
ERK'2018, Portorož, 139-142 139

Replacing reward function with user feedback

Zvezdan Lončarević, Rok Pahič, Aleš Ude, Bojan Nemec, Andrej Gams
All authors are with the Department of Automatics, Biocybernetics and Robotics, Jožef Stefan Institute,

and with the Jožef Stefan International Postgraduate School, Jamova 39, 1000 Ljubljana, Slovenia
e-mail: zvezdan.loncarevic@ijs.si

Abstract
Reinforcement learning refers to powerful algorithms

for solving goal related problems by maximizing the
reward over many time steps. By incorporating them
into the dynamic movement primitives (DMPs) which are
now widely used parametric representations in robotics,
movements obtained from a single human demonstration
can be adapted so that a robot learns how to execute
different variations of the same task. Reinforcement
learning algorithms require carefully designed cost
function, which in most cases uses additional sensors to
evaluate some environment criteria.

In this paper we explore possibilities of learning
robotic actions using only user feedback as a reward
function. Two reward functions have been used and their
results are presented and compared. These were user
feedback and a simplified reward function. Experimental
results show that for the simple actions where only the
terminal reward is given, these 2 reward functions work
almost as good as having a reward function based on the
exact measurement.

1 Introduction
As robots become a mass consumer product, besides
standard industrial environments, they are expected to be
able to perform in unstructured environments, such as
households or some other real-life situations. One of the
biggest barriers to wider implementation of robots in our
home environment is the lack of environment models.
In most cases, a complex sensory system is required
to estimate relevant environment parameters. That is
why standard ways of programming robotic movements,
that need an expert programmer for every variation of
the task, are not sufficient. With humanoid robots with
many degrees of freedom, autonomy is one of the main
unresolved issues in contemporary robotics [1]. Imitation
and reinforcement learning are the two most common
approaches for solving this issue. Because robot actions
are mainly recorded as parametric representations with
many parameters search space for reinforcement learning
algorithms that use gradient methods (finite difference
gradient, natural gradient, vanilla gradient, etc.) is large.
Only recently, probabilistic algorithms such as PI2 and
PoWER have been developed and able to deal with high
dimensional search space [2, 3].

Figure 1: Experimental setup with Mitsubishi PA-10 robot

One of the major problems in reinforcement learning
is determining the reward function. It was usually solved
by modifying reward function according to the teachers
behavior [4, 5, 6].

The main goal of this paper is to show that a sim-
plified, reduced reward function can be used directly for
some robot actions. An example of such is throwing a
ball, i. e. the robot learns how to perform an accurate
throwing action relying only on feedback from naive user
or cheap imprecise sensors.

The paper is organized as follows: In the next sec-
tion, we briefly present dynamical movement primitives
that are already a widely used method in programming
by demonstration, and a probabilistic algorithm called
PoWER. We used it to learn new DMP parameters for
the task. In Section III we introduce the reduced reward
functions that were used. Next section presents experi-
mental setup and results obtained in simulation and on
the real robot. The paper concludes with a short outlook
on the obtained results and suggestions for future work.

2 Reinforcement Learning
In this section we provide the DMPs and PoWER basics.

140

2.1 Dynamic Movement Primitives
The basic idea of Dynamic Movement Primitives (DMPs)
[7] is to represent the trajectory with the well known dy-
namical system described with equations for the mass on
spring-damper system. For a single degree of freedom
(DOF) denoted by y, in our case one of the joint task-
space coordinates, DMP is based on the following second
order differential equation:

τ2ÿ = αz(βz(g − y)− τ ẏ) + f(x), (1)

where τ is the time constant and it is used for time scaling
(time in which the trajectory needs to be reproduced), αz
and βz are damping constants (βz = αz/4) that make
system critically damped and x is the phase variable. The
nonlinear term f(x) contains free parameters that enable
the robot to follow any smooth point-to-point trajectory
from the initial position y0 to the final configuration g
[8]. The phase and kernel functions are given by

f(x) =

∑N
i=1 ψ(x)ωi∑N
i=1 ψi(x)

x, (2)

