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Abstract

We determine all firm and residually connected rank 2 geometries on which PSL(2, q)
acts flag-transitively, residually weakly primitively and locally two-transitively, in which
one of the maximal parabolic subgroups is isomorphic toA4, S4,A5, PSL(2, q′) or PGL(2,
q′), where q′ divides q, for some prime-power q.
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1 Introduction
In [5], we started the classification of the residually weakly primitive and locally two-
transitive coset geometries of rank two for the groups PSL(2, q). The aim of this paper
is to finish this classification. It remains to focus on the cases in which one of the max-
imal parabolic subgroups is isomorphic to A4, S4, A5, PSL(2, q′) or PGL(2, q′) where
q′ divides q. For motivation, basic definitions, notations and context of the work we refer
to [5].

In Section 3, we sketch the proof of our main result:

Theorem 1.1. LetG ∼= PSL(2, q) and Γ(G; {G0, G1, G0∩G1}) be a locally two-transitive
RWPRI coset geometry of rank two. If G0 is isomorphic to one of A4, S4, A5, PSL(2, q′)
or PGL(2, q′), where q′ divides q, then Γ is isomorphic to one of the geometries appearing
in Table 1, Table 2, Table 3, Table 4, Table 5, and Table 6.
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G0
∼= A5 q = 4r with r prime

G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-
up to conj. up to isom. on q arc-trans. g.

Γ1 D10 D30 1 1 q±1
15

odd s = 3
Γ2 A4 E16 :3 1 1 q = 16 s = 3
Γ3 A4 E16 :3 5 2 q = 64 s = 3

Γ4 A4 E16 :3 4r−1−1
3

2(4r−2−1)+3.2r−2

3r
r > 3, r odd prime s = 3

G0
∼= A5 q = p = ±1(5)

with p odd prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-

up to conj. up to isom. on q arc-trans. g.
Γ5 D10 D20 2 1 q = ±1(20) s = 3
Γ6 D10 D30 2 1 q = ±1(30) s = 3
Γ7 D10 A5 2 1 q±1

10
even s = 2

Γ8 D10 A5 1 1 q±1
10

odd s = 2
Γ9 A4 S4 2 1 q = ±1(40) or q = ±9(40) s = 3
Γ10 A4 A5 2 1 q = ±1(40) or q = ±9(40) s = 2
Γ11 A4 A5 1 1 q = ±11(40) or q = ±19(40) s = 2

G0
∼= A5 q = p2 = −1(5)

with p odd prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-

up to conj. up to isom. on q arc-trans. g.
Γ12 D10 D20 2 1 q = −1(20) s = 3
Γ13 D10 D30 2 1 q = −1(30) s = 3
Γ14 D10 A5 2 1 q+1

10
even s = 2

Γ15 D10 A5 1 1 q+1
10

odd s = 2
Γ16 A4 S4 2 1 q = −1(40) or q = 9(40) s = 3
Γ17 A4 A5 2 1 q = −1(40) or q = 9(40) s = 2
Γ18 A4 A5 1 1 q = −11(40) or q = 19(40) s = 2

Table 1: The RWPRI and (2T )1 geometries with G0
∼= A5.

G0
∼= A4 q = p > 3 and

q = 3, 13, 27, 37(40) or q = 5

G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions locally(G, s)-arc-
up to conj. up to isom. on q transitive graphs

Γ1 3 Z6 1 1 q = 13, 37, 83, 107(120) s = 3

Γ2 3 D6
q+1
6

q+1
6

+1

2
q+1
6

odd s = 3

Γ3 3 D6
q−1
6

q−1
6

+1

2
q−1
6

odd s = 3
Γ4 3 D6

q+1
6

q+1
12

q+1
6

even s = 3
Γ5 3 D6

q−1
6

q−1
12

q−1
6

even s = 3
Γ6 3 A4

q+1
3
− 1 q+1

6
3 | q + 1 s = 2

Γ7 3 A4
q−1
3
− 1 q−1

6
3 | q − 1 s = 2

Table 2: The RWPRI and (2T )1 geometries with G0
∼= A4
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G0
∼= S4 q = p > 2 and q = ±1(8)

G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions locally(G, s)-arc-
up to conj. up to isom. on q transitive graphs

Γ1 D6 D12 2 1 q = ±1(24) s = 3
Γ2 D6 D18 2 1 q = ±1(72) or q = ±17(72) s = 3
Γ3 D6 S4 2 1 q±1

6
even s = 2

Γ4 D6 S4 1 1 q±1
6

odd s = 2
Γ5 D8 D16 2 1 q = ±1(16) s = 7
Γ6 D8 D24 2 1 q = ±1(24) s = 3
Γ7 D8 S4 2 1 q±1

8
even s = 4

Γ8 D8 S4 1 1 q±1
8

odd s = 4
Γ9 A4 A5 2 1 q = ±1(40) or q = ±9(40) s = 3

Table 3: The RWPRI and (2T )1 geometries with G0
∼= S4.

G0
∼= PSL(2, 2n) q = 2nm,

with m prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc.(G, s)-arc-

up to up to on q trans.
conj. isom. graphs

Γ1 E2n : (2n − 1) E2mn : (2n − 1) 1 1 m = 2, n 6= 1 s = 3
Γ2 2 D6 1 1 q = 4; n = 1, m = 2 s = 2
Γ3 2 22 1 1 q = 4; n = 1, m = 2 s = 3
Γ4 3 A4 1 1 q = 4; n = 1, m = 2 s = 3
Γ5 D10 D30 1 1 q = 4m; n = 2; q±1

15
odd s = 3

Table 4: The RWPRI and (2T )1 geometries with G0
∼= PSL(2, 2n).

G0
∼= q = pnm, p and

PSL(2, pn) m odd primes
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions locally(G, s)-arc-

up to conj. up to isom. on q transitive graphs
Γ1 3 A4 3m−1 − 1 3m−1−1

2m
q = 3m; n = 1, m 6= 3 s = 2

Γ2 3 A4 8 2 q = 27; n = 1, m = 3 s = 2

Table 5: The RWPRI and (2T )1 geometries with G0
∼= PSL(2, q′), q′ odd.

G0
∼= PGL(2, pn) q = p2n, with

p odd prime
G0 ∩G1 G1 ] Geom. ] Geom. Extra conditions loc. (G, s)-arc-

up to conj. up to isom. on q transitive graphs
Γ1 Epn : (pn − 1) Ep2n : (pn − 1) 2 1 none s = 3
Γ2 PSL(2, pn) A5 2 1 q = 9 s = 3
Γ3 D8 PGL(2, 3) 1 1 q = 9 s = 4

Table 6: The RWPRI and (2T )1 geometries with G0
∼= PGL(2, q′).
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Observe that, geometry Γ5 in Table 4 is exactly geometry Γ1 in Table 1.

In Section 4, we recall the subgroup lattice of PSL(2, q), and we give the two-transitive
representations of the maximal subgroups. In Section 5, we prove Theorem 1.1, which is
based on the proof of Propositions 5.5, 5.6, 5.10, 5.12, 5.16 and 5.21. For that purpose, we
determine the rank two RWPRI and (2T )1 geometries of PSL(2, q) and their number, up
to isomorphism and up to conjugacy. The existence of such geometries is equivalent to the
existence of a locally 2-arc transitive bipartite graph for which the action of G is primitive
on one of the bipartite halves (see [8]). Our result is also a part of the program initiated
in [8].

These graphs are interesting in their own right because of the numerous connections
they have with other fields of mathematics (see [8] for more details). We also refer to
the classification of these graphs for almost simple groups with socle a Ree simple group
Ree(q) (see [7]). In terms of locally 2-arc-transitive graphs, we obtain here the classifica-
tion of these graphs with one vertex-stabilizer maximal in PSL(2, q) and isomorphic toA4,
S4, A5, PSL(2, q′) or PGL(2, q′). The last column of Table 1, Table 2, Table 3, Table 4,
Table 5 and Table 6 gives, for each geometry Γ, the value of s such that Γ is a locally
s-arc-transitive but not a locally (s + 1)-arc-transitive graph. In section 6, we determine
the exact value of s in all cases that are not current by the method of Leemans.

