
120

Organizacija, Volume 44 Research papers Number 4, July-August 2011

1 Introduction

During the operation, the components of an industrial system 
deteriorate with usage, and frequently fail causing the system 
downtime and consequently a loss of income. In order to 
reduce the system downtime, various maintenance activities 
are performed. Maintenance costs represent a major part of 
the total system operating costs. Significant savings can be 
achieved by introducing an efficient maintenance policy. In 
defining the maintenance policy,  greater attention should be 
paid to the availability of spare components at the times of 
component replacements.

Many mathematical models for the spare provisioning 
policy for deteriorating systems have been proposed in the 
literature. Usually, the optimal spare provisioning policy is 
defined by the minimization of the total system maintenance 
costs that comprise of the component replacement costs 
(corrective and preventive), and the inventory costs includ-
ing ordering, holding and shortage costs. Such mathematical 

models are usually quite complex, containing a great number 
of parameters (see e.g. Brezavšček and Hudoklin, 2003; Diallo 
et al., 2008; Hu et al., 2008; Huang et al., 2008; de Smidt-
Destombes et al., 2009; Wang et al., 2009), and are often 
difficult to implement. From a practical point of view, simpler 
methods for defining an efficient spare provisioning policy 
would be most desirable.

In our opinion, in many industrial plants such a traditional 
approach in defining the inventory policy can be simplified. In 
large systems the cost of system downtime due to the shortage 
of spare components frequently exceeds all the other elements 
of the maintenance costs substantially (see e.g. Brezavšček 
and Hudoklin, 2003). We think that in such a situation there is 
no need to optimize the total maintenance costs. It is enough to 
ensure the sufficient quantity of spare components to prevent 
the inventory shortage in a given time. This approach enables 
the development of a spare provisioning model which is much 
easier to implement than the traditional optimization models. 

We treat an industrial system which comprises of a number of identical components subject to wear-out. To support the sys-
tem maintenance an appropriate inventory of spare components is needed. in order to plan the sufficient inventory of spare 
components, two variants of a simple stochastic model are developed. in both variants, the aim is to determine how many 
spare components are needed at the beginning of a planning interval to meet demand for corrective replacements during this 
interval. under the first variant the acceptable probability of spare shortage during the planning interval is chosen as a deci-
sion variable. While in the second variant the adequate spare inventory level is assessed by taking into account the expected 
number of component failures within the planning interval. a comparison of both variants of the model shows that calculations 
involved in the second variant are simpler. however, it can only be used when the inventory of spare components can be 
planned for a relatively long period of time.
The determination of an adequate number of spare components according to both variants of our model depends on the form 
of the probability density function of component failure times. Since the components are subject to wear-out, this function 
exhibits a peak-shaped form that can be described by different statistical density functions. advantages and disadvantages 
of using the normal, lognormal, Weibull, and Gamma density function in our model are discussed. among the probability 
density functions studied, the normal density function is found to be the most appropriate for calculations in our model. The 
applicability of both variants of the model is given through numerical examples using field data on electric locomotives of 
Slovenian railways.
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In the paper, we will develop a simple stochastic model 
for planning the inventory of spare components needed to 
support maintenance of an industrial system if the shortage of 
spare components leads to high costs. The model is useful for 
components subject to wear-out, when the preventive replace-
ments are performed according to the block replacement 
policy (Pham, 2003). Two variants of the model are presented. 
Under the first variant, the adequate number of spare compo-
nents is calculated taking into consideration the acceptable 
probability of spare shortage during the planning interval. In 
the second variant, the expected number of component failures 
during the planning interval is used as the decision variable in 
planning an adequate spare inventory level. 

The determination of an adequate number of spare com-
ponents according to our model depends on the form of the 
probability density function of component failure times. Since 
the components are subject to wear-out this function exhibits a 
peak-shaped form that can be described by different statistical 
density functions. Advantages and disadvantages of using the 
normal, lognormal, Weibull, and Gamma density function in 
our model are discussed. The applicability of both variants of 
the model is shown using field data on electric locomotives of 
Slovenian Railways.

