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Abstract

The numerical simulation of intact rock microstructure 
and its influence on macro-scale behaviour has received a 
lot of attention in the research community in recent years. 
Generating a grain-like structure with polygonal area 
contacts is one of the avenues explored for describing the 
rock’s microstructure. A Voronoi tessellation implemented 
in the Universal Distinct-Element Code (UDEC) is used 
to generate models with a polygonal microstructure 
that represent intact rock. The mechanical behaviour 
of the Voronoi polygons is defined by micro-properties, 
which cannot be measured directly in the laboratory. A 
numerical calibration procedure is needed to produce the 
macroscopic response of a model that corresponds to the 
material behaviour measured during a laboratory experi-
ment. In this research, Brazilian, direct tensile, uniaxial 
compressive and biaxial test models are constructed to 
simulate the intact rock behaviour under a standard 
laboratory stress. An extensive series of parametric 
sensitivity analyses are executed in order to understand 
the influence of the input micro-properties on every 
model test behaviour and predict the relation between 
the micro-properties and the model’s macro response. The 
results can be treated as general guidelines for a complete 
and efficient intact rock calibration procedure. In paral-
lel, a continuum-based model using the Mohr-Coulomb 
constitutive relationship is running as a benchmark. It 
has been shown that the Voronoi-based models through 
their microstructure approach better reproduce the 
Brazilian to direct tensile strength ratio, and show a better 
representation of the dilation, crack pattern and post-peak 
behaviour in comparison to continuum models.

1 INTRODUCTION

It is well known that even apparently intact rock is 
heterogeneous on the scale of the grains [1-3]. Grain 
shape, grain minerals and different types of other defects 
included in the matrix introduce a heterogeneity in the 
internal stress distribution [4]. This has a direct influ-
ence on the mechanical behaviour of the intact material 
in terms of fracture initiation and fracture growth, 
which control the rock’s failure, deformability and crack 
pattern under loading [5, 6]. All these features control 
the mechanical behaviour of intact rock.

In the past two decades numerical simulations of intact 
rock microstructure have received a lot of attention from 
the research community. Many different models have 
been developed, ranging from the early models based 
on the continuum finite-element method, to the more 
recent distinct- or particle-element method models.
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On the other hand, polygon-shaped grains can be 
generated directly by using the Voronoi or Dalaunay 
tessellation generators already implemented in the 
Universal Distinct-Element Code (UDEC) [23]. Polygo-
nal random-shaped particles are interlocked with area 
contacts that are defined by well-known geomechanical 
input properties (e.g., cohesion, tensile strength, friction 
angle, etc.). Lan et al. [2], Kazerani & Zhao [12, 24], 
Alzo’ubi [25], Kazerani [13] and Gao [26] reported 
promising results in terms of reaching a reasonable 
tensile-to-compressive-strength ratio, curved failure 
envelope, common failure pattern observed in rocks, etc. 

The purpose of our study was to evaluate the potential 
of the Voronoi tessellation model for the simulation of 
intact rock behaviour. Therefore, a detailed parametric 
study of the input parameters and their influence on the 
model’s macro behaviour is carried out. The mechani-
cal behaviour of a generic intact rock is simulated by 
the distinct-element method using UDEC. The rock 
material is subjected to four standard laboratory test 
models: Brazilian, direct tensile, uniaxial compressive 
and biaxial. In parallel, a continuum-based model using 
a Mohr-Coulomb constitutive relation is running as a 
benchmark.

2 NUMERICAL MODELLING

Numerical distinct-element method simulations 
are performed using the two-dimensional software 
UDEC [23]. In UDEC, the mechanical behaviour of a 
discontinuous system is represented by (a) the behaviour 
of discontinuities (contacts) and (b) the behaviour of 
solid material (grains, polygonal particles, blocks). 
The contact behaviour is described by any joint model, 
while blocks may be assumed as rigid or deformable. If 
deformable blocks are chosen, consisting of triangular 
finite-strain elements (zones), a constitutive behaviour 
should be defined by using any available constitutive 
continuum model or user-defined model. As with any 
other discrete element code, it allows finite displace-
ments and rotations of discrete blocks, including 
complete detachment, and recognizes new contacts 
automatically as the calculation progresses [23].

2.1 Time-marching algorithm

UDEC follows an explicit time-marching scheme that 
solves the equation of motion directly and is identical 
to that used by the explicit finite-difference method for 
continuum analyses. The movement disturbance of a 
discontinuous system is caused by the applied loads or 

Continuum-based models (e.g., RFPA, [7]; R-T2D, 
[8]; DIGS, [4]) can simulate the rock failure process by 
introducing the heterogeneity of rock properties and 
using the principles of linear elastic fracture mechanics 
(LEFMs). The medium is assumed to be composed of 
many mesoscopic elements with different material prop-
erties [9]. Local mechanical parameters, both in terms of 
elastic and strength properties, are reduced following a 
stochastic distribution, e.g., a Weibull distribution [3, 9]. 
However, the choice of input properties can be subjec-
tive and highly dependent on the statistical distribution 
of the parameters [3]; furthermore, the complete detach-
ment of the square-shaped elements is truncated.

Since Potyondy & Cundall [10] showed that rock-like 
material can be successfully modelled with the Bonded 
Particle Model (BPM), a significant improvement 
was achieved in modelling the microstructure of rock 
material. The BPM uses the distinct-element method, as 
implemented in PFC [11], where a continuum constitu-
tive model is replaced by a simple particle/contact logic 
[12, 13]. The BPM assumes that the rock behaves like 
a cemented granular material, where rigid circular or 
spherical particles are bonded together at their contact 
points [10]. Reaching the desired material macro-scale 
behaviour is achieved through a calibration of the input 
micro-properties [14, 15, 16].

However, when the material is calibrated to the uniaxial 
compressive strength, the standard BPM significantly 
over predicts the tensile strength, gives very low triaxial 
strengths and the failure envelope is linear [17, 18]. By 
introducing a clumped-particle geometry, or particle 
cluster logic, in combination with the BPM, these 
limitations are significantly reduced [10, 18]. Even with 
the use of clumped-particles and clusters the BPM still 
suffers from a limitation to match the low ratio of tensile 
to compressive strength [6], the lowest reachable being 
at 1/14 [18]. Ratios reported in the literature have much 
larger variations, ranging from 1/50 to 1/3, depending 
on rock type, porosity, grain size and other heterogene-
ities in the rock microstructure [19, 20].

