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Abstract. This lecture provides an introduction to the renormalisation group as applied to

scattering of two nonrelativistic particles. As well as forming a framework for constructing

effective theories of few-nucleon systems, these ideas also provide a simple examplewhich

illustrates general features of the renormalisation group.

1 Effective theories

As particle and nuclear physicists, we are familiar with renormalisation in quan-
tum field theory. We meet it first as a trick to get rid of mathematically unpleas-
ant divergences. Later we learn to see it as part of a larger structure based on
scale-dependence: the renormalisation group (RG). This is also how it appears in
condensed-matter physics, in the context of critical phenomena [1].

The same ideas can also be used to study scale dependence in much simpler
systems: just two or three nonrelativistic particles. They are of particular inter-
est in nuclear physics, where we are trying to construct systematic effective field
theories of nuclear forces (see [2] for recent reviews). They can also be applied
to systems of cold atoms in traps, where magnetic fields can be used to tune the
interactions between the atoms. In addition, these applications provide tractable
examples of RG flows. Without the complications of a full field theory, the equa-
tions can often be solved exactly while still illustrating all of the general features
of these flows [3].

Effective field theories describe only the low-energy degrees of freedom of
some system and so they are not “fundamental”. In general they are not renor-
malisable and so they contain an infinite number of terms. This is potentially a
disaster for their predictive power, but not if we can find a systematic way to or-
ganise these terms. Then, at any order in some expansion, only a finite number of
terms will contribute. Having determined the coefficients of these by fitting them
to data (or to simulations of the underlying physics), we can use them to predict
other observables.

This works provided there is a good separation of scales, as illustrated in
Fig. 1. Here Q generically denotes the experimentally relevant low-energy scales
and Λ0 the scales of the underlying physics. In the case of nuclear physics, the
low scales include particles’ momenta and the pion mass, while the high scales
include the scale of chiral symmetry breaking, 4πfπ, and the masses of hadrons
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like the ρmeson and nucleon. If these are well separated, we can expand observ-
ables in powers of the small parameter Q/Λ0. The terms in the effective theory
can then be organised according to a “power counting” in the low scales Q.
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Fig. 1. Scales and the running cut-off.

The effective theory describes physics at low momenta. Short-range physics
is not resolved by it and so is just represented by contact interactions (δ-functions
and their derivatives). However scattering by these is ill-defined since they cou-
ple to virtual states with arbitrarily high momenta. The basic nonrelativistic loop
diagram (which is relevant for the rest of this talk) is shown in Fig. 2.
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Fig. 2. The basic loop integral.

For S-wave scattering this integral is

M

∫
q2 dq

p2 − q2
∼ −M

∫
dq, for large q, (1)

and so contains a linear divergence. We therefore need to regulate the theory.
There are many ways to do this: dimensional regularisation [4], a simple momen-
tum cut-off [3], or adding a term to the kinetic energy to suppress high-energy
modes [5]. All of these are equivalent, but each introduces some arbitrary scale,
Λ. This is essentially the highest momentum that is included explicitly in the the-
ory. Physical predictions should be independent of Λ and this leads us to the RG.
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As we lower Λ, the couplings must run. This is because more and more
physics is “integrated out” (see Fig. 1) and so must be included implicitly in the
effective couplings. Ultimately we lose all memory of the underlying physics and
the only scale we have left is Λ. In units of Λ, everything is then just a number.
We have arrived at a fixed point of the RG – a scale-free system. These are the
end-points of the RG flow. Two are shown in Fig. 3. The one on the left is stable:
any nearby theory will flow towards it as the the cut-off is lowered. In contrast,
the one on the right has an unstable direction: the flow can take theories away
from the fixed point unless they lie on the “critical surface”.

Fig. 3. Fixed points.

