
11

RELATIONAL SCHEMA DESCRIPTION LANGUAGE INFORMATICA 1/89

Descriptors: RERLATION BASES, PROGRAMMING LANGUAGE,
SCHEMA DEFINITION, INTERPRETERS, SDL LANGUAGE

Radojko Miladinovič
Dušan Velasevič

ABSTRACT: In this paper a scheraa description language for relational databases is
described. The language provides a schema description on which any query language can
be defined. The implemented multiuser incremental interpreter for that language is
also described.

SADRZAJ: U ovom članku opisan je jezik za definisanje seme u relacionim bazama
podataka. Taj jezik omogucava definisanje seme na kojoj bilo koji upitni jezik može
biti definisan. Za taj jezik realizovan je visekorisnicki inkrementalni interpreter.

INTRODUCTION

Since 1970., when E.F. Codd had defined the
relational data model [4,5,6,7], a lot of
relational database management systema (RDBMS)
wa8 developed and implemented. Ali these
systems can be classified into two groups
according to the way of the schema definition.
The systems from the first group, for example
Relational Database Management System [9,10],
have a stand alone schema definition language.
The 8ystems from the second group do not
provide such a language: the schema definition
is realized as a function of data sublanguage,
i.e. query language. SVSTEM R [1,3,11] belongs
to this group of RDBMS.
The relation between schema description
language (SDL) and other languages in RDBMS
(query language, data manipulation language -
DML, subschema description language and
physical database description language)
represents a special problem in the database
design. Ali these languages can be implemented
as stand alone languages or as extensions of
standard programraing languages. The majority
of RDBMS does not have the independent SDL,
query language and DML; in fact, the data
definition, data manipulation and query
facility are realized as the functions of the
special language called the data sublanguage.
The data sublanguage can be implemented as a
stand alone programraing language or as an
extension of the host language. If it is
implemented as a stand alone language, it is
usually called the query language.
Although the most of modern RDBMS have not a
separate SDL, there exi8t3 a need for such a
language which should be general, simple,
structured and user-friendly. This language
should provide the means for a schema
description over which any query language can
be defined. A complete funotional independence
of the schema description process from the
data manipulation and queries is achieved in
this way. Bearing this in mind, we developed
a new SDL and multiuser incremental
Interactive interpreter for that language.
The language design waB influenced by the
general princlples applied to the other
programraing languages. We especially
emphasized the language reliability, precise
ayntax and semantics description of the
language, orthogonallity and language
independence. The SDL structure was designed

bearing in mind that the language should be
Interactive. For this reason, the commands
for direct communication with the users are
defined, each atatement must be written in
one line and the language is structured to
provide better readability and documentability
of SDL programs.

BASIC LANGUAGE ELEMENTS

is used the

the

The following notation
description of SDL elements;
{) - Braces indicate that one of

elements enclosed must be specified.
(1 - Square brackets indicate that one

of the elements enclosed may be
optionally specified.

... - Ellipses indicate that the immediately
preceding part of the format may be
repeated.

- Upper čase words are SDL reserved words.
- Lower čase words indicate the

Information that should be supplied by
the user.

Language alphabet
The complete SDL character set consists of 52
characters. Ali SDL characters are presented
in table 1.

Table 1.

character name

A,B X,Y,Z
0123456789
+

/
<
>

uppercase letters
decimal digits
plus
minus
asterisk
slash
less than
greater than
equals
left parenthesis
right parenthesis
point
corama
colon
quotation marks
dollar sign
hyphen
space

12

Identifiers
A SDL identifier (or wo
atring that forma a user de
word of not more than 20 ch
any combination of letters,
sign, but hyphen cannot b
last character of the ide
word has specific meaning a
in the manner presented
format. Reaerved words are
they enable writing of re
prograros. The list of th
given in APPENDIX A.
The user defined words are
be supplied by the user to
of the statements. The uae
variable namesi constants
procedures and comments.

rd)
f ined
aract
dig

e the
ntif i
nd ma
in

chose
liabl
e res

IS a
or a
era.
its a
fir

er. A
y be
the
n car
e and
erved

character
reserved
It can be
nd hyphen
st or the
reserved

used only
statement
efully so
synoptic
viords is

SDL word8 that muat
8ati8fy the format
r defined word8 are

function names,

Constants and varlables
The classification of constants and variables
according to their format and type is given in
Fig 1.
Variables in SDL are relations and attributes.
Attributes are one-dimenaional arrays with
elements of the same type. Relations are
considered aa two-dimen8ional arrays in which
ali elements in the same column are of the
same type; elementa in the same row are not
obligatory of the same type. The attribute
type is explicitly defined by a particular
statement in the SDL, and the relation type is
implicitly defined through attributes which
constitute that relation. The external
representation of constants is very slmple. It
corresponds to the ayntax representation of
integer and real numbers. For exaraple:

1000, -3.5 0.75E10, 0.32D11, -34E10
The internal representation of constants
depends on the context in which constants
appear. For example, if variable A.B in the
relational expre8sion

A.B > 10000
is declared as a real variable of the extended
preciaion (binary floating point format), then
the constant 1000 is presented in the same
format.
Alphanumeric strings (literals) are externally
represented as a character strings delimited
by the quotation marks. The internal
representation of literals is completely the
same if the data compression is not applied.

Arithmetic eKpressions
Arithmetic expressions are used to compute new
attribute values during updating. Arithmetic
expres8ions are formed with arithmetic

operands and arithmetic operators. An
arithmetic operand may be a numeric constant
and a variable (attribute). Arithmetic
operators specify a computation to be
performed using the values of arithmetic
operands; they produce a numeric value as a
result. The operators are: addition(+l,
subtraction(-) , multiplication(*) and
diviaion(/), Arithmetic expressions are
evaluated in an order determined by a
precedence associated with each operator. The
precedence of the operators is: first (» and
/) and second (+ and -) . Parentheses can be
used to override the normal evaluation order.
The attributes which appear in arithmetic
expressions must be of type real or integer.
The attribute names in arithmetic expre33ions
have the format:

rOLD-J
[[V] relation_name.] attribute_name

NEW J
The relation name muat be specified in front
of attribute name if an attribute appears in
more than one relation. If an attribute
belongs to only one relation, then the
relation name is optional. The reserved uords
OLD and NEW can appear in front of attribute
name. These words denote attribute values
before and after updating. If they are omitted
the immediate attribute values are considered.
The examples of arithmetic expreasions:

