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tanko vodno plastjo
Skalne oblike na kamnina� izpostavljenim atmosferi so po-
sledica raztapljanja tanki� vodni� plasti, ki tečjo po površini 
kamnine. Hitrost raztapljanja apnenca oz. sadre je podana z 
zakonom F = α(ceq-c), kjer je ceq-c razlika med koncentracijo 
raztopljeni� mineralov v vodnem filmu in ravnotežno kon-
centracijo glede na ustrezen mineral. Pri sadri je koeficient α 
določen z molekularno difuzijo. Za apnenec pa ekperimentalni 
podatki kažejo, da je pri močno podnasičeni raztopini (c<0.3ceq) 
kinetični zakon podan s F = α (0.3ceq-c) , pri čemer je α za red 
velikosti večji kot pri koncentracija� c>0.3ceq. Kinetične za-
kone uporabimo pri računu denudacijske stopnje na kamniti� 
površina� izpostavljenim različnim intenzitetam dežja. Naše 
ugotovitve se ujemajo tudi eksperimentalnimi podatki. Z ozi-
rom na študijo razvoja dežni� žlebičev, ki sta jo predstavila 
Glew in Ford (1980), predlagamo novo razmerje med dolžino 
žlebičev in naklonom površine. To razmerje uporabimo tudi na 
terenski� podatki�, ki sta ji� pridobila J. Lundberg in A.Gines. 
V luči številni� parametrov, ki vplivajo na razvoj dežni� žlebičev 
so dobljene korelacije zadovoljive.
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Abstract UDC  551.44:54.056
Wolfgang Dreybrodt & Georg Kaufmann: Physics and chemi­
stry of dissolution on subaerialy exposed soluble rocks by flo­
wing water films
The basic process active in t�e formation of subaerial features 
on karst rocks is c�emical dissolution of limestone or gypsum 
by water films flowing on t�e rock surface. The dissolution rates 
of limestone and gypsum into t�in films of water in laminar 
flow are given by F = α(ceq-c), w�ere (ceq-c) is t�e difference of 
t�e actual concentration c in t�e water film and t�e equilibrium 
concentration ceq wit� respect to t�e corresponding mineral. 
W�ereas for gypsum α is determined by molecular diffusion t�e 
situation is more complex for limestone. Experiments are pre-
sented, w�ic� s�ow t�at for �ig� undersaturation, c<0.3ceq, t�e 
rate law is F = α( 0.3ceq-c) ,and α becomes �ig�er by about a fac-
tor of ten t�an for t�e rates at c>0.3ceq. These rate laws are used 
to calculate denudation rates on bare rock surfaces exposed to 
rainfall wit� differing intensity. The estimations are in reason-
able agreement to field data. Starting from t�e experiments on 
t�e formation of Rillenkarren on gypsum performed by Glew 
and Ford (1980), we suggest a new relation between t�eir lengt� 
from t�e crest to t�e “Ausgleic�sfläc�e” and t�e inclination of 
t�e rock surface. This is also applied to field data of Rillenkarren 
on limestone provided by J. Lundberg and A. Gines. In view of 
t�e many parameters influencing t�e formation of Rillenkarren 
t�ese correlations can be considered as satisfactory.
Key words: karst, dissolution kinetics, Rillenkarren.
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Karren is t�e generic term for dissolution features on ex-
posed soluble rock surfaces. Because of t�eir variety of 
s�apes and also t�eir regularity karren �ave been a fasci-
nating object of interest for geomorp�ologists. Alt�oug� 
a large body of observations and descriptions of karren 
�as been accumulated, knowledge on t�e p�ysical and 
c�emical processes on t�eir formation by dissolution is 
scarce. In t�is paper we will focus on processes occur-
ring on bare rock surfaces suc� as limestone or gypsum 
exposed to t�e atmosp�ere, and covered by flowing water 
films. Two basic ingredients control t�e dissolution proc-
ess, t�e �ydrodynamics of t�in water films flowing down 
inclined surfaces, and t�e dissolution kinetics of t�e 

CO2-containing rainwater on limestone or gypsum rock 
surfaces. After discussion of t�ese two topics, we will use 
t�is for an interpretation of t�e data of Glew and Ford 
(1980), w�o performed experimental simulations on t�e 
formation of Rillenkarren on inclined surfaces of plaster 
of Paris exposed to artificial rainfall.

Using t�ese results an interpretation of existing field 
data on lengt�s of rillenkarren is presented.

Also recent data by Petterson (2001) on dissolution 
on Rillenkarren from Plaster of Paris will be discussed. 
Finally t�e dissolution kinetics of limestone will be used 
to explain surface denudation on bare limestone sur-
faces.

