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Abstract

In this paper we study Petersen-colorings and strong Petersen-colorings on some well
known families of snarks, e.g. Blanuša snarks, Goldberg snarks and flower snarks. In
particular, it is shown that flower snarks have a Petersen-coloring but they do not have a
strong Petersen-coloring. Furthermore it is proved that possible minimum counterexamples
to Jaeger’s Petersen-coloring conjecture do not contain a specific subdivision of K3,3.
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1 Introduction
We study finite graphs G with vertex set V (G) and edge set E(G). If we distinguish an
initial and a terminal end for every edge e, then we obtain a directed graph. For S ⊆ V (G),
the set of edges with initial end in S and terminal end in V (G) − S is denoted by ω+

G(S).
We write ω−G(S) = ω+

G(V (G)−S) and ωG(S) = ω+
G(S)∪ω

−
G(S). If S consists of a single

vertex v we also write ωG(v) instead of ωG({v}). Subsets of E(G) of the form ωG(S) for
S ⊆ V (G) are called cocycles of G. If R ⊆ E(G), then G[R] denotes the graph with
vertex set V (G) and edge set R.

Given graphs G and H , we say that f : E(G) → E(H) is a H-coloring of G if it
is a proper edge-coloring and for every v ∈ V (G) there exists a v′ ∈ V (H) such that
f(ωG(v)) ⊆ ωH(v′). That is, adjacent edges in G are mapped to adjacent edges in H . If
H is the Petersen graph, we say that G has a Petersen-coloring.
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Jaeger [6] studied nowhere-zero flow problems on graphs where the set of flow values
are certain subsets of some Abelian group. He showed that a number of problems in graph
theory such as the cycle double cover conjecture [9, 12] and Fulkerson’s conjecture [2]
(i.e. that every bridgeless cubic graph has six perfect matchings such that every edge is in
precisely two of them) can be formulated in terms of such flows. He posed the following
conjecture which would imply both previously mentioned conjectures, and many others,
see [8].

Conjecture 1.1 (Petersen Coloring Conjecture [6]). Every bridgeless cubic graph has a
Petersen-coloring.

In [5] an even more specific notion is introduced. Associate to G a directed graph dG
with vertex set V (dG) = V (G) ∪ E(G), and to every edge e = xy in G correspond two
directed edges ex and ey with initial end e and terminal ends x and y, respectively. We say
ex is opposite to ey and vice versa. LetG andG′ be two graphs. A mapping φ fromE(dG)
to E(dG′) is compatible, if for any two opposite edges e1 and e2 in dG, φ(e1) and φ(e2)
are opposite edges in dG′.

For a cubic graph G the set of triples of edges of dG of the form ωdG(v) is denoted
by T+(dG), where v is a trivalent vertex in dG. T−(dG) is the set of triples of the form
{e−1 , e

−
2 , e
−
3 } where {e1, e2, e3} ∈ T+(dG) and e−i is opposite to ei.

Let G and G′ be two cubic graphs. A dG′-coloring of dG is a compatible mapping
γ from E(dG) to E(dG′) which maps every triple of T+(dG) to a triple of T+(dG′) ∪
T−(dG′). For the particular case when dG has a dG′-coloring andG′ is the Petersen graph,
we say that G is strongly Petersen-colorable.

Clearly, strongly Petersen-colorable graphs satisfy the Petersen-coloring conjecture and
hence Fulkerson’s and the cycle double cover conjecture as well. Jaeger [5] noticed that
moreover these graphs also satisfy Tutte’s 5-flow- and the orientable cycle double cover
conjecture.

All these conjectures are trivially true for 3-edge-colorable cubic graphs. Hence we
focus on bridgeless cubic graphs, which are not 3-edge-colorable; so called snarks. Snarks
are of major interest in graph theory since they are potential counterexamples to many
hard conjectures. Brinkmann et al. [1] generated all snarks with at most 36 vertices and
they disproved a couple of conjectures concerning these graphs. The paper also gives
an overview on conjectures which are related to snarks. In [11] it is shown that cubic
graphs with high cyclic connectivity have a nowhere-zero 5-flow. This result can also be
considered as a first approximation to a conjecture of Jaeger and Swart [7] who conjectured
that every cyclically 7-edge connected cubic graph has a nowhere-zero 4-flow.

