
14

PARALLEL IMPLEMENTATION
OF VLSI HED CIRCUIT SIMULATION

INFORMATICA 2/91

Keywords: circuit simulation, direct method,
vvaveform relaxation, parallel algorithm, parallel
computer architecture

Srilata Raman
University of lowa, lowa City, U.S.A.

Laiit Mohar Patnaik
Indian Institute of Science, Bangalore, India

Junj Šile
Marjan Špegel

Jožef Štefan Institute, Ljubljana, Slovenia

The importance of circuit simulation in the design of VLSI circuits has channelised research work in the direction of
finding methods to speedup the highly compute-intensive problem of circuit simulation. Attempts have been made to
find better algorithms and to use parallel architectures to accelerate the simulation task. This paper deals vvith the two
well-known circuit simulation algorithms - direct methods and relaxation method. The issues involved in parallelizing
these algorithms and various computer architectures that have been reported in the literature are presented in this
paper.

IZVEDBA VZPOREDNE SIMULACIJE VLSI VEZIJ - Potreba po simulaciji VLSI vezij pri njihovem snovanju je
usmerila raziskovalno delo v iskanje metod za pohitritev računsko intenzivenega postopka simulacije vezij. Predmet
raziskav je iskanje učinkovitejših algoritmov ter uporaba vzporednih arhitektur za izvajanje simulacije. V članku sta
obravnavana dva dobro znana algoritma za simulacijo vezij: direktna in relaksacijska metoda. Prikazane so vzporedne
različice omenjenih algoritmov ter podan pregled računalniških arhitektur, ki so namenjene izvedbi vzporedne simu
lacije VLSI vezij.

1 Introduction

The complexity of VLSI circuits is growing with
the improvement in manufacturing methods and
advent of new technologies. This has manifested
itself in the increasing number of devices on a sin-
gle chip. Design verification of VLSI chips has be-
come indispensable to ensure that the circuit meets
its requirements. The simulation of integrated cir
cuit (IC) chips at the electrical level constitutes the
most important design verification step. However,
the dramatic increase in the complexity of ICs has
burdened the capabilities of traditional circuit sim-
ulators like SPICE2 [Nag75]. Gate-level logic sim-
ulators [ST75] and switch-level simulators [HHL82]
can verify circuit functions and provide first order
timing information more than three orders of mag-
nitude faster than detailed circuit simulator. How-
ever, it is necessary to perform accurate electrical
simulation to verify circuit performance for criti-
cal path, memory design, and analog circuit blocks,
and to detect de circuit problems such as noise mar-
gin errors or incorrect logic threshold. Once of the
most common analyses performed by circuit sim

ulators and most expensive in terms of computer
time is nonlinear, time-domain transient analysis
of electrical circuits. This analysis provides pre
dse electrical waveform information if device mod-
els and parasitics of the circuit are characterized ac-
curately. Traditional circuit simulators like SPICE
required excessive CPU time to generate voltage
and current waveforms for circuits containing more
than a few hundred transistors. As an example, a
700 MOSFET circuit analyzed for 4 /is of the sim-
ulated time with an average 2 ns time step, takes
approximately 4 CPU hours on a VAX 11/780 VMS
computer vvith floating-point accelerator hardware
using SPICE2.

This situation has spurred vigorous research
aimed at reducing the cost of circuit simulation.
A number of approaches have been used to over-
come the dravvbacks of conventional circuit simula
tors. The time required to evaluate complex device
models has been reduced using the table look-up
models [CGK75]. Special-purpose microcode has
been used for reducing the time required to solve
linear systems and node tearing techniques have
been used to exploit circuit latency by bypassing

15

the solution of the subcircuits whosc states are not
changing. In addition high perforrnance comput-
ers with vector processing capabilities lil<e CRAY
[CA79] have been used to exploit parallelism and
pipelining available in the circuit sirnulation pro
gram. But, circuit sirnulation programs are not
well suited to such computers. The reason is that
as the circuit matrix is sparse and has an irregular
structure, the data gather-scatter tirne dominates
the overall program execution tirne [CA79]. This
means that fetching the data stored in memory and
writing it back after it has been processed poses a
bottleneck. AH the above approaches have been
found to result in an order of magnitude speedup
over SPICE.