ψi(x) = exp (− 1

2δ2i
(x− ci)2), (3)

where ci are the centers of radial basis functions (ψi(x))
distributed along the trajectory and 1

2δ2i
(also labeled as hi

[9]) their widths. Phase x makes the forcing term f(x)
disappear when the goal is reached because it exponen-
tially converges to 0. Its dynamics are given by

x = exp (−αxt/τ), (4)

where αx is a positive constant and x starts from 1 and
converges to 0 as the goal is reached. Multiple DOFs are
realized by maintaining separate sets of (1–3), while a
single canonical system given by (4) is used to synchro-
nize them. The weight vector w, which is composed of
weights wi, defines the shape of the encoded trajectory.
Learning of the weight vector using a batch approach has
been described in [10] and [7] and it is based on solving
a system of linear equations in a least-squares sense.

2.2 PoWER
Before the robots become more autonomous, they would
have to be capable of autonomous learning and adjusting
their control policies based on the feedback from the in-
teraction with varying environment. Policy learning is an
optimization process by which we want to maximize the
state value of cost function:

J(θ) = E
[H∑
k=0

αkrk(θ)
]
. (5)

with varying policy parameters θ ∈ Rn [11]. In the
last equation (5), E is the expectation value, rk is re-
ward given for time step k and it depends of parame-
ters that are chosen (θ). H is the number of time steps
in which reward is given and αk are the time step de-
pendent weighting factors. Although there are numerous

methods that can be used to optimize this function, the
main problem is high dimensionality of parameters θ (for
DMP it is typically 20-50 per joint, we use 25 per joint).
Stochastic methods as PI2 and PoWER were recently in-
troduced. It was proven that PI2 and PoWER perform
identically when only terminal reward for periodic learn-
ing was available. With PoWER it is easy to incorporate
also other policy parameters [1] such as starting (y0) and
ending point (g) and time of execution (τ) of the trajec-
tory for each DOF and not only DMP weights (w) so in
this research the parameters that are learned are:

θ =
[
w, g, y0

]
. (6)

During the learning process this parameters are updated
using the rule:

θm+1 = θm +

∑L
k=1(θik − θm)rk∑L

k=1 rk
(7)

where θm+1 and θm are parameters after and before up-
date, L is number of parameters in importance sampler
matrix and they represent L executions with highest re-
wards (rk). θi is selected using stochastic exploration
policy

θ∗i = θ∗m + εi, (8)

where εi is Gaussian zero noise. Variance of the noise
(σ2) is the only tuning parameter of this method. Be-
cause θ consists of three DMP parameters that cannot be
searched with the same variance, it requires three differ-
ent variances to be chosen. In general, higher σ2 would
lead to faster, and lower σ2 to more precise convergence.

3 Reward function
As the goal of this paper is to examine the possibility to
avoid need for expensive and precise sensors that can be
set and calibrated only in laboratories for some actions to
be successful, and enable a user to train a robot to per-
form variation of some action with simple instructions,
thus discretized reward function is introduced. Two re-
ward functions are compared between each other and to
the exact reward function based on the distance measured
with sensors.

In the first reward function (unsigned), rewards
are given on a five-star scale where the terms {“one
star”,“two stars”,“three stars”,“four stars” and “five
stars”} have the corresponding rewards: r={1/5, 2/5, 3/5,
4/5, 1}. This means that the robot did not know in which
direction to change its throws. Similar is presented in
[12].

In the second reward function (signed), robot con-
verged to its target using the feedback in which reward
was formed using five possible rewards:“too short” (r =
−1/3), “short” (r = −2/3), “hit” (r = 1), “long” (r =
2/3), and “too long” (r = 1/3). This allowed us to al-
ways put in importance sampler matrix the shots that are
on the different sides of the target.

This means that both functions are of the same com-
plexity because they have only five possible rewards. Al-
though the five-star system can discretize better, the sec-
ond should be able to compensate its lower discretization

141

with the new way of choosing movements that will be in
the importance sampler.

