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Abstract

Effects of electron-electron interactions on the transport properties of nanostructures are
explored, focusing on the conductance through systems of coupled quantum dots and the
tunneling spectroscopy of magnetic adsorbates on surfaces; both systems can be modeled
using quantum impurity models. The properties of impurity models are described in con-
siderable detail and a new implementation of Wilson’s numerical renormalization group is
introduced. Double quantum dot systems of various coupling topologies are studied. In
parallel double quantum dot, local moments order ferromagnetically and S = 1 Kondo ef-
fect occurs. In side-coupled double quantum dot, Kondo screening proceeds in two stages.
Triple quantum dot is studied using several numerical methods and a low-temperature
phase diagram is proposed. A wide regime of non-Fermi liquid behavior is found at finite
temperatures in the cross-over region between antiferromagnetic ordering regime and the
two-stage Kondo regime. In the second part, construction of a low-temperature scanning
tunneling microscope is described. The Kondo effect induced by magnetic adsorbates on
surfaces is reviewed and a two-level model is proposed to describe the tunneling spec-
troscopy experiments performed on single magnetic adatoms.

PACS: 73.63.Kv 72.15.Qm 73.23.Hk 71.10.Hf 68.37.Ef

Keywords: quantum impurity models, Kondo effect, numerical renormalization group, cou-
pled quantum dots, tunneling spectroscopy.






Povzetek

Interakcije med elektroni pomembno vplivajo na transportne lastnosti nanostruktur. Po-
sebno zanimiva sta prevodnost sistemov sklopljenih kvantnih pik in tunelska spektroskopija
magnetih necistoc¢, adsorbiranih na povrsinah kovin. Oba sistema lahko opiSemo z modeli
kvantnih necisto¢, katerih lastnosti so podrobno opisane. Predstavljena je nova izvedba
metode numeri¢na renormalizacijska grupa. Prouceni so sistemi dvojne kvantne pike z
razlicnimi topologijami sklopitve. V vzporedni dvojni kvantni piki se lokalna momenta
uredita feromagnetno in pride do Kondovega pojava s spinom 1. V stransko sklopljeni
dvojni kvantni piki Kondovo sencenje poteka v dveh korakih. Sistem trojne kvantne pike
je obravnavan s komplementarnimi numeri¢nimi metodami in dolocen je fazni diagram
sistema pri nizkih temperaturah. V prehodnem obmocju med rezimoma antiferomagne-
tnega urejanja in dvostopenjskega senc¢enja obstaja Siroko obmocje, kjer se sistem v nekem
temperaturnem intervalu obnasa kot ne-Fermijeva tekocina. V drugem delu doktorskega
dela je opisano sestavljanje nizko-temperaturnega vrsti¢nega tunelskega mikroskopa. Opi-
san je Kondov pojav na povrsinah, ki ga povzrocijo magnetne necistoce, in vpeljan nov
dvonivojski model, ki opisuje poskuse s tunelsko spektroskopijo na posameznih magnetnih
atomih.

PACS: 73.63.Kv 72.15.Qm 73.23.Hk 71.10.Hf 68.37.Ef

Klju¢ne besede: modeli kvantnih necisto¢, Kondov pojav, numeri¢na renormalizacijska
grupa, sklopljene kvantne pike, tunelska spektroskopija.
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Chapter 1

Introduction

Advances in nanoscience and nanotechnology empower us with new tools for probing sys-
tems of increasingly small sizes. Nowadays one can, for example, measure transport proper-
ties of semiconductor quantum dots, single molecules, and even individual atoms adsorbed
on a surface. The interest in such systems is twofold. On one hand, transport through
nanostructures is of fundamental interest since a number of very characteristic quantum
effects can be studied. On the other hand, nanostructures represent the ultimate degree of
miniaturization of electronic devices and they are likely candidates for the building blocks
of the circuitry of tomorrow.

