
Informatica 28 (2004) 257–263 257

Improved Error Recovery in Generated LR Parsers

Boštjan Slivnik and Boštjan Vilfan
University of Ljubljana
Faculty of Computer and Information Science
Tržaška 25, 1000 Ljubljana, Slovenia
bostjan.slivnik@fri.uni-lj.si
bostjan.vilfan@fri.uni-lj.si

Keywords: LR parsing, error recovery and reporting

Received: February 17, 2004

A new method for error recovery in LR parsers is described. An error recovery routine based on this new
method can be generated automatically by a parser generator as a part of an LR parser. Based on the result
that a viable suffix from which the unread part of the input is derived can be computed in certain states
of an LR parser, the new method uses the viable suffix to discard the erroneous part of the input and to
synchronize the parser stack with the rest of the input afterwards. Thus it resembles a simple but efficient
error recovery method used by LL and other predictive parsers. It is proved that all states suitable for this
kind of error recovery can automatically be identified by a parser generator.

Povzetek: članek opisuje okrevanje po napaki v LR analizatorjih.

1 Introduction

Compilers are programs that mostly process erroneous in-
put. Robust error recovery and meaningful error reporting
are therefore essential parts of any industrial-strength com-
piler.

Nowadays many compilers perform syntax analysis us-
ing an LALR parser (more precisely, LA(1)LR(0) parser)
that is generated automatically by a parser generator like
yacc, bison, JavaCUP, etc. [3]. However, none of these
parser generators uses any advanced method for error re-
covery and reporting mainly, because these methods are ei-
ther (a) time consuming, or (b) require inspection of indi-
vidual parser states and manual insertion of error recovery
routines [4, 5].

LALR parser generators usually provide only a very
simple mechanism for error recovery and none for error
reporting. If a yacc generated parser is to recover after an
error is encountered within a sentential form derived from
a nonterminal A, a compiler writer should insert a produc-
tion

A −→ error α

manually where error is a yacc reserved word [2, 3]. In
case of an error, a parser abandons other productions ex-
panding A, moves forward over the erroneous part of the
input and discards it until a string which can be reduced
to α is seen. A reduction to A is performed and thus the
parser is resynchronized. However, “proper placement of
error tokens in a grammar is a black art” [3].

The paper is organized as follows. Section 2 includes
definitions of some basic elements of formal language the-
ory and parsing. Following the brief outline of the new

method in Section 3, the construction of the finite automa-
ton used by the error recovery routine is described in Sec-
tion 4. This is followed in Section 5 by (a) the algorithm
for computing the viable suffix needed for error recovery
and (b) the algorithm for computing a grammatical context
of the erroneous part of the input. Examples and figures are
given along the way.

2 Basic definitions

Standard terminology of formal language theory and pars-
ing is assumed [4, 5]. Throughout the paper we assume
that grammars are reduced (no useless or unreachable sym-
bols) and $-augmented (production S′ −→ S is added
as the only production expanding the new start symbol S′).
A string γ ∈ V ∗ is a viable prefix (suffix) of G iff there
exists a rightmost (leftmost) derivation S =⇒∗

G,rm γu

(S =⇒∗
G,lm uγR).

The nondeterministic LR(k) machine Nk for the gram-
mar G = 〈V, T, P, S〉 (where V contains both nonterminal
and terminal symbols) is a finite (semi)automaton with the
state set equal to Ik (the set of valid LR(k)-items forG), an
initial item i0 ∈ Ik, and a mapping δN : Ik× (V∪{ε}) −→
2Ik [1].

The deterministic LR(k) (or LR(k)LA(k′)) ma-
chine Mk for the grammar G is a finite (semi)automaton
with a set of states Q ⊆ 2Ik , an initial state qS ∈ Q, and a
mapping δM : Q × V −→ Q. If δ∗M (qS , γ) = q for some
q ∈ Q and γ ∈ V ∗, then [γ] denotes the set of equiva-
lent viable prefixes leading from the initial state qS to the
state q. Furthermore, [γ] uniquely determines q (and is thus
just another name for q).