The paper is organized as follows. The next section delivers Jaeger’s characterizations
of Petersen-colorable and strongly Petersen-colorable graphs, [5]. We show that type 1
Blanuša snarks have a strong Petersen-coloring while flower snarks do not have such a
coloring. We study the structure of a minimum counterexample to the Petersen-coloring
conjecture and finally we show that the flower-, the Goldberg-, and all Blanuša snarks have
a Petersen-coloring.

2 Normal 5-edge-colorings
Let G be a cubic graph and φ : E(G) → {1, 2, 3, 4, 5} be a proper 5-edge-coloring. An
edge e = xy inG is poor if |φ(ω(x))∪φ(ω(y))| = 3 and it is rich if |φ(ω(x))∪φ(ω(y))| =
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5. If every edge in G is either rich or poor, then φ is a normal 5-edge-coloring. Jaeger
characterizes Petersen-colorable and strongly Petersen-colorable graphs in terms of normal
5-edge-colorings.

Theorem 2.1. [5] A cubic graph is Petersen-colorable if and only if it has a normal 5-
edge-coloring.

Theorem 2.2. [5] A cubic graph is strongly Petersen-colorable if and only if it has a
normal 5-edge-coloring, and the set of poor edges forms a cocycle.

If φ is a normal 5-edge-coloring of a graph G, such that the set of poor edges forms a
cocycle, then we call φ a strong normal 5-edge-coloring. Jaeger [5] stated that cubic graphs
with strong normal 5-edge-coloring do not contain a triangle (cf. Proposition 4.1).

3 Strong Petersen-colorings
3.1 Blanuša snarks

The generalized Blanuša snarks were introduced by Watkins in [13]. Let A be the graph
formed by removing two adjacent vertices from the Petersen graph. The generalized
Blanuša snarks of type 1 are formed by joining n copies of the graph A as depicted in
Figure 1 and one copy of the graph P2.

Figure 1: The generalized Blanuša snark of type 1.

Theorem 3.1. Every generalized Blanuša snark of type 1 with an odd number of A-blocks
is strongly Petersen-colorable.

Proof. Let G2n−1 be a Blanuša snark of type 1 formed by blocks A1, . . . , A2n+1, P2 and
let φ be the coloring of the even respectively odd blocks as shown in Figure 2. Then
it is easy to see that φ is a normal edge-coloring where the set of poor edges is the set
∪{ω(V (Ai))}2n2 and hence a cocycle. It now follows from Theorem 2.2 that G2n−1 is
strongly Petersen-colorable.

3.2 Flower snarks

In this section we will show that flower snarks do not have a strong Petersen-coloring.
LetG be a graph which has a normal 5-edge-coloring. We first study possible partitions

of the edge set of C6 (the cycle of length 6) into rich and poor edges. We denote the set of
rich edges with R.
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Figure 2: A normal edge-coloring φ of a generalized Blanuša snark of type 1 where the
only poor edges are the diagonal edges between the blocks A1, . . . , A2n+1.

Lemma 3.2. Let G be a cubic graph that has a strong normal 5-edge-coloring. If C6 is
a subgraph of G, then the connected components of C6[E(C6) ∩ R] are either C6 or two
paths of length 2 or two isolated edges and two isolated vertices or six isolated vertices.

Proof. Let G be a cubic graph that has a strong normal 5-edge-coloring φ, and that con-
tains C6 as a subgraph. Then the set of poor edges forms a cocycle by Theorem 2.2 and
therefore, it partitions V (G) into two sets S and S′ such that the following two conditions
are satisfied:

C1: If e = vw is a poor edge, then v ∈ S if and only if w ∈ S′.
C2: If e = vw is a rich edge, then either v, w ∈ S or v, w 6∈ S.
Taken into account these two conditions, it is easy to see that the following claim is

true.

Claim 3.3. The number of rich (poor) edges in C6 is even.

Figure 3: C6

Let the edges of C6 be labeled as indicated in Figure 3.

Claim 3.4. The rich edges do not induce a path of length 4.



J. Hägglund and E. Steffen: Petersen-colorings and some families of snarks 165

Proof. Assume that e1, e2, e3, e4 are rich. W.l.o.g. we may assume that φ(e1) = 1,
φ(f1) = 2, φ(e6) = 3, φ(f2) = 4, φ(e2) = 5. Then φ(f3), φ(e3), φ(f4), φ(e4) 6= 5.
Hence 5 ∈ {φ(f5), φ(e5)}. But on the other hand {φ(e5), φ(f5)} = {1, 3} or = {2, 3}, a
contradiction.

