© Acta hydrotechnica 20/33 (2002), Ljubljana ISSN 0352-3551 329 UDK / UDC: 519.61/.64:627.8(282.249 Soč a) Prejeto / Received: 17.7.2002 Strokovni prispevek – Professional paper Sprejeto / Accepted: 27.11.2002 MATEMATIČ NO MODELIRANJE TOKA SOČ E NA OBMOČ JU IZTOKA HIDROELEKTRARNE PLA VE II MATHEMATICAL MODELLING OF THE SOČ A RIVER FLOW IN THE AREA OF THE PLA VE II POWER PLANT OUTFLOW Matjaž Č ETINA, Mario KRZYK Pri turbinskem iztoku hidroelektrarne (HE) Plave II se struga Soč e nekoliko razširi, zato na tem območ ju obstaja nevarnost zasipavanja s prodom. S primerno oblikovanim talnim pragom tik gorvodno od iztoka je treba pri prodonosnih pretokih tok reke Soč e preusmeriti tako, da poveč ane hitrosti ob desnem bregu izpirajo prod in prepreč ujejo recirkulacijo. Dvodimenzijski hidravlič ni izrač un je obravnaval odsek Soč e v dolžini približno 800 m. Za umerjanje modela smo uporabili enodimenzijske rač une in podatke o gladinah visokih voda za stanje med gradnjo, ko je bila gradbena jama strojnice HE Plave II zašč itena z zač asnim visokovodnim nasipom. Razmere pred izgradnjo nasipa pa so nam služile kot referenca za primerjavo s konč nim stanjem po odstranitvi pomožne pregrade in izgradnji prodnega praga. Pri nižjih pretokih Soč e (Q = 1 00, 200 in 300 m 3 /s) je bilo raziskanih več različ ic oblike praga. Za konč no predlagano rešitev pa je znač ilna lomljena oblika v tlorisu, zniževanje krone praga proti desni brežini in hidravlič no ugodno oblikovana priključ itev praga na desno brežino. Preverili smo bile tudi hidravlič ne razmere pri visokih vodah. Pri stoletnem pretoku Q 1 00 = 271 8 m 3 /s potek gladin na območ ju hiš na levem bregu gorvodno od pragu kaže, da talni prag tudi v primeru zaproditve do krone razmer, v primerjavi s stanjem pred zač etkom izgradnje strojnice HE Plave II, ne poslabšuje zaznavno. Ključ ne besede: dvodimenzijsko hidrodinamič no modeliranje, model PCFLOW2D, Soč a, iztok HE Plave II, talni prag, prodonosnost, sedimentacija Due to the widening of the Soč a riverbed near the Hydro Power Plant Plave II outflow, there is a possibility of sedimentation. It is necessary to build a bottom sill just upstream of the outflow in order to redirect the flow of the Soč a River in the way that increased velocities near the right bank could flush bed-load and prevent recirculation. A two-dimensional hydraulic computation was applied on the 800 m long Soč a River reach. The results of one-dimensional computations and measured water elevations near the temporarily-built flood levee in the vicinity of the HPP Plave II power house were used for the model calibration. At lower discharges of the Soč a River (Q = 1 00, 200 and 300 m 3 /s), several variants of the proposed bottom sill were investigated. As a final solution, a “broken-line” weir with a lowered crest near the right bank and a hydraulically optimized connection to the bank were suggested. In addition, the high water stages were also investigated. Even when the available sedimentation volume is fully filled with sediment to the weir crest elevation, the water surface elevations near the houses at the left bank just upstream of the weir were not significantly higher at the flood discharge of Q 1 00 = 271 8 m 3 /s. Key words: twodimensional hydrodynamic modelling, PCFLOW2D code, the Soč a River, HPP Plave II outflow, bottom sill, bed load transport, sedimentation Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 330 1 . UVOD Pri projektiranju iztoka iz hidroelektrarne (HE) Plave II je bilo treba upoštevati veliko prodonosnost reke Soč e. Območ je iztoka (slika 1) bi bilo lahko ogroženo z odlaganjem plavin, ki jih s seboj nosi reka, kar bi negativno vplivalo na delovanje hidroelektrarne. Zaradi dviga dna struge bi se dvignila tudi gladina spodnje vode, kar bi povzroč ilo zmanjšanje moč i hidroelektatrne, v ekstremnih primerih pa bi lahko prišlo tudi do nezaželenega zasipavanja iztoka. Zato je bil med zoženim delom struge reke Soč e dolvodno od mostu v Desklah in iztokom iz HE Plave II v letu 2001 zgrajen kamnito-betonski prag, ki ima dvojni namen. Z ustrezno izbrano koto krone preliva se je za pragom ustvaril prodni zadrževalnik, ki pri visokih vodah vsaj delno ustavi transportirani material. Pri določ anju kote krone praga je bilo treba upoštevati gorvodni dvig gladine vode, ki bi lahko poplavila stanovanjske objekte na levem bregu Soč e v Desklah. Druga vloga praga pa je, da pri obratovalnih pretokih usmerja tok proti iztoku iz HE, kjer poveč ane hitrosti vodnega toka prepreč ujejo odlaganje rinjenih plavin. 1 . INTRODUCTION At the design process of the outflow from the Plave II hydro power plant (HPP) it was necessary to take into account the large bed- load transport capacity of the Soč a River. The area of the Soč a River near the outflow (Figure 1) could be affected by sedimentation and the power plant operation could become less effective. The rise of the river bottom would increase the tailwater surface elevations. As a consequence, the HPP power capacity would be reduced or the plant operation completely stopped by the sedimentation of the outflow. To prevent such a situation, a concrete bottom- sill was built in 2001 in the Soč a riverbed just upstream of the HPP Plave II outflow. The first aim of the sill was to form a sediment retention upstream, where bed-load material could be partly trapped at flood discharges. The bottom-sill crest elevations were determined by taking into account the backwater effect, which could cause floods at the houses on the left bank of the Soč a River near the village of Deskle. The second aim of the bottom-sill was to redirect the flow of the Soč a River towards the HPP outflow, where bed-load deposition should be prevented by increased flow velocities. Slika 1. Položaj obravnavanega odseka Soč e z vrisanim območ jem matematič nega modela. Figure 1 . Layout of the Soč a River reach with the area of the mathematical model. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 331 Za reševanje podobnih problemov se v hidrotehnični praksi običajno uporabljajo enodimenzijski matematič ni modeli. Zaradi znač ilne oblikovanosti struge reke Soč e na obravnavanem območ ju ter zaradi izbranega položaja in oblike praga so bile prič akovane znatne spremembe gladine tudi v preč ni smeri. Nastal je poudarjeno neenakomeren tok z izrazito več jimi hitrostmi ob desni brežini. Z enodimenzijskimi modeli takšnih neenakomernih razporeditev hitrosti po preč nem preseku ne bi bilo mogoč e ustrezno ponazoriti. Zato je bil za simulacijo toka reke Soč e č ez prag in ob iztoku iz HE Plave II izbran dvodimenzijski hidrodinamič ni matematič ni model PCFLOW2D. S tem modelom lahko napovemo potek gladine tudi v preč ni smeri in izrač unamo globinsko povpreč ne hitrosti toka v vodoravni ravnini. S pomočjo analize tokovnih razmer tako pri obratovalnih kot tudi pri visokovodnih pretokih je bil ob sodelovanju projektantov (Fazarinc, 2001; IBE, 1997) določ en položaj, oblika in višinski položaj praga. Podrobna simulacija toka nad samim pragom bi sicer zlasti pri nizkih pretokih zahtevala uporabo zahtevnejšega tridimenzionalnega modela. Vendar nas je v okviru opisane študije zanimalo predvsem globinsko povprečno hitrostno polje tik dolvodno od praga in vpliv na gladine gorvodno, zato je bil izbran dvodimenzijski model PCFLOW2D, ki je bil že uspešno uporabljen za simulacijo podobnega primera toka preko talnih pragov v kajakaški progi v Tacnu (Č etina & Rajar, 1993). 2. MATEMATIČ NI MODEL 2.1 OSNOVNE ENAČ BE V dvodimenzijskem matematič nem modelu PCFLOW2D so bile za obravnavani primer reke Soč e upoštevane kontinuitetna (1) in dinamič ni enač bi v x in y smeri (enač bi (2) in (3)) za stalni globinsko povprečni tok. Koeficient efektivne viskoznosti υ ef določ imo To solve similar problems in hydraulic engineering, one-dimensional mathematical models are usually used. Due to the specific Soč a riverbed configuration and the chosen layout and shape of the bottom-sill, significant changes of the water surface elevations were expected in the lateral direction, too. A pronounced non-uniform flow with higher velocities near the right bank occurred. One- dimensional models would not be able to simulate such non-uniform velocity distributions in river cross sections in an appropriate way. The two-dimensional PCFLOW2D mathematical model was chosen to simulate the Soč a River flow over the bottom sill near the Plave II HPP outflow. The model could predict changes of water surface elevations in longitudinal and lateral directions, and calculate the depth-averaged velocity field. The detailed analysis of the flow at operational and flood discharges helped the designers (Fazarinc, 2001; IBE, 1997) to determine the final layout, shape and crest elevations of the bottom-sill. At low discharges, a more sophisticated three-dimensional model would be needed to simulate flow details over the bottom sill. But since the main purpose of the study was to simulate the depth-averaged velocity field downstream of the sill and a backwater effect upstream, the two-dimensional model PCFLOW2D was chosen. It has already been successfully used for the study of similar flow over the bottom weirs in the Tacen kayak racing channel (Č etina & Rajar, 1993). 2. MATHEMATICAL MODEL 2.1 BASIC EQUATIONS For the case of the Soč a River flow in the PCFLOW2D two-dimensional mathematical model, the continuity (1) and dynamic equations in the x and y directions (equations (2) and (3)) for steady depth-averaged flow were used. The coefficient of effective Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 332 s pomoč jo enač be (6) in dveh dodatnih transportnih enač b (4) in (5) za k in ε , kar je znano kot t. im. globinsko povpreč na verzija k -ε modela turbulence (Rodi, 1980). Podroben opis enač b in pomen posameznih č lenov v njih je možno najti v literaturi (npr. Č etina, 1989; Č etina & Rajar, 1993). turbulent viscosity υ ef was determined by equation (6), and the two additional transport equations (4) and (5) for k and ε which are known as the depth-averaged versions of the k -ε turbulence model (Rodi, 1980). A more detailed description of the equations and individual terms can be found in the literature (e.g. Č etina, 1989; Č etina & Rajar, 1993). 0 ) ( ) ( = + y hv x hu ∂ ∂ ∂ ∂ (1) ) ( ) ( ) ( ) ( 3 4 2 2 2 2 y u h y x u h x h v u u ghn x z gh x h gh y huv x hu ef ef b ∂ ∂ υ ∂ ∂ ∂ ∂ υ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − − − = + (2) ) ( ) ( ) ( ) ( 3 4 2 2 2 2 y v h y x v h x h v u v ghn y z gh y h gh y hv x huv ef ef b ∂ ∂ υ ∂ ∂ ∂ ∂ υ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ + + + − − − = + (3) kv D k ef k ef hP h c hG y k h y x k h x y hvk x huk + − + + = + ε ∂ ∂ σ υ ∂ ∂ ∂ ∂ σ υ ∂ ∂ ∂ ∂ ∂ ) ( ) ( ) ( ) ( (4) v ef ef hP h k c hG k c y h y x h x y hv x hu ε ε ε ε ε ∂ ∂ε σ υ ∂ ∂ ∂ ∂ε σ υ ∂ ∂ ∂ ε ∂ ∂ ε + − + + = + 2 2 1 ) ( ) ( ) ( ) ( (5) ε υ υ υ υ µ 2 k c t ef + = + = (6) Oznake pomenijo: h - globina vode, u in v - komponenti hitrosti v x in y smeri, z b - kota dna, n - Manningov koeficient hrapavosti, υ ef , t υ in υ - kinematič ni koeficienti efektivne, turbulentne in molekularne viskoznosti, g - gravitacijski pospešek, k - turbulentna kinetič na energija na enoto mase in ε - stopnja njene disipacije. Izrazi za G (produkcija k zaradi vodoravnih gradientov hitrosti) ter P kv in P v ε (izvorna č lena zaradi trenja ob dno) so skupaj s konstantami v modelu turbulence (c D , c µ , c 1 , c 2 , σ k in σ ε ) podani v literaturi (Rodi, 1980). Notations: h – water depth, u and v – velocity components in the x and y directions, z b - bottom elevations, n – Manning’s friction coefficient, ef υ , t υ and υ - kinematic coefficients of the effective, turbulent and molecular viscosity, g - gravity acceleration, k - turbulent kinetic energy per unit mass and ε - the rate of its dissipation. The expressions of G (the production of k due to horizontal velocity gradients), P kv and P v ε (source terms due to the bottom friction), as well as the values of the standard turbulent constants (c D , c µ , c 1 , c 2 , σ k and σ ε ), can be found in the literature (Rodi, 1980). Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 333 2.2 ROBNI POGOJI Pri reševanju enač b (1) do (5) potrebujemo robne pogoje na vseh štirih straneh rač unskega področ ja, saj gre zaradi vključ enih difuzijskih č lenov z efektivno viskoznostjo za eliptič en tip problema. Za konkreten primer toka Soč e smo upoštevali spodaj navedene robne pogoje, pri č emer so hitrosti v usmerjene v y smeri vzdolž toka, hitrosti u pa v smeri x preč no na tok. Na gorvodnem robu modela so predpisane hitrosti. Vtoč na hitrost v se v vsaki iteraciji izrač una tako, da vtok v model ustreza obravnavanemu stalnemu pretoku Q 0 , preč na hitrost u pa se izrač una ob pogoju 0 / = y u ∂ ∂ . Ker so popravki vtoč nih hitrosti enaki nič , morajo biti na vtoku enaki nič tudi gradienti popravkov gladin h' v vzdolžni smeri, ∂ ∂ hy '/ = 0 (Patankar, 1980; Č etina, 1988). Na dolvodnem robu smo podali v preč ni smeri vodoravno koto gladine z ter upoštevali, da so vzdolžni gradienti hitrosti enaki nič , torej ∂ ∂ vy / = 0 in ∂ ∂ uy / = 0. Ustrezne kote z za spodnji rob dvodimenzijskega modela smo povzeli iz poroč ila IBE (1997). Na vseh trdnih robovih so preč ne hitrosti enake 0, za vzdolžne pa smo upoštevali veljavnost logaritemskega stenskega zakona (Č etina, 1988; 1989). Tudi za k in ε potrebujemo robne pogoje na vseh štirih robovih rač unskega področ ja. Podrobneje so navedeni v ustrezni literaturi (Rodi, 1980). 