THE FLUID DyNAMICS OF WATER FILMS ON SMOOTH AND ROUGH SURFACES

INTRODUCTION

W�en rain wit� intensity q (cms-1, 1 mm/�our = 2.8·10-5 
cms-1) falls onto an inclined smoot� surface wit� slope 
angle γ, a t�in layer of water is establis�ed (see Fig. 1). 
Its flow rate Q in cm3/s per unit widt� is given in cm2/s. 
After distance x'=ℓ down t�e surface of t�e rock Q is 

Q x q q= ⋅ = l cos γ  (1) 

The t�ickness � (in cm) of t�e water film is related to 
flow Q (Myers, 2002) by

Q
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=
ρ

η
γ

3
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w�ere g is eart�’s gravitational acceleration, ρ is t�e 
density of water, and η its viscosity. By using eqns. 1 and 
2, we obtain t�e film t�ickness
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For rainfall intensities of 1 mm/�our onto a surface 
sloping wit� 45° and at a distance ℓ=50 cm, a fairly t�in 
film of �=3.6·10-3 cm develops. For 40 mm/�our rainfall 
intensity as used by Glew and Ford (1980), t�e film t�ick-
ness � is 1.2·10-2 cm. 

The flow velocity u (in cms-1) is obtained from 
u·�=Q by inserting eqns. 2 and 3 and one finds

u
gQ gq

= =
ρ γ

η

ρ γ γ

η

2

3

2 2 2

3

3 3

sin cos sinl
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Note t�at t�e velocity increases wit� flow distance 
ℓ. Assuming a rainfall of 10 mm/�our , a flow distance 
of 1 m, and a slope angle of 45°, t�e velocity is 2.1 cms-1. 
If rainfall is reduced to 1 mm/�our one finds 0.5 cms-1. 
These velocities are of importance because t�ey give t�e 
time of residence during w�ic� a water parcel can dis-
solve bedrock. 

W�en t�e surface is roug� a correction factor must 
be introduced (Myers, 2002), w�ic� is given by 

  
(5)

Fig. 1: Water film on inclined rock surface.
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GyPSUM
By use of rotating disc experiments Jesc�ke et al., (2001) 
�ave found t�at t�e surface reaction rates of gypsum (in 
mmol cm-2 s-1) are given by 

R k c c c c with k cs s s eq s eq s s s eq= − = − =( / ) ( ) /1 a a 

wit�  R k c c c c with k cs s s eq s eq s s s eq= − = − =( / ) ( ) /1 a a  
(8)

Here, cs is t�e calcium-concentration at t�e surface 
and t�e rate constant is ks=1.1·10-4 mmol cm-2 s-1. The 
equilibrium concentration ceq wit� respect to gypsum is 
15,4·10-3 mmol cm-3. Ca2+ and SO4

2- -ions released from 
t�e mineral surface are transported away from t�e sur-
face into t�e solution by molecular diffusion. Therefore 
concentration gradients exist and t�e surface concentra-
tion cs differs from t�e concentration c in t�e bulk. The 
transport rate RD by molecular diffusion is given by

R k c c c c with k cD D eq D eq D D eq= − = − =( / ) ( ) / ,1 a a
 

wit�
 

R k c c c c with k cD D eq D eq D D eq= − = − =( / ) ( ) / ,1 a a  

(9)

w�ere kD is t�e transport constant and c is t�e average 
concentration of t�e bulk solution. Since due to mass 
conservation RS must be equal to RD, one finds an effec-
tive rate law (Dreybrodt, 1988).

R k c c with k
k k

k keff eq eff
s D

s D

= − =
⋅

+
( / )1

     
 (10)

or
  

R c c witheff eq eff
s D

s D

= − =
⋅

+
a a

a a

a a
( )

W�en ks >> kD, keff becomes close to kD and rates are 
controlled by diffusion. On t�e ot�er �and if ks << kD, keff 
becomes close to ks and t�e rates are surface controlled. 
In t�e region w�ere ks and kD are of similar magnitudes 
bot� processes control dissolution.

For a laminar water film of t�ickness �, t�e trans-
port coefficient kD is given by (Beek & Muttzall, 1975)

k Dc h or D hD eq D= =2 2/ , /a , (11)

w�ere D is t�e coefficient of diffusion (1·10-5 cm-2 s-1). For 
�=0.01cm one obtains aD =1·10-3 cm-1 and t�e rates are 
controlled by diffusion. However, raindrops impinging 
on t�e water film may cause mixing, w�ic� could in-
crease t�e effective diffusion constant. Only a factor of 10 
suffices to obtain surface control and a value of aeff ≈7·10-3 
cms-1.

