
 Informatica 37 (2013) 285–293 285
  

Bit-projection Based Color Image Encryption using a Virtual 
Rotated View 
Brahim Nini 
University of Oum El-bouaghi, Po. Box 358, 04000. Algeria. Tel. +213 661 487 057 
E-mail: b.nini@univ-oeb.dz 
 
Keywords: image encryption, bit permutation, pixel substitution, projection, security 

Received: April 10, 2013 
 

This paper presents a novel algorithm for a color image encryption which involves simultaneously two 
operations in one: permutation and substitution of pixels. It uses the rows and columns of images’ bits 
as transformation units. Each bit is regarded as an observed entity having a light ray which intersects a 
new rotated image. The intersection position is used to paste the corresponding bit. Such projection 
makes the pixels’ bits migrate between each other which generate a cipher image. Despite its simplicity, 
the algorithm shows a great resistance against many kinds of attacks through its sensitivity to the initial 
values used in encryption. 
Povzetek: Opisan je nov algoritem za kodiranje barvnih slik. 

 

1 Introduction 
It becomes commonly known that any important data 
exchange, mainly through a network, should be subject 
to a previous encryption in order to avoid its misuse. The 
particular case of images and videos attracts more 
attention due to the bulk of direct interpreted information 
they hold. 

There are three major kinds of methods used to 
construct secure encryption algorithms: permutation, 
substitution, and their combining form. The first kind, 
called in other works confusion, is an image shuffling 
which makes the content hidden and confusing. The 
second one, called in other works diffusion, is the coding 
of all pixels' values by new values instead of the original 
ones. The aim of both techniques, either used separately 
or combined, is to make the retrieval of the original 
image by attackers either impossible or very difficult. 
Unfortunately, totally secure cryptographic algorithms 
are difficult to build because solutions can always be 
found to defeat them. 

Many kinds of algorithms have been extensively 
addressed in the literature. Recently, chaotic systems 
have been widely used in data encryption [5, 6, 7, 16, 17, 
18]. Many ideas are proposed. The one presented in [6], 
for instance, is based on image permutation and proposes 
the scrambling/permuting binary bit of every pixel with 
pseudo-random number sequence generated by chaotic 
logistic map. Another method is proposed in [5]. It is a 
cryptographic algorithm which uses Maximum Distance 
Separable (MDS) matrices as part of its diffusion 
element. From another point of view, many other kinds 
of algorithms are proposed [8, 9, 11, 14, 15]. For 
instance, a position permutation algorithm by magic cube 
transformation for the permutation process is used in [8]. 
It is based on a transformation of magic cube's face 

values. It was proposed by [14] who improves it through 
consecutive work. Furthermore, another approach is 
proposed in [11] which is based on combinations of 
hybrid magic cubes which are generated from a magic 
square and two orthogonal Latin squares. Likewise, a 
matrix scrambling is used in [15]. It is based on shifting 
and exchanging rule of bi-column bi-row circular queue. 
In sum, several ideas are used for the purpose of image 
encryption algorithms development and each one has its 
advantages and drawbacks. In the reference [19], one 
may find out many recent advances in the field through 
the presented survey. 

Though the quality of many works, results 
improvement is always required. For this, some works 
are oriented to analysis and/or refining of existing 
algorithms [2, 3, 4, 10, 12, 13]. These works focus on 
finding out weaknesses of developed methods and the 
way they can be strengthen. In [12] for instance, some 
means are proposed to strengthen the overall 
performance of the security of Fridrich’s algorithm. 
Though there is no general model for security analysis 
suitable for all cryptosystems using different methods, 
some means are used to measure the strength of security 
and the speed of encryption process. They are based on 
the study of the behavior of encryption algorithms 
against attacks. The key and encrypted content are then 
analyzed whether they are safe or not against brute force, 
statistical, known plaintext, select plaintext, differential, 
and other attacks. 

Following the domain’s stream, this work proposes a 
new idea of color image encryption extending a previous 
one [1]. The latter was limited to an image permutation 
for its encryption purpose; but this one generalizes it to 



286 Informatica 37 (2013) 285–293  B. Nini 

image encryption. It merges both permutation and 
substitution of pixels in one indiscernible operation.  

In this work, an image is considered as rows and 
columns of bits. Each bit is regarded as an observed 
entity having a light ray. On another hand, a virtual 
viewer, who is assumed revolving about the middle axis 
of the image, involves a new view of the image that 
looks as if it is rotated so that its plane is perpendicular to 
the direction of the view. Such view is used as a new 
image onto which a projection is done. Accordingly, the 
intersection of a virtual bit's light ray to the viewer with 
the rotated image is used as the position of projection. 
This makes the bits moving within different pixels. 

Since the same idea of projection in the former work 
[1] is used, the same effects are met. The projection 
process leads to some parts of the original image having 
their projection positions either out of bounds or being 
the same. The former case is evident due to the image 
plane surface limits. The latter is so, because the 
computed positions should be rounded to their nearest 
integers, and hence, some bits may have the same target 
positions. So, in order to avoid information loss, only one 
bit is projected in each position and the others are 
delayed together with out-projected bits. As a result, the 
new reconstructed image contains many holes where 
some positions are undefined, i.e., not originating from 
the original image. The idea of the proposed algorithm 
consists in refilling these holes by the delayed bits in a 
reverse order. 

Our algorithm is nearly close in its function to the 
one proposed in [9] in that it repeats the permutation 
process several times with different values of the key. 
The difference is that, in our case, the key does not 
change dynamically during the permutation process, but 
might have different combining forms. 