Claim 3.5. The rich edges do not induce a path of length 3 and an isolated edge in C6.

Proof. Assume that e1, e2, e3, e5 are rich. W.l.o.g. we may assume that φ(e1) = 1,
φ(f1) = 2, φ(e6) = 3, φ(f2) = 4, φ(e2) = 5. This implies, that {φ(e4), φ(f4)} = {1, 4}
and {φ(e4), φ(f5)} = {4, 5}; hence φ(e4) = 4. Thus φ(f5) = 5 = φ(f4), a contradiction.

Claim 3.6. The rich edges do not induce precisely one path of length 2 in C6.

Proof. Assume that e1, e2 are rich. W.l.o.g. we may assume that φ(e1) = 1, φ(f1) =
2, φ(e6) = 3, φ(f2) = 4, φ(e2) = 5. This implies that 3 ∈ {φ(f5), φ(e4)} and
5 ∈ {φ(e4), φ(f4)}. On the other hand we have that {φ(e5), φ(e6), φ(f6)} = {1, 2, 3}
and hence 5 6∈ {φ(e4), φ(f5)}. But then φ(e4) = 3, φ(f4) = 5 and therefore 5 ∈
{φ(e6), φ(f5)}, a contradiction.

For the further study we will go a little bit more into the details of possible (strong)
normal 5-edge-colorings.

Lemma 3.7. Let G be a cubic graph that has a normal 5-edge-coloring φ. If C6 is a
subgraph ofG and all its edges are rich, then E(C6) is partitioned into three color classes,
say φ−1(1), φ−1(2), φ−1(3), such that ei, ei+3 ∈ φ−1(i), for i = 1, 2, 3.

Proof. Clearly, at least three colors appear at the edges of C6 since for otherwise there are
two edges of the same color with distance 1, contradicting the fact that all edges are rich.

If more than three colors appear at the edges of C6, then there is a path of length 4,
say e1, e2, e3, e4, whose edges are colored pairwise differently, say φ(ei) = i. W.l.o.g.
we may assume that φ(f2) = 4 and φ(f3) = 5. Thus φ(f4) = 1, and since all edges
are rich, it follows that {φ(e5), φ(f5)} = {2, 5}, {φ(e6), φ(f1)} = {3, 5}, and hence
{φ(e6), φ(f6)} = {1, 3} and {φ(e5), φ(f6)} = {2, 4}, a contradiction. It is easy to see
that a coloring as stated in the claim exists.

Lemma 3.8. Let G be a cubic graph that contains C6 as a subgraph and φ be a strong
normal 5-edge-coloring. If precisely two edges of C6 are rich, then they receive the same
color.

Proof. It follows from Lemma 3.2 that there are two non-isomorphic distributions of the
rich edges.

1) The distance between the rich edges in C6 is 2. Assume that e1, e4 are rich. W.l.o.g.
we may assume that φ(e1) = 1, φ(f1) = 2, φ(e6) = 3, φ(f2) = 4, φ(e2) = 5. Assume to
the contrary φ(e4) 6= 1.

Case 1: φ(e5) = 1. Then it follows that φ(f3) = 1 and φ(f4) = 1, contradicting the
fact that e4 is rich.

Case 2: φ(e5) 6= 1, i.e. φ(e5) = 2, and hence φ(f6) = φ(f5) = 1 and φ(e4) = 3. But
3 6∈ {φ(e2), φ(f3)}, a contradiction.

2) The distance between the rich edges in C6 is 1. Assume that e1, e3 are rich. W.l.o.g.
we may assume that φ(e1) = 1, φ(f1) = 2, φ(e6) = 3, φ(f2) = 4, φ(e2) = 5. Assume
to the contrary φ(e3) 6= 1. Then φ(e3) = 4 and hence 4 ∈ {φ(e5), φ(f5)}, and therefore
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in any case 4 ∈ {φ(e5), φ(f6), φ(e6)}. But on the other hand {φ(e5), φ(f6), φ(e6)} =
{1, 2, 3}, a contradiction.

Figure 4: C∗6

Let C∗6 be the graph of Figure 4 without the edges f1, f3, f4, f6. Our objective is to
reduce the number of non-isomorphic partitions of the edge set of C∗6 into rich and poor
edges to the five partitions shown in Figure 5.

Figure 5: Five types of non-isormorphic partitions ofE(C∗6 ) into rich and poor edges. (The
rich edges are bold.)

