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Abstract
We review 12 time series similarity measures and inves-
tigate their time complexity, normalization, invariance
with respect to warping and scaling, support of time se-
ries of different lengths, and other properties. We show on
simulated data that several similarity measures perform
well on average, but none perform well in all cases and in
some cases measures that typically perform poorly, such
as compression-based similarity, are a better alternative.

1 Introduction
Measuring similarity between time series is an important
component in time series data analysis, especially unsu-
pervised learning. Many different measures exist and it
is often not clear which measure is the best choice for
the test at hand or how different measures compare with
respect to relevant properties such as invariance to scal-
ing/warping and time complexity.

The few related works are Wang et al. [13] who com-
pare 9 measures but omit those based on correlation coef-
ficients or compression. Serra and Arcos [10] and Górecki
and Piasecki [6] compare 7 and 30 measures, respectively,
but focus on 1-NN classification performance and not
clustering performance and other properties as we do. Es-
ling and Agon [4] do focus on other properties, but not on
clustering performance.

We aim to provide a compact review and classifica-
tion of the most commonly used similarity measures and
relevant properties which are often excluded in related
work. Furthermore, we use several simulated data sets to
empirically evaluate how different measures compare to
each other and how well they perform in clustering.

2 Distance measure features
In this paper we will view time series similarity measures
in terms of these properties, which are relevant to choos-
ing the best similarity measure for the task at hand:

• Time complexity.
• Can compare time series of different lengths.
• Normalization. Does increasing the length or sam-

pling frequency of the time series, without chang-
ing any other properties, change the value? If so,
we provide a factor that normalizes the measure

and facilitates comparison across time series of dif-
ferent lengths.

• Invariance/robustness with respect to warping
and scaling. Warping is a change of the time se-
ries’ times that preserves the ordering. Scaling is
multiplication of the time series’ values with a con-
stant. Related work is inconsistent about warp-
ing, so we additionally define weak invariance (the
same change is applied to both compared time se-
ries) and strong invariance (the change is applied
to only one of the time series). Strong invariance
to warping implies weak invariance to warping.

A summary of similarity measures is in Table 1.

3 Distance measures
Let X = x1, ..., xn and Y = y1, ..., ym be the two time
series whose similarity we are interested in. We also use
X−n and X−1 to represent X without the last and first
point, respectively.

3.1 Lp norms/distances
Depending on the value of p, we have:

• Manhattan (p = 1):
∑n
i=1 |xi − yi|.

• Minkowski (1 < p <∞): p
√∑n

i=1(xi − yi)p.
• Euclidean (p = 2):

√∑n
i=1(xi − yi)2.

• Infinite norm (p =∞): maxi=1,...,n |xi − yi|.

In empirical evaluation, we use Euclidean distance.

3.2 DISSIM
DISSIM is designed to work with time series with dif-
ferent sampling rates. It is defined as the integral of the
Euclidean distance between the two series, which are as-
sumed to be linear between sampling points. It can be
normalized by dividing by (n − 1) when time series are
extended, but no normalization is required if we increase
the sampling frequency on the same time interval.

3.3 Dynamic Time Warping
Dynamic time warping (DTW) was introduced in order
to overcome some of the restrictions of simpler similarity
measures such as Euclidean distance. It is to this day one
of the most popular measures.
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The DTW costructs amnmatrix of squared distances
between points of both time series, which is then used as a
cost matrix when searching for the cheapest path between
(1, 1) and (m,n). Path cost determines the similarity.

Normalization depends on the step pattern - allowed
transitions and weights between matched pairs, when search-
ing for an optimal path. Normalization is then made by
dividing the distance by n, m or n+m depending on the
step pattern and slope weighting [5].

3.4 Edit distance on Real Sequences
The Edit distance algorithm is based on counting the num-
ber of insert, delete, and replace operations required to
transform one string into another. It can be applied to
time series where points from X and Y are considered a
match if their absolute distance is less than some ε.

EDR is defined recursively as: E(X,Y ) =

min{E(X−1, Y−1)+s, E(X−1, Y )+1, E(X,Y−1)+1)},

where subcost s is 0 if elements match and 1 otherwise
[3]. E(X,Y ) is 0 if either of the time series are empty.
According to Chen et al. [3] we get the best clustering re-
sults, when ε is set to a quarter of the maximum standard
deviation of time series.

3.5 Edit distance with Real Penalty
Edit distance with Real Penalty method (ERP) is also
based on the Edit distance algorithm. When addition or
deletion happens in Y , ERP treats this as a gap. The ERP
distance is defined as E(X,Y )

=



∑m
i=1 |xi − g| ;n = 0∑n
i=1 |yi − g| ;m = 0

min{E(X−1, Y−1) + d(x1, y1),

E(X−1, Y ) + d(x1, g),

E(X,Y−1) + d(y1, g)} ; else

, (1)

with d(x, y) being defined as a L1 norm between the
points x and y [2]. If one of them is a gap point, it is
equal to a user defined constant g.

3.6 Longest common subsequence
We use the Longest common subsequence (LCSS) model
to cope with various problems such as different sampling
rates, different lengths, outliers, and efficiency [12]. It
allows for unmatched elements and efficient approximate
calculation. It is defined as

D(δ, ε,X, Y ) = 1− Lδ,ε(X,Y )

min(n,m)
, (2)

where L is a function defined as Lδ,ε(X,Y )

=


0, A

1 + Lδ,ε(X−n, Y−m), B

max { Lδ,ε(X−n, Y ), Lδ,ε(X,Y−m)}, else
, (3)

where A = {n = 0 ∨m = 0} and B = {|xxn − yxm| <
ε, |xyn − yym| < ε, |n−m| < δ}.