A recent development is the use of relaxation
methods [NSV84] for solving the set of ordinary
differential equations describing the circuit under
analysis rather than using the direct sparse ma-
trix methods on which standard circuit simulators
are based. Simulators using this method have been
shown to provide guaranteed accuracy [NSV84]
with upto two orders of magnitude speed improve-
ment forlarge circuits [LRSV82]. This new method
has been found to offer much greater speedups
on special-purpose hardware designed to exploit
the particular features of the relaxation algorithms
[DN84]. In the foUovving sections the direct and
relaxation-based algorithms and issues in their par-
allel implementation are presented.

t = 0

t = t + h

Numerical
Iiitegration

Linearization
by N-R method

Liiiear Equalion
Solution

Store the tirne
point solution

Print the
output data

STOP

Figure 1: Flovvchart of Direct Method of Circuit
Sirnulation.

2 Direct-method
Sirnulation

for Circuit

The most common approach to solving the cir
cuit equations in time-domain analysis employs
three basic numerical methods [NSV84]: an im-
plicit integration method, the Newton-Raphson
(N-R) method and sparse Gaussian elimination
method. These tree methods constitute the stan
dard method of circuit simulation on which conven-
tional circuit simulators like SPICE [Nag75] and
ASTAP [WJM+73] are based. The analysis por-
tion of a circuit simulation program determines the
numerical solution of a mathematical representa-
tion of the circuit. The mathematical system of
equations for physical circuit is obtained by repre-
senting each element in the circuit by its mathe
matical model. The system of equations describing

the complete circuit is given by the model equations
and the Kirchoffs current and voltage laws applied
to the interconnection of the circuit elements. As a
result algebraic-differential equations of the form,

F(x,x,0 = O (1)

are obtained. ITere, x € IR is the vector unknown

circuit variables, x G IR^ is the time derivative of

X and F is a nonlinear operator.

Transient analysis determines the time-domain
response of the circuit over a specified time-interval
(O, T) . The flovvcliart of the standard circuit simu
lation method is shovvn in Fig. l .

The cntire simulation time interval is liivided into
a number of discrcte time points (0,ti,Ž2 . . . , /„ ,
ln+\ . •. ,T). x" , the Information from the prcvi-
ous time point is used to predict the solution x"'*"'

16

at tn+i- A stiffly stable integration formula like
Backward-Euler (BE) with variable tirne is used
to descretize the nodal equation to yield a set of
nonlinear, algebraic equations of the form

g{x) = O (2)

where x € IR is the vector of unknovvn variables at
time /„+1. The above equations are solved using N-
R algorithm to yield a set of sparse linear equations
of the form,

A x = b (3)

\vhere A G |R^XA^ jg a matrix related to the Ja-
cobian of g and b € IR^. These equations are
solved using direct methods like Gaussian Elimi-
nation (GE) or sparse LU decomposition.

The major computation in circuit simulation lies
in formulating and solving the system of linear alge
braic equations simultaneously. It has been shown
in [NP78] that the storage and computer time re-
quired by circuit simulation increase rapidly with
the size of the circuit, measured in terms of the
number of circuit components. Thus for transient
analysis, the standard circuit simulators are cost-
effective only when the circuit size is limited to
a few hundred devices. VLSI circuits with over
10.000 devices impose severe strain on standard cir
cuit simulators. This has necessitated development
of alternative circuit simulators. The standard cir
cuit simulators have yet another dravvback. For
most circuits, the fraction of nodes that change
their voltage values at a given point in time de-
creases as the circuit size increases. So only the
circuit equations representing the active nodes need
to be solved at any time, bypassing the solution of
equations of the nodes which are not active at the
time instant. Circuit simulators must exploit this
time sparsity or latency because the computational
complexity of the GE method applied to a,n N x N

dense matrix is proportional to 0{N^) vvhereas the
computational complexity of the GE method for
sparse matrices is proportional to 0{N'^), 1.2 <
a < 1.5. The performance of standard circuit sim
ulators is compromised for large circuits because
they solve the set of equations describing the en-
tire circuit simultaneously irrespective of whether
a given node is active or not. Relaxation-based
methods help in overcoming these drawbacks.