A notable phenomenon that is commonly at play on the nanoscopic scale is quantum
tunneling — transmission of electrons through classically-forbidden energy barriers. The
use of the electron tunneling as a spectroscopic technique eventually led to the invention
of the scanning tunneling microscope (STM) in 1982. Since then, STM has become one
of the most versatile tools in nanoscience. In addition to its most common use as a
topographic microscope with atomic resolution, STM can be applied to perform lateral
manipulations of adsorbed species and to transfer adsorbates from sample to tip and vice-
versa. It can also induce dissociation, desorption and conformation changes in molecules
and it is even possible to perform chemical synthesis. Finally, STM can be used to perform
tunneling spectroscopy of the smallest magnetic objects - single magnetic atoms, clusters
and molecules adsorbed on surfaces.

Somewhat larger magnetic nanostructures can be built using quantum dots. Quantum dots
are microscopic puddles of electrons which can be considered as artificial atoms, since the
confined electrons are quantized and form orbitals much like the electrons in orbit around
an atomic nucleus. Particularly interesting are semiconductor quantum dots patterned in
high-quality heterostructures grown by molecular beam epitaxy. Lateral quantum dots,
for example, are defined in AlGaAs/GaAs heterostructures with a subsurface layer of the
high-mobility two-dimensional electron gas by patterning metallic gates on the sample
surface.! By adjusting the voltages on these gates, it is possible to control the number
of the electrons trapped in the quantum dot and change the coupling of the dot with the

11



12 CHAPTER 1. INTRODUCTION

electron gas. Quantum dots thus serve as tunable realizations of quantum impurity models
— models of point-like impurities with internal degrees of freedom — in which on-site energy
and hybridization strength can be easily swept in-situ.

Quantum impurity models attract the interest of the solid state physics community both
due to their unexpectedly complex behavior and intrinsic beauty, as well as due to their
ubiquitous applicability to a vast array of physical systems such as bulk Kondo systems,
heavy-fermion compounds and other strongly correlated systems,? dissipative two-level
systems,® single magnetic impurities and quantum dots.*™®

In very small electronic devices the electron-electron interactions are strong and they induce
interesting many-particle effects. The most notable is perhaps the Kondo effect which
appears to be a relatively generic feature of nanodevices.”'® The Kondo effect is a many-
particle phenomenon arising from the interaction between a localized spin and free electrons
that leads to increased spin-flip scattering rate of the electrons at low temperatures. This
gives rise to various anomalies in the thermodynamic and transport properties, in particular
to increased conductance through nanostructures. The conductance through a quantum
dot in the Kondo regime as a function of temperature, gate and bias voltages is in agreement
with theoretical predictions that such dots behave rather universally as single magnetic
impurities'' and can be modelled using single impurity Anderson and Kondo models.'!!2

Systems of multiple coupled impurities are realizations of generalized Kondo models where
more exotic Kondo states may occur. The research in this field has recently intensified due
to a multitude of new experimental results; the multi-impurity magnetic nanostructures
under study are predominantly of two kinds: clusters of magnetic adsorbates on surfaces
of noble metals (such as Ni dimers,!* Ce trimers,'* molecular complexes!'®) and systems
of multiple quantum dots.}1** Double quantum dot and dimers of magnetic atoms, for
example, are realizations of the two-impurity Kondo model, which exhibits quantum criti-
cality. This model has been applied to study the competition between magnetic ordering
and Kondo screening.?>2! Fermi and non-Fermi liquid behaviors, ferromagnetic and anti-
ferromagnetic correlations, and diverse behavior of heavy fermion systems?? are all believed
to result from the competition between the Kondo effect and magnetic exchange interac-
tion.'0 Recently, several experimental realizations of the two-channel Kondo model using
quantum dots have been proposed.?* 2" The two-channel Kondo model exhibits non-Fermi
liquid behavior and it has been used in the past to explain the unusual logarithmic temper-
ature dependence of the magnetic susceptibility and linear vanishing of the quasiparticle
decay rate in some Ce and U compounds at low temperatures.”® Research on systems of
quantum dots thus also sheds light on the behavior of extended bulk correlated materials.

