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1 Introduction

An element a in a ring R is called clean if it can be written as a sum of
an idempotent and a unit. A ring R is called clean if every element in R
is clean. Camillo and Yu [2] showed that every semiperfect ring is clean.
In addition, Camillo and Khurana [1] showed that every unit-regular ring is
clean. Every clean ring is an exchange ring and every exchange ring with
central idempotents is clean [6, Proposition 1.8].

In [3], Han and Nicholson proved that if e ∈ R is an idempotent and the
corner rings eRe and (1− e)R(1− e) are clean, then R is also clean. It is an
open question whether the converse holds (see [9] or [7]). Using Bergman’s
example of an exchange non-clean ring, we show that this need not be true.

In the first part of the paper, we classify all rings R for which the matrices(
a 0
0 0

)
are clean in M2(R) for every a ∈ R. In the second part, we use this classi-
fication to construct a clean ring R and an idempotent e ∈ R such that the
corner ring eRe is not clean.

All our rings will be associative with unity. The set of all units in R
will be denoted by U(R), the set of idempotents by Id(R), and the ring of
n× n matrices over R by Mn(R). If R is any ring, we will denote by R(N) a
countably generated free right module over R, and by MN(R) the ring of all
N×N matrices with finite columns over R (which is of course isomorphic to
the endomorphism ring End(R(N))).
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2 Rings R for which the matrices ( a 0
0 0 ) are clean

in M2(R)

We begin with the following lemma.

Lemma 2.1. Let R be a ring and a ∈ R. Then a is clean in R if and only
if there exist an idempotent e ∈ R and a unit u ∈ R such that ua = eu+ 1.

Proof. Suppose that a ∈ R is clean. Then we may write a = e + u, where
e ∈ Id(R) and u ∈ U(R). Multiplying by u−1 from the left, we get u−1a =
u−1e + 1 = (u−1eu)u−1 + 1. Hence u−1eu ∈ Id(R) and u−1 ∈ U(R) are
elements that satisfy the desired property. Conversely, suppose that there
exist e ∈ Id(R) and u ∈ U(R) that satisfy ua = eu + 1. Then we have
a = u−1eu+ u−1, where u−1eu is an idempotent and u−1 is a unit.

The following proposition gives the characterization of the rings in the
title of this section.

Proposition 2.2. Let R be a ring and a ∈ R an element. Then the matrix(
a 0
0 0

)
is clean in M2(R) if and only if there exist an idempotent e ∈ R and a unit
u ∈ R such that a− e− u ∈ (1− e)Ra.

Proof. Let a be an element of R. We will denote throughout this proof

A =
(
a 0
0 0

)
∈M2(R).

First, suppose that A is clean in M2(R). By Lemma 2.1, there exist
E ∈ Id(M2(R)) and U ∈ U(M2(R)) such that UA = EU + 1. Multiplying
by 1−E from the left, we get (1−E)UA = 1−E. Thus 1−E ∈M2(R)A is
an idempotent with the second column equal to zero, hence it has the form

1− E =
(
e 0
x 0

)
,

where e ∈ R is an idempotent and x ∈ Re. Write f = 1− e and

U =
(
α β
γ δ

)
.

From the equation UA = EU + 1, we get(
α β
γ δ

) (
a 0
0 0

)
=

(
f 0
−x 1

) (
α β
γ δ

)
+ 1,
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which gives αa = fα + 1, 0 = fβ, γa = γ − xα and 0 = δ − xβ + 1. Since
U is invertible,(

1 β
0 1

) (
1 0
−x 1

)
U =

=
(
α+ β(γ − xα) β + β(δ − xβ)

γ − xα δ − xβ

)
=

(
α+ βγa 0
γa −1

)
is invertible, and therefore(

α+ βγa 0
γa −1

) (
1 0
γa 1

)
=

(
α+ βγa 0

0 −1

)
is invertible. Hence u = α+βγa is invertible in R. Substituting α = u−βγa
in the equation αa = fα + 1, and considering fβ = 0, we get ua− βγa2 =
fu+1. Multiplying by u−1 from the left, we have a = u−1βγa2+u−1fu+u−1.
Thus we have an idempotent u−1fu and a unit u−1 that satisfy

a− u−1fu− u−1 = u−1βγa2 = u−1eβγa2 ∈ u−1euRa = (1− u−1fu)Ra,

as desired.
Conversely, suppose that there exist e ∈ Id(R) and u ∈ U(R) such that

a− e−u ∈ (1− e)Ra. Write f = 1− e and take x ∈ R with a− e−u = fxa.
It is easy to see that

