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This paper proposes a novel approach to similarity-based approximate reasoning in an interval-valued 
fuzzy environment. In a rule-based system, an ‘if ... then ...’ rule can be translated into an interval-
valued fuzzy relation by suitable implication operations. The similarity grade between a case and the 
antecedent of a rule is computed and used to modify the relation. A consequent is derived from the well-
known projection operation over the modified relation. The inference mechanism is appropriate because 
the techniques of the conventional Compositional Rule of Inference are incorporated into the existing 
similarity-based inference. Two examples of shipbuilding processing are utilized to illustrate and 
validate the effectiveness of the proposed schema. 
Povzetek: Članek obravnava metode razmišljanje v mehki logiki, temelječe na podobnosti. 

 

1 Introduction 
As the theoretical foundation of fuzzy control, fuzzy 
inference has achieved successful applications in various 
fields. The basic Fuzzy Modus Ponens (FMP) often 
investigated by many researchers can be represented as: 

Rule: If  X is A then       Y is B 

Case: X is A′    
Conclusion:          Y is B′  

Here X and Y are two linguistic variables, which can be 
also regarded as two different universes; ,A A′  
and ,B B′ are fuzzy subsets of universes X and Y , 
respectively. Zadeh introduced the concept of 
Compositional Rule of Inference (CRI) [8]. By 
constructing a fuzzy relation R between A and B , we can 
derive the conclusion B′ from the compositional 
operation of A′ and R . Many fuzzy systems are based on 
Zadeh’s compositional rule of inference [9]. In spite of 
their successes in various systems, researchers have 
pointed out certain drawbacks [4,5] in the mechanism, 
which motivates the introduction of Similarity-based 
Approximate Reasoning (SAR) mechanism as proposed 
in [4-7]. Compared with Zadeh’s CRI, it does not require 
the construction of a fuzzy relation between input and 
output fuzzy data, and it is conceptually clearer than CRI.  

According to the mechanism of SAR methodology, 
in rule-based system reasoning is based on the 
computation of similarity grade between the fact and the 
antecedent of a rule, and the inference result is obtained 
by directly modifying to the consequent part with the 

similarity measure. Thus, the inherent relation between 
the antecedent and the consequent is largely ignored. For 
the FMP problem, suppose that A is the antecedent part of 
‘If X is A then Y is B ’, and A′ is an input fact. In light of 
SAR, we first compute the similarity measure 
( ),S A A′ of A′ and A , then the result B′ is deduced by a 

modification function f such that ( ) ( ) ( )( ), ,B y f S A A B y′ ′= . 
Evidently, a same result B′ will be concluded by SAR 
method when A and A′ are interchanged. Thus, this result 
seems somewhat unconvincing because the inference is 
not always influenced by every change in the input case 
and the antecedent part.  

Combining the conventional CRI and the existing 
SAR methods, in this paper we extend the works of [4,5] 
to develop a novel approach to approximate reasoning. 
First, since interval-valued fuzzy set is considered more 
flexible than general fuzzy set from the viewpoint of 
handling imprecise and fuzzy data, we deal with 
approximation inference within the framework of 
interval-valued fuzzy sets. Next, to interpret a conditional 
statement (rule) residing in a rule-base system, an 
interval-valued fuzzy relation between antecedent and 
consequent can be constructed by suitable implicators. 
Furthermore, based on a measure of similarity, the 
constructed relation is modified to yield a new relation 
called the induced relation, and the conclusion can be 
obtained by the well-known projection operation over the 
induced relation. In the end, we illustrate the 
effectiveness of the proposed scheme by an example of 
processing systems of shipbuilding.  
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The remainder of this article is organized as follows. 
Section 2 includes a brief introduction of some basic 
notions and state of the art on approximate reasoning 
techniques. Section 3 discusses the problems regarding 
similarity index and an approach to approximate 
reasoning. Two examples are provided in Section 4 to 
illustrate the effectiveness of the proposed methods. The 
final section contains the concluding remarks. 

2 Preliminaries and State of the Art 
Let X be a universe of discourse. In Fuzzy Sets (FSs) 
theory, each object x X∈ is assigned a single real value, 
called the grade of membership, between zero and one. 
In [1-3], Gorzalczany and Turksen proposed the notion 
of Interval-valued Fuzzy Sets (IVFSs), which allow 
using interval-based membership instead of using point-
based membership as in FSs. 

An interval-valued fuzzy set A on X is characterized 
by a pair of mappings [ ]: 0,1A X → and [ ]: 0,1A X →  such 
that ( ) ( )0 1A x A x≤ ≤ ≤ , where ( )A x and ( )A x denote a 
lower and an upper bounds of membership function of A , 
respectively. An interval-valued fuzzy set A of X can be 
denoted as ( ) ( )( ){ }, , :A x A x A x x X = ∈  . 