In Tables 1, 2, 3, 4, 5, 6 and 9 most values are s = 2 or s = 3, but there are some
spectacular examples with larger values of s. Indeed we obtain a locally 4-arc transitive
graph and a locally 7-arc transitive graph. As one of the referees pointed out, the (G, 2)-arc
transitive graphs with L2(q) ≤ G ≤ PΓL2(q) were classified by Hassani, Nochefranca
and Praeger in [9]. Therefore, they already classified the geometries of Theorem 1.1 in
which G0 ∩ G1 is of index two in one of G0 or G1. Our proof of Theorem 1.1 uses a
completely different approach. In cases where our work overlaps with [9], the results are
the same.

Also, in Table 3, geometry Γ5 is due to Wong in [22] and geometries Γ7 and Γ8 are the
Biggs-Hoare graphs in [1] (see also [14], Table 1).

1.1 Aknowledgement

The authors warmly thank the referees for many corrections and improvements to the initial
text.

2 Definitions and notation

For basic notions on coset geometries and locally s-arc-transitive graphs needed to under-
stand this paper we shall freely use the definitions from Section 2 in [5].

Let us nevertheless recall concepts related to isomorphism. Let G be a group and
Aut(G) be its automorphism group. The coset geometries Γ(G; {G0, G1}) and Γ(G;
{G′0, G′1}) are conjugate (resp. isomorphic) provided there exists an element g ∈ G (resp.
g ∈ Aut(G)) such that {Gg0, G

g
1} = {G′0, G′1} (resp. {g(G0), g(G1)} = {G′0, G′1}).

We classify geometries up to conjugacy and up to isomorphism. That is, for each triple
{G0, G1, G0 ∩ G1}, we give the number of corresponding classes of geometries with re-
spect to conjugacy and isomorphism.
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3 Sketch of the proof of Theorem 1.1
Let G ∼= PSL(2, q). Let G0 and G1 be subgroups of G and let G01 = G0 ∩ G1. The
RWPRI condition in rank two requires that either G0 or G1 is a maximal subgroup of G
and that G01 is a maximal subgroup of G0 and G1. The (2T )1 condition requires that both
G0 and G1 act two-transitively on the respective cosets of G01.

We break down the task by classifying those geometries with a fixed subgroup G0.
Since we may assume without loss of generality that G0 is maximal in G, we follow Ta-
bles 7 and 8 that give all maximal subgroups of PSL(2, q). The number of RWPRI and
(2T )1 geometries of rank 2 depends on the value of q = pn. More precisely, it usually
depends on whether p = 2 or p 6= 2. Knowing that q = pn with p a prime, the two cases
are q = 2n or q odd.

The way we work to determine the RWPRI and (2T )1 geometries of rank two always
follows the same path. To achieve our goal we first choose a subgroup G0, which is a
maximal subgroup of G ∼= PSL(2, q). Then, using the results obtained in Proposition 4.6,
we determine the possibilities for G01 := G0 ∩ G1. They are the two-transitive pairs
(G0, G01). At last, in Section 5 we determine the possible subgroupsG1 of PSL(2, q) such
that (G1, G01) is a two-transitive pair. Finally, we determine for each triple (G0, G1, G01)
the number of geometries it gives rise to, up to conjugacy and up to isomorphism.

4 Structure of subgroups of PSL(2, q)

To follow the approach described above, we first recall the list of subgroups of the pro-
jective special linear groups PSL(2, q). We then give the list of maximal subgroups of
PSL(2, q). Finally we determine the two-transitive representations of the maximal sub-
groups of PSL(2, q) in order to be able to check the (2T )1 property easily.

4.1 The subgroups of PSL(2, q)

We recall the complete subgroup structure of PSL(2, q) for which we refer to Dickson [6],
Moore [15], Huppert [10] and Suzuki [16]. In the statement of Lemma 4.1, we make use
of the phrasing due to O. H. King [11].

Lemma 4.1. [Dickson-Moore] The group PSL(2, q) of order q(q2−1)
(2,q−1) , where q = pn (p

prime), contains exactly the following subgroups:

1. The identity subgroup.

2. A single class of q + 1 conjugate elementary abelian subgroups of order q, denoted
by Eq .

3. A single class of q(q+1)
2 conjugate cyclic subgroups of order d, denoted by either Zd

or d; for every divisor d of q − 1 for q even and q−1
2 for q odd, with d > 1.

4. A single class of q(q−1)
2 conjugate cyclic subgroups of order d,denoted by either Zd

or d; for every divisor d of q + 1 for q even and q+1
2 for q odd, with d > 1.

5. • For q odd, a single class of q(q2−1)
4d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q−1
2 with q−1

2d odd, with d > 1;
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• For q odd, two classes each of q(q
2−1)
8d dihedral groups of order 2d, denoted by

D2d, for every divisor d > 2 of q−1
2 with q−1

2d even;

• For q even, a single class of q(q
2−1)
2d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q − 1, with d > 1;

• For q odd, a single class of q(q2−1)
4d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q+1
2 with q+1

2d odd, with d > 1;

• For q odd, two classes each of q(q
2−1)
8d dihedral groups of order 2d, denoted by

D2d, for every divisor d > 2 of q+1
2 with q+1

2d even;

• For q even, a single class of q(q
2−1)
2d dihedral groups of order 2d, denoted by

D2d, for every divisor d of q + 1, with d > 1.

6. • A single class of q(q
2−1)
24 conjugate dihedral groups of order 4 denoted by 22

when q = ±3(8);

• Two classes each of q(q
2−1)
48 conjugate dihedral groups of order 4 denoted by

22 when q = ±1(8);
• When q is even, the groups 22 are in the case 7.

7. A number of classes of q2−1
(2,1,1)(pk−1)

conjugate elementary abelian subgroups of or-
der pm, denoted by Epm for every natural number m, such that 1 ≤ m ≤ n − 1,
where k is a common divisor of n and m and (2, 1, 1) is equal to 2 (resp. 1, 1) if
p > 2 and n

k is even (resp. p > 2 and n
k is odd, p = 2).

8. A number of classes of (q2−1)pn−m

(2,1,1)(pk−1)
conjugate subgroups Epm :d which are semidi-

rect products of an elementary abelian group Epm and a cyclic group of order d,
d > 1, for every natural number m such that 1 ≤ m ≤ n and every natural number
d dividing pk−1

(1,2,1) , where k is a common divisor of n and m and (1, 2, 1) is one of

• 1 for p > 2 and n
k is even

• 2 for p > 2 and n
k is odd

• 1 for p = 2

These subgroups are Frobenius groups.

9. • Two classes each of q(q
2−1)
48 conjugates of A4 when q = ±1(8);

• A single class of q(q
2−1)
24 conjugates of A4 when q = ±3(8);

• A single class of q(q
2−1)
12 conjugates of A4 when q is an even power of 2.

10. Two classes each of q(q
2−1)
48 conjugates of S4 when q = ±1(8).

11. Two classes each of q(q
2−1)

120 conjugate alternating groups A5 when q = ±1(10).

12. • Two classes each of q(q2−1)
2q′(q′2−1) groups PSL(2, q′), where q is an even power of

q′, for q odd;

• A single class of q(q2−1)
q′(q′2−1) groups PSL(2, q′), where q is an odd power of q′,

for q odd;
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• A single class of q(q2−1)
q′(q′2−1) groups PSL(2, q′), where q is a power of q′, for q

even.

13. Two classes each of q(q2−1)
2q′(q′2−1) groups PGL(2, q′), where q is an even power of q′,

for q odd.

14. PSL(2, q) itself.

Remark 4.2. Subgroups A5 are given either by case 11 (when q = ±1(5) ) or by case 12
(when q = 0(5) and q = 4m) of Lemma 4.1. Also, if q is even, the PGL(2, q′) are given
by case 12, since PGL(2, q′) ∼= PSL(2, q′) provided q is even.

Remark 4.3. Let us mention that in the cases 7 and 8 of Lemma 4.1, the number of con-
jugacy classes is not given. The number of conjugacy classes of the elementary abelian
subgroups Epm given by Dickson (see [6], §260) is incorrect. For an example we refer
to [5] Remark 7.