E =
(

u−1eu 0
u−1x(a− 1)u−1fu 1

)
is an idempotent in M2(R). The matrix

U =
(

1 0
u−1x(1− a) 1

) (
1 −u−1fu
0 1

) (
u−1 0
u−1x −1

)
is invertible, since it is a product of invertible matrices. A straightforward
computation shows that UA = EU + 1. Hence by Lemma 2.1, A is clean in
M2(R). This finishes the proof.

At this point we write down the definition that will be used throughout
the rest of this paper.

Definition 2.3. An element a in a ring R is called weakly clean if there
exist an idempotent e ∈ R and a unit u ∈ R such that a−e−u ∈ (1−e)Ra.
A ring R is called weakly clean if every element in R is weakly clean.

Note that the above definition is left-right symmetric after Proposition
2.2.

3

Pr
ep

ri
n

t 
se

ri
es

, I
M

FM
, I

S
S

N
 2

23
2-

20
94

, n
o.

 1
14

7,
 A

pr
il 

1,
 2

01
1



Remark 2.4. Clearly, every clean ring is weakly clean. It is also not difficult
to see that every weakly clean ring is an exchange ring. (Recall that R is
an exchange ring if and only if for every a ∈ R there exists an idempotent
e ∈ Ra such that 1 − e ∈ R(1 − a).) Indeed, if we have a − e − u =
(1− e)xa with e ∈ Id(R), u ∈ U(R) and x ∈ R, then it is easy to verify that
g = 1 − u−1eu is an idempotent that satisfies g = gu−1(1 − x)a ∈ Ra and
1 − g = −(1 − g)u−1(1 − a) ∈ R(1 − a), which concludes the proof. In the
next section we give an example of a weakly clean ring that is not clean.

3 The construction of the example

We begin with an example of a non-clean weakly clean ring.

Example 3.1. Let F be any field and MN(F ) the ring of all infinite matrices
over F with finite columns. We denote the matrices in MN(F ), as usually,
by A = (aij)i,j , where (aij)i are columns and (aij)j are rows in A. Define

R = {A = (aij)i,j ∈MN(F ) :

there exists nA ∈ N such that aij = ai+1 j+1 for every i ≥ nA, j ≥ 1}.

The ring R consists exactly of the matrices of the form

...
...

...
∗ ∗ ∗ . . .

a1 a2 a3 . . .
a1 a2 a3 . . .

. . . . . . . . .

 .

(The first finitely many rows are arbitrary.) It is easy to verify that R is a
ring. Let us prove that R is not clean. First define

I = {A = (aij)i,j ∈ R :

there exists nA ∈ N such that aij = 0 for every i ≥ nA and j ≥ 1}

(the set of all matrices in R with only finitely many nonzero rows). It is
clear that I is a two-sided ideal in R. We show that the factor ring R/I is
isomorphic to F ((X)) (the field of formal Laurent series over F ). Define a
map ψ : R → F ((X)) as follows. Take A = (aij) ∈ R and choose n large
enough so that n ≥ nA and ai1 = 0 for all i ≥ n+ 1. Define

ψ(A) =
∞∑

j=1

anjX
j−n.

Since A satisfies aij = ai+1 j+1 for all i ≥ nA, and ai1 = 0 for all i ≥ n+1, the
definition is independent of the choice of n. A simple verification shows that
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ψ is actually a surjective ring homomorphism, with the kernel I. Therefore
we have R/I ∼= F ((X)), as desired.

Now, since R/I is a field, every idempotent in R must be either 0 or 1
modulo I. In particular, every idempotent in R is upper triangular, if we
ignore the first finitely many rows. In addition, every unit in R must be
upper triangular (ignoring the first finitely many rows), since otherwise its
inverse would be strictly upper triangular (ignoring the first finitely many
rows) and therefore not injective (as an endomorphism of F (N)), which is
a contradiction. Therefore every idempotent and every unit in R is upper
triangular (ignoring the first finitely many rows). But that means that the
matrices that are nonzero below the main diagonal (ignoring the first finitely
many rows) cannot be written as a sum of an idempotent and a unit in R.
Therefore R is not clean.