To convert t�e rates from mmol cm-2 s-1 into retreat 
of rock in cm /year for gypsum one �as to multiply by a 
factor of 2.3·106. 

LIMESTONE
Water films running down rock surfaces under natural 
rainfall conditions �ave a comparatively small dept� of a 
few tent�s of a millimetre. In contrast to gypsum, w�ere 
dissolution rates are determined by bot�, surface reaction 
and molecular diffusion, t�e situation on limestone is 
more complex. Fig. 2 sc�ematically depicts t�ree regimes 
of dissolution rates. For �ig�ly undersaturated solutions, 
0<c≤capp, rates are �ig� and decline steeply wit� slope a1 
to an apparent equilibrium concentration capp = 0.3·ceq, 
w�ere ceq is t�e true equilibrium concentration wit� re-
spect to calcite. The values of  a1 are almost independent 
on t�e film t�ickness � for 0.005 cm < � < 0.03 cm, and 
a1=5·10-4 cms-1 , (Kaufmann and Dreybrodt, 2007).

To a good approximation t�e rates found by t�eo-
retical modelling can be expressed (Kaufmann, 2004) by

R c cI app= −a1( )   for c ≤ 0.3 ceq. (12)

For �ig�er calcium concentrations a second linear 
region wit� significantly lower slope a2 arises, until close 
to equilibrium in region 3 for c ≥ csw , above t�e switc� 
concentration csw=0.9ceq in�ibition occurs and t�e rates 
are controlled by slow surface reactions.

DISSOLUTION KINETICS 

w�ere k is t�e roug�ness of t�e surface and � t�e film 
t�ickness of t�e layer on a smoot� surface, as given by 
eqn. 3 (P�elps, 1975). This dimensionless factor relates 
t�e flow velocities u and ur of t�e smoot� to t�e roug� 
surfaces respectively.

u f ur c= ⋅  (6)

Because u·�=Q t�e film t�ickness values are related 
by

h
f

hr
c

=
1

 
(7)

For k/� = 2, a reasonable number, we obtain fc ≈ 
 
0.4, 

and flow velocities are lower. Film t�ickness values are 
�ig�er by a factor of 2.5.
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The dissolution rates in regions 2 and 3 are well 
understood (Plummer et al., 1978; Bu�mann and Drey-
brodt, 1985; Svensson and Dreybrodt, 1992).

Three basic c�emical reactions control t�e dissolu-
tion of CaCO3

1. H CaCO Ca HCO+
→
← + −+ +3

2
3

2. H CO CaCO Ca HCO2 3 3
2

32+ +→
← + −

3.  CaCO H O Ca CO H O Ca HCO OH3 2
2

3
2

2
2

3+ + + + +→
← + −

→
← + − −

 CaCO H O Ca CO H O Ca HCO OH3 2
2

3
2

2
2

3+ + + + +→
← + −

→
← + − −

For all t�ree reactions CO2 dissolved in t�e solution 
must be �ydrated into carbonic acid, w�ic� rapidly reacts 
to H+ +HCO3

-.

4. H O CO H CO2 2 2 3+ →
←

5. CO OH HCO2 3+ −
→
← −

The pH-values of t�e solution in region 2 are be-
tween 7.5 and 8.3. For suc� pH-values conversion of CO2 
is slow (Usdowski 1982, Dreybrodt 1988) and for t�in 
films below 0.02 cm control by CO2-conversion limits t�e 
rates. For film t�ickness between 0.01 cm up to 0.04 cm 
slope values are about a2≈3·10-5 cms-1, lower by about one 
order of magnitude t�an a1=5·10-4 cms-1. 

The reason for t�e �ig� rates in region 1 are reac-
tions (1) and (3). W�en no calcite �as yet been dissolved 

t�e initial pH of t�e solution in equilibrium wit� CO2 in 
t�e atmosp�ere is 5.7. Since reaction (1) is very fast pro-
tons are rapidly consumed by dissolving calcite.