In other words, the membership degree of x with 
respect to A is bounded to a subinterval ( ), ( )A x A x    of 
unit interval, which indicates the possible existence of a 
data value. All the interval-valued fuzzy sets of X is 
written as ( )IVFSs X , and A is said to be normal if and 
only if there exists 0x X∈ such that ( ) ( )0 0 1A x A x= = . For 
every ( )A IVFSs X∈ , the lower bound, the upper bound 
and the kernel function of A can be represented by 

( ){ }
( ){ }

( ) ( ) ( ){ }

:

:

:

A A x x X

A A x x X

A A x A x x Xκ

= ∈

= ∈

= + ∈

 

respectively. Let ( ),A B IVFSs X∈ , the union, intersection 
and complement operations of interval-valued fuzzy sets 
are defined as follows: 

( ) ( ){ } ( ) ( ){ }( ){ }
( ) ( ){ } ( ) ( ){ }( ){ }

( ) ( )( ){ }

, min , ,min , :

, max , ,max , :

, 1 ,1 :

B

B

c

A B x A x A x A x B x x X

A B x A x A x A x B x x X

A x A x A x x X

 = ∈ 

 = ∈ 

 = − − ∈ 




 

To improve the flexibility of fuzzy set in handling 
fuzzy information, Atanassov (1986) proposed the 
Intuitionistic Fuzzy Sets (IFSs) [14], and Gau et al. 
(1993) presented the Vague Sets (VSs) [15]. As the 
IVFSs, IFSs and VSs were proved actually isomorphic 
and equivalent [16-18], we will put them into a 
framework of IVFSs in this paper.  

It is well-known that Fuzzy Set theory has been 
extensively applied to the field of approximate reasoning. 
So far there have been several approaches to approximate 
reasoning based on fuzzy set or interval-valued fuzzy set, 
in which the most influential methods are CRI and SAR 
algorithms. In [19], Li et al. addressed an implication 
operator based on IVFSs, which is suitable for CRI 
method. Cornelis et al. investigated a serial of 
implications in IVFSs and presented an extensional 

schema of CRI [20]. In [21], based on the CRI method, 
an extensional model derived from the Mizumoto’s 
model is provided in an interval-valued fuzzy 
environment. Based on expansion principle, Feng et al. 
also presented several operators that are applicable to 
CRI [22].  

Although the CRI algorithm had achieved notable 
success in various fields such as fuzzy control, expert 
system and decision-making support, some defects of 
this method were found in terms of inference mechanism, 
which leads to the yield of another important approach of 
approximate reasoning—Similarity-based Approximate 
Reasoning (SAR). For the FMP problem, based on the 
change of membership grade of the consequent part, 
Turksen et al. proposed two types of modification 
procedures—expansion type inference and reduction type 
inference [4], and B′ may be computed by any one of the 
following form: 

( ) ( ) ( ){ }min 1, ,B y B y S A A′ ′=                  (Expansion form) 

( ) ( ) ( ),B y S A A B y′ ′= ⋅                              (Reduction form) 
where ( )( ),S A A x′ is the fuzzy similarity degree between a 
fact A′ and the antecedent part A .  

In [23], a new similarity measure of IVFSs was 
presented and inference result was obtained by Turksen’s 
reduction form. Trough constructing a modified function 
based on a similarity measure of IVFSs, Tian et al. gave 
an approach to approximate reasoning [24]. Shi et al. 
addressed a bidirectional approximate reasoning scheme 
based on the distances of IVFSs [25], which can be 
actually regarded as an equivalent form of SAR method. 
Applying the SAR method, Guan et al. addressed a 
specific design scheme of fuzzy controller based on 
IVFSs [26].  

In [10], through introducing a definition of fuzzy 
similarity measure, the authors provided an inference 
solution for FMP as follows: 

( ) ( )( ) ( )( ),
x X

B y S A A x B y
∈

′ ′= ∨ ∧  

In [27], the authors proposed the concept of similarity 
direction between two interval-valued fuzzy sets. 
Through calculating the similarity grade as well as the 
similarity direction of interval-valued fuzzy sets, the 
inference result B′ is computed as 

( )
( )
( )
( )

1

  0.5,  0

 0.5,  0 

  0.5

s

s

s

B y s d

B y B y s d

B y s

 ≥ ≥
′ = ≥ <


<

, ( )
( )
( )
( )

1

  0.5,  0

 0.5,  0 

  0.5

s

s

s

B y s d

B y B y s d

B y s

 ≥ ≥
′ = ≥ <


<

 

where d is the evaluation function of similarity direction 
between A′ and A , and s is the similarity grade 
of A′ and A .  