3 Relaxation Algorithm

The basic concepts of relaxation-bascd algorithm
have been described in great detail in [NSV84]. H.c-
laxation methods can be used with a variety of IC
technologies though they are particularly suited to
the analysis of large MOS digital ICs. llclaxa.tion-
based circuit simulators make an important as-
sumption that a two terminal capacitor is coii-
nected from each node of the circuit to the reference
node. This assumption is satisfied by thc circuits
where parasitic capacitances are present bctwocn
circuit interconnect and ground or thc tcrminals of
active circuit elements. Under this assumptioji, tiic
nodal equations of a circuit are given by,

C (v (/) , u (O M i) = - q (v (0 , u (0) , ('1)

v(0) = v (.5)

for O < / < 2' vvhere, v(/) € IR" is vector of node
voltages at time t, V is the given initial values of
v , v(/) £ IR" is vector of time derivatives of v(/.),
u(i) e IR" is input vector at time t, C : IR" -^ IR""*"
is nodal capacitance niatrix, q : IR"xlR" —> IR", aiul
q (v (0 , u (0) = [(? i (v (0 ,u (<)) , . . . , 7n (v (/) , u (/)) f ,
vvhere rji is sum of currents charging the capacilors
connected to node i.

The two common relaxation methods used aie
the Gauss-Seidel (GS) and the Gauss-Jacobi (GJ)
method. Relaxation methods can be used for the
solution of equations (4) in difFerent ways. Fig.2 il-
lustrates the levels at which relaxation methods can
be applied. Linear relaxation method is applied al
the linear equation level and consists of replacing
the GE method for solving equation (3) by GJ or
GS. Nonlinear relaxation methods are applied at
the nonlinear equation level and augmenl the N-
R method applied to equation (2). They replace
the linear equation solution based on sparse-matrix
techniques. Relaxation methods when applied di-
rectly to the system of nonlinear algebraic cqiia-
tions describing the circuit are termed VVaveform
Relaxation (WR) [NSV84]. As a result of this, thc
system is decomposed into decoupled subsystems
of algebraic-differential equations corresponding to
decoupled dynamical subcircuits. Each decoupled
subcircuit is then analyzed for the entire simulation
time interval using the standard simulation tech-
niques. Such a decomposition permits latency to
be exploited. Decomposition into subcircuits per
mits a trade-ofF betvveen the amount of time spcnt

file:///vhere

17

' '

Numerical
Integration

' • '

N-R
Linearization

' 1 '

Direct-Method
Linear Equation
Solution (GE or

LU decomposition

'

Relaxation
Iteration

Relaxation
Iteration

Relaxation
Iteration

Nonlinear
DifFerential
Equations

' r

Numerical
Integration

''

N-R
Linearization

•
1

Direct-method
Linear Equation
Solution (GE or

LU decomposition)

•

Solution Subvector
for a subcircuit

Solution Vector

Figure 2: Relaxation Applied at DifFerent Levels of Analisis.

on any single processor at an iteration and the time
spent commiinicating the results of the analysis.
This is a key requirement for deriving max:mum
efRdency from a parallel processing environment.

The WR algorithm using GS iteration is given
in Fig.3. Superscript k is the iteration count, sub-
script i is the component index of a vector, e is
a small positive number, N is the majcimum node
number and n is the number of circuit variables.