Significant contributions were made by introducing the 
Grain-Based Model (GBM), where circular/spherical-
shaped particles are grouped into polygons with angular 
boundaries [6]. In this manner, polygonal grains 
resemble the mineral structure as observed in crystal-
line rock [12]. Nevertheless, GBM can still not match 
the Brazilian strength-to-compressive-strength ratio 
observed in the laboratory [21]. Recently, the BPM has 
been further developed by incorporating the flat-joint 
model for grain contacts, allowing for the introduction 
of a polygonal grain structure that improves the tensile-
to-compressive-strength ratio [22].
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body forces. At the start of each time step the procedure 
first recognizes the new contact locations from known, 
fixed, block positions. The force-displacement law is 
then applied to each contact that generates new contact 
forces. Based on the resultant force and the moment 
at the block centroids arising from the known forces 
acting on them, Newton's second law is applied to all 
the blocks. The velocity and angular velocity are updated 
and the linear and angular accelerations are calculated. 
At this point a calculation step could be repeated by 
calculating the new block location and the block rotation 
based on the known velocity and angular velocity. If the 
blocks are deformable, the motion is calculated at the 
grid points of triangular elements within the block, and 
the block material constitutive relations give new stresses 
within the elements [11, 23].

One time step is needed for every cycle around the loop. 
The time step is limited by the assumption that velocities 
and accelerations are constant within the time step. To 
avoid dynamic effects and to reach quasi-static condi-
tions, each time-step increment should be sufficiently 
small so that disturbances cannot propagate between 
one discrete element and its intermediate neighbours. 
The procedure is repeated until either a satisfactory state 
of equilibrium or one continuing failure results [23].

2.2 Constitutive behaviour of intact rock

UDEC allows for many possibilities to represent block 
behaviour by using any of the already-implemented 
constitutive models. In this study the intact rock is 
modelled with both continuum and Voronoi tessella-
tion approaches. In the continuum approach the intact 
block behaviour is assumed to follow the conventional 
Mohr-Coulomb constitutive model, and is from here 
on denoted as the continuum model. In summary, the 
general concept follows a set of linear equations in the 
principal stress space, σ1, σ2, σ3, where the shear failure 
of the isotropic elastic material is controlled by the cohe-
sion c and the friction angle φ in the shear yield function:
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Tensile failure is controlled by the tension yield function, 
where the minor principal stress σ3 cannot exceed the 
tensile strength σt:

3
t
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More details about the Mohr-Coulomb failure criterion 
can be found in the software manuals [23] or elsewhere 
(e.g., [27]). 

On the other hand, the rock microstructure is modelled 
as an assemblage of distinct deformable polygons, and is 
subsequently denoted as the Voronoi model. UDEC has 
an in-built, automatic generator of the Voronoi tessellation 
pattern, where a particular region in a model can be subdi-
vided into randomly sized polygons. In such a manner, 
polygons can represent grains, assemblies of grains
and/or other flaws (i.e., defects) in the intact rock that are 
randomly disturbed over the sample [4, 23] (Fig. 1).

Figure 1. Schematic presentation of Voronoi tessellation 
generator logic used in UDEC: (a) random generation of 
points controlled by seed number, (b) generation of Delaunay 
triangulation, (c) generation of Voronoi tessellation and (d) 
Voronoi polygons model block [28]. 

The Voronoi algorithm begins by distributing points 
within the tessellation region (Fig. 1a). The seed number 
should be inserted as an input value to set the seed for 
the random-number generation used by the Voronoi 
tessellation. During this step the points are allowed to 
be moved according to the iteration procedure. A larger 
number of iterations will generate a more uniform spac-
ing between the points and therefore a more uniform 
tessellation will be generated. These points are then inter-
connected with lines that form triangles, called Delaunay 
triangulation, and thus each triangle is circumscribed 
within a circle containing its three vertexes (Fig. 1b). 
Finally, the Voronoi polygons are created by constructing 
perpendicular bisections of all the triangles that share a 

a) b)

c) d)
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common side (Fig. 1c). The polygons are truncated at the 
boundaries of the tessellation region (Fig. 1d) [23].

The Voronoi polygons are assigned an isotropic elastic 
deformable material model, which means that failure on 
the micro-scale only takes place at the polygon boundar-
ies, not inside them.

The Voronoi contacts are assumed to behave follow-
ing the Coulomb slip area joint model. The stress-
displacement relation in the normal and shear directions 
is assumed to be linear and governed by the normal 
stiffness kn and the shear stiffness ks such that:

n n nk usD =- D         (3)

e
s s sk utD =- D         (4)

where Δσn is the effective normal stress increment, Δτs 
is the effective shear stress increment, Δus

e is the elastic 
component of the incremental shear displacement and 
Δun is the normal displacement increment. However, the 
normal stress is limited by a limiting tensile strength (if 
σn < -σt , then σn = 0) and the shear stress is limited by 
a linear combination of the cohesion c and the friction 
angle φ:

maxtans nct s j t£ + =         (5)

When the shear stress exceeds the maximum shear stress 
(|τs | ≥ τmax) then:

( ) maxs ssign ut t= D         (6)

where Δus is the total incremental shear displacement. In 
addition, joint dilation may occur at the onset of the slip 
of the joint. The accumulated dilation ψ is limited either 
by a high normal stress level or a large accumulated 
shear displacement that exceeds a limiting value umax. 
Therefore, if |τs| ≤ τmax or |τs | = τmax and |us| ≥ umax, 
then ψ = 0, otherwise ψ > 0.

3 NUMERICAL LABORATORY

The characterisation of intact rock is achieved by 
performing standard laboratory tests, so the aim of this 
study is to recreate the same testing procedure within 
a numerical environment using the distinct-element 
method. Therefore, four standard laboratory test 
models are developed: a splitting tensile strength test 
(Brazilian test), a direct tensile test, a uniaxial compres-
sive strength (UCS) test and a biaxial test. These 
tests characterise the rock material in the tensile and 
compressive stress paths and can be used to calibrate 
the constitutive behaviour of the modelled material to 
the real material.