2 Preliminaries

The inventory of spare system components includes the spares 
needed for component preventive replacements, and the spares 
needed for corrective replacements. The number of spare 
components needed for preventive replacements in a given 
planning interval is known in advance. Therefore, in defining 
an efficient spare provisioning policy, the essential task is to 
ensure the sufficient number of spare components needed for 
corrective replacements in the interval between two successive 
preventive replacements. 

The process of corrective replacements of a particular 
component during the system operation can be described by 
an ordinary renewal process. The renewal process is ordinary 
when all inter-renewal times are independent identically 
distributed random variables, all with the probability density 
function f (t) (e.g. Cox, 1970). In our model two characteristics 
of an ordinary renewal process will be used: the number N(t) 
of renewals in the interval (0,t), and the renewal function  H(t) 
defined as the expected number of renewals in the interval 
(0,t): H(t) = E [N(t)].

The number N(t) of component corrective replacements 
(i.e. renewals) is a random variable with the probability 
distribution pr (t) = P [N(t) = r], r = 0, 1, 2, ... which can be 
calculated according to the equation

        pr (t) = Fr (t) – Fr+1(t) r = 0, 1, 2, ...           (1)

with F0 (t) = 1. The symbol Fr (t) in the equation (1) denotes 

the r-fold convolution with itself of the cumulative distribu-

tion function  When there are n independent 

identical components under observation, the process of their 
corrective replacements represents a superposition of n inde-
pendent renewal processes. The probability distribution of the 
number of renewals of all n components in (0,t) is given by the 
discrete convolution formula

        

(2)

with . For an arbitrary n an analytical solution 

of  exists only when the analytical solution of (1) is 

available. Even then, the calculation of  is rather tedi-

ous. However, for large values of n the function  can 

be approximated by the normal density function with the mean 

nH(t) and the variance nV(t)1

 (Haehling von Lanzenauer and 

Lundberg, 1974; Bergstrom, 2006).
The renewal function H(t) can be calculated according to 

the equation

  

                   (3)

For an arbitrary time t a simple solution of (3) is obtain-
able for some specific types of f (t) only. For large values of 
time t a simple asymptotic formula for H(t) can be used (Cox, 
1970). When there are n independent identical components 
under observation, the expected number of renewals of all n 
components during time t is equal to nH(t).

It is evident that the calculation of pr (t),  and 
H(t) depends on the probability density function f (t) of inter-
renewal times. In our case f (t) is equal to the probability 
density function of component failure times. 

3 Model development

A simple stochastic model for planning the inventory of spare 
components needed for corrective replacements of system 
components is developed. The model addresses the situation 
when the costs of system downtime due to the shortage of 
spare components considerably exceed all the other elements 
of the total maintenance costs. 

The model is based on the renewal theory. In developing 
the model the following assumptions are considered:
n	 The system includes n identical components operating 

independently in the similar conditions.
n	 The components are subject to wear-out. The preven-

tive replacements are performed according to the block 
replacement policy every t units of time.

n	 To meet demand for corrective replacements between 
planned preventive replacements, the inventory of spare 
components is replenished periodically. The planning 
interval is T = kτ where k is an integer. In the variant 1 of 
the model k = 1, while in the variant 2 k is a large integer 
(k → ∞).

1 The symbol V(t) denotes the variance of the number of renewals in the interval (0,t) defined by the expression V(t) = E [(N(t) – 
H(t))2].



122

Organizacija, Volume 44 Research papers Number 4, July-August 2011

n	 At the beginning of T, Q spare components should be 
available.

n	 A failed system component is replaced immediately by a 
new one if a spare component is available. The replace-
ment time and consequently the unplanned system down-
time is negligible.

n	 If the replacement of the failed component cannot be 
performed due to the shortage of spare components the 
unplanned system downtime occurs.