Notice that Dickson does not give the number of conjugacy classes of the subgroups
Epm : d, except in the particular case where m = n and d = pn−1

(2,q−1) . There are q + 1

subgroups Eq : q−1
(2,q−1) , all conjugate.

4.2 Maximal subgroups of PSL(2, q)

In this section, we list the maximal subgroups of PSL(2, q). As the classification of ge-
ometries usually depends on whether q is even or odd, we give in Table 7 and Table 8
the maximal subgroups of PSL(2, q) in these two cases. We borrowed this result from
Suzuki [16], page 417. Notice that the subgroups A5 appear both as A5 and PSL(2, q′) for
q′ = 5.

Let us mention that a little error in Suzuki [16] was detected and corrected by Patricia
Vanden Cruyce [19] in her thesis: Indeed the subgroup A5 is maximal if r is an odd prime.
Because if r = 2 we have that A5 < PGL(2, 5) < PSL(2, 25). However there remains a
missing case in Suzuki [16] because, A4 is maximal if q = 5. We include it in Table 8.

4.3 Two-transitive representations of the maximal subgroups of PSL(2, q)

The first lemma is obvious but used often in the next section as a necessary condition to
have a two-transitive action.

Lemma 4.4. Let G be a group and let H be a subgroup of G. If G acts two-transitively on
the cosets of H in G, then |G| must be divisible by [G :H]([G :H]− 1).

A group G is said to act regularly on a set Ω if G is transitive on Ω and the stabilizer in
G of a point x ∈ Ω is the identity.

Lemma 4.5. [21] Let (G,Ω) be a permutation group which is transitive over Ω and let G
be abelian. Then G is regular. Moreover, if G is two-transitive then |Ω| = 2.

In order to simplify notation used throughout this section and the following one, we
need another basic definition (borrowed from [2]). In a group G, an ordered pair of sub-
groups (A,B) is called two-transitive provided thatB is a maximal subgroup ofA and that
the action of A on the left cosets of B is two-transitive.
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Structure Order Index
Eq : (q − 1) q(q − 1) q + 1

D2(q+1) 2(q + 1) q(q−1)
2

q 6= 2

D2(q−1) 2(q − 1) q(q+1)
2

A5 60 q(q2−1)
60

q = 4r r is prime

PSL(2, q′) ∼= PGL(2, q′) q′(q′2 − 1) q(q2−1)
q′(q′2−1)

q′ > 4, q = q′m, m is prime
or q′ = 2, q = q′2

Table 7: The maximal subgroups of PSL(2, q), for q even

Structure Order Index
Eq : q−1

2
q(q−1)

2 q + 1

D(q+1) q + 1 q(q−1)
2

q 6= 7, 9

D(q−1) q − 1 q(q+1)
2

q 6= 3, 5, 7, 9, 11

A4 12 q(q2−1)
12×2

if q = p > 3 and
q = 3, 13, 27, 37(40) or q = 5

S4 24 q(q2−1)
24×2

if q = p > 2 and
q = ±1(8)

A5 60 q(q2−1)
60×2

if

 q = 5r r odd prime or
p = q = ±1(5) p prime or
q = p2 = −1(5) p prime or

PSL(2, q′) q′(q′2−1)
2

q(q2−1)
q′(q′2−1)

q′ 6= 5, q = q′m

m odd prime

PGL(2, q′) q′(q′2 − 1) q(q2−1)
q′(q′2−1)

q = q′2

Table 8: The maximal subgroups of PSL(2, q), for q odd
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We now provide the classification (existence and uniqueness) of all two-transitive rep-
resentations of every maximal subgroup of PSL(2, q), a result borrowed from [2].

For the time being, let U be a group acting 2-transitively on a set Ω. Let Ker U be
the kernel of the representation, namely, the set of all u ∈ U such that u(x) = x for every
x ∈ Ω. Let U0 be the stabilizer in U of some element 0 in Ω.

Proposition 4.6. [2] Let G ∼= PSL(2, q) for some power q of a prime p. Let (U,U0) be a
2-transitive pair of subgroups of G with U maximal in G. Then one of the following holds:

1. U ∼= Eq : q−1
2 , q = 1(4), Ker U is the unique subgroup of index 2 of U , |Ω| = 2,

U0 = Ker U (unique up to conjugacy);

2. U ∼= Eq : (q − 1), q even, |Ω| = q, Ker U = 1, U0 is a cyclic subgroup of order
(q − 1) (unique up to conjugacy);

3. U ∼= PSL(2, 2) ∼= S3, |Ω| = 2, Ker U = Z3 = U0 (unique up to conjugacy);

4. U ∼= PSL(2, 2) ∼= S3, |Ω| = 3, Ker U = 1 , U0
∼= Z2 (unique up to conjugacy);

5. U ∼= PSL(2, 3) ∼= A4, |Ω| = 4, Ker U = 1 , U0
∼= Z3 (unique up to conjugacy);

6. U ∼= A5
∼= PSL(2, 5) ∼= PSL(2, 4), p 6= 2, p 6= 5, either q = p = ±1(5) or

q = p2 = −1(5). Here |Ω| = 5, Ker U = 1, U0
∼= A4; (two such representations,

up to conjugacy; they are fused in PGL(2, q)); or |Ω| = 6, Ker U = 1, U0
∼= D10.

7. U ∼= PSL(2, 11), |Ω| = 11, Ker U = 1, U0
∼= A5 (two such representations, up to

conjugacy; they are fused in PGL(2, 11) = Aut(U));

8. U ∼= PSL(2, 9) ∼= A6, |Ω| = 6, Ker U = 1, U0
∼= A5 (two such representations, up

to conjugacy; they are fused in PGL(2, 9));

9. U ∼= PSL(2, 7) ∼= PSL(3, 2), |Ω| = 7, Ker U = 1, U0
∼= S4 (two such representa-

tions, up to conjugacy; they are fused in PGL(2, 7));

10. U ∼= PSL(2, r) for every r = ps, s ≥ 1, r > 3 with q = rm andm prime. Moreover,
for p > 2 we also require m > 2. Here |Ω| = r+ 1, Ker U = 1, U0

∼= Er : r−1
(2,r−1)

(unique up to conjugacy for given r);

11. U ∼= PGL(2, r), r odd, r = ps, q = r2, |Ω| = 2, Ker U = U0
∼= PSL(2, r) (unique

up to conjugacy);

12. U ∼= PGL(2, r), r odd, r = ps, s ≥ 1 with q = r2. Here |Ω| = r + 1, Ker U = 1,
U0
∼= Er : (r − 1) (unique up to conjugacy);

13. U ∼= PGL(2, 3) ∼= S4, q = ±1(8), |Ω| = 3, Ker U = E4, U/Ker U ∼= S3,
U0
∼= D8 (two such representations, up to conjugacy; they are fused in PGL(2, q));

14. U is dihedral of order 2(q − 1) or 2(q + 1), q even. |Ω| = 2, Ker U = U+ = U0

where U+ is the cyclic subgroup of index 2 of U , (unique up to conjugacy for each
of the two possible values of |U |);

15. U is dihedral of order (q− 1) or (q+ 1), q odd. |Ω| = 2, Ker U = U+ = U0 where
U+ is the cyclic subgroup of index 2 of U , (unique up to conjugacy for each of the
two possible values of |U |). In the particular case where q = 3, the case of (q + 1)
provides U = E4 , |Ω| = 2. Then U0 is one of the three subgroups of order 2 in U
(unique up to conjugacy);
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16. U is dihedral of order either 2(q − 1) or 2(q + 1), q even, and 3 | |U |; |Ω| = 3,
Ker U is the unique cyclic subgroup of index 6 in U . Then U0 is one of the three
dihedral subgroups of index 3 in U , U/Ker U ∼= S3 (unique up to conjugacy);

17. U is dihedral of order either (q − 1) or (q + 1), q odd, and 3 | |U |. Here |Ω| = 3,
Ker U is the unique cyclic subgroup of index 6 in U . Then U0 is one of the three
dihedral subgroups of index 3 in U , U/Ker U ∼= S3 (unique up to conjugacy);

18. U is dihedral of order either (q − 1) or (q + 1), q odd, q > 5, and 4 | |U |. Here
|Ω| = 2,Ker U = U0 is one of the two dihedral subgroups of index 2 in U (two such
representations, up to conjugacy; they are fused in PGL(2, q)); Ker U is dihedral,
U0 is dihedral of index 2;

19. U is dihedral of order 4, q is one of 3,5; |Ω| = 2, Ker U = U0 is one of the three
dihedral subgroups of index 2 in U (unique up to conjugacy);

20. U ∼= PGL(2, 5) ∼= S5, |Ω| = 5, Ker U = 1, U0
∼= S4 (unique up to conjugacy).

4.4 Some other useful results

An observation used in our proofs is that PGL(2, q) can be viewed as a subgroup of
PSL(2, q2) and also that PGL(2, q) has a unique subgroup isomorphic to PSL(2, q). This
lets us extract the list of subgroups of PGL(2, q) from the list of subgroups of PSL(2, q2).
Therefore we require the properties of the subgroup lattice of PGL(2, q) for which we refer
to [4] (see also [13] and [15]). The next lemma is often used to count the geometries up to
isomorphism.