3.1 Model generation

Two types of model geometry are generated. A circle-
shaped model is used to simulate the Brazilian test 
and a rectangular-shaped model is used to simulate 
the direct tensile test, the UCS test and the biaxial test. 
Plane stress analyses are adopted for all the cases to 
assume thin model samples. These models are run by 
applying a vertical velocity at the external boundary 
at the top of the sample. The velocity is fixed and set 
to zero in the vertical direction at the external bound-
ary at the bottom of the sample. The only difference 
between the tests is the direction of the applied veloc-
ity. The velocity is directed upwards in the direct tensile 
test to produce tensile conditions in the sample, while 
in the other test models the velocity is directed down-
wards to generate a compressive stress state. In addi-
tion, to ensure confinement in the biaxial test model, a 
horizontal compressive stress is acting on the left and 
right external boundaries, and the vertical horizontal 
compressive stress acts on the top external boundary of 
the model sample. The boundary conditions are shown 
in Fig. 2.

Figure 2. Boundary conditions in (a) Brazilian test, (b) direct tensile test, (c) uniaxial compressive test and (d) biaxial test. "F" denotes 
fixed grid points and "S" denotes confinement stress boundary conditions. Numbers on samples show locations of monitoring grid points.
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3.2 Monitoring

The monitoring procedure is very similar in all the test 
models, where the grid-point forces, the displacement 
and the positions of the grid points are monitored using 
a FISH function. Based on these monitored data points 
the strength and deformation properties are calculated 
for every time step while running the test analysis.

The applied vertical velocity at the top of the sample 
causes a reaction force at every grid point in the sample. 
In each time step the total sum of the vertical forces Fy 
for every grid point at the external boundary on the top 
side of the sample is divided by the cross-section d of the 
sample to obtain the vertical stress σy. The peak stress is 
determined as the failure strength of the tested material. 
However, in the Brazilian test model the reaction force 
is converted into stress by using the standard Brazilian 
strength σB equation [29]:

2B yF dts p=         (7)

where Fy is the total sum of the vertical forces, d is the 
sample (circle) diameter and t is the sample thickness, 
which is assumed to be unity in a 2D analysis.

Material deformability is calculated by monitoring the 
displacements and the positions at the grid points in the 
middle of every side of the sample, as shown in Fig. 2. The 
horizontal deformation is calculated based on monitoring 
locations 1 and 3, and the vertical deformation is calculated 
based on monitoring locations 2 and 4. The Young's modulus 
is then calculated by dividing the axial stress by the vertical 
deformation, and the Poisson's ratio is calculated by dividing 
the horizontal deformation by the vertical deformation.

4 NUMERICAL PARAMETRIC SENSITIVITY 
ANALYSIS

An extensive series of parametric sensitivity analyses 
are executed in order to understand the influence of the 
input properties on the model’s behaviour and the rela-
tionship between the micro-properties and the model’s 
macro response. This kind of study has given us a set of 
general guidelines for the calibration procedure of the 
intact material. Parallel to this, a series of analyses on 
continuum models are carried out to compare the results 
with those of the Voronoi model. 

The parametric sensitivity analysis is conducted by 
running a series of simulations in which each significant 
input parameter is varied systematically over a chosen 
range, while all the other parameters were fixed. Some of 
the ranges used here are not realistic for rock-like material. 

However, as will be shown later, some valuable insights 
into the numerical environment can be obtained from 
them. Two types of parameters were tested for all four 
numerical laboratory tests: (a) numerical input properties 
(particle size, seed number, number of iterations, mesh 
density, number of fixed grid points, strain rate, model 
sample size and shape) and (b) material input proper-
ties (material density, Young's modulus, Poisson's ratio, 
normal and shear stiffness, cohesion, friction angle, tensile 
strength and dilation). The input properties for both 
the continuum and the Voronoi models are arbitrarily 
chosen within a range that can represent the behaviour of 
sedimentary rock, such as marl, siltstone, etc. The input 
properties are listed in Table 1 and Table 2 (next page) for 
the continuum and Voronoi models, respectively.

Parameter Input value of 
parameter

Tested range 
of parameter

Numerical input properties
Model height (mm) 500 50–1,500

Model width/diameter (mm) 250 25–750
Zone edge length (mm) 10 10–4,000
Applied velocity (m/s) 0.001a 0.00–0.3

Material input properties
Material density (kg/m3) 2,548 10–100,000
Young's modulus (GPa) 8.940 1–100

Poisson's ratio ( ) 0.167 0.1–0.4
Cohesion (MPa) 2.2 0.5–20
Friction angle (°) 30 0–80

Limit tensile strength (MPa) 1.5 0.1–20
Dilation angle (°) 2 0–15

Table 1. Input properties used in the parametric sensitivity 
analysis for the continuum model.

a Applied velocity for UCS test and biaxial test was 0.005 m/s.

4.1 Size of the Voronoi polygons

The resolution of the model is controlled by the size of the 
Voronoi polygons and it affects the peak strength and the 
material deformability. The size of the Voronoi polygons is 
defined by the Voronoi edge length, which must be at least 
20 times that of the corner rounding length and specifies 
the input value of the average edge length of the Voronoi 
polygons [23]. A higher model resolution requires more 
cycles (time) to reach mechanical equilibrium, and also 
needs more time to generate the initial polygon packing 
in a model than a lower model resolution. 

Thus, a series of analyses are run to determine the 
optimal model resolution. A minimum of ten seed 
distributions within any test model were analysed. As 
will be explained later, different seed numbers give 
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different peak strengths, so the mean peak strength and 
the relative standard deviation (RSD) are calculated 
from the results of the tests. In order to give a better 
representation of the results from all the model tests, the 
peak strength values are normalized to the mean value.

