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Abstract

Let n be a positive integer, q be a prime power, and V be a vector space of dimension
n over Fq . Let G := V o G0, where G0 is an irreducible subgroup of GL (V ) which is
maximal by inclusion with respect to being intransitive on the set of nonzero vectors. We
are interested in the class of all diameter two graphs Γ that admit such a group G as an arc-
transitive, vertex-quasiprimitive subgroup of automorphisms. In particular, we consider
those graphs for which G0 is a subgroup of either ΓL(n, q) or ΓSp(n, q) and is maximal in
one of the Aschbacher classes Ci, where i ∈ {2, 4, 5, 6, 7, 8}. We are able to determine all
graphs Γ which arise from G0 ≤ ΓL(n, q) with i ∈ {2, 4, 8}, and from G0 ≤ ΓSp(n, q)
with i ∈ {2, 8}. For the remaining classes we give necessary conditions in order for Γ to
have diameter two, and in some special subcases determine all G-symmetric diameter two
graphs.
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1 Introduction
A symmetric graph is one which admits a subgroup of automorphisms that acts transitively
on its arc set; if G is such a subgroup, we say in particular that the graph is G-symmetric.
We are interested in the family of all symmetric graphs with diameter two, a family which
contains all symmetric strongly regular graphs. We consider those G-symmetric diameter
two graphs where G is a primitive group of affine type, and where the point stabiliser G0

is maximal in the general semilinear group or in the symplectic semisimilarity group. Our
main result is Theorem 1.1. Those affine examples where G0 is not contained in either of
these groups were studied in [2].

Theorem 1.1. Let V = Fnq for some prime power q and positive integer n, and let G =
V o G0, where G0 is an irreducible subgroup of the general semilinear group ΓL(n, q)
or the symplectic semisimilarity group ΓSp(n, q), and G0 is maximal by inclusion with
respect to being intransitive on the set of nonzero vectors in V . If Γ is a connected graph
with diameter two which admits G as a symmetric group of automorphisms, then Γ is
isomorphic to a Cayley graph Cay(V, S) for some orbit S of G0 satisfying 〈S〉 = V and
S = −S, and one of the following holds:

1. (G0, S) are as in Tables 1.0.1 and 1.0.2;

2. G0 satisfies the conditions in Table 1.0.3;

3. G0 belongs to the class C9.

Furthermore, all pairs (G0, S) in Tables 1.0.1 and 1.0.2 yield G-symmetric diameter two
graphs Cay(V, S).

Notation for Tables 1.0.1 and 1.0.2. The set Xs is as in (3.2) and Wβ is as in (3.5) in
Section 3.2, Ys is as in (3.7) in Section 3.3, c(v) is as in (3.9) in Section 3.4, S0 is as in
(2.4) in Section 2.2, and S#, S� and S� are as in (3.1) in Section 3.1. Cayley graphs are
defined in Section 2.1. The graphs marked † did not appear in [2].

Table 1.0.1: Symmetric diameter two graphs from maximal subgroups of ΓL(n, q)

G0 ∩ GL (n, q) S Conditions

1 GL (m, q) o Sym (t), mt = n Xs qm > 2 and s ≥ t/2
2 GL (k, q)⊗ GL (m, q), km = n Ys s ≥ 1

2
min {k,m}

†3 GL
(
n, q1/r

)
◦ Zq−1, r > 2 and n > 2 vG0 as in (3.14) c(v) = r − 1 or c(v) = r

†4 GL
(
n, q1/r

)
◦ Zq−1, r = 2 or n = 2 vG0 as in (3.14) c(v) = 1

5 (Zq−1 ◦ (Z4 ◦Q8)).Sp (2, 2), n = 2, q odd vG0 v ∈ V #

6 GL (m, q) o⊗ Sym (2), m2 = n Ys s ≥ m/2
†7 GU (n, q), n ≥ 2 S0, S#

8 GO (n, q), n = 3 and q = 3 S0

9 GO (n, q), nq odd, n > 3 or q > 3 S0, S�, or S�

10 GO+(n, q), n even, q odd, n > 2 or q > 2 S0 or S#

11 GO−(n, q), n even, q odd, n > 2 S0 or S#
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Table 1.0.2: Symmetric diameter two graphs from maximal subgroups of ΓSp(n, q)

G0 ∩ GL (n, q) S Conditions

1 Sp (m, q)t .[q − 1].Sym (t), mt = n Xs qm > 2 and s ≥ t/2
†2 GL (m, q) .[2], 2m = n

⋃
σ∈Aut(Fq)Wβσ qm > 2 and β ∈ Fq

†3 (Zq−1 ◦Q8).O− (2, 2), n = 2, q odd vG0 v ∈ V #

4 GO+(n, q), n = 2 and q = 2 S0

5 GO+(n, q), q and n even, n > 2 or q > 2 S0 or S#

6 GO−(n, q), q and n even, n > 2 S0 or S#

Table 1.0.3: Restrictions for remaining cases
G0 ∩ GL (n, q) Conditions Restrictions

1 GSp (k, q)⊗GOε(m, q), m odd, q > 3 Proposition 3.14

2 GL
(
n, q1/r

)
◦ Zq−1 c(v) 6= r − 1, r Proposition 3.16 (2), (3), (4)

3 (Zq−1 ◦R).Sp (2t, r), n = rt R Type 1, t ≥ 2 Proposition 3.23 (1)

4 (Zq−1 ◦R).Sp (2t, 2), n = rt R Type 2, t ≥ 2 Proposition 3.23 (2)

5 (Zq−1 ◦R).O− (2t, 2), n = rt R Type 4, t ≥ 2 Proposition 3.23 (3)

6 GL (m, q) o⊗ Sym (t), mt = n t ≥ 3 Proposition 3.25

7 GSp (m, q) o⊗ Sym (t), mt = n, q odd t ≥ 3 Proposition 3.26

The reduction to these cases is achieved as follows. It is shown in [1] that any symmetric
diameter two graph has a normal quotient graph Γ which is G-symmetric for some group
G and which satisfies one of the following:

(I) the graph Γ has at least one nontrivialG-normal quotient, and all nontrivialG-normal
quotients of Γ are complete graphs (that is, every pair of distinct vertices are adja-
cent); or

(II) all G-normal quotients of Γ are trivial graphs (that is, consisting of a single vertex).

The context of our investigation is the following. It was shown that those that satisfy (II)
fall into eight types according to the action of G [7]. One of these types is known as
HA (see Subsection 2.1). In this case, the vertex set is a finite-dimensional vector space
V = Fdp over a prime field Fp and G = V o G0, where V is identified with the group of
translations on itself and G0 is an irreducible subgroup of GL (d, p) which is intransitive
on the set of nonzero vectors of V . The irreducible subgroups of GL (d, p) can be divided
into eight classes Ci, i ∈ {2, . . . , 9}, most of which can be described as preserving certain
geometric configurations on V , such as direct sums or tensor decompositions [3]. Note
that, if a diameter two graph Γ is G-symmetric, then the stabiliser Gv of a vertex v is not
transitive on the remaining vertices since Gv leaves invariant the sets of vertices at distance
1, and distance 2, from v. Thus, in our situation, the group G0 is intransitive on the set
V #, where V # := V \ {0}, the set of nonzero vectors. In paper [2] we considered the
graphs corresponding to the groups G0 which are maximal in their respective classes Ci,
for i ≤ 8, and which are intransitive on nonzero vectors. (We did not consider the last class
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C9 since the groups in this class do not have a uniform geometric description.) Several
classes were not considered because the maximal groups in these classes are transitive on
V #, namely, the maximal groups are (a) symplectic groups preserving a nondegenerate
alternating bilinear form on V , and (b) “extension field groups” preserving a structure on
V of an n-dimensional vector space over Fq , where qn = pd. The aim of this paper is to
examine the cases not treated in [2], namely, G0 preserves either an alternating form or an
extension field structure on V , and:

(III) The group G0 is irreducible and is maximal in GL (d, p) with respect to being in-
transitive on nonzero vectors.

All quasiprimitive groups of type HA are primitive; the condition of irreducibility of
G0 is necessary to guarantee that G0 is maximal in G, and hence that G is primitive. In
particular, sinceG0 is intransitive on V #,G0 does not contain SL (V ) or Sp (V ). The clas-
sification in [3] can be applied to the two groups ΓL(n, q) and GSp (d, p): the irreducible
subgroups of ΓL(n, q) and of GSp (d, p) which do not contain SL (n, q) and Sp (d, p),
respectively, are again organised into classes C2 to C9. Again we do not consider the C9-
subgroups. Observe that of the maximal subgroups of ΓL(n, q) in classes C2 to C8, the only
transitive ones are the C3-subgroups ΓL(m, qn/m) with n/m prime, and the C8-subgroup
ΓSp(n, q) of symplectic semisimilarities. We avoid these possibilities by choosing q max-
imal such that qn = pd. We then consider the two cases: (1) where G0 ≤ ΓL(n, q) and G0

does not preserve an alternating form on Fnq , and (2) where G0 ≤ ΓSp(n, q). Note that in
this case it is possible for d/n to be not prime, and it follows from the maximality of q that
G0 is not contained in a proper C3-subgroup of ΓL(n, q) or ΓSp(n, q), respectively. Since
G0 is irreducible and we are not considering C9-subgroups, we now have G0 a maximal
intransitive subgroup in the Ci (for ΓL(n, q) or ΓSp(n, q)) for some i ∈ {2, 4, 5, 6, 7, 8}.

All such subgroups of ΓL(n, q) for which n = d and i 6= 5 are considered in [2];
moreover, for some of these cases, the arguments were given in the general setting of Ci-
subgroups of ΓL(n, q), and so can be applied here. The cases requiring the most detailed
arguments are those for subfield groups and, to a lesser extent, normalisers of symplectic-
type r-groups (Ci-groups with i ∈ {5, 6}).

As in [2], for each family of groups G0 we have two main tasks:

(i) to determine the G0-orbits, and

(ii) to identify which of these orbits correspond to diameter two Cayley graphs.

In the instances where we are not able to achieve either of these, we obtain bounds on
certain parameters to reduce the number of unresolved cases.