Furt�ermore dissolution of calcite produces OH- 
ions. Therefore pH increases to values of about 11. Be-
cause of t�e �ig� concentration of OH-, conversion of 
CO2 is fast by reaction 5. Wit� increasing Ca-concentra-
tion pH drops, and consequently slow conversion of CO2 
by reaction (4) takes over in controlling t�e rates. As a 
conclusion we state t�at for low concentrations c t�e rates 
are given by t�e relation

R c c c ceq eq= − < <a1 0 3 0 0 3( . ); .  (13)

R c c c ceq eq= − > <a2 0 36 0 9( ); . .  (14)

ExPERIMENTAL DETERMINATION OF 
DISSOLUTION RATES IN REGION 1

W�en a t�in water layer of widt� W flows down a 
smoot�, plane limestone surface wit� inclination angle γ 
it dissolves calcite and t�e concentration c(x) of calcium 
along its flow pat� increases. Note t�at in t�is section for 
simplicity  we use x instead of x’ for t�e flow pat� on t�e 
rock surface. The amount of calcite dissolved during one 
second between positions x and x + dx is given by a1(capp-
c(x))·dx·W. Due to mass conservation t�is must be equal 
wit� Qtotaldc, w�ere dc is t�e increase in concentration 
from x to x + dx, and Qtotal is t�e total flow rate in cm3 s-1. 
From t�is a differential equation is found

dc

dx

W
c capp=

⋅
−

a1

Qtotal

( )
  

(15)

Its solution is 

 
c x c

Q
xapp( ) exp= − −1 1α

 
(16)

w�ere Q=Qtotal/W is t�e amount of flow in one cm 
widt� of t�e film.

 We use eqn. 16 to determine a1 experimentally. To 
t�is end, we �ave constructed a c�annel of 5 cm widt� 
and 1.2 m lengt� by employing acryl rims fixed to a plate 
of limestone. The inclination is γ = 3.2°. At t�e end of t�e 
c�annel a funnel of acryl-glass c�annels t�e water into a 
�ole from w�ere it runs into a bottle. The experiment is 
illustrated in Fig. 3a, w�ic� provides a view from above. 
To guide t�e water into a stable film t�e c�annel at its up-
per end is blocked by a piece of acryl-glass, w�ic� leaves 
a narrow space of a few tent�s of a millimetre between 
t�e limestone surface and its lower plane face (see Fig. 
3b). Distilled water in equilibrium wit� t�e pCO2 in t�e at-
mosp�ere by use of a peristaltic pump is introduced into 

Fig. 2: Dissolution rates of limestone by CO2-containing water. 
Three regimes of very fast (Region 1), moderate (Region 2), and 
inhibited dissolution rates (region 3) are clearly distinguishable. 
Only the fast dissolution rate in region 1 is relevant in this paper.

WOLFGANG DREyBRODT & GEORG KAUFMANN
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t�e upper compartment , and a film of constant t�ickness 
moves down in laminar flow at ambient temperature of 
20°C. This film is establis�ed by drawing down t�e water 
along t�e limestone surface by use of a wet paper strip 
as wide as t�e film is desired to be. The water film does 
not touc� t�e acryl walls but is kept by surface tension. It 
does not c�ange its s�ape, even w�en its dept� varies by 
a factor of t�ree. The surface of t�e film is absolutely plain 
as can be seen by a mirror like reflection of lig�t. The flow 
rate Q is measured by collecting 10 ml of water at t�e out-
let �ole at t�e end of t�e c�annel, and measuring t�e time 
needed. The calcium concentration cend of t�is sample is 
t�en measured for various values of Q. Furt�ermore wa-

Fig. 3: Experimental set up to measure limestone dissolution rates 
in Region 1 (top and side view). Length ℓ of channel 120 cm, 
width of channel 5 cm, average width W of water film 4 cm.

ter in equilibrium wit� atmosp�eric pCO2 and calcite is 
used to measure ceq. The calcium concentrations are de-
termined by measuring electrical conductivity, w�ic� for 
suc� low concentrations is linear wit� calcium concen-
tration. The experiment was performed at 25 C.

Eqn. 16 can be rewritten to

   
(17)

Fig. 4 s�ows t�e plot of t�e experimental data in

terms of -
  

versus 1/Qtotal. This can be fittedfitted

wit� a straig�t line by using capp=0.3ceq=0.17 mmol/cm3. 
From t�e slope 0.129 of t�e line one finds a1=2.6·10-4 
cms-1 , w�ic� is in reasonable agreement to t�e t�eoreti-
cal predictions of a1

t�= 5·10-4 cms-1 and ct�
app=0.36 ceq.

Fig. 4: Calcium concentration versus inverse of flow rate for 
experimental data (squares). Qtotal is the total flow rate of the film. 
The straight line is a least square fit to the data.