NRG The method of choice to study the low-temperature properties of quantum impurity
models is Wilson’s numerical renormalization group (NRG).?*3! The NRG technique con-
sists of logarithmic discretization of the conduction band, mapping onto a one-dimensional
chain with exponentially decreasing hopping constants, and iterative diagonalization of
the resulting Hamiltonian. NRG is one of the very few methods which give comprehensive
information on the behavior of impurities both at zero and at finite temperatures.
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The dissertation is structured as follows. Introductory Part I is largely devoted to the
theory of tunneling through nanostructures and related topics. The concepts of quantum
impurity models, Kondo effect, effective field theories, spin-charge separation, Fermi liquid
and non-Fermi liquid systems are introduced in Chapter 2. Chapter 3 presents the renor-
malization group approach to the quantum impurity models with a particular emphasis
on Wilson’s numerical renormalization group, while other numerical methods are briefly
presented in Chapter 4. Finally, the transport formalism for calculating the conductance
through a nanostructure is given in Chapter 5. Part II presents the main body of the results
on the properties of the nanostructures described as single impurity models (Chapter 6),
two-impurity models (Chapter 7) or three-impurity models (Chapter 8). Both thermo-
dynamic and transport properties are described; often the knowledge of thermodynamic
behavior is essential for proper understanding of the transport properties of a system. Part
I1I is devoted to scanning tunneling microscopy. Chapter 9 describes the construction of
a new low-temperature STM and gives some background information on technical aspects
of STM operation. The magnetic properties of clusters of magnetic adatoms, with an em-
phasis on the surface Kondo effect, are described in Chapter 10. Some technical matters
are relegated to Appendices.



Part 1

Theory of tunneling through
nanostructures
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Chapter 2

Theory of quantum impurity models

This chapter introduces the concept of quantum impurity models (Section 2.1) and the
associated Kondo physics (Sec. 2.2). Section 2.3 is devoted to symmetries which play
a central role in these models. The notions of Fermi liquids and non-Fermi liquids are
presented in Sec. 2.4. It is shown that quantum impurity problems are one-dimensional
field theories (Sec. 2.5) and that spin and charge degrees of freedom separate (Sec. 2.6). I
conclude with a short introduction to the boundary conformal field theory which provides
a simple account of the essence of the Kondo effect (Sec. 2.7).

2.1 The concept of a quantum impurity model

Quantum impurity models (QIMs) describe interaction between a point-like impurity with
internal degrees of freedom and a continuum of states. For example, the impurity may
be a substitutional defect such as a magnetic impurity atom carrying local magnetic mo-
ment (the quantum degree of freedom is spin), the continuum may consist of itinerant
conduction band electrons of the non-magnetic host material, and the interaction may
be antiferromagnetic exchange interaction between the local moment and the conduction
band electrons:>3? a model with such characteristics belongs to the important class of
the s-d exchange quantum impurity models. More generally, the impurity degree of free-
dom may also be orbital moment,*® orbital pseudo-spin,® 36 helicity,?” 3% impurity charge
(isospin)®*® or a discrete coordinate (positional pseudo-spin).? The continuum is typi-
cally fermionic (conduction band electrons), but may also be bosonic (collective electron
excitations in the host," phonon modes*), and the interaction can be hybridization or
some generalized exchange interaction. The renewed interest in QIMs is largely due to the
fact that many nanostructures belong to the class of quantum impurity systems and that
they may be easily characterized by transport measurements.*%47

The paradigmatic case of a QIM is the Kondo model of a spin-1/2 magnetic impurity
interacting with a fermionic band with constant density of states p via antiferromagnetic

