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Abstract

We give exhaustive lists of connected 4-regular integral Cayley graphs and connected 4-
regular integral arc-transitive graphs. An integral graph is a graph for which all eigenvalues
are integers. A Cayley graph Cay(Γ, S) for a given group Γ and connection set S ⊂ Γ is
the graph with vertex set Γ and with a connected to b if and only if ba−1 ∈ S. Up to
isomorphism, we find that there are 32 connected quartic integral Cayley graphs, 17 of
which are bipartite. Many of these can be realized in a number of different ways by using
non-isomorphic choices for Γ and/or different choices for S. A graph is arc-transitive
if its automorphism group acts transitively on the ordered pairs of adjacent vertices. Up
to isomorphism, there are 27 quartic integral graphs that are arc-transitive. Of these 27
graphs, 16 are bipartite and 16 are Cayley graphs. By taking quotients of our Cayley or
arc-transitive graphs we also find a number of other quartic integral graphs. Overall, we
find 9 new spectra that can be realised by bipartite quartic integral graphs.

Keywords: Graph spectrum, integral graph, Cayley graph, arc-transitive, vertex-transitive bipartite
double cover, voltage assignment, graph homomorphism.

Math. Subj. Class.: 05C50, 05C25

1 Introduction
We give exhaustive lists of connected 4-regular integral Cayley graphs and connected 4-
regular integral arc-transitive graphs. For reasons which will become apparent, we first
restrict our attention to the bipartite case.

An integral graph is a graph for which all eigenvalues of the adjacency matrix are
integers. The spectrum of a graph is the eigenvalues with their multiplicity. Bipartite
graphs have eigenvalues that are symmetric with respect to 0 and r-regular graphs have
largest eigenvalue r with multiplicity equal to the number of connected components. For
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details we refer to [10]. Therefore for connected 4-regular bipartite integral graphs, the
spectrum has the form {4, 3x, 2y, 1z, 02w,−1z,−2y,−3x,−4}; which we abbreviate by
simply specifying the quadruple [x, y, z, w].

There are only finitely many connected 4-regular bipartite integral graphs. Cvetko-
vić [6] proved that the diameter D of a connected graph satisfies D 6 s− 1, where s is the
number of distinct eigenvalues. For connected r-regular integral graphs, it follows thatR 6
D 6 2r where R is the radius of the graph. Cvetković et al. [7] showed that the number
of vertices in a connected r-regular bipartite graph is bounded above by (2(r − 1)R − 2)/
(r−2) if r > 3. Therefore, connected 4-regular bipartite integral graphs have at most 6560
vertices.

All graphs in this paper are simple, undirected, and have n vertices. Since a 4-regular
graph is integral if and only if each of its components is integral, from this point on we
will assume that all graphs are connected. We use the acronym QIG as shorthand for a
connected quartic integral graph. Cvetković et al. [7] found quadruples [x, y, z, w] that
are candidates for the spectrum of a bipartite QIG. They called these possible spectra.
Research activities regarding the set of possible spectra fall into two streams: eliminate
possible spectra based on new information and/or techniques, or find graphs that realize a
possible spectrum. Useful tools include an identity by Hoffman [11] and equations relating
the spectral moments to the closed walks of length ` 6 6. All QIGs that avoid eigenvalues
of ±3 and realize a possible spectrum are found in [24]. Stevanović [23] eliminates spec-
tra using equations arising from graph angles. In the same paper he determines that the
possible values for n are between 8 and 1260, except for 5 identified spectra.

Stevanović et al. [25] extend the equations for the `-th spectral moment to an inequality
for ` = 8. They make use of a correspondence between closed walks in an r-regular graph
and walks in an infinite r-regular tree and find recurrence relations for the number of closed
walks. The upper bound for n is improved to give 8 6 n 6 560. Equations for ` > 8 are
found in [16] by counting a certain type of closed walk in terms of the counts of small sub-
graphs of the graph. All of the bipartite QIGs with n 6 24 that realize one of the possible
spectra were found and are listed with drawings in [25]. We give 12 new graphs that realize
possible spectra from the set given in [25]. Of these graphs, 3 are co-spectral to an integral
graph listed in [7]. Their spectra are [4, 6, 4, 5] and [6, 16, 10, 3], and [9, 16, 19, 0]. The
spectra not previously known to be realized by a graph are [3, 4, 1, 6], [3, 5, 9, 0], [5, 4, 7, 4],
[6, 12, 2, 9], [8, 10, 16, 1], [10, 14, 18, 2], [12, 28, 4, 15], [22, 28, 34, 5], and [27, 28, 49, 0].
Of the 12 graphs, 3 appear in the census of Potočnik et al. [17, 18] but were not recognized
as integral.

We also list 49 new non-bipartite QIGs that, to our knowledge, do not appear anywhere
in the literature. Of these graphs, only 3 appear in the census of Potočnik et al. [17, 18] but
were not tested for integrality.

A Cayley graph Cay(Γ, S) for a group Γ and connection set S ⊂ Γ is the graph with
vertex set Γ and with a connected to b if and only if ba−1 ∈ S. Let Zt, Dt, and Qt denote
the cyclic, dihedral, and quaternion groups of order t respectively, and St,At the symmetric
and alternating groups of degree t.

Klotz and Sander [12] showed that if every Cayley graph Cay(Γ, S) over a finite
Abelian group Γ is integral then Γ ∈ {Zs2,Zs3,Zs4,Zs2 × Zt3,Zs2 × Zt4}, where s > 1,
t > 1. The analogous result for non-Abelian Γ was determined independently by Abdol-
lahi and Jazaeri [1] and Ahmady et al. [4]: if every Cayley graph Cay(Γ, S) over a finite
non-Abelian group Γ is integral then Γ ∈ {S3,Z3 o Z4, Q8 × Zr2}, where r > 0.
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Estélyi and Kovács [8] considered the groups for which all Cayley graphs Cay(Γ, S)
over a group Γ are integral if |S| 6 k. The authors proved that for k > 6, Γ consists only
of the groups above: {Zs2,Zs3,Zs4,Zs2 × Zt3,Zs2 × Zt4} ∪ {S3,Z3 o Z4, Q8 × Zr2}, s > 1,
t > 1, r > 0. Moreover, for k ∈ {4, 5} there is only one extra possibility, namely that Γ is
the generalised dicyclic group with Z3q × Z6 as a subgroup of index 2, where q > 1.

Abdollahi and Vatandoost [2] showed that there are exactly 7 connected cubic integral
Cayley graphs. They found that Cay(Γ, S) is integral for some S with |S| = 3 if and only
if Γ is isomorphic to Z2×Z2, Z4, Z6, S3, Z3

2, Z2×Z4, D8, Z2×Z6,D12,A4, S4,D8×Z3,
D6 × Z4 or A4 × Z2.

A set of possible orders for Cayley QIGs on finite Abelian groups have been determined
by Abdollahi et al. [3]. They showed that for an Abelian group, Γ, if Cay(Γ, S) is a Cayley
QIG then

|Γ| ∈ {5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 25, 32, 36, 40, 48, 50, 60, 64, 72, 80,

96, 100, 120, 144},

but they did not establish whether Cayley QIGs of these orders exist. We find that the
precise set of orders of Cayley QIGs on Abelian groups is {5, 6, 8, 9, 10, 12, 16, 18, 24, 36}.
More generally, we consider all groups and find that many Cayley QIGs are on non-Abelian
groups. Thus, we show that for any group Γ, if Cay(Γ, S) is a Cayley QIG then

|Γ| ∈ {5, 6, 8, 9, 10, 12, 16, 18, 20, 24, 30, 32, 36, 40, 48, 60, 72, 120}.

Furthermore, for each of these orders Cayley QIGs exist.
For a given Cayley graphG, there may exist many different pairs (Γ, S) of groups Γ and

connection sets S such thatG ∼= Cay(Γ, S). We call isomorphic Cayley graphs on the same
group Γ equivalent if their connection sets are from the same orbit of the automorphism
group of Γ (see for example [13]):

Definition 1.1. Let Γ be a group and Aut(Γ) be the automorphism group of Γ. If Cayley
graph Cay(Γ, S) ∼= Cay(Γ, T ) and Sσ = T for some σ ∈ Aut(Γ) then Cay(Γ, S) and
Cay(Γ, T ) are equivalent.

Any other connection sets give non-equivalent Cayley Graphs. Cayley graphs from
different groups are non-equivalent. There are, up to isomorphism, only 32 connected
quartic integral Cayley graphs; but each graph is realized in up to 18 non-equivalent ways.
Of the 32 graphs, 17 are bipartite.

A graph is arc-transitive if its automorphism group acts transitively on the ordered
pairs of adjacent vertices. There are, up to isomorphism, only 27 connected quartic integral
graphs that are arc-transitive. Of the 27 graphs, 16 are bipartite, 5 of which are not Cayley
graphs.