Lemma 4.7. • Assume that q±1
d(2,q−1) is even. In this case both conjugacy classes of

D2d for every d > 2 dividing q±1
(2,q−1) fuse in PGL(2, q) and thus also in PΓL(2, q).

• Assume that q = ±1(8). In this case both conjugacy classes of S4 and A4 fuse in
PGL(2, q) and thus also in PΓL(2, q).

• Assume that q = ±1(5). In this case both conjugacy classes ofA5 fuse in PGL(2, q)
and thus also in PΓL(2, q).

• Assume that q = p2n is odd. In this case both conjugacy classes of PGL(2, pn) fuse
in PGL(2, p2n) and thus also in PΓL(2, q).

5 Proof of Theorem 1.1
In this section, we prove the Classification Theorem 1.1 by a case analysis. We determine
the rank 2 RWPRI and (2T )1 geometries of PSL(2, q).

In order to structure this work we introduce a subsection for each type of G0. There are
5 such subsections left to consider, which are the different types of maximal subgroups of
G ∼= PSL(2, q), listed in section 4.2. The cases Eq : (q−1)

(2,q−1) , D
2

(q−1)
(2,q−1)

and D
2

(q+1)
(2,q−1)

have

been treated in [5].
The various cases for the two-transitive pairs (G0, G01) with G0 maximal in G are

provided by Proposition 4.6. Those situations are analysed in order to detect the admissible
G1 in a series of Lemmas. During this analysis, candidates for G1 are represented by the
symbol H . They become G1 only when they resist the analysis.
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5.1 The case where G0 = A5

Recall that following Table 7 and Table 8, the subgroup A5 is maximal in PSL(2, q) if
q = 5r r odd prime or
q = 4r r prime or
q = p = ±1(5) p odd prime or
q = p2 = −1(5) p odd prime .

In this section we assume these conditions on q. Observe that if q = 0(5) the group A5 is
isomorphic to PSL(2, 5) which is a particular case of the family PSL(2, 5n) with q = 5nm

for m an odd prime. In this section we treat this particular situation. The general situation
is treated in Proposition 5.16. If q = 0(4) the group A5 is isomorphic to PSL(2, 4) which
is a particular case of the family PSL(2, 4n) with q = 4nm for m prime. In this section we
analyse this particular situation. The general situation is treated in Proposition 5.12.

In view of (6) in Proposition 4.6 there are two cases for G01, namely the case of D10

and A4. For each of these G01 we look for the various possible groups H in one of the
two following Lemmas. Remember that H is any subgroup of G such that (H,G01) is
a two-transitive pair. In order to determine all H candidates we scan the list of maximal
subgroups. For each maximal subgroup we analyse its subgroup lattice.

Lemma 5.1. Let G ∼= PSL(2, q) with q as required in this section. If H is a subgroup
of G such that (H,D10) is a two-transitive pair then one of the three following statements
holds:

• H ∼= D20 provided 10 | q±1
(2,q−1) ;

• H ∼= D30 provided 15 | q±1
(2,q−1) ;

• H ∼= PSL(2, 5) ∼= A5.

Proof. Left to the reader. See Appendix pg 1. (The Appendix contains details for this and
several other results to follow.)

Lemma 5.2. LetG ∼= PSL(2, q) with q as required in this section. IfH is a subgroup of G
such that (H,A4) is a two-transitive pair then one of the five following statements holds:

• H ∼= E16 :3 provided q = 4r;

• H ∼= PSL(2, 4) ∼= A5 provided q = 4r;

• H ∼= PSL(2, 5) provided q = 5r;

• H ∼= S4 provided q = ±1(5) and q = ±1(8);

• H ∼= A5.

Proof. Left to the reader. See Appendix pg 2.

In Remark 4.3 of section 4.1. we mention that the number of conjugacy classes of
cases 7 and 8 are not given in Lemma 4.1. To prove the following Proposition we need the
number of conjugacy classes of a particular situation, treated in the next two Lemmas.
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Lemma 5.3. The number of conjugacy classes of E16 : 3 in PSL(2, 4r), for an odd prime
r, is equal to 4r−1−1

15 .

Proof. Step 1: We must count the number of conjugacy classes of subgroups E16 : 3 in
PSL(2, 4r). Therefore we first count the total number of subgroups E16 : 3 in PSL(2, 4r)
and divide this number by the length of the conjugacy classes. We shall indeed see that this
number is constant.

Step 2: We consider G ∼= PSL(2, 4r) as a permutation group acting on the projective
line PG(1, 4r). This group is sharply 3-transitive on 4r + 1 points. Given a point∞, its
stabilizer is E4r : 4r − 1 ∼= AGL(1, 4r). The latter contains our E16 : 3. Let H be any
subgroup E4 : 3 ∼= A4

∼= AGL(1, 4). It is contained in a subgroupK := PGL(2, 4) ∼= A5

which has an orbit of length five namely PG(1, 4).
Step 3: Let us see AG(1, 4r) = PG(1, 4r)\{∞} as an affine space V of dimension r

over the field GF (4). The subgroup H stabilizes a line l of V namely AG(1, 4). Hence,
l contains the points 0 and 1. The space V endowed with the point 0 is a vector space of
dimension r on GF (4).

Observe that H fixes a unique point namely ∞. In A5 there are four conjugate sub-
groups E4 : 3 say X1, X2, X3, X4 other than H , each fixing a unique point which belongs
to l. Moreover, H stabilizes no other line l′ in V since otherwise l′ ∪ {∞} is an orbit of
length five of A5 and so each of X1, X2, X3, X4 fixes a point on l′ while this point is on l
implying l = l′. Therefore, H stabilizes a unique line of V which is l.

Step 4: Observe that AG(1, 4r) is transitive on the lines of V . There are 4r(4r−1)
12 lines

in V and, taking the point ∞ into account, we see that the conjugacy class of H in G
consists of 4r(4r−1)

12 subgroups E16 :3.
Step 5: Coming back to the beginning of Step 3, the multiplicative group of GF (4) is

a cyclic group Z3 which is a subgroup of H and so also a subgroup of A5 namely E16 :3.
Step 6: The group Z3 stabilizes the point 0 and every line on 0 in the space V . There-

fore, it also stabilizes every plane on 0 in this space, in particular every plane containing l.
There are 4r−4

16−4 = 4r−1−1
3 such planes on l.

Step 7: Let π be a plane of V containing l. It is invariant under 16 translations and Z3.
Thus π is invariant under a subgroupE16 :3 containingH . Conversely, everyE16 :3, say L,
containingH also contains Z3 which fixes the point 0. The orbit of 0 under L is its orbit un-
der E16. And Z3 acts on this orbit, hence this orbit is a plane. In conclusion, the subgroups
E16 : 3 containing H and the planes containing l are in one-to-one correspondence.

Step 8: Combining Steps 3, 6 and 7 we see that the number of conjugacy classes of
subgroups E16 :3 containing H and fixing∞ is 4r−1−1

3 . 15 as required.

For the particular situation of Lemma 5.3, we count the number of geometries up to
conjugacy and up to isomorphism in the following Lemma.