Modifications in the WR algorithm help in im-
proving the speed of convergence. Instead of solv-
ing each difFerential equation for one unknovvn
(point relajcation), the system of difFerential equa-
tions can be partitioned into subsystems having
more than one equation (block relaxation). Each
decomposed circuit is then solved using standard
simulation techniques. Each subcircuit can be an-

. alyzed independently [NSV84] from t = O to f = T,

using its own time step sequence, controlled by the
integration method. As opposed to this, in a stan
dard circuit simulator entire circuit is analyzed over
the total simulation time using only one common
time step sequence. The number of time step for
each subcircuit is thus less in WR decomposition
which is a definite computational advantage. La-
tency of the circuit can be exploited by incorporat-
ing bypass techniques. Without losing accuracy the
analysis of subcircuits is bypassed for some time in-
tervals knowing the Information obtained from the
previous time point or previous iteration. The by-
pass techniques have been described in [NSV84] in
detail.

WR methods have guaranteed convergence and
have proven to be efFective decomposition methods
for the analysis of large scale MOS circuits. How-
ever, they do sufFer from a few drawbacks. The

18

k <- 0;

guess waveform v°(/) Vi G [O, T] such that v°(0) = V;

repeat

k ^ k+1;

for each i solve

qi{v'l,...,v^, ^ , y ,...,v';r\u) = 0

for v^{t), t G [O, T] with initial condition uf(0) = T̂-

until. max max I v^i) - v'^~^it) l< £
l < t < n t 6 [0 , T] . •

Figure 3: Algorithm WR-GS.

waveforms of the unknowns at the current iteration
have to be stored for computing the waveforms at
the next iteration. For large circuits the amount of
storage required can be very large. Another prob
lem crops up when there is a logic feedback be-
tween the decomposed subcircuits. The speed of
convergence of the WR algorithm in such a čase
becomes very slow unless a good initial guess for
the unknown variables is provided. The problem
of storage in WR methods can be overcome by di-
viding the simulation tirne interval into "windows",
[0 , r i] , [r i , r2] , . . . [rn_i , r„] . WRis applied to the
first window, [O, Tj] and the values of the node volt-
ages at Tj are used as the initial conditions for the
analysis of the second window. This procedure is
repeated until aH the windows have been analyzed.
This approach helps in rapid convergence.

An obvious advantage of the relaxation algo-
rithms is that they are amenable to parallel imple-
mentation. The solution of each node is efFectively
decoupled from the others and it is possible to allo-
cate a separate processor for each decoupled node
equation. If the circuit has been partitioned into
subcircuits, they can be analyzed concurrently on
different processors. Special purpose hardware can
be designed to suit the algorithm. With this brief
introduction to the circuit simulation methods, the
next section is a survey of the attempts made to
speedup circuit simulation using different parallel

architectures

4 Need for Parallel Processing

Parallel processing is a technologicaJ imperative of
computation in VLSI GAD. The econornics of VLSI
fabrication ensures that parallel computing systcms
will dominate serial systems in both absolutc pcr-
formance cost. Processing speed is a major con-
cern in circuit simulation. As multiprocessors servc
to decrease the program runtime, parallel process
ing for circuit simulation is a natural cvolutionary
step. Attempts have been made to implemcat boli:
the direct and relaxation methods for circuit sim
ulation on parallel architectures. Bcforc such aii
implementation is attempted, it is necessary to cn-
sure that the algorithm maps well on the architec-
ture to derive the best utilization of the proces
sors. Pipelined architectures [W'W86], bus-bascd
architectures [JNP86], hypercube [MatS6], crossbar
and multistage switch networks [JNP86] have been
used in the past for circuit simulation. The na-
ture of the algorithm shows that relaxation meth
ods are more amenable to parallel implementation
that direct methods. This follov/s because iter-
ative methods have decoupling inhercnt in thcm.
Hovvever, relaxation-based simulators like SPLICE
and RELAX have been found to be inappropriate
for tightly-coupled circuits due to the convergence

19

problems encountered in such circuits.