Moreover, the proposed algorithm holds some 
important features that make it a powerful encryption 
technique. This is proved through some measures based 
on some means proposed in [12] and detailed later. 
Moreover, this algorithm’s features are challenging 
comparatively to other works in the following ways: 

– The algorithm is based on a key whose parts are 
the parameters of a virtual viewer's position. Hence, the 
values of the key are understandable and measurable 
physical quantities, 

– The encryption process does not rely on the key 
values only. Their combining form is also important. It 
has a flexible structure which is not previously 
established and depends on the user's choices, 

– Permutation and substitution are combined within 
the same operation, 

– The algorithm does not depend on the machine’s 
precision neither in encryption nor in decryption 
processes. It uses very low precision in computing and 
provides high sensitivity. 

The rest of the paper is organized as follows. The 
next section explains the projection process. It gives the 
underneath mathematical basis of the proposed 
projection. The third section explains how an image is 
encrypted. It gives the algorithm, its complexity, the 
structure of the used key, and explains how the reverse 

process of decryption is done. The fourth section gives 
an analysis about the key space values and its sensitivity. 
The fifth section is interested in the analysis of the 
resistance of the algorithm against some types of attacks. 
Finally, a conclusion is given summarizing the work and 
its extensions. 

2 Projection process 
Figure 1 shows a cut of the reference position from 
which an image is assumed to be viewed in its normal 
appearance, and another view’s position rotated about the 
central axis. The latter position involves a rotated plane 
that is perpendicular to the direction of the viewer’s 
position onto which the image is to be projected. Such 
position is defined by its inclination angle from the 
reference one. 

 
Figure 1: Transformation of an original image into a new 
one when viewed from another position. 

 
Figure 2: Projection of an original point 𝑃𝑜 onto 𝑃𝑡 in the 
new image. 

The projection process is based on two assumptions. 
Firstly, the image is considered as three color planes in 
their low level data arrangement; i.e. the rows of each 
plane are vectors of bits where pixels are the groups of 
consecutive 𝑏 bits depending on the image’s gray level, 
and columns are the bits of the same order of image’s 
columns of pixels. Secondly, each bit is assumed having 



Bit-projection Based Color Image Encryption… Informatica 37 (2013) 285–293 287 

a light ray that converges towards the viewer’s position. 
Such ray crosses the rotated plane at a given point which 
is displaced from the bit’s initial position. The new 
position is then used to paste the bit’s value. 

Figure 2 gives the schema of how a point 𝑃𝑜 is 
projected at the position 𝑃𝑡 when the viewer moves 
around the central axis of the image from the position 𝑉𝑜 
to the position 𝑉𝑡. Therefore, the achievement of the 
projection relies on the mathematical expression which 
governs the amount of 𝑂𝑃𝑡 . 

 Let the angle between the directions of the reference 
position and the new one be 𝜃 (figure 2). This angle is 
the same between the original image plane and the 
rotated one. Let now 𝐴 be the perpendicular projection of 
𝑃𝑜 on 𝑂𝑉𝑡. Using ∆𝑂𝑃𝑡𝑉𝑡 and ∆𝐴𝑂𝑃𝑜, it is easy to see 
that 𝐴𝑃𝑜 = 𝑂𝑃𝑜 . 𝑐𝑜𝑠𝜃, and 𝑂𝐴 = 𝑂𝑃𝑜. 𝑠𝑖𝑛𝜃. Using these 
expressions, and based on the truth of expression (1): 

𝑂𝑃𝑡
𝐴𝑃𝑜

=
𝑂𝑉𝑡
𝐴𝑉𝑡

 (1) 

 
the amount of 𝑂𝑃𝑡  can be computed for the half part of 
the image being on the same side of the viewer's position 
(2): 

𝑂𝑃𝑡 =
𝑂𝑉𝑡 .𝑂𝑃𝑜 . 𝑐𝑜𝑠𝜃
𝑂𝑉𝑡 − 𝑂𝑃𝑜 . 𝑠𝑖𝑛𝜃

 (2) 

This theory is applied in either horizontal or vertical 
direction. Hence, expression (2) is used to project the bits 
of each half line or half column of the original image 
onto the same half line or half column of the new image. 
So, each bit in the original image at the position 𝑃𝑜 is 
projected onto the position 𝑃𝑡. Such transformation needs 
two basic parameters to be known: the angle 𝜃 and the 
distance 𝑂𝑉𝑜 = 𝑂𝑉𝑡 . Practically, we take the value of the 
distance as being 𝑑. 𝑙𝑐 where 𝑙𝑐 stands for the number of 
lines or columns, and 𝑑 is a real such that 𝑑 ≥ 1

2
. The 

latter condition is important since it ensures that 𝑂𝑉𝑡 −
𝑂𝑃𝑜 . 𝑠𝑖𝑛𝜃 ≠ 0, because in this case we get 𝑠𝑖𝑛𝜃 = 𝑂𝑉𝑡

𝑂𝑃𝑜
=

𝑑.2𝑂𝑃𝑜
𝑂𝑃𝑜

= 2𝑑 ≥ 1 which is impossible according to the 
previous condition. The case where 𝑠𝑖𝑛𝜃 = 1 is 
meaningless since it is practically impossible. It gives 
𝜃 = 𝜋

2
, making the projection of the whole image being 

one point and encryption process is reduced to inversion 
of bits’ positions. 

Note that the relationship (3) that links 𝑃𝑡 and 𝑃𝑜 on 
the opposite side of the viewer’s position is so 
complicated, and consequently, has a negative impact on 
the algorithm complexity and time processing. This is 
why, the only expression used in this work on both sides 
of an image is (2), and since expression (3) is not used, it 
is given without demonstration. 