15



16 CHAPTER 2. THEORY OF QUANTUM IMPURITY MODELS

exchange interaction with a coupling constant J that does not depend on energy nor on
the direction in the momentum space.*® The Kondo Hamiltonian is

H = ZGkCLuCkH + Js-S. (2.1)

kp

The first term describes the conduction band of non-interacting electrons: ¢y, is the anni-
hilation operator for conduction band electron with momentum k and spin p. Operator s
is the electron spin-density at the position of the impurity:

S = Z fgu (%O-MH') o (2.2)
T

Here )
foo=—==>_dl, (2.3)
VN, -

is the combination of the conduction band operators that create an electron at the position
of the impurity, i.e. the Wannier orbital centered at the impurity (N, is the number of
states in the band). S is the impurity spin operator; its components obey the SU(2) anti-
commutation relation [S;, S;] = 4€;;,S;. In the conventional Kondo problem S = 1/2,
but S > 1/2 generalizations are also studied. The coupling constant J is assumed to be
“small”. Considerable attention was devoted to the Kondo problem due to unexpectedly
complex behavior of this seemingly simple problem. Even though J is small, the problem
cannot be treated by the perturbation theory;*® it turns out, instead, that the system
is strongly renormalized at temperatures below some characteristic Kondo temperature
Tx ~ exp(—1/pJ), where p is the density of states of the conduction band at the Fermi
level. This unusual behavior is called the Kondo effect.

The adjective quantum in quantum impurity model emphasizes that the scattering poten-
tial seen by the conduction-band electrons in QIMs is “non-commutative”.?® This means
that the scattering T-matrix contains terms where the divergent logarithmic terms are
multiplied by a commutator of the interaction matrix elements. This commutator can gen-
erally be simplified to a commutator of the operators corresponding to the impurity degrees
of freedom: for a quantum impurity this commutator is non-zero, while for an impurity
with no internal degrees of freedom or for a classical impurity the commutator is zero. In
the case of the Kondo problem, the relevant commutator is the spin SU(2) commutator
[Si, Sj] = i€;jxSk. Since the bracket is non-zero, the model is indeed non-commutative and
logarithmic terms appear. These terms indicate the break-down of the perturbation theory
and the non-trivial behavior of the system. It should be noticed that in the S — oo limit,
a spin behaves like a classical angular momentum; in the Kondo model with large impurity
spin S, the effective interaction is indeed weakened, the Kondo crossover becomes broader
and less pronounced.?%:>!

Other problems that belong to the QIM family are two-level systems like metallic glasses
where an atom may tunnel between two positions possessing levels close in energy®? and the
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spin-boson model where a two-level system interacts with harmonic oscillators that mimic
the environment responsible for decoherence and dissipation.*>. Related problems, though
not real QIMs, are also the resonant level scattering problem and the X-ray absorption
edge singularity problem.?3%4

2.2 Kondo effect

» 00000 ¥ DN oo
OOOOO //i [} “\\cloud
00900 ¢ S R
00000 N,
00000 S

S=1/2 S=0
Free local Kondo screened local
magnetic moment magnetic moment

Figure 2.1: Quantum impurity with magnetic moment and the Kondo effect. a) Prototype
quantum impurity system: an impurity atom carrying net local magnetic moment embed-
ded in a non-magnetic host material. b) At high temperature the impurity moment is
nearly free and the system has magnetic response. ¢) At low temperature the conduction
band electrons screen the local magnetic moment in the Kondo effect. The system is then
non-magnetic.