Relaxation algorithms have conflicting require-
ments when implemented to exploit parallelism.
These simulators solve the subcircuits in parallel.
Partitioning the circuit to form subcircuits has to
be done judiciously so that within a subcircuit tight
coupling exists. This ensures that few iterations
are required to converge to a solution. Hovvever,
putting the tightly-coupled nodes in one sub-circuit
might lead to a small number of large subcircuits.
This situation however, limits the extent of paral
lelism available. In contrast large number of cir
cuits with few nodes per sub-circuit result in in-
creased parallelism but at the same time number
of iterations required for a solution increases as the
tightly-coupled nodes may not be together in the
same sub-circuit. A balance has to be struck be-
tween the number of subcircuits and the number of
iterations. Each of the subcircuits is solved inde-
pendently in parallel on a processor using the direct
method.

As even the relaxation algorithm ušes direct
methods for solving the subcircuits efForts have
been directed towards parallelizing direct methods
in addition to the relaxation methods. As eluci-
dated in an earlier section, the direct method of cir
cuit simulation involves integrating the set of non-
linear ordinary differential equations modeling the
circuit based on the fastest changing circuit vari-
able (this is the variable that requires smallest num
ber of time step for convergence). The time step for
the direct method is governed by this variable. The
determination of the fastens changing variable can
be done in parallel by allocating a set of nodes to
each processor to compute the time step [JNP86]
for each node and hence the time step for the di
rect method analysis. The resulting set of nonlin-
ear algebraic equations is solved using N-R itera-
tive technique. Each iteration involves finding the
linear equivalent circuit for aU nonlinear elements.
This again can be done concurrently on a number
of processors. The set of sparse linear equations so
obtained is decomposed into subcircuits and these
subcircuits are solved in parallel using GE method.

Direct method has been implemented on the bus-
based Sequent Balance computer, Ornega netvvork,
cross-bar switch, and BBN Butterfly [JNP86]. Cir
cuit simulation on circuits' with upto 50 nodes has
been shown by Jacob et al. in [JNP86] to have

an efFiciency of ncarly 45% with upto 8 proces
sors. Large circuits are expected to yield better
performance because the amount of time spent in
contention for shared memory will reduce. It is
observed as reported in [JNP86] that as the. num
ber of processors increases to the thousands, tlie
algorithm that works on smaller multiprocessors
break down due to contention for various system
resources. The approach that has been suggested
by Jacob et al. in [JNP86] is to use clusters of pro
cessors to solve smaller parts of the problem (that
is, the subcircuits) and then solve betvveen the clus
ters for the solution of the overall circuit. A hier-
archical arrangement of multiprocessors \vhich will
grow in a regular fashion to simulate progressively
larger circuits has been proposed in [JNP86].

The problem of long runtimes required by
SPICE has brought about vectorization of circuit
simulation using supercomputers as reported in
[MITM87]. The two most time consuming parts
of SPICE, namely, computation of the circuit ma-
trix elements and solution of sparse linear equa-
tions have been vectorized. Mikami et al. have
shown [MITM87] that if the vectorized solution of
linear equations is ten timcs faster than its scalar
version, it results in a simulator that is 1.1 timcs
faster that its scalar version [MITM87]. The com
putation time of SPICE based circuit simulation
is found to be reduced to one-eighth of the scalar
computation time.

The direct method implemented on a SIMD ar-
chitecture has been found to result in a speedup
between 5-7.7 for small and medium sized circuits
as shown by Vladimirescu et al. in [Vla87]. SIMD
avoid problems related to synchronization of difTer-
ent processors. The task of evaluating the mod-
els for circuit devices like MOSFETs, and bipolar
junction transistors is parallelized. However, the
update of the Jacobian matrix and linear equation
are implemented as sequential processes only.

The potential of the relaxation methods for par
allel processing has motivated implcmcntation of
the method on pipelined and multiprocessor archi-
tectures. The natural circuit decomposition avail
able in relaxation techniques can be exploited for
its parallel implcmcntation. The use of GJ itera,-
tive methods provides ample parallelism to the re^
laxation algorithm. In this method, the relaxalion
algorithm makes use of the waveforms computed at

file:///vhich

20

the previous iteration for ali the subcircuits. AH the
subcircuits can then be analyzed independently by
dlfferent processors. The drawback of GJ method
is that it is slow in convergence.