Lemma 3.9. Let G be a cubic graph that has a strong normal 5-edge-coloring. If C∗6 is a
subgraph of G and Ep, Er is a partition of the edges of E(C∗6 ) into poor and rich edges,
then this partition is isomorphic to one of the types in Figure 5.

Proof. The result follows by case checking along the number r of rich edges in C∗6 . Let the
edges ofC∗6 be labeled as in Figure 4. It contains threeC6 - with edge sets {e1, e2, . . . , e6},
{e1, f2, f0, f5, e5, e6}, and {e2, e3, e4, f5, f0, f2} - which share pairwise a path of length
3.
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r = 0: We obtain a partition of type A of Figure 5.
r = 1: Then there is a C6 with an odd number of rich edges, contradicting Lemma 3.2.
r = 2: By Lemma 3.2 any of the three C6 has either no rich edge or two rich edges,

which induce two isolated edges. Now it is easy to see that type B of Figure 5 is the only
solution (up to isomorphism).

r = 3: By Lemma 3.2 any of the threeC6 has two rich edges, which induce two isolated
edges. It is easy to see that types C and D are the only possible solutions.

r = 4: The matching number of C∗6 is 4. If r = 4 and the four rich edges induce a
matching, then there is a C6 that contains an odd number of rich edges, a contradiction.
Thus, by Lemma 3.2, we can assume that there is a C6 such that the rich edges induce two
paths of length 2. The only realizable partition is of typeE of Figure 5 (up to isomorphism).

5 ≤ r ≤ 8: It is easy to see that Lemma 3.2 can not be satisfied for all three C6 of C∗6 .
r = 9: In this case, we obtain a contradiction to Lemma 3.7.

The following lemma easily follows from Lemma 3.8.

Lemma 3.10. Let G be a cubic graph that has a strong normal 5-edge-coloring. If C∗6 is a
subgraph of G and the edges of E(C∗6 ) are partitioned into poor and rich edges as shown
in Figure 5 B, C or D, then the three rich edges receive the same color.

The flower snarks are invented by Isaacs [4]. They are cyclically 6-edge connected and
have girth 6, if k ≥ 3. For k ≥ 1, the flower snark J2k+1 has vertex set V (J2k+1) =
{ai, bi, ci, di|i = 0, 1, . . . , 2k} and edge set E(J2k+1) = {biai, bici, bidi; aiai+1; cidi+1;
dici+1|i = 0, 1 . . . , 2k} (indices are added modulo 2k + 1).

Theorem 3.11. For every k ≥ 1, the flower snark J2k+1 is not strongly Petersen-colorable.

Figure 6: Substructure of J2k+1

Proof. We show that the flower snarks do not have a strong normal 5-edge-coloring. Then
the result follows with Theorem 2.2. Assume to the contrary that J2k+1 has a strong normal
5-edge-coloring φ. Let C∗6 be the graph as indicated in Figure 4. The flower snark J2k+1

can be considered as the union of 2k + 1 copies D0, . . . , D2k of C∗6 , where Di and Di+1

share precisely the subgraph which is induced by one vertex of degree 3 and its neighbors
(indices are added modulo 2k + 1); see Figure 6. By Lemma 3.9, the five partitions of the
edges of C∗6 shown in Figure 5 are the only non-isomorphic types of possible partitions of
the edges of C∗6 into rich and poor edges.

1) There is i ∈ {0 . . . 2k} such that Di is of type E. Since Di shares with Di+1 a
vertex of degree 3 with its three incident edges, it follows that Di+1 is of type E as well.
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Hence all Di are of type E and therefore all edges of the inner cycle of length 2k + 1 are
poor, contradicting our assumption, that J2k+1 has a strong normal 5-edge-coloring. Thus
all Di are not of type E.

2) There is i ∈ {0 . . . 2k} such that Di is of type D. Then Di+1 can be of any other
type different from E. We may assume that the edge bici is rich. Hence ci−1di and ai−1ai
are rich, too. All the other edges of Di are poor. If Di+1 is of type C or D, then it follows,
that two different rich edges, one of Di and one of Di+1 are adjacent. By Lemma 3.10,
they all have the same color, contradicting the fact that φ is a coloring. ThusDi+1 is of type
B. On the other hand, Di−1 shares with Di the vertex bi−1 of degree 3 which is incident to
three poor edges. As above, it follows that Di−1 cannot be of type D; thus it is of type A.
Since the number of theDi is odd it follows that the typesA,B, C andD cannot combined
to get a coloring of J2k+1. Thus all Di are not of type D.