The rest of this paper is organised as follows: In Section 2 we give the relevant back-
ground on affine quasiprimitive permutation groups, semilinear transformations and semi-
similarities. In Subsection 2.3 we present Aschbacher’s classification of the subgroups of
ΓL(n, q) and ΓSp(n, q). Section 3 is devoted to the proof of Theorem 1.1, which we do by
considering separately the maximal intransitive subgroups in each of the classes Ci, where
i ∈ {2, 4, 5, 6, 7, 8}.
Notation. If A is a vector space, a finite field, or a group, A# denotes the set of nonzero
vectors, nonzero field elements, or non-identity group elements, respectively. The finite
field of order q is denoted by Fq . The notation used for the classical groups, some of which
is nonstandard, is presented in Section 2. If Γ is a graph, V (Γ) and E(Γ) are, respectively,
its vertex set and edge set.
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2 Preliminaries
2.1 Cayley graphs and HA-type groups

The action of a group G on a set Ω is said to be quasiprimitive of type HA if G has a unique
minimal normal subgroup N and N is elementary abelian and acts regularly on Ω. The
group G is then a subgroup of the holomorph N.Aut (N) of N (hence the abbreviation
HA, for holomorph of an abelian group). It follows from [4, Lemma 16.3] that a graph
Γ that admits G as a subgroup of automorphisms is isomorphic to a Cayley graph on N ,
that is, a graph with vertex set N and edge set {{x, y} | x − y ∈ S} for some subset S
of N# with S = −S and 0 /∈ S. (Since N is abelian we use additive notation, and in
particular denote the identity by 0 and call it zero.) Such a graph is denoted by Cay(N,S).
If, in addition, Γ is G-symmetric, then S must be an orbit of the point stabiliser G0 of zero.
Thus, in order for Γ to have diameter two, the group G0 must be intransitive on the set of
nonzero elements in N .

The result that is most relevant to our investigation is Lemma 2.1, which follows from
the basic properties of Cayley graphs and quasiprimitive groups of type HA.

Lemma 2.1 ([7]). Let Γ be a graph and G ≤ Aut (Γ), where G acts quasiprimitively on
V (Γ) and is of type HA. Then G ∼= Fdp o G0 ≤ AGL (d, p) and Γ ∼= Cay(Fdp, S) for
some finite field Fp, where the vector space Fdp is identified with its translation group and
G0 ≤ GL (d, p) is irreducible. Moreover, Γ is G-symmetric with diameter 2 if and only if
S is a G0-orbit of nonzero vectors satisfying −S = S, S ( V and S ∪ (S + S) = V .

The condition −S = S implies that |S + S| ≤ |S|(|S| − 1) + 1, and if S is a G0-orbit
then clearly |S| ≤ |G0|. It follows from Lemma 2.1 that if Cay(V, S) is G-symmetric with
diameter two then

|V | ≤ |S|2 + 1 ≤ |G0|2 + 1. (2.1)

This fact will be frequently used in obtaining bounds for certain parameters.
In our situation pd = qn and G0 preserves on V the structure of an Fq-space; we

therefore regard V as V = Fnq , and G0 as a subgroup of ΓL(n, q).

2.2 Semilinear transformations and semisimilarities

Throughout this subsection assume that q is an arbitrary prime power, V is a vector space
with finite dimension n over Fq , and B := {v1, . . . , vn} is a fixed Fq-basis of V .

The general semilinear group ΓL(n, q) consists of all invertible maps h : V → V for
which there exists α(h) ∈ Fq , which depends only on h, satisfying

(λu+ v)h = λα(h)uh + vh for all λ ∈ Fq and u, v ∈ V. (2.2)

The group ΓL(n, q) is isomorphic to a semidirect product GL (n, q) o Aut (Fq) with the
following action on V :(

n∑
i=1

λivi

)gα
:=

n∑
i=1

λαi v
g
i for all g ∈ GL (n, q) , α ∈ Aut (Fq) , and (2.3)

λ1, . . . , λn ∈ Fq.

If V is endowed with a left-linear or quadratic form φ, then the elements of ΓL(n, q) that
preserve φ up to a nonzero scalar factor or an Fq-automorphism are called semisimilarities
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of φ. That is, h is a semisimilarity of φ if and only if for some λ(h) ∈ F#
q and some

α′(h) ∈ Aut (Fq), both of which depend only on h,

φ(uh, vh) = λ(h)φ(u, v)α
′(h) for all u, v ∈ V

if φ is left-linear, and

φ(vh) = λ(h)φ(v)α
′(h) for all v ∈ V

if φ is quadratic. It can be shown that α′(h) is the element α(h) in (2.2). The set of
all semisimilarities of φ is a subgroup of ΓL(n, q) and is denoted by ΓI (n, q), where I
is Sp,U,O,O+, or O−, if φ is symplectic (i.e., nondegenerate alternating bilinear), uni-
tary (i.e., nondegenerate conjugate-symmetric sesquilinear), quadratic in odd dimension,
quadratic of plus type, or quadratic of minus type, respectively.

The map α : ΓI (n, q) → Aut (Fq) defined by h 7→ α(h) is a group homomorphism
whose kernel GI(n, q) consists of all g ∈ GL (n, q) that preserve φ up to a nonzero scalar
factor. The elements of GI(n, q) are called similarities of φ. Likewise, the map g 7→ λ(g)
for any g ∈ ΓI (n, q) defines a homomorphism λ from GI(n, q) to the multiplicative group
F#
q . The kernel I(n, q) of λ consists of all φ-preserving elements in GL (n, q), which are

called the isometries of φ. It should be emphasised that our notation for the similarity
and isometry groups is non-standard, but follows for example [5]: the symbol GI(n, q) is
sometimes used to denote the isometry group, whereas in the present paper this refers to
the similarity group.

In Subsection 3.1 we determine the orbits in V # of the groups ΓI (n, q). The following
result, which gives the orbits of the isometry groups I(n, q), is useful:

Theorem 2.2 ([8, Propositions 3.11, 5.12, 6.8 and 7.10]). Let V = Fnq and φ a symplectic,
unitary, or nondegenerate quadratic form on V . Then the orbits in V # of the isometry
group of (V, φ) are the sets Sλ for each λ ∈ Im (φ), where

Sλ := {v ∈ V # | φ(v) = λ} (2.4)

and

φ(v) =

{
φ(v, v) if φ is symplectic or unitary;

φ(v) if φ is quadratic.
(2.5)

Observe that if φ is symplectic then φ(v, v) = 0 for all nonzero vectors v, so it follows
from Theorem 2.2 that Sp (n, q) is transitive on V #.

2.2.1 Some geometry

Let f be a left-linear form on V . A nonzero vector v is called isotropic if f(v, v) = 0;
otherwise, it is anisotropic. If f is symplectic or unitary, then an isotropic vector is also
called singular. If f is symmetric bilinear and Q is a quadratic form which polarises to f
(that is, f(u, v) = Q(u+ v)−Q(u)−Q(v)), then a singular vector is a nonzero vector v
with Q(v) = 0. Hence, in general, all isotropic vectors are singular and vice versa, unless
V is orthogonal and q is even; in this case all nonzero vectors are isotropic but not all are
singular. A subspace U of V is totally isotropic if f |U ≡ 0, and totally singular if all its
nonzero vectors are singular. On the other hand, a subspace U is anisotropic if all of its
nonzero vectors are anisotropic.
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For any subspace U of V we define the subspace

U⊥ := {v ∈ V | f(u, v) = 0 ∀ u ∈ U}

and we write V = U ⊥ W if V = U ⊕W and W ≤ U⊥. Clearly a nonzero vector v
is isotropic if and only if v ∈ 〈v〉⊥, and the subspace U is totally isotropic if and only if
U ≤ U⊥. A symplectic or unitary form f , or a quadratic form with associated bilinear
form f , is nondegenerate (or nonsingular) if the radical V ⊥ of f is the zero subspace.

A hyperbolic pair in V is a pair {x, y} of singular vectors such that f(x, y) = 1. The
space V can be decomposed into an orthogonal direct sum of an anisotropic subspace and
subspaces spanned by hyperbolic pairs, as stated in the following fundamental result on the
geometry of formed spaces.

Theorem 2.3 ( [6, Propositions 2.3.2, 2.4.1, 2.5.3] ). Let V = Fnq , and let f be a left-linear
form on V which is symplectic, unitary, or a symmetric bilinear form associated with a
nondegenerate quadratic form Q. Then

V = 〈x1, y1〉 ⊥ . . . ⊥ 〈xm, ym〉 ⊥ U

where {xi, yi} is a hyperbolic pair for each i and U is an anisotropic subspace. Moreover:

1. If f is symplectic then U = 0. Hence n is even and, up to equivalence, there is a
unique symplectic geometry in dimension n over Fq .

2. If f is unitary then U = 0 if n is even and dim (U) = 1 if n is odd. Hence up to
equivalence, there is a unique unitary geometry in dimension n over Fq .

3. If f is symmetric bilinear with quadratic form Q and n is odd, then q is odd,
dim (U) = 1, and there are two isometry classes of quadratic forms in dimension
n over Fq , one a non-square multiple of the other. Hence all orthogonal geometries
in dimension n over Fq are similar.

4. If f is symmetric bilinear with quadratic form Q and n is even, then U = 0 or
dim (U) = 2. For each n there are exactly two isometry classes of orthogonal ge-
ometries over Fq , which are distinguished by dim (U).

In Theorem 2.3 (4), the quadratic form Q and the corresponding geometry is said to be
of plus type if U = 0, and of minus type if dim (U) = 2.

2.2.2 Tensor products

Some of the subgroups listed in Aschbacher’s classification arise as tensor products of
classical groups. In order to describe the group action we define first the tensor product of
forms. If V = U ⊗W , and if φU and φW are both bilinear or both unitary forms on U and
W , respectively, then the form φU ⊗ φW on V is defined by

(φU ⊗ φW ) (u⊗ w, u′ ⊗ w′) := φU (u, u′)φW (w,w′)

for all u ⊗ w and u′ ⊗ w′ in a tensor product basis of V , extended bilinearly if φU and
φW are bilinear, and sesquilinearly if φU and φW are sesquilinear. If φU and φW are both
bilinear then so is φU⊗φW ; moreover, φU⊗φW is alternating if at least one of φU and φW
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Table 2.2.4: Tensor products of classical groups
I(U, φU ) I(W,φW ) I(U ⊗W,φU ⊗ φW )

Sp Oε

{
Sp if the characteristic is odd;
O+ else

Sp Sp O+

Oε1 Oε2


O+ if εi = + for some i, or εi = − for both i;
O if dim (U) and dim (W ) are odd;
O− else

U U U

is alternating, and φU ⊗φW is symmetric if both φU and φW are symmetric. If φU and φW
are both unitary then φU ⊗ φW is unitary. The tensor product I(U, φU ) ⊗ I(W,φW ) acts
on V with the usual tensor product action — that is, for any g ∈ I(U, φU ), h ∈ I(W,φW ),
u ∈ U and w ∈W ,

(u⊗ w)(g,h) := ug ⊗ wh.