ORDER.QUANTITY - PRODUCT.QUANTITY
OLD EMPLOYEE.SALARY - 1000

Relational expre88ions
A relational expresaion may be a simple
relational expres8ion, or may be a combination
of simple relational expres8ions, functions
and logical operators. A simple relational
exprea8ion consiats of two operands separated
by a comparison operator. The comparison
operators are: less than(<), greater than(>),
leas than or equal to(<=), greater than or
equal to(=>), equal to{=) and not equal
to(<>). An operand may be a constant and a
variable (attribute) of any type. An attribute
name has the same format as in an arithmetic
exprea8ion. The logical operators are AND and
OR. The precedence of the logical operators
is: first AND and second OR. In a relational
expression, the simple relational expresaions
are evaluated first to obtain their values.
Evaluation of relational expreBsion3 is
performed according to an order of precedence
assigned to logical operators. Logical
operators of equal rank are evaluated from
left to right. Parentheses may be used to
alter the normal sequence of evaluation, just

DATA TYPES

INTEGER REAL CHARACTER

STANDARD EXTENDED
PRECISION PRBCISION

COMPRESSED NONCOMPRESSED

STANDARD EXTENDED
PRECISION PRECISION

Fig 1. Data typesdefined in SDL

13

as in arithmetic expressions
relational exprea3ion8:
EMPLOYEE.SALARY > 2000 AND EMPLOYEE.SEX =
OLD EMPLOVEE.SALARV < NEW EMPLOVEE.SALARV

The example8 of

"M"

Functiona
The functiona in SDL are uaed to define
relational expre8aiona that appear in more
than one atatements. They are defined through
FUNCTION atatements. The functiona also enable
the decomposition of long relational
expre*sions, which cannot be uritten in one
line, into aeveral logical parts. Each logical
part must repreaent the complete relational
espreasiona defined by a separate FUNCTION
statement. In that way, the long stateraenta
containing relational expresBions can be
apread over aeveral lines. This must be done
because a SDL atatement can be written in only
one line. For example:
{EMPLOVEE.JOB="PILOT" OR
EMPLOVEE.JOB="DRIVER") AND EMPLOVEE.SEX="M"
AND EMPLOVEE.AGE>60
This relational expreaaion cannot be written
in one line, so function FUNl is defined as
follow8:
FUNl:=EMPLOYEE.JOB="PILOT" OR
EMPLOVEE.JOB="DRIVER"
The relational expreaBion becomes now:
FUNl AND EMPLOVEE.SBX="M" AND EMPLOVEE.AGE>60
The naraes of other functiona can appear in the
function definition.

LANGUAGK DESCRIPTION

Programa written in SDL have specific
structure due to the fact that SDL ia used
only for the relational schema description.
The program structure ia determined by the
structure of the relational database
description. Each SDL program contains four
type of entries: schema entry, domain entry,
attribute entry and relation entry. The
entries appear in the program in cited order.
Each entry consists of a sequence of
statementa. Some statements can appear in
different entries. The entry specification
contains the folloviing parts:
1. Narrative description of entry function
2. General format in which ali atatementa of

the entry are preaented
3. Description of each atatement
The statement apecification consists of the
following parts:
a. Narrative description of statement function
b. General format that defines the statement

parta and their functiona
c. Language rules that explain the usage of

the statement

Line format
A SDL atatement must be
i.e. the continuation of
few succeeding lines i
statement can't be writte
statement is divided in
which should be defined
more spaces can appear
each line in other to ach
structure and readabi
entities in a atatement
one or more spaces.

written in one line,
the statement in a

s not allowed. If any
n in one line, that
aeveral logical parta
aa functiona. One or

at the beginning of
ieve a better program
lity. Ali lexical
may be separated by

Data baae example
The application of each statement described ia
illuatrated by the examplea which are compoaed
of the following relationa:

PRODUCT(CODE, NAME, PRIČE, CJUANTITV)
DOMCODE DOMNAMB DOMPRICE DOMQUANTITY

EMPLOVEE(CODE, NAME, SEX, SALARV)
DOMCODE DOMNAME DOMSEX DOMSALARV

SUPPLY(CODEPRO, CODESUP, DATE, QUANTITYI
DOMCODE DOMCODE DOMDATE DOMQUANTITY

DEI'T(C0DE, NAME, ADDRESS, EMPNOI
DOMCODE DOMNAME DOMADDRESS DOMNUMBER

As we can see, an attribute can appear in more
different relationa. For each attribute,
domain on which the attribute is defined is
also represented.

SCHEMA ENTRV
1. The schema entry uniquely identifies acheraa

by ita name. Besides, the textual
description of the schema contents and
cripto protection method applied, if any,
is given in the schema entry.

2. Entry format
SCHEMA statement
[DESC statement]
[CRIPTO_PROTECTION statement]
(domain entry)
(attribute entry)
(relation entry)
ENDSCHEMA statement

3. Statementa deacription
The schema entry begins with SCHEMA
statement and ends with ENDSCHEMA
atatement. The statements that define the
schema are located between the SCHEMA
statement and first domain entry in the
schema. The order of these statementa is
irrelevant. In the achema entry, the
entries of ali domains are defined first,
then the entries of ali attributea, and
finally the relation entries.

SCHEMA statement
a) The SCHEMA statement uniquely identifies

achema by ita name.
b) Format

SCHEMA achema_name
c) Language rulea

- Schema name muat be unique in the
database.

DESC statement
a) The DESC sta

content and
attribute and
appear in any

b) Format
DESC comment

c) Language rule
- An arbitrar

can appear
- Comment in

character f
- This atate

interpreter
- If a comm

line, aeve
uaed.

tement is used to describe the
function of schema, domain,
relation. This statement can

entry in the schema.

s
y number of DESC statements
in the schema entry
DESC statement can contain any
rom SDL character set.
ment has no meaning for
ent can't be written in one
ral DESC atatement must be

CRIPTO_PROTECTION statement
a) The CRIPTO_PROTECTION atatement can appear

in the schema and in relation entry. If it
appears in achema entry, ali relationa in
the achema are cripto protected. The cripto
protection can be implemented by a special
procedure defined by the uaer or aa a
standard function in RDBMS.

b) Format

CRIPTO PROTECTION
procedure_name

SVSTEM
c) Language rules

- Only one CRIPTO_PROTECTION atatement can
appear in the achema or relation entry.

14

- If the optlon SVSTEM is apecified, the
cripto protection ia implemented as one
of the activitiea of RDBMS., If the
procedure_name is apecified, the cripto
protection is implemented by a special
procedure.