𝑂𝑃𝑜 = 𝑂𝑃𝑡 . 𝑐𝑜𝑠𝜃 +
𝑂𝑃𝑡 . 𝑠𝑖𝑛𝜃

𝑐𝑜𝑡 �𝑎𝑟𝑐𝑡𝑎𝑛 �𝑂𝑃𝑡𝑂𝑉𝑡
� − 𝜃�

 (3) 

The projection of each line or column of the original 
image on a new one has some effects. If the angle 𝜃 is 
small, a set of collated bits on the border, called 𝑃𝑜𝑢𝑡 , are 
projected outside the boundary of the new image (figure 
3(a)). This creates stretched lines or columns with many 

spread undefined bits, since a reduced number of bits 
become spread over the whole line or column. If 𝜃 is big, 
it results in an undefined part in the projected image 
(figure 3(b)). Furthermore, due to the rounding of the 
estimated value of 𝑂𝑃𝑡  to its nearest integer, some bits 
are going to have the same projection positions, 
especially when an empty part is created for a big 𝜃. In 
this case, only one bit is pasted at the shared position and 
the others are not. All those which are not pasted create 
the set called 𝑃𝑟𝑒𝑝. The two sets, 𝑃𝑜𝑢𝑡  and 𝑃𝑟𝑒𝑝, are 
initially delayed from projection. As a result, the 
obtained image might contain several undefined bits 
called holes. 

          
 (a) (b) 

Figure 3. Effects of 𝜃 and 𝑑 on the projection: (a) some 
bits are projected outside, (b) part of the border remains 
empty. 

The value of 𝜃𝑙 which is the limit between those that 
create either 𝑃𝑜𝑢𝑡  or an empty part is given when 𝑂𝑃𝑡  and 
𝑂𝑃𝑜 become equal. In other words, if 𝜃 > 𝜃𝑙 then 
𝑃𝑜𝑢𝑡 = ∅. So, 𝜃𝑙 is the angle when 𝑂𝑃𝑜 = 𝑂𝑃𝑡 = 𝑙𝑐

2
. 

Expressing this condition in (2) gives 𝑙𝑐 = 2𝑑.𝑙𝑐2.𝑐𝑜𝑠𝜃𝑙
2𝑑.𝑙𝑐−𝑙𝑐.𝑠𝑖𝑛𝜃𝑙

, 
which results in the following equation: 

2𝑑. 𝑐𝑜𝑠𝜃𝑙 + 𝑠𝑖𝑛𝜃𝑙 = 2𝑑 (4) 
The solution of (4) is the one of: 

𝑐𝑜𝑠(𝜃𝑙 − 𝛽) =
2𝑑

√1 + 4𝑑2
 (5) 

where 𝑡𝑎𝑛𝛽 = 1
2𝑑

. The solution to (5) is then: 

𝜃𝑙 = 𝑎𝑟𝑐𝑐𝑜𝑠 �
2𝑑

√1 + 4𝑑2
� + 𝑎𝑟𝑐𝑡𝑎𝑛 �

1
2𝑑
� (6) 

and 
lim
𝑑→+∞

𝜃𝑙 = 0 (7) 

 
Figure 4: Graph of 𝜃𝑙 related to function (6). 

The graph of 𝜃𝑙 (figure 4) shows that the bigger 𝑑 is, 
i.e. the viewer is far from the image, the smaller 𝜃𝑙 is. In 
the graph of figure 4, the plot of the function where 
𝑑 ≥ 1

2
 is the only part of our interest. 



288 Informatica 37 (2013) 285–293  B. Nini 

3 Image encryption 

3.1 Cipher procedure 
The first step of shuffling procedure is the projection of 
each line or column on the same line or column 
respectively of the new image. This goes through a 
vector calculation linking original to target bits’ positions 
according to expression (2). For the lines, all bits are 
pasted in their new estimated positions. However, not all 
columns of bits are concerned with vertical projection. 
The bits of high and middle orders of each pixel are the 
only ones concerned. This leads to an exchange of only 
these bits between the pixels of the same column. This is 
so because if all bits of pixels are used, the projection has 
a tendency to glide a whole line of pixels the same way. 
The vertical projection becomes then a simple shift of the 
image. Moreover, the bits of high order are the most 
probable to make a significant change on pixels even 
though this depends on the content of each one. 

 
Figure 5: A sample of horizontal projection resulting in 
the bits shifted to the left (for this case) and some ones 
(white) reintroduced from the right. 

The next step after image projection is to fill the 
created holes with the delayed bits, i.e. 𝑃𝑜𝑢𝑡  and/or 𝑃𝑟𝑒𝑝. 
To do so, each bit is reintroduced into the opposite half 
part from which it does not originate and in an opposite 
order of its stacking. In addition, 𝑃𝑜𝑢𝑡  are reintroduced 
first in order to be stretched out in the image because 
they are initially contiguous. Then, 𝑃𝑟𝑒𝑝 are simply 
pasted into the remaining holes in a similar way of 𝑃𝑜𝑢𝑡  
(Figure 7). 

 
Figure 6: A sample of vertical projection resulting in the 
bits (3 and 7 of each pixel) shifted in vertical direction to 
the bottom and some ones (white) reintroduced from the 
top. The right column shows the corresponding decimal 
values. 

To sample what has been explained, let us consider 
figures 5 and 6. When the transformation is applied in 
horizontal direction, some bits of each pixel either shift 

or migrate towards another one of the same line, and 
consequently, all pixels of each line change their values 
(figure 5). Likewise, when the projection is applied in 
vertical direction, the exchange of bits is done between 
the pixels’ bits of one column (figure 6). In this case, 
only the bits of high and middle orders are projected as 
this is explained later. 

The shuffling procedure of an image is, in general, 
based on repeating 𝑛 times the cycle of new image 
projection and reinsertion of delayed bits. In fact, several 
repetitions of such process on the successively new 
obtained images are enough to get a complete cipher 
image. Furthermore, the algorithm combines several 
couples (𝜃, 𝑑) in several ways. It may apply the shuffling 
procedure alternatively in vertical and horizontal 
directions with different values, i.e. (𝜃𝑥, 𝑑𝑥) and (𝜃𝑦, 𝑑𝑦), 
at different steps with different number of each, and with 
different combinations for each color plane of the image. 