258 Informatica 28 (2004) 257–263 B. Slivnik et al.

The LR(k) parser is a pushdown transducer 〈M, τ〉 (or
simply M). M denotes the deterministic pushdown au-
tomaton based on the deterministic LR(k) machine Mk,
and τ denotes the output effect (a mapping of parser ac-
tions into grammar productions). States of M are the same
as the states of Mk. The stack alphabet of M is a set
of states of Mk. A configuration (or instantaneous de-
scription) of a parser M is represented as $Γ u$, where
Γ ∈ Q∗ and u ∈ T ∗ denote the stack contents and the
unread part of the input, respectively.

3 The outline of the new method

To relieve a compiler writer of the “black art” of proper
placement of error productions, a better error recovery
method is needed. Let us suppose that the input string uv′

is being parsed with an LR(k) parser M . Starting with the
initial stack contents Γ0, the parser M performs the parser
steps π(u) corresponding to the derivation

$Γ0 uv′$ =⇒π(u)
M $Γ v′$ (1)

and enters a configuration $γ v′$ (note that γ and v′ de-
note the stack contents and the unread part of the input,
respectively). LR(k) parsers have the correct prefix prop-
erty [4, 5], i.e., any string of terminals pushed on the parser
stack is a prefix of some valid input. It follows from Deriva-
tion (1) that there exist derivations

S =⇒∗
rm γvi =⇒∗

rm uvi (2)

for various vi and a single viable prefix γ where Γ = Γ′[γ]
(the stack contents Γ of parser M corresponds to the viable
prefix γ of Derivations 2). Therefore, there exist leftmost
derivations

S =⇒∗
lm uδi =⇒∗

lm uvi (3)

for various viable suffixes δi.
Now suppose that $Γ v′$ is an error configuration. In

other words, v′ cannot be derived from any viable suffix δi
in any of Derivations (3). The idea, on which the new
method is based, can be outlined as follows:

1. If there is only one viable suffix δ = X1δ̂ such that
δi = δ for any i in Derivations (3), and

2. if this particular δ is known in the error configuration
$Γ v′$,

then the parser should discard the next few tokens of in-
put, resynchronize and continue parsing the string derived
from δ̂.

If there exists a unique viable suffix δ, there are two ap-
proaches to discard the erroneous part of the input. The
first is to skip everything until a string from FIRSTk(δ̂$)
is seen, and then to resynchronize by pushing the symbol
X1 on the stack. Using this approach, Derivation (1) can
be extended with the derivation

$Γ v′$ = $Γ v′1v̂$
=⇒π(v′

1)
M $Γ v̂$

=⇒M $Γ[γX1] v̂$

where the steps denoted by π(v′1) are used to skip the part
of the input derived from symbol X1. Thus, the string v̂$
is the longest suffix of v′$ having a property that (k : v̂$) ∈
FIRSTk(δ̂$).

The second approach is to skip everything until a string
which can be reduced to X2, the first symbol of δ̂, is read,
and then to resynchronize by pushing X1 and then X2 on
the stack. Formally, Derivation (1) is extended with the
derivation

$Γ v′$ = $Γ v′1v2v̂$
=⇒π(v′

1)
M $Γ[γX1] v2v̂$

=⇒π(v2)
M $Γ[γX1][γX1X2] v̂$

where the steps denoted by π(v′1) are used to skip the part
of the input derived from symbol X1 (as in the case above)
and where π(v2) is the parse of v2, the correct part of the
input, in M .

The parser using an error recovery routine based on ei-
ther of the two strategies tries to skip as few symbols of
the input string as possible. More precisely, there may be
many different, but viable splittings of the input string v′

either to strings v′1 and v̂ (as in the first approach) or to
strings v′1, v2 and v̂ (as in the second approach). However,
the problem of splitting the string v′ is beyond the scope of
this paper.

Finally, if the viable suffix δ cannot be determined
uniquely in the parser state [γ], the parser removes one state
at the time from the parser stack until a state with a unique
viable suffix is at the top of the stack. Then, one of the
approaches described above is applied.