ENDSCHBMA statement
a) Thia atatementa denotea the end of the

schema entry, i.e. the end of the whole
schema description program.

b) Format
ENDSCHEMA

DOMAIN ENTRY

1. The domain entry uniquely identifies the
domain by its name. Besides, the domain
mode, the namea of ali attributes defined
over that domain and the domain units are
apecified in the domain entry.

2. Entry format
DOMAIN atatement
DEFIVES atatement
[DESC statement]
MODE statement
[UNIT statement]
ENDDOMAIN statement

3. Statements description
The domain entry begins with the DOMAIN
atatement and ends with the ENDDOMAIN
statement. The order of other statements in
the entry ia irrelevant.

DOMAIN statement
a) The DOMAIN atatement

domain by its name.
b) Format

DOMAIN domain_name
c) Language rulea

- Domain_name haa to
achema.

uniquely identifies

be unique in the

DEFINES statement
a) The DEFINES atatement apecifiea the namea

of ali attributes defined over that domain.
b) Format

DEFINES attr_l ,attr_2 attr_n
c) Language rules

- An arbitrary number of DEFINES statements
can appear in the domain entry.

- Attributes declared in thia statement
must be defined in the separate attribute
entries.

MODE statement
a) The MODE statement definea the data typea

in the domain.
b) Format

/" CHARACTER int_l [COMPRESSED proc_name]"

MODE < REAL
rFIXED_POINT integer_2,int_3

{FLOATING_POINT [EXTENDED]

V INTEGER

C)

BINARV [EXTENDED]

DECIMAL integer_4
Language rules
- Only one MODE

domain entry.
- Integer data

represented in

statement can appear in

in the database may be
the binary or decimal

form; the binary integer data can have
the standard and extended format. If the
decimal base is apecified, it is
necea8ary to give the number of decimal
digits (integer_4). Default format for
integer data ia the binary repreaentation
in the atandard format.
Real data can have the fixed or floating
point representation in the database.
Real data in floating point format ia

always represented i
standard or extended p
in fixed point f
represented in pack
integer_2 Is the tota
digits and integer_3
digita in the fract
default format for
binary floating point
precision.
Character data can
corapressed or sourc
specifies the number
COMPRESSED option is
of the procedure
performs the compressi
too.

n binary form with
recision. Real data
ormat is always
ed decimal form;
1 number of decimal
is the number of

ional part. The
real data is the
format in standard

be represented in
e form. Tnteger_t
of characters. If
declared, the name
{proc_name) uhich

on must be declared

UNIT atatement
a) The UNIT statement defines the input unit

for data in the domain. Because the domain
values stored in the database can be
expre3sed in different units, the name of
the procedure which performs the conversion
frora input to internal units may be also
apecified in this statement.

b) Format
UNIT unit [,procedure_name]

c) Language rulea
- If the procedure_name is not specified,

the data in the database are measured bj'
the same units as input data. If the
procedure_name is specified, the
conversion from input units to internal
units must be done. For example, the
input unit can be dollar but the internsl
unit can be raillion dollars, etc.

- If thia .statement is not given in the
domain entry, the domain values are
numbers or character strings, without a
specific contevt.

ENDDOMAIN atatement
a) This statement denotes

domain description.
b) Format

ENDDOMAIN

ATTRIBUTE ENTRY

the end of the

1. The attribute entry uniquely identifies the
attribute by its name. Besides, the domain
name over which the attribute is defined,
the names of relations in which the
attribute appears and the total number of
different values the attribute may assume
are given in the attribute entry.

2. Entry format
ATTRIBUTE statement
ORIGIN statement
BELONGS statement
[DESC statement]
[CARDINALITV statement!
[VALUE statement)
ENDATTRIBUTE statement

3. Statements description
The attribute entry begins with the
ATTRIBUTE statement and ends with the
ENDATTRIBUTE statement. The order of other
statements is irrelevant.

ATTRIBUTE statement
a) The ATTRIBUTE statement uniquely identifies

the attribute by its name.
b) Format

ATTRIBUTE attribute_name
c) Language rules

- Attribute_name has to be unlque in the
schema

- Attribute_name must appear in DEFINES
atatement in the entry of the domain
whose name is declared in the ORIGIN
statement in this attribute entry.

15

of the BELONGS
in the attribute

- Attribute_name must appear in the
CONTAINS Btatement in the entry of the
relation whose name is declared in the
BELONGS statement in this attribute
entry. An attribute may appear in an
arbitrary number of relations.

ORIGIN statement
a) The ORIGIN statement identifies the domain

over which this attribute is defined.
b) Format

ORIGIN domain_name
c) Language rules

- Domain whose name appears in this
statement must be declared in the
separate domain entry.

BELONGS statement
a) This statement identifies the relations in
uhich this
attribute appears.
b) Format

BELONGS relation_l, relation_2, ...
c) Language rules

- An arbitrary number
statements may appear
entry.

- Relations whose names appear in this
statement must be declared in the
separate relation entries.

CARDINALITY statement
a) The CARDINALITV statement specifies the

total number of different attribute values.
This Btatement specifies the total number
of n-tuples in the relation, if the
attribute is the primary key of the
relation.

b) Format
CARDINALITV integer

c) Language rules
- Only one CARDINALITV statement raay appear

in the attribute entry.
- The number of different attribute values

is unlimited if this statement does not
appear in the attribute entry.

VALUE statement
a) This statement defines an implicit value

that should be assigned to the attribute if
the attribute value is not assigned during
the loading of the database.

b) Format
VALUE constant

c) Language rules
- Only one VALUE statement may appear in

the attribute entry.
- The constant can be

integer or character
attribute type.

- If this statement
attribute values must be
the database loading.

of the type real,
depending on the

is omitted, the
assigned during

ENDATTRIBUTE statement
a) This statement declares

attribute entry.
b) Format

ENDATTRIBUTE

RELATION BNTRV

1

the end of the

The relation entry uniquely identifies the
relation by its name. Besides, the
attributes belonging to that relation, the
integrity constraints, the primary key, the
cripto protection method and dependencies
among this relation and other relations are
specified in the relation entry.

2. Entry format
RELATION statement
CONTAINS statement
KEY statement
[DESC statement!
tCRIPTO_PROTECTION statement]
[INTEGRITY_CONSTRAINT statement)
[UNIQUE statement]
[FUNCTION statement)
tACCESS_CONTROL statement)
[TRIGGER structure)
ENDRELATION

3. Statements description
The order of the statements in the relation
entry is irrelevant.

RELATION statement
a) The RELATION statement uniquely identifies

schema by its name.
b) Format

RELATION relation_narae
c) Language rules

- Relation_narae has to be unique in the
schema.