The Kondo effect in magnetic quantum impurity systems (Fig. 2.1) is a subtle many-
electron effect in which conduction-band electrons in the vicinity of the impurity screen
the local moment to form a collective entangled non-magnetic ground state at low tem-
peratures. Alternatively, in the language of the boundary conformal field theory®®, the
Kondo effect consists of the disappearance of the impurity spin degree of freedom from
the problem as it is swallowed by the conduction electron spin density (see Sec. 2.7. The
Kondo problem was the first known asymptotically free theory:%° the local moment is es-
sentially free at high energies (i.e. for high momentum exchange that probes short-distance
behavior, Fig. 2.1b), but the system becomes strongly interacting at low energies (long-
distance behavior) and the local moment loses its individuality, Fig. 2.1c¢ . In this sense,
Kondo physics is akin to color confinement in quantum chromodynamics: particles with
color charge (such as quarks) cannot be isolated since the force between a pair of particles
increases with the separation. In the context of magnetic impurities this translates into
the absence of magnetic response at low temperatures.

A characteristic feature of the Kondo effect is the emergence of the Abrikosov-Suhl (or
Kondo) resonance, a narrow scattering resonance near the Fermi level, at temperatures less
than the Kondo temperature. The Abrikosov-Suhl resonance is of many-particle origin and
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appears due to correlated behavior of electrons. Since the thermodynamic and transport
properties of systems at low temperatures are predominantly determined by electrons with
energies close to the Fermi level, this resonance gives significant contributions to the specific
heat, magnetic susceptibility and scattering-rate at low temperatures;>” the Abrikosov-Suhl
resonance is thus the origin of the anomalies observed in experiments. This resonance is
also directly involved in the enhanced conductance through quantum dots and molecules
in the Kondo regime™?. It also appears in the d//dV measurements in scanning tunneling
spectroscopy, albeit in more convolved form of a Fano resonance due to the interference
between different tunneling channels? (see Sec. 10.2 and 10.3).

In the scaling picture (described more thoroughly in the next chapter, Sec. 3.1), the effective
model of the Kondo model at lower temperatures again takes the form of the Kondo
Hamiltonian, but with a temperature dependent exchange constant J(7'). The effect of
the high-energy electrons is thus to renormalize the exchange interaction, whose strength
grows as the temperature is decreased:

J
~ 1-pJIn(kgT/D)’

J(T) (2.4)

where J is the bare exchange constant which appears in the original Hamiltonian. At
the Kondo temperature kgTx = Dexp(—1/pJ), J(T) diverges: this indicates that on
this temperature scale the electron scattering becomes strong. The scaling approach thus
provides a useful qualitative definition of Tk.

For temperatures below Tk the system is said to be in the strong-coupling regime |as
indicated by the divergent J(T')| where half a unit of the impurity spin is screened by the
electrons.’® As the temperature is increased, the system crosses over to the asymptotically-
free local moment regime where the free spin behavior is logarithmically approached.5

Another interpretation of the Kondo cross-over is possible , according to which the Kondo
effect is a way for the system to reduce its energy by “tunneling” through different de-
generate impurity states. A “Kondo singlet” bound state is generated in this manner. Its
bounding energy is on the scale of the Kondo temperature, which can be demonstrated
using a simple variational wave-function.?%%% The “tunneling” point of view makes it
clear that the degeneracy of the impurity ground states plays a very important role: the
variational calculation shows that degeneracy enters as a factor in the exponential func-
tion of the expression for Tk . Increased degeneracy can thus strongly enhance the Kondo
temperature. This implies that if the symmetry of the problem is extended by suitably
tuning the model parameters (for example using gate voltages of a quantum dot system),
the Kondo temperature can increase; in turn, this may lead to enhanced conductance at
finite temperatures.®> It should be emphasized, however, that this may occur only if the
symmetry of the entire system is increased; both the impurity and the host system must
have matching symmetry.? In bulk impurity systems, for example, the orbital degeneracy
may increase the Kondo temperature only if there is orbital exchange, i.e. when the effec-
tive model is of the Coqblin-Schrieffer kind with the degeneracy factor N = 2(2] + 1). If
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an impurity with orbital degree of freedom couples to a single orbital channel, there is no
such enhancement.?