Close to a fixed point, we can find perturbations that show a power-law de-
pendence on Λ and we can use this power counting to organise the terms in our
effective theory. They can be classified into three types:

• Λ−ν: relevant/super-renormalisable1,
for example mass terms in quantum field theories like QED;

• Λ0: marginal/renormalisable,
for example the couplings familiar in gauge theories like the StandardModel
(typically these show a logΛ dependence on the cut-off);

• Λ+ν: irrelevant/nonrenormalisable,
for example the interactions in Chiral Perturbation Theory.

2 RG equation for two-body scattering

Let us look at scattering of two non-relativistic particles at low enough energies
that the range of the forces is not resolved (for example, two nucleons with an en-
ergy below about 10MeV). This can be described by an effective Lagrangianwith
two-body contact interactions or, equivalently, a Hamiltonian with a δ-function
potential. In momentum space, the S-wave potential can be written

V(k ′, k, p) = C00 + C20(k2 + k ′2) + C02 p
2 · · · , (2)

where k and k ′ denote the initial and final relative momenta and the energy-
dependence is expressed in terms of the on-shell momentum p =

√
ME.

1 The term “relevant” is commonly used in condensed-matter physics, whereas “super-

renormalisable” is more usual in particle physics.
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Scattering can be described by the reactance matrix (K), defined similarly to
the scattering matrix (T ) but with standing-wave boundary conditions. This has
the advantage that it is real below the particle-production threshold. For S-wave
scattering, it satisfies the Lippmann-Schwinger equation

K(k ′, k, p) = V(k ′, k, p) +
M

2π2
P

∫Λ

0

q2dq
V(k ′, q, p)K(q, k, p)

p2 − q2
, (3)

where P denotes the principal value. This integral equation sums chains of the
bubble diagrams in Fig. 2 to all orders. On-shell (k ′ = k = p), the K-matrix is
related to the T -matrix by

1

K(p)
=

1

T(p)
− i

Mp

4π
= −

Mp

4π
cot δ(p), (4)

where δ(p) is the phase shift.

With contact interactions, the integral over the momentum q of the virtual
states is divergent and so we need to regulate it. Here I follow the method de-
veloped in [3] and simply cut the integral off at q = Λ. We can write the integral
equation in the schematic form

K = V + VGK. (5)

Demanding that the off-shell K-matrix be independent of Λ,

K̇ ≡ ∂K

∂Λ
= 0, (6)

ensures that scattering observables will be independent of the arbitrary cut-off.
Differentiating the integral equation gives

0 = V̇ + V̇GK+ VĠK, (7)

where Ġ implies differentiation with respect to the cut-off on the integral. Multi-
plying this by (1+GK)−1 and using the integral equation for K, we arrive at

V̇ = −VĠV. (8)

This equation has a very natural structure: as states at the cut-off, with q =

Λ, are removed from the loop integral in Fig. 2, their effects are added into the
potential to compensate. Written out explicitly, it is

∂V

∂Λ
=
M

2π2
V(k ′, Λ, p,Λ)

Λ2

Λ2 − p2
V(Λ, k, p,Λ). (9)

Note that the use of the fully off-shell K-matrix was essential to obtaining an
equation involving only the potential; a similar approach based on the half-off-
shell T -matrix yields an equation that still involves the scattering matrix [6].

This equation for the cut-off dependence of the effective potential is still not
quite the RG equation: the final step is to express all dimensioned quantities in
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units of Λ. Rescaled momentum variables (denoted with hats) are defined by
k̂ = k/Λ etc., and a rescaled potential by

V̂(k̂ ′, k̂, p̂, Λ) =
MΛ

2π2
V(Λk̂ ′, Λk̂, Λp̂,Λ). (10)

(The factorM in this corresponds to dividing an overall factor of 1/M out of the
Schrödinger equation.) This satisfies the RG equation

Λ
∂V̂

∂Λ
= k̂ ′ ∂V̂

∂k̂ ′
+ k̂

∂V̂

∂k̂
+ p̂

∂V̂

∂p̂
+ V̂

+V̂(k̂ ′, 1, p̂, Λ)
1

1− p̂2
V̂(1, k̂, p̂, Λ). (11)

The sum of logarithmic derivatives is similar to the structure of analogous RG
equations in condensed-matter physics; it counts the powers of low-energy scales
present in the potential. The boundary conditions on solutions to this equation are
that they should be analytic functions of k̂2, k̂′2 and p̂2 (since they should arise
from an effective Lagrangian constructed out of ∂/∂t and ∇2). For small values
of these quantities the potential should thus have an expansion in non-negative
integer powers of them.