4 Experimental evaluation
4.1 Experimental setup
The experiment was conducted in simulation and on a
real-system. People as well as computer-simulated hu-
man reward systems were used.

The participants used a GUI to rate (give terminal re-
ward) to the shots until the robot manages to hit the target.

In order to evaluate statistical parameters describing
the success of learning, we have also created the program
that should simulate human ratings with discretized re-
ward function and with the variance between the reward
borders (to simulate human uncertainty). The uncertainty
was determined empirically. Simulation and this program
allowed us to make much more trials without human par-
ticipants. This way we tested our algorithm for ten dif-
ferent positions of the target with the diameter of 10 cm.
(30 trials for each position) within the possible range of
the robot (between 2.4m to 4m providing that the robot
base was mounted on a stand of 1 m height).

Finally, the functionality of the algorithm was
confirmed in the real-world using the Mitsubishi PA-10
robot. It needed to hit the basket with a 20 cm diameter
with a 13 cm diameter ball. The experimental setup with
the real robot is shown In Fig. 1.

4.2 User study
In the following, human-robot interaction (HRI) study
with volunteer participants that are naive to the learning
algorithm is described. Participants were using graphi-
cal user interface (GUI) in which they could rate the suc-
cess of the shot in the five-star rating system (first reward
function) and in the GUI where they could choose if the
shot was “too short”, “short”, “hit”, “long”, or “too long”
(second reward function) in a randomized order. They
were not informed on how the reward function works,
but only that learning was finished after they rate a shot
with five stars in the first reward function system, or af-
ter they pressed “hit” in the second reward function sys-
tem. The maximum number of iterations was 120. Tests
with users were conducted using a simulation created in
Matlab, where the robot model was made using the same
measurements and limitations as on the real robot.

4.3 Results
Figure 2 shows throwing error convergence, which tends
towards zero for all experiments. The top plot shows
the results where human judgment was simulated using
Matlab environment and presents statistics of 300 trials.
Each trial had update in 120 iterations. Bottom figure
represents error convergence from the results with hu-
man judgment. Although human judgment criteria differs
among participants, the robot was still able to converge to
its goal.

In Fig. 3 rewards that were given to the executed shot
are shown. The top plot shows rewards (r) that were com-
puter generated and the bottom one shows rewards that

0 10 20 30 40 50 60 70

0

10

20

0 10 20 30 40 50 60 70

0

10

20

Figure 2: The top picture shows mean error convergence caused
by computer simulated human judgment and the bottom one by
real human judgment. Solid line denotes the results based on the
real measurement reward function, dotted denotes the results for
the unsigned reward function and dashed denotes results for the
signed reward function.

were given using human judgment. Statistics for com-
puter generated rewards is taken from 300 trials and for
human rewards from 10 participants that did the experi-
ment.

0 10 20 30 40 50 60 70

0.5

1

0 10 20 30 40 50 60 70

0.5

1

Figure 3: The top picture shows computer simulated reward and
the bottom one real human mean reward convergence. Solid line
denotes the results based on the real measurement reward func-
tion, dotted denotes results for the unsigned reward function and
dashed denotes results for the signed reward function.

Figure 5 (top) shows the statistics of average and the
last (bottom) iteration in which the first shot happened
in computer simulated judgment (shaded bars) and in the
experiment with people (white bars). Results are shown
for the cases where exact distance was measured, for five-
star reward function (unsigned discrete), and for the re-
ward function where people were judging according to
the side of the basket where the ball fell (signed discrete).
It shows that with computer simulated human judgment
(shaded bars), unsigned works only slightly better, but
with the signed one, the worst case scenario is better. Sur-
prisingly, with the human judgment, signed reward func-
tion drastically outperformed the unsigned. This can be
explained by the fact that people tend to rate the shots
in comparison to the previous one and that way uninten-
tionally form a gradient. This is a fact similar to what was
discussed in [13].

142

Figure 4: Experiment on the real robot: In the first row, exact distance was measured, in the second row unsigned reward system
was used and in the third one signed reward function was used. The robot was throwing the ball from the right.