- Relation_name must be declared in the
BELONGS statement of ali attributes that
belongs to the relation.

CONTAINS statement
a) The CONTAINS statement specifies the names

of ali attributes in the relation.
b) Format

CONTAINS attribute_l, attribute_2, ...
c) Language rules

- At least one attribute name must be
declared in this statement.

- An arbitrary number of the CONTAINS
statements can appear in the relation
entry.

- The attributes declared in this
statement must be defined in the
separate attributes entries.

KEY statement
a) The KEV sta

of the rela
b) Format

KEV attribu
C) Language ru

- Only one
relation

- At least
declared

- The attri
must be d
entries .

- The attri
must belo
must be
statement

teraent defines the primary key
tion.

te_l,attribute_2 , ...
les
KEV statement can appear"in the

entry.
one attribute name must be
in the KEV statement.
butes declared in this statement
efined in the separate attribute

butes declared in this statement
ng to this relation, i.e. they

defined in the CONTAINS
of this relation entry.

INTEGRITY_CONSTRAINT statement
a) This statement defines the integrity

constraints in the relations. The
constraints can be static and dynamic.

b) Format
•r_exp_l

INTEGRITV CONSTRAINT (IF
Cr_exp_2

Ifun 2
J

the this
the relation

can appear in
not in the

.fun_l
Language rules
- An arbitrary number of

statements can appear in
entry;

- Reserved Kords OLD and NEW
the relational_exp_l but
relational_exp_2;

- An arbitrary number of the this
statements can be defined for one
attribute because the attribute can have
more than one integrity constraint;

- Static and dynamic integrity constraints
for one attribute must be defined in
different INTEGRITV CONSTRAINT statements

16

- Integrity conatraint is defined by
relational_exp_l or by function_l.
Function is defined in the FUNCTION
statement;

- Integrity constraint repreaents the
comparison between old (OLD) and new
(NEW) attribute vaiues, if the integrity
constraint is dynaniic. In that čase.
attribute names must include reserved
words OLD and NEW. If the integrity
constraint is static, the attribute names
in the relational expreasions repreaents
immediate vaiues and reserved words OLD
and NEW are not included in the
attributes names.

- IF option apecifies the attribute vaiues
on uhich the integrity constraint is
applied. If this option is omittedi
the integrity is valid for ali attribute
vaiues.

Examples:
INTEGRITY_CONSTRAINT SUPPLV.CODEPRO =

PRODUCT.CODE
INTEGRITY_CONSTRAINT NEW EMPLOVEE.SAL > OLD

EMPLOVEE.SAL
INTEORITY_CONSTRAINT FUN3 IF

EMPLOYEE.DEPTCODE:"B"
INTEGRITY_CONSTRAINT FUN2 IF EMPLOVEE.SEX:"M"
FUNCTION FUN2:=EMPL0YEE.SAL > 5000
FUNCTION FUN3:=NEW EMPLOYBE. SADOLD EMP.SAL
The integrity constraint in the firat example
specifies that ali vaiues of the attribute
CODEPRO in the relation SUPPLY must be equal
to the vaiues of the attribute CODE in
relation PRODUCT. Second example specifies
that new salaries of ali employees must be
greater than old salaries. The usage of the IF
option is shown in the third example. This
example specifies that new salary must be
greater than old salary, but only for
employees in department "B". The fourth
example defines integrity constraint that the
male eroployees have 8alary greater than 5000.
In the third and fourth example functions FUN2
and FUN3 are used. Theae functions are defined
by the FUNCTION statements.

UNIQUE statement
a) The UNIQUE statement identifies attribute

or attributes group having unique vaiues
in the relation. That attribute or
attributes group do not repreaent the
primary key.

b) Format
UNIQUE attribute_l, attribute_2, ...

c) Language rules
- An arbitrary number of the UNIQUB

statements can appear in the relation
entry.

- The attributes declared in this statement
must be defined in the separate
attributes entries;

- The attributes declared must belong to
this relation, i.e. they must be declared
in the CONTAINS statement of the
relation entry.

- If more than one attribute is declared in
the UNIQUE statement, that attribute
group has unique vaiues, not the
particular attributes in that group.

- If more than one attribute or attributes
group in the relation have unique
vaiues, that ahould be specified by
separate UNIQUE statements;

- If UNIQUE statement doesn't appear in the
relation entry, only attributes that
constitute primary key have unique
vaiues.

FUNCTION statement
a) The FUNCTION statement defines a function.
b) Format

FUNCTION function_name:=relational_exp

c) Language rules
- Function_name must be unique in the

schema;
- The other function names can appear in

the relational expression.

ACCBSS_CONSTRAINT statement
a) The ACCESS_CONSTRAINT statement specifies

the operations that cannot be performod on
ali or particular n-tuples, i.e. on ali or
particular attribute vaiues.

b) Format

!

READ •) C r _ e x p 1

UPDATE [fON a t t r _ n [I F | M
INSERT 1 (f u n c t J
DELETE j

c) Language rules
- An arbitrary number of this statements

can appear in the relation entry.
- One ACCESS_CONSTRAINT statement must be

specified for each forbidden operation;
- The operations INSERT and DELETE denote

the insertion and deletion of n-tuples.
They must be applied to n-tuplea, not to
the attribute vaiues. The READ operation
denotes the reading of n-tuples or
attribute vaiues, and UPDATE operation
denotes the updating of one or more
attributes in the relation. The READ and
UPDATE operations can be applied to
n-tuples and attribute vaiues. If
ACCESS_CONSTRAINT specifies that UPDATE
or READ are forbidden on some attributes,
the ON option specifies these attributes.
If ON option is omitted, UPDATE or READ
are forbidden for ali attributes of the
relation. The ON option can appear in
this statement only for READ and UPDATE
operations.