In Section 2 we find that most of the feasible spectra from [25] cannot be realized by
vertex-transitive QIGs. Section 3 summarises the algorithm used for finding all of the
bipartite Cayley QIGs. Section 4 gives our main results. It includes tables giving the
details of the Cayley QIGs and the bipartite arc-transitive QIGs, some drawings, and some
non-bipartite QIGs that result from finding quotients of our bipartite graphs.

2 Vertex-transitive quartic integral graphs
A graph is vertex-transitive if its automorphism group acts transitively on its vertices. In
this section, our aim is to compile a set Ξ that includes all possible spectra that might be



384 Ars Math. Contemp. 8 (2015) 381–408

realized by a vertex-transitive QIG, but is otherwise as small as we can make it. Initially we
take Ξ to be all possible spectra from [25], and candidates will be progressively removed
from the set as we work through this section.

We will need some notation for (unlabelled) subgraphs. We let Ci denote the i-cycle,
Ci1·i2···ih denote ij-cycles sharing a single vertex for j = 1, . . . , h, Ci1−i2 an i1-cycle
joined to an i2-cycle by an edge, and Θi1,i2,...,ih two vertices joined by internally disjoint
paths of lengths ij for j = 1, . . . , h. Examples of this notation for subgraphs appear in
Figure 1.

(a) C4·3·3 (b) C4−3 (c)
Θ2,2,1

Figure 1: Subgraph notation

If at any point we encounter subgraphs that cannot be described by our notation, we
draw a picture of the subgraph like those in Figure 1. For any graph H , let [H] denote
the number of subgraphs of G that are isomorphic to H , where the parent graph G will be
implicitly specified by the context.

In [7], Equations (2.1) and (2.2) are used to determine [C4] and [C6] for a given
[x, y, z, w].

2(44 + 34x+ 24y + z) = 28n+ 8[C4], (2.1)

2(46 + 36x+ 26y + z) = 232n+ 144[C4] + 12[C6]. (2.2)

In [16], these equations were extended to higher spectral moments of general regular
graphs. By specialising to 4-regular bipartite graphs, we obtain the following equations:

2(48 + 38x+ 28y + z) = 2092n+ 2024[C4] + 288[C6] + 16[C8] + 32[C4·4]

+ 96[Θ2,2,2,2] + 48[Θ2,2,2] + 16[Θ3,3,1],

2(410 + 310x+ 210y + z) = 19864n+ 26160[C4] + 4860[C6] + 480[C8] + 20[C10]

+ 960[C4·4] + 40[C4−4] + 40[C6·4] + 1440[Θ2,2,2]

+ 520[Θ3,3,1] + 2880[Θ2,2,2,2] + 40[Θ4,2,2] + 20[Θ5,3,1]

+ 120[Θ3,3,3,1] + 120[Θ4,2,2,2] + 120[ ] + 80[ ].

(2.3)
The girth of a graph is the length of the shortest cycle contained in the graph. We use

Equations (2.3) to determine the girth where [C4] = [C6] = 0 for a given [x, y, z, w] and
also to determine the values for [C8] and [C10] where possible. Vertex-transitive graphs
have the same number of i-cycles incident with each vertex, so the number of vertices
divides i[Ci]. We apply this observation for i ∈ {4, 6, 8, 10} to the possible spectra for
which the value of [Ci] can be deduced. We eliminate those quadruples that cannot be
realized by a vertex-transitive QIG from Ξ.
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For example, if we consider [5, 6, 11, 1] with n = 48, [C4] = 24, and [C6] = 140 then

4[C4]

n
=

4(24)

48
= 2 ∈ N but

6[C6]

n
=

6(140)

48
=

35

2
/∈ N,

where N denotes the set of non-negative integers. Thus [5, 6, 11, 1] is eliminated from Ξ. In
contrast, for [12, 12, 20, 3] with n = 96, [C4] = 24, [C6] = 128, and [C8] = 528. We are
able to find [C8] from (2.3) by deducing that [C4·4] = [Θ2,2,2,2] = [Θ2,2,2] = [Θ3,3,1] = 0
because there is only one 4-cycle incident with each vertex. In fact,

4[C4]

n
=

4(24)

96
= 1 ∈ N,

6[C6]

n
=

6(128)

96
= 8 ∈ N, and

8[C8]

n
=

8(528)

96
= 44 ∈ N.

In this case, [C10] cannot be determined from (2.3), so we consider it unknown. Thus
[12, 12, 20, 3] remains in Ξ.

It is also plausible to eliminate quadruples from Ξ using arguments specific to particular
cases. We give one example to demonstrate the possibility. Consider [24, 4, 40, 3] with
[C4] = 72 and [C6] = 0. There are 4(72)/144 = 2 copies of C4 incident at each vertex.
Since [C6] = 0, we know [Θ3,3,1] = 0. Also, with only two 4-cycles at each vertex,
[Θ2,2,2,2] = [Θ2,2,2] = 0. Since two 4-cycles meet at exactly one vertex of a C4·4, [C4·4] =
144. From Equation (2.3) we get that,

2(48 + 38(24) + 28(4) + 40) = 2092(144) + 2024(72) + 16[C8] + 32(144),

which gives the contradiction [C8] = −216. Thus we remove [24, 4, 40, 3] from Ξ. This
entry is underlined in Table 1.

We eliminate two quadruples from Ξ using the following Lemma [5, Prop. 16.6]:

Lemma 2.1. Let G be a vertex-transitive graph which has degree r and an even number of
vertices. If λ is a simple eigenvalue ofG, then λ is one of the integers 2α−r for 0 6 α 6 r.

The orders associated with the eliminated quadruples are 36 and 72. Both entries have
1 as a simple eigenvalue. These entries are underlined and highlighted in bold in Table 1.

Using the above methods, we reduced the set Ξ from the initial 828 possible spectra to
59 quadruples in the final version. Henceforth Ξ will refer to this final set of 59 quadruples
(see Appendix A).
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n Girth

8 4

10 4

12 4,4

14 q1

16 4,q1

18 4,q1

20 4,q3

24 4,4,4,q3

28 q8

30 4,4,6,q6

32 6,q8

n Girth

36 4,4,4,q7

40 4,q10

42 4,q14

48 4,q12,h2

56 q16,h2

60 4,4,4,4,6,q15

70 6,q23

72 4,4,4,4,6,q18

80 q22,h2

84 q23,h7

90 4,4,6,6,q27

n Girth

96 4,q27,h3

112 q34,h2

120 4,4,4,6,6,q28

126 4,6,q38,h1

140 q40,h2

144 4,4,6,q31,h1

160 q33,h2

168 6,q35,h2

180 4,6,6,6,q38

210 6,q35,h2

224 q32,h3

n Girth

240 6,8,q30,h2

252 q28,h3

280 8,q23,h2

288 6,q21,h1

336 q14,h2

360 6,6,8,q11

420 8,q5,h1

480 8,q2

504 h1

560 10

Table 1: Finding the set Ξ

Table 1 summarizes the process of finding Ξ. For every order, we consider each
[x, y, z, w] and check whether we get integer counts at each vertex for each Ci where [Ci]
is known and i ∈ {4, 6, 8, 10}. A ‘qj’ in the table denotes that for the given n there were
j possible spectra eliminated because 4[C4]/n /∈ N. An ‘hj’ in the table denotes that for
the given n there were j possible spectra which satisfied 4[C4]/n ∈ N that were eliminated
because 6[C6]/n /∈ N. If i[Ci]/n ∈ N for all i where [Ci] is known for a possible spectra,
then the girth is recorded. Thus an entry of 4,4,6,q6 indicates that there are three possi-
ble spectra in Ξ associated with that order. If those quadruples are all realized by graphs
(where a graph in this case may actually be a set of cospectral graphs) then two graphs will
have girth 4 and the other will have girth 6. It also indicates that 6 possible spectra with
4[C4]/n ∈ N were eliminated because 6[C6]/n /∈ N.

3 The algorithm
In this section we outline our method for finding bipartite Cayley QIGs, using the set Ξ
compiled in Section 2.

Define Ω to be the set of orders associated with the spectra in Ξ. Cayley graphs are
vertex-transitive, so we only consider groups Γ of order n ∈ Ω. To reduce the number of
groups to be considered, we use a result similar to one in [18]. Let Γ′ denote the commu-
tator subgroup of a group Γ.

Lemma 3.1. Let Γ be a finite group and let Cay(Γ, S) be a connected Cayley graph of
degree at most 4. Then Γ/Γ′ is isomorphic to one of Z2 × Z2 × Z2 × Z2; Z2 × Z2 × Za
with a > 2; Za × Zb with a, b > 2; or Za with a > 1.

