjoint Polytopes, Proc. ACM Symposium on Computational Geometry, 8-14(1985).
3. D. P. Dobkin, D. G. Kirkpatrick, A Linear Algorithm for Determining the Separation of Convex Polyhedra, Journal of algorithms 6, 381-392(1985).
4. D. P. Vobkin, D. G. Kirkpatrick, Fast Detection of Polyhedral Intersection, Theoretical Computer Science 27. 241-253(1983).
5. S. Herte1, M. Mäntylä, K. Mehlhorn, J. Nievergelt, Space Sweep Solves Intersection of Convex Polyhedra, Acta Informatica 21 , 501-519(1984).
6. K. Mehihorn, K. Simon, Intersecting Two Polyhedra One of which, is Convex, FCT, 535-542(1985).
7. D. Surla, The Relation Between a Point and a Simple Polyhedron, Informatica 12(2),
8. D. Surla, Lj. Jerinic, An A1gorithm for Determining the Relation Between a Straight Line (Point) and a Simple Polyhedron, The Third International Conference on Computer Graphics, Dubrounik, Yugoslavia, 1988, in press.
9. M. Sziluási-Nagy, An Mlgorithm for Determining the Intersection of Two Simple Polyhedra, Computer Graphics Forum 3, 219-225(1984).
10. A. C. Yao, R. L. Rivest, On the Polyhedral Decision Problem, SIAM J. Computing 9(2), 343-347(1980).

APPENDIX

IMPLEMENTATION OF THE ALGORITHM

A.1. PRELIMINARIES

For representing a simple polyhedron, the following data structure has been adopted:

A vertex is represented by the array point of three real numbers, i.e. coordinates of the paint. An edge ts represented by the record Edge of two points, and a polygon is represented by the record Polygon i.e. by the array V of No points.

A polyhedron is represented by the record Polyhedron i.e. by its vertices (array vertices of NOP points), edges (array Edges of NoE vertex indices - pointers to array Vertices) and facets (array Facet of NoF vertex indices - polnters to array Vertices). The 1 -th element of the array NoOfV contain the information on the number of vertices of the $i-t h$ polyhedron facet.

There are two operations on data structures representing polyhedron. The first one (impiemented as the function procedure Edg(P: Poiyhedron; i: CARDINAL): Edge sclects the $1-$ th edge of the polyhedron P. The other one (implemented as the function procedure Fac(P: Polyhedron; i: CARDINAL): Polygon selects the $i-t h$ facet of the polyhedron P. Both procedures return their values in appropriate data structures, i.e. Edge and Polygon, respectively.

PROCEDURI: Edg(P: Polyhedron; i: CARDINAL): Edge;
VAR E: Edze;
BEGIN
WITH P DO
E.F := Vertices[Edges[1,1]];
E.S : $=$ Vertices[Edges[i,2]];

END;
RETURN E
END Edg;
PROCEDURE FaC(P: Polyhedron; i: CARDINAL):

```
VAR S: Polygon;
    j: CARDINAL;
BEGIN
    WITH P DO
        S.No := NoOfV[1]
        FOR j := 1 TO S.NO DO
            S.V[j] := Vertices[Facets[i,j]]
        END;
    END;
    RI:TURN S
END Fac;
```

We will cite without a source code some procedures for basic vector operations, which we need for implementation of the a1gorithm:

PROCEDURE ScalarMul(V1,V2:Point): REAL;•
[ScalarMul $=\vec{\nabla} 1 \cdot \bullet 2$]
PROCEDURE VecEqual(V1,V2:Point): BOOLEAN;
(VecEqual $=(\overrightarrow{\mathrm{V}} 1-\overrightarrow{\mathrm{V}} 2)\}$
PROCEDURE VecAdd(V1, V2:Point): Point;
(VecAdd $=\vec{V} 1+\vec{V} 2$]
PROCEDURE VecScMu1(A:REAL; V1:Point): Point;
\{ VecScMul=A* \vec{V}_{1} \}
PROCEDURE Veasub(V1, V2: Point): Point;
[VecSub $=\vec{\nabla} 1-\vec{V} 2$]
PROCEDURE VecMu1(V1, V2: Point): Point;
\{ VecMul= $\vec{V} 1 \times \vec{V} 2$ \}

A.2. PROCEDURE INTERNAL

The procedure determines if the given point belongs to the interior domain of the simple polygon. It uses additional procedures oppsides and Between , which are based on relations (8)-(10).

If points A and B are on different sides of the straight line determined by C and D, then function procedure OppSides returns TRUE, otherwise it returns FALSE.