4 The construction of the error
recovery routine

Two conditions were set in the previous section that must
be fulfilled if a parser is to recover from the error: (1) the
viable suffix δ must be unique and (2) it must be known.
In general, a viable prefix γ and thus a state [γ] (a set of
LR(k)-equivalent viable prefixes) can have many corre-
sponding viable suffixes δi. To identify states of an LR(k)
parser suitable for performing error recovery we start with
the following two definitions [6]:

Definition 1 LetNk = 〈IG
k , V, PNk

, i0〉 be a nondetermin-
istic LR(k) machine for a grammar G = 〈V, T, P, S〉. A
string of LR(k)-valid items i0i1 . . . in ∈ (IG

k)∗ is called
a 〈γ, k〉-path if there exists a sequence X1,X2, . . . , Xn ∈
(V ∪{ε}) so thatXn = ε and [ij−1Xj → ij] ∈ PNk

where
i = 1, 2, . . . , n.

Definition 2 〈γ, k〉-paths ρ1 and ρ2, where ρ1 =
i0i1 . . . in and ρ2 = i0i

′
1 . . . i

′
m are 0-equivalent iff n = m

and items ij and i′j differ only in lookahead strings for
all j = 1, 2, . . . , n (i.e., if ij = [A → α • β, x] and
i′j = [A′ → α′•β′, x′], thenA = A′, α = α′, and β = β′).

IMPROVED ERROR RECOVERY IN. . . Informatica 28 (2004) 257–263 259

The reason for defining 0-equivalence of 〈γ, k〉-paths be-
comes obvious with the following lemma, which estab-
lishes a relationship between viable prefixes and suffixes
on the one hand and LR(k) machines on the other.

Lemma 1 Any two 0-equivalent 〈γ, k〉-paths define the
same viable suffix.

PROOF: Any 〈γ, k〉-path ρ = i0i1 . . . in specifies a set of
leftmost derivations all having the form

A1 =⇒p1
lm α1A2β1

=⇒π(α1)
lm u1A2β1

=⇒p2
lm u1α2A3β2β1

=⇒π(α1)
lm u1u2A3β2β1

...

=⇒pm

lm u1u2 . . . um−1αmAm+1βmβm−1 . . . β1

=⇒π(α1)
lm u1u2 . . . umAm+1βmβm−1 . . . β1,

where pj = Aj −→ αjAj+1βj is the production of the
j-th LR(k)-item of ρ having the dot in the initial posi-
tion at the far left (and Am+1 may be ε). As any change
of lookahead strings in LR(k)-items of ρ does not affect
the leftmost derivations above, all 〈γ, k〉-paths which are
0-equivalent to ρ define the same viable suffix δ, where
δR = Am+1βmβm−1 . . . β1.
�

When the traditional LR(k) parser enters the error con-
figuration $Γ v′$, the error is recognized because no ac-
tion is specified for q and x = k : v′, where Γ = Γ′q,
i.e., ACTION(q, x) = error . But as LR(k) parsers have
the correct prefix property, the first (k−1) symbols of the
lookahead buffer are correct — otherwise the error would
have been detected earlier.

The first step is to identify all states [γ] with the prop-
erty that for any γ′ ∈ [γ], all 〈γ′, k〉-paths ending with
an item (k−1)-active for (k − 1) : v′ are 0-equivalent (an
item [A → αX • β, y] is k-active for x if and only if
x ∈ FIRSTG

k (βy)). In other words, the stack contents of
the LR(k) parser and the first (k−1) symbols in the looka-
head buffer must define the viable suffix uniquely (remem-
ber that in error configuration $Γ v′$ the k-th symbol of v′

is erroneous and thus not useful for error recovery). To do
so, we change the focus to the nondeterministic LR(0) ma-
chine N0.

Definition 3 An LR(0)-item [A→ α•β] ofN0 is relevant
for state [γ] of the deterministic LR(k) machine for G if
and only if, for all γ′ ∈ γ and i′ = [A → α • β, y] ∈ [γ],
all 〈γ′, k〉-paths ρ = ρ′i′ are 0-equivalent.

