FOLIA BIOLOGICA ET GEOLOGICA 64/2, 381–388, LJUBLJANA 2023 FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT ON HYDROPONICALLY GROWN BARLEY (HORDEUM VULGARE L.) FOLIARNO DODAJANJE SILICIJA IMA MALO UČINKA NA HIDROPONSKO GOJEN JEČMEN (HORDEUM VULGARE L.) Anja MAVRIČ ČERMELJ 1 , Aleksandra GOLOB 1 , Nina KACJAN MARŠIĆ 1 & Mateja GERM 1 http://dx.doi.org/10.3986/f bg0105 ABSTRACT Foliar application of silicon has little effect on hydroponi- cally grown barley (Hordeum vulgare L.) Silicon is an element widely distributed on the earth’s crust. It can ameliorate stress in plants grown in unfavorable conditions. Barley is an important cereal used as a staple food. In our experiment, barley was grown on a floating hy- droponics system in a greenhouse. Plants were stabilized in pots containing rockwool. Half of the plants were sprayed with potassium silicate (0.25 ml 6% K 2 SiO 3 L -1 ) every ten days for 35 days. The vitality of plants during their growth was monitored by measuring the potential photochemical efficiency of photosystem II. After 16 and 35 days of silicon application, shoot length, root length, and fresh and dry bio- mass were measured. At the end of the experiment, the number of leaves and shoots, specific leaf area, leaf optical properties, and lipid peroxidation were determined as well. The potential photochemical efficiency of photosystem II was close to 0.8 and unaffected by the addition of silicon, indicating a good condition of the plants. Results showed lower leaf reflectance for silicon-treated plants in UVA, UVB, and blue light wavelengths, possibly due to a layer of potassium silicate on leaves. After 16 days, silicon-treated plants’ fresh shoot weight and root length were higher than in control plants. Results showed that additional foliar ap- plication of silicon does not cause stress in the barley plant. Keywords: potassium silicate, barley, Hordeum vulgare, hydroponics, foliar application, silicon IZVLEČEK Foliarno dodajanje silicija ima malo učinka na hidropon- sko gojen ječmen (Hordeum vulgare L.) Silicij je pogost element v zemljini skorji in lahko znižu- je stres rastlin, ki rastejo v neugodnih razmerah. Ječmen je za ljudi pomembno žito, saj spada med osnovna živila. Po- skus smo izvedli na plavajočem hidroponskem sistemu v ra- stlinjaku na Biotehniški fakulteti. Rastline so bile ukoreni- njene v lončkih s kameno volno. Polovico rastlin smo škro- pili s kalijevim silikatom (0,25 ml 6% K 2 SiO 3 L -1 ) vsakih deset dni. Med rastjo smo spremljali vitalnost rastlin z mer- jenjem potencialne fotokemične učinkovitosti fotosistema II. Po 16 in 35 dneh nanašanja Si, smo izmerili velikost po- ganjkov, dolžino korenin ter svežo in suho biomaso. Na koncu poskusa smo prešteli število listov in poganjkov, dolo- čili specifično listno površino, optične lastnosti listov in sto- pnjo lipidne peroksidacije. Potencialna fotokemična učinko- vitost fotosistema II je bila v vseh tretmajih blizu 0,8, kar je nakazovalo na dobro stanje rastlin. Rezultati so pokazali nižjo odbojnost listov pri rastlinah, škropljenih s Si v UVA, UVB in modrem spektru valovnih dolžin, najverjetneje za- radi nastale plasti kalijevega silikata na listih. Po 16 dneh so imele s Si tretirane rastline večjo svežo maso poganjkov in daljše korenine kot rastline brez dodanega Si. Rezultati so pokazali, da škropljenje s silicijem ne povzroča stresa v je- čmenu. Ključne besede: kalijev silikat, ječmen, Hordeum vulgare, hidroponika, foliarni nanos, silicij 1 Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, 1000 Ljubljana, Slovenia. anja.mavric@bf.uni-lj.si; aleksandra.golob@bf.uni-lj.si; nina.kacjan.marsic@bf.uni-lj.si; mateja.germ@bf.uni-lj.si MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 382 