  
 (a) Original (b) Projected and filled 

Figure 7: An original image (a) and its projected one (b) 
using 𝜃 = 1° and 𝑑 = 0.5 for both horizontal and 
vertical directions. 

3.2 Permutation and substitution of pixels 
The power of the previously described process is that it 
results in both permutation and substitution of image’s 
pixels (figures 5 and 6). In fact, as it is already explained, 
due to the projection process, the bits are displaced from 
their positions. At first glance, the consecutive pixel’s 
bits are dragged together. This can be seen as pixels’ 
movement resulting in a confusion procedure. From 
another point of view, pixels do not move really, they are 
the bits which do it. So, depending on 𝜃, some bits of 
each pixel are going to move to another one. Thus, each 
pixel gets a new value; i.e. it is substituted or diffused. 
This is what happens mainly in vertical projection. 
Consequently, based on both points of view, the pixels’ 
values can be considered changing when moving. This is 
what creates a simultaneous permutation and substitution 
of pixels within one operation without being discernible. 

3.3 Key structure 
In this work, the parameters 𝜃 and 𝑑 serve as parameters 
of encryption key. They are used in couple at any step of 
shuffling. Therefore, different forms of the key may be 
used, and can be as complex as needed. For this, the 
algorithm does not depend on any structure. It can be 
adapted easily to anyone. Considering our 
experimentations, the adopted structure is as follows: 



Bit-projection Based Color Image Encryption… Informatica 37 (2013) 285–293 289 

[𝑛𝑏𝑖𝑡𝑒𝑟] [𝑣𝑖]
[𝜃𝑥1 , … ,𝜃𝑥𝑣𝑖][𝑑𝑥1 , … ,𝑑𝑥𝑣𝑖]

[ℎ𝑖]
[𝜃𝑦1 , … , 𝜃𝑦ℎ𝑖][𝑑𝑦1 , … ,𝑑𝑦ℎ𝑖]

 

The used structure implies a global number of 
iterations (𝑛𝑏𝑖𝑡𝑒𝑟) applied to local couples vertically (𝑣𝑖) 
and horizontally (ℎ𝑖). Each of which is of the form 
(𝜃𝑎𝑥𝑖𝑠𝑖 , 𝑑𝑎𝑥𝑖𝑠𝑖), where 𝑎𝑥𝑖𝑠 = 𝑥 or 𝑦. 

As an example of its use, figure 8 shows the 
encryption of the image of figure (7(a)) with two 
different keys. The one of figure (8(b)) is a special case 
where each color plane is scrambled apart with different 
key values. 

As it is clear, the used key is compounded of many 
parts having different sizes. For each angle, 1 bit is used 
for the integer part and 10 bits for the decimal part. Since 
the distance is a multiple of the line or column’s length, 
it uses 4 bits for the integer part and 8 bits for the 
decimal part. In sum, each couple (𝜃, 𝑑) uses a total of 
25 bits together with two bits used for the number of 
local couples (𝜃, 𝑑) in a given direction. The total 
number of global iterations uses 6 bits allowing the 
maximum of 64 iterations which might be highly paid in 
term of execution time. The size of the key is then 
6+25(𝑣𝑖+ℎ𝑖) bits. At least, this size is 56 bits. 

 

   
 (a) 𝐾𝑒𝑦 = 𝐾1 (b) 𝐾𝑒𝑦 = 𝐾1/𝐾1 + 1/𝐾1 + 2 

Figure 8: Scrambling of the image in figure 7(a). (a) is 
shuffled using 𝐾1 = [4,1, 5𝜋

18
, 2.0,1, 𝜋

3
, 1.6],  but in (b) 𝐾1 

is used for only the color plane 𝑅.  𝐺 and 𝐵 color planes 
use 𝐾1 where each couple (𝜃, 𝑑) is increased respectively 
by the values (1, 1) and (2, 2). 

3.4 Algorithm complexity 
The basis of the whole process is equation (2). 
Considering that 𝑂𝑉𝑜 = 𝑂𝑉𝑡 = 𝑑. 𝑙𝑐, the expression 
becomes: 

𝑂𝑃𝑡 =
𝑑. 𝑙𝑐.𝑂𝑃𝑜 . 𝑐𝑜𝑠𝜃
𝑑. 𝑙𝑐 − 𝑂𝑃𝑜. 𝑠𝑖𝑛𝜃

 (8) 

In (8), two multiplications, one division, and one 
subtraction are uses. This is so, because 𝑑. 𝑙𝑐. 𝑐𝑜𝑠𝜃 and 
𝑠𝑖𝑛𝜃 are computed once at the beginning. So, taking 
𝑁 × 𝑁-sized image, computing complexity of projection 
calculation for a key of (𝑣𝑖+ℎ𝑖) couples (𝜃, 𝑑) is 
(𝑣𝑖+𝐿ℎ𝑖)(𝑎+3𝑏)

2
𝑁, where a is the cost of a subtraction 

operation, b is the one of a multiplication or division 
operation, and L is the number of each pixel’s bits. We get 
𝐿ℎ𝑖 because in horizontal direction the computing is related 
to bits, whereas in vertical one it is related to regular lines. 

The division by 2 is due to the consideration of (8) on only 
one half of the image.  