Let us prove that R is weakly clean. Take any A ∈ R. First, suppose
that A is upper triangular, ignoring the first finitely many rows. Then we
shall see that A is actually clean in R. Write a block decomposition

A =
(
A0 X
0 T

)
,

where A0 is a finite matrix and T = (tij) upper triangular that satisfies
tij = ti+1 j+1 for every i, j. Since by Han and Nicholson [3] the ring of finite
matrices over F is clean, we may write A0 = E0 +U0 for an idempotent E0

and a unit U0. If the main diagonal of T is nonzero, then T is invertible in
R and we can write

A =
(
E0 0
0 0

)
+

(
U0 X
0 T

)
,

where the first matrix is an idempotent and the second is invertible in R. If
the main diagonal of T is zero, then T − 1 is invertible and we can write

A =
(
E0 0
0 1

)
+

(
U0 X
0 T − 1

)
,

with the first matrix an idempotent and the second invertible. Hence A is
clean in R.

Now suppose that A is not upper triangular (ignoring the first few rows).
As before, write (

A0 X
K T

)
,

where A0 ∈Mn(F ) is a finite matrix. We choose n large enough so that we
have n ≥ nA. Since T = (tij) satisfies tij = ti+1 j+1 for every i, j, and T is
not strictly upper triangular, T has a left inverse in R. Write ST = 1. Note
that S can be chosen such that SK = 0. Similarly, since 1−T is not strictly
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upper triangular, we can find V ∈ R such that V (1− T ) = 1 and V K = 0.
By [3], Mn(F ) is a clean ring, hence we may write A0 = E0 + U0, with E0

an idempotent and U0 invertible. Now, with these observations in mind, it
is easy to check that

E =
(
E0 E0XV
0 0

)
, U =

(
U0 XV
0 −1

)
, Z =

(
E0 −XV − E0XS
0 1 + S

)
are matrices, with E ∈ Id(R) and U ∈ U(R), that satisfy A − E − U =
(1− E)ZA. Therefore A is weakly clean in R. This finishes the proof.

Remark 3.2. The ring R constructed above is isomorphic to the opposite
ring of a well-known example due to Bergman (see [4, Example 1]). The
isomorphism between the rings is given by

A = (aij)i,j ∈ R 7→
( ∞∑

i=0

λiX
i 7→

∞∑
i=0

(
∞∑

j=0

λjaj+1 i+1)Xi
)
.

Note that the mapping on the right is an endomorphism of the ring of formal
power series F [[X]], as an F -module. It could be checked that the above
mapping is well-defined and that it is indeed a ring isomorphism (see [4] for
the exact definition of Bergman’s ring). However, our construction offers a
different approach and also provides a very simple argument that the ring
R is not clean, even for fields F with char(F ) = 2. Previously, this fact was
only known when char(F ) 6= 2 (see [2]).

We need the following proposition, which, roughly speaking, states that
the weakly clean property behaves nicely under taking corners and matrix
extensions.

Proposition 3.3. Let R be a ring.

(i) If e is an idempotent in R such that eRe and (1 − e)R(1 − e) are
weakly clean rings, then R is weakly clean. In particular, if R is a
weakly clean ring, then Mn(R) is weakly clean for every n ∈ N.

(ii) If R is weakly clean, then eRe is weakly clean for every e ∈ Id(R).

Proof. (i) In the proof we use techniques similar to those in [3]. We take
an idempotent e ∈ R and write f = 1 − e. Suppose that eRe and fRf are
weakly clean rings. We use the Pierce decomposition of the ring R:

R =
(
eRe eRf
fRe fRf

)
.