Proof. Since Cay(Γ, S) is connected and has degree at most 4, Γ is generated by an
inverse-closed set of at most 4 elements. This must also be true of the quotient group
Γ/Γ′. Now since Γ/Γ′ is Abelian, the result follows.
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By Lemma 3.1, we need only consider groups Γ with Γ/Γ′ isomorphic to one of Z2 ×
Z2×Z2×Z2, Z2×Z2×Za, Za×Zb, or Za. We denote the set of groups that satisfy this
property by Φ.

To construct connected simple undirected 4-regular Cayley graphs Cay(Γ, S), we con-
sidered inverse-closed sets S of four non-identity elements of Γ that generate Γ. The search
was pruned by placing additional restrictions on S. Let g denote the girth of the graph
Cay(Γ, S).

• Since Cay(Γ, S) is bipartite, the order of s is even for each s ∈ S.

• If s1, s2 ∈ S and s1 6= s−12 , then the order of s1s2 is at least g/2 (in particular
non-involutions have order no smaller than the girth).

• For any set of connection sets that result in equivalent Cayley graphs (in the sense of
Definition 1.1), only one representative is chosen.

We note that the minimum girth possible for Cay(Γ, S) is given by Table 1.
We summarize the results of our computations in Table 2. The values for n ∈ Ω appear

as the first column and in the second column the number of groups of order n is given.
(We reiterate that Ω does not include orders eliminated by the vertex-transitive tests of
Section 2). The number of groups in Φ of order n are listed in column three. Column 4
contains the number of connection sets S among the groups counted by column 3, subject
to the restrictions on S given above. The graphs Cay(Γ, S) that are bipartite are counted in
column 5. The number of isomorphism classes of these graphs appears in column 6. The
number of isomorphism classes of integral graphs is recorded in column 7. The last column
gives the number of isomorphism classes of arc-transitive integral graphs. A ‘-’ indicates
that there are no integral graphs to consider.

n #Groups #Γ ∈ Φ #Sets #Bipartite #Isomorphism #Integral #Arc-

Γ S Cay(Γ, S) Classes Transitive

8 5 5 13 7 1 1 1

10 2 2 2 2 1 1 1

12 5 5 19 11 3 2 1

16 14 14 66 44 5 1 1

18 5 5 12 12 5 1 1

20 5 5 34 20 8 0 -

24 15 15 151 98 23 3 1

30 4 4 31 31 17 1 1

32 51 48 58 51 16 1 1

36 14 14 149 105 48 1 1

40 14 14 201 146 54 1 0

42 6 6 55 55 36 0 -

48 52 51 840 616 177 1 0

60 13 13 385 281 161 0 -

70 4 4 96 96 73 0 -

72 50 49 1014 765 338 2 1
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90 10 10 236 236 175 0 -

96 231 218 4434 3545 1292 0 -

120 47 47 2833 1968 1123 1 1

126 16 16 427 427 346 0 -

144 197 190 6563 5350 2722 0 -

168 57 57 2388 2212 1601 0 -

180 37 37 2927 2497 1883 0 -

210 12 12 1172 1172 1017 0 -

240 208 205 10884 9885 6791 0 -

280 40 40 4080 3929 3223 0 -

288 1045 968 26391 24815 15695 0 -

360 162 160 15928 14703 11524 0 -

420 41 41 10558 10204 9271 0 -

480 1213 1148 68179 63804 48322 0 -

560 180 177 21764 21433 18704 0 -

Table 2: Results at each algorithm step

4 Quartic integral graphs
In this section we present the graphs that our computations discovered, starting with the
bipartite Cayley case.

4.1 Bipartite Cayley integral graphs

As a result of the computation described in Section 3, we have:

Theorem 4.1. There are precisely 17 isomorphism classes of connected 4-regular bipartite
integral Cayley graphs, as detailed in Table 3.

For each bipartite Cayley QIG in Table 3 we give n and the spectrum [x, y, z, w].
Graphs appearing in the paper by Cvetković et al. [7] are labelled In,index as in that
paper. If the graph is in the census of Potočnik et al. [17, 18] then we give the index in
their notation: AT4Val[n][index]. In two columns, we give the groups and connection sets
that give rise to each Cayley graph. The first column contains the group, Γ, with a presen-
tation of that group. We stick as close as possible to the convention of using generators in
{a, b, c, d, e} for cyclic groups, {s, t, u, v} for symmetric or alternating groups, and {r, f}
for the quaternion group, the dihedral group, or the quasidihedral group. The last column
contains the number of involutions in the connection set, S, followed by the connection set
itself in terms of the generators from the previous column.
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Group Connection Sets
(#involutions S)

G1 : n = 8 [0,0,0,3] I8,1 AT4Val[8][1]

Z8

< a | a8 >
0 {a, a3, a5, a7}

Z4 × Z2

< a | a4 > × < b | b2 >
2 {a, b, a3, a2b}
0 {a, ab, a3, a3b}

D8

< r, f | r4, f2, (rf)2 >
4 {f, fr, fr2, rf}
2 {f, r, fr2, frf}

Q8

< r, f | r4, f4, r2f2, rfrf−1 >
0 {r, f, r3, r2f}

Z2 × Z2 × Z2

< a | a2 > × < b | b2 > × < c | c2 >
4 {a, b, c, abc}

G2 : n = 10 [0,0,4,0] I10,1 AT4Val[10][2]

D10

< r, f | r4, f2, (rf)2 >
4 {f, fr, fr2, r2f}

Z10

< a | a10 >
0 {a, a3, a7, a9}

G3 : n = 12 [0,2,0,3] I12,4 AT4Val[12][2]

Z3 o Z4

< a, b | a3, b4, abab−1 >
0 {b, b3, ba, b3a}

Z12

< a | a12 >
0 {a, a5, a7, a11}

D12

< r, f | r6, f2, (rf)2 >
2 {r2f, f, r5, r}
4 {r4f, rf, r2f, r5f}

Z6 × Z2

< a | a6 > × < b | b2 >
0 {a5, a2b, a, a4b}

G4 : n = 12 [0,1,4,0] I12,2

D12

< r, f | r6, f2, (rf)2 >
2 {rf, r3, r, r5}
4 {rf, r3, r5f, r3f}
4 {rf, r4f, r5f, r3f}

Z6 × Z2

< a | a6 > × < b | b2 >
2 {a3, b, a5, a}
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G5 : n = 16 [0,4,0,3] I16,1 AT4Val[16][1]

Z4 × Z4

< a | a4 > × < b | b4 >
0 {a, b, a3, b3}

(Z4 × Z2) o Z2

< a, b, c | a4, b2, c2, aba−1b−1, (aac)2, (bc)2, baca−1c >
2 {ac, a2bc, a3bc, a2c}
2 {bc, a3b, a2c, ab}
0 {a, a3c, a3, abc}

Z4 o Z4

< a, b | a4, b4, aba−1b >
0 {a, a3ba, a3, b}

Z8 o Z2

< a, b | a8, b2, aba3b >
0 {a, ab, a3b, a7}

QD16

< r, f | r8, f2, rfr5f >
2 {r, r4f, r6f, r7}

Z4 × Z2 × Z2

< a | a4 > × < b | b2 > × < c | c2 >
2 {a, b, c, a3}

Z2 ×D8

< a | a2 > × < r, f | r4, f2, (rf)2 >
4 {a, f, r3f, r2f}
4 {f, r3f, af, rf}
4 {f, r3f, af, arf}
2 {a, r, f, r3}
2 {a, r, af, r3}

Z2 × Z2 × Z2 × Z2

< a | a2 > × < b | b2 > × < c | c2 > × < d | d2 >
4 {a, b, c, d}

G6 : n = 18 [0,4,4,0] I18,1 AT4Val[18][2]

Z3 × S3

< a | a3 > × < s, t | s2, t3, (st)2 >
2 {s, st, ats, a2ts}
0 {sa, sa2, sat, sa2t}

(Z3 × Z3) o Z2

< a, b, c | a3, b3, c2, aba−1b−1, (ac)2, (bc)2 >
4 {c, ca, cb, cab}

Z6 × Z3

< a | a6 > × < b | b3 >
0 {a, a5, a3b, a3b2}

G7 : n = 24 [0,8,0,3] I24,2 AT4Val[24][1]

Z4 × S3

< a | a4 > × < s, t | s2, t3, (st)2 >
2 {s, st, at, a3sts}

(Z6 × Z2) o Z2

< a, b, c | a6, b2, c2, aba−1b−1, (aac)2, a3(cb)2 >
2 {a3c, a2c, ab, a5b}

Z3 ×D8

< a | a3 > × < r, f | r4, f2, (rf)2 >
0 {ar3f, a2r3f, ar3, a2r}

S4

< s, t | s2, t3, (st)4 >
4 {st2sts, t2st, stst2s, tst2}
0 {ts, st2, ststs, tst}
2 {st2sts, tst2, ts, st2}
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Z2 ×A4