Meng presented a generalized model for fuzzy 
character spread reasoning [11], which was actually an 
approach of similarity-based weighted fuzzy inference 
applicable to multi-dimensional fuzzy reasoning. 
Through calculating the weighted similarity degree 

is between an input case and the ith rule, the result is 
expressed by 

( ) ( )iB y B y′ = S    
Here ( )1 2, , , ns s s=S  denotes a weighted similarity vector 
that holds 
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( )1
,m

i ij j ijj
s w S A A

=
′= ⋅∑  

for 1,2, ,i n=  . The operator ‘  ’ denotes a generalized 
compositional operation. For example, using ( ),Σ ⋅  
operation we then obtain 

( ) ( )( )1

n
i ii

B y s B y
=

′ = ⋅∑  
In [28], a similarity-based approximate reasoning 

method was given based on IVFSs and fitness 
techniques. Using data fitness method, the similarity 
degree k  between the interval-valued fuzzy sets is 
obtained by 

( ) ( )
( )( )1 2

ln ln
ln

A x A x
k

A x
′⋅

= , ( ) ( )
( )( )2 2

ln ln
ln

A x A x
k

A x
′⋅

= , 1 2

2
k kk +

= .  

And then the result is computed by  
( ) ( )kB y B y′ = , ( ) ( )kB y B y′ = . 

3 Similarity-based Approximate 
Reasoning 

3.1 Similarity measures of IVFSs 
In [13], Zwick et al. surveyed several similarity measures 
of fuzzy sets and compared their performance in an 
experiment. In [12], Ke et al. presented a similarity 
function S to measure the degree of similarity based on 
fuzzy vectors. Let ( ),E F FSs X∈ , then the similarity 
grade ( ),S E F  between E and F can be represented by 
Definition1. [12] 

( ) ( ) ( )
( ) ( ){ }2 2

,
max ,

x X

x X x X

E x F x
S E F

E x F x
∈

∈ ∈

⋅
= ∑

∑ ∑
 

Here, the Sum-product operations represent the product 
of fuzzy vectors E and F, from which we may also derive 
another definition of similarity index, as follows. 
Definition2.  

( ) ( ) ( ){ }
( ) ( ){ }

sup min ,
,

max sup ,sup
x X

x X x X

E x F x
S E F

E x F x
∈

∈ ∈

′ =                                      

Here, the operations Sum-product in Definition 1 are 
modified to Sup-min in Definition 2, respectively.  

The measure proposed in Definition 2 is based on the 
computation of overall supremum and therefore, 
practically difficult to use. 
Example1. Let { }1,2,3,4,5X =  be the universe of 
discourse. Consider the following fuzzy sets on X :  

"small" 1 1 0.8 2 0.5 3 0.2 4
"highly small" 1 1 0.41 3 0.06 3

E
F

= + + +

= + +





 

According to Definition 2, the calculation result implies 
that E is identical to F (i.e., ( ), 1S E F′ = ), even if E is 
highly dissimilar to F by our intuitions. This is why we 
prefer the measure given by Definition 1. 

To provide a definition for similarity measure 
( ),S A B of two interval-valued fuzzy sets A and B , a 

number of factors must be considered. A primary 
consideration is that, whatever way we choose to define 
such an index, it should satisfy the following properties: 
for every ( ), ,A B C IVFSs X∈ , 
P1) ( ) [ ], 0,1S A B ∈ ; 

P2) ( ) ( ), ,S A B S B A=  ; 
P3) ( ), 1S A B =  if and only if A B= ; 
P4) If ( ), 0S A B = , and ,A B  are not simultaneously 
empty, then ( ) ( ){ } ( ) ( ){ }min , min , 0A x B x A x B x= =  for all 
u U∈ ; 
P5) If A B C⊆ ⊆  then ( ) ( ) ( ){ }, min , , ,S A C S A B S B C≤   . 

P4) suggests that A and B are completely dissimilar 
only when A B = ∅ . If A B ≠ ∅ , then they have some 
similarity when A and B have some membership degree 
in common. 

Based on Definition 1, in the following, we develop 
an expression of similarity function S  to measure the 
degree of similarity between interval-valued fuzzy sets. 
Let ,  A A and ( )Aκ be subscript, superscript and kernel 
function of ( )A IVFSs X∈ .  
Definition3. Let ( ),A B IVFSs X∈ . The degree of similarity 
( ),S A B between A and B can be measured as follows: 

( ) ( ) ( ) ( )( )
( ) ( )

, ,  , ,  ,

, 2 4.

S A B S A B S A B

S A B

α β γ κ κ

α β γ

= = =

= + +

 

It is easy to verify that the similarity measures given 
by Definition 3 satisfy axioms P1), P2), P3), P4) and P5). 
Thus, the similarity measures of the lower bound, the 
upper bound and the kernel values of two interval-valued 
fuzzy sets, are incorporated into such an index of IVFSs, 
where the weighted coefficients of which are given 
by 1 0.25ω = , 2 0.25ω = and 3 0.5ω = , respectively.  

3.2 Proposed schema for approximation 
inference 

The conventional CRI does not consider the concept of 
similarity measure in deriving a consequence. The 
existing SAR methods modify directly the consequence 
part of a rule, based on a measure of similarity and 
therefore, the consequence becomes independent of the 
conditional statement. Here, we intend to integrate the 
above techniques for an adequate theory of similarity-
based approximate reasoning. 

