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Abstract. Results of the Spectral Quark Model for the gravitational, electromagnetic, and

transition form factors of the pion are discussed. In this model both the parton distribution

amplitude and the parton distribution function are flat, in agreement with the transverse

lattice calculations at low renormalization scales. The model predictions for the gravita-

tional form factor are compared to the lattice data, with good agreement. We also find a

remarkable relation between the three form factors, holding within our model, which be-

sides reproducing the anomaly, provides a relation between radii which is reasonably well

fulfilled. Comparison with the CELLO, CLEO, and BaBar data for the transition form fac-

tor is also considered. While asymptotically the model goes above the perturbative QCD

limit, in qualitative agreement with the BaBar data, it fails to accurately reproduce the data

at intermediate momenta.

The low-energy behavior of the pion is determined by the spontaneous break-
down of the chiral symmetry. This fact allows for modeling the soft matrix ele-
ments in a genuinely dynamical way [1–25]. This talk is based on Refs. [26,27]
and employs the Spectral Quark Model (SQM) [28] in the analysis of several
high-energy processes and their partonic interpretation. This model satisfies a

priori consistency conditions [28] between open quark lines and closed quark
lines, which becomes crucial in the analysis of high-energy processes and enables
an unambiguous identification of parton distribution functions and amplitudes.
This is not necessarily the feature of other versions of chiral quark models, such
as the Nambu–Jona–Lasinio (NJL) model, as was spelled out already in Ref. [1].
For these reasons SQM is particularly well suited for the presented study.

The general theoretical framework is set by the Generalized Parton Distribu-
tions (GPDs) [29–37]. These objects arise formally, e.g., from deeply virtual Comp-
ton scattering (DVCS) on a hadronic target, effectively opening up the quark
lines joining the currents. In local quark models usually the one-loop divergences
appear and a regularization is needed. One may either compute the regularized

DVCS and take the high-energy limit, or compute directly the regularized GPD.

⋆ Talk delivered by W. Broniowski
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Besides the requirements of gauge invariance and energy-momentum conserva-
tion, this apparently innocuous issue sets a non-trivial consistency condition on
admissible regularizations which SQM fulfills satisfactorily.

For the case of the pion, the GPD for the non-singlet channel is defined as

ǫ3ab Hq,NS(x, ζ, t)=

∫
dz−

4π
eixp+z−〈πb(p ′)|ψ̄(0)γ+ψ(z) τ3|πa(p)〉

∣∣
z+=0,z⊥=0

,

with similar expressions for the singlet quarks and gluons. We omit the gauge
link operators [0, z], absent in the light-cone gauge. The kinematics is set by p ′ =

p + q, p2 = p ′2 = m2
π, q

2 = −2p · q = t. The variable ζ = q+/p+ denotes
the momentum fraction transferred along the light cone. Formal properties of
GPDs can be elegantly written in the symmetric notation involving the variables

ξ = ζ
2−ζ

, X =
x−ζ/2

1−ζ/2
:

HI=0(X, ξ, t) = −HI=0(−X, ξ, t), HI=1(X, ξ, t) = HI=1(−X, ξ, t).

For X ≥ 0 one has HI=0,1(X, 0, 0) = qS,NS(X), where q(x)i are the standard
parton distribution functions (PDFs). In QCD all these objects are subjected to
radiative corrections, as they carry anomalous dimensions, and become scale-
dependent, i.e. they undergo a suitable QCD evolution. This raises an important
question: what is the scale Q0 of the quark model when matching to QCD is
performed? The momentum-fraction sum rule fixes this scale to be admittedly
very low, Q0 = 313+20

−10 MeV, for ΛQCD = 226MeV. Remarkably, but also perhaps
unexpectedly, this choice, followed by the leading-order evolution, provides a
rather impressive agreement with the high energy data, as well as the Euclidean
and transverse-lattice simulations (see Ref. [26] for a detailed summary).

The following sum rules hold for the moments of the GPDs:

∫1

−1

dXHI=1(X, ξ, t) = 2FV (t),

∫1

−1

dXXHI=0(X, ξ, t) = 2θ2(t) − 2ξ2θ1(t),

where FV (t) denotes the vector form factor, while θ1(t) and θ2(t) stand for the
gravitational form factors [38]. Other important features are the polynomiality con-
ditions [29], the positivity bounds [39,40], and a low-energy theorem [41].We stress
that all these properties required on formal grounds are satisfied in our quark-
model calculation [26]. Unlike GPDs, the form factors of conserved currents do
not undergo the QCD evolution.