Let

A =
(
a b
c d

)
∈ R.
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Since a is weakly clean in eRe, we may write a− g − u = (e− g)xa, where
g ∈ Id(eRe), u ∈ U(eRe) and x ∈ eRe. Let u′ be the inverse of u in eRe,
so that we have uu′ = u′u = e. Since d − cu′(e − x + gx)b is weakly clean
in fRf , we may write d − cu′(e − x + gx)b − h − v = (f − h)y(d − cu′(e −
x + gx)b), where h ∈ Id(fRf), v ∈ U(fRf) and y ∈ fRf . It follows that
(f − y+hy)cu′(e−x+ gx)b = (f − y+hy)d−h− v. Now it is easy to verify
that

E =
(
g 0
0 h

)
, U =

(
e 0

(f − y + hy)cu′ f

) (
u (e− x+ gx)b
0 v

)
=

=
(

u (e− x+ gx)b
(f − y + hy)c (f − y + hy)d− h

)
and X =

(
x 0
0 y

)
are matrices, with E an idempotent and U a unit, that satisfy A−E−U =
(1− E)XA. Hence A is weakly clean in R.

(ii) The proof of this part uses ideas similar to those in the proof of
Proposition 2.2 (⇒). There, it is assumed that the matrix A is clean, but
this assumption can be relaxed to assume that A is only weakly clean. Let
us present the proof this time without the use of Pierce decomposition.

Suppose that R is weakly clean and e ∈ R is an idempotent. Take
a ∈ eRe. Since a is weakly clean in R, there exist g ∈ Id(R) and u ∈ U(R)
such that a − g − u ∈ (1 − g)Ra. Write h = 1 − g and f = 1 − e. Since
af = 0, we have gf + uf = 0, so eu−1gf = −eu−1uf = 0. Hence we have
eu−1g ∈ eRe. From the equality eu−1geue = eu−1gue = eu−1g(u − uf) =
eu−1g(u + gf) = eu−1gu + eu−1gf = eu−1gu it follows that (eueu−1g)2 =
eueu−1geueu−1g = eueu−1guu−1g = eueu−1g. Hence ε = eueu−1g is an
idempotent in eRe.

Since hfu−1g is nilpotent, v = (1−hfu−1g)u is invertible in R. We have
vf = uf−hfu−1guf = −gf+hfu−1gf = −gf−hfu−1uf = −gf−hf = −f ,
which also implies v−1f = −f . Therefore evev−1e = e(v − vf)v−1e =
e(v + f)v−1e = e, and similarly ev−1eve = e. Hence ν = eve is a unit in
eRe.

Applying ga = g + gu, we have

ε(a− ε− ν) = εa− ε− εve = eueu−1(g + gu)− eueu−1g − eueu−1g(1−
hfu−1g)ue = eueu−1gu− eueu−1gue = eueu−1guf = −eueu−1gf = 0.

Therefore a− ε− ν ∈ (e− ε)R. Applying ν = e(1− (1− g)fu−1g)ue = e(1+
gfu−1g)ue = eue−eufu−1gue = eue−eufu−1(1−h)ue = eue+eufu−1hue,
we have

ε+ ν = eueu−1g + eue+ eufu−1hue = eueu−1(g + u) + eufu−1h(ue+ ge).

Since ge + ue = g + u ∈ Ra, it follows that ε + ν ∈ Ra, and therefore
a− ε− ν ∈ Ra. Hence we have a− ε− ν ∈ (e− ε)R∩Ra = (e− ε)Ra. Thus
a is weakly clean in eRe, which concludes the proof.
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Now we are ready to give an example of a clean ring S and an idempotent
e ∈ S such that eSe is not clean.

Example 3.4. Let R be any non-clean weakly clean ring with char(R) = 2.
For instance, take R from Example 3.1 with char(F ) = 2. Let MN(R) denote
the ring of column-finite matrices over R, and let T be a (non-unital) subring
of all matrices that have only finitely many nonzero entries. Since Z2 is a
subring of MN(R), we may define

S = T + Z2.

Clearly, S is a (unital) subring of MN(R).
The ring S is clean. To see this, it suffices to check that every matrix

in T is clean. (Indeed, since an element x is clean if and only if 1 − x is
clean.) Thus let A ∈ T . Choose n such that A has the block decomposition
A =

(
A0 0
0 0

)
, with A0 ∈ Mn(R). Since R is weakly clean, Mn(R) is weakly

clean by Proposition 3.3 (i). Hence by Proposition 2.2,

A′ =
(
A0 0
0 0

)
is clean in M2(Mn(R)) = M2n(R). Thus we have E′ ∈ Id(M2n(R)) and
U ′ ∈ U(M2n(R)) such that A′ = E′ + U ′. But that means that A can be
written as

A =
(
A′ 0
0 0

)
=

(
E′ 0
0 1

)
+

(
U ′ 0
0 1

)
,

with the first matrix an idempotent and the second invertible. Therefore A
is clean in S, concluding the proof.