3) There is i ∈ {0 . . . 2k} such thatDi is of typeA. SinceDi shares withDi+1 a vertex
of degree 3 with its three incident edges, it follows that Di+1 is of type A as well. Not all
Dj can be of typeA since then J2k+1 has no rich edges and therefore it is 3-edge-colorable,
a contradiction. Thus all Di are of type B or C.

4) There is i ∈ {0 . . . 2k} such that Di is of type B or C. It follows that Di+1 is of
type B or C. It turns out, that in any case the two rich edges which are adjacent to the
trivalent vertices bi and bi+1 are of the form bici, bi+1di+1 or bidi, bi+1ci+1. This implies
that eventually two edges bjcj and bjdj are rich, contradicting the fact that every Di is of
type B or C.

Since the five types of Figure 5 are the only possible strong normal 5-edge-colorings of
C∗6 and no combination of them yields a strong normal 5-edge-coloring of J2k+1, it follows
with Theorem 2.2 that J2k+1 has no strong Petersen-coloring.

4 Structure of a possible minimum counterexample to the Petersen-
coloring conjecture

Jaeger [6] showed that a possible minimum counterexample to the Petersen-coloring con-
jecture must be cyclically 4-edge connected snark.

If G contains a triangle, then let G− be the graph obtained from G by contracting the
triangle to a single vertex. Clearly, every normal 5-edge-coloring ofG− can be extended to
one of G. On the hand, if a cubic graph G has a normal 5-edge-coloring then this coloring
can be extended to any graph which is obtained from G by expanding a vertex to a triangle.
The following proposition is a reformulation of Proposition 15 in [5].

Lemma 4.1. Let φ be a normal 5-edge-coloring of a bridgeless cubic graph G. If there is
an edge e which is contained in a triangle, then e is poor.

Proof. Let e1 = v1v2, e2 = v2v3, e3 = v3v1 be the edges of a triangle T in G and let
fi be the edge which is incident to vi and not an edge of T . Assume that e1 is rich, then
|φ(ω(v1))) ∪ φ(ω(v2))| = 5 and hence e1, e2, e3, f1, f2 and f3 have to receive pairwise
different colors; contradicting the fact that φ is a 5-edge-coloring.

Consider K3,3 with partition sets {u, v, w} and {v1, v2, v3}. Let K∗3,3 be the graph ob-
tained from K3,3 by subdividing the edges uvi and wvi by vertices ui and wi, respectively.
Graph K∗3,3 is shown in Figure 7.
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Figure 7: K∗3,3

It is easy to see that the statements of this section are also true if we consider Fulkerson-
colorings (i.e. a cover with six perfect matchings such that every edge is contained in pre-
cisely two of them) instead of Petersen-colorings.

Theorem 4.2. If G is a minimum counterexample to the Petersen-coloring conjecture (or
to the Fulkerson conjecture), then it does not contain K∗3,3 as a subgraph.

Proof. Let φ be a normal 5-edge-coloring of G, and assume that K∗3,3 is a subgraph of G.
Remove the vertices u and w and add edges uiwi, for i = 1, 2, 3, to obtain a cubic graph
G′. Since G is cyclically 4-edge connected it follows that G′ is bridgeless. Thus G′ has a
normal 5-edge-coloring φ′ by induction hypothesis. Since ui, vi, wi span a triangle in G′

(i = 1, 2, 3), it follows by Lemma 4.1 that edge uiwi receives the same color as vvi. Thus
φ′ is extendable to a normal 5-edge-coloring of G, a contradiction. The statement follows
with Theorem 2.1. The proof for the Fulkerson conjecture is similar.

This also yields a method to generated cubic graphs with normal 5-edge-colorings from
smaller ones (with normal 5-edge-coloring). Let v be a vertex of a cubic graph with normal
5-edge-coloring φ, and let w1, w2, w3 be the neighbors of v. Expand wi to a triangles Ti
with vertex set {wi,1, wi,2, wi,3} such that v, wi,1 are incident, to obtain a graph G1. Then
φ can be extended to a normal 5-edge-coloring φ1 on G1. By Lemma 4.1 it follows that
φ1(vwi,1) = φ1(wi,2wi,3). Hence edges wi,2wi,3 can be removed and two vertices can
be added so that we obtain a K∗3,3 as a subgraph and a normal 5-edge-coloring of the new
graph.

We will use this fact, to prove Conjecture 1.1 for flower snarks.