Lemma 5.4. Let r be an odd prime. Let αC(r) (resp. αI(r)) be the number of geometries
of type Γ(PSL(2, 4r), A5, A4, E16 : 3) up to conjugacy (resp. isomorphism). Then the
following hold:

1. αC(3) = 5;

2. αI(3) = 2;

3. if r > 3, then αC(r) = 4r−1−1
3 ;
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4. if r > 3, then αI(r) = 2(4r−2−1)+3.2r−2

3r .

Proof. Step 1: Lemma 5.3 gives the number of conjugacy classes of E16 : 3 for a given
PSL(2, 4r). Every E16 : 3 has five conjugacy classes of subgroups E4 : 3. Moreover, each
E4 : 3 is contained in a unique A5. Therefore, we get the number of triples consisting
of a representative G1 of every conjugacy class of E16 : 3, a representative G01 of every
conjugacy class of E4 : 3 in G1 and the unique subgroup G0

∼= A5 containing G01. Hence
αC(r) = 4r−1−1

15 · 5 · 1. In particular αC(3) = 5. This is proving respectively (3) and (1).
Step 2: Let ∞, V , H and l be defined as in the proof of Lemma 5.3, Steps 2 and 3.

Recall that l contains 0 and 1. To get αI(r), we still have to figure out how NPΓL(2,4r)(H)
acts on the subgroups E16 : 3 containing H . In other words, how does NPΓL(2,4r)(H) act
on the planes of V containing l ?

Step 3: To answer the question of Step 2 we shall show that NPΓL(2,4r)(H) = H : K,
where K is the group of field automorphisms of GF (4r). Recall the fact that the group
PΓL(2, 4r) is PSL(2, 4r) : K. Recall also thatK is a cyclic group of order 2r. The group
K leaves every subfield of GF (4r) invariant. Hence K leaves GF (4) invariant, thus also
the line l, and it normalizes H . Applying Lemma 4.1 we see that NPSL(2,4r)(H) = H
in view of the fact that H ∼= A4 and of the restrictions on the values taken by q. We get
that NPΓL(2,4r)(H) is a group of order H.K.ε and we want now to show that ε = 1. Let
N1 (resp. N2) be the number of conjugate subgroups of H in G (resp. PΓL(2, 4r)).
Then N1 ≤ N2, N1 = |G|

|H| , N2 = |PΓL(2,4r)|
|H|.|K|.ε = |G|

|H|.ε and so ε = 1. Therefore
NPΓL(2,4r)(H) = H : K.

Step 4: In our count of triples, we may assume thatG0 andG01 are fixed because, up to
isomorphism, the chain of subgroups PSL(2, 4r)−A5−A4 is unique. Moreover, without
loss of generality, we suppose that G01 is H .

Step 5: We consider G ∼= PSL(2, 4r) and H in it. We recall the 4r−1−1
15 conjugacy

classes of subgroupsE16 : 3 containingH as found in Lemma 5.3. Let Ω be the set of these
4r−1−1

15 conjugacy classes. Recall that NPSL(2,4r)(H) = H and so the action of H on Ω
is the identity. Next we consider the action of K on Ω which is also the action of H : K.
The number of orbits of this K-action on Ω is the number αI(r) we have to determine.

Step 6: As in the proof of Lemma 5.3, Step 2 we consider G ∼= PSL(2, 4r) as a triply
transitive permutation group acting on the projective line PG(1, 4r). For every t dividing
2r there is a subfield GF (2t) of GF (4r). It fixes 2t + 1 points on PG(1, 4r). This set
of points is called a circle as well as all of its transforms under G. Every triple of distinct
points on PG(1, 4r) is contained in one and only circle of 2t + 1 points.

Step 7: Given three points ∞, 0 and 1, there is a unique circle C5 of five points,
namely PG(1, 4) = {∞} ∪ l and there is a unique circle of 2r + 1 points C2r+1, namely
PG(1, 2r). The involution β ∈ K fixes all the points of C2r+1. On C5, it fixes∞, 0 and 1,
and it permutes the remaining 2 points that we call a and β(a). The group induced on C5

by the stabilizer of C5 in PSL(2, 4r) is A5
∼= PSL(2, 4) extended by β, that is, S5.

The unique subgroupK+ ofK, of order r fixes all points ofC5 and splits the remaining
points of PG(1, 4r) in orbits of length r. Therefore, (22r + 1)− 5 must be divisible by r.
Indeed, (22r + 1) − 5 = 4r − 4 = 4(4r−1 − 1), the latter being divisible by r thanks to
Fermat’s little theorem.

The subgroup H ∼= E4 : 3 fixes∞. Every cyclic subgroup of order 3 of H fixes two
points of C5. This gives ten conjugate subgroups of order 3 in A5.
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The group K+ fixes C5 point-wise. Suppose K+ stabilizes a plane π of V containing
l. Then it must decompose the 16− 4 = 12 points of π\l in orbits of length r.

If r = 3, this may occur and K+ indeed stabilizes two of the five planes containing l,
hence it normalizes two of the E16 :3 containingH . Moreover, it fuses the other three. The
two E16 :3 normalized by K+ are swapped by β, giving αI(3) = 2. This is proving (2).

If r > 3, no plane of V that contains l can be stabilized by K+. Hence K+ fuses the
4r−1−1

3 subgroups E16 :3 in 4r−1−1
3r orbits of length r.

Step 8: It remains to look at the action of β on these orbits. In GF (4r), there are
three proper subfields, namely GF (2), GF (4) and GF (2r). The involution β fixes all the
elements of GF (2r). Let us show that β stabilizes 2r−2

2 planes containing l. Given an
element x ∈ GF (2r), the plane π containing 0, 1 and x is stabilized since 0, 1 and x are
fixed by β. Moreover, π contains the point x+ 1 ∈ GF (2r). Hence, there are at least four
points fixed in π by β. If there are more, there must be at least 8 points fixed and the whole
plane π is fixed point-wise, a contradiction with the fact that a ∈ π and a is not fixed by β.
Therefore, the elements of GF (2r) give 2r−2

2 distinct planes that are stabilized by β.
Step 9: We claim that the remaining planes of V that contain l are fused in pairs by β.

Indeed, suppose that there exists a plane π containing l and no other element of GF (2r)
in V , and such that β(π) = π. In π, the only fixed points are thus 0 and 1. For every
x ∈ π\C5, the line xβ(x) is stabilized by β. It is either secant or parallel to l. Suppose
first that it is secant. Then, it intersects l in either 0 or 1 and the fourth point of xβ(x) must
be fixed, a contradiction. Suppose then that it is parallel. The other two points of xβ(x)
may be written as y and β(y) . Let us recall that we denote the points of l as 0, 1, a and
β(a). The lines ax and β(a)β(x) are swapped and parallel. One of the lines 1y or 1β(y)
must also be parallel to ax. Its image by β is not parallel to ax. This is a contradiction.
Therefore, no other plane of V containing l can be stabilized by β.

Step 10: In conclusion, we get 2r−1−1
r sets of r isomorphic geometries and 1

2r ( 4r−1−1
3 −

(2r−1 − 1)) sets of 2r isomorphic geometries. Finally, we obtain αI(r) = 2r−1−1
r +

1
2r ( 4r−1−1

3 − (2r−1− 1)) and the formula given in the Lemma is obtained by a straightfor-
ward simplification. This is proving (4).

Proposition 5.5. Let G ∼= PSL(2, q) with q as required in this section. Every RWPRI and
(2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩ G1) in which G0

∼= A5 is isomorphic to
one of the geometries appearing in Table 1.

Proof. Let G0
∼= A5.

We subdivide our discussion in two cases, namely the two G01-candidates in view of (6) in
Proposition 4.6 which are: D10 and A4. In each of these two cases we review all possibil-
ities for G1 given in the previous Lemmas 5.1 and 5.2, as well as the number of classes of
geometries with respect to conjugacy (resp. isomorphism).

Subcase 1: G01 = G0 ∩G1
∼= D10.

This is dealt with in the appendix, (pg 2-6).

Subcase 2: G01 = G0 ∩G1
∼= A4.