2.3 METODA REŠEVANJA IN RAČ UNALNIŠKI PROGRAM PCFLOW2D Sistem nelinearnih parcialnih diferencialnih enač b (1) - (6) rešujemo numerič no z metodo konč nih prostornin (Patankar, 1980; Č etina, 1989). Njene temeljne značilnosti so premaknjena numerična mreža, hibridna shema (kombinacija centralnodiferenč ne in sheme gorvodnih razlik) ter iteracijsko reševanje na podlagi popravkov globin. V primeru upoštevanja nestalnega toka je uporabljena polna implicitna shema (Č etina, 1988). 2.2 BOUNDARY CONDITIONS To solve the elliptic equations (1) to (5) that include terms with effective viscosity, boundary conditions were needed on all four sides of the computational domain. If we consider that velocities v are directed streamwise along the y axis, and velocities u, meanwise along the x axis, in the case of the Soč a River the following boundary conditions were taken into account. At the upstream end of the model, the velocities were prescribed. In each iteration, the inflow velocity v was computed according to the steady discharge Q 0 , while the lateral velocities u were determined by the condition 0 / = y u ∂ ∂ . Since inflow velocity corrections are zero, the longitudinal gradients of depth corrections h' at the upstream end are also zero, ∂ ∂ h y '/ = 0 (Patankar, 1980; Č etina, 1988). At the downstream end, the horizontal water surface elevation was prescribed, and the longitudinal velocity gradients were zero, ∂ ∂ v y / = 0 and ∂ ∂ u y / = 0. The appropriate surface elevations, z, at the downstream end of the two-dimensional model, were obtained from the IBE report (1997). At all solid boundaries, the normal velocities were 0 and the longitudinal velocities were computed from the logarithmic law of the wall (Č etina, 1988; 1989). The boundary conditions for k and ε that are also needed on all four boundaries of the computational domain can be found in Rodi (1980). 2.3 METHOD OF SOLUTION AND *THE PCFLOW2D COMPUTER CODE The set of non-linear partial differential equations (1) – (6) was solved numerically by the finite volume method (Patankar, 1980; Č etina, 1989). The main characteristics of the method are: a staggered numerical grid; a hybrid scheme (a combination of central- difference and upwind scheme) and an iterative procedure of depth corrections. In the case of unsteady flow computations, a fully implicit scheme is used (Č etina, 1988). Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 334 Program PCFLOW2D, ki je prirejen za uporabo na osebnih rač unalnikih, je bil razvit na UL FGG v Ljubljani (Č etina, 1988). Program se stalno izpopolnjuje z možnostjo upoštevanja novih vrst robnih pogojev, z vgradnjo novejših numerič nih metod ter z razvojem prijaznejših uporabniških vmesnikov. Simulacije za Soč o smo izvedli na rač unalniku s procesorjem Pentium III s frekvenco delovanja 900 MHz, tako da so kljub numerič ni zahtevnosti posamezni rač uni trajali le dobre pol ure. Za vsak računski pretok program PCFLOW2D sam poišče spremenljive geometrijske meje rač unskega področ ja. Za dosego konvergentne rešitve je bilo povpreč no potrebnih okrog 3000 iteracij pri relativni napaki, ki ne presega enega odstotka rač unskega pretoka skozi področ je. 3. UMERJANJE MODELA 3.1 VHODNI PODATKI 3.1.1 GEOMETRIJSKI PODATKI Za pripravo matematič nega modela struge reke, ki je bil podlaga za pridobivanje informacij o kotah dna v posameznem rač unskem polju, so bili uporabljeni razpoložljivi geodetski podatki, katerih viri so podrobno navedeni v strokovnem poroč ilu (Č etina & Krzyk, 2001). Za odsek gorvodno od praga je bilo na voljo 13 preč nih profilov struge reke Soč e, ki so bili posneti na medsebojni razdalji od 13 do 78 m v skupni dolžini 325 m in podani s 173 geodetsko izmerjenimi točkami, in situacijski nač rt varovalnega nasipa gradbene jame strojnice HE Plave II. Za odsek dolvodno je bil za stanje pred izgradnjo praga upoštevan enakomeren padec dna v dolžini približno 200 m do kote 75.0 m n.m. Za stanje po izgradnji praga pa je bilo upoštevano poglobljeno dno struge Soč e do kote 75.0 m n.m. Širina poglobljenega korita je 45 m, brežine obeh bregov so oblikovane v naklonu 1:2, dolžina poglobitve je 860 m dolvodno od iztoka HE Plave II. V primerih, kjer je bila simulirana zapolnitev prodne lovilne jame za pragom z odloženimi The PCFLOW2D computer code was developed at the UL FGG in Ljubljana (Č etina, 1988), and it was adopted to run on personal computers. Recently additional boundary conditions, new numerical methods and user-friendly interfaces have been implemented. The simulations of the Soč a River flow were performed on the PC computer, with a Pentium III processor running at 900 MHz. In spite of the numerical complexity of the calculations, they took only about half an hour of the computer time. For different discharges, the PCFLOW2D program is capable of adopting the boundaries of the computational domain automatically. To achieve the convergent solution, an average number of about 3000 iterations was needed to lower the numerical error below 1% of the total discharge. 3. MODEL CALIBRATION 3.1 INPUT DATA 3.1.1 GEOMETRIC DATA To prepare the digital terrain model, which has served as a basis for the information about bottom elevations in numerical cells, geodetic data from different sources were used (Č etina & Krzyk, 2001). For the 325 m long Soč a River reach upstream from the bottom-sill, 13 cross-section profiles were given at distances from 13 to 78 m that were surveyed with 173 geodetic points. The layout of the protective levee of the HPP Plave II powerhouse building-ground was also available. For the downstream reach before the bottom-sill construction, the uniform bottom slope was supposed to be a length of 200 m to the bottom elevation of 75,0 m above sea level. After the bottom-sill construction, an excavation of sediments to the bottom elevation of 75,0 m above sea level and a river training of the 860 m long reach downstream of the HPP Plave II outflow was performed. The channel width of 45 m and the bank slope of 1:2 was taken into account. In the cases where the fulfilment of the sediment retention capacity upstream of Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 335 rinjenimi plavinami, je bilo predpostavljeno vodoravno oblikovano dno od praga do zoženega dela struge reke Soč e. Geodetske podatke v grafič ni in številč ni obliki je bilo treba ustrezno obdelati in pripraviti v obliki, ki bi bila najbolj primerna za nadaljnjo pripravo rač unalniškega modela struge. S pomoč jo programa QuickSurf, ki je dodatek grafič nemu programu AutoCAD, in s pomoč jo lastnih pomožnih programov za delo z geodetsko podanimi točkami, je bila oblikovana podatkovna baza izmerjenih ali projektiranih toč k dna struge in brežin reke Soč e ter predvidenega praga. Na podlagi izbranega nač ina interpolacije je nato program QuickSurf oblikoval površino struge reke in določ il kote dna vseh toč k numerič ne mreže. Uporabljena je bila razmeroma gosta neenakomerna numerična mreža z 291 toč kami v vzdolžni y smeri, kjer je bila razdalja ∆ y = 2 m na gorvodnem delu obravnavanega območ ja dolžine 445 m in več ja ∆ y = 4 m na območ ju 120 m dolvodno od praga do konca modela. Numerič na mreža je bila v preč ni x smeri enakomerna s 86 toč kami (∆ x = 2 m). Dolžina rač unskega področ ja (vzdolž toka) je 712 m, širina pa 169 m (slika 2). V strugi je prikazan tudi položaj praga, katerega prerez podaja slika 3. the bottom-sill was simulated, the horizontal river bottom was approximated from the sill to the upstream narrow of the Soč a River. The raw geodetic data in graphical and numerical form had to be processed for the further preparation of the digital terrain model. With the use of the QuickSurf and AutoCAD graphic packages and our own intermediate programs to manipulate with geodetic points, a large data base of measured and designed terrain and river bed (including different shapes of the bottom-sill) points was formed. On the basis of different interpolation methods, the QuickSurf package was capable of forming the riverbed surface, and, as a final result, the bottom elevations at all points of the numerical mesh were determined. A relatively dense non-uniform numerical mesh with 291 points in the longitudinal y direction was used. The chosen space step at the 445 m long upstream part of the model was ∆ y = 2 m, while the space step increased to ∆ y = 4 m at the downstream end of the model. In the lateral x direction, a uniform mesh had 86 points with the space step ∆ x = 2 m. The total length of the computational domain was 712 m and the total width was 169 m (Figure 2). The cross section of the sill which is situated at the riverbed can be seen from Figure 3. x y Q N Slika 2. Rač unsko področ je in uporabljena numerič na mreža. Figure 2. Computational domain and the numerical mesh. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 336 Cross-section "B" Prerez "B" 10 74 0 Prerez "C" 76 75 77 78 74 0 76 75 78 77 20 30 Cross-section "C" 10 20 30 Prerez "A" 0 74 75 76 77 78 79 10 A 75.0 B 75.0 C Cross-section "A" 20 75.0 76.0 79.0 30 80.0 HPP outflow Iztok HE Slika 3. Preč ni prerez praga. Figure 3. Cross-section of the sill. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 337 3.1.2 HIDROLOŠKI IN HIDRAVLIČ NI PODATKI Hidrološki podatki o pretokih so povzeti po poroč ilu IBE (1997). V tem poroč ilu so obdelani pretoki Soč e na območ ju predvidene elektrarne Plave II na podlagi hidrološke študije povodja reke Soč e, ki jo je izdelal Vodnogospodarski inštitut Ljubljana (VGI, 1982). Pri analizi toka č ez prag nad iztokom iz hidroelektrarne so bili upoštevani naslednji pretoki: 100, 200 in 300 m 3 /s ter pretok s povratno dobo 100 let, ki znaša po omenjeni študiji 2718 m 3 /s. Poleg glavnih pretokov v strugi Soč e so bili pri nižjih pretokih dodatno upoštevani še iztoki iz HE Plave II do vrednosti instaliranega pretoka (105 m 3 /s). 3.1.2 HYDROLOGIC AND HYDRAULIC DATA The hydrologic data about discharges was taken from the IBE report (1997). The characteristic discharges of the Soč a River in the HPP Plave II cross-section were elaborated on the basis of the hydrologic study of the Soč a River basin, which was performed by the Water Management Institute in Ljubljana (VGI, 1982). At the flow analysis over the sill, the following discharges were taken into account: 100, 200 and 300 m 3 /s, and the flood discharge 2718 m 3 /s, which has a return period of 100 years. At lower discharges, the additional outflow from the HPP Plave II in the amount of 105 m 3 /s was also considered. Tudi podatki o kotah gladine vode so bili povzeti po poroč ilu IBE (1997). Gladine pri enodimenzijskem rač unu zajezitve med HE Solkan, HE Plave I in HE Plave II so bile določ ene s pomoč jo programa DRAGLA iz programskega paketa HIDRO90 (Širca, 1990). Izrač uni so bili opravljeni na podlagi 42 preč nih profilov, ki jih je leta 1982 posnel Geodetski zavod Maribor, saj novejših izmer geometrije struge ni bilo na voljo. Umerjanje enodimenzijskega modela je bilo opravljeno na podlagi dveh podatkov o gladinah: kote gladine v akumulaciji Solkan in kote v profilu HE Plave I, in sicer za pretoke med 200 in 2500 m 3 /s. Za različ ne pretoke so bili ustrezno določ eni koeficienti hrapavosti. Rezultat teh rač unov so bile tudi kote gladine vode v posameznih profilih. Kote gladine v profilu P40 na stacionaži km 13 + 017 (sliki 4 in 5) so bile uporabljene pri določ anju dolvodnega robnega pogoja za dvodimenzijski matematični model. Zadnji profil dvodimenzijskega modela leži približno 200 m dolvodno, zato so kote v tem profilu nekaj nižje kot v P40, določ ene pa so bile s poskusnimi rač uni, tako da v P40 dobimo ustrezno koto (Č etina & Krzyk, 2001). Uporabljeni dvodimenzijski matematič ni model nam dopušča možnost podajanja različ nih vrednosti koeficienta hrapavosti po posameznih podpodroč jih. Vendar bi za njegovo natančno določ anje potrebovali The data about water surface elevations were also taken from the IBE report (1997). The one-dimensional calculations of the backwater effect between the HPP Solkan, the HPP Plave I and the HPP Plave II were performed using the DRAGLA computer code from the HIDRO90 program package (Širca, 1990). Due to a lack of more recent data, the calculations were made on the basis of 42 cross-sectional profiles that had been measured by the Geodetic service, Maribor, in 1982. For discharges between 200 to 2500 m 3 /s, the calibration of the one-dimensional model was performed by the comparison with measured water surface elevations in the Solkan reservoir and the HPP Plave I cross- section. With calibrated friction coefficients, the water surface elevations were computed at different discharges. The water surface