The types of forms φU⊗φW that arise according to the various possibilities for φU and φW ,
which are given in terms of the possible inclusions I(U, φU )⊗I(W,φW ) ≤ I(V, φU⊗φW ),
are summarised in Table 2.2.4.

The tensor product of an arbitrary number of formed spaces can be defined similarly:
If V = U1⊗ · · · ⊗Ut and φi is a nondegenerate form on Ui for each i, and either all φi are
bilinear or all are sesquilinear, the form φ1 ⊗ · · · ⊗ φt is given by

(
⊗ti=1φi

) (
⊗ti=1ui,⊗ti=1wi

)
=

t∏
i=1

φ(ui, wi)

as ⊗ti=1ui and ⊗ti=1wi vary over a tensor product basis of V , extended bilinearly if the φ
are bilinear, and sesquilinearly if they are sesquilinear. Then ⊗ti=1φi is a nondegenerate
bilinear (respectively, sesquilinear) form on V . If the spaces (Ui, φi) are all isometric, then
we can extend the results of Table 2.2.4 to the following (see [6, 9]):

⊗ti=1Sp (m, q) <

{
Sp (mt, q) if qt odd;

O+ (mt, q) if qt is even

⊗ti=1Oε(m, q) <


O (mt, q) if qm is odd;

O− (mt, q) if ε = − and t is odd;

O+ (mt, q) else

⊗ti=1U (m, q) < U
(
mt, q

)
2.3 Aschbacher’s classification

The irreducible subgroups of semisimilarity and semilinear groups are classified by As-
chbacher’s Theorem [3]. In [6], Aschbacher’s Theorem is used to identify those irreducible
subgroups which are maximal. We present below the versions that correspond to ΓL(n, q)
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and to ΓSp(n, q). Recall that G0 does not contain either of the transitive groups SL (n, q)
or Sp (n, q).

Theorem 2.4. If M is a maximal irreducible subgroup of ΓL(n, q) that does not contain
SL (n, q), then M is one of the following groups:

(C2) (GL (m, q) o Sym (t)) o Aut (Fq), where mt = n;

(C3) ΓL(m, qr), where r is prime and mr = n;

(C4) (GL (k, q)⊗GL (m, q))oAut (Fq), where km = n and k 6= m, and the action of τ
is defined with respect to a tensor product basis of Fkq ⊗ Fmq ;

(C5)
(
GL
(
n, q1/r

)
◦ Zq−1

)
o Aut (Fq), where n ≥ 2, q is an rth power and r is prime;

(C6) ((Zq−1 ◦R).T ) o Aut (Fq), where n = rt with r prime, q is the smallest power of p
such that q ≡ 1 (mod r), and R and T are as given in Table 2.3.5 with R of type 1
or 2;

(C7) (GL (m, q) o⊗ Sym (t)) o Aut (Fq), where mt = n, t ≥ 2, and the action of τ is
defined with respect to a tensor product basis of ⊗ti=1Fmq ;

(C8) ΓO (n, q) or ΓO±(n, q) with q odd, ΓSp(n, q), or ΓU (n, q);

(C9) the preimage of an almost simple group H ≤ PΓL (n, q) satisfying the following
conditions:

(a) T ≤ H ≤ Aut (T ) for some nonabelian simple group T (i.e., H is almost
simple).

(b) The preimage of T in GL (n, q) is absolutely irreducible and cannot be realised
over a proper subfield of Fq .

In Theorem 2.5 the symbol [o] denotes a group of order o. In case (C2) the group [q−1]
is generated by the map

δµ : xi 7→ µxi, yi 7→ yi

for all xi and all yi, i ∈ {1, . . . , n/2}, where µ is a generator of the multiplicative group
F#
q and {x1, . . . , xn/2, y1, . . . , yn/2} is a basis of Fnq , satisfying φ(xi, xj) = φ(yi, yj) =
φ(xi, yj) = 0 whenever i 6= j and φ(xi, yi) = 1 for all i. Such a basis is called a symplectic
basis.

Theorem 2.5. If M is a maximal irreducible subgroup of ΓSp(n, q), then M is one of the
following groups:

(C2)
(

(Sp (m, q)
t
.[q − 1].Sym (t))

)
o Aut (Fq), where m = n/t; or

(GL (m, q) .[2]) o Aut (Fq), where m = n/2;

(C3) (Sp (m, qr) .[q − 1]) o Aut (Fq), where r is prime and m = n/r; or
ΓU
(
m, q2

)
, where m = n/2 and q is odd;

(C4) (GSp (k, q)×GOε(m, q)) o Aut (Fq), where q is odd, k 6= m, m ≥ 3, and GOε

can be any of GO, GO+, or GO−;
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(C5)
(
GSp

(
n, q1/r

)
◦ Zq−1

)
o Aut (Fq)

(C6) (Zq−1 ◦R) .O− (2t, 2), where q ≥ 3 and is prime, and R is of type 4 in Table 2.3.5;

(C7) (GSp (m, q) o⊗ Sym (t)) o Aut (Fq), where qt is odd;

(C8) ΓO±(n, q), where q is even;

(C9) the preimage of an almost simple group H ≤ PΓL (n, q) satisfying the following
conditions:

(a) T ≤ H ≤ Aut (T ) for some nonabelian simple group T (i.e., H is almost
simple).

(b) The preimage of T in GL (n, q) is symplectic, absolutely irreducible, and can-
not be realised over a proper subfield of Fq .

Table 2.3.5: C6-subgroups
r R T

Type 1 odd R0 ◦ · · · ◦R0︸ ︷︷ ︸
t

, R0 := r1+2
+ Sp (2t, r)

Type 2 2 Z4 ◦Q8 ◦ · · · ◦Q8︸ ︷︷ ︸
t

Sp (2t, 2)

Type 4 2 D8 ◦ · · · ◦D8︸ ︷︷ ︸
t−1

◦Q8 O− (2t, 2)

3 Symmetric diameter two graphs from maximal subgroups of groups
ΓL(n, q) and ΓSp(n, q)

In this section we prove Theorem 1.1. In view of the observations in Section 1, assume that
the following hypothesis holds:

Hypothesis 3.1. Let V = Fdp with p prime and d ≥ 2, which is viewed as Fnq with q = pd/n

for some divisor n of d (possibly d/n composite or n = d). Let H be one of the subgroups
below of GL (d, p):

1. H = ΓL(n, q) = GL (n, q) o 〈τ〉, the general semilinear group on V , or

2. H = ΓSp(n, q) = GSp (n, q) o 〈τ〉, the group of symplectic semisimilarities of a
symplectic form on V ,

Let τ denote the Frobenius automorphism of Fq and B be a fixed Fq-basis of V , with τ
acting on V as in (2.3) with respect to B (with g = 1 and α = τ ); for the case where
H = ΓSp(n, q) assume that B is a symplectic basis of V . DefineG = V oG0 ≤ V oH <
AGL (d, p) and L = G0 ∩ GL (n, q), where G0 is a maximal Ci-subgroup of H for some
i ∈ {2, 4, 5, 6, 7, 8} and G0 does not contain Sp (n, q) or SL (n, q).
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We note that the groups considered in [2] are the same as the subgroups L, as defined
above, of H = ΓL(n, q).

All irreducible subgroups of GL (d, p) which are maximal with respect to being intran-
sitive on V # thus occur as subcases of the groups considered in Hypothesis 3.1 or belong
to class C9. (Indeed, G0 is maximal intransitive if n = d or if d/n is prime.) For each
Aschbacher class assume that G0 = M is of the form given in Theorem 2.4 or 2.5.

Since some of the other subgroups of ΓSp(n, q) involve classical groups, we begin with
class C8.

3.1 Class C8

In this case the space V has a form φ, which is symplectic, unitary, or nondegenerate
quadratic if H = ΓL(n, q), and is nondegenerate quadratic if H = ΓSp(n, q) with q even.
Since the symplectic group is transitive on V #, we consider only the unitary and orthogonal
cases.

Throughout this section we shall use the following notation: for θ ∈ {�,�,#} let

Sθ :=
⋃
λ∈Fθq

Sλ (3.1)

where the Sλ are as in (2.4). If q is a square (as in the unitary case), let q0 :=
√
q and let

Fq0 denote the subfield of Fq of index 2. Also let Tr : Fq → Fq0 denote the trace map, that
is, Tr(α) = α+ αq0 for all α ∈ Fq .

We begin by describing the orbits of the similarity groups GI(n, q), where I ∈ {U,O,
O+,O−}.

Proposition 3.1. Let V = Fnq , φ be a unitary or nondegenerate quadratic form on V , and
G0 = GI(n, q) with I ∈ {U,O,O+,O−}, according to the type of φ. Let S0 be as in (2.4)
and S�, S� and S# be as in (3.1).

1. If φ is unitary, then the G0-orbits in V # are S0 and S#.

2. If φ is nondegenerate quadratic, then the G0-orbits in V # are as follows:

(i) S# if n = 1;

(ii) S0 and S# if n is even;

(iii) S0, S� and S� if n is odd and n ≥ 3.

Proof. Statement 2 is precisely [2, Proposition 3.9], so we only need to prove statement 1.
Assume that φ is unitary; hence q is a square and q0 =

√
q. It follows from Theorem 2.2 that

S0 is a G0-orbit (that is, provided that S0 6= ∅), so we only need to show that S# is a G0-
orbit. Let v ∈ S#; clearly, vG0 ⊆ S#. For any u ∈ S# set α := f(u, u)f(v, v)−1. Then
α ∈ F#

q0 , so α = βq0+1 for some β ∈ Fq . Hence f(u, u) = βq0+1f(v, v) = f(βv, βv),
so by Theorem 2.2 we have u = (βv)g for some g ∈ U (n, q). Then u = vβg , where
βg ∈ GU (n, q). Therefore vG0 = S#, which proves statement 1.

The orbits of the semisimilarity groups can be easily deduced from Proposition 3.1.

Proposition 3.2. Let V = Fnq , φ be a unitary or nondegenerate quadratic form on V , and
G0 = ΓI(n, q) with I ∈ {U,O,O+,O−}, according to the type of φ. Then for all cases,
the G0-orbits are exactly the same as the GI(n, q)-orbits.
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Proof. This follows from Proposition 3.1 and the fact that the elements of ΓI(n, q) preserve
the form up to an automorphism of Fq .

Hence, a direct consequence of Proposition 3.2 and [2, Proposition 3.12] is:

Proposition 3.3. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis 3.1
with G0 = ΓO (n, q) or G0 = ΓOε(n, q) (ε = ±). Then Γ is G-symmetric with diameter
2 if and only if Γ ∼= Cay(V, S) with V = Fnq and the conditions listed in one of the lines
8–11 of Table 1.0.1 or lines 4–6 of Table 1.0.2 hold.