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 Silicon (Si) is an abundant element in the earth's crust. It is not essential for most plants, but some accumulate more silicon than others. One of the silicon accumula- tors is barley (Hordeum vulgare L.), an important spe- cies in agriculture. Silicon enters the cell through the pores in a way that depends on the plant species. Dif- ferent plant species contain different concentrations of Si in their tissues, and it ranges between 0.1 and 10% of dry weight of the plant (Hodson et al. 2005). Despite generally high silicon levels in soils, continuous crop harvesting has led to a depletion of the soil pools of plant-available silicon, and crops will require silicon application in the future to maintain their yields. Fur- thermore, silicon is only accessible to plants in the form of monosilicic acid, the concentration of which in the soil is highly dependent on the physical and chem- ical properties of the soil (Katz et al. 2021). Plants that grow in silicon-deficient soils are less mechanically ro- bust, consequently more sensitive to various disorders and abiotic stressors, and more vulnerable to various diseases. Some researchers suggested that added sili- con can mitigate the negative effects of a variety of en- vironmental factors, especially drought. The beneficial effects due to silicon are closely correlated with silicon accumulation levels in plants. Seven of the ten most abundant crops in the world are silicon accumulators (Guntzer et al. 2012). These include barley, a very im- portant crop in temperate climate zones. Barley itself is not entirely drought-resistant, but it has effective mechanisms enabling it to avoid drought (Dawson et al. 2015). According to literature (Newton et al. 2011) its yield is expected to remain more reliable than other important crops, such as wheat. The beneficial effects of silicon in plants are based on a protective silicon layer deposited at the leaf surface, the co-localisation of the absorbed silicon with metal ions and other com- pounds, and the metabolic functions of silicon in plants, exposed to stress conditions. Silicification of leaf tissues limits herbivory and pathogen infections, increasing plant shoots’ rigidity. It has a similar effect on plant stiffness to that of lignin, but at a 10-20-fold lower energy cost (Schoelynck et al. 2010). In grasses, silicon is a key structural element that prevents lodg- ing and shading of leaves. Hosseini et al. (2017) showed that silicon accumulation in shoots delays os- motic stress-induced leaf senescence in barley. It was recently reported, that the addition of silicon in the form of K 2 SiO 3 significantly affected the concentration of minerals, such as Si, K, Ca, Cl, S, Mn, Fe and Zn, in the roots and leaves of barley plants (Mavrič Čermelj et al., 2022). Our work aimed to find out the response of hydro- ponically grown barley to foliar addition of silicon at physiological and morphological levels. 1 INTRODUCTION 2 MATERIALS AND METHODS 2.1 Experimental set-up In the experiment, barley plants were grown on a float- ing hydroponics system that lasted 35 days. We germi- nated seeds of barley var. Wilma (Hordeum vulgare L.) in germination trays with peat substrate. After nine days, we transferred the seedlings to plastic hydroponic net pots and embedded with rockwool. Plants of barley were grown in a greenhouse at 15 °C (day) and 10 °C (night) under light panels with a 16/8 light regime with average radiation of 300 µmol/m 2 s). Plants were grown in nutrient solution for barley from Podar (2013). We sprayed half of the plants with potassium silicate (0.25 ml 6% K 2 SiO 3 L -1 , with Si concentration 3.5 mM) every ten days (Figures 1 and 2). Control plants are marked in the tables and figures with Si0, and treated plants with Si+. The experiment was set up in five replicates (plots) and measurements were made on from 1 to 12 plants per each plot, depending on the measured parameter. 