3 Fixed points and perturbations

Having constructed the RG equation, the first thing we should do is to look for
fixed points – solutions that are independent of Λ. There is one obvious one: the
trivial fixed point

V̂ = 0. (12)

(Since there is no scattering, this obviously describes a scale-free system.)

To describe more interesting physics, we need to expand around the fixed
point, looking for perturbations that scale with definite powers of Λ. These are
eigenfunctions of the linearised RG equation. They have the form

V̂(k̂ ′, k̂, p̂, Λ) = Λνφ(k̂ ′, k̂, p̂), (13)

and they satisfy the eigenvalue equation

k̂ ′ ∂φ

∂k̂ ′
+ k̂

∂φ

∂k̂
+ p̂

∂φ

∂p̂
+ φ = νφ. (14)

Its solutions are
φ(k̂ ′, k̂, p̂) = C k̂′2l k̂2m p̂2n, (15)

with k, l,m ≥ 0 since only non-negative, even powers satisfy the boundary con-
dition. The corresponding eigenvalues are

ν = 2(l+m + n) + 1. (16)

These are all positive and so the fixed point is stable. The eigenvalues simply
count the powers of low-energy scales. (ν = d + 1 where d is the “engineering
dimension”, as in Weinberg’s original power counting for ChPT [7].)
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There are also many nontrivial fixed points, all of which are unstable. The
most interesting one is purely energy-dependent. To study it, I focus on potentials
of the form V(p,Λ). The RG equation for these simplifies to

Λ
∂V̂

∂Λ
= p̂

∂V̂

∂p̂
+ V̂ +

V̂(p̂, Λ)2

1− p̂2
. (17)

Since all terms involve just one function, we can divide by V̂2 to get

Λ
∂

∂Λ

(
1

V̂

)
= p̂

∂

∂p̂

(
1

V̂

)
−
1

V̂
−

1

1− p̂2
, (18)

which is just a linear equation for 1/V̂(p̂, Λ).

To find the fixed point, we set the LHS of this equation to zero. The resulting
ODE can then be integrated easily. The general solution is

1

V̂0(p̂)
= −

∫1

0

q̂2 dq̂

q̂2 − p̂2
+ Cp̂. (19)

The final term is not analytic in p̂2 and so the boundary condition requiresC = 0.
The fixed-point potential is thus

1

V̂0(p̂)
= −1+

p̂

2
ln
1+ p̂

1− p̂
. (20)

The precise form of this is regulator-dependent (for example, it is just a constant
for dimensional regularisation [4]), but the presence of a negative constant of
order unity is generic.

Since this potential has no momentum dependence, the integral equation for
the K-matrix simplifies to an algebraic equation. In rescaled, dimensionless form,
it can be written

1

K̂(p̂)
=

1

V̂0(p̂)
−

∫1

0

q̂2 dq̂

p̂2 − q̂2
. (21)

The integral here is just the negative of the one above in 1/V̂0 itself and so we get

1

K̂(p̂)
= 0. (22)

The corresponding T -matrix,

1

T̂(p̂)
=

1

K̂(p̂)
+ i

π

2
p̂, (23)

has a pole at p̂ = 0. The fixed-point therefore describes a system with a bound
state at exactly zero energy (another scale-free system).