During the parser construction, we compute a directed
graph GN with a set of vertices VN and a set of edges EN

defined as

VN = { 〈[A→ α • β], q〉
|∃q ∈ QM , y ∈ T ∗ : [A→ α • β, y] ∈ q}

and

EN = { 〈〈i1, q1〉, 〈i2, q2〉〉|∃X ∈ V ∪{ε} :
[q1X → q2] ∈ PM ∧ [i1X → i2] ∈ PN0},

respectively. It is derived from the graph of the nondeter-
ministic LR(0) machine by (1) replicating each LR(0)-
item as many times as there are states in M in which
an LR(k) item with the corresponding core appears, and
(2) erasing edge labels. Thus every path in GN starting
with 〈[S′ → •S], qS〉 has its corresponding path in N0

(and vice versa).
As an example, consider the following $-augmented

LALR grammar Gex with productions

S′ −→ S, S −→ AB,
A −→ aA, A −→ ε,
B −→ Bb, B −→ b.

The LALR machine for the grammar Gex as constructed
by a modified version of bison is shown in Figure 1. The
graph GN for the grammar Gex is shown in Figure 2.

The irrelevant vertices ofGN (i.e., vertices 〈i, q〉where i
is irrelevant for q) can be identified by the following simple
algorithm:

1. Compute the set of all conflicting vertices, i.e., those
with at least two different predecessors in the same
state:

V̄
(1)
N = {v| v = 〈[A→ •β], q〉 ∧

〈〈i1, q〉, v〉, 〈〈i2, q〉, v〉 ∈ EN ∧
i1 = i2}

(Different predecessors from different states represent
no problem as the state itself helps determining the
right path.)

2. Compute the set of successors of conflicting vertices:

V̄
(2)
N = {v|v is-reachable-from v′ ∈ V̄ (1)

N }

In Figure 2 the irrelevant vertices are shaded while in Fig-
ure 1 they are closed between double lines.

We define the skeleton automatonU with the set of states

QU = {i|〈i, q〉 ∈ VN \ (V̄ (1)
N ∪ V̄ (2)

N)},

alphabet QM , and the mapping δU : QU × QM −→ QU

defined as

δU (i, q′) = i′ ⇐⇒
〈〈i′, q′〉, 〈i, q〉〉 ∈ EN ∧
〈i, q〉, 〈i′, q′〉 ∈ VN \ (V̄ (1)

N ∪ V̄ (2)
N).

The skeleton automaton is just a compact representation
of the graph GN with irrelevant vertices removed. The
skeleton automaton for the grammar Gex is shown in Fig-
ure 3. The aforementioned modification of bison makes

260 Informatica 28 (2004) 257–263 B. Slivnik et al.

Figure 1: Bison-generated LALR machine for the grammar G. Note the different grammar augmentation: instead of
using production S′ −→ S, bison uses a production $accept −→ S$.

S ′ → •S, qS S ′ → $•S$, q0

S → •AB, q0

A→ •aA, q0

A→ •, q0

S ′ → $S•$, q2 S ′ → S•, q5

A→ a • A, q1

A→ •aA, q1

A→ •, q1 S → A •B, q3

B → •Bb, q3

B → •b, q3

S → AB•, q7

B → B • b, q7

B → Bb•, q8

B → b•, q6A→ aA•, q4

S ′ → •S, qS S ′ → $•S$, q0

S → •AB, q0

A→ •aA, q0

A→ •, q0

S ′ → $S•$, q2 S ′ → S•, q5

A→ a • A, q1

A→ •aA, q1

A→ •, q1 S → A •B, q3

B → •Bb, q3

B → •b, q3

S → AB•, q7

B → B • b, q7

B → Bb•, q8

B → b•, q6A→ aA•, q4

Figure 2: Graph GN for the grammar Gex.

IMPROVED ERROR RECOVERY IN. . . Informatica 28 (2004) 257–263 261

v1:S ′ → $ • S$ v2: S → •AB v3:S → A •B v4: S → AB•

v5: A→ • v6: A→ •aA v7: A→ a • A v8: A→ aA•

q0 q0 q3

q0

q1

q0 q1

q0, q1

q1

Figure 3: Skeleton automaton U for the grammar Gex.

bison capable of computing the skeleton automaton — bi-
son-generated skeleton automaton for the same grammar
(although differently augmented) is shown in Figure 4.

(the modification of bison makes bison capable of com-
puting the skeleton automaton as described below).