According to CRI, a conditional statement (rule) ‘If A 
then B’ can be translated into an interval-valued fuzzy 
relation, denoted as ( ),R A B . To construct the relation, 
some suitable operation operators are used. For example, 
the relation ( ),R A B  constructed by the extensional KD-
implicator can be represented as 
( )( ) ( ) ( ){ }
( )( ) ( ) ( ){ }

, , min 1 ,

, , min 1 ,

R A B x y A x B y

R A B x y A x B y

= −

= −
 

Given a case input A′ , an interval-valued fuzzy 
relation between A′ and B , denoted as ( ),R A B′ , can be 
obtained by intersection operation of A′ and ( ),R A B . 
Thus, an inference result B′ is computed by the well-
known supremum projection operation on ( ),R A B′ , i.e., 

( ) ( )( ) ( ) ( )( ){ }
( ) ( )( ) ( ) ( )( ){ }

sup , , sup min , , ,

sup , , sup min , , ,

x X x X

x X x X

B y R A B x y A x R A B x y

B y R A B x y A x R A B x y
∈ ∈

∈ ∈

′ ′ ′= =

′ ′ ′= =
  

Since the CRI method fails to incorporate the matching 
computation into the inference procedures, the accuracy 
of reasoning is not always satisfactory in some 
application occasions 
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The primary mechanism of SAR is to deduce result 
by modifying the consequent part of a rule with 
similarity measure [4,5]. Applying this principle, in a 
rule-based system we may first calculate the similarity 
grade ( ),S A A′ of the fact A′ and the antecedent part A . 
And then, an interval-valued fuzzy relation ( ),R A B′  
between A′ and B , named as the induced relation, is 
obtained by modifying the relation ( ),R A B with similarity 
measure ( ),S A A′ . Finally, the result B′ can be deduced by 
the projection operation over the induced relation 
( ),R A B′ .  

Given a conditional statement, the following cases 
should be taken into account to obtain an induced 
relation using the similarity measure.  
Case1. If A′ equals to A , then ( ),R A B′ equals to ( ),R A B . 
This is to say we should not make any modification 
to ( ),R A B when ( ), 1S A A′ = . 
Case2. If A′ is completely dissimilar to A , then we can 
conclude nothing from the given conditional statement 
‘If A then B’, i.e., B′ is empty. Since  

( ) ( )( )sup , ,x XB y R A B x y∈′ ′= , ( ) ( )( )sup , ,x XB y R A B x y∈′ ′=  
we then have ( )( ) ( )( ), , , , 0R A B x y R A B x y′ ′= = . i.e., ( ),R A B′ is 
empty when ( ), 0S A A′ = .  
Case3. As ( ),S A A′ changes from 0 to 1, ( ),R A B′ changes 
from ∅ to ( ),R A B . That means ( ),R A B′ is transformed 
from the most unknown state into a specific state.  

From the cases mentioned-above, a quantitative 
relationship between the induced relation and similarity 
measure may be given as following:  

Q1. If ( ), 1S A A′ = , then ( )( ) ( )( ), , , ,R A B x y R A B x y′ = , and 
( )( ) ( )( ), , , ,R A B x y R A B x y′ = ; 

Q2. If ( ), 0S A A′ = , then ( )( ) ( )( ), , , , 0R A B x y R A B x y′ ′= = ;  
Q3. As ( ),S A A′  increase from 0 to 1, ( )( ), ,R A B x y′  
and ( )( ), ,R A B x y′ increase from 0 to ( )( ), ,R A B x y  and 
( )( ), ,R A B x y , respectively.  

Let ( ) ( )( ) ( )( ) ( )( ), , , , , , , , , , ,S A A s R A B x y r R A B x y r R A B x y r′ ′ ′= = = =

( )( ), ,R A B x y r′ ′= . By Q1 and Q2,  
0,     0

,    1
s

r
r s

=′ =  =
, 

0,     0
,    1

s
r

r s
=′ =  =

 

and by Q3, we get 
( ) ( ),r r s T s r′ ′= = , ( ) ( ),r r s T s r′ ′= =  

where T is a continuous t-norm. Thus, a modification 
schema for producing the induced relation ( ),R A B′ , 
named as Q schema, may be represented by 
( )( ) ( )( )( )
( )( ) ( )( )( )

, , , , ,

, , , , ,

R A B x y T s R A B x y

R A B x y T s R A B x y

′ =

′ =
                       

Once the induced relation is derived from Q schema, 
the inference result B′ is then obtained by the supremum 
projection, i.e. 

( ) ( )( ) ( )( )( )
( ) ( )( ) ( )( )( )

sup , , sup , , ,

sup , , sup , , ,
x X x X

x X x X

B y R A B x y T s R A B x y

B y R A B x y T s R A B x y
∈ ∈

∈ ∈

′ ′= =

′ ′= =
      (1)                            

Apparently, in terms of inference mechanism, there 
exists a distinction between the conventional CRI and the 
proposed method. A logical interpretation for the CRI 
method is: from ‘ X is A′ and ( ),X Y is ( ),R A B ’ infer 
‘ Y is B′ ’. For the proposed method, the inference 

mechanism can be interpreted as: from ‘ A′ is similar 
to A and ( ),X Y is ( ),R A B ’ infer ‘ Y is B′ ’, where the 
connective ‘and’ is associated with t-norm operation.  