In principle, Kondo effect can occur whenever the impurity ground state is degenerate.
In the familiar case of the S = 1/2 Kondo model, the two relevant states form a |S =
%, S, = j:%} magnetic doublet. In quantum dot systems, the degeneracy between different
spin multiplets can be intentionally induced by tuning the magnetic field since the orbital
energy strongly depends on the field, whereas the Zeeman energy is small due to the very
small gyromagnetic ratio in GaAs. At the degeneracy point, large zero-bias resonances with
increased Kondo temperature are observed.%*%* this is the singlet-triplet Kondo effect that
has been a subject of intense studies in recent years.®> ™ We may also obtain more exotic
doublet-doublet and doublet-quadruplet Kondo effects.5?

2.3 Symmetries in quantum impurity models

This work mainly concerns quantum impurity models where one or several impurity sites
are coupled to at most two single-mode conduction channels, i.e. to two non-interacting
continua of states. Such models are appropriate for most systems where the interacting
region is embedded between two conduction leads, as is the case in most experimental
situations. We assume that each continuum state carries a spin index p =T, | and that
in the relevant low-energy range the dispersion may be linearized. For convenience we set
the chemical potential in the middle of the band, which we also choose as our energy zero.
The conduction band Hamiltonian is thus

Hyand = Y €40 Chpia; (2.5)

k,po

where the rescaled wave-number k ranges from —1 to 1, ¢, = Dk where D is the half-
bandwidth, and « is the channel index, « = 1,2. The density of states is constant,
p = 1/(2D). Since € = €_i, the conduction band is particle-hole symmetric. In fact,
the Hamiltonian (2.5) has very high degree of symmetry. By decomposing the complex
fermionic operators c}iua into real and complex parts (Majorana fermions,) it can be shown
that the symmetry group is SO(8).21:7  This symmetry group has same very peculiar
properties (such as the triality symmetry between its representations) which play a role
in the non-Fermi liquid behavior that this class of problems may exhibit.?>"® The total
SO(8) symmetry of the conduction bands is reduced by the impurity-lead coupling to some
product of subgroups of SO(8). We thus need to study the possible remaining symmetry
of the total model Hamiltonian; we have to find the maximal set of mutually commuting

operators that also commute with the Hamiltonian.

In addition to the internal SO(8) symmetry of the particles, the field theoretic version of
(2.5) exhibits conformal symmetry:?":°>778l the theory is rotation, translation and scale
invariant in the two-dimensional (2D) space-time. In fact, this holds at low temperatures
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for all one-dimensional systems of free fermions.®? This behavior is a direct consequence
of the fact that excitations of a Fermi liquid behave in the first approximation as massless
particles. The conformal symmetry in 2D is very special because there is an infinite num-
ber of generators of the group of local conformal transformations: such high symmetry
is extremely constraining and there can in general be only a very small number of free
parameters in such conformal field theories (CFTs). In fact, many such theories may be
solved exactly.®® See also Sec. 2.7.

We remark in passing that the symmetry of the Hamiltonian changes under the renormal-
ization flow. In particular, symmetries may be restored at low energies and fixed point
Hamiltonians generally have higher symmetry than the underlying microscopic model.?*
For example, while Hy,,q is conformally symmetric, the conformal invariance is lost after
the impurity is introduced into the system. One of the important insights of the boundary
CFT approach is that as the system approaches a fixed point, the conformal symmetry is
restored: Lie group symmetry is enhanced to Kac-Moody symmetry.

2.3.1 Spin symmetry SU(2)qpin
The local spin operator for a single orbital is defined as

Si = ZCLIH (%aﬂﬂ/) CLZ'H/7 (26)

B!

where o = {0”, 0¥, 0%} are the Pauli matrices. In component form, we find

Si =3 (aZTT@z'T - @Lau> :

S = azTTaz‘ia (2.7)

1
S, = a;rlaﬁ,

where we have defined S;" = 5% +iSY and S; = S —4SY. In the absence of magnetic field,
the system is isotropic in the spin space and it has SU(2)sp, symmetry. The generators

are the components of
S=>"s, (2.8)

where index i ranges over all sites of the system (both impurity sites dj and conduction
band levels cL) Both S? and S* commute with H, therefore the invariant subspaces can be
classified according to quantum numbers S and S*. Furthermore, when the Hamiltonian
is rotationally invariant in the spin space, S* does not play any role in the diagonalization
and it can be taken into account using the Wigner-Eckart theorem (see Appendix A).