at the P40 cross-section (km 13 + 017, Figures 4 and 5), served as the downstream boundary condition for the two-dimensional mathematical model. Since the last cross- section of the two-dimensional domain was located about 200 m downstream from P40, the boundary water surface elevations were slightly lower, and obtained by trial and error calculations (Č etina & Krzyk, 2001). In the two-dimensional model which was used, it was possible to prescribe different friction coefficients for the sub-areas. To determine the coefficients more accurately, Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 338 terenske meritve hitrosti in gladin pri visokih vodah, ki bi bile bolj natanč ne in bolj zanesljive od razpoložljivih. V študiji toka reke Soč e z enodimenzijskim matematič nim modelom so bile uporabljene okvirne vrednosti koeficienta hrapavosti po Manningu v mejah n = 0,041 - 0.059 sm −13 / (IBE, 1997), ki so bile določ ene za pretoke od 200 do 1600 m 3 /s. Glede na te vrednosti, znač ilnosti struge reke Soč e na obravnavanem odseku s predlaganimi vrednostmi iz literature in predvsem glede na dosedanje izkušnje z nekoliko nižjimi koeficienti hrapavosti pri dvodimenzijskih modelih, so bile za zač etno umerjanje uporabljene vrednosti za n med 0.03 in 0.05 sm −13 / . 3.2 POSTOPEK UMERJANJA Umerjanje matematič nega modela pomeni predvsem postopek, pri katerem določ imo porazdelitev koeficientov hrapavosti v strugi. Po določitvi okvirnih fizikalnih mej (podpoglavje 3.1.2) smo toč nejšo vrednost koeficienta hrapavosti za obravnavano območ je določ ili z upoštevanjem naslednjih dejavnikov: terenskega ogleda, naših dosedanjih izkušenj, primerjave rezultatov dvodimenzijskega izrač una z enodimenzijsko izrač unanimi kotami z modelom DRAGLA in primerjave izrač unanih kot gladine vode z merjenimi vrednostmi. Pri pretokih do 500 m 3 /s smo umerjanje izvedli predvsem na podlagi primerjave gladin z ustreznimi enodimenzijskimi rač uni IBE (1997). Za določ itev koeficienta hrapavosti pri višjih pretokih pa smo se najbolj opirali na podatke Soških elektrarn o izmerjenih gladinah ob nasipu gradbene jame pri visoki vodi v oktobru 2000, ko je pretok dosegel Q = 1700 m 3 /s. Pri umerjanju so bili smiselno uporabljeni tudi razpoložljivi podatki Vodnogospodarskega inštituta o sledovih visoke vode na levem bregu, predvsem za približno ugotavljanje poteka gladin tudi v preč ni smeri. Konč ni rezultat umerjanja pri Q = 1700 m 3 /s in pri upoštevanju nasipa gradbene jame je razviden iz slik 4 (hitrostno polje) in 5 (kote gladin v preč nih in podolžnih additional field measurements of velocities and surface elevations at flood discharges were needed. One-dimensional calculations of the Soč a River flow were performed with the Manning’s friction coefficient values from n = 0,041 to 0,059 sm −13 / (IBE, 1997) for discharges between 200 and 1600 m 3 /s. According to these values, the characteristics of the Soč a riverbed on the investigated area, proposed values from the literature and our previous experiences with the behaviour of two-dimensional models, which usually require lower friction coefficients, we started the calibration process with values between n = 0.03 and 0.05 sm −13 / . 3.2 CALIBRATION PROCESS The main aim of the calibration process was to find out the distribution of friction coefficients in the riverbed. After the rough limits were set (chapter 3.1.2), more accurate values of the roughness coefficients were determined by taking into account the following factors: field examinations; the comparison between the results of the two- dimensional model with water surface elevations obtained by the one-dimensional DRAGLA model and the comparison between the computed and measured water levels. At discharges below 500 m 3 /s, the calibration was mainly performed by the comparison of water levels with one- dimensional computations (IBE, 1997). To determine friction coefficients at higher discharges, we relied on the data about water levels near the protective levee that were recorded by the “Soč a River Hydro Power Plants” company at the flood discharge Q = 1700 m 3 /s. During the calibration process, available data about flood signs at the left bank, obtained by the Water Management Institute, were also taken into account. They were mainly used to assess the shape of the water surface in the lateral direction. The final result of the calibration process at Q = 1700 m 3 /s and for the case with the protective levee can be seen from Figure 4 (velocity field) and Figure 5 (computed and measured water Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 339 profilih vzdolž ravnih linij z vrisanimi merjenimi gladinami). Na levem bregu je bila med profiloma P40.4 in P40.5 izmerjena kota gladine z = 85.05 m in izrač unana z = 85.06 m, med profiloma P40.6 in P41 pa izmerjena z = 85.35 m in izrač unana z = 85.34 m. Merjene in izrač unane kote gladin na desnem bregu so bile z = 85.25 m in z = 85.27 m (približno v profilu P40.5) ter z = 85.41 m in z = 85.47 m (med profiloma P40.6 in P41). Na podolžnem profilu gladin sta med preč nima profiloma P40.6 in P41 vnešeni izmerjeni koti z = 85.35 m (levo) in z = 85.41 m (desno), izrač unani koti blizu levega in desnega brega pa sta bili z = 85.32 m in z = 85.46 m. Izbrana koeficienta hrapavosti, ki smo jih nato uporabili pri nadaljnjih rač unih, sta bila n = 0.05 sm −13 / za pretoke do Q = 500 m 3 /s in n = 0.04 sm −13 / za višje pretoke. Toč nost uporabljenega modela je, glede na to, da lahko zajamemo tok v dveh dimenzijah, razmeroma dobra. Pri točnih vhodnih hidroloških, hidravličnih in geometrijskih podatkih ocenjujemo, da bi bila toč nost modela na obravnavanem odseku pri nizkih pretokih do Q = 500 m 3 /s v mejah ± 5 cm, pri stoletnem pretoku Q 1 00 pa v mejah ± 10 cm. To je hkrati tudi natanč nost, s katero lahko ugotavljamo vplive relativnih sprememb gladine zaradi različ nih ukrepov v strugi (predvsem oblike in višine praga ter poglobitve struge) glede na izbrano referenč no stanje. Vendar pa največ jo napako vnesemo v rač un z netoč nimi vhodnimi podatki. Kot je pokazalo umerjanje, imamo v primeru Soč e na območju iztoka HE Plave II, kljub geometrijskim in geodetskim podatkom o topografiji struge in terena, na voljo premalo natanč ne podatke o spodnjem robnem pogoju ter relativno malo zanesljivih meritev gladin (v samo štirih toč kah). Ker pa gre za relativno kratek odsek, na podlagi umerjanja ocenjujemo, da je točnost izrač unanih absolutnih kot na odseku med ± 15 cm pri Q = 1700 m 3 /s in ± 20 cm pri Q 1 00 = 2718 m 3 /s. surface