The proposed algorithm on performing similarity-
based approximate reasoning is summarized as follows.  
Step1. Translate a rule and compute ( ),R A B using some 
suitable operators (Translation); 
Step2. Compute ( ),S A A′  using some suitable definition, 
possibly, Definition 3 (Matching); 
Step3. Modify ( ),R A B with ( ),S A A′  to obtain the induce 
conditional relation ( ),R A B′  using a scheme Q 
(Modification);  
Step4. Use supremum projection operation on ( ),R A B′ to 
obtain B′ (Projection).  

In Step1, to translate a rule ‘If A and B’ we should 
calculate an interval-valued fuzzy relation ( ),R A B  
between A and B. According to the Zadeh’s CRI method, 
there are about eighteen operators applicable to 
construct ( ),R A B , which can often be classified two main 
classes. The first class is called the extensional ‘and’ 
operators, such as the Mamdani operator, the Larson 
operators and the bounded product, etc. The second is 
called the extensional ‘implication’ operators, including 
the well-known S-implicator and the R-implicator. The 
following proposition will provide a clue on how to 
select the suitable operators for the construction 
of ( ),R A B .  
Proposition1. Suppose A is normal and does not 
completely cover the domain. Let 1s = .  
1) Ifϕ  is both increasing, then B B′ = ; 
2) Ifϕ  is left decreasing and right increasing, then B Y′ = . 
Proof.  
1) Sinceϕ  is both increasing, then 
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

, , ,

, , ,

R A B x y A x B y

R A B x y A x B y

ϕ

ϕ

=

=
 

By Formula (1), we get 
( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( )( ) ( ) ( )( )( )
sup , , , sup , ,

,sup , , sup ,
x X x X

x X x X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

ϕ

ϕ ϕ
∈ ∈

∈ ∈

′ = =

= =
 

As A is normal, then 
( ) ( )( )( ) ( )( ), 1, ,B y T s B y T s B yϕ′ = = .  

Similarly, ( ) ( )( ),B y T s B y′ = , we then obtain B B′ =  by 1s = .  

2) Asϕ  is left decreasing and right increasing, then 
( )( ) ( ) ( )( )
( )( ) ( ) ( )( )

, , ,

, , ,

R A B x y A x B y

R A B x y A x B y

ϕ

ϕ

=

=
 

By Formula (1), we get 
( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )( )( )
sup , , , sup , ,

,sup , , inf ,

x X x X

x Xx X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

ϕ

ϕ ϕ

∈ ∈

∈∈

′ = =

 = = 
 

  

Since A does not completely cover the domain, i.e.  
( ) ( )inf inf 0

x X x X
A x A x

∈ ∈
= = , then 

( ) ( )( )( ) ( ), 0, ,1B y T s B y T s sϕ′ = = =  
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Similarly, ( )B y s′ = . By 1s = , we then obtain ( ) 1B y′ =  
for every y Y∈ . Hence, B Y′ = .                                        � 
Remark1. We can conclude from Proposition1 as 
following: 

1) If an implication selected for constructing interval-
valued fuzzy relation is both increasing, then the 
inference result satisfies reductive property when 
antecedent part is normal. Furthermore, since 

( ) ( )( ),B y T s B y′ = and ( ) ( )( ),B y T s B y′ = , we then obtain 
( ) ( ) ( ) ( ),  B y s B y B y s B y′ ′= ⋅ = ⋅  

when t-norm takes the algebraic product. This is exactly 
identical to the Turksen’s reduction form as mentioned in 
Section 2.  

2) If an implication selected for constructing interval-
valued fuzzy relation is hybrid monotonic, then the 
inference result equals to the whole set when antecedent 
part does not completely cover the domain. In this case, 
the result becomes the most unspecific case 
because B Y′ = means ‘ B′ is anything’ from the viewpoint 
of semantics.  
Proposition2. Suppose A is normal, and ϕ is both 
increasing, then B B′ ⊆ .  
Proof. Since 

( ) ( )( )( ) ( ) ( )( )( )

( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

sup , , , sup , ,

,sup , , sup ,

sup , 1,

x X x X

x X x X

x X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

A x B y B y B y

ϕ

ϕ ϕ

ϕ ϕ

∈ ∈

∈ ∈

∈

′ = =

    = =        
 ≤ = = 
 

 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( ) ( ) ( )

( ) ( ) ( )( ) ( )

sup , , , sup , ,

,sup , , sup ,

sup , 1,

x X x X

x X x X

x X

B y T s R A B x y T s A x B y

T s A x B y T s A x B y

A x B y B y B y

ϕ

ϕ ϕ

ϕ ϕ

∈ ∈

∈ ∈

∈

′ = =

    = =        
 ≤ = = 
 

  

for every y Y∈ . Hence, we get B B′ ⊆ .                             � 
Example2. Suppose there is a conditional statement ‘If A 
then B’ such that  

[ ]( ) [ ]( ) [ ]( ) ( ){ }1 2 3 4, 0.7,0.8 , , 0.4,0.5 , , 0.2,0.3 , ,0A x x x x=
( ) [ ]( ) ( ){ }1 2 3,1 , , 0.5,0.6 , ,0B y y y=  

Given a case input ( ) [ ]( ) [ ]( ) ( ){ }1 2 3 4,1 , , 0.7,0.8 , , 0.3,0.3 , ,0A x x x x′ = , 
compute the inference result B′ using the Turksen’s 
reduction form and the proposed method, respectively.  