By Lemma 5.2 the possibilities for G1 are E16 : 3 if q = 4r, PSL(2, 4) ∼= A5 if q = 4r,
PSL(2, 5) ∼= A5 if q = 5r, S4 if q = ±1(5) as well as q = ±1(8) and A5.
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2.1 We consider the case where G1
∼= E16 :3.

The condition on q is q = 4r with r prime. In this situation there is only one conjugacy
class of A5 and one of A4 in PSL(2, q). Notice that there are 5 conjugacy classes of A4 in
E16 :3. Since PSL(2, 16) is simple and A5 maximal, A5 is self-normalized. Moreover, A4

is self-normalized in PSL(2, 4r). The normalizer of E16 : 3 depends on whether r = 2 or
not. We distinguish three cases namely: r = 2, r = 3 and r > 3. In the latter two, notice
that since r 6= 2, E16 :3 is self-normalized in PSL(2, 4r).
• Let us first consider the particular case where r = 2. In this situation there exists only

one conjugacy class of E16 : 3 in PSL(2, 16). We also have that NPSL(2,16)(E16 : 3) =
E16 : 15. Therefore the number of subgroups E16 : 3 containing a given subgroup A4 in
PSL(2, 16) is equal to

| PSL(2, 16) |
| E16 :15 |

· | E16 :3 |
| A4 |

· 5 · | A4 |
| PSL(2, 16) |

= 1.

Thus the RWPRI and (2T )1 geometry Γ2 = Γ (PSL(2, 16);A5, E16 :3, A4) exists and is
unique up to conjugacy and also up to isomorphism.
• In view of Lemma 5.3 and Lemma 5.4 we know that if r = 3 there exist up to

conjugacy exactly five RWPRI and (2T )1 geometries Γ3 := Γ(PSL(2, 64), A5, A4, E16 :3)
and exactly two up to isomorphism.
• In view of Lemma 5.3 and Lemma 5.4 we know that if r > 3 there exist up to

conjugacy exactly 4r−1−1
3 RWPRI and (2T )1 geometries Γ4 := Γ(PSL(2, q), A5, A4, E16 :

3) and exactly 2(4r−2−1)+3.2r−2

3r up to isomorphism.
This geometry is new and the number of classes up to conjugacy (resp. isomorphism)

is confirmed by MAGMA for q = 16, 64. For q = 16, it is also confirmed by [20].

2.2 We consider the case where G1
∼= S4.

The conditions given on q are q = ±1(5) and q = ±1(8). They imply that there are
two conjugacy classes of S4, two of A5 and also two of A4 in PSL(2, q). Therefore we
consider two situations: either q = p = ±1(5) or q = p2 = −1(5), with p an odd prime.
We distinguish these two cases in the discussion below.
• Assume q = p = ±1(5) with p prime. All conditions given on q imply that either

q = ±1(40) or q = ±9(40). In both situations we know that S4 is a maximal subgroup
of PSL(2, q). Therefore NPSL(2,q)(A4) = S4 = NS4

(A4) and NA5
(A4) = A4. Now all

A4 in an S4 are conjugate and this is also the case for all A4 in an A5. The number of
subgroups A5 containing a given subgroup A4 in PSL(2, q) is equal to

| PSL(2, q) |
| A5 |

· | A5 |
| A4 |

· | S4 |
| PSL(2, q) |

= 2.

To count the geometries up to conjugacy we need to know whether the S4 normalizes
each of the A5. This is not the case because |NPSL(2,q)(A4) ∩ NPSL(2,q)(S4)| = |S4| =
2|A4|. Hence, there exist exactly two RWPRI and (2T )1 geometries Γ9 = Γ(PSL(2, q);
A5, S4, A4) up to conjugacy, provided q = ±1(40) or q = ±9(40).

Let us deal with the fusion of non-conjugate classes. Following Lemma 4.7 the two
classes of S4, A4 and A5 are fused under the action of PGL(2, q) and thus also under
the action of PΓL(2, q). Therefore, there exists exactly one RWPRI and (2T )1 geometry
Γ9 = Γ (PSL(2, q);A5, S4, A4) up to isomorphism provided q = ±1(40) or q = ±9(40).
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• Assume q = p2 = −1(5) with p prime. All conditions given on q imply that either
q = −1(40) or q = 9(40). All A4 in an S4 are conjugate and NPSL(2,q)(A4) = S4 =
NS4

(A4) and NA5
(A4) = A4. We also know that NPSL(2,q)(S4) = S4. Therefore the

number of S4 containing a given A4 is one.
To count the geometries up to conjugacy we need to know whether the S4 normalizes

each of the A5. This is not the case because |NPSL(2,q)(A4) ∩ NPSL(2,q)(S4)| = |S4| =
2|A4|. Therefore, up to conjugacy there exist exactly two RWPRI and (2T )1 geometries
Γ16 = Γ (PSL(2, q);A5, S4, A4) provided either q = −1(40) or q = 9(40), with q = p2.

Let us deal with the fusion of non-conjugate classes. Following Lemma 4.7 the two
classes of A4, S4 and A5 are fused under the action of PGL(2, q) and thus also under
the action of PΓL(2, q). Therefore, there exists exactly one RWPRI and (2T )1 geometry
Γ16 = Γ (PSL(2, q);A5, S4, A4) up to isomorphism, provided either q = −1(40) or q =
9(40), with q = p2.

This geometry is new and the number of classes up to conjugacy (resp. isomorphism)
is confirmed by MAGMA for q = 9, 31, 41, 49. For q = 9, it is also confirmed by [3].

2.3 Consider the case where G0
∼= G1

∼= A5.
With the given conditions on q there are three cases to consider:
• If q = 4r with r prime, there is only one conjugacy class of A5 and also one of A4.

Since every A4 is contained in only one A5, there is no such geometry.
• Assume q = 5r with r an odd prime. The number of conjugacy classes of A4 in

PSL(2, q) depends on whether q = ±1(8) or q = ±3(8). If q = ±1(8) there is a contra-
diction with r odd in q = 5r. Now q = ±3(8) implies that there is one conjugacy class of
A4 and also one of A5. Since every A4 is contained in only one A5, there exists no such
geometry.
• Assume q = p = ±1(5) or q = p2 = −1(5) with p an odd prime.
There are two conjugacy classes of A5 in PSL(2, q). The number of conjugacy classes of
A4 in PSL(2, q) depends on whether q = ±1(8) or q = ±3(8). We distinguish these two
cases.

If q = ±1(8) there are two classes of A4, all A4 in an A5 are conjugate, and the
normalizer of A4 in PSL(2, q) is S4. All conditions on q imply that if q = p = ±1(5)
either q = ±1(40) or q = ±9(40); and if q = p2 = −1(5) either q = −1(40) or
q = +9(40).
The number of subgroups A5 containing a given subgroup A4 in PSL(2, q) is equal to

| PSL(2, q) |
| A5 |

· | A5 |
| A4 |

· | S4 |
| PSL(2, q) |

= 2.

Therefore, there exist exactly two RWPRI and (2T )1 geometries Γ10 = Γ(PSL(2, q);
A5, A5, A4) up to conjugacy, provided either q = ±1(40) or q = ±9(40), with q prime,
one for each class ofA5. Also, there exist exactly two RWPRI and (2T )1 geometries Γ17 =
Γ (PSL(2, q);A5, A5, A4) up to conjugacy, provided either q = −1(40) or q = +9(40),
with q = p2, one for each class of A5.

Let us deal with the fusion of non-conjugate classes. Following Lemma 4.7 the two
classes of A5 are fused under the action of PGL(2, q) and thus also under the action
of PΓL(2, q). Therefore there exists exactly one RWPRI and (2T )1 geometry Γ10 =
Γ (PSL(2, q);A5, A5, A4) up to isomorphism provided either q = ±1(40) or q = ±9(40).
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Also, there exists exactly one RWPRI and (2T )1 geometry Γ17 = Γ (PSL(2, q);A5, A5, A4)
up to isomorphism provided either q = −1(40) or q = +9(40).