< a | a2 > × < s, t | s2, t3, (st)3 >
0 {ast, astst, asts, atst}

Z2 × Z2 × S3

< a | a2 > × < b | b2 > × < s, t | s2, t3, (st)2 >
4 {s, bs, st, ast}

G8 : n = 24 [2,2,6,1] I24,3

Z4 × S3

< a | a4 > × < s, t | s2, t3, (st)2 >
2 {a, a3, s, st}
2 {s, st, ats, a3ts}

D24

< r, f | r12, f2, (rf)2 >
4 {f, rf, r5f, r6f}
2 {f, r3, r9, r8f}

Z2 × (Z3 o Z4)
< a | a2 > × < b, c | b3, c4, bcbc−1 >

0 {c, c3, ab, ac3bc}

(Z6 × Z2) o Z2

< a, b, c | a3, b2, c2, aba−1b−1, (ac)2, (bc)4 >
4 {c, b, ca, cbc}
2 {c, bcb, ba, bcac}
2 {c, ca, cbcac, bac}
0 {cb, bc, ba, bcac}

Z12 × Z2

< a | a12 > × < b | b2 >
0 {a3, a9, a4b, a8b}

Z3 ×D8

< a | a3 > × < r, f | r4, f2, (rf)2 >
2 {r3f, rf, a2f, af}
0 {r, r3, ar3f, a2r3f}

Z2 × Z2 × S3

< a | a2 > × < b | b2 > × < s, t | s2, t3, (st)2 >
4 {s, b, a, st}
4 {s, b, st, ats}
4 {s, sb, ast, ats}
2 {s, b, at, asts}
2 {s, sb, at, asts}

Z6 × Z2 × Z2

< a | a6 > × < b | b2 > × < c | c2 >
2 {a3, b, a2c, a4c}

G9 : n = 24 [3,0,5,3] I24,4

S4

< s, t | s2, t3, (st)4 >
4 {s, t2st, st2sts, stst2st}

Z2 ×A4

< a | a2 > × < s, t | s2, t3, (st)3 >
2 {a, as, at2s, ast}

G10 : n = 30 [0,10,4,0] I30,1 AT4Val[30][4]

Z5 × S3

< a | a5 > × < s, t | s2, t3, (st)2 >
0 {as, a2st, a4s, a3st}

D30

< r, f | r15, f2, (rf)2 >
4 {f, r2f, r3f, r11f}
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G11 : n = 32 [0,12,0,3] I32,1 AT4Val[32][4]

Z8 o Z4

< a, b | a8, b4, ab2a−1b2, aba3b−1 >
0 {a, a7, ab, a3b3}

(Z8 o Z2) o Z2

< a, b, c | a8, b2, c2, a2ba6b, (aac)2, (bc)2, ba−1cac >
2 {a4c, a2c, a7bc, a5c}

Z2.((Z4 × Z2) o Z2) = (Z2 × Z2).(Z4 × Z2)
< a, b | a8, b4, ab2a−1b2, a4b2, aba−1b−1ab−1a−1b, aba6ba >

0 {ba, a3b, a3, a5}

(Z4 × Z4) o Z2

< a, b, c | a4, b4, c2, aba−1b−1, aca3c, (bbc)2(bc)4, a3(bc)2 >
2 {ab2c, c, bc, a3bc}

Z4.D8 = Z4.(Z4 × Z2)
< a, b | a8, b8, aba3b, ab−1a3b−1, ab−1a−1b3 >

0 {a, a7, a7ba, a4b}

(Z4 × Z4) o Z2

< a, b, c | a4, b4, c2, aba−1b−1, (ac)2, (bc)2 >
4 {c, cb, ca, abc}

(Z8 × Z2) o Z2

< a, b, c | a8, b2, c2, aba−1b, aca−1c, a4bcbc, (bc)4 >
2 {b, c, abc, a3bc}

Z2 ×QD16

< a | a2 > × < r, f | r8, f2, rfr5f >
2 {ar, r3, r5, r2f}

(Z8 × Z2) o Z2

< a, b, c | a8, b2, c2, aba−1b−1, (ac)2, a4(bc)2 >
4 {a7c, a2c, ac, a4b}

(Z2 ×D8) o Z2

< a, r, f, b | a2, r4, f2, b2, aba−1b−1, r(fa)2, r2(bf)2 >
4 {r2f, ar2, rf, rab}

(Z2 ×Q8) o Z2

< a, r, f, b | a2, r4, f4, b2, ara−1r−1, afa−1f−1, r2f2, rfrf−1,
(rrb)2, r2(ab)2, brbr−1f >

2 {r2b, a, ar3fb, ar3b}

(Z2 ×Q8) o Z2

< a, r, f, b | a2, r4, f4, b2, ara−1r−1, afa−1f−1, r2f2, rfrf−1,
(rb)2, fbf−1b−1, arbar−1b >

4 {b, a, br, brf}

G12 : n = 36 [4,4,4,5] I36,3 AT4Val[36][3]

Z3 × (Z3 o Z4)
< a | a3 > × < b, c | b3, c4, bcbc−1 >

0 {ac, a2c3, a2cb, ac3b}

(Z3 × Z3) o Z4

< a, b, c | a3, b3, c4, aba−1b−1, (acc)2, acac−1b−1 >
0 {a2b2c3, b2c, a2bc3, ac}

S3 × S3

< s, t | s2, t3, (st)2 > × < u, v | u2, v3, (uv)2 >
4 {u, s, uv, st}
4 {u, uv, svu, stvu}
2 {su, stu, tsv, tsuvu}
0 {tu, stsu, sv, suvu}
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Z6 × S3

< a | a6 > × < s, t | s2, t3, (st)2 >
2 {a, a5, a3s, a3st}
2 {a3s, a3st, a2ts, a4ts}
0 {as, a3t, a5s, a3sts}

Z2 × ((Z3 × Z3) o Z2)
< a | a2 > × < b, c, d | b3, c3, d2, bcb−1c−1, (bd)2, (cd)2 >

4 {d, dc, adb, adcdbd}
2 {d, dc, ab, adbd}

Z6 × Z6

< a | a6 > × < b | b6 >
0 {a, a5, b, b5}

G13 : n = 40 [4,6,4,5]

Z2 × (Z5 o Z4)
< a | a2 > × < b, c | b5, c4, cbc−1b2, cb2c−1b−1 >

2 {ac2, ac2b, c, c3}

G14 : n = 48 [6,4,10,3] I48,1

Z2 × Z4 × S3

< a | a2 > × < b | b4 > × < s, t | s2, t3, (st)2 >
2 {s, a, bt, b3sts}

D8 × S3

< r, f | r4, f2, (rf)2 > × < s, t | s2, t3, (st)2 >
4 {s, rfs, fts, r2fst}
4 {rf, rfs, fts, r2fst}
2 {s, rfs, r3t, rsts}
2 {rf, rfs, r3t, rsts}

Z2 × ((Z6 × Z2) o Z2)
< a | a2 > × < b, c, d |
b6, c2, d2, bcb−1c−1, (bbd)2, b3(dc)2 >

4 {a, c, b4d, b3d}

Z6 ×D8

< a | a6 > × < r, f | r4, f2, (rf)2 >
2 {a3, a3r3f, ar, a5r3}

Z2 × S4

< a | a2 > × < s, t | s2, t3, (st)4 >
4 {a, s, stst2s, st2sts}
4 {as, at2st, atst2, stst2st}
2 {s, astst2, atst2s, atst2st}

Z2 × Z2 ×A4

< a | a2 > × < b | b2 > × < s, t | s2, t3, (st)3 >
2 {a, abtst2, abtst, abt2st2}

Z2 × Z2 × Z2 × S3

< a | a2 > × < b | b2 > × < c | c2 > × < s, t |
s2, t3, (st)2 >

4 {s, b, cst, ats}

G15 : n = 72 [6,16,10,3] AT4Val[72][12]

Z3 × S4

< a | a3 > × < s, t | s2, t3, (st)4 >
0 {ast, a2tst, a2t2s, aststs}

(Z3 ×A4) o Z2

< a, s, t, b | a3, s2, t3, b2, asa−1s−1, ata−1t−1, stbsbt−1, (ab)2,
(tb)2, (st)3 >

4 {atb, ab, tsbt, tbs}

A4 × S3

< s, t | s2, t3, (st)3 > × < u, v | u2, v3, (uv)2 >
0 {tu, t2u, tsuv, st2uv}
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Z6 ×A4

< a | a6 > × < s, t | s2, t3, (st)3 >
0 {ast, a3t, a3t2, a5stst}

G16 : n = 72 [8,10,16,1]