From Definition 3, the similarity grade between the 
fact A′ and the antecedent part A can be calculated 
as ( ), 0.70S A A′ = . Appling the Turksen’s SAR method, 
we have 

( ) ( ) [ ]( ) ( ){ }I 1 2 3, ,0.7 , , 0.35,042 , ,0B S A A B y y y′ ′= ⋅ = . 
According to the proposed algorithm in this paper, 

we first compute an interval-valued fuzzy relation 
of A and B using the Mamdani operator, i.e. 

( )

[ ] [ ]
[ ] [ ]
[ ] [ ]

0.7,0.8 0.5,0.6 0
0.4,0.5 0.4,0.5 0

,
0.2,0.3 0.2,0.3 0

0 0 0

R A B

 
 
 =
 
 
  

 

and then we have an induced relation ( ),R A B′ by the 
schema Q, i.e. 

( ) ( ) ( )

[ ] [ ]
[ ] [ ]
[ ] [ ]

0.49,0.56 0.35,0.42 0
0.28,0.35 0.28,0.35 0

, , ,
0.14,0.21 0.14,0.21 0

0 0 0

R A B S A A R A B

 
 
 ′ ′= ⋅ =
 
 
  

  

where the t-norm is the algebraic product. Finally, we 
have the result IIB′ by supremum projection, i.e.  

( )( )
[ ]( ) [ ]( ) ( ){ }

II

1 2 3

sup , ,

0.49,0.56 , , 0.35,0.42 , , 0,
x XB R A B x y

y y y
∈′ ′=

=
 

Suppose that the fact A′ and the antecedent part A are 
interchanged. An identical result IB′ can be deduced from 
the Turksen’s SAR method, whereas a different result 

IIB′  can be derived from the proposed method, i.e. 
( ) [ ]( ) ( ){ }II 1 2 30.7, , 0.35,042 , , 0,B y y y′ = .  

Remark2. It can be seen from Example 2 that every 
change in the concept, as it appears in the conditional 
premise and in the fact, is incorporated into the induced 
interval-valued fuzzy relation. Hence, through the 
projection operation on the induced relation, the 
inference result is influenced by the changes in the fact 
and the antecedent of a rule. 

4 Case Study 
In shipbuilding technologies, some operational systems 
are so complex that it is very difficult for us to describe 
them with precise mathematical models. For these 
systems, the operational determinations can be acquired 
by means of the experiences of operators accumulated in 
practices.  As the experiential knowledge is often fuzzy, 
which is suitable to describe by IVFSs, in the sequel we 
provide two technological cases modelled by IVFSs to 
illustrate applications of similarity-based method 
proposed in this article.  

4.1 Layout of heating lines on plate 
The processing practices indicate that length and density 
of heating lines exert a great impact on the forming of 
sheet metals. Let X, Y and Z be the linguistic variables 
representing curvature of a bending plate, the length of 
heating lines, and the space of heating lines, respectively. 
And the linguistic values are composed of several 
interval-valued fuzzy sets ( )iA IVFSs X∈ , ( )jB IVFSs Y∈  
and ( )kC IVFSs Z∈ , as shown in Table 1, where 

{ }1,2,3,4,5X Y Z= = = . And the operational rules derived 
from experiences of operators are summarized in Table 2 

IVFSs \ Universe 1 2 …… 5 
A1 (Large) 0 [0.1,0.2] …… 1 
A2 (Medium) [0.2,0.3] [0.7,0.8] …… [0.1,0.2] 
A3 (Small) 1 [0.4,0.4] …… 0 
B1 (Long) 0 [0,0.1] …… 1 
B2 (Medium) [0.2,0.4] [0.5,0.5] …… [0.2,0.3] 
B3 (Short) 1 [0.6,0.8] …… 0 
C1 (Large) 0 [0.1,0.1] …… 1 
C2 (Medium) [0.1,0.3] [0.4,0.5] ….. [0.3,0.4] 
C3 (Small) 1 [0.7,0.8] …… 0 
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Table 1: Description for linguistic values based on IVFSs. 

Rule No. Antecedent part Consequent part 
1 X is A1 Y is B1 Z is C3 
2 X is A1 Y is B2 Z is C3 
3 X is A2 Y is B2 Z is C2 
4 X is A3 Y is B3 Z is C1 
5 X is A3 Y is B3 Z is C2 

Table 2: Operational rules on the layout of heating lines. 