The aim of the model is to determine the minimal number 
Q of spare components in the inventory at the beginning of the 
planning interval T to meet demand for component corrective 
replacements during T. Two variants of the model are present-
ed. In the first variant the number Q is determined considering 
an acceptable probability of spare shortage during T. While 
in the second variant the number Q is assessed taking into 
account the expected number of component failures within T.

Variant 1
The assumption k = 1 means that T = τ. Let the acceptable 

probability of spare shortage during T to be Ps (T). The value 
Ps (T) is predetermined considering the specific requirements 
of the system operation. We want to determine the minimal 
number of spare components Q at the beginning of T which 
ensures that the probability of spare shortage during T does not 
exceed the value Ps (T). The number Q is the minimal integer 
that satisfies the relation

        (4)

where the symbol  denotes the probability distribution 
of the number of corrective replacements of n components, 
given by the equation (2).

Variant 2
The inventory of spare components needed for correc-

tive replacements is planned for the interval T = kτ, where k 
is a large integer. We want to determine the number of spare 
components Q at the beginning of T in such a way that Q is 
at least equal to the expected number of component failures 
within T. Considering the proposed maintenance policy, the 
expected number of failures of n components in T is equal to 
knH(τ). The number Q ikns then the minimal integer satisfying 
the relation

         Q  ≥  knH(τ)      (5)

where H(τ) is calculated according to the equation (3). If the 
condition (k → ∞) is fulfilled, then the sum of deviations of 
the actual number of component failures during T from the 
expected number of failures in T approaches zero. Therefore, 
when there are Q spare components available for corrective 
replacements at the beginning of T, the probability of spare 
shortage during T approaches zero.

The calculations in variant 2 of the model are much 
simpler than in variant 1. Besides, the inventory of spare 
components needed for corrective replacements during T = kτ 
is replenished once at the beginning of the interval T, while in 
the variant 1 the inventory should be replenished k times at the 

beginning of every interval T = τ. On the other hand, the con-
dition (k → ∞) means that the inventory of spare components 
should be planned for a very long period of time. In practice, 
very large values of k could lead to the planning interval of 
several years what could be unreasonable. However, this vari-
ant of the model is applicable also if k is not a very large num-
ber, but the number n of components under consideration is 
large. In such a situation the dispersion of the number of com-
ponent failures during T around the expected number knH(τ) 
is relatively small. This implies that the expected number of 
component failures in T can be used as the decision variable 
in inventory planning.

4 Selection of appropriate probability 
density function of component fail-
ure times

The calculation of an adequate number Q of spare components 
according to our model depends on the form of the probability 
density function f (t) of component failure times. The function 
f (t) for components subject to wear-out follows a peak-shaped 
curve. Times to failure are distributed around a peak value 
specific for a given deterioration mechanism (e.g. corrosion, 
fatigue cracking, diffusion). A general form of the function f 
(t) for components subject to wear-out is shown in Fig. 1.

Figure 1: General form of the probability density function f (t) of 
failure times of components subject to wear-out

The normal, lognormal, Weibull, and Gamma probability 
density functions are frequently used to describe the function 
f (t) for the components subject to wear-out (see e.g. Jardine 
and Tsang, 2006; Kececiouglu, 1995). Advantages and disad-
vantages of using a particular statistical density function in 
our model will be discussed. The following criterions will be 
taken into account:
n	 availability of the analytical expressions for the renewal 

characteristics needed in the model (pr (t), , and 
H(t)),

n	 difficulty of the numerical calculation of the renewal char-
acteristics needed,

n	 simplicity of the assessment of the statistical density func-
tion parameters.

Normal (Gaussian) density function
The normal density function is given by the expression
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with parameters the mean μ and the standard deviation σ. The 
form of the normal density function for different values of 
parameters μ and σ is shown in Fig. 2.