3.7 TQuEST
This similarity measure starts by transforming each time
series into disjoint intervals such that within every inter-
val all the time series’ values are above a threshold ε. Let
S(X, ε) be the unique such transformation of X where
the intervals are the largest.

The TQuEST measure is defined as:

T (X,Y ) =
1

|S(X, ε))|
∑

s∈(X,ε))

min
s′∈S(Y,ε))

d(s, s′)

+
1

|S(Y, ε)|
∑

s′∈S(Y,ε)

min
s∈S(X,ε))

d(s′, s)

, (4)

where d(a, b) is the Euclidean distance between two time
intervals [1].

3.8 Cross-corelation
Cross-correlation (CCor) is based on the Pearson cor-
relation coefficient [7]. It is defined as dCC(X,Y ) =√

1−CC0(X,Y )∑ml
k=0 CCk(X,Y )

, where CCk is the lag-k covariance
and ml is the maximum allowed lag between X and Y
and should not exceed the length of the series. By de-
fault, it is min{n,m} − 1 [7].

3.9 Compression-based similarity measure
The compression-based similarity measure (CDM) is a
class of measures defined as CDM(X,Y ) = C(XY )

C(X)+C(Y ) ,
where C(X) is the size in bytes of the compressed time
series X and XY stands for concatenated time series X
and Y . Any compression algorithm can be used for C(·).
In the empirical evaluation, we use gzip.

3.10 Piccolo distance
This similarity measure was introduced by Piccolo [9] as
a measure of similarity between two ARIMA processes.
It is defined as the Euclidean distance of the coefficients
of the series’ AR(∞) formulations. The coefficients of
the lower order series are padded with zeros to the length
of the larger order. The Piccolo distance exist for any
invertible ARIMA process [8].

3.11 Prediction-based distance
This is a class of similarity measures based on the idea
that two time series are similar if they are close at a spe-
cific time point in the future. Vilar et al. [11] is an im-
plementation of this idea where forecast densities at a
specific point in the future T + h are compared. The
distance is then calculated as an indefinite integral of ab-
solute difference between estimates of the forecast densi-
ties for time series X and Y at time T +h [8]. We set the
forecast horizon h to 1 in our empirical evaluation.

3.12 Embedding-based similarity
This class of measures is based on learning a vector repre-
sentation of time series and then computing their similar-
ity using a vector similarity measure, such as Euclidean
distance. We implemented this idea using Euclidean dis-
tance and Random Warping Series (RWS) to create a vec-
tor representation of time series [14]. This method uses
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the DTW between the given time series and the random
time series distribution. Then a family of positive definite
kernels can be constructed from a map given by DTW.
Optimal are found using cross-validation.

The time complexity depends on the model used but
is typically O(n), excluding the time we require to learn
the representation. It is normalized, weakly invariant to
warping, but it is not invariant to scaling. In the empirical
evaluation, we use an 8-dimensional representation (16
and 32-dimensions do not lead to better results).

4 Classification of similarity measures
Wang et al. [13] propose the following categories: lock-
step, elastic, threshold-based, and pattern-based measures.
Montero et al. [8] propose: complexity-based, prediction-
based, model-free, and model-based measures. Esling
and Agon [4] propose: shape-based, edit-based, feature-
based, and structure-based measures. Each of these clas-
sifications provides a different but incomplete view of
similarity measures. A reconciliation is beyond the scope
of this paper but for the sake of completeness, we classify
the measures used in this paper according to each of the
three classifications (see Table 1).

5 Empirical evaluation and comparison
We generated 9 groups of 100 time series of length 100
(see Table 2). For each pair of groups we computed the
similarity for each pair of time series. We then clustered
them into 2 clusters with k-medoids clustering. We eval-
uated the clustering using the adjusted Rand index. We
repeated this process for each similarity measure.

The purpose of this experiment was twofold. First, to
identify which measures give similar values (see Figure
1). And second, to highlight scenarios where a similarity
measure might fail and which alternative could be used
(see Table 3 for a summary).

6 Discussion
While we did not cover all, we did cover the most popular
similarity measures and at least one representative from
each class of similarity measures, except Spatial Assem-
bling Distance (SpADe). Several similarity measures per-
form well on average, but none perform well in all cases.
In some cases less known measures like compression-
based similarity are better, even though they typically
perform poorly. Therefore, choosing the best similarity
measure for the task at hand is not a trivial task and there
is value in our review of their properties. Piccolo dis-
tance stands out as the only linear complexity similarity
measure with good overall performance. Our embedding-
based approach achieves similar performance and also
has linear time complexity, excluding the time we re-
quire to learn the embedding. However, it was learned
on labelled data and is not generally applicable. The
results are consistent with the results from Wang et al.
[13], Serra and Arcos [10], and Górecki and Piasecki [6],
where DTW and Edit distance measures performed best
although Serra and Arcos [10] and Górecki and Piasecki
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Figure 1: Pearson correlation between similarity measures
across all pairs of time series from all nine groups. DTW,
Euclidean distance, DISSIM, EDR, ERP, LCSS, and RWS all
give numerically similar results. The following are particularly
similar: Euclidean distance and DISSIM, DTW and ERP and
RWS, and EDR and LCSS. CCor, PIC, and PRED are some-
what similar to each other and other methods. TQuEST and
CDM strongly differ from the other measures and each other.

[6] report that advanced modifications of DTW outper-
formed other measures.

Further investigation of embeddings-based approaches
is our main direction for further work. In particular, em-
beddings that are based on unlabelled data. While these
approaches have been tremendously successful in image
and video analysis and there have been notable applica-
tions in time series, there is no systematic treatment in the
context of time series similarity and clustering. Finally,
classification of time series similarities requires further
work in order to reconcile the differences and inconsis-
tencies between existing classifications and produce a more
generally applicable classification.
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