We now consider the unitary case. Note that Theorem 2.3 implies that the space V
contains a hyperbolic pair, which implies that there is some v ∈ V which is nonsingular.
The following are two easy but useful results which are analogous to Lemma 3.13 and
Corollary 3.14 in [2].

Lemma 3.4. Let V = Fnq , φ a unitary form on V , and φ as in (2.5). Then Im (φ) = Fq0 ,
the subfield of index 2 in Fq .

Proof. Recall that f(v, v)
√
q = f(v, v) for any v ∈ V , so Im (φ) ≤ Fq0 . By the preced-

ing remarks V contains a nonsingular vector, say u. So f(αu, αu) = α
√
q+1f(u, u) =

η(α)f(u, u) for any α ∈ Fq , where η : Fq → Fq0 is the norm map. Since η is surjective so
is φ, and the result follows.

If φ(v, v) 6= 0, then 〈v〉⊥ is nondegenerate and V = 〈v〉 ⊥ 〈v〉⊥. On the other hand,
if φ(v, v) = 0 then 〈v〉 ≤ 〈v〉⊥. By the remarks in [6, pp. 17–18], the form φ induces a
nondegenerate unitary form φU on the space U := 〈v〉⊥/〈v〉, defined by φU (x + 〈v〉, y +
〈v〉) := φ(x, y) for all x, y ∈ 〈v〉⊥. It follows from [6, Propositions 2.1.6 and 2.4.1] that
all maximal totally isotropic subspaces of V have the same dimension, which, in all cases,
is at most n/2, so in particular v⊥ contains a nonsingular vector whenever n ≥ 3.

Corollary 3.5. Let V = Fnq , φ a unitary form on V , φ as in (2.5), and v ∈ V #. Then
Im (φ|〈v〉⊥) = Fq0 if v is nonsingular and n ≥ 2, or if v is singular and n ≥ 3.

Proof. This follows immediately from Lemma 3.4 applied to 〈v〉⊥, and the remarks above.

Proposition 3.6. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis 3.1
with G0 = ΓU (n, q). Then Γ is G-symmetric with diameter 2 if and only if n ≥ 2 and
Γ ∼= Cay(V, S), where V = Fnq and S ∈ {S0, S#}, with S0 and S# as in (2.4) and (3.1),
respectively.

Proof. By Lemma 2.1 and Proposition 3.1 we only need to prove that Cay(V, S) has diam-
eter 2 if and only if n ≥ 2. If n = 1 then V is anisotropic, so GU (n, q) is transitive on V #

by Proposition 3.1 (1) and Cay(V, S) is a complete graph. If n ≥ 2 then V # \ S0 = S#

and V # \ S# = S0 by Proposition 3.1.
Claim 1: S# ⊆ S0 + S0. Let v ∈ S#. Then by Corollary 3.5 there exists u ∈ 〈v〉⊥

with φ(u) = −φ(v). Set w := β(u + v), where β := αφ(v)−1 and α ∈ Fq such that
Tr(α) = φ(v). Then w, v − w ∈ S0, so v ∈ S0 + S0 and therefore S# ⊆ S0 + S0.

Claim 2: S0 ⊆ Sµ + Sµ for any µ ∈ (Im (φ))#. Let v ∈ S0. Suppose first that n ≥ 3.
Then by Corollary 3.5, for any µ ∈ (Im (φ))# there exists w ∈ Sµ ∩ 〈v〉⊥. It is easy to
verify that φ(v −w) = φ(w), so v −w ∈ Sµ and v ∈ Sµ + Sµ. Therefore S0 ⊆ Sµ + Sµ.
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If n = 2 then 〈v〉⊥ = 〈v〉 for any v ∈ S0. We show that there exists u ∈ S0 such that
φ(u, v) = 1. Indeed, take x ∈ V \ 〈v〉. Then φ(v, x) 6= 0. If x ∈ S0 define u′ := x; if
x /∈ S0 let u′ := αv + φ(v, x)x where α ∈ Fq with Tr(α) = −φ(x). Then in both cases
u′ ∈ S0 and φ(u′, v) 6= 0, and we take u to be the suitable scalar multiple of u′ such that
φ(u, v) = 1. Let w := βu + γv, where β, γ ∈ Fq with Tr(β) = 0 and Tr(βq0γ) = µ.
Then w, v − w ∈ Sµ, and thus v ∈ Sµ + Sµ. Therefore S0 ⊆ Sµ + Sµ.

It follows from Claims 1 and 2, respectively, that Cay(V, S0) and Cay(V, S#) both have
diameter 2. This completes the proof.

3.2 Class C2

In this case V = ⊕ti=1Ui, where Ui = Fmq for each i, mt = n and t ≥ 2. Assume that
B =

⋃t
i=1 Bi, where Bi is a basis for Ui for each i. We write the elements of V as t-tuples

over Fmq ; under this identification the τ -action is equivalent to the natural componentwise
action.

Assume first that H = ΓL(n, q). It turns out that the G0-orbits in V # are the same as
the L-orbits, and thus the graphs that we obtain are precisely those in [2, Proposition 3.2].

Lemma 3.7. Let G0 be as in case (C2) of Theorem 2.4. Then the G0-orbits in V # are the
sets Xs for each s ∈ {1, . . . , t}, where

Xs := {(u1, . . . , ut) ∈ V # | exactly s coordinates nonzero}. (3.2)

Proof. Let v ∈ Xs. Clearly vG0 ⊆ Xs; since vL = Xs by [2, Lemma 3.1] it follows that
vG0 = Xs.

Proposition 3.8. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis 3.1,
with H = ΓL(n, q) and G0 as in case (C2) of Theorem 2.4. Then Γ is G-symmetric with
diameter 2 if and only if Γ ∼= Cay(V,Xs), where Xs is as in (3.2), such that qm > 2 and
s ≥ t/2.

Proof. This follows immediately from Lemma 3.7 and [2, Proposition 3.2].

We now consider the case where H = ΓSp(n, q) with n ≥ 4. By Theorem 2.5 there
are two types of C2-subgroups, corresponding to two kinds of decompositions. We refer to
these subcases as (C2.1) and (C2.2).

(C2.1) The dimension m of the subspaces Ui is even, Ui is a symplectic space for each i,
the subspaces Ui are pairwise orthogonal, and

G0 = {(g1, . . . , gt)πσ | π ∈ Sym (t) , σ ∈ 〈τ〉, gi ∈ GSp (m, q) , λ(gi) = λ(g1)}
∼= (Sp (m, q)

t
.[q − 1].Sym (t)) o 〈τ〉, (3.3)

where λ : GSp (n, q)→ F#
q is as defined in Subsection 2.2.

(C2.2) The dimension m = n/2 so that t = 2, both subspaces Ui are totally singular with
dimension n/2, q is odd if n = 4, and

G0 =
{(
g, g−>

)
πσ π ∈ Sym (t) , σ ∈ 〈τ〉, g ∈ GL (m, q)

}
∼= (GL (m, q) .[2]) o 〈τ〉,

(3.4)

where g> denotes the transpose of g, and g−> = (g>)−1.
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Lemma 3.9. For each s ∈ {1, . . . , t} let Xs be as in (3.2). The G0-orbits in V # are

1. the sets Xs for each s ∈ {1, . . . , t} if case (C2.1) holds and G0 is as in (3.3);

2. the sets X1 and
⋃
σ∈〈τ〉Wβσ for all β ∈ Fq , if case (C2.2) holds and G0 is as in

(3.4), where
Wβ := (w1, xβ)L, (3.5)

L = G0 ∩ GL (n, q) ∼= GL (m, q) .[2], w1 := (1, 0, . . . , 0) ∈ Fmq , and xβ ∈ (Fmq )#

with first component β.

Proof. The proof of part (1) is similar to that of [2, Lemma 3.1] and uses the transitivity
of Sp (m, q) on U#

i , so we only need to prove part (2). Assume that case (C2.2) holds.
Then L = K.Sym (2), where K :=

{(
g, g−>

)
g ∈ GL (m, q)

}
. It is easy to see that

U1 ⊕ {0} and {0} ⊕ U2 are K-orbits, so X1 = (U1 ⊗ {0}) ∪ ({0} ⊕ U2) is a G0-orbit.
Let (u, v) ∈ X2, and for any β ∈ Fq define

wβ :=

{
(β, 0, . . . , 0) if β 6= 0,

(0, 1, 0, . . . , 0) if β = 0.
(3.6)

Since w1 ∈ uGL(m,q) we can assume that u = w1. Suppose that v = (β, v2, . . . , vm).
Claim 1: (w1, y) ∈ (w1, v)K if and only if y = (β, y2, . . . , ym) for some y2, . . . , ym ∈

Fq . Indeed, (w1, y) ∈ (w1, v)K if and only if y = vh
−>

for some h ∈ StabGL(m,q)(w1).
Now wh1 = w1 if and only if the matrix of h−> has the form

1 C
0
... D
0


where C is a 1 × (m − 1) matrix over Fq and D ∈ GL (m− 1, q). Clearly, the orbit of
v under the subgroup

{
h−> h ∈ StabGL(m,q)(w1)

}
is the set of all nonzero vectors in Fmq

with first component β. Therefore Claim 1 holds.
Claim 2: (w1, v)L = (w1, v)K . By Claim 1 we can assume that v = wβ . If β 6= 0 let

g :=


β 0 · · · 0
0
... Im−1
0

 .

If β = 0 let g :=
(

0 1
1 0

)
if m = 2, and

g :=


0 1
1 0 0

0 Im−2


if m > 2. Then g ∈ GL (m, q) for all cases, and wg1 = wg

>

1 = v. Hence (wg1 , v
g−>) =

(v, w1), so that (v, w1) ∈ (w1, v)K . Therefore (w1, v)L = (w1, v)K ∪ (v, w1)K =
(w1, v)K , which proves Claim 2.
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It follows from Claims 1 and 2 that each set Wβ is an L-orbit (and moreover Wβ =
Wβ′ if and only if β = β′). It follows from the definition of the τ -action on V # that
(w1, v)G0 =

⋃
σ∈〈τ〉Wβσ . This completes the proof of part (2).

Proposition 3.10. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis 3.1
with H = ΓSp(n, q) and i = 2. Then Γ is G-symmetric with diameter 2 if and only if
Γ ∼= Cay(V, S), where

1. if case (C2.1) holds, then qm > 2, G0 is as in (3.3), S = Xs, and s ≥ t/2;

2. if case (C2.2) holds with qm = 2, thenG0 is as in (3.4), and S = Wβ for any β ∈ Fq;

3. if case (C2.2) holds with qm > 2, then G0 is as in (3.4), and S = X1 or S =⋃
σ∈〈τ〉Wβσ for some β ∈ Fq;

with Xs as in (3.2) and Wβ as (3.5).