(Z3 × (Z3 o Z4)) o Z2

< a, b, c, d | a3, b3, c4, d2, aba−1b−1, aca−1c−1, bdb−1d−1,
adad−1, bcbc−1, c2d2 >

2 {dc, dacb, ad, d2ad}

(Z6 × S3) o Z2

< a, b, c, d | a2, b4, c3, d3, (ab−1)2, acac−1, (ad)2, cbcb−1,
bdb−1d−1, cdc−1d−1 >

4 {a, ab2, abd, abacda}
2 {ab, abcd, cb, b2cb}

Z6 × (Z3 o Z4)
< a | a6 > × < b, c | b3, c4, bcbc−1 >

0 {ab2, a5b, a3b2c, a3b2c3}

Z3 × ((Z6 × Z2) o Z2)
< a | a3 > × < b, c, d |

b6, c2, d2, bcb−1c−1, (bbd)2, b3(dc)2 >

2 {b5d, b2d, a2b4c, ab2c}
0 {b2cd, b5cd, a2b4c, ab2c}

(S3 × S3) o Z2

< s, t, u, v, a | s2, t3, u2, v3, a2, tvt−1v−1, (uv)2, (av)2,
svst−1, asasu >

4 {a, sastsat, s, sast}
2 {sas, stsa, atsa, asat2}
2 {asa, atsat2, sastst, asastsat}
0 {sa, as, atsat, asastst2}

Z2 × ((Z3 × Z3) o Z4)
< a | a2 > × < b, c, d |

b3, c3, d4, bcb−1c−1, (bdd)2, bdbd−1c−1 >

2 {ad2, ab2c2d2, ab2d3, ab2cd}
0 {ab2cd, ab2d3, abc2, ab2c}

Z2 × S3 × S3

< a | a2 > × < s, t | s2, t3, (st)2 > × < u, v |
u2, v3, (uv)2 >

4 {u, s, auvst, atsvu}
4 {u, au, suv, stvu}
2 {u, s, atv, astsuvu}

Z2 × Z6 × S3

< a | a2 > × < b | b6 > × < s, t | s2, t3, (st)2 >
2 {ts, ab3ts, bsts, b5t}

G17 : n = 120 [12,28,4,15] AT4Val[120][4]

S5

< s, t | s2, t5, (st)4, (st2st3)2 >
0 {t2st3, tst2st2st, st2stst, tst4}
4 {t(st)2tst4, st2(st)2t, (t2s)2ts,

(st2)2st}

Z2 ×A5

< a | a2 > × < s, t | s2, t3, (st)5 >
2 {a(tst2s)2t, ast(ts)2, ast2(st)2,

a(st)3ts}

S3 × (Z5 o Z4)
< s, t | s2, t3, (st)2 > × < a, b |

a5, b4, ab−1a2b, a2b−1a−1b >

2 {sb2, stb2a, tb3, stsb}

Z5 × S4

< a | a5 > × < s, t | s2, t3, (st)4 >
0 {a2st, a3t2s, aststs, a4tst}
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(Z5 ×A4) o Z2

< a, s, t, b | a5, s2, t3, b2, asa−1s−1, ata−1t−1, bsbt−1st,
(st)3, (tb)2, (ab)2 >

4 {tba2, bta, btbsb, tabs}

Table 3: Bipartite Cayley QIGs

Drawings for all but the three largest bipartite Cayley QIGs appear below. With over
70 vertices, it is difficult to present G15, G16, and G17 clearly.

G1 G2 G3

G4 G5 G6

G7 G8 G9
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G10 G11 G12

G13 G14

Table 4: Drawings of quartic bipartite integral Cayley graphs G1 to G14

4.2 Bipartite arc-transitive integral graphs

We considered all arc-transitive 4-regular graphs from the census of Potočnik et al. [17, 18]
and tested them for integrality. The only arc-transitive bipartite QIGs that are not Cayley
and thus not accounted for in Table 3 are the five that appear in Table 5. We let [Γ :
H] = {Ha : a ∈ Γ} denote the set of right cosets of H ∈ Γ. A Schreier coset graph
Sch(Γ, H,HSH) for a group Γ, subgroup H 6 Γ, and connection set S ⊂ Γ is the graph
with vertex set [Γ : H] and with Ha connected to Hb if and only if ba−1 ∈ HSH . We
represent these 5 graphs as Schreier coset graphs. We give the order n and the spectrum
[x, y, z, w] followed by the graph index from [17, 18]. Graphs appearing in the paper by
Cvetković et al. are labelled with the notation of [7]: In,index. The first line consists of the
group Γ, with a presentation of that group. The second line consists of the subgroup H and
its generators in terms of the generators of Γ followed by the connection set S in terms of
the generators of Γ.

Group
Subgroup, Subset

F1 : n = 60 [4,16,4,5] I60,1 AT4Val[60][4]

Z2 × Z2 × S5 : < a | a2 > × < b | b2 > × < s, t | s2, t5, (st)4, (st2st3)2 >
D8 : < bstst2st−1, abstst >, {s, bt2, st, bt−2}
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F2 : n = 70 [6,14,14,0] I70,1 AT4Val[70][4]

Z2 × S7 : < a | a2 > × < s, t | s2, t7, (st)6, (st2st5)2, (stst−1)3 >
S3 × S4 : < t2st−2, t−2st−1(st)2t, t2(st)2(ts)3t−1, t(st)2(ts)3, stst−1s >,
{ast4, atstst−1, at, at−1}

F3 : n = 90 [9,16,19,0] I90,1 AT4Val[90][1]

Z2 × PΓL(2, 9) : < a | a2 > × < x, y, z |
x8, y3, z2, xzx5z, yzy−1z−1, xyxy−1x6yx6y−1,
(xyx2y)2, xyx−2y−1x4yx−1y−1 >

(Z2 ×D8) o Z2 : < yzxy−1x, x−1yxzx−1y, x2zy−1x−1y−1xy >,
{ayx−1y−1x, az, ayxy−1x,
axy−1x−1y}

F4 : n = 180 [22,28,34,5] AT4Val[180][12]

Z2×S3×S5 : < a | a2 > × < s, t | s2, t3, (st)2 > × < u, v | u2, v5, (uv)4, (uv2uv3)2 >
D8 : < v−2uv2, vuv2uv2, astuvuv2uv−1 >, {at−1v−2, atuv2, su, atv2}

F5 : n = 210 [27,28,49,0] AT4Val[210][10]

S7 : < s, t | s2, t7, (st)6, (st2st5)2, (stst−1)3 >
S4 : < tst3st3, tst−2st, (st)2t2st−1(st)2tst >, {t3s, st4, (st)3, (ts)3}

Table 5: Bipartite arc-transitive non-Cayley QIGs

The census [17, 18] of arc-transitive graphs contains all arc-transitive graphs with at
most 640 vertices. Thus, the upper bound of 560 given in [25] for the order of a bipar-
tite QIG, ensures that Table 3 and Table 5 contain all bipartite arc-transitive QIGs. The
non-bipartite arc-transitive QIGs will be given in Sections 4.4 and 4.5. However, first we
describe our method for finding all Cayley QIGs.

4.3 Integral graphs as quotients

Let V (G) denote the vertices of a graphG, andE(G) the unordered pairs of vertices which
are edges of G. A homomorphism from a graph G to a graph H is a map V (G) → V (H)
which preserves adjacency. Each homomorphism induces an edge map E(G)→ E(H). If
the vertex and edge maps of the homomorphism are both surjective then we say that H is a
quotient of G. In this section we find new integral graphs that are quotients of the integral
graphs found in Table 3 and Table 5. To specify a quotient of a graph G it suffices to know
G and the vertex map (the edges of the quotient are implied by the surjectivity of the edge
map).

We start by considering special classes of possible homomorphisms. A voltage assign-
ment α for a graph G is a function from the arcs of G to a group Γ such that α((u, v)) =
α((v, u))−1 for all {u, v} ∈ E(G). The derived graph Vol(G,Γ, α) is the graph with ver-
tex set the Cartesian product V (G)× Γ with (u, x) connected to (v, y) whenever {u, v} ∈
E(G) and y = x ∗ α((u, v)), where ∗ is the group operation of Γ. Projection onto the first
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coordinate, by definition, maps the derived graph of Vol(G,Γ, α) onto G, and this map is
a surjective homomorphism. Hence G is a quotient of the derived graph.

As an interesting example for quartic integral graphs, we found a voltage assignment α
for which the derived graph Vol(F1,Z3, α) is isomorphic to F4. Thus, F1 is a quotient of
F4.