- IF option specifies n-tuples or attribute
vaiues for which the given operation is
forbidden. If this option is omitted the
requeated operation is forbidden for ali
n-tuples or for ali attribute vaiues;

- If the ACCESS_CONSTRAINT statement is not
included in the relation entrv
description ali operations over n-tuples
or attributes of the relation are
allowed

Examples:
ACCESS_CONSTRAINT FOR DELETE
ACCESS_CONSTRAINT FOR UPDATE ON CODE
ACCESS_CONSTRAINT FOR READ IF CODE="C"
ACCESS_CONSTRAINT FOR READ ON SAL IF CODE="C"
Ali example3 are defined over the relation
EMPLOYEE. First example means that the DELETE
operation is forbidden for ali n-tuples of
relation EMPLOYEE and the second exarople
denotes that the updating of the attribute
CODE is not allowed. Third example meana ihnt
n-tuples in the relation EMPLOYEE having the
value of attribute CODE equal "C" cannot be
read, and the fourth example means that the
valuea of attribute SALARY of the n-tuples
with attribute CODE="C" cannot be read.
TRIGGER Btructure
a) The TRIGGER structure defines the aet of
forced operations that must be performed over
other relations upon the finishing of the
current operation.
b) Format

C INSERT]
TRIGGER FOR) UPDATE \ (ON a t t r i b u t e _ n

L DELETE J

riNSERT] / - c o n s f) f r _ e x p l
JUPDATE S r e l _ l [SET a t r _ 2 : = •̂ \ [IF> M]
©ELETEJ (a _ e x p j (f o n J

ENDTRIGGER
c) Language rules

- TRIGGER contains the head line, one or

17

more lines in which the aet of forced
operationa ia defined and the end line;

- An arbitrary number of triggera can
appear in the relation entry;

- Relation_l ia the name of the relation to
uhich the forced operation is applied.
Attribute_2 is an attribute from that
relation;

- Reserved words OLD and NEW can appear in
the relational expres8ion of the IF
option.

- The FOR option in the head line specifies
the operation that causes the trigger;

- If the operation declared in head line is
UPDATE, then the ON option must exist.
The ON option specifies the attribute in
the current relation over Mhich the
UPDATE operation (causing the trigger)
is performed. If the operation declared
in the head line is INSERT or DELETE,, the
ON option must not appear in the head
line because these operations are
performed over the n-tuples not over the
attribute values;

- The SET option exi8ts only if the forced
operation declared is UPDATE. One SET
option exiats in the same trigger for
each attribute updated. For example, if
the trigger causes the updating of two
attributes (attr_2 and attr_3) in
relation_l, then the trigger must contain
the folloKing lines:

•constant
UPDATE rel 1 SET attr 2

UPDATE rel 1 SET attr 3

thmetic_exp
constant

f con

L ari
/'constant "j

L arithmetic_expj
The arithmetic expreasion can be defined
in the SET option only if the attr_2 and
attr_3 are REAL or INTEOER.

- The IF option specifies the n-tuples,
i.e. attribute values in relation_l over
which the operations defined by the
trigger are performed. If this option is
omitted, the forced operations are
applied to ali n-tuples in relationl,
i.e. to ali attribute values;

- The n-tuples, i.e. attribute values to
which the forced operations must be
applied are determined by relational
expression or by the function whose name
appeara in the IF option.

Examples:
TRIGGER FOR UPDATE ON CODE
UPDATE SUPPLV SET CODEPRO:=PRODUCT.CODE
ENDTRIGGER
TRIGGER FOR UPDATE ON DEPTCODE
UPDATE DEPT SET EMPNO:=DEPT.EMPNO+1 IF FUNl
UPDATE DEPT SET EMPNO:=DEPT.EMPNO-1 IF FUN2
ENDTRIGGER
FUNCTION FUN1:=DEPT.C0DE=NEW EMPLOVEB.DEPTCODE
FUNCTION FUN2:=DEPT.C0DE=0LD EMPLOVEB.DEPTCODE
First trigger updates the relevant CODEPRO
entries in the relation SUPPLV whenever the
CODE of the PRODUCT is updated. This trigger
is defined in the relation PRODUCT. Second
trigger updates the relevant EMPNO entries in
the relation DEPT whenever the DEPTCODE of the
EMPLOVEE is updated. This trigger Is defined
in the relation EMPLOVEE.

BNDRBLATION statement
a) This statement denotes the end of the
relation entry.
b) Format

ENDRELATION

The key words of SDL are given in APPENDIX A,
the formal syntax description in APPENDIX B
and the schema description for the example in
APPENDIX C.

THE INTERPRETER REALIZATION

SDL commands
Beairing in mind that SDL is an Interactive
language it contains a set of commands which
enables the user to list the program, run it,
modify, etc. SDL commands are: LIST, INSERT,
DELETE, SUBSTITUTE, RUN, PURGE, SAVE, OLD,
TERMINATE, PROMPT, TEST and EXIT. The majority
of theae commands are the standard commands
that exist in each Interactive language and
they have a usual meanlng. For example, RUN
command runs the SDL program, the OLD command
brings an existing SDL program from the file
to the user area in the main memory, the PURGE
command deletes ali program veraions but the
last one etc. Only TEST and TERMINATE commands
have specific role in SDL. The TEST command
enables the user to control and track the
interpretation- proceas, and the TERMINATE
command requests from the interpreter to
finish the program interpretation after its
modification is done.

Interpreter structure
The interpretation is performed in two phases.
In the first phase, the source program is
analyzed (statement by atatement) and
translated into an internal form (postfix
notation). The internal form of the program is
interpreted and the result is generated in the
second phase. Two requests are imposed to the
implementation of the SDL interpreter: a) the
interpreter must be incremental, b) the multi
user environment must be provided.
As a result of the interpretation process, the
description file vrhich contains the
description of ali elementa of the database
and their internal dependencies is created.
Each record in that file corresponda to one
element of the database (schema, domain,
attribute and relation).

The interpreter is implemented aa a set of six
internally connected program modules. Fig. 2.
The interpreter modules are: command module,
lexical analyzer, parser, semantic analyzer,
result generator and editor. The control
Communications between modules are presented
in full lines, and the data flow in dashed
lines.
The data structures (static and dynamic) that
are used during the interpretation procesa
are: aource program, internal program,
dlctionaries and description file. The
dictionaries contain ali Information about the
objects of the source program (operators and
operands). These Information are organized so
they can be accessed from any part of the
interpreter. There exi8t two static
dictionaries which are parts of the
interpreter (dictionary of reserved words and
dictionary of delimiters) and one dynamic
dictionary (symbol table). The static
dictionaries are one dimenslonal arrays with
the elements of fixed length. The dictionary
of delimiters contains ali arithmetic
operators, compariaon operatora and special
characters aa comma, colon etc.