The results for all four tests shown in Fig. 3 imply that 
at least 10 Voronoi polygons along the cross-section of a 
model are required to minimize the polygon resolution’s 
influence on the peak strength to an acceptable level. In 
this range the RSD begins to stabilize at around 5 %.
However, both the uniaxial compressive and biaxial 
model tests show a slight increase in the peak strength 
when the number of Voronoi polygons is larger. That 
effect is marginal and might be a result of statistical 
repetition. When more Voronoi elements are included, 
the fracture (i.e., the failure surface) can have a different 
path and the resulting peak may be slightly different.

Based on this, the recommended model resolution 
is between 10 and 25 Voronoi polygons per model 
sample cross-section. A denser Voronoi size resolution 
can be used, but it will lead to increased calculation 
times. According to the ASTM standard [30] and ISRM 
suggested methods [31], the sample diameter tested in 
the laboratory should be larger than the largest mineral 
grain by at least 10 or 20 times. If it is assumed that the 
Voronoi polygons represent grains, this will be in agree-
ment with the presented results.

However, the results from the Brazilian strength (Fig. 3) 
do not show the same trend as the other model tests. The 
strength keeps decreasing, even though a maximum of 40 
Voronoi polygons per model test cross-section are tested. 
The reason for the decreasing trend of the Brazilian 
strength might be due to the fact that there are fixed grid 
points at the external boundary, which are located on a 
curved line due to the circular model geometry. The same 
response is observed in the Brazilian model tests with the 
Dalanuay triangles [12]. However, to keep the consistency 
in the results from every model test in the numerical 
laboratory, the polygon resolution was kept equal to 15 
from this point on in the study for all the samples tested.

The same as in the BPM models [10], the particle size 
resolution slightly influences the elastic properties. 
Increasing the polygon resolution up to 40, the Young's 
modulus decreases and the Poisson's ratio increases, 
both by approximately 15 % (Fig. 4). A possible explana-
tion for this behaviour might be as follows. While the 
polygon resolution is increasing, more contacts are 
formed in the model. Therefore, the model sample has a 
greater ability to deform due to the displacement along 
the contacts, which cause a lower Young's modulus and a 
higher Poisson's ratio.

4.2 Microstructure heterogeneity

The heterogeneity of intact rock at the grain scale is due 
to the grain shape and size, the grain contact length 
and orientations, the constituent minerals and other 

Parameter Input value 
of parameter

Tested range 
of parameter

Numerical input properties
Model height (mm) 500 50–25,000

Model width/diameter (mm) 250 25–12,500
Voronoi edge length 16.5 6.25–80

Zone edge length (mm) 8.25 3–125
No. of iterations ( ) 80 13–1000

Seed no. ( ) 222 10–999
Applied velocity (m/s) 0.001b 0.001–0.01

Material input properties
Material density (kg/m3) 2,548 10–100,000

Young's modulus of polygons 
(GPa) 9.2 1–100

Poisson's ratio of polygons ( ) 0.2 0.1–0.4
Normal stiffness (GPa/m) 10,000 100–100,000
Shear stiffness (GPa/m) 2,000 20–200,000
Contact cohesion (MPa) 2.2 0–10
Contact friction angle (°) 10 0–80

Contact limit tensile strength 
(MPa) 1.5 0.1–20

Dilation angle (°) 2 0–15

Table 2. Input micro-properties used in the parametric sensi-
tivity analysis for the Voronoi model.

b Applied velocity for UCS test and biaxial test was 0.005 m/s.

Figure 3. Effect of polygon size resolution on normalized peak 
strength and corresponding RSD error for the Voronoi model. 
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spatial defects [2]. In the Voronoi model the material’s 
geometric heterogeneity and the polygon distribution 
can be controlled by the seed number and the number of 
steps in the iteration procedure applied in the Voronoi 
tessellation generation.

Every seed number generates a random array of 
Voronoi tessellation and thus every tested model will 
give a slightly different macro response, e.g., every seed 
number will produce a different peak strength, crack 
pattern, etc., as can be seen from Fig. 5. As previously 
mentioned, using the recommended polygon resolution 
(10 to 25) an approximately 5 % RSD error in the peak 
strength is expected by testing the model with a different 
seed number. Similarly, the variability of the results due 
to microstructure heterogeneity occurs in the laboratory 
as well, because in reality every sample has a slightly 
different microstructure. Therefore, the distributions of 
results can be compared to the variations observed in 
the laboratory tests.

However, the major difference between the numerical 
and laboratory results is in the size of the variability of 
the results. In the laboratory the size of the variations is 
greatly affected by the grain size and other micro-cracks 
in the rock. This means that some rocks will have a 
smaller variation than others [28, 32]. On the other 
hand, as can be seen from Fig 3., the RSD error (which is 
basically the size of the variations of the results) is going 
to stabilize when the number of Voronoi polygons is 
more than 10 polygons per sample cross-section. There-
fore, in numerical simulations, following the approach 
proposed in this paper, we will get approximately the 
same RSD error, no matter what kind of rock we would 
like to model.

On the other hand, the number of iterations controls 
the Voronoi tessellation uniformity, as can be seen from 
Fig. 6. Increasing the number of iterations reduces the 
heterogeneity, modifies the crack pattern and influences 
the peak strength. In general, increasing the iteration 

Figure 4. Effect of polygon size resolution on (a) Young’s modulus and (b) Poisson’s ratio for the Voronoi model.

Figure 5. Effect of seed number on (a) uniaxial compressive test stress-strain curve and corresponding
model geometry at failure for seed number (b) 222, (c) 444 and (d) 666.

a) b)

a) b) c) d)
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number increases the peak strength in all the model 
tests. The peak strength tends to stabilize using a large 
number of iteration steps. In tensile tests (e.g., the direct 
tensile and Brazilian tests) stabilisation is reached after 
150 iterations, but in compressive tests (e.g., the UCS 
and biaxial test) stabilization is not reached until 550 
iteration steps are applied (Fig. 7). This response can 
be directly linked to the tessellation geometry, where 
the difference in the geometry becomes more and more 
insignificant, when comparing two Voronoi tessellations 
generated with a very high iteration number (higher 
than 600 iteration steps). Moreover, increasing the 
number of iteration steps has a negligible influence 
on the peak-strength scatter between the different 
seed numbers, and over the entire tested range this is 
approximately 5 % of RSD.