SOLUTION ON BARE ROCK SURFACES

W�en rain falls onto an inclined surface t�e flow rate 
downstream increases (see Fig. 1). If at x’=0 t�e flow rate 
is Q0; t�en at a later position x’ it is given by

Q = Q0 + q x’cosγ = Q0 + q’x’   (18)

Mass conservation demands t�at

  

 

(19)

w�ere c is t�e average concentration at position x’, 
and W is t�e widt� of t�e film. ã ≈a·f

a
, w�ere f

a
 is a cor-

rection factor considering t�e roug�ness of t�e rock sur-

PHySICS AND CHEMISTRy OF DISSOLUTION ON SUBAERIALy ExPOSED SOLUBLE ROCKS By FLOWING WATER FILMS
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RILLENKARREN

ExPERIMENTS ON FORMATION OF 
RILLENKARREN ON GyPSUM

Glew and Ford (1980) experimentally simulated t�e for-
mation of Rillenkarren on gypsum by exposing inclined 
surfaces of plaster of Paris to a rainfall intensity of 38 
mm/�our, w�ic� lasted for 500 �. They obtained well de-
veloped Rillenkarren. Their average lengt� from t�e crest 
to t�e “Ausgleic�sfläc�e” was dependent on t�e angle of 
inclination, as s�own in Fig. 5. Ford and Glew argued, 
t�at t�e “Ausgleic�sfläc�e” could form only w�en t�e wa-
ter film exceeds a critical t�ickness �c, w�ic� s�ould be 
�ig�er t�an t�e roug�ness k of t�e rock. Wit� t�is as-
sumption by use of eqns. 1 and 2 one finds

   
(24)

Therefore, by plotting ℓ versus tan γ one s�ould find 
a straig�t line. This indeed is t�e case for t�e Glew & Ford 
(1980) data, as s�own by Fig. 5. The slope of t�is line is 14 
cm, from w�ic� one finds a critical t�ickness �c=7.7·10-3 cm 
if one assumes a smoot� surface. For a roug� surface wit� 
k=�c one finds a value of 10-2 cm. Glew and Ford mea-
sured a value below (1.5±0.5)·10-2 cm, w�ic� is in good 
agreement. They also measured dissolution rates of 4·10-3 
cm/�. For t�eir experimental data one finds c

∞
≈0.66 ceq 

from eqn. 17. 

The amount of flow leaving a rock of widt� W at x’ 
is equal to t�e amount of rainfall w�ic� falls to t�e area 
W·x. It carries away t�e mass of rock q·c

∞
⋅x w�ic� is dis-

solved from t�e rock’s surface area Wx’ = Wx/cosγ. Con-
verting t�e mass of dissolved material to its volume one 
finds t�e retreat of rock

face. If one assumes t�at t�e rock surface consists of small 
�alf sp�eres densely packed, instead of a smoot� plane, 
t�e surface area available for dissolution will increase by 
f

a
=2. This gives an estimation on t�e order of magnitude 

of f
a
. Equation 19 states t�at t�e outflow of calcium at 

position x’ + dx’ is given by t�e inflow at position x’ plus 
t�e amount of calcium ions dissolved per time between 
x’ and x’ + dx’. Neglecting terms wit� dx’dc one finds a 
differential equation.

  
(20)

wit� solution

 
(21)

For large values of x’ t�e concentration approac�es 
t�e value      

  (22)

90% of t�is value is reac�ed at a distance 

   (23)

For Q0=0 t�e concentration c∞ is establis�ed imme-
diately. Therefore dissolution rates are uniform down-
stream if one assumes t�at ã is independent of t�e t�ick-
ness of t�e water s�eet. This is not true for gypsum. A 
reasonable approximation is to use average values. For 
gypsum a is maximal 7.1·10-3 cms-1 if t�e rates are con-
trolled by surface reactions and at a s�eet t�ickness of 0.1 
mm it is 1.56·10-3 cms-1 (see eqn. 10). At a s�eet t�ickness 
of 0.5 mm one finds a=3.8·10-4 cms-1. 

Fig. 5: Length of experimental rillenkarren versus slope, tan γ. 
The squares are experimental data from Glew and Ford (1980). 
The line represents eqn. 24 with hc=7.7·10-3 cm

WOLFGANG DREyBRODT & GEORG KAUFMANN
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R c qD g= ⋅ ⋅∞ cos /γ ρ
    

(25)

w�ere ρg g/cm3 is t�e density of gypsum. Wit� t�e experi-
mental conditions of Glew and Ford one finds RD=2.7·10-

3·cosγ (cm/�). This fits reasonably well into t�eir data set. 
However, it represents a lower limit because one assumes 
laminar flow. Splas�ing raindrops may disturb t�is flow 
and cause mixing of t�e solution by w�ic� t�e effective 
diffusion constants increase. A factor of 10 is sufficient to 
rise c

∞
 to 0.9 ceq. 