More general systems can be described by perturbing around the fixed point.
In particular, energy-dependent perturbations can be found by substituting

1

V̂(p̂, Λ)
=

1

V̂0(p̂)
+ Λνφ(p̂) (24)
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into the RG equation. The functions φ(p̂) satisfy the eigenvalue equation

p̂
∂φ

∂p̂
− φ = νφ. (25)

The solutions to this are powers of the energy,

φ(p̂) = Cp̂2n, (26)

with eigenvalues
ν = 2n − 1. (27)

The RG eigenvalues for these perturbations have been shifted by −2 compared to
the simple “engineering” power counting. There is one negative eigenvalue and
so the fixed point is unstable.
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Fig. 4. RG flow of the potential V̂(p̂, Λ) = b0(Λ) + b2(Λ) p̂2 + · · · .

A slice through the RG flow is shown in Fig. 4. The two fixed points can
be seen, as well as the critical line through the nontrivial one. Potentials close
to this line initially flow towards the fixed point as we lower the cut-off but are
then diverted away from it. A potential to the right of the line is not quite strong
enough to produce a bound state. As Λ passes through the scale associated with
the virtual state, the flow turns to approach the trivial fixed point from the weakly
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attractive side. In contrast, a potential to the left of the critical line generates a
finite-energy bound state. This state drops out of our low-energy effective theory
when the cut-off reaches the corresponding momentum scale. As this happens,
the RG flow takes the potential to infinity and it then reappears from the right,
ultimately approaching the trivial fixed point from the weakly repulsive side.

Exercise:Repeat this analysis for a general number of space dimensions, in particular for
D = 1 and 2, and interpret your results.

Physical observables are given by the on-shell K-matrix. Returning to physi-
cal units, this is

1

K(p)
=
M

2π2

∞∑

n=0

Cn p
2n, (28)

where the Cn are the coefficients of the RG eigenfunctions in 1/V̂ . Comparing
this with

1

K(p)
= −

Mp

4π

(
−
1

a
+
1

2
rep

2 + · · ·
)
, (29)

we see that this expansion is, in fact, just the effective-range expansion (first ap-
plied to the nucleon-nucleon interaction by Bethe in 1949 [8]). Note that the terms
in the expansion of our effective theory have a direct connection to scattering ob-
servables. This is as it should be: effective theories are systematic tools to analyse
data, not fundamental theories that aim to predict everything in terms of a small
number of parameters.

Finally, I should make a brief comment about momentum-dependent per-
turbations around the nontrivial fixed point, which I have not discussed above.
These terms change the off-shell dependence of the scattering matrix, without
affecting physical observables. Their explicit forms can be found in Ref. [3]. In
contrast to the expansion around the trivial fixed point, momentum- and energy-
dependent terms appear at different orders. Specifically, the momentum-depen-
dent perturbations around the nontrivial point have even RG eigenvalues. Each
term is one order higher in the expansion than the corresponding energy-depen-
dent one. This means that using them to eliminate energy dependence will leave
an effective potential without an obvious power counting (like the potential ob-
tained in Ref. [6]).

4 Extensions

Here I have discussed only the application of the RG to systems where the range
of the forces is not resolved and the interactions can all be represented by contact
terms. There are many other systems with known long-range forces, for example:
Coulomb, pion exchange, dipole-dipole or van der Waals interactions. Similar
RG methods can be applied to the unresolved short-range forces accompanying
these [9,10]. The resulting expressions are either distorted-wave Born expansions
or distorted-wave versions of the effective-range expansion. (In the case of the
Coulomb potential, it was again Bethe who first wrote this expansion down [8].)
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Another important application is to the 1/r2 potential that arises in three-
body systems with attractive short-range forces [11]. If the two-body scatter-
ing length is infinite, the Efimov effect leads to a tower of geometrically-spaced
bound states [12]. This is the origin of the limit cycle that has been found in the
RG flows for these systems [13] (one of the few known examples of such a cycle).

Acknowledgments

I am grateful to M. Rosina, B. Golli and S. Širca for the invitation to participate in
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