5 Petersen-colorings for some families of snarks
5.1 Flower snarks

If a cubic graph G contains a K∗3,3 and we reduce it to a smaller graph G′ as in the proof of
Theorem 4.2, then G′ contains three triangles. If we contract these three triangles to single
vertices we obtain a new cubic graph G∗ that has 8 vertices less than G. Let us say that G
is K∗3,3-reducible to G∗. Theorem 4.2 can be reformulated as follows:
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Theorem 5.1. Let G be a cubic graph that is K∗3,3-reducible to a graph H . If H has a
Petersen-coloring, then G has a Petersen-coloring.

The following lemma is a simple consequence of Lemma 4.2 of [10].

Lemma 5.2. For k ≥ 1, the flower snark J2k+3 is K∗3,3-reducible to J2k+1.

Since J3 can be reduced to the Petersen graph by contracting the triangle to a single
vertex, Theorem 5.1 and Lemma 5.2 imply the following theorem.

Theorem 5.3. For all k ≥ 1, the flower snark J2k+1 has a Petersen-coloring.

5.2 Goldberg snarks

Let k ≥ 5 be a odd integer. The Goldberg snark [3]Gk is formed from k copiesB1, . . . , Bk

of the graphB in Figure 8 and the edges {aiai+1, cibi+1, eidi+1} for each i ∈ {1, 2, . . . , k}
where indices are added modulo k.

Figure 8: A block B in the Goldberg snark.

Theorem 5.4. Every Goldberg snark Gk, where k ≥ 5 is odd, has a Petersen-coloring.

Proof. Let Gk be a Goldberg snark. Then Gk can be constructed from one 3-block (see
Figure 10) and k−3

2 2-blocks (see Figure 9). Using the normal 5-edge-colorings provided
in Figure 9 and 10 it is easy to see that it will give a normal 5-edge-coloring of Gk.

5.3 Blanuša snarks

Let G be a Blanuša snark of type 1 as defined in Section 3.1. If we color the blocks
A1, . . . , Ar−1 as in figure 11 and Ar and C1 as in figure 12 and 13, it is easy to see that we
have a normal edge coloring of all such graphs.

The generalized Blanuša snarks of type 2 are formed by joining r copies of A and one
copy of C2 (see Figure 14). Once again it is straightforward to see that all such graphs has
normal edges colorings by coloring A1, . . . , Ar−2 as in Figure 11, Ar−1 as in Figure 13
and finally C2 as in Figure 14.

From this we get the following theorem.

Theorem 5.5. All generalized Blanuša snarks of type 1 and 2 have Petersen-colorings.
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Figure 9: A 2-block in the Goldberg snark with a normal 5-edge-coloring.

Figure 10: A 3-block in the Goldberg snark with a normal 5-edge-coloring.

Figure 11: Block Ai in the generalized Blanuša snark.
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Figure 12: Block Ar in the generalized Blanuša snark.

Figure 13: Block P2 in the generalized Blanuša snark.

Figure 14: Block C2 in the generalized Blanuša snark.
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[8] D. Král, E. Máčajová, O. Pangrác, A. Raspaud, J.-S. Sereni and M. Škoviera, Projective,
affine, and abelian colorings of cubic graphs, European J. Combin. 30 (2009), 53–69, doi:
10.1016/j.ejc.2007.11.029.

[9] P. D. Seymour, Sums of circuits, in: Graph theory and related topics (Proc. Conf., Univ. Wa-
terloo, Waterloo, Ont., 1977), Academic Press, New York, 1979, pp. 341–355.

[10] E. Steffen, Classifications and characterizations of snarks, Discrete Math. 188 (1998), 183–203,
doi:10.1016/S0012-365X(97)00255-0.

[11] E. Steffen, Tutte’s 5-flow conjecture for highly cyclically connected cubic graphs, Discrete
Math. 310 (2010), 385–389.

[12] G. Szekeres, Polyhedral decompositions of cubic graphs, Bull. Austral. Math. Soc. 8 (1973),
367–387.

[13] J. J. Watkins, On the construction of snarks, Ars Combin. 16 (1983), 111–124.

http://arxiv.org/abs/1206.6690
http://dx.doi.org/10.1016/0095-8956(81)90030-7
http://dx.doi.org/10.1016/j.ejc.2007.11.029
http://dx.doi.org/10.1016/j.ejc.2007.11.029
http://dx.doi.org/10.1016/S0012-365X(97)00255-0