Figure 2: Form of the normal density function for different val-
ues of parameters µ and s

Advantages of using the normal density function
n	 The numerical calculation of pr (t), , and H(t) is 

rather simple because the r-fold convolution of the normal 
distribution function F(t) with parameters μ and σ is also a 
normal distribution function with parameters rµ and .

n	 The assessment of the values of parameters μ and σ is easy 
because the normal probability plotting paper is available 
(see e.g. http://www.weibull.com).

Disadvantages of using the normal density function
n	 Since time to component failure is a positive random vari-

able the area under a normal curve for the negative values 
of time should be negligible. This is true when the ratio 
between μ and σ is significantly higher than 1. Otherwise 
a truncated normal distribution should be used (see e.g. 
Johnson et al., 1994; Kottegoda and Rosso, 1997).

Lognormal density function
The lognormal density function is in the relationship to 

the normal density function. If the random variable t is distrib-
uted according to a lognormal density function, the logarithm 
of t is distributed according to a normal density function. The 
lognormal density function is given by the expression

where μ and σ are the mean and the standard deviation of ln 
t. The form of the lognormal density function for different 
values of parameters μ and σ is shown in Fig. 3.

Figure 3: Form of the lognormal density function for different 
values of parameters µ and s

Advantages of using the lognormal density function
n	 The assessment of the values of parameters μ and σ is easy 

because the lognormal probability plotting paper is avail-
able (see e.g. http://www.weibull.com).

Disadvantages of using the lognormal density function
n	 The closed form of Fr (t) is not available. Some approxi-

mate formulas are available in the literature but calcula-
tions are quite tedious (see e.g. Barouch and Kaufman, 
1976; Romeo et al., 2003; Lam and Le-Ngoc, 2006).

Weibull density function
The two-parameter2 Weibull density function is given by 

the formula

2 In reliability theory, the three parameter Weibull density function is also used. The third parameter γ, – ∞ < γ < ∞, is the location parameter. 
When γ = 0 the density function starts at time t = 0.
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where β denotes the shape parameter, and η denotes the scale 
parameter. The form of the Weibull density function for differ-
ent values of β and η is shown in Fig. 4.

Figure 4: Form of the Weibull density function for different val-
ues of parameters β and η

It can be seen from Fig. 4 that the Weibull density func-
tion exhibits a peak-shaped form when β > 1. If β = 1, the 
Weibull density function becomes exponential with the param-
eter λ = 1/η.

Advantages of using the Weibull density function
n	 The assessment of the values of parameters β and η is easy 

because the Weibull probability plotting paper is available 
(see e.g. http://www.weibull.com).

Disadvantages of using the Weibull density function
n	 In the case of the Weibull density function with β > 1, the 

closed form of Fr (t) is not available. The numerical cal-

culations of 
 
pr (t), , and H(t) are quite tedious (see 

e.g. Jiang, 2008). A comprehensive overview of different 
numerical calculations of the Weibull renewal function is 
given in the book by Rinne (2009).

Gamma density function
The two-parameter3 Gamma density function is given by 

the formula

where β denotes the shape parameter, η denotes the scale 
parameter4, and Γ(.) denotes the Gamma function5.

The form of the Gamma density function for different 
values of parameters β and η is shown in Fig. 5.

Figure 5: Form of the Gamma density function for different val-
ues of parameters β and η

It can be seen from Fig. 5 that the Gamma density func-
tion exhibits a peak-shaped form when β > 1. If β is equal 
to 1, the Gamma density function becomes exponential with 
parameter λ = 1/η.

Advantages of using the Gamma density function
n	 Analytical solutions for pr (t) and H(t) exist if β = 2:

3 In reliability theory, the three parameter Gamma density function is also used. The third parameter γ, –∞ < γ < ∞, is the location parameter. 
When γ = 0 the density function starts at time t = 0.

4 When β is integer the Gamma density function becomes the Erlang density function. When the shape parameter is β/2 (β is any integer) and 
the scale parameter is equal to 2 the Gamma density function becomes the Chi-square density function.