Now we have a clean ring S. Taking the idempotent

e =

 1
0

. . .

 ∈ S,

we have the corner ring eSe ∼= R, which is not clean.

Remark 3.5. In the above construction, it is essential that the idempotent
e is ‘small’ in S, i. e. SeS 6= S. In [3], a stronger form of the question was
stated, whether there exists a clean ring and an idempotent e ∈ S, such that
the corner ring eSe is not clean and SeS = S. We do not know the answer
to that question.

4 Final remarks

Although we were able to provide an example of a non-clean weakly clean
ring, we do not know whether there exists an exchange ring that is not weakly
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clean. Since there seems to be a lack of examples of non-clean exchange rings
(so far the only known example is Bergman’s ring), it would be interesting
to provide such an example. The following lemma shows that there, indeed,
might be a substancial ‘difference’ between exchange rings and weakly clean
rings.

Lemma 4.1. A ring R is weakly clean if and only if for every a ∈ R
there exist an idempotent e ∈ Ra and a unit u ∈ U(R) such that 1 − e =
(1− e)u(1− a).

Proof. Direction (⇒) follows from Remark 2.4. To see the converse, suppose
that we have e ∈ Id(R), u ∈ U(R) and r ∈ R, such that e = ra and 1− e =
(1−e)u(1−a). Then an easy computation shows that a−(1−u−1eu)+u−1 =
u−1e(u+ r)a ∈ u−1euRa, as desired.

In [5], Bergman’s ring was used to show that the extension of a clean
ring by another clean ring need not be clean. With our understanding of
Bergman’s ring, we are able to give a shorter and more elementary proof.
In conclusion, we write down this proof.

Following [7], a ring I (possibly without unity) is called a clean general
ring if every element a ∈ I can be written as a = e + q, where e is an
idempotent in I and q is an element of the set

{q ∈ I : there exists p ∈ I such that q + p+ qp = q + p+ pq = 0}.

For unital rings, this definition coincides with the standard definition of
clean rings (see [7] or [5] for details).

If I is a right or left ideal of a ring R, then we say that idempotents lift
strongly modulo I if for every a ∈ R that satisfies a2 − a ∈ I, there exists
e ∈ Id(R) such that e− a ∈ I and e ∈ Ra (see [8]).

Proposition 4.2 ([5, Example 4]). There exist a ring R and an ideal I
of R, such that R/I and I are both clean rings and idempotents lift strongly
modulo I, but R is not clean.

Proof. Let R and I be as in Example 3.1. Since the factor ring R/I is
isomorphic to the field F ((X)), R/I is a clean ring.

To show that idempotents lift strongly modulo I, take A ∈ R with
A2−A ∈ I. Since A+I is an idempotent in the field R/I, we have either A ∈
I or A−1 ∈ I. In the first case, the idempotent E = 0 will satisfy A−E ∈ I
and E ∈ RA. In the second case, writing in the block decomposition, we
have A =

(
A0 X
0 1

)
. Then E = ( 0 0

0 1 ) is an idempotent in RA that satisfies
E −A ∈ I. Therefore idempotents lift strongly modulo I.

To finish the proof, we show that I is a clean general ring. Following
the definition, we take any A ∈ I. In the block decomposition, we have
A =

(
A0 X
0 0

)
, with A0 ∈Mn(F ). Since Mn(F ) is a clean ring, we may write
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1 + A0 = E0 + U0, where E0 ∈ Id(Mn(F )) and U0 ∈ U(Mn(F )). Now, an
easy computation shows that

E =
(
E0 0
0 0

)
, Q =

(
U0 − 1 X

0 0

)
, P =

(
U0

−1 − 1 −U0
−1X

0 0

)
are matrices in I, with E ∈ Id(R), that satisfy A = E+Q and Q+P+QP =
Q+ P + PQ = 0. Therefore I is a clean general ring.
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