If the LR(k) parser is to start the error recovery process
in state q and with the string x in the lookahead buffer,
it should be able to select the right vertex of the skeleton
automaton U . Hence, apart from the skeleton automaton,
the parser must contain the table ERROR, which maps the
topmost state and the first (k−1) symbols of the lookahead
buffer to a vertex of U :

ERROR : Q× T ∗(k−1) −→ VN .

Construction of the table ERROR is straightforward. To
compute the value of ERROR(q, x), apply the following pro-
cedure:

1. If there exists a state of the skeleton automaton U cor-
responding to an item i where 〈i, q〉 ∈ VN \ (V̄ (1)

N ∪
V̄

(2)
N) and all items of the core of the state q which are

(k−1)-active for x map to i, i.e.,

∀[A→ α • β, y] ∈ Core(q) :
x ∈ FIRSTk−1(βy) =⇒ [A→ α • β] = i,

then ERROR(q, x) = i. Otherwise, the value of
ERROR(q, x) is undefined.

(The set Core(q) contains either all items [A → α •
β, y] where α = ε if q = qS or the item [S → •S, ε]
if q = qS .)

2. If there exists exactly one node 〈i′, q〉 ∈ VN \ (V̄ (1)
N ∪

V̄
(2)
N) where δU (i′, q) = i and there exists an item

[A→ α • β, y] ∈ q so that x ∈ FIRSTk−1(βy), then
set ERROR(q, x) = i′ and repeat Step 2; otherwise,
terminate.

In other words, make the path leading from q to qS as
long as possible, but keep it unique in respect with the
first (k − 1) symbols of the lookahead buffer.

Table 1 shows the ERROR table for the grammar Gex.

5 Computing the context of the
syntax error

As mentioned at the end of Section 2, not every state of
LR(k) parser is suitable for error recovery. If an error is de-

LR STATE SKELETON STATE

S [S′ → •S]
0 v2 : [S → •AB]
1 v7 : [A→ a •A]
2 v9 : [S′ → $S • $]
3 v3 : [S → A •B]
4 v8 : [A→ aA•]
5 v10 : [S′ → S•]
6 undefined
7 v4 : [S → AB•]
8 undefined

Table 1: The ERROR table for grammar Gex.

tected in the state where error recovery cannot start, i.e., in
the error configuration $Γ v′$ where Γ = Γ′q, x = k : v′

and ERROR(q, x) = ⊥, then the LR(k) parser must remove
the topmost state from the stack and repeat the spawning
of the error recovery. But as the lookahead string x in that
state is no longer available, the parser must push the appro-
priate vertex of the skeleton automaton together with the at
the time when the state itself.

More precisely, the parser stack should not contain just
parser states, but pairs consisting of a parser state and a
vertex of the skeleton automaton which is to be used if an
error occurs. Hence, whenever the state q is pushed onto
the stack (as a result of either shift or reduce action), it
should be pushed as a pair 〈q,⊥〉. In the next step, before
checking the action table and deciding on the next action,
the parser must check the table ERROR and correct the value
of the second component of the topmost pair on the stack.

The algorithm for computing the context in which a syn-
tax error occurs is presented in Figure 5 (δU is a transi-
tion function corresponding to the set of rewriting rules PU

of skeleton automaton U). It starts at the top of the stack
and proceeds downward. It produces a list of LR(0)-items
i1i2 . . . im where ij = [Aj → αj • Aj+1βj , yj], which
determine the derivation

A1 =⇒i1
lm α1A2β1

=⇒i2
lm α1α2A3β2β1

...

=⇒im

lm α1α2 . . . um−1αmAm+1βmβm−1 . . . β1

262 Informatica 28 (2004) 257–263 B. Slivnik et al.

Figure 4: Bison-generated skeleton automaton U for the grammar Gex.

context stack i | i == [S′ → $ • S$] = ε

context stack@((q, _) :st) [A→ •β] = ctx ◦ [A→ •β]
where i = δU ([A→ •β], q)

ctx = context stack i

context stack@((q, _) :st) [A→ αX • β] = ctx ◦ [A→ αX • β]
where ctx = context st [A→ α •Xβ]

Figure 5: Algorithm for computing the viable suffix.

and the viable suffix βR
1 β

R
2 . . . β

R
m. Hence, we can write

down the following theorem:

Theorem 1 If any two 〈γ′, k〉-paths ending with items
which are (k − 1)-active for x, are 0-equivalent for each
γ′ ∈ [γ], then a viable suffix δi in derivation (3) can be
computed from the stack contents Γ = Γ′[γ] in the parser
configuration $Γ v$ for any v = xv′.