The aymbol table is formed during the
translation of the source program. Ali
Information about constants and variablea from
a SDL program are stored into it. The symbol
table has the fixed and variable part. The
fixed part contains five fields: identifier
name, object type indicator (R - relation, A -
attribute, D - domain, etc.), special
indicator used for semantic control (if the
given object is completely defined this
indicator haa the value one, otherwise null)
and the pointer to the variable part of the
symbol table. The fields of the variable part
depend on the database element to whom the

18

RELATIONAL DATABASE
MANAGEMENT SYSTEM

Fig. 2. The interpreter structure

given entry beionga. The number of fields in
the variable part and their format for
different element typea (relations, domains
etc.) are different, because the quantity of
Information that muat be stored is different.
Ali errors detected during the program
translation can be classified into five
groups: lexical, syntax, semantic, editor and
command errors. These erroi^s are detected by
the corresponding modules. Upon the detection
of any error the interpretation procese is
interrupted, the command module takes over the
control and sends the error message to the
user. Due to the concept of the incremental
interpretation, each error can be iramediately
corrected by the user , and the interpretation
process continued.
Some diagnostic facilitiea are built in to
enable the tracking of the interpretation
process. Each phase of the interpretation
procesa can be easily tracked independently of
other phases by printing the results of that
phase. For example, the lexical analysis can
be tracked by printing the set of tokens which
was generated during the lexical analysis. A
special SDL command (TEST) specifies the
interpretation phase that the user want8 to
track.
The communication of the SDL interpreter with
other parts of the RDBMS isprovided through
Virtual calls. In thia way, the interpreter is
made aelf-contained. In the RDBMS environraent,
the Virtual calls muat be replaced by the
actual ones.

Functional analysi8 of
The lexical analyze
analyzer and editor are
well known methods,
standard parts of ali
other modules are a
functiona are diet
characteristics.
The command module i
module which coordinat
modules and communicat
the RDBMS. This module
the interpretation pr
atatements and commands

interpreter parts
r, parser,. seraantic

implemented using the
because they are the
interpreters [2,8]. The
pecific because their
ated by the SDL

s the main interpreter
es the work of other
es with other parts of

starta and terminatea
oceas; it accepts the
and sends messages to

the user, activates other modulea to do their
job, performa the memory management and
providea the multi-user environraent.
The command module accepts the statements and
commands either from terminal and or file. If
the user entered a command, the command module
performs the appropriate action. For exaraple
if RUN command vras given, the command module
activates the execution of a SDL program (in
fact, activates the result generator).
If the user entered a statement, the lexical
analyzer, parser and aemantic analyzer are
activated to perform the analysis and
translation of the source statement into the
internal form. If any of these modules detecta
an error, it informs the command module by
aetting the error indicator. In that čase, the
command module interrupts the interpretation
process and sends the message to the user.
The lexical analyzer extracts tokens, forms
the 8ymbol table (fixed part) and writes into
it ali available Information about
identificators. The parser and aemantic
analyzer fill in the rest of the symbol table.
The tokena are divided into four claases:
identifiers (variable names), constanta,
reserved words and delimiters.
The parser performs 8yntax analysi8 of the
source statements and their translation into
the internal form. The internal form of the
atatements ia poatfix notation. The parser ia
implemented by recursive deacent method [2].
The aemantic analyzer performa the aemantic
analyais and writes corresponding Information
into the aymbol table and internal program.
The aemantic analy8i3 includea the control of
the whole program and particular atatementa.
The control of aemantic correctneas of the
whole program includes the checking the
presence of ali prerequiaite atatementa,
checking the order in which statements appear
and checking the uniquene3s of the statementa
that can appear only once in the program, in
the entry or in the some block structure. The
consiatency of the operand and operator typea
and the uniquenea8 of the identifiers (that
muat be unique) are also checked.
The implementation of the aemantic analyzer,

• egpecially the part which controls the program
form, is based on the theory of the finite

19

State machine. The semantic control of the
single statements is done by the control
routines that are called at particular places
in the program structure which simulates that
finite state machine [8].
The result generator, which is activated by
the RUN command, creates the description file
from the syinbol, table and internal program.
The description file contains the descriptions
of ali database elements (achema, domains,
attributes and relations). Due to the fact
that SDL has no imperative statements, the
result is generated by searching the symbol
table and internal program and gathering ali
necessary Information for the description
file. The records in the description file have
four different formats, and each record format
corresponds to one data structure in" the
database (schema, domain, attribute and
relation). The records of the same format are
grouped together, so the physical description
file contains four logical files. The result
generator is implemented as a set of
procedures and each procedure forms a
description of one data type.
The editor is the module whose task is to
provide the editing of the source program and
support the incremental interpretation of the
SDL program.
The multiuser SDL interpreter is implemented
on the IBM 4331 computer using COBOL
programming language. The system software for
Interactive work CICS [13] (which enables
dynamic memory and procesa management, data
interchange with diska and Communications with
the uaers over terminala) is used for
implementation. The description file is formed
as IBM VSAM KSDS data file with variable
length records [12]. The interpreter volume
expressed by the number of program lines is
5500.

3. Chamberlain D.
evolution of SVSTKM R"
no 10, october 1981.

D. etc: "A history and
; Communications of ACM,

4. Codd E.F.:"A relational model of data for
large shared data banks"; Communications of
the ACM, no 6, june 1970.

5. Codd E.F.:"Further Normalization of the
Database Relational Model";Current Computer
Science Simposia, Vol 6, Database Syateras, New
York city, May 1971, Prentice Hali.

6. Codd E,F.:"Normalized Database Structure:
A Brief Tutorial"; Current Computer Science
Simposia, Vol 6, Database SyBtems, New York
city, May 1971, Prentice Hali.

7. Codd E.F.:"Relational Completeness of
Database Sublanguages"; Current Computer
Science Simposia, Vol 6, Database Systems, New
York city, May 1971, Prentice Hali.

8. Gries D.; "Compiler Design for Digital
Computers"; John Wiley and Sons.

9. Hutt A. T. F.:"Organizing the Description
of a Relational' Database";Software - Practice
and Experience, vol k9, 1979.

10. Hutt A.T.F.: "A Relational Data Base
Management System"; John Wiley and Sons, 1979.

11. Gray J., McJones P.:"The recovery manager
of SVSTEM R database"; ACM Computing Surveys,
no 2, June 1982.

12. VSE (Virtual Storage Extended) System Data
Management Concepts - IBM Laboratory,
Programming Publication Department, Boebling,
W. Germany.