In most cases, rocks have a heterogeneous microstructure 
geometry [2]. This can be controlled with the number 
of iterations. According to this study, less than 250 

iterations are recommended to produce natural material 
behaviour. Iteration numbers between 50 and 250 gener-
ate a relatively homogeneous model microstructure, 
which can be compared to sedimentary rocks (Fig. 6b). 
A small number of iterations (below 50) generates a 
more heterogeneous model microstructure, similar to 
magmatic rocks, e.g., granites (Fig. 6a), but gives a lower 
peak strength. Finally, a very high iteration number 
(more than 250) can produce unnatural crack patterns 
that are normally not observed in real rock (Fig. 6c).

4.3 Mesh density

The blocks/polygons in both the continuum and Voronoi 
models are discretized into deformable, triangular, 
finite-difference zones and its zone edge length is one of 
the input parameters for the model (Fig. 8). To achieve 
reasonable calculation times and stable numerical 
results, an optimal zone edge length (mesh density) must 
be defined for the present model size. For that reason a 
sensitivity analysis of the zone edge length’s influence on 
all the model tests is carried out.

Figure 6. Example of uniaxial compressive test model sample 
at failure tested with the same seed number, but different itera-
tion number (a) 13, (b) 150 and (c) 800. 

Figure 7. Effect of number of iteration steps on normalized 
peak strength for the Voronoi model. 

Figure 8. Schematic representation of Voronoi polygon blocks 
discretized into deformable triangular finite-difference zones. 

The sensitivity analysis with the continuum model has 
shown that the influence of mesh density within the 
range considered in this study of the peak strength and 
deformability can be neglected in rectangular-shaped 
samples (Fig. 9), e.g., direct tensile test, uniaxial compres-
sive test and biaxial test, but it is evident in circular model 
samples, e.g., the Brazilian test model (Fig. 10). Since 
the mesh density does not affect the peak strength and 
deformability in the rectangular model samples within 
the range considered in this study, the same mesh density 
can be used, regardless of the model size. However, 
increasing the model size with a fixed zone edge will 
affect the peak strength in the Brazilian test model. 
Therefore, the results for all the test models will be consis-
tent if the appropriate mesh density for the Brazilian test 
model is found and then used in other test models.
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As shown in Fig. 10, stabilization of the Brazilian 
strength occurs in the range of model size to zone edge 
length ratio between 25 and 35 (with a scatter error in 
the range of 5 %). Higher ratios lead to a longer calcula-
tion time, with only small improvements in the model 
prediction. The reason for the decreasing trend of the 
Brazilian strength was already discussed in Section 4.1.

On the other hand, the mesh density slightly influences 
the material behaviour in the Voronoi model, as shown 
in Fig. 11. The normalized strength is dependent on the 
ratio between the Voronoi edge length and the zone edge 
length. Since the zone edge length is defined as the maxi-
mum edge length of the triangular zones, there will be a 
critical limit with regard to the Voronoi edge length (i.e., 
the zone edge length is smaller, or equal, to the Voronoi 
edge length). When the ratio is less than one, there is no 
influence on the peak strength, regardless of the increas-
ing value of the zone edge length, because the zone edge 
length is now limited by the Voronoi edge length.

With the ratio increasing from 1 to 4, the peak strength 
decreases by about 5 % for all the tests, except for 
the direct tensile test, where it increases by the same 
amount. A possible reason for this could be that 
the direct tensile test has a tensile stress state that is 
in contrast to the other three tests, where we have 
predominantly compressive stress states. Also, the peak 
strength scatter between the different seed numbers at 
an arbitrary mesh density is approximately 5 % of RSD. 
Based on these findings and to avoid long calculation 
times, the appropriate ratio of the Voronoi edge length 
to the zone edge length is between 1.5 and 4.

4.4 Number of fixed grid points

As discussed in Section 3.1, the velocity is applied to 
grid points (called fixed grid points) on the top side of 
the sample. In the rectangular-shaped model samples 
the number of fixed grid points is related to the mesh 
density in the continuum model and to both the mesh 
density and the polygon size in the Voronoi model. 
Therefore, the number of fixed grid points is a conse-
quence of the mesh and polygon density and has no 
direct influence on the model’s behaviour.

On the other hand, the circular geometry of the Brazil-
ian test model contains several edges along the outer 
boundary. Besides the mesh density and polygon size, 
the number of edge segments is related to the number 
of fixed grid points in the upper and lower external 
boundaries. Increasing the number of segments implies 
an increase in the number of fixed grid points in both 
models. The results of the sensitivity analysis show 
that an increase in the number of fixed grid points will 
increase the Brazilian strength until stabilization is 
reached (Fig. 12 on next page). An up to 10 % RSD error 
can be expected in the stable region. Therefore, at least 
4 fixed grid points (Fig. 12b) or 80 segments (Fig. 12a) 
are recommended values for both the continuum and 
Voronoi models.

Figure 9. Effect of zone edge length on normalized peak 
strength for the continuum model. 

Figure 10. Dependence between Brazilian strength and model 
sample size to zone edge length ratio for four model sizes 
(diameter) for the continuum model. 

Figure 11. Effect of Voronoi edge length to zone edge length 
ratio on normalized peak strength for the Voronoi model. 
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4.5 Strain rate

In accordance with the ISRM [33], a quasi-static labora-
tory compression test is achieved within the strain-rate 
interval 10-5 to 10-4 /s. Faster or slower strain rates 
than these can have a significant impact on the mate-
rial’s behaviour [34]. A similar response is observed in 
numerical simulations. Running a model test with a high 
applied velocity introduces dynamic effects in the simu-
lation. However, choosing a very low strain rate is inef-
ficient and leads to very time-consuming calculations. 
The aim of this part of the sensitivity analysis is to find 
the optimal strain rate for the current modelling study.