If q = ±3(8), there is one conjugacy class of A4 in PSL(2, q). All conditions on q
imply that if q = p = ±1(5) either q = ±11(40) or q = ±19(40); and if q = p2 = −1(5)
either q = −11(40) or q = +19(40). Every A4 is contained in exactly one A5, and there
are two conjugacy classes of A5 in PSL(2, q).
Hence, there exists exactly one RWPRI and (2T )1 geometry Γ11 = Γ(PSL(2, q);A5, A5,
A4) up to conjugacy and thus also exactly one up to isomorphism provided either q =
±11(40) or q = ±19(40), with q prime.
This geometry is new and the number of classes up to conjugacy (resp. isomorphism) is
confirmed by MAGMA for q = 11, 19, 29, 31, 41, 61. For q = 11, 19, it is also confirmed
by [20].
Also, there exists exactly one RWPRI and (2T )1 geometry Γ18 = Γ(PSL(2, q);A5, A5,
A4) up to conjugacy and thus also exactly one up to isomorphism provided either q =
−11(40) or q = +19(40), with q = p2. This geometry is new and the number of classes
up to conjugacy (resp. isomorphism) is confirmed by MAGMA for q = 9, 49.

5.2 The case where G0 = A4

Recall that following Table 8, the subgroup A4 is maximal in PSL(2, q) provided q is
prime, q > 3 and either q = 3, 13, 27, 37(40) or q = 5. Therefore q = ±3(8) and
there exists only one conjugacy class of subgroups isomorphic to A4. In view of (5) in
Proposition 4.6 there is only one case for G01, namely the cyclic subgroup of order 3.

The proof of all following propositions are very similar to that of Proposition 5.5.
Therefore we do not give the details and we refer to the Appendix. The proof of proposi-
tion 5.6 may be found in the Appendix (pg. 6-9).

Proposition 5.6. Let G ∼= PSL(2, q) with q prime, q > 3 and either q = 3, 13, 27, 37(40)
or q = 5. Every RWPRI and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩G1) in which
G0
∼= A4 is isomorphic to one of the geometries appearing in Table 2.

5.3 The case where G0 = S4

Recall that following Table 7 and Table 8, the subgroup S4 is maximal in PSL(2, q) if q is
an odd prime and q = ±1(8). In this section we assume these conditions on q. Moreover,
there are two conjugacy classes of subgroups isomorphic to S4 in G.

In view of (11), (12) and (13) in Proposition 4.6 there are three cases for G01, namely
the case of D6

∼= E3 : 2, the case of D8 and the case of A4. For each of these G01 we look
for the various possible groups H in one of the three following Lemmas, whose proofs are
left to the reader. The proof of proposition 5.10 may be found in the Appendix (pg. 8-12).

Lemma 5.7. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8) as required in this
section. If H is a subgroup of G such that (H,D6) is a two-transitive pair then one of the
three following statements holds: H ∼= D12 provided 6 | q±1

2 ; H ∼= D18 provided 9 | q±1
2 ;

or H ∼= S4.

Lemma 5.8. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8) as required in this
section. Then the following statement holds: If H is a subgroup of G such that (H,D8)
is a two-transitive pair then H ∼= D16 provided 8 | q±1

2 , H ∼= D24 provided 12 | q±1
2 ;

orH ∼= S4.
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Lemma 5.9. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8) as required in this
section. Then the following statement holds: If H is a subgroup of G such that (H,A4) is
a two-transitive pair then H ∼= S4; or H ∼= A5 provided q = ±1(5).

Proposition 5.10. Let G ∼= PSL(2, q) with q an odd prime and q = ±1(8). Every RWPRI
and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩G1) in which G0

∼= S4 is isomorphic
to one of the geometries appearing in Table 3.

5.4 The case where G0 = PSL(2, q′)

In this section we make a distinction between the cases q odd and q even with q = pnm.
The subgroups PSL(2, q′) and PGL(2, q′) with q′ = pn are isomorphic provided q is even
and they are distinct provided q is odd.

5.4.1 The case q even

Since q is even, PSL(2, q′) ∼= PGL(2, q′). Recall that following Table 7, the subgroup
PSL(2, q′) ∼= PGL(2, q′) is maximal in PSL(2, q) provided q′ = 2n and q = q′m = 2n.m

for m prime; moreover for n = 1 we need m = 2. In this section we assume these
conditions on q.

In view of (3), (4), (6) and (10) in Proposition 4.6 there are three cases forG01, namely:
the case of the cyclic subgroup of order 3 provided q′ = 2, the case of D10 provided q′ = 4
and the case of E2n : (2n − 1).

For each of these G01 we look for the various possible groups H; the case of E2n :
(2n − 1) is treated in the following Lemma, whose proof is left to the reader. The proof of
proposition 5.12 may be found in the Appendix (pg. 13-14).

Lemma 5.11. Assume q = 2nm with m prime and n 6= 1 and let G ∼= PSL(2, q). If H
is a subgroup of G such that (H,E2n :2n − 1) is a two-transitive pair then one of the two
following statements holds: H ∼= E22n :2n − 1 provided m = 2 or H ∼= PSL(2, 2n).

Notice that if n = 2, PSL(2, 2n) ∼= A5.

Proposition 5.12. Assume q′ = 2n and q = q′m = 2n.m form prime ; moreover for n = 1
we need m = 2. Let G ∼= PSL(2, 2n.m). Every RWPRI and (2T )1 geometry of rank two
Γ(G;G0, G1, G0 ∩G1) in which G0

∼= PSL(2, q′) is isomorphic to one of the geometries
appearing in Table 4.

5.4.2 The case q odd

Since q is odd we need to consider two distinct maximal subgroups which are PSL(2, pn)
provided q = pmn wherem and p are odd primes and PGL(2, pn) provided q = p2n where
p is an odd prime. The latter will be treated in section 5.5.

Recall that following Table 8, the subgroup PSL(2, pn) is maximal in PSL(2, q) pro-
vided q = pmn with m and p odd primes. In this section we assume these conditions on
q.

In view of (5)-(10) in Proposition 4.6 there are four possibilities for G01, namely: A4

provided q′ = 5, S4 provided q′ = 7, A5 provided q′ = 9, 11 and Eq′ : q
′−1
2 . For each of

theseG01 we look for the various possible groupsH in the three following Lemmas, whose
proofs are left to the reader. The proof of proposition 5.16 may be found in the Appendix
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(pg. 14-17). The case of A4 provided q′ = 5, will be treated directly in the proof of the
Proposition.

Lemma 5.13. Assume q odd, q = pnm with m prime and let G ∼= PSL(2, q); then the

following statement holds: If H is a subgroup of G such that
(
H,Epn : p

n−1
2

)
is a two-

transitive pair then H ∼= PSL(2, pn).

Notice that if pn = 3, PSL(2, pn) ∼= A4 and if pn = 5, PSL(2, pn) ∼= A5. They are
particular cases of PSL(2, pn).

Lemma 5.14. Assume q is either 11m or 9m, withm an odd prime and letG ∼= PSL(2, q).
Then the following statement holds: If H is a subgroup of G such that (H,A5) is a two-
transitive pair then H ∼= PSL(2, q′) provided q′ = 9 or 11.

Lemma 5.15. Assume q = 7m, with m odd prime and let G ∼= PSL(2, 7m). Then the
following statement holds: If H is a subgroup of G such that (H,S4) is a two-transitive
pair then H ∼= PSL(2, 7).

Proposition 5.16. Assume q = pnm with p and m odd primes and let G ∼= PSL(2, q).
Every RWPRI and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩ G1) in which G0

∼=
PSL(2, pn) is isomorphic to one of the geometries appearing in Table 5.

5.5 The case where G0 = PGL(2, q′)

If q is even, PGL(2, q′) ∼= PSL(2, q′) and this situation has been treated in Section 5.4.
Therefore, we assume in this section that q is odd. Recall that following Table 8, the
subgroup PGL(2, q′) is maximal in PSL(2, q) provided q′ = pn and q = q′2 = p2n with p
an odd prime.

In view of (11), (12), (13) and (20) in Proposition 4.6 there are four cases for G01,
namely the case of Epn : (pn − 1), the case of PSL(2, q′), the case of D8 provided q = 32

and the case of S4 provided q = 52.
For each of these four G01 we look for the various possible groups H in one of the four

following Lemmas, whose proofs are left to the reader. The proof of proposition 5.21 may
be found in the Appendix (pg. 17-19).