The major problem encountered in parallelizing
the WR algorithm is that MOS digital circuits are
highly directional. It is important to foUovv the di-
rectionality when performing the relaxation com-
putation, otherwise the W R method becomes in-
efficient. Many iterations are required for conver
gence if the computation does not follow the signal
flow. In the čase of large digital circuits, the out-
put of gates have usually more than one fan out
and so it is possible to order the computation so
that subcircuit can be coraputed in parallel, but
the directionality of the circuit can stili be foUovved
by the relaxation computation. Though this limits
the parallelism available, it preserves the efRciency
of the method.

It is possible to parallelize the W R algorithm
vvhile preserving a strict ordering of computation
of the subcircuit vvaveforms by pipelining the wave-
form computation. In [WW86] White and IVeiner
adopt an approach where the circuit is divided into
a number of subcircuits. The first processor starts
computing the transient response of a subcircuit
for one tirne point. After the computation corre-
sponding to the first time point is over, the sec-
ond processor starts computing the response for the
first time point for the second subcircuit. At next
step, a third processor starts computations for the
first time point for the third subcircuit and so on.
This is an instance of time point pipelining and
has been implemented on a Sequent Balance 8000
computer with a single bus shared memory system
as elucidated in [VVW86]. The timepoint pipelin
ing algorithm makes efRcient use of the available
processors. White et al. have observed that this
algorithm running on the Balance 8000 runs sub-
stantially faster than the serial W R algorithm run
ning on a VAX/780 [Whi85]. Thus, an EPROM
with 348 FETs take 212 s on VAX/780 whereas
pipelined implementation with 9 processors takes
182 s.

Some amount of parallelism can be achieved by
using GS iterative method also though it is se-
quential in nature. Saleh has described the im
plementation of the WR algorithm using GS itera
tions on different number of processors in [Sal87].

The circuit is presented as a graph with dircctcd
edges. The nodes represent the subcircuits and the
edges represent the connection between the subcir
cuits. The directed edges bctween the nodes givc
the precedence relation between the tasks. The
width of the grapii is the inaximuin sizc of any in-
dependent subset of tasks and these tasks can bc
solved in parallel. So, ali subcircuits at the same
level in the graph are computed in parallel for the
same iteration. This approach has been foiind lo be
good for circuits having wide graphs. Reasonablc
speedup is possible over the uniprocessor vcrsion if
the circuit is large enough and only a small number
of processors are available. This method provcs lo
be ineffective on circuits with narrovv graphs and
does not give significant advantages over the G.l
method.

CONCISE, a GJ rclaxation-based circuit simu
lator, implemented on a hypercube l3y Mattisson
[Mat86] promises to give a very good performance
for circuit simulation which takes large fraction of
the computing cycles on many high performance
computers. In [Mat86] a point relaxation has been
used. The circuit simulation program is mappcd
onto the cube by partitioning the Jacobian. matrix
A into concurrent processes. The linear equatioii
solution phase, that is, Jacobi iteration, involves
considerable communication between the proces
sors. The N-R linearization step is completely de-
coupled and so is concurrently executed. The per
formance of CONCISE program for different test
circuits and implementation details are given in
[MatSe].

The hypercube in [Mat86] is, howevcr, modeled
by a concurrent program that does not take into
account architectural features of a hypercube like
the message passing scheme of communication. We
have come up with an implementation of the WR
algorithm for circuit simulation on a hypercube in
HIRECS [Ram88]. Where as CONCISE in [Mat86]
makes use of point relaxation, HIRECS is based on
block relaxation. A novel circuit partitioning ap
proach based on the heuristic method of Simulated
Annealing has been used in HIRECS. An additional
feature of HIRECS is that it models aH the archi
tectural features of the hypercube. HIRECS has
been simulated using the programming language
SIMULA on a DEC 1090 system. The speedup ob-
tained from the simulation study for different test.