elevations in cross-section and longitudinal profiles along straight lines). At the left bank, between cross-sections P40.4 and P40.5, measured and computed water surface elevations were z = 85.05 m and z = 85.06 m, respectively, and between cross- sections P40.6 and P41, z = 85,35 m (measured) and z = 85.34 m (computed). The measured and computed water surface elevations at the right bank were z = 85.25 m and z = 85.27 m (approx. in the cross-section P40.5) and z = 85.41 m and z = 85.47 m (between the cross-sections P40.6 and P41). At the longitudinal water surface profile, the measured elevations z = 85.35 m (left) and z = 85.41 m (right) between cross-sections P40.6 and P41 are marked, while the computed values near the left and right banks were z = 85.32 m and z = 85.46 m, respectively. The calibrated friction coefficients for further computations were n = 0.05 sm −13 / for discharges below 500 m 3 /s, and n = 0.04 sm −13 / for higher discharges. Since it was possible to simulate flow in two dimensions, the accuracy of the model is relatively high. If the input hydrologic, hydraulic and geometric data were exact, the accuracy of the model would be ± 5 cm at lower discharges, and below 500 m 3 /s and ± 10 cm at Q 1 00 = 2718 m 3 /s. With this accuracy it is possible to investigate changes of water levels, relative to the reference state, due to different training measures in the riverbed (particularly the shape and height of the bottom-sill and the deepening of the river bed). But the largest error could be introduced by the inexact input data. The calibration process in the case of the Soč a River near the HPP Plave II outflow showed the lack of certain data. In spite of geometric and geodetic riverbed and terrain data, more accurate water levels at the downstream end of the model and more reliable measurements during floods would be needed (water levels in 4 points were available only). But since the simulated reach is relatively short, the calibration process suggests that the accuracy of the computed absolute water surface elevations are between ± 15 cm at Q = 1700 m 3 /s and ± 20 cm at Q 1 00 = 2718 m 3 /s. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 340 P40.4 km 13+364 P41 P40.6 P40.5 Detajl P40.3 P40.2 P40.1 km 13+017 P40 P40.4 P40.3 P40.2 P40.1 Dolžin, Length Hitrosti, Velocity Merilo, Scale Merilo, Scale Hitrosti, Velocity Dolžin, Length Slika 4. Umerjanje modela – izrač unano hitrostno polje pri pretoku Q = 1700 m 3 /s. Figure 4. Model calibration – computed velocity field at the discharge Q = 1 700 m 3 /s. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 341 P40.5 P41 km 13+364 P40.6 P40.4 P40.3 P40.1 P40.2 km 13+017 P40 P40.5 P41 km 13+364 P40.6 P40.4 P40.3 P40.1 P40.2 km 13+017 P40 84.5 84.7 84.5 84.9 85.1 Measurement in October 2000 * 84.9 84.7 85.1 85.5 85.3 85.5 85.3 84.5 * 84.9 84.7 85.1 85.5 85.3 * 84.5 * 85.1 84.5 84.9 84.7 85.5 85.3 84.7 84.9 84.7 84.9 84.5 84.7 84.5 84.9 85.1 84.9 84.5 84.7 85.1 84.7 84.5 84.9 85.3 85.5 85.1 84.7 84.9 84.5 84.7 85.5 85.3 84.9 85.1 84.5 84.7 85.5 85.3 84.9 85.1 84.5 Meritev oktober 2000 * * * Slika 5. Umerjanje modela – primerjava izrač unanih in merjenih gladin pri Q = 1700 m 3 /s. Figure 5. Model calibration – comparison between computed and measured water surface elevations at Q = 1 700 m 3 /s. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 342 4. REZULTATI IZRAČ UNOV Po že opisanem umerjanju modela pri pretoku Q = 1700 m 3 /s je bil ob upoštevanju nasipa gradbene jame in brez poglobitve struge dolvodno od iztoka izveden še primer rač una s Q 1 00 = 2718 m 3 /s. Ta rač un smo potem uporabili kot referenč no stanje, s katerim so bili primerjani konč ni rač uni. Kot konč no stanje je bila upoštevana odstranitev nasipa gradbene jame, različ ne različ ice položaja in oblike talnega pragu in horizontalna poglobitev struge dolvodno do kote 75.00 m, dokler se ne vklopi v obstoječ e dno struge. Pregled vseh simuliranih primerov in izrač unanih hitrostnih polj je podan v poroč ilu Č etina & Krzyk (2001), kjer je podrobno opisana tudi izbira konč ne oblike talnega praga. V tem poroč ilu so na slikah 6 do 10 grafič no prikazani samo nekateri najznač ilnejši rezultati za konč no obliko pragu in pretoke 100, 200, 300 in 2718 m 3 /s. 4.1 POLJE HITROSTI Izrač unani vektorji globinsko povpreč nih hitrosti za posamezne primere nam povedo, ali je rešitev s talnim pragom ustrezna za preprečitev odlaganja rinjenih plavin na območ ju iztoka HE Plave II. Na slikah 6, 7 in 8 so vektorji izrisani v vsaki drugi toč ki numerič ne mreže tako v x kot tudi y smeri. Pri pretoku Soč e Q = 100 m 3 /s brez delovanja turbine (slika 6) ter pretoku Q = 300 m 3 /s ob hkratnem delovanju turbine (+ 105 m 3 /s, slika 7) so lepo vidne znač ilnosti toka preko praga. Zlasti v znižanem delu ob desnem bregu so hitrosti povečane, tako da prepreč ujejo morebitno odlaganje rinjenih plavin. Za oceno strižnih napetosti ob dnu pri različ nih pretokih so pomembne velikosti hitrosti. Pri Q = 100 m 3 /s največ je globinsko povpreč ne hitrosti nastopajo na hrbtu praga ob desnem bregu in znašajo približno 1.6 m/s (slika 6), v preostalem delu struge pa je razpored hitrosti bolj enakomeren z vrednostmi med 1.1 in 1.3 m/s. Pri Q 1 00 = 2718 m 3 /s pa so hitrosti med 3 in 4 m/s (slika 8). Najmanjše ali celo povratne gorvodno usmerjene hitrosti pa nastopajo na recirkulacijskih območ jih (največ je je dolvodno od talnega praga ob levem bregu), kjer je mogoč e prič akovati odlaganje rinjenih plavin. 4. COMPUTATIONAL RESULTS After the model had been calibrated at Q = 1700 m 3 /s, the case with protective levee and without riverbed deepening could be computed at a discharge of Q 1 00 = 2718 m 3 /s. This case was chosen as a reference state to be compared with final computations. In the final state, the removal of the protective levee, different layouts and shapes of the bottom-sill and the horizontal riverbed profile downstream to the bottom elevation of 75.00 m above sea level were considered. The review of all simulated cases and computed velocity fields can be found in the report Č etina & Krzyk (2001), where the choice of the final shape of the bottom-sill is explained in detail. Here only, some most significant graphical results for the final shape of the bottom-sill are shown in Figures 6 to 10, for the discharges 100, 200, 300 and 2718 m 3 /s. 4.1 VELOCITY FIELD The computed velocity vectors for different cases could indicate whether the solution with the bottom-sill is appropriate to prevent sedimentation in the area of the