CONCLUSION

The schema description language for relational
database is a stand alone language completely
independent from other langUages in the DBMS
(query language, data manipulation language
e t c) . Due to the fact that the relational
database description have four different data
type8 (schema , attribute, domain and
relation), the SDL statements are grouped into
four entries, so each entry describes one data
type. The SDL is a structured language which
provides a high readability of the SDL
programs.
The interpreter developed for this language is
characterized by its functional independence
from the query language, the multiusesr
environment and incremental interpretation.
The implementation of the interpreter provides
the conditions for its eaaier portability to
different machines. These conditions are: a)
the application of standard programming
language characteristics without any
extensions, b) concentration of input/output
activities in command module c) marking ali
machine dependent points in the interpreter
(for example, calls of assembler routines,
8ystem service calls etc.) so they become
immediately visible.

13. CICS/VS (Customer Information Control
System/Virtual Storage) Introduction to
Program Logic - IBM Laboratory, Technical
Documentation Department, Hampshire, England.

APPENDIX A: Reserved vrords

ACCESS_CONSTRAINT
AND
ATTRIBUTE
BELONGS
BINARV
CARDINALIT,Y
CHARACTER
COMPRESSED
CONTAINS
CRIPT0_PROTECTION
DECIMAL
DEFINES
DELETE
DESC
DOMAIN
ENDATTRIBUTE
ENDDOMAIN
ENDRELATION
ENDSCHEMA
ENDTRIGGER
EKTENDED
FIXED_POINT
FLOATING_POINT
FOR

FUNCTION
IF
INSERT
INTEGER
INTEGRITY_C0NSTRA1NT
KEY
MODE
NBW
OLD
ON
OR
ORIGIN
READ
REAL
RELATION
SCHEMA
SET
SYSTEM
TRIGGER
UNIT
UNIQUE
UPDATE
VALUE

REFERENCES

1. Astrahan M. M. : "SVSTEM R: A relational
database management 8ystem"; Computer, may
1979.

2. Brbwn P. J.: "Kriting Interactive
Compilers and Interpreters"; John Wiley and
Sons.

20

APPKNDIX B: SDL 8yntax

Here we preaent the BNF syntax definition for
SDL. In this notation square brackets []
indicate optional constructs, and braces (}
indicate constructs that appear one or more
times.
<SDL_program>: : = <schemaentry>
(<domain_entry>)

{<attribute_entry>)
(<relation_entry>)

<schema_entry>):::<8chema_stat>
(<description_stat>)
[<cripto_protection_stat>]
<endschfenia_stat>
;=SCHEMA <Bchenia_name>
; = <name>

:<letter>{ <hyphen> <alphanunieric>
I <alphanunieric>)

<alphanuraeric>::=<letter>

<8chema_stat>;
<8chema_name>:
<name>;

:= A
;= O I

B D
<digit>
. . . \ Z

1 9
<letter>:
<digit>: ::
<hyphen>:
<description_stat>::=DESC <character_string>
<character_string>::=(<character>)
<character>::=<alphanumeric>

I <special_character>
<special_character>::= <addition_op>

{ <multiplication_op>
I <comparison_op>

1 " ; , 1 . I : I « 1 (!) : <hyphen>
<addition_op>::= • I
<inultiplication_op> ;
<compariaon_op>::= <

;= * I /
> I = 1 => 1 <= ! <>

<cripto_pr_atat>::=CRIPTO_PBOTECTION <niethod>
<method>:: = <procedure_name>

; SVSTEM
<endschema_8tat>::=ENDSCHEMA

<doinain_entry> : : =<domain_atat>
<definea_8tat>
<niode_8tat>
[<description_8tat>]
[<mode_8tat>]
<enddoniain_stat>

:=DOMAIN <doniain_narae>
: = <name>
::=DEFINES (<attribute_name>)

<mode_stat>::=MODK <domain_type>
<domain_type>::=<character_type>

I <integer_type>
I <real_type>

<character_type>::=CHARACTBR <integer_number>
[COMPRESSED <procedure_name>]

<real_type>::=FIXED_POINT <integer_nuraber>,
< integer_number>

1 FLOATING_POINT [EXTENDED1
:=INTEGER <nuraber_type>
:DECIMAL <integer_nuniber>
i BINARV [EXTENDED]

<unit_stat>::=UNIT <unit> [,<procedure_name>]
<unit>::=<character_3tring>
<enddomain stat>::=ENDDOMAIN

<doinain_8tat> :
<domain_name>:
<defines stat)

<integer_type>:
<nuniber_type> : :

<constraint>

<condition>:

<real_nuniber> : : = <integer_number> .
<integer_nuiiiber> <exp>

<exp>::=D[<aign>]<integer_number>
1 E[<sign>]<integer_number>

<literal>: : = " <character_8tring> '"
<endattribute_8tat>::=ENDATTRIBUTE

<relation_entry>:::<relation_stat>
[<description_stat>1
[<cripto_protection_stat>|
<key_stat>
<containa_8tat>
[<integrity_stat> J
(<unique_8tat>)
[<function_8tat>1
(<acce88_con8traint_stat>1
[<trigger_block>]
<endrelation_8tat>

<relation_8tat>::=RELATION <relation_name>
<relation_name>::=<name>
<key_8tat>::=KEY (<attribute_naroe>)
<contain8_8tat>::=CONTAINS {<attrlbute_name>I
<integrity_atat>::=INTEGRITY_CONSTRAINT

<constraint> [IF <condition>)
:=<relational_expre8sion>
I <function_name)

=<relational_expreB8ion>
1 < function_nanie>

< relational_expreasion>:: = <simple_exp>
I <8imple_exp> <log_op> <function_name>
1 <simple_exp> <log_op>(<relational_exp>)

<log_op>::= AND I OR
<8imple_exp>::=<variable>

<compariBon_op> <operand>
<operand>::=<variable> | <con8tant>
<variable>::=<prefix><e_variable>
<prefix>::=OLD I NEW
<e_variable> : : = [<relation_naiiie>] .