The optimal applied velocity can be determined using 
a trial-and-error procedure based on a comparison 
between the different stress-strain curves obtained from 
tests running at different velocities. As the maximum 

applied velocity for which the shape of the stress-strain 
curve stabilizes and the peak strength becomes constant, 
the applied velocity can be adopted as the optimal veloc-
ity for the current model analysis. However, dealing with 
velocity is not very convenient when trying to compare 
the results between the different model tests. In that case 
it is better to use the displacement rate Δεr, which can be 
calculated based on the number of cycles Ncyc needed for 
the current model analysis at the chosen applied velocity 

ruD   and the mechanical time step Δtm taken by UDEC:

r r m cycu t NeD =D ⋅D         (8)

Several Voronoi model sizes with the same mesh density 
and model heterogeneity are tested. The results from the 
uniaxial compressive test simulations presented in Fig. 
13a show that there is a relationship between the applied 
velocity in the Voronoi model and the size of the model. 

Figure 12. Effect of (a) number of segments and (b) number of fixed grid points on the Brazilian strength for the Voronoi model.

Figure 13. (a) Effect of applied velocity on normalized peak strength and displacement rate for different model sizes in uniaxial 
compressive test in the Voronoi model, and (b) effect of applied velocities on normalized peak strength in the continuum model.

a) b)

a) b)
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Larger model sizes require a lower applied velocity 
than the smaller model sizes. That model behaviour is a 
result of the numerical algorithm of the distinct element 
code. Therefore, from that graph (Fig. 13a) an optimal 
displacement rate can be determined, regardless of the 
model size. For example, the peak strength stabilization 
of the solid blue line (an applied velocity of
0.01 m/s) is reached at a model size of approximately 
0.5 m. Dragging a vertical line from here onto the 
dashed blue line shows that stabilization happens at 
approximately 10-5 mm/step, which can be adopted as an 
optimal displacement rate. A similar procedure can be 
used for an applied velocity of 0.005 m/s (red line). The 
peak strength of the tested sample with an applied veloc-
ity of 0.001 m/s is stable over the entire tested interval, 
because the displacement rate is lower than the optimal 
displacement rate.

To conclude, the optimal displacement rate should 
be 10-5 mm/step for all the model tests in this study. 
A similar displacement rate can be adopted for the 
continuum model (Fig. 13b) and for all the model tests 
performed in the numerical laboratory (Section 3).

The applied velocity also has a small influence on the 
Young's modulus and the Poisson's ratio. As can be 
seen in Fig. 14: at a high applied velocity the Young's 
modulus is higher, but the Poisson's ratio is lower. This 
can be interpreted as follows. At a high applied velocity 
(displacement rate) the model becomes stiffer (a higher 
Young's modulus), because it has less ability to accom-
modate all the deformation (a lower Poisson's ratio). 
On the other hand, at a low displacement rate, when the 
time step is small enough for the model to accommodate 
more of the deformation (higher Poisson's ratio), it 
becomes softer (lower Young's modulus). With a further 
decrease in the displacement rate the Young's modulus 
and the Poisson's ratio tend to stabilize.

4.6 Model shape aspect ratio

It is well documented that the sample shape influences 
the material strength and the ductility. As the aspect 
ratio of the height to width (h:w) increases, the strength 
and ductility decrease by decreasing the horizontal 
confinement stress in unconfined tests [35]. Due to the 
friction between the sample ends and the platen, and the 
difference between the elastic properties of the rock and 
the platen, the sample will be restrained near its ends 
and prevented from deforming uniformly [34].

Different rectangular-shaped model aspect ratios are 
tested under direct tensile, uniaxial compressive and 
biaxial test conditions. The results from the Voronoi 
model show that the peak strength decreases with an 
increasing aspect ratio (Fig. 15). In addition, the post-
peak response becomes more ductile with a decreasing 
aspect ratio (Fig. 16). The peak strength stabilizes with 
an aspect ratio higher than 2, which is in accordance 
with the standard recommendations (i.e., a suggested 

Figure 14. Effect of applied velocity on (a) Young’s modulus 
and (b) Poisson’s ratio for the Voronoi model. 

Figure 15. Effect of model shape aspect ratio (h:w) on the 
normalized peak strength for the Voronoi model. 

a)

b)
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aspect ratio between 2.0 to 2.5 [36], and 2.5 to 3.0 [33]). 
As expected, the model aspect ratio has a negligible 
effect in direct tensile tests. 

4.7 Material density

According to UDEC theory the internal density is 
irrelevant to the modelling in static systems since the 
internal forces in the system are low [23]. The material 
density only influences the calculation time, because it 
is proportionally related to the critical time step [23]. 
We have confirmed this for both the continuum and 
Voronoi models [28].

4.8 Deformability properties: Young's modulus, 
Poisson's ratio, normal and shear stiffness

The input Young's modulus and Poisson's ratio have 
a direct influence on the calculated Young's modulus 
and the Poisson's ratio in the continuum and Voronoi 
models. However, the input Young's modulus also influ-
ences the calculated Poisson's ratio in the Voronoi model 
as well. As can be seen in Fig. 17, an approximately 40 % 
change can be expected in the tested range. The explana-
tion may be that a higher input Young's modulus causes 
the polygons to behave in a stiffer manner, so the major-
ity of the deformation is accumulated by the contacts and 
thus the material’s Poisson's ratio increases. When the 
input Young's modulus is lower, the polygons are softer 
and can accumulate the majority of the deformation, and 
thus the value of the calculated Poisson's ratio becomes 
lower. It is also shown that the Young's modulus has a 
negligible influence on the peak strength in all the model 
tests, except for the Voronoi model Brazilian test, where 

Figure 16. Uniaxial compressive test model stress-strain curves 
for different values of height to width (h:w) aspect ratio for the 
Voronoi model. 

Figure 17. Effect of input Young's modulus on the calculated 
Poisson’s ratio for the Voronoi model. 

Figure 18. Effect of Young's modulus on normalized peak 
strength for the Voronoi model. 

an increasing Young's modulus decreases the Brazilian 
strength by about 40 % in the tested range (Fig. 18).