2.2 Physiological and morphological parame- ters Chlorophyll fluorescence was monitored with a por- table chlorophyll fluorometer (PAM-2500; Walz, Ger- many). The potential photochemical efficiency of pho- tosystem (PS) II (Fv/Fm) was evaluated according to Schreiber et al. (1996). After 16 and 35 days of silicon application, shoot length, root length, and fresh and dry biomass were measured. After 35 days, the number of leaves and shoots, specific leaf area, leaf optical properties, and lipid peroxidation were determined. 2. 3 Optical measurements The reflectance and transmittance spectra of fresh barley leaves were measured in the laboratory immedi- MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 383 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 ately after their collection in the growing chamber. The procedure is described in Klančnik et al. (2012). The measurements were made from the range of 300 nm to 820 nm, at every ~1.3 nm, with a portable spec- trophotometer (Jaz Modular Optical Sensing Suite; Ocean Optics, Inc., Dunedin, USA), that was connect- ed to an optical fiber (QP600-1-SR-BX; Ocean Optics, Inc.) and an integrating sphere (ISP-30-6-R; Ocean Optics, Inc.). During measurements, the samples were illuminated with a UV-VIS-near infrared light source (DH-2000; Ocean Optics, Inc.). 2.4 Lipid peroxidation Lipid peroxidation was estimated according to proto- col by Hodges et al. (1999). Five leaves per treatment replication were frozen in liquid nitrogen and saved at -80 °C until used to determine malondialdehyde (MDA) as an index of general lipid peroxidation. 2.5 Statistical analysis Statistical analysis was made using the statistical soft- ware XL Stat for Excel (Version 2112, Addinsoft, Paris, France). The normal distribution of data was checked with Shapiro–Wilk test. Upon confirmation of normal distribution, data were further analyzed with a t-test to distinct between the control and treatment. Visual re- presentation of results was created with the use of MS Excel. The level of significance was accepted at p < 0.05. Figures 1 and 2: Experimental setup in the department of Agronomy, Biotechnical Faculty. MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 384 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 The potential photochemical efficiency of PS II was unaf- fected by the addition of silicon. Values were close to the theoretical optimum (0,78) (Table 1). The absence of the effect of silicon on photochemical efficiency of PS II and values close to the theoretical optimum indicated that plants were not under stress and that the photosynthetic apparatus was not damaged (Schreiber et al., 1996). Table 1: Photochemical efficiency of photosystem II in the middle (day 15) and final sampling (day 35) of the experiment for Si0 and Si+ treated plants. Day Si0 Si+ Day 15 0.77 ± 0.01a 0.77 ± 0.01a Day 34 0.79 ± 0.01a 0.78 ± 0.02 a Data are means ± SD, n= 25. Letters indicate signifi- cant differences (p≤0.05, Duncan test). Results showed lower leaf reflectance for silicon- treated plants in UVA, UVB, and blue light wave- lengths. The difference in the reflectance may be caused by a layer of potassium silicate on leaves (Figure 3). The results differ from those of Golob et al. (2017), who observed a positive correlation between the amount of phytoliths on leaf surface of wheat and the reflectance spectrum in the UVB part. With Si or Ca incrusted surfaces of leaves present the first barrier to UV rays that reach the leaf surface (Klančnik & Ga - berščik , 2016), and can affect their optical properties. Statistically significant differences were also found on the 16 th day after the first silicon application when roots were longer in Si treated plants compared to con- trol plants. The shoot fresh weight of silicon-treated plants was higher than in control plants (Figure 4), in- dicating the positive effect of Si on plant growth. Simi- larly, biomass significantly increased in non-stressed wheat with foliar application of sodium silicate at til- lering or anthesis stage (Maghsoudi et al. 2016). On the contrary, Habibi (2016) found no differences in Figure 3: Reflectance in blue, UVA and UVB wavelengths for silicon-treated (Si+) and untreated plants (Si0). 3 RESULTS AND DISCUSSION MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 385 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 Table 2: Analyzed parameters in the middle (day 16) and at the end (day 35) of the experiment for Si0 and Si+ treated plants. Day Plant organ Parameter Unit Si0 Si+ Day 16 Root Length cm 12.8 ± 2,8 b 14.3 ± 2.4 a Fresh weight g 5.2 ± 0.5 a 5.2 ± 0.7 a Dry weight g 0.4 ± 0.1 a 0.4 ± 0.0 a Shoot Length cm 40.5 ± 4.2 a 39.7 ± 2.0 a Fresh weight g 6.9 ± 1.2 b 7.5 ± 0.9 a Dry weight g 1.0 ± 0.2 a 1.1 ± 0.2 a Root Length cm 11.5 ± 1.3 a 11.9 ± 1.9 a Fresh weight g 24.3 ± 9.0 a 18.2 ± 6.7 a Dry weight g 2.2 ± 0.5 a 1.8 ± 0.6 a Shoot Length cm 58.8 ± 3.2 a 59.3 ± 2.8 a Fresh weight g 25.8 ± 4.8 a 26.6 ± 4.2 a Dry weight g 3.6 ± 0.8 a 3.9 ± 0.9 a Number of shoots no. per pot 12 ± 2 a 12 ± 2 a Number of leaves no. per pot 16 ± 2 a 16 ± 2 a Speficic leaf area cm^2 g^-1 13.5 ± 0.9 a 13.1 ± 2.0 a Lipid peroxidation nmol MDA g^-1 37.2 ± 7.6 a 38.8 ± 7.2 a Transmitance Figure 4: Fresh shoot weight and root length of silicon treated (Si+) and untreated plants (Si0) on day 16. fresh and dry shoot mass after application of potassi- um metasilicate on non-stressed maize. Foliar applica- tion of silicon is important at drought stress, with Si application increases shoot fresh and dry weight of barley (Mahmoud et al. 2021). We found no differ- ences in other analyzed characteristics of treated and untreated barley plants (Table 2). We confirmed in our experiment that additional foliar application with Si concentration 3.5 mM does not cause stress in the bar- ley plants and not significantly affect plant growth. MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 386 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 UV-B / 0.04 ± 0.11 a 0.07 ± 0.27 a UV-A / 0.05 ± 0.06 a 0.08 ± 0.15 a Day 35 Blue / 0.26 ± 0.09 a 0.31 ± 0.14 a Green / 6.98 ± 0.50 a 7.46 ± 0.52 a Yellow / 6.31 ± 0.63 a 6.78 ± 0.44 a Leaf Red / 14.12 ± 0.35 a 14.50 ± 0.59 a NIR / 59.76 ± 1.29 a 58.83 ± 0.84 a Reflectance UV-B / 8.79 ± 0.29 a 8.03 ± 0.34 b UV-A / 7.66 ± 0.20 a 7.06 ± 0.27 b Blue / 8.66 ± 0.32 a 8.07 ± 0.36 b Green / 13.42 ± 0.66 a 12.50 ± 0.84 a Yellow / 12.39 ± 0.67 a 11.54 ± 0.77 a Red / 17.24 ± 0.64 a 16.68 ± 0.95 a NIR / 45.09 ± 1.53 a 47.59 ± 8.09 a Data are means ± SD. n= 5-60. Letters indicate statistically significant differences (p≤0.05, Duncan test). Silicij je za rastline koristen element in rastline ga v svoja tkiva nalagajo v različnih koncentracijah. Pri- vzemajo ga lahko le v obliki monosilicijeve kisline, katere koncentracija v tleh je odvisna od fizikalnih in kemijskih lastnosti tal (Katz et al., 2021). Rastline, ki rastejo na s silicijem revnih tleh, so bolj občutljive na različne bolezni ter stres, ki ga povzročajo abiostki dejavniki. Silicij je tudi pomemben strukturni ele- ment, ki preprečuje poleganje in senčenje listov pri travah. Silicij se nalaga v različnih strukturah na po- vršini listov, kar omeji objedanje rastlinojedcev in okužbe s patogeni ter poveča trdnost