<attribute_name>
<function_name>::=<name>
<unique_atat>::=UNIQUE (<attribute_name>1
<function_stat>::=FUNCTION
<function_narae>: = <logical_exp>
<acce88_con8traint_8tat>::=ACCESS_CONSTRAINT

FOR <operation_l>
[ON <attrname>] [IF <condition>)

<operatlon_l>::= READ I <operation>
<operation>::= INSERT | UPDATE 1 DELETE
<trigger_block>::=<head_line> <trigger_body>

<end_line>
<head_line>::=TRIGGER FOR <operation>

(ON <attribute_nanie)]
<trigger_body> ; :s<operation> <relation_naiiie>

[SET <attribute_name>:=<expression>
[IF <condition>]]

<expression> : : = <conBtant> [<arithiiietic_exp>
<arithnietic_exp> : : = <sign> <operand>

<8ign> <operand> <arit_operator>
I<arithmetic_exp>)

<8ign>: := +
<operand>::=<variable> !
<arit_operator>::= + I -
<end line)::=ENDTRIGGBR

<numeric_constants>

I * ; /

<attribute_entry)::=<attribute_8tat)
[deacription_atat>]
[<value_stat>]
<origin_stat)
<belong8_8tat)
[<cardinality_stat)I
<endattribute_stat)

<attribute_stat)::=ATTRIBUTE <attribute_nanie>
<attribute_name)::=<name)
<origin_8tat) : : =ORIGIN <doniain_naine>
<belong8_8tat)::=BELONOS {<relation_name))
<cardinality_8tat)::=CARDINALITY

< integer_number)
< integer_nuinber) : : = { <digit>)
<value_atat)::=VALUE <con8tant>
<constant)::=<nunieric_con8tant) ! <literal)
<numeric_constant)::=[<sign>] <integer_number)

1 [<8ign>] <real_number>
< 8 i g n) : : = + ; -

APPENDIX C: SDL program

SCHEMA MARKETING
DKSC There is no protection at schemft level

DOMAIN DOMADDRESS
DBFINES ADDRESS
MODE CHARACTER COMPRESSED PROCl
ENDDOMAIN

DOMAIN DOMCODE
DEFINES CODE,CODEPRO,CODESUP,DEPTCODE
MODE INTEGER BINARV
ENDDOMAIN

DOMAIN DOMDATE
DEFINES DATE
MODE CHARACTER
ENDDOMAIN

DOMAIN DOMNO
DEFINES EMPNO

21

DEFINES EMPNO
MODE INTEGER DECIMAL
ENDDOMAIN

DOMAIN DOMPRICE
DEFINES PRIČE
MODE REAL FIXED_POINT
UNIT DOLLAR
ENDDDOMAIN

DOMAIN DOMQUANTITY
DEFINES QUANTITY
MODE REAL FIXED_POINT
ENDDOMAIN

DOMAIN DOMNAME
DEFINES NAME
MODE CHARACTER COMPRIMED PR0C2
ENDDOMAIN

DOMAIN DOMSALARY "
DEFINES SALARV
MODE REAL FLOATING_POINT
UNIT DOLLAR
ENDDOMAIN

DOMAIN DOMSEX
DEFINES SEX
MODE CHARACTER
ENDDOMAIN

ATTRIBUTE ADDRESS
ORIGIN DOMADDRESS
BELONGS DEPT
ENDATTRIBUTE

ATTRIBUTE CODE
ORIGIN DOMCODE
BELONGS SUPPLV,PRODUCT,EMPLOVEE,DEPT
ENDATTRIBUTE

ATTRIBUTE CODEPRO
ORIGIN DOMCODE
BELONGS' SUPPLV
CARDINALITV 5000
ENDATTRIBUTE

ATTRIBUTE CODESUP
ORIGIN DOMCODE
BELONGS SUPPLV
CARDINALITV 100
ENDATTRIBUTE

ATTRIBUTE DEPTCODE
ORIGIN DOMCODE
BELONGS EMPLOVEE
ENDATTRIBUTE

ATTRIBUTE DATE
BELONGS SUPPLV
ORIGIN DOMDATE
VALUE "01/01/1980"
DESC Data when the product viaa bought
ENDATTRIBUTE

ATTRIBUTE EMPNO
ORIGIN DOMNO
BELONGS DEPT
DESC Number of employee8 in the department
VALUE O
ENDATTRIBUTE

ATTRIBUTE QUANT
ORIGIN DOMQUANTITY
BELONGS PRODUCT,SUPPLV
VALUE O
ENDATTRIBUTE

ATTRIBUTE NAME

ORIGIN DOMNAME
BELONGS PRODUCT,EMPLOVEE,DEPT
VALUE "XXXX"
ENDATTRIBUTE

ATTRIBUTE PRIČE
ORIGIN DOMPRICE
BELONGS PRODUCT
VALUE 100
ENDATTRIBUTE

ATTRIBUTE SALARV
ORIGIN DOMSALARV
BELONGS EMPLOVEE
VALUE 1000
ENDATTRIBUTE

ATTRIBUTE SEX
ORIGIN DOMSEX
BELONGS EMPLOVEE
CARDINALITV 2
VALUE "M"
ENDATTRIBUTE

RELATION PRODUCT
CONTAINS CODE,NAME,PRIČE,QUANT
KEV CODE
DESC Products in the supply
INTEGRITV_CONSTRAINT CODE>0 AND C0DEO2767
INTEGRITV_CONSTRAINT PRICE<999.99
TRIGGER FOR UPDATE ON QUANT
UPDATE SUPPLV SET QUANT:=SUPPLY.QUANT+NEW

PRODUCT.QUANT
ENDTRIGGER

TRIGGER FOR UPDATE ON CODE
UPDATE SUPPLV SET CODEPRO::NEW

PRODUCT,CODE
ENDTRIGGER

ENDRELATION
RELATION EMPLOVEE
CONTAINS CODE,NAME SEX,SALARV,DEPTCODE
KEV CODE
DESC Company employees in the last 5 years
UNIQUE DEPTCODE
TRIGGER FOR UPDATE ON DEPTCODE
UPDATE DEPT SET EMPNO:rEMPNO+1 IF FUNl
UPDATE DEPT SET EMPNO:=EMPNO-1 IF FUN2
ENDTRIGGER
FUNCTION FUN1:=DEPT.C0DE:NEW DEPTCODE
FUNCTION FUN2::DEPT.C0DE=0LD DEPTCODE
INTEGRITV_CONSTRAINT SEX="M" OR SEX-"F"
INTEGRITV_CONSTRAINT C0DE>1 AND CODE<32767
INTEGRITY_CONSTRAINT DEPTCODE:DEPT.CODE

ACCESS_CONSTRAINT FOR READ ON SALARV IF
CODBOl
ENDRELATION
RELATION SUPPLV
CONTAINS CODEPRO,CODESUP,DATE,QUANT
KEV CODEPRO,CODESUP
INTEGRITV_CONSTRAINT CODEPRO=PRODUCT.CODE
INTEGRITY_CONSTRAINT DATE>"01/01/I 980"

ENDRELATION
RELATION DEPT
CONTAINS CODE,NAME,ADDRESS,EMPNO
KEV CODE
INTEGRITY_CONSTRAINT C0DE>1 AND CODE<10

UNIQUE NAME
ENDRELATION
ENDSCHEMA