In horizontal direction, the projection is applied on lines 
being 𝑁 vectors. Thus, let 𝑝 be the cost of changing one bit, 
the complexity is then 𝐿𝑝𝑁2. In vertical direction, it is 
2𝑝𝑁2 since only two bits of each pixel are concerned. For 
the whole algorithm, the complexity is then 
(𝑣𝑖+𝐿ℎ𝑖)(𝑎+3𝑏)

2
𝑁𝐿 + ℎ𝑖𝑝𝐿𝑁2 + 𝑣𝑖2𝑝𝑁2

 and with an 
iteration time 𝑛, it becomes: 

(𝑣𝑖 + 𝐿ℎ𝑖)(𝑎 + 3𝑏)
2

𝑁 + 𝑛𝑝(ℎ𝑖𝐿 + 2𝑣𝑖)𝑁2 (9) 

For vertical direction processed the same way of 
horizontal one, we get: 

(𝑣𝑖 + ℎ𝑖)(𝑎 + 3𝑏)
2

𝐿𝑁 + 𝑛𝑝(ℎ𝑖 + 𝑣𝑖)𝐿𝑁2 (10) 

In its lowest level of security, this algorithm uses a 
key compounded of two couples (𝜃, 𝑑), one for each 
direction. In this case, ℎ𝑖 = 𝑣𝑖 = 1 which makes the 
complexity being (𝑎 + 3𝑏) �𝐿+1

2
�𝑁 + 𝑛𝑝(𝐿 + 2)𝑁2. 

Compared to the ones of the three compared algorithms 
in [12], this complexity is lower than the lowest one of 
Baker map algorithm which is 2(𝑎 + 𝑏)𝑁2 + 𝑛(𝑎 +
𝑏)𝑁2. As can be seen, �𝐿+1

2
� ≪ 𝑁 which makes the other 

coefficients negligible. Even if all bits of each pixel are 
considered in vertical direction, the complexity (𝑎 +
3𝑏)𝐿𝑁 + 2𝑛𝑝𝐿𝑁2 remains the lowest. 

3.5 Reconstruction of the original image 
The retrieval of the original image is based on a reverse 
process of its encryption. Knowing the values of 
encryption key, the reconstruction of the original image 
follows exactly the reverse steps. In other words, the 
algorithm piles up the operations which are then 
executed from the last one to the first one having its steps 
reversed for the following points: 

– lines ‐ columns. For instance, if for a given step of 
the encryption process the lines were scrambled first then 
the reconstruction should begin by the columns first, 

– 𝑑 and 𝜃. This is the case when the key form uses 
different values for these parameters at the same 
iteration. For instance, if (𝑑1, 𝜃1) and (𝑑2, 𝜃2) are two 
couples of values used in this order for image encryption, 
the order (𝑑2, 𝜃2)-(𝑑1, 𝜃1) should be used during the 
decryption, 

Considering 𝑃𝑜𝑢𝑡  and 𝑃𝑟𝑒𝑝, they are first identified 
through the initially created holes in the cipher‐image. 
The reverse operation consists then in copying the bits at 
the positions of the holes from the encrypted image into 
their initial positions in the reconstructed image. This is 
done with respect to the reverse order of their initial copy 
during image encryption. This is evident for 𝑃𝑜𝑢𝑡 . For 
𝑃𝑟𝑒𝑝, however, the algorithm should differentiate 
between the first bits which were directly projected and 
those which were delayed. So, the latter are the only ones 
that are retrieved from the holes. In sum, these operations 
are executed whenever they were done during the 
encryption process for either 𝑃𝑜𝑢𝑡 or 𝑃𝑟𝑒𝑝. 



290 Informatica 37 (2013) 285–293  B. Nini 

4 Key analysis 

4.1 Key space  
The numbers of significant values of 𝜃 and 𝑑 together 
with their combining form have direct effects on the 
possible values of a key. These last are in close relation 
to the sensitivity of encryption to the key values. In the 
following, a presentation of the key space according to 
the used structure in our experiments then to its general 
form is given. 

According to the chosen structure of the key, one can 
see that the key subspace of the couple (𝜃, 𝑑) is 211.212 = 
223. For a maximum number of local different couples 
being 3, this value becomes (223)3 = 269. Since this is 
applied in horizontal and vertical directions with 
different values, the total number is 269.269 = 2138. This is 
for a key size of 156 bits. If different keys are used for 
each color plane, the total number is then 2138.2138.2138 = 
2414. Additionally, if different keys are used at different 
iteration times n, this value increases to become (2138)n or 
(2414)n. 

According to the general form of the key, let the 
number of values of 𝜃 be 𝜃𝑣 and those of 𝑑 be 𝑑𝑣. The 
space values of a couple (𝜃, 𝑑) is 𝜃𝑣 × 𝑑𝑣. For a number 
of different couples used in a combining form of the key, 
this becomes (𝜃𝑣 × 𝑑𝑣)(ℎ𝑖+𝑣𝑖). If different keys are used 
for each color plane, we get (𝜃𝑣 × 𝑑𝑣)3(ℎ𝑖+𝑣𝑖). Moreover, 
if different keys are used in different iterations, then the 
key space becomes (𝜃𝑣 × 𝑑𝑣)3𝑛(ℎ𝑖+𝑣𝑖) which is very big. 
Furthermore, if high level of security is not required, 𝑑𝑣 
may be very big. 

As can be seen, the key space increases with ℎ𝑖, 𝑣𝑖, 
and 𝑛. However, not all possible values of 𝜃 and 𝑑 are 
used for secure encryption. The next section explains the 
raisons. Hence, the choice of ℎ𝑖, 𝑣𝑖, and 𝑛 depends on the 
required security and complexity. So, for high level of 
security and when some values of 𝜃 and 𝑑 are avoided, 
the values of ℎ𝑖, 𝑣𝑖, and 𝑛 should increase, and vice 
versa. Note that all next experiments use  ℎ𝑖 = 𝑣𝑖 = 1 
and 𝑛 ≤ 4 which provide the lowest security level of key 
structure in order to show the power of this algorithm. 