rastlinskih po- ganjkov. Koristni učinki silicija na rastline so tesno povezani z ravnmi kopičenja silicija v rastlinah. Med akumulatorje silicija spada navadni ječmen (Horde- um vulgare L.), ki je agronomsko pomembna rastlin- ska vrsta. Nalaganje silicija v ječmenu zakasni stara- nje listov zaradi osmotskega stresa (Hosseini et al., 2017). Dodajanje silicija v obliki kalijevega silikata vpliva na elementno sestavo listov in korenin ječme- na (Mavrič Čermelj et al., 2022). Namen naše razi- skave je bil določiti vpliv foliarnega dodajanja silicija pri hidroponsko gojenem navadnem ječmenu na nje- gove fiziološke in morfološke lastnosti. Razkužena semena navadnega ječmena sorte Wilma smo nakalili v šotnem substratu ter kalice po devetih dneh presadili v plastične mrežaste hidro- ponske lončke s kameno volno, ki je omogočala uko- reninjenje rastlin ter jih postavili na plavajoč hidro- ponski sistem. Povprečna temperatura v rastlinjaku je bila 15 °C podnevi in 10 °C ponoči ter režim osve- tljenosti 16 ur (noč)/ 8 ur (dan). Vsakih 10 dni smo polovico rastlin (Si+) škropili po listih s kalijevim si- likatom s koncentracijo 3,5 mM Si. Druge polovice rastlin nismo škropili s Si (Si0). Za vsak tretma smo imeli pet ponovitev. Med poskusom smo merili potencialno (Fv/Fm) fotokemično učinkovitost II. Rastline smo vzorčili 4 CONCLUSIONS Silicon did not have negative effects on the vitality of barley plants. The potential photochemical efficiency of photosystem II was close to the maximal value of plants, which are not exposed to stress conditions. Lower leaf reflectance for silicon-treated plants in UVA, UVB, and blue light wavelengths, is possibly the consequence of a layer of potassium silicate on leaves. We can conclude that additional foliar spraying of sili- con did not negatively affect the barley plant. 5 POVZETEK MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 387 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 med poskusom (16. dan) in na koncu poskusa (35. dan). Pri obeh vzorčenjih smo izmerili dolžino poganj- kov, dolžino korenin ter svežo in suho biomaso. Na koncu poskusa smo prešteli število listov in poganjkov, določili specifično listno površino, optične lastnosti listov in stopnjo lipidne peroksidacije. Ugotovili smo, da škropljenje s silicijem ni imelo vpliva na potencialno fotokemično učinkovitost foto- sistema II pri rastlinah. Vrednosti so bile blizu teore- tičnega optimuma (0,78), kar kaže na to, da rastline niso bile podvržene stresu in fotosintezni aparat ni bil poškodovan. Odboj svetlobe od listov je bil pri Si+ ra- stlinah pri valovnih dolžinah UVA, UVB in modre svetlobe nižji od odboja pri ostalih skupinah. Razlike v odbojnosti bi lahko povzročila plast kalijevega silikata na površini listov. Pri vmesnem vzorčenju so imele Si+ rastline daljše korenine in višjo svežo maso poganjka kot rastline, ki jih nismo škopili s Si, kar nakazuje na pozitivni vpliv Si na rast rastlin. V ostalih izmerjenih lastnostih nismo našli statistično značilnih razlik med tretmajema. Ugotovili smo, da škropljenje rastlin s ka- lijevim silikatom nima negativnega vpliva na vitalnost rastlin, vpliva pa na odbojnost svetlobe v določenih delih svetlobnega spektra. ACKNOWLEDGEMENTS The experiment was carried out as part of the young researcher grant (Anja Mavrič Čermelj, ARRS num- ber: 54730), program group P1-0212 (Plant biology) and projects J4-3091 and BI-RS/20-21-008 all founded by Slovenian Research Agency (Javna agencija za razi- skovalno dejavnost RS). The authors are thankful to Vid Žitko, who helped with the experiment set-up and work in the greenhouse. REFERENCES – LITERATURA Čermelj, A. M., E. Fideršek, A. Golob, N. Kacjan Maršić, K. Vogel Mikuš & M. Germ , 2022: Different con- centrations of potassium silicate in nutrient solution affects selected growth characteristics and mineral compo- sition of barley (Hordeum vulgare L.). Plants. 