21

Test Circuit

Inverter

Multiplexer

Number of Processors

2
4
8

2
4
8

Speedup

1.8
3.1
5.9

1.85
3.6
6.0

Efriciency

90%
77%

73.7%

92%
90%
75%

Table 1: Performance of HIRECS.

S
p
e
e
H u
P

8 '

6

4

2

.

/

/
/

1

Ideal speedup /

/ >

/

/

0 , . . Inverter chain
« . . . Multiplexer

. 1 .: 1 • I I ,

2: 4 6 8
Number of processors

Figure 4: Speedup vs. Number of Processors..

circuits is presented in Table 1 and the performance
curves are illustrated in Fig.4. The ideal speedup
and the speedup actually obtained for the test cir
cuits are shown in Fig.4. We have observed that for
fewer number of processors, a near-linear speedup
is possible. as the number of processors increases,
the communication time of among the processors
increases thereby reducing the speedup. This is be-
cause in HIRECS synchronization of the processors
is carried out after ali the variables of the subcir-
cuits allocated to the processors have converged at
aU time points over window. Hence the time for
which a processor waits till aH the others have fin-
ished computation over the window also increases
with the number of processors. Due to lack of cir-
cuit data, HIRECS could not be tested for circuits
with large number of nodes. Hovvever, we except it
to perform equaJly well for large circuit also.

Improvements in computer architecture allow

large circuits to be run without any change in the
simulation techniques. Circuit size> continue to in-
crease with the progress in technology and existing
computer architeetures are- reaching their perfor
mance limits due to> constraints on. the fundamen-
tal speed of light.. This has prompted development
of an experimental' relaxation-based circuit simu
lator on a massively parallel processor (MPP) -
the Connection Machine'reported by IVebber et al.
in [WSV87]. The Connection Machine is an MPP
with upto 65,536 processors and ušes SIMD archi
tecture.. The simulator in [WSV87] ušes GJ itera-
tion at the nonlinear equation leve! with point re-
lajcation and a single step)of N-R method.. Though
point relaotation causes^ srow conivergence, it has
been found toi work well' for large: class of circuits.
Block relajcatibn is not found to. be suitable on the
Connection Machine. This is; becausc' the data is
less uniform' in block methods.. The matrices to bc
solved may be of different sizes which make it dif-
ficult to expl'oit the parallelism on the Connection
Machine. For an EPROM circuit, the point relax-
ation on the Connection Machine has been experi-
mentally found by IVebber et al. [WSV87] to be 30
times faster than the direct method on a MicroVax.
The results show that the execution is nearly inde-
pendent of the size of the problem for circuits \vith-
out tight coupling. Connection Machine is good for
very large problems though it is extremely slow for
small problems. The largest circuit that can be run
on the Connection Machine is about 10,000 nodes.

5 Conclusion

In this paper we have surveyed the two well known
methods for circuit simulation - direct and relax-
ation. The parallel implementation of these meth-

file:///vith-

22'

ods has been considered. The architectures used
for the simulation problem as reported in the lit
erature and the observations from our experiments
have been presented. It folIows from the discus-
sion that considerably higher performance can be
achieved by using a speciaUpurpose multiprocessor
in which the interconnection of the processors and
the design of processors are turned td .the circuit
simulation task. This is particularly true for the
relaxation-based algorithms. Present research work
includes finding good partitioning schemes for di-
viding the circuit into tightly coupled subcircuits,
investigation of optimal techniques fOr finding the
simulation time steps and mapping the algorithms
tč the best possible hardvvare.

References

[CA79] D. A. Calahan and W. G. Ames. Vector
Processors: Models and Application. IEEE
Trans. Circuits Sysi., CAS-26(9), Septem
ber 1979.

[CGK75] B. R. Chavvla, H. K. Gummel, and P. Kozak.
MOTIŠ - An MOS Timing Simulator. IEEE
Transi Circuits Sysi., CAS-22(12):901-909,
December 1975. •'

[DN84] J. T. Deutsch and A. R. Newton. A Mul
tiprocessor Implementation of ReIaxation-
Based Electrical Circuit Simulation. In
Proč. Slih Design Auiomation Conf., pages
350-357, 1984.