Now let us conduct approximate reasoning using the 
scheme proposed in Section 3, and the inference 
procedures can be summarized as follows. 
Step1. Translate the lth rule lr and compute 

( ) ( ) ( )( ),l l lR A B C×  using the extensional Mamdani 
operator, for 1,2, ,5l =  ; 
Step2. Compute the similarity grade ls between input 
case A′ and the antecedent ( )lA by Definition 3;  
Step3. Combine ls with ( ) ( ) ( )( ),l l lR A B C× to induce an 
interval-valued fuzzy relation ( ) ( )( ), l lR A B C′ ×  using the 
modification schema Q;  
Step4. Deduce a conclusion output ( ) ( )l lB C′ ′× by the 
supremum projection over ( ) ( )( ), l lR A B C′ × ; 
Step5. Derive the general output B C′ ′× from union 
operation over ( ) ( )l lB C′ ′× ; 
Step6. Decouple the synthetic output ( )B Cκ ′ ′× to 
obtain ( )Bκ ′ and ( )Cκ ′ via the projection operations on the 
universes Z and Y , respectively.  
Step7. Obtain the determination values by defuzzification 
operations, using the maximum membership method.  

In Step1, since ( ) ( )l lB C×  is a synthetic consequent 
part, which can be interpreted as a binary interval-valued 
fuzzy relation ( ) ( )( ),l lR B C  such that 

( ) ( )( )( ) ( ) ( ) ( ) ( )( )
( ) ( )( )( ) ( ) ( ) ( ) ( )( )

, , min ,

, , min ,

l l l l

l l l l

R B C y z B y C z

R B C y z B y C z

=

=
 

Thus, a ternary interval-valued fuzzy relation 
( ) ( ) ( )( ),l l lR A B C× is constructed by 
( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )
( ) ( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )

, , , min , , ,

, , , min , , ,

l l l l l l

l l l l l l

R A B C x y z A x R B C y z

R A B C x y z A x R B C y z

× =

× =
 

In Step3, according to the modification schema Q, we 
then obtain 

( ) ( )( )( ) ( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( ) ( )( )( )

, , , , , ,

, , , , , ,

l l l l l
l

l l l l l
l

R A B C x y z s R A B C x y z

R A B C x y z s R A B C x y z

′ × = ⋅ ×

′ × = ⋅ ×
 

where t-norm is the algebraic product. From Step4, we 
have 

( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )
( ) ( )( )( ) ( ) ( ) ( ) ( )( )( )( )

, min sup , , ,

, min sup , , ,

l l l l l
l x X

l l l l l
l x X

B C y z s A x R B C y z

B C y z s A x R B C y z

∈

∈

′ ′× = ⋅

′ ′× = ⋅
    (2)                      

If ( )lA is normal, then Formula (2) can be simplified as 

( ) ( )( )( ) ( ) ( )( )( )
( ) ( )( )( ) ( ) ( )( )( )

, , ,

, , ,

l l l l
l

l l l l
l

B C y z s R B C y z

B C y z s R B C y z

′ ′× = ⋅

′ ′× = ⋅
                            (3)                                            

Now let a case input 

[ ] [ ] [ ]
''more or less large''
0 1 0.32,0.45 2 0.55,0.63 3 0.90,0.95 4 1 5

A′
= + + + +
  

For the 1st rule, according to Definition 3, the degree of 
similarity between A′ and ( )1A is calculated by 

( )( ) ( )( ) ( ) ( )( )( )( )1 1 1
1 , , 2 , 4 0.87s S A A S A A S A Aκ κ′ ′ ′= + + =  

Since ( )1A is normal, we then obtain ( ) ( )1 1B C′ ′× by Formula 
(3), i.e.  

( ) ( )1 1

0 0 0 0 0
[0,0.09] [0,0.08] [0,0.09] [0,0.09] 0

[0.35,0.35] [0.35,0.35] [0.26,0.35] [0.09,0.17] 0
[0.61,0.78] [0.61,0.70] [0.26,0.35] [0.09,0.17] 0
[0.87,0.87] [0.61,0.70] [0.26,0.35] [0.09,0.17] 0

B C

 
 
 
 ′ ′× =
 
 
  

 

Similarly, we can derive the outputs from other rules in 
Table 2, and the general output is calculated by 

( ) ( )( )
5

1
[0.17,0.35] [0.17,0.35] [0.17,0.35] [0.11,0.21] [0.13,0.21]
[0.44,0.44] [0.44,0.44] [0.26,0.35] [0.26,0.26] [0.15,0.21]
[0.87,0.87] [0.61,0.70] [0.51,0.51] [0.26,0.32] [0.15,0.21]
[0.61,0.78] [0.61

l l

l

B C B C
=

′ ′ ′ ′× = ×

=



,0.70] [0.32,0.36] [0.26,0.32] [0.15,0.21]
[0.87,0.87] [0.61,0.70] [0.26,0.35] [0.11,0.17] [0.15,0.21]