Given two graphs G1, G2 with vertex sets V (G1), V (G2), let G1 × G2 be the graph
with vertex set the Cartesian product V (G1) × V (G2) with (u1, u2) adjacent to (w1, w2)
whenever both u1 is adjacent to w1 in G1 and u2 is adjacent to w2 in G2. The bipartite
double cover of G is the bipartite graph G × K2 where K2 denotes the complete graph
on two vertices. Equivalently, G ×K2 is the derived graph Vol(G,Z2, α), where α is the
constant function assigning 1 to every arc of G.

We give an example for quartic integral graphs that was also noted in [7]. An odd graph
Oi is the graph with one vertex for each of the (i−1)-element subsets of a (2i−1)-element
set and with edges joining disjoint subsets. The graph F2 is the bipartite double cover of
the integral graph O4.

Similar to the result by Schwenk [20] used in [24] and [25], we have that if G is a
QIG, then the bipartite double cover of G is a bipartite QIG. If G is a bipartite QIG then
the bipartite double cover consists of two disjoint copies of G. For this reason, we have
restricted our search to integral graphs that are bipartite up to this point. However, we
now want to find all graphs which have their bipartite double cover among the bipartite
graphs that we have discovered. This requires us to find quotients of our bipartite graphs.
Since it is computationally easy to do, we will actually consider a more general class of
homomorphisms than what is required for the task just described. This will increase the
number of quartic integral graphs that we find. However, we make no effort to be exhaustive
in finding all possible quotients.

A graph automorphism is k-semiregular if all its orbits have the same size, k. Note
that if G = H × K2 then the natural homomorphism from G onto H maps orbits of a
2-semiregular automorphism of G to single vertices of H . With this as motivation, the
class of homomorphisms that we consider is the following. We identify any k-semiregular
automorphism, ϑ of a target graph G. Our homomorphism is to collapse each orbit of ϑ to
a single point.

We wrote a routine in Magma [21] to find such quotients of a target graph G, as fol-
lows. For one representative, ϑ, of each conjugacy class of (nontrivial) semiregular auto-
morphisms of G, we collapsed the orbits of ϑ to single vertices to obtain a quotient H . If
H was a 4-regular graph we checked to see if it was integral. If it was, then we printed it
out and called the routine recursively on H .

In some cases we were only interested in finding those H for which G is a bipartite
double cover. In such instances, it suffices to only consider 2-semiregular automorphisms
and we do not need to make recursive calls to the routine.

We applied our Magma routine to all target graphs Gi for i ∈ 1, . . . , 17 and to most
of the arc-transitive graphs from the census of Potočnik et al. [17, 18]. There are graphs
in the census with extremely large automorphism groups, and they were impractical for
our simple routine. So we decided to only include target graphs from the census if their
automorphism group had order no more than 220. The results of our Magma routine will
be given in the following subsections.
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4.4 Non-bipartite Cayley integral graphs

In this section we report all quartic Cayley integral graphs that are not bipartite. We rely on
this Lemma:

Lemma 4.2. If G is a 4-regular Cayley graph then G ×K2, the bipartite double cover of
G, is isomorphic to a 4-regular Cayley graph.

Proof. If G = Cay(Γ, S) then we define G′ = Cay(Γ× Z2, {(s, 1) : s ∈ S}). This graph
G′ is an undirected Cayley graph. It is not hard to verify that G′ is isomorphic to G×K2

which gives the desired result.

Hence we can find all the graphs we seek by applying the Magma routine of Section 4.3
to our graphs Gi where i = 1, . . . , 17. We use the following result by Sabidussi [19] to
decide which of the graphs that we find are Cayley graphs:

Lemma 4.3. A graph G is a Cayley graph if and only if Aut(G) contains a regular sub-
group.

Initial Graph #Non-bipartite #Cayley #Vertex-transitive #Arc-transitive

G1 0 0 0 0

G2 1 1 1 1

G3 1 1 1 1

G4 0 0 0 0

G5 1 1 1 0

G6 2 1 1 1

G7 2 1 1 1

G8 4 2 2 0

G9 0 0 0 0

G10 1 0 1 1

G11 0 0 0 0

G12 2 1 1 0

G13 1 1 1 0

G14 2 2 2 0

G15 5 1 1 1

G16 13 2 2 0

G17 2 1 1 0

Table 6: Non-bipartite graphs found for Gi

Table 6 summarizes our results using the Magma routine of Section 4.3 when restricted
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to the 2-semiregular automorphisms for each givenGi. We give the number of non-bipartite
graphs found, followed by the numbers of those that are Cayley, vertex-transitive, and arc-
transitive.

The non-bipartite graphs counted in column 2 up to row 8 of Table 6 were previously
found by Stevanović et al. [25]. All graphs counted by column 2 from rows 9 to 17 were
previously unknown with the exception of the graph with bipartite double cover G10 and
one of the two graphs with bipartite double cover G14. In Table 7, we expand upon the
counts of non-bipartite Cayley graphs in column three of Table 6 by producing a break-
down of the groups and the connection sets of the underlying graphs. We follow the same
conventions as in Table 3 except that we use different notation for the spectrum, since there
is no longer symmetry about the origin.

Group Connection Sets
(#involutions S)

H1 : n = 5 − 14,41 I5,1 AT4Val[5][1]

Z5

< a | a5 >
0 {a3, a2, a4, a}

H2 : n = 6 − 22,03,41 I6,1 AT4Val[6][1]

S3

< s, t | s2, t3, (st)2 >
2 {st, t, t2, s}

Z6

< a | a6 >
0 {a5, a2, a, a4}

H3 : n = 8 − 23,03,21,41 I8,2

Z4 × Z2

< a | a4 > × < b | b2 >
2 {a, a2, a3, b}

D8

< r, f | r4, f2, (rf)2 >
2 {r, r2, r3, fr2}
4 {f, r2, rf, fr}

Z2 × Z2 × Z2

< a | a2 > × < b | b2 > × < c | c2 >
4 {b, a, abc, ac}

H4 : n = 9 − 24,14,41 I9,2 AT4Val[9][1]

Z3 × Z3

< a | a3 > × < b | b3 >
0 {a2b, ab2, a2, a}

H5 : n = 12 − 25,03,23,41 I12,7 AT4Val[12][1]

A4

< s, t | s2, t3, (st)3 >
0 {t2s, ts, st2, st}
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H6 : n = 12 − 32,−14,01,12,22,41 I12,5

Z3 o Z4

< a, b | a3, b4, abab−1, ab2a2b2 >
0 {a, ba2, b3a2, a2}

Z12

< a | a12 >
0 {a3, a4, a8, a9}

D12

< r, f | r6, f2, (rf)2 >
2 {r4, fr4, r2, fr}
2 {r3, f, r4, r2}

Z6 × Z2

< a | a6 > × < b | b2 >
2 {a2, b, a3, a4}

H7 : n = 12 − 32,−22,01,16,41 I12,1

Z3 o Z4

< a, b | a3, b4, abab−1, ab2a2b2 >
0 {b3, b, b2a, b2a2}

Z12

< a | a12 >
0 {a3, a10, a2, a9}

D12

< r, f | r6, f2, (rf)2 >
2 {f, fr3, r, r5}
4 {r3, f, fr, fr5}

Z6 × Z2

< a | a6 > × < b | b2 >
2 {a3b, a3, a2b, a4b}

H8 : n = 18 − 32,−24,05,14,32,41 I18,4

Z3 × S3

< a | a3 > × < s, t | s2, t3, (st)2 >
2 {a, s, a2, st2}
0 {t, t2, sat2, sa2t2}

(Z3 × Z3) o Z2

< a, b, c | a3, b3, c2, cac−1a−2, bc−1b−2c, aba−1b−1 >
2 {a, c, a2, cb2}

Z6 × Z3

< a | a6 > × < b | b3 >
0 {a2b, a5b2, ab, a4b2}

H9 : n = 20 − 26,−14,05,34,41

Z5 o Z4

< a, b | a5, b4, ab3a3b, ab2ab2 >
2 {a2b2, ab2, a2b, a4b3}

H10 : n = 24 − 33,−23,−15,03,15,21,33,41 I24,5

S4

< s, t | s2, t3, (st)4 >
2 {s, st2st, (tst)2, t(ts)2}

Z2 ×A4

< a | a2 > × < s, t | s2, t3, (st)3 >
2 {s, st2, a, ts}
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H11 : n = 24 − 34,−23,−12,03,18,21,32,41

Z4 × S3

< a | a4 > × < s, t | s2, t3, (st)2 >
2 {a3t, at2, sa2, a2}

(Z6 × Z2) o Z2

< a, b, c | a6, b2, c2, aba−1b−1, (a3c)2b, cbc−1b−1, a2ca2c >
4 {ca2, cb, b, a3}

Z3 ×D8

< a | a3 > × < r, f | r4, f2, (rf)2 >
2 {f, r2, ar, a2r−1}

Z2 × Z2 × S3

< a | a2 > × < b | b2 > × < s, t | s2, t3, (st)2 >
4 {sabt, sbt2, ab, sa}

H12 : n = 36 − 213,−16,03,14,23,36,41 AT4Val[36][6]