In the Voronoi model the deformability is controlled by 
two additional micro-properties, i.e., the contact normal 
stiffness kn and the contact shear stiffness ks. However, 
both have an influence on the strength behaviour of the 
material as well. The effect of the normal and the shear 
stiffness are shown (Fig. 19) separately in terms of the 
normalised strength and stiffness ratios kn/ks and ks/kn. 
Different shapes of the peak-strength trend curves can be 
distinguished between the peak strengths measured in the 
tensile tests (e.g., the direct tension test and the Brazilian 
test) and the compressive tests (e.g., the uniaxial compres-
sive test and the biaxial test). The compressive strength is 
slightly increasing throughout the tested interval, while 
the tensile strength quickly stabilizes. Observations of 
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Figure 19. Correlation between normalized peak strength to (a) normal stiffness and kn/ks ratio,
and to (b) shear stiffness and ks/kn ratio for the Voronoi model.

the model’s material behaviour (e.g., the shape of the 
stress-strain curve) is in agreement with the intact rock 
behaviour known from the laboratory if the stiffness ratio 
kn/ks is approximately between 1 to 20 (i.e., the stiffness 
ratio ks/kn is approximately between 1.0 and 0.05).

The empirical equation developed by D. Martin and 
reported by Vallejos et al. [14] and the data reported 
by Li & Wong [37] show that the laboratory-measured 
Brazilian strength is consistently higher than the direct 
tensile strength [28], most likely due to the friction 
between the platen and the sample ends, which causes 
confinement stress in the sample. The aim of our study 
is not to quantify the strength ratio, but only to check 
the trends observed in the laboratory, i.e., whether the 
simulated Brazilian strength is lower, higher or the same 
compared to the direct tensile strength. It is found that 

the laboratory-measured strength ratios between the 
Brazilian tests and the direct tensile tests can be matched 
by choosing an appropriate stiffness ratio kn/ks. It is 
difficult to define a reasonable interval, because it is 
dependent on other input micro-properties as well, but 
is in between kn/ks = 1 to 20 range. In fact, the tensile-
to-compressive strength ratio is also influenced by the 
stiffness ratio kn/ks and by other micro-properties (e.g., 
cohesion, friction angle, and tensile strength limit).

The normal to shear stiffness ratio can control the 
Young's modulus and the Poisson's ratio, as has been 
already recognized by Kazerani & Zhao [24] and in the 
BPM model [10, 17]. When the stiffness ratio is higher 
than a critical value, the calculated elastic properties 
become constant, even if the normal and/or the shear 
stiffness changes (Fig. 20, Fig. 21). Therefore, the stiff-

Figure 20. Correlation between Young's modulus to (a) normal stiffness and kn/ks ratio, and to
(b) shear stiffness and ks/kn ratio for the Voronoi model.

a) b)

a) b)
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Figure 21. Correlation between Poisson's ratio to (a) normal stiffness and kn/ks ratio, and to
(b) shear stiffness and ks/kn ratio for the Voronoi model.

ness ratio can be calibrated to some extent to fit the 
material’s Poisson's ratio and the Young's modulus.

4.9 Strength properties: cohesion, friction angle and 
tensile strength limit

In Voronoi models, micro-properties, such as the 
contact cohesion, contact friction angle and contact 
tensile strength limit of the Voronoi polygonal contacts, 
exert the main control over the material’s strength 
behaviour. In the continuum model the material’s 
strength behaviour is controlled by the (macro) cohe-
sion, the (macro) friction angle and the (macro) tensile 
strength limit. This is confirmed by the series of sensitiv-
ity analyses presented in this section.

First, the sensitivity analysis on cohesion is discussed. 
As shown in Fig. 22 a similar model response can 
be observed in both the continuum and the Voronoi 
models. The uniaxial or biaxial compressive strength 
show a linear dependence on increasing cohesion, which 
is controlled by the shear yield function. However, the 
Brazilian and direct tensile strength are controlled either 
by the tension or the shear yield function, as shown in 
Fig. 23. At first, when the cohesion is lower than the 
tensile strength limit (which can be an unrealistic case), 
it shows a linear dependence on the tensile strength 
and is controlled by the shear yield function (Fig. 23a). 
Once the tensile strength limit is reached (which is a 
more realistic case), the calculated peak tensile strength 
becomes constant, regardless of the cohesion increase 
and is controlled by the tension yield function (Fig. 23c). 

Figure 22. Correlation between cohesion and normalized peak strength for (a) the continuum and (b) the Voronoi model.

a) b)

a) b)
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Figure 23. Schematic presentation of Mohr circles at (a) (absolute) high tensile strength limit, (b) similar values of cohesion and 
tensile strength limit, (c) high cohesion and (d) high friction angle.

Moreover, a relatively high cohesion compared to the 
tensile strength limit could produce undesirable post-
peak behaviour in terms of a strong material resistance 
during sliding, which generates residual stresses that are 
commonly higher than the peak strength (mostly in the 
Brazilian test model). In this sense, the material model’s 
behaviour is in agreement with the intact rock behaviour 
known from the laboratory if the cohesion values are 
approximately up to five times the tensile strength limit.

Similar to the sensitivity analysis of cohesion, the contin-
uum and the Voronoi model show comparable results 
with respect to the friction angle (Fig. 24). The uniaxial 
and biaxial compressive strength show an exponential 
dependence on the increasing friction angle, which is 
controlled by the shear yield function. The Brazilian and 
direct tensile strength, on the other hand, is controlled 
either by the tension or the shear yield function. At low 
and moderate friction angles the direct tensile strength 
is constant and is controlled by the tensile yield function 
(Fig. 23c). However, a small decrease in the Brazilian 
strength is observed at low friction angles, which is more 
obvious in the continuum model (Fig. 24a). At present, 

such a response is not fully understood. On the other 
hand, very high friction angles (which may not be a 
realistic case) induce a decrease in the tensile strength as 
well, but this time the shear yield function controls the 
response (Fig. 23d). 

The sensitivity analysis has also shown that high friction 
angles can induce a strong shear resistance in the post 
peak, so that the residual shear strength exceeds the 
peak shear strength (Fig. 25). If such a post-peak behav-
iour is undesirable, it can be limited by choosing lower 
friction angles as the input (micro) property.