Procedure oppsides(A, B, C, D: Point): BOOLEAN; VAR E1, E2: Point;
BEGIN
$E 1:=\operatorname{Vecmu}(\operatorname{VecSub}(A, C), \operatorname{VecSub}(D, A)) ;$
$E 2:=\operatorname{VecMul}(\operatorname{VecSub}(B, C), \operatorname{VecSub}(D, B))$;
RETURN Scalarmul(E1,E2) < 0.0
END Oppsides;
If the point R is on the segment $V_{1} V_{2}$, then the function proceclure Between returns TRUE, otherwise it. returns FALSE.

```
ProcEDURE Between(R, V1, V2: Point): BOOLEAN;
    PROCEDURE Opposite(): BOOLEAN;
    BEGIN
        RETUIN ScalarMul(VecSub(R,V1),
                                    VecSub(R,V2))}<=0.
    END Opposite;
    PROCEDURE SameLine(): BOOLEAN;
    VAR Zerovec, E: Point;
    BEGIN
        Zerovec[1] := 0.0;
        Zerovec{2l := 0.0;
        Zerovocl3] :=0.0;
        E := VecMul(VecSub(R,V1), VecSub(R,V2));
        RETURN VecEqual(E, ZeroVec)
    END SameLine:
BEGIN
    RETURN SameLine() AND Opposite()
END Between;
```

If the point R belongs to the interior domain of the simple polyhedron S, then function procedure Internal returns TRUE, otherwise it returns FALSE.

PROCEDURE Interna1(R: Point; S: Polygon):

```
CONST Inf = 200.0;
VAR 1, K: CARDINAL;
    RInf: Point;
    PROCEDURE NextV(i: CARDINAI,): Point;
    BEGIN
        RETURN S.V[(i MOD S.No) + 1)
    END NextV;
    PROCEDURE Next2V(i: CARDINAL): Point:
    VAR Ind: CARDINAL;
    BEGIN
            Ind := (i MOD S.No) + 1;
            RETURN S.V[(Ind MOD S.No) + 1]
    END Next2V;
    PROCEDURE PrevV(1: CARDINAL): Point;
    BEGIN
        IF i=0 THEN
            RETURN S:V[S.NO]
        ELSE
            RETURN S.V[i-1]
        END
        END PrevV;
BEGIN
    K := 0;
    WITH S DO
        RInf:= VecAdd(VecScMul(Inf, VecSub(R,V[1|)),
                        V[1]);
    FOR i := 1 TO NO DO
        IF Between(R, V[i], NextV(i)) TIIEN
            RETURN TRUE
        ELSIF Between(VIi], R, RInf) AND
            Between(NextV(1); R, RInf) AND
                OppSides(PrevV(i),Next2V(i),R,RInf) THEN
                                    INC(K)
    ELSIF Between(VIi|, R, RInf) AND
                OppSides(PrevV(i),NextV(i),R,RInf) THEN
                INC(K)
        ELSIF OppSides(V[i], NextV(i), R, RInf) AND
                    OppSides(R, RInf, VIil, NextV(i)) THEN
                INC(K)
                END
        END;
    END;
    RETUNN (K<>0) AND ODD(K)
END Internal;
```


A.3. PROCEDURE Polyhedralntersection

The procedure determines if two simple polyhedra intersect. Additional procedures InterExists and Sameplane are based on relations (5)-(7).

If the intersection between the segment E and the plane determined by polygon S is not an empty set, then the function procedure InterExists returns TRUE, otherwise it returns FALSE.

PROCEDURE InterExists(E: Edge; S: Polygon):
BOOLEAN;
VAR N: Point;

```
        E1, E2: REAL;
BEGIN
    WITH S DO
        N := VecMul(VecSub(V[1], V[2]),
                                    VecSub(V[2], V[3]))
        E1 := Sca1arMul(VecSub(E:F, V[1]),N);
        E2 := ScalarMul(VecSub(E.S, V[1]), N);
    END;
    RETURN E1*E2 << 0.0
END InterExists;
```

If the segment E belongs to the plane determined by polygon S, then the function procedure Sameplane returns TRUE, otherwise it returns FALSE.

PROCEDURE SamoP1ane(E: Edge; S: Polygon):
VAR N: Point;
E1, E2: REAL
BEGIN
WITH S DO
$\mathrm{N}:=\operatorname{VecMul(VecSub}(\mathrm{V}[1], \mathrm{V}[2])$,
vecSub(V[2], V[31)):
E1 : = ScalarMul(VecSub(E.F, V|1]), N);
E2 : = ScalarMul(VecSub(E.S, V[1]), N);
END;
RETURN ($\mathrm{E} .1=0.0$) AND $(\mathrm{E} 2=0.0)$
END SamePlane;
If the intersection between the segment E and the hull of S is not an empty set, then the function procedure Hullintersect returns TRUE, otherwise it returns FALSE. Procedure is based on mutual application of procedure OppSides.