Proof. The graph of (1) is precisely that of Proposition 3.8, and the fact that it is G-
symmetric follows from Lemma 2.1. So assume that case (C2.2) holds. By Lemma 2.1
we only need to show that V = S ∪ (S + S) unless S = X1 and q = 2. It follows
from Proposition 3.8 (with t = 2) that Cay(V,X1) has diameter 2 (with G quasiprimitive)
if and only if qm > 2, which proves part of statement (3). Thus we may assume that
S =

⋃
σ∈〈τ〉Wβσ for some β ∈ Fq . It remains to prove that V = S ∪ (S + S).

Let wβ be as in (3.6) and γ ∈ Fq , with γ 6= β. Define

g0 :=

(
1 1
0 1

)
and h0 :=

(
0 −1
−1 γ0

)
,

where γ0 := 1− β−1γ if β 6= 0 and γ0 := 0 if β = 0. If m = 2 let g := g0 and h := h0;
if m ≥ 3 define g and h by

g :=

(
g0 0
0 Im−2

)
and

h :=


0 · · · 0

h0 1 · · · 1

0 Im−2

 .

Then g, h ∈ GL (m, q) for all m ≥ 2, and wg1 + wh1 = w1. Recall that q is odd if m = 2,
so we can take x ∈ (Fmq )# where

x :=


wβ if β 6= 0;

(0,−γ/2) if β = 0 and m = 2;

(0, 0, 1, 0, . . . , 0) if β = 0 and m ≥ 3.

Then for all cases y := xg
−>

+ xh
−>

has first component γ. Hence, applying Lemma 3.9,
we have Wγ = (w1, y)L ⊆ Wβ +Wβ for any γ 6= β. Since also {0} ∪X1 ⊆ Wβ +Wβ ,
it follows that V = Wβ ∪ (Wβ +Wβ). Therefore V = S ∪ (S + S), which completes the
proof of parts (2) and (3).
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3.3 Class C4

In this case V = U ⊗W = Fkq ⊗ Fmq with k,m ≥ 2, and B is a tensor product basis of V ,
that is,

B = {ui ⊗ wj | 1 ≤ i ≤ k, 1 ≤ j ≤ m},

where BU := {u1, . . . , uk} and BW := {w1, . . . , wm} are fixed bases of U and W , re-
spectively. We choose τ to fix each of the vectors ui ⊗ wj . Then for any simple vector
u⊗ w ∈ V , we have (u⊗ w)τ = uτ ⊗ wτ , and for any v =

∑r
i=1 (ai ⊗ bi) ∈ V ,

vτ =

r∑
i=1

aτi ⊗ bτi .

Recall that k 6= m in the description given in Theorems 2.4 and 2.5; however, all of the
results in this section also hold for k = m, so we do not assume that k and m are distinct.
In this way the results yield useful information for the C7 case.

A nonzero vector in V is said to be simple in the decomposition U ⊗W if it can be
written as u ⊗ w for some u ∈ U and w ∈ W . The tensor weight wt(v) of v ∈ V #, with
respect to this decomposition, is the least number s such that v can be written as the sum
of s simple vectors in U ⊗W . It follows from [2, Lemma 3.3] that wt(v) ≤ min {k,m}
for any v ∈ V #, and that for each s ∈ {1, . . . ,min {k,m}} there is a vector v ∈ V # with
weight s.

The proof of the following observation is straightforward and is omitted.

Lemma 3.11. For any v ∈ V # and any σ ∈ Aut (Fq),

wt(vσ) = wt(v).

Assume first that H = ΓL(n, q). As in the previous section, the G0-orbits in V # are
the same as the L-orbits. This follows easily from Lemma 3.11 and the results in [2].

Lemma 3.12. Let G0 be as in case (C4) of Theorem 2.4. Then the G0-orbits in V # are the
sets Ys for each s ∈ {1, . . . ,min {k,m}}, where

Ys :=
{
v ∈ V #

∣∣ wt(v) = s
}
. (3.7)

Proof. This is a consequence of Lemma 3.11 above, and of [2, Lemmas 3.3 and 3.4].

We then obtain the same graphs as those in [2, Proposition 3.5].

Proposition 3.13. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis
3.1 with G0 as in case (C4) of Theorem 2.4, where k and m may be equal. Then Γ is G-
symmetric with diameter 2 if and only if Γ ∼= Cay(V, Ys), where s ≥ 1

2 min {k,m} and Ys
is as in (3.7).

Proof. This follows immediately from Lemma 3.12 and [2, Propositon 3.5].

Now assume that H = ΓSp(n, q). In this case k is even, m ≥ 3, q is odd, and
φ = φU ⊗φW , where φU is a symplectic form on U and φW is a nondegenerate symmetric
bilinear form on W . We can choose BU and BW appropriately so that B is a symplectic
basis and hence we can again choose τ to fix each of the vectors ui ⊗ wj . The G0-orbits
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in this case are proper subsets of the sets Ys in (3.7), and are in general rather difficult to
describe, as are the L-orbits. For instance, if v =

∑s
i=1 ai ⊗ bi ∈ Ys, it is easy to see that

vG0 =

{
s∑
i=1

a′i ⊗ b′i
∣∣∣ a′i ∈ U#, b′i ∈ b

GOε(m,q)
i

}
.

If s = 1 then the set Y1 of simple vectors splits into the G0-orbits Y θ1 , where θ ∈ {0,#} if
m is even and θ ∈ {0,�,�} if m is odd, and

Y θ1 :=
{
a⊗ b

∣∣ a ∈ U#, b ∈ Sθ
}
.

If s > 1 suppose that exactly r of the vectors bi belong in S# for some r, 0 ≤ r ≤ s; if
m is odd suppose further that exactly r� belong in S� and r� in S�. If m is even then
vG0 ⊂ Y rs , where

Y rs :=

{
s∑
i=1

a′i ⊗ b′i ∈ Ys
∣∣∣ exactly r of the vectors b′i are in S#

}
,

and if m is even then vG0 ⊂ Y r�,r�s , where

Y r�,r�s :=

{
s∑
i=1

a′i ⊗ b′i ∈ Ys
∣∣∣ exactly rθ of the vectors b′i are in Sθ for θ ∈ {�,�}

}
.

The sets Y rs and Y r�,r�s above are, in general, not G0-orbits. For instance, if s = 2, the
weight-2 vectors a1 ⊗ b1 + a2 ⊗ b2, a′1 ⊗ b′1 + a′2 ⊗ b′2 ∈ Y 0

2 (or Y 0,0
2 if m is even), such

that b1 ⊥ b2 and b′1 6⊥ b′2, belong to different G0-orbits.
The following is an easy consequence of the preceding discussion. However, as dis-

cussed, we do not have a good description of the G0-orbits.

Proposition 3.14. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis 3.1
with G0 as in case (C4) of Theorem 2.5, where k and m may be equal. If Γ is G-symmetric
with diameter 2, then Γ ∼= Cay(V, S) where S = vG0 for some v ∈ Ys, where Ys is as in
(3.7) and s ≥ 1

2 min {k,m}.

Proof. This follows immediately from the discussion above together with Proposition 3.13.

3.4 Class C5

In this case n ≥ 2, d/n is composite with a prime divisor r, and V has a fixed ordered basis

B := (v1, . . . , vn).

Let q0 := q1/r and let Fq0 denote the subfield of Fq of index r. Let V0 be the Fq0 -span of
B. Then V0 is a vector space over Fq0 that is contained in V , but V0 is not an Fq-subspace
of V .

To any v =
∑n
i=1 αivi ∈ V we can associate the Fq0 -subspace Dv of Fq , where

Dv := 〈α1, . . . , αn〉Fq0 . (3.8)



154 Ars Math. Contemp. 13 (2017) 137–165

Set
c(v) := dimFq0 (Dv), (3.9)

and note that c(v) ≤ min {r, n}. For any λ ∈ Fq it is clear that Dλv = λDv , so c(λv) =
c(v), and it is also easy to show that c(vσ) = c(v) for any σ ∈ Aut (Fq). Let

[Dv] := {λDv | λ ∈ F#
q },

and observe that Du ∈ [Dvσ ] if and only if Du = λDvσ =
(
λσ
−1

Dv

)σ
for some λ ∈ F#

q .

Hence Duσ−1 = (Du)σ
−1

= λσ
−1

Dv , so that Duσ−1 ∈ [Dv]. Thus [Dvσ ] = [Dv]
σ .

3.4.1 Case H = ΓL(n, q)

By Theorem 2.4
G0 = (GL (n, q0) ◦ Zq−1) o 〈τ〉

and L = GL (n, q0) ◦ Zq−1.
Regard the field Fq as a vector space of dimension r over Fq0 , and for any a ∈

{1, . . . , r}, define

K(a) :=

{
Fq if a = r,

Fq0 otherwise.
(3.10)

For a ∈ {1, . . . , r} define

η(a) :=

[
r
a

]
q0∣∣F#

q : K(a)#
∣∣ , (3.11)

where [
r
a

]
q0

:=

a−1∏
i=0

qr0 − qi0
qa0 − qi0

,

the number of a-dimensional subspaces of Frq0 . In particular η(r) = η(1) = 1. Lemma
3.15 gives some elementary observations about K(a) and η, whose significance will be
apparent in Corollary 3.19. The proof of Lemma 3.15 is straightforward and is omitted.

Lemma 3.15. Let Fq0 be a proper nontrivial subfield of Fq with prime index r, and suppose
that Fq is viewed as a vector space over Fq0 with dimension r. For any a ∈ {1, . . . , r}, let
D denote the set of all Fq0 -subspaces of Fq with dimension a, and let K(a) and η(a) be as
defined in (3.10) and (3.11), respectively. Then the following hold:

1. For any D ∈ D,
{λ ∈ Fq | λD = D} = K(a).

2. For any D ∈ D, the sets [D] =
{
λD | λ ∈ F#

q

}
partition D. Moreover, |[D]| =∣∣F#

q : K(a)#
∣∣, and the number of distinct parts [D] in D is η(a).

The main result for this case, which relies on the value of the parameter c(v), is the
following. It shows that examples do exist.
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Proposition 3.16. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis
3.1 with H = ΓL(n, q) and i = 5. Then Γ is connected and G-symmetric if and only if
Γ ∼= Cay(V, vG0) for some v ∈ V #. Moreover, if Dv and c(v) are as in (3.8) and (3.9),
respectively, then the following hold.