The major difference between both models is seen 
in the parametric sensitivity analysis of the tensile 
strength limit. The continuum model shows a very 
similar response to that of the sensitivity analysis of 
cohesion, except that the (uniaxial or biaxial) compres-
sive strength is unaffected by the tensile strength limit 
(Fig. 26a). The Brazilian strength and the direct tensile 
strength exhibit a clear dependence upon the tensile 
strength limit (Fig. 26a). At first, when the tensile 
strength limit is low, the (macro) tensile strength is 

Figure 24. Correlation between friction angle and normalized peak strength for (a) the continuum and (b) the Voronoi model.

a) b)
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Figure 25. Effect of friction angle on stress-strain curves of Brazilian test model for (a) the continuum and (b) the Voronoi model.

Figure 26. Correlation between tensile strength limit and normalized peak strength for (a) the continuum and (b) the Voronoi model. 

controlled by the tension yield function (Fig. 23c). After 
reaching the critical value, e.g., the maximum tensile 
strength (σt

max = c ⁄ tanφ), the tensile strength becomes 
constant and the failure is controlled by the shear yield 
function (Fig. 23a).

On the other hand, the Voronoi model shows a semi-
linear dependence on the tensile strength limit (Fig. 
26b). Increasing the magnitude of the tensile strength 
limit increases the failure strength in every model tested. 
At this point it is clear that the macro-strength behav-
iour of the Voronoi model is not directly controlled 
by the input value of each single micro-property (i.e., 
it needs to be calibrated as a whole because all the 
micro-properties interact in complex ways) unlike the 
continuum model. In fact, every micro-property has an 
influence on the model’s response, and has to be taken 
into account during the material’s calibration procedure.

Contrary to what is observed in the Voronoi model, 
the Brazilian strength can never overcome the direct 
tensile strength in the continuum model. The differ-
ence between the tensile strengths in the continuum 
model is mainly affected by the cohesion and the tensile 
strength limit. The direct tensile strength is higher than 
the Brazilian strength as long as the Mohr-Coulomb 
model does not include the tensile strength limit. This is 
satisfied when the tensile strength limit is much higher 
than the cohesion (which is basically an unrealistic case, 
see Fig. 23a) or when the cohesion and tensile strength 
limits are similar in magnitude (Fig. 23b). When the 
cohesion is significantly larger than the tensile strength 
limit (Fig. 23c), the Brazilian strength and the direct 
tensile strength are similar in magnitude. (It should 
be noted that the graphs in the paper do not show the 
absolute, but the normalized, strength values.) The 
Brazilian strength could slightly overcome the direct 

a) b)

a) b)
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tensile strength in some simulations due to the rough 
mesh density (Section 4.3) or an inappropriate number 
of circle segments (Section 4.4). The Brazilian strength 
to direct tensile strength ratio in the Voronoi model is 
described in Section 4.8.

4.10 Dilation

Since intact rock is represented as an assembly of poly-
gons with micro strength properties at their contacts, 
the cracking and failure that occurs during loading can 
potentially reproduce macro dilation and control the 
material’s macro strength. 

For the Voronoi model, a sensitivity analysis on input 
dilation angle, which is assigned to contacts, shows no 
significant influence on the pre-peak region and the 
peak strength in both models (Fig. 27). After failure, 
when the polygons start to slide along their contacts, 
this causes the material to dilate so that a higher dilation 
angle produces a lower residual strength (Fig. 27b). As 
expected, dilation has no effect on direct tensile-test 
simulations [28], since polygons are only moving apart. 
On the contrary, in the continuum model, a higher dila-
tion angle produces a higher residual strength (Fig. 27a). 
The reason is in the formulation of the Mohr-Coulomb 
constitutive model, where material with a larger dilation 
angle tends to follow a strain-hardening path.

5 CONCLUDING REMARKS

The numerical modelling of intact rock microstructures 
has received a lot of attention in the past two decades. It 

Figure 27. Effect of dilation on the stress-strain curves of the uniaxial compressive test for (a) the continuum and (b) the Voronoi model. 

has been recognized that rock microstructure is of key 
importance in intact rock behaviour. For this purpose a 
Voronoi polygonal-shaped model was used to generate 
the intact rock microstructure and simulate its response 
to four standard laboratory tests. A detailed parametric 
sensitivity analysis was performed to obtain an in-depth 
understanding of the model behaviour. 

The findings from the parametric sensitivity analysis can 
be summarized as follows:

- The effect on the peak strength of the Voronoi poly-
gon size resolution can be eliminated by having more 
than 10 polygons in the model sample’s
cross-section.

- Voronoi polygon heterogeneity and distribution can 
be controlled by the seed number and the number of 
iterations. Up to 250 iteration steps are necessary to 
produce a natural crack pattern, which is also differ-
ent for different seed numbers.

- Voronoi polygons are discretized into deformable 
zones. The recommended ratio of Voronoi edge 
length to zone edge length is at least 1.5.

- The strain rate effect is affected by the model size and 
in this project it is eliminated when it is lower than 
10-5 mm/step.

- The model shape height-to-width ratio affects the 
peak strength and the material ductility, which is in 
accordance with the laboratory experiments.

- The stiffness ratio kn/ks affects the rock peak 
strength, the Young's modulus and the Poisson's 
ratio. Reasonable material behaviour can be achieved 
if the stiffness ratio kn/ks is between 1 and 20. The 
stiffness ratio kn/ks control affects the Brazilian to 
direct tensile strength ratio as well.

a) b)
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- Contact cohesion, contact friction angle and contact 
tensile strength limit affect the material’s tensile and 
compressive peak strengths.

- Contact dilation affects the post-peak material beha-
viour.

In parallel with the Voronoi model, the continuum 
model was running as a benchmark, as it is widely 
known and used in many engineering applications. Since 
the Voronoi model can better represent the intact rock 
microstructure it was recognized that it could be a better 
approach to study damage processes in rocks during 
laboratory testing. Being able to control the model 
microstructure is one of its advantages. By using differ-
ent seed numbers in the Voronoi models’ generation, a 
slightly different crack pattern for the same conditions 
is reached. This makes it possible to match the model’s 
macro response to real material behaviour not only 
quantitatively, but also qualitatively. This is not possible 
with the continuum model, because of its limitations as 
an elasto-plastic model and its linear failure envelope. 
Moreover, Voronoi models better reproduce the Brazil-
ian to direct tensile strength ratio, and show a better 
representation of the dilation and post-peak behaviour 
in comparison to the continuum models.
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