In the case of an XXZ anisotropy in the spin space (for example due to an anisotropic ex-
change interaction between the impurities and the conduction band), the SU(2) symmetry
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is reduced to O(2) ~ U(1)gpin X Zo symmetry. U(1)qpin corresponds to rotations around
the z-axis: S* remains a good quantum number but the Wigner-Eckart theorem no longer
applies. Zs corresponds to spin inversion, which is still a symmetry operation in this case.
Spin inversion can be defined as the mapping

Qi — (211)ai (2.9)

Here (2p1) = £1 for =T, |= £1/2 is a conventional phase factor. Spin inversion operator
U = exp(imS,) is an element of the SU(2)spin. In the presence of magnetic field applied
along the z-axis, the Z, symmetry is lost and the remaining spin symmetry is just U(1)spin-

It should be remarked that for a single site

3 3
ST = 7 (miy + iy = 205 paie) = 7(2n0 — ), (2.10)
where n;, = ajﬂaw, n; = nip + ny and 0 pair = nipny = ni(n; — 1)/2. It thus suffices to
calculate (n;) and (n?) to determine the local spin. In the case of two and more sites, we
need to know the occupancies, squares of occupancies and scalar products of spin. For
example, for two sites we have

82 = (Sl -+ 82)2 = Z (2”1 -+ 271/2 — n% — n%) -+ 281 . SQ. (211)

2.3.2 Charge conservation U(1)marge

We define the charge operator Q as

Q=) (ni—1), (2.12)
where ¢ again runs over all the sites of the problem. We subtract one so that the charge is
defined as the excess charge with respect to a half-filled system. In all physically sensible
problems, the total charge () is a conserved quantity. This conservation is associated with a
U(1)charge sSymmetry due to global phase (gauge) invariance. Note that the three operators
Q, S% and S, are mutually commuting.

2.3.3 Particle-hole symmetry 7,

The particle-hole (p-h) transformation maps particle-like excitations above the Fermi en-
ergy into hole-like excitations below the Fermi energy. A system is said to be p-h symmetric
when it is invariant with respect to the p-h transformation. This is only possible if all spec-
tral functions of the system are symmetric with respect to the Fermi level, A(w) = A(—w).
The p-h transformation is given by the mapping

al = (=1)'2m)ai_,- (2.13)

U=
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The reason for the reversed spin on the right hand side of this expression is that an addition
of a spin-up particle and removal of a spin-down particle both increase total spin by 1/2;
in other words, the spin of a hole excitation in the p = —1/2 Fermi sea is 1/2. Index i
in Eq. (2.13) has a very special meaning. It must be defined so that its parity alternates
between sites connected by electron hopping terms. This requirement is equivalent to
demanding that the lattice be bipartite in the sense that each site is connected by hopping
only to the sites of the opposite sublattice; in other words, the lattice must be a two-
colorable graph, Fig. 2.2. On a simply connected lattice (an open chain of any length or a
closed ring with even number of sites) ¢ may simply be the site number. A slightly more
complicated case is that of parallel quantum dots that are not inter-coupled by hopping:
all parallel dots must have the same parity of index 7. To demonstrate the necessity of the
alternating sign in the definition, consider how a typical hopping term transforms:

t <ajai+1 + aZTHaZ-) —t <(—1)iai(—1)i+1aj+1 + (—1)i+1ai+1(—1)iaj> =1 <CLZCLZ‘+1 + ajﬂai) .