In the chiral limit we have the following identity in SQM relating the gravi-
tational and electromagnetic form factor,

d

dt
[t θi(t)] = FV (t) , (i = 1, 2) , (1)

fromwhich the identity between the two gravitational form factors θ1(t) = θ2(t) ≡
Θ(t) follows.

Since there is no data for the full kinematic range for the GPDs of the pion,
we present here the results for the generalized form factors only, in particular for
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Fig. 1. Form factors of the pion vs. lattice data. Left: the electromagnetic form factor. Right:

the quark part of the gravitational form factor, θ1(t)/2, computed in the Spectral Quark

Model and compared to the lattice data from Ref. [42]. The band around the model curves

indicates the uncertainty in the model parameters.

the gravitational ones. It is well known that the data for the electromagnetic form
factor are well parameterized with the monopole form, which by construction is
reproduced in SQM, where the vector meson dominance is built in. The gravita-
tional form factors are available from the lattice QCD simulations [42,43]. In Fig. 1
the electromagnetic form factor and the quark part of the gravitational form fac-
tor are compared to the lattice data. We note a very good agreement. In SQM one
has the relation

m2
ρ = 24π2f2/Nc, (2)

where f is the pion weak decay constant in the chiral limit. This relation works
within a few percent phenomenologically. The expressions for the form factors in
SQM are very simple,

FV (t) =
m2

ρ

m2
ρ − t

, θ1,2(t)/θ1,2(0) =
m2

ρ

t
log

(
m2

ρ

m2
ρ − t

)
. (3)

We note the longer tail of the gravitational form factor in the momentum space,
meaning a more compact distribution of energy-momentum in the coordinate
space. Explicitly, we find a quark-model formula

2〈r2〉θ = 〈r2〉V . (4)

The two previous processes regard two pions and either one photon or one
graviton in the corresponding three-point vertex function. An apparently dis-
parate object is given by the pion-photon transition distribution amplitude (TDA)
[44,45]
∫
dz−

2π
eixp+z−〈γ(p ′, ε)|ψ̄(0)γµ τ

a

2
ψ(z)|πb(p)〉

∣∣∣z+=0

zT =0

=
ie

p+f
ǫµναβενpαqβV

ab(x, ζ, t),

(5)

Here the photon carries momentum p ′ = p+q and has polarization ε. As before,
the presence of the gauge link operators is understood in Eq. (5) to guarantee the
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gauge invariance of the bilocal operators. We consider here the isovector quark
bilinears. Since the photon couples to the quark through a combination of the
isoscalar and isovector couplings, i.e. the quark charge is Q = 1/(2Nc) + τ3/2,
one has the isospin decomposition

Vab(x, ζ, t) = δabVI=0(x, ζ, t) + iǫabcVI=1(x, ζ, t). (6)

The isoscalar form factor is related to the pion-photon transition form factor by the
sum rule

Fπγγ∗(t) =
2

f

∫
dxVI=0(x, ζ, t), (7)

where the factor of 2 comes fom the fact, that either of the photons can be isoscalar.
The form factor in SQM was obtained directly in Ref. [28] and later on from the
integration of the pion-photon isoscalar transition distribution amplitude (TDA)
yielding [21] a ζ-independent function (as required by polynomiality),

Fπγγ(t, A) =
2f

Nc

[
2m2

ρ

m4
ρ − tm2

ρ + (1− A2)t2
+
1

At
log

(
2m2

ρ − (1 −A)t

2m2
ρ − (1 +A)t

)]
, (8)

where A = (q2
1 − q2

2)/(q2
1 + q2

2) is the photon asymmetry parameter. For A = 1

we have

Fπγγ∗(t) =
1

12π2f

[
2m2

ρ

m2
ρ − t

+
m2

ρ

t
log

(
m2

ρ

m2
ρ − t

)]
, (9)

where relation (2) has been used. We read out from this formula the correspond-

ing rms radius to be 〈r2〉1/2
πγγ∗ =

√
5/mρ = 0.57 fm for mρ = 770MeV. Equiva-

lently, one may use the slope parameter bπ = d
dt
Fπ0γγ∗(t)/Fπ0γγ∗(t)

∣∣∣
t=0

. SQM

gives bπ = 5/(6m2
ρ) = 1.4GeV−2, in a very reasonable agreement with the exper-

imental value bπ = (1.79 ± 0.14 ± 14)GeV−2, originally reported by CELLO [46].
A comparison of Eq. (8,9) to the CLEO [47] and BaBar [48] data is presented
in the right panel of Fig. 2. The solid line corresponds to the model calculation
with A = 1, while the dashed line is for A = 0.95. We note that the experiment
does not produce strictly real photons, thus the observed sensitivity to the value
of A is a relevant effect. We note that while at |A| = 1 the model asymptotics
for the transition form factor is (2f/Nc) log(−t/m2

ρ)/(−t), at |A| 6= 1 it becomes
(2f/Nc) log[(1+A)/(1−A)]/(−At). The behavior is clearly seen in Fig. 2. As we
notice, in the intermediate range of Q SQM overshoots the data.