In a recent work Petterson (2001) �as exposed Rillen-
karren c�annels modelled from real limestone Rillenkar-
ren by plaster of Paris, to artificial rain of 115 mm/�our 
intensity. By using an optical tec�nique �e measured t�e 
t�ickness of t�e laminar flowing water films along t�e 
karren rills. The t�ickness of t�ese films, measured at a 
distance of 5 cm to 40 cm from t�e upper edge, range 
from 0.2 mm up to 0.8 mm, w�en t�e karren model was 

tilted by 30°. Water samples collected from t�e karren at 
various distances from t�e crest were used to measure t�e 
calcium concentration profile along t�e karren. Petterson 
found an almost linear increase from 75 mg/ℓ of calcium 
at 5 cm to a value of 105 mg/ℓ at 40 cm. The average value 
was 90 mg/ℓ ±15mg/ℓ.

Wit� an average film t�ickness of 0.5 mm one finds 
ã =7.6·10-4 cms-1. Wit� a rainfall intensity of 115 mm/� = 
3.2·10-3 cms-1 by use of eqn. 22 one obtains a value c

∞
=118 

mg/ ℓ. In view of t�e approximations t�is can be regarded 
as good agreement to experiment and proves our t�eo-
retical considerations. 

INTERPRETATION OF FIELD DATA OF 
RILLENKARREN

A large body of data �as been collected, w�ic� relates t�e 
lengt�s of Rillenkarren to t�e slope of t�e rock surface 

Fig. 6: Length of natural rillenkarren on limestone versus slope tan γ. From j. Lundberg and A. Gines, private communication. The 
straight lines are fits to ℓ=A·tan γ.

PHySICS AND CHEMISTRy OF DISSOLUTION ON SUBAERIALy ExPOSED SOLUBLE ROCKS By FLOWING WATER FILMS
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The value of �c
3/q is close to t�at found from t�e de-

pendence of lengt� on slope in t�e previous example.
As a final example we discuss t�e data presented in 

Fig. 8 w�ic� relates t�e average lengt�s of rillenkarren in 
t�e Serra de Tramuntana as a function of altitude above 
sea level, taken from: Lundberg and Gines ( 2006). 

There is a clear decrease of lengt� wit� altitude �, 
w�ic� can be caused by two reasons. First t�ere is a linear 
relation between altitude and temperature. The up most 
abszissa s�ows t�e corresponding temperature given by 

 T = 17 – 0.0065 H (°C), (29)

w�ere t�e altitude H is in m.
Furt�ermore mean annual precipitation qav is rela-

ted to altitude H by

 qav = 461 + 0.4 H [mm/year] (30)

See upper abscissa in Fig 8.
We now assume t�at t�e actual rainfall to t�e rock is 

related to qav by q=fq·qav, w�ere fq is a constant.
Bot� q and viscosity η depend on altitude. Using 

eqns. 26, 27, 29, and 30 one can calculate t�e lengt� as a 
function of altitude. Wit� �c

3/q as a fitting parameter one 
obtains t�e curve in Fig. 8.

The curve underestimates t�e large lengt�s, but 
s�ows t�e general trend. W�et�er it is a reasonable es-
timation must be judged from t�e value of �c

3/q(H). If 
one assumes t�at 1000 mm/year correspond to an av-
erage actual precipitation of 10 mm/�our one obtains 
�c=0.005. cm and correspondingly �c

3/q(600)=6.7·10-4 
cm2s. This value is also close to t�ose found in t�e pre-

w�ere t�ey grow. From eqn. 24 one expects a linear rela-
tion of lengt� and slope.

 
  
wit�

  
A

g

q
hc=

ρ

η3
3

 
(26)

Fig. 6 s�ows average lengt�s of Rillenkarren ver-
sus slope (tanγ) for several areas (Gines and Lundberg, 
2006). The straig�t line represents a least square fit by t�e 
relation ℓ=const·tan γ to t�e data points wit� γ≤46°(tanγ 
≤2).

Alt�oug� t�e scatter of points, w�ic� could be 
caused by differing values of precipitation q at different 
sites and times is significant one finds A = 12.6±3 cm 
for all plots. From t�is by use of eqn (1) one obtains �c

3/
q=(3.9±0.2)·10-4 cm2s.

Fig. 7 s�ows t�e relations�ip of lengt� wit� mean 
annual temperature as reported by Lundberg and Gines 
(2006). The data can be fitted by a relation ℓ=0.5 T + 12.6 
(cm), w�ere T is in °C. The variation of ℓ in tempera-

ture could result from t�e temperature dependence of η 
w�ic� can be presented wit� an accuracy wit�in 2% by 
t�e empirical relation

  
(27)

Introducing t�is into eqn (26) one finds using �c
3/q= 

6.11·10-4 cm2s and tanγ = 1 one finds t�at is valid between 
0°C and 25°C.