[IIHL82] M. H. Heydemann, G. D. Hachtel, and
M. Lightner. Implementation Issues in Mul-
tiple Delay Switch Level Simulation. In
Proč. Int'1 Conf. on Circ. and.Comp., pages
46-52, September 1982.

[JNP86] G. K. Jacob, A. R. Nevvton, and D. O. Ped-
erson. Direct Method Circuit Simulation us
ing Multiprocessors. In IEEE Proč. IŠCAS,
1986.

[LRSV82] E. Lelarasmee, A. E. Ruehli, and A. L.
Sangiovanni-Vincentelli. The Waveform
Relaxation Method for the Time-Domain
Analysis of Large Scale Integrated Cir
cuits. IEEE Trans. Computer-Aided De
sign, CAD-1(3):131-145, August 1982.

[Mat86] S. Mattison. CONSINE - A Simulation Pro
gram on Hypercube. Technical report, Lund
University, 1986.

[MITM87] M. Mikami, J. Ishibashi, N. Tahara, and
G. Matsuoka. Vectorization of SPICE Cir
cuit Simulator: on FACOM VP Series Su-

percomputer. In Proč. 2nd Int'1 Conf. on
Supercompuiing, pages 29-34, 1987.

[Nag75] . L. W. Nagel. SPICE2: A Computer
Program to Simulate Semiconductor Cir
cuits. Technical Report Memo.No.ERL-M
520, UCB, Berkeley, May 1975.

[NP78] A. R. Newton and D. O. Pederson. Analysis
Time, Accuracy and Memory Requirement
Tradeoffs in SPICE2. In IEEE Proč. ISCAS,
pages 6-9, 1978.

[NSV84] A.R. Newton and- A.L. Sangiovanni-
Vincentelli. Relaxation-Ba.sed Electrical
Simulation. IEEE Trans. Compulcr-Aidcd
Design, CAD-3(4):308-331, October 1984.

[Ram88] S. Raman. IIIRECS: llyi)ercubc Implemen
tation of Relaxation-Dčisčd Circuit Simula
tion. Master's thesis, Dept. of Com]5ul.er
Science and Automation, Indian Institute of
Science, Bangalore, India, July 1988.

[Sal87] R. A. Saleh et al. Parallel Waveform New-
ton Algorithms for Circuit Simulation. In
Proč. /CCI*, .pages 660-663, 1987.

[ST75] S. A. Szygenda and E. W. Thompson.
Digital Logic Simulation in a Time-Bascd,
Table-Driven Environment: Part 1 Design
Verification. IEEE Computer, 7(3):24-36,
March 1975.

[Vla87] A. Vladimirescu et. al. A Vector Hard\varc
Accelerator with Circuit Simulation Em-
phasis. In Proč. 24th Design Automaiion
Conf, pages 90-94, 1987.

[Whi85] J. White et al. Accelerating Relaxation Al
gorithms for Circuit Simulation using VVave-
form Nevvton, Iterative Step Size Refine-
ment, and Parallel Techniques. [n Proč. IC-
CAD, pages 5-7, 1985. •

[WJM+73] W. T. Weeks, A. J. Jimenez, G. W. Ma-
hbney, D. Mehta, H. Qassemzadeh, and
T. R. Scott. Algorithm for ASTAP - A Net-
work. Analysis Program. IEEE Trans. Cir
cuit TAcor?/, CT-20(ll):624-628, November
1973.

[WSV87] D. M. VVebber and A. L. Sangiovanni-
Vincentelli. Circuit Siniulation on the Con-
nection Machine. In Proč. ž^ili Design Au
tomation Conf., pages 108-113, 1987.

[WVV86] J. White and N. Weiner. Paralleli?ing Cir
cuit Simulation - A Combined Algorithmic
and Specialized Hardware yVpproacli. In
Proč. ICCD, pages 438-441, 1986.