11. doi:10.3390/plants11111405 Dawson, I. K., J. Russell, W. Powell, B. Steffenson, W. T. B. Thomas & R. Waugh , 2015: Barley: a translational model for adaptation to climate change. New Phytologist. 206:913–931. doi:10.1111/nph.13266 Golob, A., J. Kavčič, V. Stibilj, A. Gaberščik, K. Vogel-Mikuš & M. Germ , 2017: The effect of selenium and UV radiation on leaf traits and biomass production in Triticum aestivum L. Ecotoxicology and Environmental Safety. 136:142–149. doi:10.1016/j.ecoenv.2016.11.007 Guntzer, F., C. Keller & J. D. Meunier , 2012: Benefits of plant silicon for crops: A review. Agronomy for Sustain- able Development. 32:201–213. doi:10.1007/s13593-011-0039-8 Habibi, G. , 2016: Effect of foliar-applied silicon on photochemistry, antioxidant capacity and growth in maize plants subjected to chilling stress. Acta Agriculturae Slovenica. 107:33–43. doi:10.14720/aas.2016.107.1.04 Hodges, D. M., J. M. DeLong, C. F. Forney & R. K. Prange , 1999: Improving the thiobarbituric acid-reactive- -substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 207:604–611. doi:10.1007/s004250050524 Hodson, M. J., P. J. White, A. Mead & M. R. Broadley , 2005: Phylogenetic variation in the silicon composition of plants. Annals of Botany. 96:1027–1046. doi:10.1093/aob/mci255 Hosseini, S. A., A. Maillard, M. R. Hajirezaei, N. Ali, A. Schwarzenberg, F. Jamois & J.-C. Yvin , 2017: In- duction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regula- ted Starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency. Frontiers in Plant Science. 8. doi:10.3389/fpls.2017.01359 Katz, O., D. Puppe, D. Kaczorek, N. B. Prakash & J. Schaller , 2021: Silicon in the soil–plant continuum: Intri- cate feedback mechanisms within ecosystems. 10 Klančnik, K. & A. Gaberščik , 2016: Leaf spectral signatures differ in plant species colonizing habitats along a hy- drological gradient. Journal of Plant Ecology. 9:442–450. doi:10.1093/jpe/rtv068 Klančnik, K., M. Mlinar & A. Gaberščik , 2012: Heterophylly results in a variety of “spectral signatures” in aqua- tic plant species. Aquatic Botany. 98:20–26. doi:10.1016/j.aquabot.2011.12.004 MAVRIČ ČERMELJ, GOLOB, KACJAN MARŠIĆ & GERM: FOLIAR APPLICATION OF SILICON HAS LITTLE EFFECT 388 FOLIA BIOLOGICA ET GEOLOGICA 64/2 – 2023 Maghsoudi, K., Y. Emam & M. Ashraf , 2016: Foliar application of silicon at different growth stages alters growth and yield of selected wheat cultivars. doi:10.1080/01904167.2015.1115876 Mahmoud, A. W. M., A. Z. A. Hassan, S. A. Mottaleb, M. M. Rowezak & A. M. Salama , 2021: The role of nano-silicon and other soil conditioners in improving physiology and yield of drought stressed barley crop. Agri- culture (Pol’nohospodarstvo). 67:124–143. doi:10.2478/agri-2021-0012 Newton, A. C., A. J. Flavell, T. S. George, P. Leat, B. Mullholland, L. Ramsay, C. Revoredo-Giha, J. Rus - sell, B. J. Steffenson, J. S. Swanston, W. T. B. Thomas, R. Waugh, P. J. White & I. J. Bingham , 2011: Crops that feed the world 4. Barley: a resilient crop? Strengths and weaknesses in the context of food security. Food Security. 3:141–178. doi:10.1007/s12571-011-0126-3 Schoelynck, J., K. Bal, H. Backx, T. Okruszko, P. Meire & E. Struyf , 2010: Silica uptake in aquatic and wetland macrophytes: a strategic choice between silica, lignin and cellulose? New Phytologist. 186:385–391. doi:10.1111/ j.1469-8137.2009.03176.x Schreiber, U., M. Kühl, I. Klimant & H. Reising , 1996: Measurement of chlorophyll fluorescence within leaves using a modified PAM Fluorometer with a fiber-optic microprobe. Photosynthesis Research. 47:103–109. doi:10.1007/BF00017758