Z3 ×A4

< a | a3 > × < s, t | s2, t3, (st)3 >
0 {ta, tst, t2a2, t2st2}

H13 : n = 36 − 34,−210,01,116,34,41

Z3 × (Z3 o Z4)
< a, b, c | a3, b3, c4, aba−1b−1, aca−1c−1, bc−1b−2c >

0 {ac2b, cb2, a2c2b2, c3b2}

(Z3 × Z3) o Z4

< a, b, c | a3, b3, c4, aba−1b−1, ac−1a−1bc, ac2ac2, acbc−1b, c2bc2b >
2 {a2bc3, a2c, ac2, ab2c2}

S3 × S3

< s, t | s2, t3, (st)2 > × < u, v | u2, v3, (uv)2 >
4 {suvt, s, sut2, uv2}

Z6 × S3

< a | a6 > × < s, t | s2, t3, (st)2 >
2 {a5t2, at, sa3t, st}

H14 : n = 36 − 34,−24,−112,01,14,26,34,41

Z3 × (Z3 o Z4)
< a, b, c | a3, b3, c4, aba−1b−1, aca−1c−1, bc−1b−2c >

0 {c3b, cb, a2b, ab2}

(Z3 × Z3) o Z4

< a, b, c | a3, b3, c4, aba−1b−1, ac−1a−1bc, ac2ac2, acbc−1b, c2bc2b >
0 {a2bc3, a2c, b2, b}

S3 × S3

< s, t | s2, t3, (st)2 > × < u, v | u2, v3, (uv)2 >
2 {v2t, s, uv, vt2}

Z6 × S3

< a | a6 > × < s, t | s2, t3, (st)2 >
2 {a2t, sa3t, a4t2, st}

H15 : n = 60 − 34,−217,−14,015,211,38,41

A5

< s, t | s2, t3, (st)5 >
2 {st2(st)2, tst2(st)2t,

(st)3ts, ((st)2t)2st}

Table 7: Non-bipartite Cayley QIGs
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Thus, by Theorem 4.1 and Lemma 4.2 we have that {Gi : 1 6 i 6 17} ∪ {Hj : 1 6
j 6 15} is the complete set of Cayley QIGs.

4.5 Non-bipartite arc-transitive integral graphs

In Section 4.2, we listed all bipartite arc-transitive QIGs from the census of Potočnik et
al. [17, 18]. When searching this census for integral graphs, we also found arc-transitive
QIGs that are not bipartite. There are 6 such graphs that are not Cayley and thus not already
accounted for in Table 7. By [25], the bipartite double cover of any QIG has order at most
560, so we can be sure that the census contains all the arc-transitive QIGs. In fact, the
following folklore result tells us more:

Lemma 4.4. The bipartite double cover of an arc-transitive graph is arc-transitive.

Proof. Let G be an arc-transitive graph. Then H = G × K2 has vertices (a, x) for all
a ∈ G and x ∈ Z2 and arcs ((a, x), (b, x + 1)) and ((b, x), (a, x + 1)) whenever a is
adjacent to b in G. It is not hard to show that the following maps are automorphisms of H:

• (a, x)→ (σ(a), x+ 1) for all a ∈ G and x ∈ Z2 where σ ∈ Aut(G).

• (a, x)→ (a, x+ 1) for all a ∈ G and x ∈ Z2.

Given these automorphisms, it is routine to check that H is arc-transitive.

This last result provides a useful cross-check of our results and of the Magma routine
from Section 4.3. It tells us that by applying the routine (restricted to 2-semiregular auto-
morphisms) to the bipartite arc-transitive QIGs from Tables 3 and 5, we should find all the
arc-transitive integral non-bipartite graphs. This list should tally with the list obtained by
directly screening the census for integral graphs, which is what happened in practice.

We now list the spectrum of the non-bipartite arc-transitive QIGs that are not Cayley
and whose bipartite double cover is one of the Gi for i = 1, . . . , 17 or Fi for i = 1, . . . , 5.
We denote these graphs by Ji for i = 1, . . . , 6. Graphs appearing in the paper by Cvetković
et al. are included using the notation of [7]: In,index. We give the graph index from the
census of Potočnik et al. [17, 18] in their notation: AT4Val[n][index].

• From G10, J1 ∼= I15,2 ∼= AT4Val[15][1] : [−25,−14, 25, 41],

• From F1, J2 ∼= AT4Val[30][2] : [−34,−25,−14, 05, 211, 41],
J3 ∼= I30,4 ∼= AT4Val[30][3] : [−211,−14, 05, 25, 34, 41],

• From F2, J4 ∼= I35,1 ∼= AT4Val[35][2] ∼= O4 : [−36,−114, 214, 41],

• From F3, J5 ∼= I45,1 ∼= AT4Val[45][1] : [−216,−19, 110, 39, 41],

• From F4, J6 ∼= AT4Val[90][8] : [−314,−27,−124, 05, 110, 221, 38, 41].

Of the arc-transitive non-bipartite non-Cayley graphs, only J2 and J6 were not previously
known to be integral. Thus, the arc-transitive QIGs from the census are as follows: G1,
G2, G3, G5, G6, G7, G10, G11, G12, G15, G17, F1, F2, F3, F4, F5, H1, H2, H4, H5, H12,
J1, J2, J3, J4, J5, and J6. We summarize these results by the following Lemma:

Lemma 4.5. There are exactly 27 quartic integral graphs that are arc-transitive; 16 of
which are bipartite.
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4.6 Other quartic integral graphs

Finally, we list the spectra of the remaining QIGs which we found using the Magma rou-
tine of Section 4.3 in its full generality. These are graphs that are neither Cayley nor
arc-transitive, but are quotients of the graphs Gi for i = 1, . . . , 17 and/or of the graphs
AT4Val[n][index] for n 6 640 with automorphism groups of order less than 220. We note
that many of these graphs were obtained from multiple starting graphs, but we only list
each graph once.

We list the spectrum of the bipartite QIGs first. We denote these graphs by Mi for
i = 1, . . . , 9 and follow the same conventions as in the list for Ji where i = 1, . . . , 6 except
that we use the quadruple form for the spectrum of a bipartite graph.

• From AT4Val[60][4] we have M1
∼= I30,3 : [1, 8, 3, 2],

• From G15
∼= AT4Val[72][12] we have M2

∼= I36,1 : [2, 8, 6, 1], M3
∼= I36,2 :

[3, 6, 5, 3],

• From G17
∼= AT4Val[120][4] we have M4 : [3, 4, 1, 6], M5 : [6, 12, 2, 9],

• From AT4Val[180][12] we have M6 : [9, 16, 19, 0], M7 : [10, 14, 18, 2],

• From AT4Val[216][12] we have M8 : [3, 5, 9, 0],

• From AT4Val[546][48] we have M9 : [5, 4, 7, 4].

We do not list graphs with at most 24 vertices since all bipartite QIGs on 24 or fewer ver-
tices are known [25]. The 6 graphs M4, . . . ,M9 were not previously known to be bipartite
QIGs. We find that M6 is co-spectral to F3, but 5 of the above spectra were not previously
known to be realized by any graph.

Next, we list the spectrum of the non-bipartite QIGs. We denote these graphs by Li
where i ∈ 1, . . . , 44.

• From AT4Val[30][3], L1
∼= I15,4 : [−25,−13, 02, 23, 31, 41].

• From G12
∼= AT4Val[36][3], L2 : [−33,−22,−11, 05, 13, 22, 31, 41].

• From AT4Val[36][6], L3
∼= I18,5 : [−27,−12, 01, 14, 21, 32, 41],

L4
∼= I18,6 : [−26,−13, 03, 12, 33, 41].

• From AT4Val[60][4], L5 : [−33,−27,−13, 05, 11, 29, 31, 41], and
L6 : [−32,−29,−12, 05, 12, 27, 32, 41].

• From AT4Val[70][4], L7 : [−35,−24,−19, 15, 210, 31, 41], and
L8 : [−34,−26,−18, 16, 28, 32, 41].

• From G15
∼= AT4Val[72][12], L9 : [−31,−25,−13, 01, 13, 23, 31, 41],

L10 : [−32,−23,−14, 01, 12, 25, 41], L11 : [−32,−25, 01, 16, 23, 41],
L12 : [−32,−24,−12, 01, 14, 24, 41], L13 : [−31,−25,−13, 01, 13, 23, 31, 41],
L14 : [−32,−24,−11, 03, 14, 22, 31, 41], L15 : [−33,−29,−15, 03, 15, 27, 33, 41],
L16 : [−34, 29,−12, 03, 18, 27, 32, 41], L17 : [−32,−211,−14, 03, 16, 25, 34, 41],
and
L18 : [−33,−29,−15, 03, 15, 27, 33, 41].