A parse of erroneous string aacbb is shown in Tables
2 and 3. Both possible solutions mentioned in Section 2
are shown. In Table 2, the erroneous part of the input is
discarded until the string b ∈ FIRST1(AB$) is found in
the lookahead buffer. The resulting stack contents after er-
ror recovery is performed is therefore $[$][$a][$aa][$aaA].
This is a simple but efficient solution.

In Table 3, however, the string bb is reduced to the second
symbol of the viable suffix AB$, namely B. Hence, the re-
sulting stack contents is $[$][$A][$B]. Finding and reduc-
ing the substring bb can be performed in the same way as
by parsers generated by existing LALR parser generators
if error productions are used.

Finally, the list of items

[S′ → $ • S$], [S → •AB],
[A→ •aA], [A→ a •A],
[A→ •aA], [A→ a •A]

STACK INPUT

1. $(q0, v2) aacbb$
2. $(q0, v2)(q1, v7) acbb$
3. $(q0, v2)(q1, v7)(q1, v7) cbb$

⇒ context returns
[S′ → $ • S$]

[S → •AB]
[A→ •aA]

[A→ a •A]
[A→ •aA]

[A→ a •A]
yielding viable suffix (AB$)R:

4. $(q0, v2)(q1, v7)(q1, v7)(q4, v8) bb$

Table 2: A trace of parsing with error recovery: erroneous
part of the input is discarded until b ∈ FIRST1(AB$) is
seen.

IMPROVED ERROR RECOVERY IN. . . Informatica 28 (2004) 257–263 263

STACK INPUT

1. $(q0, v2) aacbb$
2. $(q0, v2)(q1, v7) acbb$
3. $(q0, v2)(q1, v7)(q1, v7) cbb$

⇒ context returns
[S′ → $ • S$]

[S → •AB]
[A→ •aA]

[A→ a •A]
[A→ •aA]

[A→ a •A]
yielding viable suffix (AB$)R:

4. $(q0, v2)(q3, v3)(q7, v4) $

Table 3: A trace of parsing with error recovery: erroneous
part of the input is discarded until bb derived from B in
AB$ is reduced.

represents a particularly good starting point for printing
out helpful error messages because it provides the compiler
writer with the exact grammatical context within which the
error occurred.

6 Conclusion

The presented method works with both, canonical LR(k)
parsers as well as LA(k)LR(k′) parsers. The error recov-
ery routine does not slow down or influence the parser until
it encounters the first error, and it can be generated auto-
matically. Besides, it has two main benefits: (a) a com-
piler writer needs not add any additional productions to the
grammar and (b) it is a good starting point for meaningful
error reporting. However, the generation of parser is slower
and the generated parser is larger.

References

[1] A. V. Aho and J. D. Hopcroft. Introduction to Automata
Theory, Languages and Computation. Addison-
Wesley, 1979.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers:
Principles, Techniques and Tools. Addison-Wesley se-
ries in Computer Science. Addison-Wesley, 1986.

[3] J. Levine, T. Mason, and D. Brown. Lex & Yacc.
O’Reilly & Associates, 1992.

[4] S. Sippu and E. Soisalon-Soininen. Parsing The-
ory, Volume I: Languages and Parsing, volume 15
of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1988.

[5] S. Sippu and E. Soisalon-Soininen. Parsing The-
ory, Volume II: LR(k) and LL(k) Parsing, volume 20
of EATCS Monographs on Theoretical Computer Sci-
ence. Springer-Verlag, 1990.

[6] B. Slivnik. Kombinacija Knuthovega in Lewis-
Stearnsovega sintaksnega analizatorja z minimalno
uporabo Knuthove analize. PhD thesis, University of
Ljubljana, Ljubljana, Slovenia, 2003.