The recent BaBar measurements [48] have predated the long-standing per-
turbative QCD prediction [49,50] that −tFπγγ∗(t) goes asymptotically to a con-
stant value of 2f. Some authors [51,52] have pointed out that the key to this
unexpected behavior hints for a flat pion PDA and the end-point singularities
and switched-off QCD evolution. The flatness of the PDA at low renormalization
scales has been originally found in the Nambu–Jona-Lasinio model [10] and in
SQM [28].
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Fig. 2. Left: chiral quark model prediction for the pion DA evolved to the scale of 0.5GeV

(band) and compared to the transverse lattice data [54]. Right: the pion trantition form

factor compared to the CLEO [47] and BaBar [48] data. Solid (dashed) lines are the SQM

prediction at A = 1 (A = 0.95). The dotted line is the perturbative QCD prediction.

We note in passing that a constant PDA is also found in the Regge model
[53].

Remarkably, an almost flat PDA is also found non-perturbatively on the
transverse lattice [54] (see the left panel of Fig. 2). Actually, the non-vanishing
of the PDA at the end points (at the quark-model scale) is not only a consequence
of local quark models. Nonlocal models correctly implementing the chiral Ward-
Takahashi identity also get such a feature [18]. A trend to flatness is observed in
contrast to calculations violating the chiral symmetry constraints. However, the
corresponding transition form factor in non-local models does not show a steep
rise [55] as suggested by the BaBar data. The calculation in Ref. [56,57], which
reproduces the CLEO and BaBar data, requires, unfortunately, a much too small
constituent quark mass, which is incompatible with other sectors of the pion phe-
nomenology. The apparent inconsistency of the BaBar data with the QCD convo-
lution scheme is also addressed in Ref. [58,59].

Let us remind the reader that according to the conventional perturbative
QCD approach, the radiative corrections are computed order by order in the
twist expansion. Most often this is in practice possible only for the leading-twist
contribution. Actually, this is the only way to identify the PDA within a non-
perturbative scenario or quark model calculations. In fact, the chiral quark mod-
els require a low scale not only by fixing the second Gegenbauer coefficient a2 of
the PDA. As already mentioned, the same conclusion is reached independently
by fixing the momentum fraction of the valence quarks to its natural 100% value
at the quark-model scale, where the quarks constitute the only degrees of free-
dom.

On amoremethodological level, it is worth mentioning that the conventional
NJL model does not share some of the virtues of SQM, particularly the interplay
between chiral anomaly and factorization, a subtle point which was discussed at
length in Ref. [11] for the NJL case. The πγγ triangle graph is linearly divergent,
and thus a regularization must generally be introduced. If one insists on preserv-
ing the vector gauge invariance, the regulator must preserve that symmetry, but
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then the axial current is not conserved, generating the standard chiral anomaly.
The obvious question arises whether the limit Q2 → ∞ must be taken before or
after removing the cut-off. If one takes the sequence Q2 > Λ2, a constant PDA
is obtained in agreement with our low energy calculation. For the opposite se-
quence factorization does not hold in NJL. The good feature of SQM is that the
spectral regularization does not make any difference between the two ways. This
illustrates in a particular case the above-mentioned general consistency require-
ment between regularized open and closed quark lines (see e.g. [60]).

Finally, by combining Eq. (3) and Eq. (9) we get the remarkable relation
among the electromagnetic, gravitational and transition form factors, holding in
SQM:

Fπγγ∗(t) =
1

12π2f
[2FV (t) +Θ(t)] , (10)

whence

3〈r2〉πγγ∗ = 2〈r2〉V + 〈r2〉Θ . (11)

The previous relation is not fulfilled in the conventional NJL model. Of course, it
would be interesting to test the relation Eq. (10) against the future data or lattice
QCD.

In conclusion, we note that while the description of the pion transition form
factor in a genuinely dynamical way remains a challenge, the Spectral Quark
Model offers many attractive features which are required from theoretical con-
sistency. It satisfies the chiral anomaly and the factorization property. The vector
and gravitational form factors describe experimental and/or lattice-QCD data
satisfactorily. A remarkable model relation among the gravitational, electromag-
netic and transition form factors has also been deduced. Finally, for the latter, we
have also displayed a hitherto unnoticed sensitivity to the photon momentum
asymmetry parameter Awhich might be relevant for other studies.
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