1. If c(v) = r or c(v) = r − 1 then diam(Γ) = 2.

2. If c(v) = 1 then diam(Γ) = min {n, r}. In particular diam(Γ) = 2 if and only if
n = 2 or r = 2.

3. If 2 ≤ c(v) < 1
2 min {n, r} then diam(Γ) > 2.

4. Let η be as defined in (3.11), s be the largest divisor of d/n with s ≤ η(c(v)), and

k1(q0) :=

{
18s/17 if q0 = 2;

s− 5/4 if q0 > 2.

If 3 ≤ n < r and n/2 ≤ c(v) < (r(n− 2) + k1(q0))/(2n), then diam(Γ) > 2.

The cases not covered by Proposition 3.16 are discussed briefly at the end of the section.
The proof of Proposition 3.16 is given after Lemma 3.20, and relies on several intermediate
results. We begin by describing the GL (n, q0)-orbits in terms of the subspaces Dv , which
in turn leads to a description of the G0-orbits in V #.

Lemma 3.17. For any v ∈ V # let Dv and c(v) be as in (3.8) and (3.9), respectively, and
let U denote the set of all Fq0 -independent c(v)-tuples in V0. Then for any fixed Fq0 -basis
{β1, . . . , βc(v)} of Dv ,

vGL(n,q0) =


c(v)∑
i=1

βiui

∣∣∣ (u1, . . . , uc(v)) ∈ U


=
{
u ∈ V #

∣∣ Du = Dv

}
.

Proof. Suppose that v =
∑n
i=1 αivi. Define

U :=
{
u ∈ V #

∣∣ Du = Dv

}
(3.12)

and

W :=


c(v)∑
i=1

βiui

∣∣∣ (u1, . . . , uc(v)) ∈ U

 . (3.13)

Claim 1: vGL(n,q0) ⊆ U . Let g ∈ GL (n, q0) with matrix [gjk] with respect to B. Then
vg =

∑n
k=1 α

′
kvk, where α′k =

∑n
j=1 αjgjk ∈ Dv for each k. Hence Dvg ≤ Dv . Since v

and g are arbitrary, we also have Dv ≤ Dvg . So Dvg = Dv , and therefore vGL(n,q0) ⊆ U .
Claim 2: U ⊆ W . Let u =

∑n
j=1 α

′
jvj ∈ U . Writing α′j =

∑c(v)
i=1 βiγij for each

j, where all γij ∈ Fq0 , we get u =
∑c(v)
i=1 βiui, with ui =

∑n
j=1 γijvj ∈ V0 for all

i. It remains to show that the set u := {u1, . . . , uc(v)} is Fq0 -independent. Indeed, let
{u′1, . . . , u′b} be a maximal Fq0 -independent subset of u, and extend this to an ordered Fq0 -
basis B′ := (u′1, . . . , u

′
d) of V0. Then u =

∑b
k=1 β

′
ku
′
k for some β′1, . . . , β

′
b ∈ Fq , and
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if g ∈ GL (n, q0) is the change of basis matrix from B′ to B, then ug =
∑b
k=1 β

′
kvk. So

Du = Dug by Claim 1, and thus b ≤ c(v) = dimFq0 (Du) = dimFq0 (Dug ) ≤ b. Hence
b = c(v) and u is Fq0 -independent. Therefore U ⊆W .

Claim 3: W ⊆ vGL(n,q0). It is easy to see thatW is contained in one orbit of GL (n, q0),
and it follows from Claims 1 and 2 that v ∈W . So W ⊆ vGL(n,q0), as claimed.

Thus we have vGL(n,q0) = U = W by Claims 1 – 3.

Proposition 3.18. For any v ∈ V # let Dv and c(v) be as in (3.8) and (3.9), respectively,
and let U be the set of all Fq0 -independent c(v)-tuples in V0. Then for any fixed Fq0 -basis
{β1, . . . , βc(v)} of Dv we have

vL =

λ
c(v)∑
i=1

βiui

∣∣∣ (u1, . . . , uc(v)) ∈ U , λ ∈ F#
q


=
{
u ∈ V #

∣∣ Du = λDv, λ ∈ F#
q

}
and

vG0 =

λ
c(v)∑
i=1

βσi ui

∣∣∣ (u1, . . . , uc(v)) ∈ U , λ ∈ F#
q , σ ∈ 〈τ〉


=
{
u ∈ V #

∣∣ Du = λ(Dv)
σ, λ ∈ F#

q , σ ∈ 〈τ〉
}
.

(3.14)

Proof. Let U ′ := {u ∈ V # |Du = λDv for some λ ∈ F#
q }. Since L = GL (n, q0)◦Zq−1

and Dλv = λDv for any λ ∈ Fq , it follows from Lemma 3.17 that vL = U ′. Thus

vG0 =
⋃
σ∈〈τ〉

{
uσ
∣∣ u ∈ vL} ⊆W ′,

where W ′ :=
{
u ∈ V #

∣∣ Du = λ(Dv)
σ, λ ∈ F#

q , σ ∈ 〈τ〉
}

. For any w ∈ W with
Dw = µ(Dv)

ρ for µ ∈ F#
q and ρ ∈ 〈τ〉, we have w ∈ (vρ)L ⊆ vG0 . Therefore vG0 = W ′,

and the rest follows from Lemma 3.17.

Corollary 3.19. Let v ∈ V #, and let K, η, Dv and c(v) be as defined in (3.10), (3.11),
(3.8) and (3.9), respectively.

1. For a ∈ {1, . . . ,min {n, r}}, the number of orbits vL with c(v) = a is η(a).

2.
∣∣vL∣∣ =

[
n
c(v)

]
q0

·
∣∣GL (c(v), q0)

∣∣ · ∣∣F#
q : K(c(v))#

∣∣
3.
∣∣vG0

∣∣ = s
∣∣vL∣∣ for some divisor s of d/n with s ≤ η(c(v)).

Proof. It follows from Proposition 3.18 that the map vL 7→ [Dv] := {λDv | λ ∈ F#
q }

is a one-to-one correspondence between the set of L-orbits and the set of classes [D] of
Fq0 -subspaces of Fq . Therefore, by Lemma 3.15 (2), there are exactly η(a) orbits vL with
c(v) = a, which proves part (1). Also by Proposition 3.18, we have |vL| = |U| · |[Dv]|,
where U is the set of Fq0 -independent c(v)-tuples in V0. So

|U| =
[

n
c(v)

]
q0

|GL (c(v), q0) |,
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and by Lemma 3.15 (2), |[Dv]| = |F#
q : K(c(v))#|. This proves part (2). Since L C G0

we must have
∣∣vG0

∣∣ = s
∣∣vL∣∣ for some s dividing |G0 : L| = |Aut (Fq) | = d/n. Also

s ≤ η(c(v)) since c(vσ) = c(v), which proves part (3).

Lemma 3.20. Let Γ = Cay(V, vG0) for some v ∈ V #, and let c(v) be as in (3.9). Let
w ∈ V .

1. If w ∈ vG0 + vG0 then c(w) ≤ 2c(v).

2. If Dw < Dv then w ∈ vG0 + vG0 .

Proof. Let U andW denote the sets of Fq0 -independent c(v)- and c(w)-tuples, respectively,
in V .

Suppose first that w = x + y for some x, y ∈ vG0 . Then by Proposition 3.18 we can
write x and y as x =

∑c(v)
i=1 λβ

ρ
i xi and y =

∑c(v)
i=1 µβ

σ
i yi for some scalars λ, µ ∈ F#

q ,
maps ρ, σ ∈ Aut (Fq), and c(v)-tuples

(
x1, . . . , xc(v)

)
,
(
y1, . . . , yc(v)

)
∈ U . Hence

Dw = Dx+y ⊆
〈
λβρ1 , . . . , λβ

ρ
c(v), µβ

σ
1 , . . . , µβ

σ
c(v)

〉
Fq0

,

and therefore c(w) = c(x+ y) ≤ 2c(v). This proves part (1).
To prove part (2), observe that Lemma 3.17 implies that we can write v and w as

v =
∑c(v)
i=1 γiui and w =

∑c(w)
i=1 δizi for some

(
u1, . . . , uc(v)

)
∈ U and

(
z1, . . . , zc(w)

)
∈

W , and for some fixed Fq0 -bases {γi, . . . , γc(v)} and {δ1, . . . , δc(w)} of Dv and Dw, re-
spectively. Since Dw < Dv then c(w) < c(v), and we can extend {δ1, . . . , δc(w)}
to an Fq0 -basis {δ1, . . . , δc(v)} of Dv , and

(
z1, . . . , zc(w)

)
to
(
z1, . . . , zc(v)

)
∈ U . Set

x :=
∑c(v)
i=1 δizi and y :=

∑c(v)
i=1 δiyi, where yi := zi+1 − zi if 1 ≤ i ≤ c(w) − 1,

yc(w) := z1, and yi := −zi if c(w) + 1 ≤ i ≤ c(v). Then
(
y1, . . . , yc(v)

)
∈ U

and Dx = Dy = Dv , so by Lemma 3.17 we have x, y ∈ vGL(n,q0) ⊆ vG0 . There-
fore x + y ∈ vG0 + vG0 . Now Dw = Dx+y , so applying Lemma 3.17 again we get
w ∈ (x+ y)GL(n,q0) ⊆ vG0 + vG0 . Thus (2) holds.

Proof of Proposition 3.16. Suppose that r−1 ≤ c(v) ≤ r. Observe that η(r−1) = η(r) =
1, so for either value of c(v) we have vL = {u ∈ V | c(u) = c(v)}, which in turn implies
that vG0 = vL. If c(v) = r then Dv = Fq , and clearly Dw < Dv for any w ∈ V # \ vG0 .
So w ∈ vG0 +vG0 by part (2) of Lemma 3.20, and thus V # \vG0 ⊆ vG0 +vG0 . Therefore
diam(Γ) = 2. Now suppose that c(v) = r−1, and let w ∈ V # \vG0 . If c(w) < r−1 then
it follows from part (1) of Corollary 3.19 that Dw < λDv = Dλv for some λ ∈ F#

q . Thus
w ∈ (λv)G0 + (λv)G0 = vG0 + vG0 by Lemma 3.17. If c(w) = r let x :=

∑r−1
i=1 αivi and

y :=
∑r−2
i=1 βivi + γvr, where {α1, . . . , αr−1} is an Fq0 -basis of Dv , γ ∈ F#

q \Dv , and

βi :=

{
αi+1 − αi if 1 ≤ i ≤ r − 3;

α1 − αr−2 if i = r − 2.

Then c(x) = c(y) = r−1 and c(x+y) = r, so x, y ∈ vG0 andw ∈ (x+y)G0 ⊆ vG0+vG0 .
Therefore V # \ vG0 ⊆ vG0 + vG0 , and again we have diam(Γ) = 2. This completes the
proof of part (1).