   (28)

Fig. 7: Length of natural rillenkarren on limestone versus mean 
annual temperature. From j. Lundberg and A. Gines, private 
communication.

Fig. 8: Length of natural rillenkarren on limestone (mallorca) 
versus altitude above sea level. From j. Lundberg and A. Gines, 
private communication. The curve represents the fit discussed in 
the text.
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vious examples. Assuming an average actual precipita-
tion of 10 mm/� dominant in t�e formation of karren 
one finds �c=0.0059 cm from t�e lengt�-slope relation 
and �c=0.0065 cm from t�e lengt�-temperature rela-
tion. 

In all t�ree examples we �ave assumed an average 
precipitation of about 10 mm/�our during t�e formation 
or rillenkarren. This is a value, w�ic� seems possible. 
For �ig�er precipitation t�e lengt� would be smaller and 
would be overprinted by lower precipitation yielding 
longer karren. At low precipitation rates (1mm/�our) t�e 
karren become very long (2 m) and will form very slowly, 
suc� t�at t�ey may not be detected.

In summary Glew’s and Ford’s idea t�at karren 
lengt� is determined by a critical t�ickness �c of t�e 
down flowing water film can be used to explain field data. 
One s�ould keep in mind t�at at a precipitation rate of 10 
mm/� a film t�ickness of 0.006 cm is attained after 27 cm 
on a smoot� rock surface inclined by 45°.

We do not know at present t�e p�ysical reason, w�y 
t�is critical t�ickness avoids furt�er growt� of rillen-
karren. This requires experimental observations of flow 
rates and c�emical composition of t�e water flowing on 
natural karren on limestone during rain storms of vari-
ous intensities.

DENUDATION RATES IN THE FIELD

GyPSUM
Denudation rates on subaerial exposed gypsum samples 
�ave been reported by Gucc�i et al (1996). In an observa-
tion station close to Triest (Italy) wit� a yearly rainfall of 
1350 mm t�ey found 0.9 mm/year as an average during 
an observation time of eig�t years. 

At rainfall intensities of 40 mm/�our t�e solution 
running off t�e rock �as a concentration of 0.5ceq. At low-
er rainfall intensities of 4 mm/�our one finds c = 0.9ceq. 
Therefore it is reasonable to take an average value c = 
0.75ceq for all t�e water during one year’s rainfall. From 
t�is one finds a denudation rate of 1 mm/year.

LIMESTONE
For dissolution under linear kinetics wit� a rate law

 R c ceq= −a( )   (26)

t�e time T, w�ic� is needed until a volume element wit� 
initial concentration zero attains concentration of 0.63 ceq 
is given by 

 T h= / a   (27)

For limestone wit� a film t�ickness of 0.2 mm one 
finds T1=10-2/ã1=20s to attain c=0.64capp. In t�e slower 
region 2, ã2=2·10-5 cms-1 and t�e time to reac� c=0.63ceq 
is T2=500 s. Under natural rainfall flow velocities are on 
t�e order of 1 cms-1. Therefore dissolution will be ef-
fective only in region 1. Even w�en t�e water dissolved 
limestone in region 2 t�e dissolution rates were about 
two orders of magnitude lower. In ot�er words, all t�e 
water, w�ic� falls to t�e rock surface, will leave it wit� 
concentration c

∞
 derived from dissolution in region 1.

Wit� ã1=10-3 cms-1 one finds

c
p

capp∞

−

− −
=

+ ⋅ ⋅ ⋅
⋅

10

10 2 8 10

3

3 5. cos γ            
(28)

w�ere p is t�e rainfall intensity in mm/�.

Fig. 9: Karren formation, from which water was collected. The 
grey line marks the flow path. The water was collected at the end 
of this line. 
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DISCUSSION AND CONCLUSION

We �ave presented some basic principles of flow dy-
namics of t�in water films t�at can approximate flow on 
natural rock surfaces under rainfall conditions. Alt�oug� 
t�ese approximations are crude t�ey can be used for re-
alistic estimations.

To understand t�e formation of geomorp�ologic 
features on rock surfaces basic knowledge of t�e disso-
lution rates by flowing water s�eets is needed. Water in 
equilibrium wit� t�e pco2 of t�e atmosp�ere dissolves 
limestone quickly up to a concentration of capp ≈ 0.3ceq. 
For �ig�er concentrations t�e dissolution rates drop 
rapidly. The time to reac� t�e concentration capp under 
natural rainfall conditions is on t�e order of 10 seconds, 
sufficiently s�ort, t�at all dissolution will be affected in 
t�is regime of concentrations. Even if t�e solution would 
reac� concentrations �ig�er t�an capp, t�en dissolution 
rates drop to suc� low values t�at t�ey become insignifi-
cant. We �ave presented experimental data, w�ic� con-
firm t�is be�aviour. It is also possible to understand from 
t�ese kinetics denudation rates of limestone measured in 
t�e field. 