Lemma 5.17. Let G ∼= PSL(2, 32). Then the following statement holds:
If H is a subgroup of G such that (H,D8) is a two-transitive pair then H ∼= PGL(2, 3).

Lemma 5.18. Assume q is odd and let G ∼= PSL(2, p2n). Then the following statement
holds:
If H is a subgroup of G such that (H,Epn : (pn − 1)) is a two-transitive pair then H ∼=
Ep2n : (pn − 1) or H ∼= PGL(2, pn).

Lemma 5.19. Assume q is odd and let G ∼= PSL(2, p2n). Then the following statement
holds:
If H is a subgroup of G such that (H,PSL(2, pn)) is a two-transitive pair then H ∼= A5

provided pn = 3; or H ∼= PGL(2, pn).

Notice that if pn = 3, PGL(2, pn) ∼= S4.

Lemma 5.20. Let G ∼= PSL(2, 52). Then the following statement holds:
If H is a subgroup of G such that (H,S4) is a two-transitive pair then H ∼= PGL(2, 5).
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Proposition 5.21. Assume q′ = pn and q = q′2 = p2n with p an odd prime. Let G ∼=
PSL(2, q). Every RWPRI and (2T )1 geometry of rank two Γ(G;G0, G1, G0 ∩ G1) in
which G0

∼= PGL(2, q′) is isomorphic to one of the geometries appearing in Table 6.

The proof of Theorem 1.1 readily follows from Propositions 5.6, 5.10, 5.5, 5.12, 5.16
and 5.21.

The main Theorem of [5] and Theorem 1.1 complete the classification of rank two resid-
ually weakly primitive and locally two-transitive coset geometries for the groups PSL(2, q).
We also give the number of classes of all such geometries with respect to conjugacy and
isomorphism.

This classification includes infinite classes of geometries up to conjugacy and up to
isomorphism. This number is dependent on the prime power q = pn; it is a function of n
and p.

6 Locally s-arc-transitive graphs
The construction of the (G, 2)-arc-transitive graphs, using Tits’ Theorem, is studied in full
detail in Leemans [12]. This construction shows that the rank two incidence structures are
also locally-2-arc-transitive graphs in the sense of [8].

All the RWPRI and (2T )1 geometries we have obtained are bipartite graphs and also
locally 2-arc-transitive graphs. Now we want the value of s such that the incidence graph
of Γ is a locally s-arc-transitive but not a locally (s + 1)-arc-transitive graph. We mainly
use the method of D. Leemans [12] (Lemma 5.1). This provides the value of s in all cases
given in Tables 1, 2, 3, 4, 5 and 6 (in the introduction) except those listed in Table 9. We
don’t give the details in the cases for which the Leemans’ method works.

We now discuss the nine cases left over in Table 9. In every case if p is a vertex of the
graph, we write p⊥ for the set of neighbours of p which is also the residue of p.
We give the details for four of them, the other five are dealt with in the Appendix (pg. 19-
20).

Case of Table 1, geometry Γ1, case of Table 1, geometries Γ6 and Γ13 and case of
Table 4, geometry Γ5.

We know that s ≥ 2. Consider a path (a, b, c) such that a is of type 0, b is of type 1, c is
of type 0. Here, Gabc = Z5. This acts on the five 1-elements d1, ..., d5 other than b in c⊥.
The action is transitive since otherwise Z5 would be in the kernel of the action of Gc on c⊥

contradicting the simplicity of G0 = A5 = Gc. This provides s ≥ 3 for paths starting at a
0− element.

Next consider a path (h, i, j) such that h is of type 0, i is of type 1, j is of type 0.
Here, Ghij = Z2. This acts on the two 0-elements k1, k2 other than i in j⊥. The action is
transitive since otherwise Z2 would be in the kernel of the action of Gj on j⊥. This kernel
for the action of D30 on the cosets of D10 is a group Z5, a contradiction. Hence s ≥ 3.

Applying Leemans’ method we get s = 2 or 3. Thus s = 3.

Case of Table 3, geometry Γ6.
We know that s ≥ 2. Consider a path (a, b, c) as in the preceding case. Here, Gabc =

Z4. This acts on the two 1-elements d1, d2 other than b in c⊥. The action is transitive since
otherwise Z4 would be in the kernel of the action of Gc on c⊥. This kernel for the action
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G0
∼= A5

G01 G1

D10 D30 Table 1, Γ1

D10 D30 Table 1, Γ6 and Γ13

G0
∼= S4

G01 G1

D6 D18 Table 3, Γ2

D8 D16 Table 3, Γ5

D8 D24 Table 3, Γ6

D8 S4 Table 3, Γ7 and Γ8

G0
∼= PSL(2, 2n)

G01 G1

E2n : (2n − 1) E2mn : (2n − 1) Table 4, Γ1

D10 D30 Table 4, Γ5

G0
∼= PGL(2, pn)

G01 G1

Epn : (pn − 1) Ep2n : (pn − 1) Table 6, Γ1

Table 9: Cases in which s cannot be decided by Leemans’ method.
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of S4 on the cosets of D8 is 22, a contradiction. This provides s ≥ 3 for paths starting at a
0− element.

Next consider a path (h, i, j) as in the preceding case. Here, Ghij = 22. This acts on
the two 0-elements k1, k2 other than i in j⊥. The action is transitive since otherwise 22

would be in the kernel of the action of Gj on j⊥. This kernel for the action D18 on the
cosets of D8 is a group Z4, a contradiction. Hence s ≥ 3. Applying Leemans’ method we
get that s equals 3 or 4.

We now prove that s cannot be equal to 4 thanks to the following argument due to
an unknown referee: Given the path (a, b, c) starting at a 0-element we have shown that
Gabc = Z4 and that this is transitive on the two elements adjacent to c other than b. Thus
Gabcd = Z2 = 〈x〉, where x is the square of an element of order 4 in Gabc < Ga ∼= S4.
Thus x lies in the normal subgroup of Ga of order 4 and so acts trivially on the set of
neighbours of a. Thus Gdcba is not transitive on the set of 4-arcs starting with (d, c, b, a)
and so the graph is not locally 4-arc transitive. Hence s = 3.

Let us make some observations on the results: In Tables 1, 2, 3, 4, 5, 6 and 9 most
values are s = 2 or s = 3. There are some spectacular examples with larger values of s.
Indeed we obtain a locally 4-arc transitive graph and a locally 7-arc transitive graph which
are respectively

Γ (PSL(2, q);S4, S4, D8) due to Biggs-Hoare [1]

and Γ (PSL(2, q);D16, S4, D8) due to Wong [22]

These examples also appear in Li [14].
However, let us pay more attention to the case q = 9. Here we are dealing with a

geometry whose Buekenhout diagram is given by

i i4

2 2
15 15
S4 S4

B = D8

RPRI

(2T )1, s = 4

This is the smallest thick generalised quadrangle. Its origin is the symplectic group
Sp4(2); in that context it is known at least from [17]. It is also famous as Tutte’s 8-
cage [18]. Its incidence graph admits an automorphism group four times as big as group
PSL(2, 9) which is PΓL(2, 9). Under the action of this group we check that the graph is
actually 5-arc-transitive and this is also provided by Tutte.

Moreover, for the cases in which q = 17, 23, 31, 41, 47, 71, 73, 79, 89 the full automor-
phism group of the incidence graph is the group PGL(2, q). This group has a unique con-
jugacy class of subgroups S4, according to E.H. Moore as we see in [4]. Thus PGL(2, q)
fuses the two classes of S4 in PSL(2, q) and so it cannot provide 5-arc-transitivity. Finally,
for the case Γ (PSL(2, q);D16, S4, D8) for q = 17, 31, 79, 97, there are two classes of S4

in PSL(2, q) that are fused in PGL(2, q). There are two such geometries for each value of
q and so the full automorphism group of Γ is PSL(2, q). (see Proposition 5.10).
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7 Appendix
The Appendix contains details for several results of this paper, except the proofs of Lem-
mas 5.7, 5.8, 5.9, 5.11, 5.13, 5.14, 5.15, 5.17, 5.18, 5.19, 5.20 which are left to the
reader. Appendix is available on-line at: http://amc-journal.eu/index.php/
amc/issue/view/17.
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