5 
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Using the expression for 
 
given above, an analyti-

cal solution for  can be calculated according to the 
equation (2).

n	 The r-fold convolution of the Gamma distribution func-
tion with parameters b and η is also a Gamma distribution 
function with parameters rβ and η. Therefore, a numerical 
calculation of pr (t),  and H(t) according to the equa-
tions (1), (2) and (3) is easy for any value of parameter b.

Disadvantages of using the Gamma density function
n	 The assessment of the values of parameters β and η is 

not trivial because the Gamma probability plotting paper 
is not commercially available. The general maximum 
likelihood method can be used to estimate the values of β 
and η (see Evans et al., 2000; Johnson et al., 1994). This 
is probably the reason why the Gamma density function 
is not widely used as a mathematical model for the prob-
ability density function of component failure times.

The results of suitability analysis of selected statistical 
density functions for using in our model are shown in Table 1.

We conclude from Table 1 that among the four statistical 
density functions studied, the normal density function is the 
most appropriate for use in our model.

5 Numerical example

We will illustrate the application of both variants of our model 
using field data on electric locomotives of Slovenian Railways. 
As in the paper Brezavšček and Hudoklin (2003), the arcing 
chamber which is an important locomotive component is stud-
ied. There are n = 120 components under observation. The 
components are subject to wear-out. Preventive replacements 
are performed according to the block replacement policy every 
t=23 weeks. It is assumed that times to component failure are 
distributed normally. The parameters of f (t), μ and σ, are 44 
and 12 weeks respectively.

Variant 1
The planning interval is T = τ = 23 weeks. We want to 

determine the minimal number of spare components Q at the 

beginning of T which will ensure that the probability of spare 
shortage during T will not exceed 3%.

The probability distributions pr (t) and  of the 
number of component corrective replacements during T are 
calculated numerically according to the equations (1) and (2). 

The results are shown in Tab. 1. Besides, the probabilities of 

spares shortage 

 

for r = 0,1,2... are also added.

Considering that Ps (T) = 0.03, and the equation (4) we 
determine the minimal integer Q which satisfies the relation

Using the results from Table 2 we obtain Q = 9. At the 
beginning of each interval T = 23 weeks between two suc-
cessive preventive replacements, 9 spare components for 
corrective replacements during T are required. The shortage 
probability during T is equal to 2,32%, and the requirement 
above is fulfilled. Besides spares for corrective replacements, 
120 spare components are needed for preventive replacements 
of all components at the beginning of T. 

Variant 2
We have come to the conclusion that the period for plan-

ning the inventory of the arcing chambers is still acceptable up 
to 3.5 years which is approximately 184 weeks. Since τ = 23  
weeks the value of k is 8. Because the number of components 
under consideration is relatively large we suppose that k = 8 
is large enough to justify the usage this variant of the model.

We want to determine the number of spare components Q 
at the beginning of T=184 weeks which is at least equal to the 
expected number of component failures within T.

The value of the renewal function H(τ) is calculated 
according to the equation (3). From this we obtain H(τ) = 
0.0401. The number of spare components needed for cor-
rective replacements during T is determined according to the 
equation (5) as the minimal integer satisfying the relation

Q ≥ 8 · 120 · 0.0401 = 38.50

We obtain Q = 39. Apart from 39 spares for corrective 
replacements, 960 spare components are needed to perform 
eight block preventive replacements of all 120 operating com-
ponents.