• From G16, L19 : [−34,−27,−16, 01, 110, 23, 34, 41],
L20 : [−34,−29,−12, 01, 114, 21, 34, 41],
L21 : [−34,−25,−110, 01, 16, 25, 34, 41], L22 : [−34,−26,−18, 01, 18, 24, 34, 41],
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L23 : [−34,−28,−14, 01, 112, 22, 34, 41], L24 : [−34,−26,−18, 01, 18, 24, 34, 41],
L25 : [−34,−28,−14, 01, 112, 22, 34, 41], L26 : [−33,−27,−19, 01, 17, 23, 35, 41],
L27 : [−33,−28,−17, 01, 19, 22, 35, 41], L28 : [−34,−27,−16, 01, 110, 23, 34, 41],
and
L29 : [−34,−26,−18, 01, 18, 24, 34, 41].

• From AT4Val[90][1], L30 : [−34,−210,−19, 110, 26, 35, 41].

• From AT4Val[90][8], L31 : [−35,−26,−114, 15, 210, 34, 41].

• From G17
∼= AT4Val[120][4], L32 : [−33,−27,−11, 09, 11, 25, 33, 41],

L33 : [−33,−27,−11, 09, 11, 25, 33, 41], L34 : [−34,−25,−12, 09, 27, 32, 41],
L35 : [−37,−213,−13, 015, 11, 215, 35, 41].

• From AT4Val[180][12], L36 : [−34,−28,−112, 02, 16, 26, 36, 41],
L37 : [−39,−217,−119, 05, 115, 211, 313, 41],
L38 : [−311,−213,−121, 05, 113, 215, 311, 41], and
L39 : [−312,−215,−114, 05, 120, 213, 310, 41].

• From AT4Val[210][10], L40 : [−316,−29,−129, 120, 219, 311, 41].

• From AT4Val[273][4], L41 : [−31,−24,−16, 04, 11, 34, 41].

• From AT4Val[546][48], L42 : [−32,−23,−15, 04, 12, 21, 33, 41],
L43 : [−33,−22,−14, 04, 13, 22, 32, 41], L44 : [−33,−22,−14, 04, 13, 22, 32, 41].

We do not list graphs with at most 12 vertices since all non-bipartite QIGs on 12 or fewer
vertices are known [25]. Of the 44 graphs given above, only L1, L3 and L4 previously
appear in the literature about integral graphs. The remaining 41 non-bipartite QIGs are
new.

5 Concluding remarks
There are precisely 32 connected 4-regular integral Cayley graphs up to isomorphism. Ta-
ble 3 lists the 17 graphs of the 32 which are bipartite and Table 7 gives the details of the 15
non-bipartite graphs.

There are exactly 27 quartic integral graphs that are arc-transitive. We found that 16 of
the 27 graphs are bipartite; these appear in Table 3 and Table 5. We found that 16 of the 27
graphs are Cayley graphs; these appear in Table 3 and Table 7.

There are integral Cayley bipartite graphs that can be decomposed intoH×K2 whereH
is Cayley and arc-transitive, Cayley but not arc-transitive, or arc-transitive but not Cayley.
The graph G10 is our only example of this last possibility; refer to Table 6.

The new 4-regular integral graphs that we found that are co-spectral to other graphs are
as follows: G13 co-spectral to I40,1 and I40,2, G15 to I72,1, H9 to I20,8, H12 to I36,4, and
F3 to M6. We also mention the co-spectral graphs among the known integral graphs: G5 is
co-spectral to I16,2 and another graph appearing in [25], G6 to I18,2 and I18,3, G7 to I24,1,
F1 to I60,2, H5 to I12,6, and J3 to I30,5.

We find that some integral Cayley graphs are co-spectral to integral non-Cayley graphs
and that some integral arc-transitive graphs are co-spectral to integral graphs that are not
arc-transitive. For example, the arc-transitive Cayley graphH5 has a co-spectral mate I12,6,
that is neither arc-transitive nor Cayley.

As can also be seen in Table 3, there are isomorphic integral graphs that are non-
equivalent Cayley graphs Cay(Γ, S) and Cay(Γ∗, S∗) in the sense of Definition 1.1. This
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can occur for Γ 6= Γ∗ as well as Γ = Γ∗ with S 6= S∗. Consider G12, which has 12
non-equivalent Cayley Graphs on 6 different groups. For Γ = S3 × S3, there are 4 non-
equivalent Cayley graphs with connection sets occurring for each of the three possible
numbers of involutions. There is only one Cayley graph up to equivalence for the graph
of order 40. For all other orders the bipartite integral Cayley graphs are not unique up to
equivalence. In the non-bipartite case; H1, H4, H5, H9, H12, and H15 are all unique up to
equivalence.

There are non-isomorphic integral Cayley graphs with the same number of vertices.
As can be seen in Table 3 for the bipartite case, there are two graphs on 12 vertices, three
graphs on 24 vertices, and two graphs on 72 vertices up to isomorphism. For all other
orders there is at most one graph up to isomorphism. There are many more examples in the
non-bipartite case (refer to Table 7).

There exist non-isomorphic integral Cayley graphs for the same group Γ. Consider Gi
for i = 7, 8, 9 in Table 3. The following 6 groups are examples of this: Z2 ×A4, Z3 ×D8,
Z2 × Z2 × S3, S4, (Z6 × Z2) o Z2, and Z4 × S3.

We began with the 828 possible spectra from [25], and then narrowed our focus to a set
Ξ of 59 candidates for vertex transitive graphs; refer to Table 1 and Appendix A. Of these,
we found 22 which are realised by Cayley graphs or arc-transitive graphs. In Section 4.6,
by taking quotients, we found 6 new bipartite integral graphs that are neither arc-transitive
nor Cayley, but realize a possible spectrum.

Overall, we found 9 bipartite quartic integral graphs (namely, G16, G17, F4, F5, M4,
M5, M7, M8, M9) that realise spectra not previously known to be achieved. It remains
open whether the remaining possible spectra are realized by any 4-regular bipartite integral
graphs.

All integral graphs discovered in this paper are available in Magma format from:

http://users.monash.edu.au/˜iwanless/data/graphs/
IntegralGraphs.html.
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A Feasible vertex-transitive spectra

The following is the set Ξ of possible spectra that might be realized by a connected 4-regular bipartite
integral graph G that is vertex-transitive. This set was determined in Section 2. The entries are given
as n x y z w [C4] [C6] where |V (G)| = n and Sp(G) = {4, 3x, 2y, 1z, 02w,−1z,−2y,−3x,−4}.
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8 0 0 0 3 36 96

10 0 0 4 0 30 130

12 0 1 4 0 27 138

12 0 2 0 3 30 112

16 0 4 0 3 24 128

18 0 4 4 0 18 162

20 0 5 4 0 15 170

24 0 8 0 3 12 160

24 2 2 6 1 30 124

24 3 0 5 3 42 80

30 0 10 4 0 0 210

30 3 2 9 0 30 130

30 4 1 4 5 45 60

32 0 12 0 3 0 192

36 4 4 4 5 36 84

36 5 1 7 4 45 66

40 4 6 4 5 30 100

42 6 0 14 0 42 98

48 6 4 10 3 36 96

60 4 16 4 5 0 180

60 6 9 14 0 15 170

60 7 8 9 5 30 100

60 8 7 4 10 45 30

60 9 1 19 0 45 90

70 6 14 14 0 0 210

72 11 4 13 7 54 24

72 6 16 10 3 0 192

72 8 10 16 1 18 156

72 9 10 7 9 36 60

90 12 13 4 15 45 0

90 13 7 19 5 45 60

90 8 22 4 10 0 150

90 9 16 19 0 0 210

96 12 12 20 3 24 128

120 12 28 4 15 0 120

120 13 22 19 5 0 180

120 15 20 9 15 30 40

120 16 14 24 5 30 100

120 19 6 29 5 60 20

126 13 28 7 14 0 126

126 20 7 28 7 63 0

144 16 28 16 11 0 144

144 20 16 28 7 36 72

168 20 28 28 7 0 168

180 20 40 4 25 0 60

180 21 34 19 15 0 120

180 22 28 34 5 0 180

180 26 19 34 10 45 30

210 27 28 49 0 0 210

240 28 52 4 35 0 0

240 30 40 34 15 0 120

280 34 56 14 35 0 0

288 36 52 28 27 0 48

360 46 64 34 35 0 0

360 47 58 49 25 0 60

360 48 52 64 15 0 120

420 55 70 49 35 0 0

480 64 76 64 35 0 0

560 76 84 84 35 0 0
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