For gypsum dissolution rates are controlled by 
mixed kinetics of surface reactions and molecular dif-
fusion. Therefore, t�e rates become dependent on t�e 
t�ickness of t�e flowing water s�eet. It is possible, �ow-
ever, to predict denudation rates on gypsum, as obtained 
from field data. Furt�ermore experimental findings on 
Rillenkarren can be explained.

It s�ould be noted t�at we �ave neglected tempera-
ture dependence and �ave used 20°C as standard. Since 
many of t�e constants used depend on temperature, 
�owever, some temperature dependence on t�e denuda-
tion rates is expected. In view of t�e many approxima-
tions t�is is not of �ig� significance. 

We �ave not addressed t�e issue of Rillenkarren for-
mation. At present one may only speculate. The surface 
of t�e rocks acts to flow like a two-dimensional porous 
medium. In suc� an in�omogeneous environment c�an-
nelling can occur and parallel flow pat�s can arise, w�ere 
t�e flow rates are �ig�er. For limestone t�en t�e concen-
tration c

∞
 decreases and dissolution rates corresponding-

ly increase. In gypsum t�e solution is close to saturation 
and t�erefore t�e amount of dissolved rock is propor-
tional to t�e volume of t�e flowing water. One t�erefore 
could imagine t�at Rillenkarren could only originate at 
roug� rocks. This issue can be �andled experimentally by 
simulating karren formation experimentally on polis�ed 
and roug� samples of plaster of Paris. 

An object of furt�er researc� s�ould be to mea-
sure flow velocities on limestone surfaces under natural 
conditions in dependence of rainfall intensity, and also 
to take samples of t�e water at various locations on t�at 
surface to obtain calcium concentrations. Suc� experi-
mental data could be of utmost use for a better under-
standing. One of t�e purposes of t�is work is to stimulate 
suc� researc�.

At low slope angles (cosγ≈1) and for rainfall inten-
sities of 1 mm/�, c

∞
=0.97capp=0.29 mmol/ℓ. At 10mm/�, 

c
∞
=0.24 mmol/ℓ, and for extreme intensities of 40 mm/� 

c
∞
=0.14 mmol/ℓ.

Cucc�i et al., (1996), by using micrometers, mea-
sured surface denudation rates on a �uge number of 
limestone samples wit� slope angles of about 15 degrees 
in t�e karst of Triest. They found average dissolution rates 
sampled over eig�t years of 0.015 ±0.01 mm/year. At an 
average rainfall of 1350 mm/year in t�is region one needs 
an average run-off concentration c

∞
=0.5 ceq to explain t�is 

number. A closer inspection of t�e distribution of rain-
fall-dept� distribution is t�erefore necessary to verify t�is 
number. Anyway, our findings support t�at denudation on 
bare rock by t�e dissolutional action of rainwater is caused 
by fast dissolution in region 1 of Fig. 2.

We �ave performed a first attempt to measure con-
centrations of rainwater flowing from t�e surface of a 
karren formation of limestone from Lipica, Slovenia, ex-

�ibited in front of t�e Postojna cave. After two days of 
�eavy rainfalls, cleaning t�e rock from dust, water was 
collected during a medium strong rainfall of a few mil-
limeters/� by use of an aluminum foil attac�ed to t�e 
rock. Fig. 9. s�ows t�e experimental situation. The water 
�ad flown on top of t�e formation, w�ic� ex�ibits only a 
slig�t inclination of about 10° degree for about one me-
ter, t�en down one �alf meter, almost vertically, w�ere 
it was c�annelled by t�e foil and collected into a beaker. 
This flowpat� is depicted by t�e grey line. Measures were 
taken to prevent dilution of t�e sample by rainwater drip-
ping into it. In parallel a sample of rainwater was collect-
ed. The specific conductivities were measured in t�e field. 
The conductivity of rain water was 6 μS/ cm, w�ereas t�e 
water from t�e karren ex�ibited 57 μS/cm. Analysis for 
calcium in t�e lab yielded a value of 0.25 mmol/liter, 38% 
of t�e saturation value of 65 mmol/liter at 10 C, t�e tem-
perature during collection of t�e sample. This result is in 
good agreement to w�at one expects from eqn. 28.
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