4.2 Key sensitivity 
In order to specify the significant values of a key that 
lead to a given level of security against differential 
attack, some experiments have been done. One of them is 
the use of ciphertext difference rate (𝐶𝑑𝑟) defined in [12, 
17] and adapted to our case for color images as: 

𝐶𝑑𝑟 =
∑ �𝐷𝑖𝑓𝑓𝑐(𝑌,𝑌1) + 𝐷𝑖𝑓𝑓𝑐(𝑌,𝑌2)�𝑐

6𝑁𝑀
 (11) 

Whereas index 𝑐 indicates one color plane 𝑅, 𝐺, or 𝐵 and 
𝐷𝑖𝑓𝑓𝑐(𝐴𝑐 ,𝐵𝑐) = ��𝐷𝑖𝑓𝑝𝑐�𝐴𝑐(𝑖, 𝑗),𝐵𝑐(𝑖, 𝑗)�

𝑗𝑖

 (12) 

and 
𝐷𝑖𝑓𝑝𝑐�𝐴𝑐(𝑖, 𝑗),𝐵𝑐(𝑖, 𝑗)�

= �1 if 𝐴𝑐(𝑖, 𝑗) ≠ 𝐵𝑐(𝑖, 𝑗)
0 if 𝐴𝑐(𝑖, 𝑗) = 𝐵𝑐(𝑖, 𝑗) 

(13) 

𝑌 is the cipher image of size 𝑁 × 𝑀 under a key 𝐾, 𝑌1 
under the key 𝐾 + ∆𝐾, and 𝑌2 under the key 𝐾 − ∆𝐾. 

 
 (a) (b) 

Figure 9: 𝐶𝑑𝑟 computing based on a slight difference of 
𝜃 using 3 iterations and (a) ∆𝜃 = 0.001° (b) ∆𝑑 = 0.01. 

In our tests, we used ∆𝜃 = 0.001° for 𝜃 (figure 9(a)) 
and ∆𝑑 = 0.01 for 𝑑 (figure 9(b)) separately. In these 
experiments, the structure of the very low security of the 
key is used; i.e. each key has only one and the same 
couple (𝜃, 𝑑) for each direction and for all color planes. 
Figure 9(a) shows that for 𝜃 ∈ [20°. .89°], the security of 
the proposed cryptosystem is acceptable against brute-
force attacks since 𝐶𝑑𝑟 ≥ 90%. Figure 9(b) shows again 
this power when 𝑑 ∈ [0.5. .3] for approximately the 
whole 𝜃 range. Note that these results are obtained for 
only three iterations. This is as good as Cat map 
algorithm in [12] which is the best of the three presented 
algorithms according to this test. 

Consequently, for high level of security, it is 
advisable not to use all values of 𝜃 and 𝑑. In this case, 
𝜃 ∈ [20°. .89°], 𝑑 ∈ [0.5. .3] and four iterations are the 
most advised. What is important in the algorithm is that 
for such high level of security, it does not require high 
cost. In addition, the key sensitivity is of high level since 
a difference of 1°/1000 for 𝜃 and 1/100 for 𝑑 has 
considerable effects on the cipher image. 

 
 (a) (b) 

Figure 10: 𝐷𝑟 computing based on ∆𝜃 = (10−3)° using 
(a) 𝑛=1 and (b) 𝑛=4. 

The previous results are supported by other 
conducted experiments which aim to specify the 
tolerance interval ±∆𝜃 and ±∆𝑑 of decryption 
sensitivity. These experiments have been conducted 
according to two ways. The first one is subjective. It 
consists in considering the opinions of some people 
whether they are able or not to identify the content of the 
decrypted image using an erroneous key. This shows that 
the values of (10−3)° for 𝜃 and 10−2 for 𝑑 are the limits 
of image identification if some particular values are 
avoided. In other words, ±10−3 and ±10−2 are the 
tolerance intervals in order for the use of a false key does 
not decrypt the image. 



Bit-projection Based Color Image Encryption… Informatica 37 (2013) 285–293 291 

 
 (a) (b) 

Figure 11: 𝐷𝑟 computing based on ∆𝑑 = 10−2 using (a) 
𝑛=1 and (b) 𝑛=4. 

Based on these results, the second tests are based on 
the computing of the difference between the original 
image and the decrypted one. For this, we propose the 
calculation of the decryption rate (𝐷𝑟) as: 

𝐷𝑟 =
∑ 𝐷𝑖𝑓𝑓𝑐(𝑌,𝑌′)𝑐

3𝑁𝑀
 (14) 

The function 𝐷𝑖𝑓𝑓𝑐 is defined in (12), 𝑌 is the 
original image, and 𝑌′ is the decrypted image using the 
key 𝐾′ = 𝐾 ± ∆𝐾𝑖, (𝑖 = 𝜃,𝑑). 𝐾 is the encryption key 
and ∆𝐾𝑖 =(10-3 or 10-2) is the slight change of only one 
occurrence of one parameter of 𝐾. 

These tests use the form of the key which is of the 
very low security level as in 𝐶𝑑𝑟 tests. The graphs of 
figures (10) and (11) show the obtained results. The used 
iteration time is either 1 or 4. As can be seen in all cases, 
𝐷𝑟 increases with the number of iteration time 𝑛. 

The graph of figure 10 is obtained for ∆𝜃 = (10−3)° 
and ∆𝑑 = 0, and the one of figure 11 for ∆𝜃 = 0° and 
∆𝑑 = 10−2. What is noticeable for the graph of figure 10 
is that for 𝜃 ≥ 20°, 𝐷𝑟 remains very acceptable even 
when 𝑑 increases, whereas in figure 11, it falls off 
quickly for big values of 𝑑. This leads us to conclude 
again that the decryption process is more sensitive to 𝜃 
than to 𝑑.  

Throughout the conducted experiments, it can be 
concluded that small iterations (≤ 3) and small values of 
𝜃 ∈ [1°. .10°] are not advisable for high security if the 
used key is of low security level. 