PROCEDURE IH:1IIntersect(E: Edge; S: Polygon): BOOLEAN;
VAR i: CARDINAL;
NV: Point;
BEGIN
WITH S DO
FOR $i:=1$ TO NO DO
$N V:=V[(\mathrm{i} M O D \mathrm{NO})+11$;
IF Oppsides(V[i], NV, E.F, E.S) AND
OppSides(E.F, E.S, V[i], NV) THEN RETURN TRUE

END;

END
 END;

RETURN FALSE
END Hullintersect;
Function procedure CrossingPoint returns the piercing point between the segment E and the plane determined by polygon S. The procedure is called only when E is piercing the plane.

PROCEDURE CrossingPoint(E: Edge; S: Polygon): Point:
UnR R: Point:
$\mathrm{Aa}, \mathrm{Bb}, \mathrm{Cc}, \mathrm{Dd}, \mathrm{L}: \mathrm{RI} A \mathrm{~A} ;$
BEGIN
WITH S DO
$A a:=(V[2,2]-V[1,2]) *(V[3,3]-V[1,3])$

- (V[3,2]-V[1,2])*(V[2,3]-V[1,3]);
$\mathrm{Bb}:=(V[2,3]-V[1,3]) *(V[3,1]-V(1,1])$
- (V[2,1]-V[1,1])*(V[3,3]-V[1,3]);
$\mathrm{Cc}:=(\mathrm{V}(2,1]-\mathrm{V}[1,1]) *(\mathrm{~V}[3,2]-\mathrm{V}[1,2])$ - $\operatorname{V}\{3,1]-V[1,1]) *(V[2,2]-V[1,2]) ;$
$\mathrm{Dd}:=-\mathrm{V}[1,1]^{*}(\mathrm{~V}[2,2]-\mathrm{V}[1,2]) *(\mathrm{~V}(3,3 \mid-\mathrm{V}[1,3])$ $-V[1,3] *(V[2,1 \mid-V[1,1]) *(V[3,2 \mid-V[1,2])$ $-V(1,2]^{*}(V[2,3)-V[1,3]) *(V[3,1]-V(1,1])$ $+V(1,3]^{*}(V[3,1]-V[1,1]) *(V[2,2]-V[1,2])$ $+V[1,1] *(V[3,2]-V[1,2]) *(V[2,3]-V[1,3])$ $+V(1,2] *(V[2,1]-V[1,1]) *(V[3,3]-V[1,3]) ;$
$\mathrm{L}:=(\mathrm{Aa} * \mathrm{E} . \mathrm{F}[1]+\mathrm{Bb} * \mathrm{E} . \mathrm{F}[2]+\mathrm{Cc} * \mathrm{E} . \mathrm{F}[3]+\mathrm{Dd}) /$ (Aa*(E.S[1]-E.F[1])+Bb*(E.S[2]-E.F[2])+ Cc*(E.S(3)-E.F[3]));
END;
$R[1]:=E . F(1)-1 . *(E . S(1)-E . F[1]) ;$
R[2]: =E.F\{2]-L.*(E.S[2]-E.F[2]);
R[3]:=E.F[3]-L*(E.S[3]-E.F[3]);
RETURN R
END CrossingPoint:
If the intersection between the segment E and the polygon S is not an empty set, then the function procedure Intersect returns TRUE, otherwise it returns FALSE. The procedure is based on afore-mentioned procedures and the algorithm described in section 2.2 of the paper.

PROCEDURE Intersect(E: Edge; S: Polygon):

BEGIN

IF InterExists(E, S) THEN
IF SamePlane(E, S) THEN IF HuliIntersect(E, S) THEN RETURN TRUE
ELSE
RETURN Internal(E.F. S) OR
Internal(E.S. S)
END
ELSE
RETURN Internal(CrossingPoint(E, S), S) END:
END;
RETURN FALSE;
END Intersect;
If the intersection of simple polyhedra P and Q is not an empty set, then the function procedure PolyhedraIntersection returns TRUE, otherwise it returns FALSE.

PROCEDURE PolyhedraIntersection(P, Q:
Polyhedron): BOOLEAN;
VAR i, j : CARDINAL;
BEGIN
FOR $i:=1$ TO P.NOE DO
FOR $\mathrm{j}:=1$ TO Q. NOF DO
IF Intersect(Edg(P,i), Fac(Q,j)) THEN RETURN TRUE
END
END
END;
FOR i:=1 TO Q. NoE DO
FOR j:=1 TO P.NOF DO
IF Intersect(Edg(Q,i), Fac(P,j)) THEN RETURN TRUE
END
END
END;
RETURN FALSE
END PolyhedraIntersection;