 
 
 
 
 
 
  

  

From Step6, we have 

( )( ) ( )( )( ) { }
( )( ) ( )( )( ) { }

sup , 0.52,0.88,1.74,1.39,1.74
sup , 1.74,1.31,0.61,0.28,0.36

z Z

y Y

B y B C y z
C z B C y z

κ κ
κ κ

∈

∈

′ ′ ′= × =

′ ′ ′= × =
 

According to Step7, since  

( )( ) ( )( ) ( )( )
( )( ) ( )( )

sup 3 5

sup 1
y Y

z Z

B y B B

C z C

κ κ κ

κ κ
∈

∈

′ ′ ′= =

′ ′=
 

Hence, ( ) ( ), 3,1y z′ ′ = or ( ) ( ), 5,1y z′ ′ = are selected as 
determination values, which can be interpreted as the 
conclusion is ‘Y is long or medium’ and ‘Z is small’ when 
the case input is ‘more or less large’.  

4.2 Welding deformation prediction on 
high-tensile steel structure 

Welding experiment shows that, welding deformation of 
high-tensile steel structure not only relates to the leg size 
of weld seam, but also relates to the thickness of steel 
structure and welding current. Through a large amount of 
welding experiments, a rule-set including nine rules is 
summarized by the experienced welding operators, as 
shown in Table 3, where the linguistic values are the 
interval-valued fuzzy sets. For example, let Y be the 
thickness universe. The membership function of A21, A22 
and A23 is given as Table4, where linguistic values 
‘Thick’, ‘Medium’ and ‘Thin’ are represented by A21, A22 
and A23, respectively.  
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Rule No. Antecedent part Consequent part 

1 X is A11 Y is A21 Z is A31 W is D3 
2 X is A12 Y is A21 Z is A31 W is D3 

…… …
… 

…
… 

…
… 

…… 

9 X is A13 Y is A23 Z is A33 W is D2 

Table 3: Decision rule-set of welding deformation. 

Linguistic value \ Y 1 2 3 4 5 
Thick [0,0] [0,0] [0.2,0.2] [0.6,0.7] [1,1] 

Medium [0,0] [0.1,0.3] [0.9,0.9] [0.3,0.3] [0,0] 
Thin [1,1] [0.8,0.8] [0.2,0.3] [0,0] [0,0] 

Table 4: Membership function of linguistic value of 
thickness universe. 

Once the knowledge model based on decision rules of 
welding deformation is obtained, we can set up a model 
of approximate reasoning, using the proposed method in 
this article. Through fuzzification of input data, 
similarity-based reasoning as well as defuzzification of 
fuzzy data, we then obtain the inference result of welding 
deformation. The running interface on welding 
deformation prediction system is shown as Figure 1. To 
examine the effectiveness of inference model, we arrange 
a welding experiment including ten test samples, as 
shown in Table 5.  

Figure 1: Running interface on welding deformation 
prediction system. 

Test sample Leg size 
/mm 

Thickness 
/mm 

Current 
/A 

Deformation value  
/mm 

p1 5.5 6 130 0.53 
p2 4.5 8 95 0.26 

…… …… …… …… …… 
p10 4.5 5 115 0.46 

Table 5: Test data on welding experiment.  

 

 

Figure 2: Comparison of prediction values and real 
values 

From error curve of prediction values and real values 
shown in Figure 2, we can calculate the maximum 
error max 0.050E = , the mean error 0.029mE = and the 
standard error std 0.0317E = , respectively. In terms of 
prediction accuracy of welding deformation, the result 
justifies the effectiveness of the proposed method.  

5 Conclusion 
In this paper, we investigate the similarity measures of 
interval-valued fuzzy sets. Based on the Turksen’s 
reasoning model, we develop an approach to inference by 
combining the conventional CRI with similarity-based 
approximate reasoning. It is shown that a general 
representation for inference conclusion can be yielded by 
the procedures including translation, matching, 
modification, and projection. Besides, as the 
approximation inference is performed under the 
framework of IVFSs, the proposed method seems more 
flexible than is done with the general FSs. In the end, we 
utilize two examples concerning shipbuilding techniques 
to illustrate and validate the proposed schema.  

For the nonlinear and coupling shipbuilding 
technology, the conventional modelling schema mainly 
contains physical simulation and Finite Element Analysis 
(FEA). As to the former, it not only costs a large amount 
of lab funds but also limits to experimental conditions. 
As for FEA, although the precise of this method is 
relatively high, the program is so time-consuming that it 
can hardly be applied to manufacture practices. 
Compared with the traditional methods, modelling based 
on fuzzy data can fully take advantage of the experiences 
of experts in their field, and accuracy of inference result 
is also adequate to meet the needs of technological 
practices. Therefore, we have lots of research 
opportunities for future applications of similarity-based 
inference to complex shipbuilding systems, such as 
layout of heating lines, welding parameters design and 
welding deformation prediction, etc.  
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