HPP Plave II outflow. In Figures 6, 7 and 8, the velocity vectors were plotted in every second point of the numerical grid in the x and y directions, respectively. At the Soč a River discharge Q = 100 m 3 /s without turbine operation (Figure 6) and at the discharge Q = 300 m 3 /s, with turbine operation (+ 105 m 3 /s, Figure 7), the characteristics of the flow over the sill could be clearly seen. The higher velocities near the right bank over the lower part of the sill prevented sedimentation. Magnitudes of the velocities were important in assessing bottom shear stresses. At Q = 100 m 3 /s, the maximum values of depth-averaged velocities near the right bank on the downstream part of the sill were about 1,6 m/s (Figure 6). In another part of the river, the velocity distribution was more uniform, with values between 1,1 and 1,3 m/s. At Q 1 00 = 2718 m 3 /s, velocities were between 3 and 4 m/s (Figure 8). Minimum or even upstream- directed velocities could be indicated in the recirculation zones. In the largest recirculation zone, just downstream of the sill near the left bank, sedimentation could be expected. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 343 P40.2 P40.1 Detajl P40.3 P40.4 P40.2 P40.6 km 13+364 P41 P40.5 P40.4 P40.3 km 13+017 P40 Hitrosti, Velocity Dolžin, Length Merilo, Scale P40.1 Merilo, Scale Dolžin, Length Hitrosti, Velocity Slika 6. Izrač unano hitrostno polje pri pretoku Soč e Q = 100 m 3 /s brez delovanja turbine. Figure 6. Computed velocity field at the Soč a River discharge Q = 1 00 m 3 /s without turbine operation. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 344 P40.4 P40.1 P40.3 Detajl P40.4 P40.2 P41 P40.6 km 13+364 P40.5 P40.3 km 13+017 Merilo, Scale P40 Hitrosti, Velocity Dolžin, Length P40.1 P40.2 Merilo, Scale Dolžin, Length Hitrosti, Velocity Slika 7. Izrač unano hitrostno polje pri pretoku Soč e Q = 300 m 3 /s in delovanju turbine (+ 105 m 3 /s). Figure 7. Computed velocity field at the Soč a River discharge Q = 300 m 3 /s with turbine operation (+ 1 05 m 3 /s). Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 345 km 13+364 P41 P40.6 P40.5 P40 km 13+017 Hitrosti, Velocity Dolžin, Length Merilo, Scale Dolžin, Length Hitrosti, Velocity P40.4 P40.3 P40.2 P40.1 Merilo, Scale P40.4 P40.2 P40.1 P40.3 Detajl, Detail Slika 8. Izrač unano hitrostno polje pri pretoku Soč e Q 1 00 = 2718 m 3 /s. Figure 8. Computed velocity field at the Soč a River discharge Q 1 00 = 271 8 m 3 /s. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 346 4.2 KOTE GLADIN Poleg hitrostnih polj nas kot konč ni rezultat izrač unov zanimajo tudi kote gladine pri različ nih visokovodnih pretokih in predvidenih spremembah v strugi Soč e na območ ju iztoka HE Plave II. Ker dvodimenzijski model omogoč a izrač un gladin v vsaki “aktivni” celici razmeroma goste numerič ne mreže (aktivnih je približno polovica od skupno 86 x 291 toč k, kar je še vedno okrog 12 500 toč k), lahko postane spremljanje številč nih podatkov o kotah gladine zelo zamudno in nepregledno. Zato so rezultati prikazani grafično v karakteristič nih preč nih in podolžnih profilih, izometrič na slika pa omogoč a lažjo prostorsko predstavo o poteku gladine. Primerjava kot gladin pri Q 1 00 = 2718 m 3 /s med konč nim in referenč nim stanjem (slika 9) kaže, da konč no stanje po izgradnji talnega praga zaradi hkratne odstranitve nasipa gradbene jame ne poslabšuje hidravlič nih razmer gorvodno. Rač uni so pokazali, da se bo kota pri hišah ob levem bregu približno 100 m gorvodno od profila P41 znižala z 88.67 m n.m. med gradnjo strojnice HE Plave II na 88.23 m n.m. po odstranitvi nasipa. Torej bo kljub že upoštevanem zasipavanju dna do kote krone praga celo za 0.44 m nižja kot med gradnjo strojnice. Izometrič na slika gladine pri Q 1 00 = 2718 m 3 /s je podana na sliki 10. Pri tem je treba poudariti, da teren v suhih nesodelujoč ih celicah zunaj struge ne predstavlja dejanske topografije, temveč je umetno ravno odrezan, da je bolje viden potek izrač unane gladine v strugi. 4.2 WATER SURFACE ELEVATIONS Besides velocity fields in the HPP Plave II outflow area an interesting final result was also the water surface elevations at various flood discharges, and the different changes in the Soča riverbed. Since, with a two- dimensional model, it is possible to compute the water surface in every “active” cell of a relatively dense numerical grid (about half of total 86 x 291 points were active, approximately 12 500 points), the interpretation of the numerical values about water levels could become very unpleasant and difficult to scan. For that reason the results are shown graphically in characteristic cross- sections and longitudinal profiles. The isometric view of the water surface is also added. The comparison of water surface elevations at Q 1 00 = 2718 m 3 /s for the final and reference state (Figure 9) show that, in spite of bottom- weir construction due to the simultaneous protective levee removal, the hydraulic conditions upstream would not be worsened. The computations showed that the water surface elevation near the houses at the left bank approximately 100 m upstream from the P41 profile would decrease from 88.67 m to 88.23 m above sea level after the protective levee was removed. So it would be, in spite of the sediment deposition up to the sill crest, even 0.44 m lower than during the HPP Plave II powerhouse construction. The isometric view of the water surface at Q 1 00 = 2718 m 3 /s can be seen in Figure 10. It was added to stress that the terrain elevations in dry cells are not realistic, but cut off at certain levels to improve the visibility of the computed water surface in the river. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 347 P40 km 13+017 P40.1 P40.2 P40.3 P40.5 P40.6 P41 km 13+364 P40.5 P41 km 13+364 P40.6 P40.4 P40.3 P40.1 P40.2 km 13+017 P40 87.9 87.5 87.7 88.5 88.3 88.1 87.9 87.7 87.5 88.5 88.3 88.1 88.5 87.9 87.7 88.1 88.3 87.5 88.5 87.9 87.7 88.1 88.3 87.5 88.5 87.9 87.7 88.1 88.3 87.5 87.9 87.7 88.1 88.3 87.5 87.9 87.7 88.1 87.5 87.9 87.7 87.5 87.9 87.7 87.5 Merilo Merilo 88.3 88.1 87.7 87.5 87.9 88.5 88.1 87.7 87.9 87.5 P40.4 88.5 88.3 88.1 87.7 87.9 87.5 88.1 87.7 87.9 87.5 Slika 9. Primerjava gladin pri pretoku Soč e Q = 2718 m 3 /s med referenč nim in konč nim stanjem. Figure 9. The comparison of water surface elevations between the reference and final state at the Soč a River discharge Q = 271 8 m 3 /s. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 348 Slika 10. Izometrič na slika izrač unane gladine pri pretoku Soč e Q = 2718 m 3 /s. Figure 1 0. Isometric view of the computed free surface at Q = 271 8 m 3 /s. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 349 5. ZAKLJUČ KI Z dvodimenzijskim globinsko povpreč nim modelom PCFLOW2D je bil prerač unan odsek Soč e na območ ju turbinskega iztoka HE Plave II. Potem, ko je bil model zadovoljivo umerjen, je bilo s simulacijami pri nižjih pretokih Soče preverjenih več različ ic poglobitev struge ter tlorisnega in višinskega položaja talnega praga gorvodno od iztoka. Ocenjen je bil tudi vpliv praga na gladine pri visokovodnem pretoku Q 1 00 = 1718 m 3 /s. Rezultati rač unov pri nizkih pretokih od 100 do 300 m 3 /s z upoštevanjem delovanja turbine (+ 105 m 3 /s) ali brez so pokazali, da predlagana rešitev s talnim pragom razmeroma uč inkovito rešuje problem odlaganja rinjenih plavin na območ ju turbinskega iztoka. Zaradi padanja kote krone praga proti desnemu bregu so namreč hitrosti dolvodno ob desnem bregu poveč ane, kar prepreč uje recirkulacijo vode in s tem odlaganje plavin. Variantni izrač uni hitrostnega polja so tudi omogoč ili optimizacijo konč ne oblike praga (sliki 2 in 3). Druga pomembna ugotovitev je, da predvideni prag pri visokih pretokih Soč e (Q 1 00 = 2718 m 3 /s) ne poslabšuje hidravlič nih razmer gorvodno, glede na obstoječ e referenčno stanje pri zgrajenem nasipu gradbene jame. Po izgradnji praga in dokonč anju strojnice je bil namreč nasip odstranjen, ustrezno pa je bila urejena tudi desna brežina. Računi razpoložljivih prostornin za odlaganje rinjenih plavin gorvodno od praga so pokazali vrednosti okrog 10 000 m 3 /s. To seveda ne zadostuje za zadrževanje letnih količ in rinjenih plavin Soč e, ki so bistveno višje, še zlasti po zadnjem potresu v Posoč ju in katastrofalnem drobirskem toku v Logu pod Mangartom. Del proda bo zato potoval preko praga in se odlagal ob levem bregu v zatišnem delu korita. Zato bo potrebno obč asno č išč enje tega odseka, ki ga bo mogoč e izvesti deloma s hidravlič nim izpiranjem ob denivelaciji HE Solkan in deloma z neposrednim bagranjem korita. Na primernih lokacijah gorvodno od obravnavanega odseka je treba predvideti lovilne jame za prod. 5. CONCLUSIONS The reach of the Soč a River in the area of the HPP Plave II powerhouse outflow was computed using the two-dimensional depth- averaged model PCFLOW2D. After the model had been satisfactorily calibrated, several variants of the riverbed deepening with different layouts and crest elevations of bottom-sill were simulated at low discharges. The influence of the sill on the water levels upstream was also assessed at the flood discharge Q 1 00 = 2718 m 3 /s. The computational results at low discharges from 100 to 300 m 3 /s, with (+ 105 m 3 /s) or without the turbine operation, proved that the bottom sill could efficiently prevent the deposition of bed-load in front of the outflow. Due to the lower crest elevations on the right part of the sill, the higher velocities near the right bank prevent water recirculation, and thus the deposition of sediments. Several alternative computations of the velocity field enabled the optimisation of the final shape of the sill (Figures 2 and 3). Secondly, at high discharges of the Soč a River (Q 1 00 = 2718 m 3 /s), the designed sill did not worsen the hydraulic conditions upstream according to the reference state with the protective levee of the powerhouse. This is because after the bottom-sill construction and the finishing of the powerhouse building, the levee was removed. The trained right bank also improved the situation. The retention capacity for sediment deposition upstream of the sill was computed to be about 10 000 m 3 . Certainly this is not enough to stop the evidently higher sediment inflow of the Soč a River, especially after the last earthquake disaster in the Posoč je region and the catastrophic debris flow at the upstream-located village of Log pod Mangartom. Part of the bed-load is thus expected to flow over the sill and to deposit just downstream near the left bank of the Soč a River. Occasionally it will be necessary to remove the deposited material, either with hydraulic flushing b y lowering the downstream water level, or by excavation. Some additional sediment retention basins at the upstream locations are also needed. Č etina, M., Krzyk, M.: Matematič no modeliranje toka Soč e na območ ju iztoka hidroelektrarne Plave II – Mathematical Modelling of the Soč a River Flow in the Area of the Plave II Power Plant Outflow © Acta hydrotechnica 20/33 (2002), 329-350, Ljubljana 350 VIRI – REFERENCES Č etina, M. (1988). Mathematical Modelling of Two-dimensional Turbulent Flows. Acta hydrotechnica 5/6, 56 p. (in Slovenian with extended abstract in English). Č etina, M. (1989). Uporaba k -ε modela turbulence pri rač unu toka vode s prosto gladino (Free Surface Flow Computations Using a Depth-Averaged k -ε Turbulence Model). Proceedings of the Slovenian Conference on Mechanics “Kuhljevi dnevi '89”, Rogla, 253-262 (in Slovenian). Č etina, M., Rajar, R. (1993). Mathematical Simulation of Flow in a Kayak Racing Channel. Proceedings of the 5 th International Symposium on Refined Flow Modelling and Turbulence Measurements, Paris, 673-644. Č etina, M., Krzyk, M. (2001). Dvodimenzionalni matematič ni model toka Soč e v območ ju iztoka HE Plave II (Two-dimensional Mathematical Model of the Soč a River Flow in the Area of the HEPP Plave II Outflow), University of Ljubljana, FGG, Report 76-KMTe/d-54, 16 p. (in Slovenian). Fazarinc, R. (2001). Idejna zasnova talnega praga nad iztokom HE Plave II (The Scheme of the Bottom Sill Upstream of the Plave II HEPP Outflow). Osebna komunikacija (Personal Communication, in Slovenian). IBE (1997). HE Plave II – PGD (HEPP Plave II – Project Documentation). IBE, Ljubljana (in Slovenian). Patankar, S.V. (1980). Numerical Heat Transfer and Fluid Flow. McGraw-Hill Book Company, 197 p. Rodi, W. (1980). Turbulence Models and Their Application in Hydraulics – A State of the Art Review. IAHR Book Publication, Delft, 104 p. Širca, A. (1990). Programski paket HIDRO90 – navodila za uporabo (Computer Code HYDRO 90 – User’s Manual). University of Ljubljana, FAGG, 86 p. (in Slovenian). VGI (1982): Hidrološka študija Soč e (The Soč a River Hydrology), Water Management Institute (VGI), Ljubljana (in Slovenian). Naslov avtorjev - Authors' Addresses izr. prof. dr. Matjaž Č etina, mag. Mario Krzyk Univerza v Ljubljani - University of Ljubljana Fakulteta za gradbeništvo in geodezijo - Faculty of Civil and Geodetic Engineering Jamova 2, SI-1000 Ljubljana E-mail: mcetina@fgg.uni-lj.si