4.3 Effect of 𝜽𝒍 on encryption 
To study the effect of 𝜃𝑙 on the encryption, 𝐶𝑑𝑟 and 𝐷𝑟  
are again considered. Since 𝜃𝑙 exists for each value of 𝜃 
related to a specific distance 𝑑, we used to vary 𝜃𝑙 from 
10° to 80°, compute the corresponding 𝑑, and evaluate 
𝐶𝑑𝑟 and 𝐷𝑟 with regard to all angles of the interval 
𝜃𝑙𝑖 ± 𝑗° (𝑖 = 10°. .80°, 𝑗 = 1°. .10°). For this purpose, 
expression (4) which links 𝜃𝑙 to 𝑑 is used to determine 
each 𝑑𝑖 related to a given 𝜃𝑙𝑖 . In this case, we get: 

𝑑 =
𝑠𝑖𝑛𝜃𝑙

2(1 − 𝑐𝑜𝑠𝜃𝑙)
 (15) 

Through the graphs of figures 12 and 13, one can see 
that for good 𝐷𝑟 and 𝐶𝑑𝑟, the best values are obtained 
for 𝜃 < 𝜃𝑙 and the quality decreases for 𝜃 > 𝜃𝑙, even 
though those of 𝐶𝑑𝑟 are not so notable. In other words, 
the results of this cryptosystem are better when 𝑃𝑜𝑢𝑡  are 
not empty and its efficiency decreases with the creation 
of an empty part but remains very acceptable. This is 
logic since 𝑃𝑜𝑢𝑡  leads to more scrambling of bits than 

when an empty part is created. Moreover, the sensitivity 
is more important for 𝜃 < 𝜃𝑙 than the one of 𝜃 > 𝜃𝑙 
except for some very small values of 𝜃 as has been 
already noticed. Note also that the graphs of figures 12 
and 13 highlights again the sensitivity of the 
cryptosystem to 𝜃 than to 𝑑. 

 
 (a) (b) 

Figure 12: 𝐷𝑟 computing for every 𝜃𝑙 ∈ [10°. .80°] using 
3 iterations based on (a) ∆𝜃 = (10−3)° and (b) ∆𝑑 =
10−2. 

 
 (a) (b) 

Figure 13: 𝐶𝑑𝑟 computing for every 𝜃𝑙 ∈ [10°. .80°] 
using 3 iterations based on (a) ∆𝜃 = (10−3)° and (b) 
∆𝑑 = 10−2. 

 
(a) red (b) green (c) blue (d) red (e) green (f) blue 

Figure 14: Colour histograms of the two previous 
images: (a), (b), and (c) of the original image (Figure 
7(a)), and (d), (e), and (f) of its corresponding encrypted 
form (Figure 8(b)).  

5 Resistance against other attacks 

5.1 Statistical attack 
Figure (8(b)) shows the result of the encryption process 
applied to the image of figure (7(a)), and their histograms 
are shown in figure 14. It is clear that the histograms of 
the two images, from statistical point of view, are 
significantly different. The ones of the encrypted image 
are flat and totally misleading, whereas those of the 
original image are curved. 

Moreover, figures (15), (16), and (17) show other 
images which were used in our experiments, and on 
which this encryption algorithm is applied. These images 



292 Informatica 37 (2013) 285–293  B. Nini 

have been chosen based on the different shapes their 
color histograms have. It is clear that the histograms of 
the original images and encrypted ones are totally 
different. Even though the ones of the three images are of 
different forms, those of encrypted images are 
completely flat. 

 

5.2 Select plaintext attack 

 
 (a) Original (b) Encrypted 

 
 (c) red (d) green (e) blue (f) red (g) green (h) blue 

Figure 16: Histograms of an original image (a) and its 
encrypted form (b) where the histograms of the former 
((a), (c), and (d)) have approximately one peak. 

Another feature the algorithm should resist is select 
plaintext attack. It is commonly used to analyze plaintext 
sensitivity; i.e. the effect of the algorithm on parts with 
little differences. To test such feature, we use pixel 
change rate (𝑃𝑐𝑟) defined in [12] and adapted to our case 
as: 

𝑃𝑐𝑟 =
∑ 𝐷𝑖𝑓𝑓𝑐(𝑌,𝑌′′)𝑐

3𝑁𝑀
 (16) 

 
 (a) Original (b) Encrypted 

 
 (c) red (d) green (e) blue (f) red (g) green (h) blue 

Figure 17: Histograms of an original image (a) and its 
encrypted form (b) where the histograms of the former 
((a), (c), and (d)) have many peaks spread out along the 
dynamic range. 

In this case, 𝑌 and 𝑌′′ are encryption results using 
the same key of images 𝐼 and (𝐼 + ∆𝐼). ∆𝐼 is a slight 
change in one bit for instance; i.e. an image and its 
transformed one having one bit different are ciphered. 
The graph in figure 18 shows that this algorithm 
maintains 𝑃𝑐𝑟 at a stable level depending on the initial 
change. This is explained by the fact that initial bits of 
the original images are the same about 𝐿−1

𝐿
 for one pixel 

different. Since there are no significant differences, the 
two images evolve the same way during encryption. 
Even though 𝑃𝑐𝑟 does not reach 100%, it remains so 
important being ≥ 64% in all cases. 

 
Figure 18: 𝑃𝑐𝑟 graph when a slight change happens to 
each pixel of an image. 

6 Conclusion 
A new algorithm of image encryption based on a 

geometrical transform is presented. The algorithm 
projects an original image on a plane perpendicular to the 
direction of a given view’s position. It considers the 
image as rows and columns of bits. So, the projection of 
each bit is done on the position where its light ray 

 
(a) Original (b) Encrypted 

 
(c) red (d) green (e) blue (f) red (g) green (h) blue 

Figure 15: Histograms of an original image (a) and its 
encrypted form (b) where the histograms of the former 
((c), (d), and (e)) have several peaks concentrated in the 
middle. 



Bit-projection Based Color Image Encryption… Informatica 37 (2013) 285–293 293 

intersects the perpendicular plane to the direction of the 
view. As a result, a cipher process takes place. This 
process is repeated several times to ensure a given level 
of security. 