Figure 5: Average first shot and its deviation in Nakagami dis-
tribution (top) and worst case first shot (bottom): computer
(shaded bars), human (white bars)

5 Conclusion
Results show that reinforcement learning of some sim-
ple tasks can be done with the reduced reward function
almost equally good as with exact measurement based
reward function. Even so, the problems related to rein-
forcement learning in general stay the same: it is very
difficult and time-consuming task to set the appropriate
noise variance (especially if more parameters are varied
like in this case). Note that excessive noise variance re-
sults in jerky robot trajectories, which might even damage
the robot itself.

That is why in the future, we will test this using the
latent space of the neural network, where we have less
different search variances to tune and also a possibility to
train neural network on executable shots so that too big
variance cannot lead to the trajectories that differ a lot
from the original, demonstrated one.

References
[1] B. Nemec, D. Forte, R. Vuga, M. Tamosiunaite, F. Wor-

gotter, and A. Ude, “Applying statistical generalization to
determine search direction for reinforcement learning of
movement primitives,” IEEE-RAS International Confer-
ence on Humanoid Robots, pp. 65–70, 2012.

[2] E. Theodorou, J. Buchli, and S. Schaal, “A Generalized
Path Integral Control Approach to Reinforcement Learn-
ing,” Journal of Machine Learning Research, vol. 11,
pp. 3137–3181, 2010.

[3] J. Kober and J. Peters, “Learning motor primitives
for robotics,” 2009 IEEE International Conference on
Robotics and Automation, pp. 2112–2118, 2009.

[4] P. Abbeel and A. Y. Ng, “Apprenticeship learning via in-
verse reinforcement learning,” Twenty-first international
conference on Machine learning - ICML ’04, p. 1, 2004.

[5] W. Knox, C. Breazeal, and P. Stone, “Learning from
feedback on actions past and intended,” In Proceedings
of 7th ACM/IEEE International Conference on Human-
Robot Interaction, Late-Breaking Reports Session (HRI
2012), 2012.

[6] S. Griffith, K. Subramanian, and J. Scholz, “Policy Shap-
ing: Integrating Human Feedback with Reinforcement
Learning,” Advances in Neural Information Processing
Systems (NIPS), pp. 1–9, 2013.

[7] A. Ijspeert, J. Nakanishi, and S. Schaal, “Movement im-
itation with nonlinear dynamical systems in humanoid
robots,” Proceedings 2002 IEEE International Confer-
ence on Robotics and Automation (Cat. No.02CH37292),
vol. 2, no. May, pp. 1398–1403, 2002.

[8] D. Forte, A. Gams, J. Morimoto, and A. Ude, “On-
line motion synthesis and adaptation using a trajectory
database,” Robotics and Autonomous Systems, vol. 60,
no. 10, pp. 1327–1339, 2012.

[9] A. Gams, A. J. Ijspeert, S. Schaal, and J. Lenarčič,
“On-line learning and modulation of periodic movements
with nonlinear dynamical systems,” Autonomous Robots,
vol. 27, no. 1, pp. 3–23, 2009.

[10] A. Ude, A. Gams, T. Asfour, and J. Morimoto, “Task-
specific generalization of discrete and periodic dynamic
movement primitives,” IEEE Transactions on Robotics,
vol. 26, no. 5, pp. 800–815, 2010.

[11] B. Nemec, A. Gams, and A. Ude, “Velocity adaptation for
self-improvement of skills learned from user demonstra-
tions,” IEEE-RAS International Conference on Humanoid
Robots, vol. 2015-February, no. February, pp. 423–428,
2015.

[12] A.-L. Vollmer and N. J. Hemion, “A User Study on Robot
Skill Learning Without a Cost Function: Optimization
of Dynamic Movement Primitives via Naive User Feed-
back,” Frontiers in Robotics and AI, vol. 5, no. July, 2018.

[13] A. L. Thomaz and C. Breazeal, “Teachable robots: Under-
standing human teaching behavior to build more effective
robot learners,” Artificial Intelligence, vol. 172, no. 6-7,
pp. 716–737, 2008.