Table 1: Suitability of different statistical density functions for using in the model

Criterion Normal pdf Lognormal pdf Weibull pdf Gamma pdf

The analytical expressions for the 
renewal characteristics are available

No No No
Only for some specific 
integer values of the 
parameter β (e.g. β = 2)

The numerical calculation of the 
renewal characteristics is easy

Yes No No Yes

The assessment of the pdf parameters 
is easy

Yes Yes Yes No
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6 Conclusion

In the paper, a simple stochastic model for planning the inven-
tory of spare components needed to support maintenance of 
an industrial system is proposed. The aim of the model is to 
determine the minimal number of spare components in the 
inventory at the beginning of a given planning interval to meet 
demand for component corrective replacements during this 
interval. Two variants of the model are presented. In both vari-
ants it is assumed that components are subject to wear-out, and 
the preventive replacements are performed according to the 
block replacement policy. In the first variant of the model, the 
adequate number of spare components for corrective replace-
ments is calculated considering the acceptable probability 
of spare shortage during the planning interval. In the second 
variant, the required number of spare components for correc-
tive replacements is assessed taking into account the expected 
number of component failures within the planning interval.

In both variants of the model, the process of successive 
corrective replacements of a particular component is described 
by an ordinary renewal process. The determination of the 
characteristics of the renewal process depends on the form of 
the probability density function of component failure times. 
Since the components are subject to wear-out, this function 
can be described by a peak-shaped statistical density func-
tion. Advantages and disadvantages of using normal, lognor-
mal, Weibull, and Gamma density function in the model are 
discussed. In our opinion, among the four statistical density 
functions studied, the normal density function is the most 
appropriate for calculating the probability distribution of the 
number of corrective renewals as well as the expected number 
of corrective renewals in a planning interval.

The applicability of the model is given through numerical 
examples using field data on electric locomotives of Slovenian 
Railways. Both variants of the model are useful for practi-
cal purposes. When the inventory of spare components can 
be planned for a relatively long period, we recommend the 

second variant because the calculations involved are much 
simpler than in the first variant.

The model proposed represents a simplification of rather 
complicated optimization models widely published in the lit-
erature. It is suitable for implementation in a variety of indus-
trial systems where the costs of the system downtime due to 
the shortage of spare components considerably exceed all the 
other parameters of the system maintenance costs.
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Enostavni stohastični model za planiranje zaloge rezervnih komponent v obdobju izrabe

v prispevku obravnavamo proizvodni sistem, ki vsebuje določeno število identičnih komponent v obdobju izrabe. komponente 
sistema lahko med delovanjem sistema odpovedo, kar povzroči zastoj sistema. Da lahko komponento, ki odpove, čim prej 
nadomestimo z novo, je potrebno imeti na zalogi zadostno količino rezervnih komponent. Predstavljeni sta dve varianti 
enostavnega stohastičnega modela, ki omogočata določitev minimalnega števila rezervnih komponent na zalogi na začetku 
intervala planiranja tako, da je zadoščeno izbranemu kriteriju. v prvi varianti modela je kot kriterij pri določanju ustrezne zaloge 
rezervnih komponent upoštevana verjetnost, da se zaloga tekom intervala planiranja izčrpa, medtem ko v drugi varianti plan-
iramo zalogo rezervnih komponent glede na povprečno število odpovedi, ki jih v intervalu planiranja pričakujemo. Primerjava 
obeh variant modela je pokazala, da je druga varianta modela z matematičnega stališča enostavnejša, njena pomanjkljivost 
pa je v tem, da je uporabna le, kadar je možno zalogo rezervnih komponent planirati za daljše časovno obdobje.
Določitev ustreznega števila rezervnih komponent na podlagi obeh variant modela je odvisna od funkcije gostote verjetnosti 
za čas do odpovedi obravnavanih komponent. kadar so komponente v obdobju izrabe, ima ta funkcija karakteristično kopasto 
obliko, ki jo lahko popišemo z ustrezno  verjetnostno porazdelitvijo. z vidika uporabnosti v modelu smo analizirali normalno, 
lognormalno, Weibullovo in gama verjetnostno porazdelitev. ugotovili smo, da je za izračune, ki so v modelu zahtevani, najbolj 
prikladna normalna verjetnostna porazdelitev. uporabnost obeh variant modela smo ponazorili z numeričnimi primeri in 
podatki o eksploataciji električnih lokomotiv iz Slovenskih železnic.
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