The strength of the algorithm depends mainly on the 
structure of the used key. The core of the algorithm is 
based on two parameters: the angle of view and the 
distance of the viewer from the image. They are used in 
couples, and combined in many ways so that the 
combination itself becomes a key. Hence, the power of 
this algorithm is that the combinations depend on the 
genuineness of the user. 

The efficiency of this algorithm is demonstrated 
through several tests. Its key sensitivity from many 
points of view is about (10−3)° for the angle and 10−2 
for the distance. Moreover, its resistance to many 
common attacks is proved through many graphs of the 
very low level of security provided by both key structure 
and values. 

Further extensions for this work may be made in 
different directions. One of them is the study of the 
algorithm resistance to different attacks apart from the 
security considerations. For example, to what extent an 
encrypted image may resist to JPEG compression in 
order to reconstruct the original one since the initial bits 
are not explicitly changed. The structure of the key is 
also important. One possible improvement is to make a 
formal study of it. Another important study is about the 
general form of the projection. It may be part of the key. 

References 
[1]  B. Nini and C. Melloul (2011), Pixel Permutation of 

a Color Image Based on a Projection from a 
Rotated View. JDCTA: International Journal of 
Digital Content Technology and its Applications, 
Vol. 5, N° 4, pp. 302-312. 

[2]  Chengqing Li, Kwok-Tung Lo (2009). Security 
analysis of a binary image permutation scheme 
based on Logistic map. http://arxiv.org/pdf 
/0912.1918 

[3]  Chengqing Li (2008). On the Security of a Class of 
Image Encryption Scheme. Int. Symposium on 
Circuits and Systems, IEEE, pp. 3290-3293. 

[4]  Ercan Solak, Cahit Cokal and Olcay Taner Yildiz 
(2010). Cryptanalysis of fridrich’s chaotic image 
encryption. International Journal of Bifurcation 
and Chaos, DOI: 10.1142/S0218127410026563, 
Vol. 20, n° 5, pp. 1405–1413. 

[5]  Daemen, J., and Rijmen, V. (2002). The Design of 
Rijndael: AES – The Advanced Encryption 
Standard. Springer,. 

[6]  G. Ye (2009). Image scrambling encryption 
algorithm of pixel bit based on chaos map. Pattern 
Recognition Letters, DOI: 10.1016/j. patrec. 
11.008. 

[7]  Haojiang Gao, Yisheng Zhang, Shuyun Liang, and 
Dequn Li (2006). A new chaotic algorithm for 

image encryption. Chaos, Solitons and Fractals 29, 
pp. 393-399. 

[8]  Jianbing Shen, Xiaogang Jin, and Chuan Zhou 
(2005). A Color Image Encryption Algorithm 
Based on Magic Cube Transformation and Modular 
Arithmetic Operation. PCM, Part II, LNCS, Y.S. 
Ho and H.J. Kim (Eds.), 3768, pp. 270-280.  

[9]  John Vreugdenhil, Kane Iverson, and Raj Katti 
(2009). Image Encyption Using Dynamic Shuffling 
and XORing Processes. IEEE International 
Symposium on Circuits and Systems, ISCAS, pp. 
734–737. 

[10]  Li C., Li S., Zhang D., and Chen G (2004). 
Cryptanalysis of a Chaotic Neural Network Based 
Multimedia Encryption Scheme. Advances in 
Multimedia Information Processing – PCM 
Proceedings, Part III, LNCS, Vol. 3333, pp. 418-
425. 

[11]  Sapiee Jamel, Tutut Herawan, and Mustafa Mat 
Deris (2010). A Cryptographic Algorithm Based on 
Hybrid Cubes, ICCSA, Part IV, LNCS 6019, pp. 
175-187. 

[12]  Shiguo Lian, Jinsheng Sun, Zhiquan Wang (2005). 
Security Analysis of A Chaos-based Image 
Encryption Algorithm. Physica A: Statistical and 
Theoretical Physics, Elsevier, 351(2-4): pp. 645-
661. 

[13]  Shujun Li, Chengqing Li, Guanrong Chen, and 
Kwok-Tung Lo (2008). Cryptanalysis of the 
RCES/RSES image encryption scheme. The 
Journal of Systems and Software, 
DOI:10.1016/j.jss.2007.07.037, pp. 1130–1143. 

[14]  Trenkler M. (2005). An Algorithm for making 
Magic Cubes, The Π ME Journal, vol. 12, n°2, pp. 
105-106. 

[15]  Wu, S., Zhang, Y., and Jing, X. (2005). A Novel 
Encryption Algorithm based on Shifting and 
Exchanging Rule of Bi-Column Bi-row Circular 
Queue. International Conference on Computer 
Science and Software Engineering. IEEE, Los 
Alamitos. 

[16]  Zhang Linhua, Liao Xiaofeng, and Wang Xuebing 
(2005). An image encryption approach based on 
chaotic maps, Chaos, Solitons and Fractals 24, pp. 
759-765,  

[17]  Shiguo Lian, Jinsheng Sun, Zhiquan Wang (2005). 
A Block Cipher Based on a Suitable Use of the 
Chaotic Standard Map. International Journal of 
Chaos, Solitons and Fractals, Elsevier, 26(1): 117-
129. 

[18]  Yaobin Mao, Guanrong Chen and Shiguo Lian 
(2004). A Novel Fast Image Encryption Scheme 
Based on the 3D Chaotic Baker Map, International 
Journal of Bifurcation and Chaos, World Scientific 
Publishing, vol. 14, no. 10, pp. 3613-3624. 

[19]  Komal D Patel, Sonal Belani (2011). Image 
encryption using different techniques: A review. 
International Journal of Emerging Technology and 
Advanced Engeneering, vol. 1 no. 1, pp. 30-34. 

  