If c(v) = 1 then we get the special case vL = vG0 = (FqV0)#. Let distΓ(0V , w)
denote the distance in Γ between the vertices 0V and w; we claim that distΓ(0V , w) =
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c(w) for any w ∈ V . Let `(w) := distΓ(0V , w). Then w ∈ Y by Proposition 3.18,
where Y is as in (3.13), so w can be written as a sum of c(w) elements of (FqV0)# and
thus `(w) ≤ c(w). On the other hand w =

∑`(w)
i=1 λiui, where λi ∈ F#

q and ui ∈ V #
0

for all i. Writing each ui as ui =
∑n
j=1 µi,jwj where µi,j ∈ Fq0 for all i, j, we get

w =
∑n
j=1 λ

′
jwj where λ′j =

∑`(w)
j=1 λiµi,j for each j. Hence Dw ≤ 〈λ1, . . . , λ`(w)〉Fq0 ,

so that c(w) ≤ `(w). Therefore `(w) = c(w), as claimed. It follows immediately that
diam(Γ) = min {n, r}, and that diam(Γ) = 2 if and only if n = 2 or r = 2. This proves
(2).

Suppose that diam(Γ) = 2. Then c(w) ≤ 2c(v) for any w ∈ V # by part (1) of
Lemma 3.20, and in particular 2c(v) ≥ min {n, r} since there clearly exists u ∈ V # with
c(u) = min {n, r}. Hence c(v) ≤ 1

2 min {n, r} implies that diam(Γ) > 2, and part (3)
holds.

Finally, let a := c(v), S := vG0 , and η(a) as in (3.11). By Corollary 3.19 we have

|S| ≤
[
n
a

]
q0
|GL (a, q0) |

∣∣F#
q : F#

q0

∣∣ s,
where s is the largest divisor of d/n with s ≤ η(a). Hence

|S|2 + 1 < q2an
0

∣∣F#
q : F#

q0

∣∣2 s2.

Observe that s < qst0 for all s ≥ 1, where t = 9
17 if q0 = 2, and t = 1

2 if q0 ≥ 3. Also, for
q0 ≥ 3, we have q0 − 1 > q

5/8
0 , so that

∣∣F#
q : F#

q0

∣∣ < q
r−5/8
0 . With these bounds we obtain

|S|2 + 1 < q
2(an+r)+k1(q0)
0 ,

where k1(q0) is as defined in (4). It is easy to verify that if a < (r(n− 2)− k1(q0))/(2n)
then 2(an + r) + k1(q0) < rn, so |S|2 + 1 < |V |, and thus diam(Γ) > 2 by Lemma 2.1.
This proves part (4).

Remark 3.21. Some small cases covered by Proposition 3.16 are summarised in Table
3.4.6. The cases left unresolved by Proposition 3.16 are the following:

1. 5 ≤ r ≤ n, r/2 ≤ c(v) ≤ r − 2;

2. 2 = n ≤ r − 2, c(v) = 2;

3. 3 ≤ n < r, maxn/2, (r(n− 2)− k1(q0))/(2n) ≤ c(v) ≤ r − 2.

Let a := c(v) < r, S = vG0 , and s as in Proposition 3.16 (4). Then s ≥ 1,∣∣F#
q : F#

q0

∣∣ > qr−2
0 and [

n
a

]
q0
|GL (a, q0) | > q

2a(n−1)
0 ,

so

|G0|2 + 1 ≥
([

n
a

]
q0
|GL (a, q0) |

∣∣F#
q : F#

q0

∣∣ s)2

+ 1

> q
2a(n−1)+2(r−2)
0 .

It is easy to show that if condition (1) or (2) holds then 2(a(n− 1) + r− 2) > rn, and thus
|G0|2 + 1 > |V |. This, unfortunately, does not lead to any conclusion about diam(Γ).
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Table 3.4.6: Γ as in Proposition 3.16 for small values of r and n
r n c(v) Conclusion about Γ = Cay(V, vG0)

2 ≥ 2 1 diam(Γ) = 2 by Proposition 3.16 (2)

2 diam(Γ) = 2 by Proposition 3.16 (1)

3 2 1 diam(Γ) = 2 by Proposition 3.16 (2)

2 diam(Γ) = 2 by Proposition 3.16 (1)

3 ≥ 3 1 diam(Γ) = 3 by Proposition 3.16 (2)

2 diam(Γ) = 2 by Proposition 3.16 (1)

3 diam(Γ) = 2 by Proposition 3.16 (2)

5 2 1 diam(Γ) = 2 by Proposition 3.16 (2)

5 3 1 diam(Γ) = 3 by Proposition 3.16 (2)

5 4 1 diam(Γ) = 4 by Proposition 3.16 (2)

4 diam(Γ) = 2 by Proposition 3.16 (1)

5 ≥ 5 1 diam(Γ) = 5 by Proposition 3.16 (2)

2 diam(Γ) > 2 by Proposition 3.16 (3)

4 diam(Γ) = 2 by Proposition 3.16 (1)

5 diam(Γ) = 2 by Proposition 3.16 (1)

3.4.2 Case H = ΓSp(n, q)

By Theorem 2.5,
G0 = (GSp (n, q0) ◦ Zq−1) o 〈τ〉

and L = GSp (n, q0) ◦ Zq−1. The main result in this section is parallel to part (4) of
Proposition 3.16.

Proposition 3.22. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis
3.1 with H = ΓSp(n, q) and i = 5. Then Γ is connected and G-symmetric if and only
if Γ ∼= Cay(V, vG0) for some v ∈ V #. Moreover, if s := |τ | = |G0 : L| and c(v) is as
defined in (3.9), and if

t :=

{
9/17 if q0 = 2,

1/2 if q0 > 2

then the following hold:

1. If c(v) < 1
2 min {n, r} then diam(Γ) > 2.

2. If 3 ≤ n ≤ r, c(v) ≥ n/2 and r > (n2 + n+ 2st)/(n− 2), then diam(Γ) > 2.

Proof. Assume that c(v) < 1
2 min {n, r}. Let S = vG0 , and let Γ′ = Cay(V, vG

′
0), such

that G′ satisfies Hypothesis 3.1 with H = ΓL(n, q) and i = 5. Then Γ is a subgraph of Γ′,
and hence diam(Γ) ≥ diam(Γ′). If c(v) = 1 then diam(Γ′) ≥ min {n, r} > 2 by part (2)
of Proposition 3.16, and if c(v) ≥ 2 then diam(Γ′) > 2 by part (3) of Proposition 3.16. In
both cases diam(Γ) > 2. This proves statement (1).

We now prove statement (2). Observe that for any λ ∈ F#
q and g ∈ GSp (n, q0),

we have λvg = vλg ∈ vGSp(n,q0) if and only if λIn ∈ Zq0−1, the subgroup of scalar
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matrices in GL (n, q0). Hence vL =
⋃
λ∈F#

q
λvGSp(n,q0) can be written as a disjoint union

vL =
⋃
λ∈T λv

GSp(n,q0), where T is a transversal of F#
q0 in F#

q . Thus

|vL| ≤ |T ||GSp (n, q0) | = (qr0 − 1)|Sp (n, q0) |

and |S| ≤ s|vL|, where s = |G0 : L|. We have

|Sp (n, q0) | = q
n2/4
0

n/2∏
i=1

(
q2i − 1

)
< q

(n2+n)/2
0 .

Also, as in the proof of Proposition 3.16 (4), we have s < qst0 for any s, where t = 9
17 if

q0 = 2, and t = 1
2 if q0 ≥ 3. Hence

|S|2 + 1 < s2(qr0 − 1)2qn
2+n

0 < qn
2+n+2r+2st

0 .

If r > (n2 + n + 2st)/(n − 2) then rn > n2 + n + 2r + 2st, so |V | > |S|2 + 1 and
diam(Γ) > 2 by Lemma 2.1. Therefore part (2) holds.

3.5 Class C6

In this case dim (V ) = rt where r is a prime different from p, q is the smallest power of p
such that q ≡ 1 (mod |Z(R)|) for some R in Table 2.3.5, and

G0 = (Zq−1 ◦R).T o 〈τ〉,

with T as in Table 2.3.5. By Theorems 2.4 and 2.5, if H = ΓL(n, q) then R is of type 1 or
2, and if H = ΓSp(n, q) with q odd then R is of type 4.

Proposition 3.23 is an extension of [2, Proposition 3.6], and is proved somewhat simi-
larly.

Proposition 3.23. Let V and G0 be as above, and let Γ := Cay(V, S) for some G0-orbit
S ⊆ V #.

1. Suppose that r is odd, q ≡ 1 (mod r), and R is Type 1. If diam(Γ) = 2 then
1 ≤ t ≤ 3, r ≤ r0(t), and q ≤ q0(r, t), where r0(t) and q0(r, t) are given in Table
3.5.7.

2. Suppose that r = 2, t ≥ 2, q ≡ 1 (mod 4), and R is Type 2. If diam(Γ) = 2 then
2 ≤ t ≤ 6 and q ≤ q0(t), where q0(t) is given in Table 3.5.8.

3. Suppose that r = 2, t ≥ 2, q is odd, and R is Type 4. If diam(Γ) = 2 then 2 ≤ t ≤ 7
and q ≤ q0(t), where q0(t) is given in Table 3.5.9.

4. Suppose that r = 2, t = 1, q is odd, and R is Type 2 or 4. Then diam(Γ) = 2 for any
S.

Proof. If q = p` and R is Type 1 or 2, then

|G0| = `(q − 1)r2t|Sp (2t, r) | < `(q − 1)r2t2+3t.
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Table 3.5.7: Bounds for r and q when R is Type 1
t 1 2 3

r0(t) 11 3 3

q0(3, t) 186619 73 11

q0(5, t) 521 - -
q0(7, t) 71 - -
q0(11, t) 23 - -

Table 3.5.8: Bounds for q when R is Type 2 and t ≥ 2

t 2 3 4 5 6

q0(t) 23029 569 73 17 5

Table 3.5.9: Bounds for q when R is Type 4 and t ≥ 2

t 2 3 4 5 6 7

q0(t) 1913 149 37 11 5 3

Suppose first that R is Type 1. In this case r is odd and q = p` ≡ 1 (mod r), so ` ≤ r−1,
q > r, and

|G0|2 + 1 <
(

(q − 1)r2t2+3t+1
)2

+ 1 < q4t2+6t+4.

It can be shown that 4t2 + 6t + 4 < rt for the following cases: t ≥ 5 and r ≥ 3, t = 1
and r ≥ 17, t = 2 and r ≥ 7, and t ∈ {3, 4} and r ≥ 5. Thus for all these cases
|G0|2 + 1 < |V |. For all remaining pairs (r, t) define

π(q, r, t) :=
(
(r − 1)(q − 1)r2t|Sp (2t, r) |

)2
+ 1− qr

t

.

Then |G0|2+1−|V | < π(q, r, t) and π(q, r, t) < 0 if q >
(
(r − 1)r2t|Sp (2t, r) |

)2/(rt−2).
Getting the largest prime power q = p` ≡ 1 (mod r) less than or equal to this bound, with
` ≤ r− 1 and π(q, r, t) > 0, gives the values q0(r, t) in Table 3.5.7, and for each t we take
r0(t) to be the largest value of r for which there exist such q. In particular, π(q, r, t) < 0 for
the following cases: (r, t) = (13, 1) and q > 13, (r, t) = (5, 2) and q > 7, (r, t) = (3, 4)
and q > 3; for these cases there is no value of q less than or equal to the given bound that
satisfies all the required conditions. This proves part (1).

Now suppose that R is Type 2 with t ≥ 2. Then r = 2 and q = p` ≡ 1 (mod 4), so
` ≤ 2, q > 4, and

|G0|2 + 1 <
(

(q − 1)22t2+3t+1
)2

+ 1 < q2t2+3t+3.

We have 2t2 + 3t + 3 < 2t whenever t ≥ 7, hence |G0|2 + 1 ≤ |V | for all such t. For
t ∈ {1, . . . , 6} define

π(q, t) :=
(
2(q − 1)22t|Sp (2t, 2) |

)2
+ 1− q2t ,
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and observe that |G0|2 + 1− |V | < π(q, t) < 0 for all q >
(
22t+1|Sp (2t, 2) |

)1/(2t−1−1).
The values of q0(t) in Table 3.5.8 are the largest prime powers q = p` ≡ 1 (mod 4) less
than or equal to these bounds, with ` ≤ 2 and satisfying π(q, t) > 0. This proves (2).

For (3), suppose that R is Type 4 with t ≥ 2. Then r = 2 and |Z(R)| = 2, so ` = 1
and q = p. Also q ≥ 3, so q3/2 > 4. We have

|G0| = (q − 1)22t
∣∣O− (2t, 2)

∣∣ < (q − 1)22t2+t+2

so
|G0|2 + 1 <

(
(q − 1)22t2+t+2

)2

+ 1 < q242t2+t+2 < q3t2+ 3
2 t+5.

We have 3t2 + 3
2 t+ 5 < 2t (and hence |G0|2 + 1 < |V |) for all t ≥ 8. For t ∈ {2, . . . , 7}

define
π(q, t) :=

(
(q − 1)22t

∣∣O− (2t, 2)
∣∣)2 + 1− q2t .

Then |G0|2 + 1 − |V | < π(q, t) < 0 for all q >
(
22t |O− (2t, 2)|

)1/(2t−1−1). As in the
previous cases we take q0(t), 2 ≤ t ≤ 7, to be the largest prime q less than or equal to these
bounds such that π(q, t) > 0. This yields Table 3.5.9 and proves (3).

Statement 4 for the case where R is type 2 is precisely [2, Proposition 3.6 (2)]. For the
case where R is type 4 define the matrices a, c ∈ GL (V ) by

a :=

(
0 1
−1 0

)
and c :=

(
β γ
γ −β

)
,

where β, γ ∈ Fq such that β2 + γ2 = −1. Then 〈a, c〉 is a representation of R in GL (2, q)
(see [6, pp. 153-154]). Since R is irreducible on V , any R-orbit vR in V # contains a basis
{v1, v2} of V , and vG0 contains 〈v1〉# ∪ 〈v2〉#. Clearly V # ⊆ 〈v1〉# + 〈v2〉#. Therefore
V ⊆ vG0 + vG0 , and thus diam(Γ) = 2. This proves (4), and completes the proof of the
proposition.

3.6 Class C7

In this case V = ⊗ti=1Ui with Ui = Fmq for all i, m ≥ 2, t ≥ 2, and d = mt. Assume that
B is a tensor product basis of V , with

B :=
{
⊗ti=1ui,j 1 ≤ j ≤ m

}
.

As in the C4 case, it is not difficult to show that for any v =
∑r
i=1

(
⊗tj=1vi,j

)
∈ V # we

have

vτ =

r∑
i=1

(
⊗tj=1v

τ
i,j

)
,

where τ acts on each Ui with respect to the basis {ui,j | 1 ≤ j ≤ m}.

3.6.1 Case H = ΓL(n, q)

By Theorem 2.4
G0 = (GL (m, q) o⊗ Sym (t)) o 〈τ〉. (3.15)

If t = 2 then we obtain the examples in Proposition 3.13 with k = m. We state this in
the next corollary, which is analogous to [2, Corollary 3.7].
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Corollary 3.24. Let V = ⊗ti=1Fmq and let G0 be as in (3.15) with m ≥ 2 and t = 2.
Then the G0-orbits in V # are the sets Ys for each s ∈ {1, . . . ,m}, where Ys is as defined
in (3.7). Moreover, for any G0-orbit S ⊆ V #, the graph Cay(V, S) has diameter 2 if and
only if S = Ys for some s ≥ m/2.

Proof. This follows immediately from Lemma 3.12 and Proposition 3.13.

Using Lemma 2.1, we get the following bounds which significantly reduce the cases
that remain to be considered. It turns out that these are exactly the same as those in [2,
Proposition 3.8]; we prove them here for subgroups of ΓL(n, q).

Proposition 3.25. Let Γ be a graph and let G ≤ Aut (Γ), such that G satisfies Hypothesis
3.1 with G0 as in (3.15), m ≥ 2 and t ≥ 3. Then Γ is connected and G-symmetric if and
only if Γ ∼= Cay(V, vG0) for some v ∈ V #. Moreover, if diam(Γ) = 2 then either:

1. m = 2 and t ∈ {3, 4, 5}; or

2. t = 3 and m ∈ {3, 4, 5}.

Proof. Recall that (αg1)⊗ g2⊗ · · · ⊗ gt = g1⊗ · · · ⊗ (αgi)⊗ · · · ⊗ gt for all g1, . . . , gt ∈
GL (m, q), so that

|G0| ≤ |GL (m, q) |t t! `(q − 1)−(t−1).

Now
|GL (m, q) | < qm(m−1)qm−1(q − 1) = qm

2−1(q − 1),

s ≤ qs−1 for all s ≥ 2 and q ≥ 2, and ` < p` = q for all ` ≥ 1 and p ≥ 2, so that

|G0|2 + 1 <
(
q(m2−1)t(q − 1)t

)2 (
q

1
2 t(t−1)

)2

q2(q − 1)−2(t−1) < qt
2+(2m2−3)t+4.

It can be shown that t2 + (2m2 − 3)t + 4 < mt whenever t ≥ 7 and m ≥ 2, and
whenever t ∈ {3, 4, 5, 6} and m > m0(t), where m0(t) is as given in Table 3.6.10. Hence
|G0|2 + 1 < |V | for all such pairs (m, t). Of the remaining pairs we can eliminate (2, 6)

and (6, 3) by considering π(q,m, t) := (t!)2q2t(m2−1)+4 − qm
t

; it can be shown that
π(q, 2, 6) < 0 for all q ≥ 2 and π(q, 6, 3) < 0 for all q ≥ 7. For q ∈ {2, 3, 4, 5} it can
be checked that 36 `2 |GL (6, q) |6(q − 1)−4 + 1 < q216. Therefore |G0|2 + 1 < |V | if
(m, t) ∈ {(2, 6), (6, 3)}, which completes the proof.

Table 3.6.10: Values for m0(t)
t 3 4 5 6

m0(t) 6 2 2 2

3.6.2 Case H = ΓSp(n, q)

By Theorem 2.5, both q and t are odd and

G0 = (GSp (m, q) o⊗ Sym (t)) o 〈τ〉. (3.16)

Hence q, t ≥ 3.
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Proposition 3.26. Let Γ be a graph and G ≤ Aut (Γ) such that G satisfies Hypothesis 3.1
with G0 as in (3.16), m ≥ 2 and t ≥ 3. Then Γ is connected and G-symmetric if and only
if Γ ∼= Cay(V, vG0) for some v ∈ V #. Moreover, if diam(Γ) = 2 then either:

1. m = 2 and t ∈ {3, 5}; or

2. t = 3, m = 4, and q = 9.

Proof. In this case |G0| ≤ |GSp (m, q) |t t! `(q − 1)−(t−1), where

|GSp (m, q) | = (q − 1)Sp (m, q) < (q − 1)q
1
2 (m2+m).

Also s ≤ ks/2 for all k ≥ 3 and s ≥ 2, so that ` ≤ q, t! ≤ q 1
4 (t−1)(t+2), and

|G0|2 + 1 < (q − 1)2tqt(m
2+m)+ 1

2 (t−1)(t+2)+1(q − 1)−2(t−1) < q
1
2 t

2+(m2+m+ 1
2 )t+2.

It can be shown that 1
2 t

2 +
(
m2 +m+ 1

2

)
t+ 2 < mt whenever t ≥ 6 and m ≥ 2, t = 3

and m ≥ 5, and t = 5 and m ≥ 3. So |G0|2 + 1 < |V | for all such pairs (m, t). Let
π(q,m, t) := (t!)2qt(m

2+m)+3 − qmt . If (m, t) = (4, 3) then for all q ≥ 37 we get

|G0|2 + 1− |V | < π(q, 4, 3) < 0.

For 3 ≤ q ≤ 31, q 6= 9, we have 36 `2 (q − 1)2|Sp (4, q) |6 + 1 < q64. Therefore if
(m, t) = (4, 3) and q 6= 9 then |G0|2 + 1 < |V |, which completes the proof.

3.7 Proof of Theorem 1.1

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. The first part follows immediately from Lemma 2.1, so we only
need to show statements (1) – (3). Assume thatG0 does not belong in the Aschbacher class
C9. Line 1 of Table 1.0.1 follows from Proposition 3.8, line 2 from Proposition 3.13, lines 3
and 4 from Proposition 3.16 (1) and (2), respectively. Line 5 follows from Proposition 3.23
(4), line 5 from Corollary 3.24, line 7 from Proposition 3.6, and lines 8 – 11 from Propo-
sition 3.3. Line 1 of Table 1.0.2 follows from Proposition 3.10 (1), line 2 from Proposition
3.10 (2) and (3), and line 3 from Proposition 3.23 (4). Lines 4 – 6 follow from Proposition
3.3. This proves statement (1).

Statement (2) follows from the results given in the Restrictions column of Table 1.0.2.
This completes the proof of Theorem 1.1.
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