(2.14)
Without sign alternation, the hopping term would flip sign under p-h transformation and
the p-h symmetry of the Hamiltonian would be broken. Furthermore, it should be noted
that while (n; — 1)? terms are p-h invariant, (n; — 1) maps to —(n; — 1).

) ~@-D-@-D-@-
e@%we

b ~@-ED-O-@
o

Figure 2.2: Lattice representation of the connectivity between the orbitals. a) Examples
of bipartite lattices corresponding to Hamiltonians that may exhibit p-h symmetry. b) If
the lattice is not a two-colorable graph, the system cannot be p-h symmetric.

2.3.4 Isospin symmetry SU(2)i,

Under the p-h transformation, the charge () — —@. In fact, the relation between the p-h
transformation and the U(1)charge Symmetry is analogous to the relation between the spin
inversion (which maps S* — —5%) and the U(1)syi, symmetry. This suggest that in the
presence of the p-h symmetry, the full symmetry in the charge space might be larger than
U(1)charge if certain conditions are fulfilled. This is in fact the case;?° such extended SU(2);s0
symmetry is called the isospin symmetry (sometimes also axial charge symmetry).?0,85-88
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We first define the Nambu spinor?? 8% by

Mige = ((_1)@/{‘0%_#) , (2.15)

where ¢ has the same special meaning as in the previous section on the p-h symmetry.
The isospin up component (o = % =1) is a particle creation operator, while the isospin
down component (o = —% =]) is a particle annihilation operator. Often only the spin up

Nambu spinor { = 7n; is needed:
T aT
¢ = (( 137& 1) ) (2.16)

The Nambu spinors define local isospin operators2% 2!

L=¢ (o) (2.17)
where o are the Pauli matrices. We also define [T = I +iI¥ and I~ = (I7)I. The
components are:

I —

(2

% ( TT%T"”@ lazl—1> QQZ'
= (-1)'a zTazl (2.18)
I,_ = (—1) Qi | Qg7

2

The z-component of the isospin is thus charge, while the transverse components are particle
pairing operators. The total isospin operator of the system is obtained as a sum of I, for
all orbitals of the problem (impurities and conduction band):

I=) I. (2.19)

If the Hamiltonian commutes with all three isospin components, we say that the system is
invariant in the isospin space. In that case, both I? and I* commute with H and [I?, I*] = 0;
I and [? are additional good quantum numbers. Due to isotropy in isospin space, the [~*
dependence can again be taken into account using the Wignert-Eckart theorem. Spin and
isospin operators commute, [S?, I/] = 0 for all 4,j € {x,y,2}. Therefore a problem may
have a SU(2)spin ® SU(2)iso symmetry which, when explicitly taken into account, leads to
a significant reduction of the numerical task.

The isospin operators have exactly the same SU(2) group properties as the spin operators
S;, for example:

(2.20)
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This implies that a Nambu spinor defined by Eq. (2.15) is, in addition to being a spin
doublet tensor operator with respect to SU(2)spin, also an isospin doublet tensor operator
with respect to SU(2)is (see App. A). The following holds for a single orbital :

2 =

7

(1 - ni,T — Ny + 2ni,pair) )
(2.21)

=] QO | W

s
The two states with single occupation thus form an isospin-singlet spin doublet, while
zero-occupation and double-occupation states form a spin-singlet isospin doublet. For two
sites we have:

I+ I =—3 (ahaiTaglagT + aglagTallalT) (2.22)

i.e. the transverse part of the isospin exchange interaction I; - I, is equal to the two-electron
hopping term. Furthermore,

1
L = (m = 1)(n — 1), (2.23)

i.e. the longitudinal part of the isospin exchange interaction corresponds to inter-site charge
repulsion or, equivalently, to capacitive coupling. We remark that while isospin is related
to the p-h transformation, not all particle-hole symmetric models are also isospin invariant.
Such is the case of Hamiltonians which contain two-particle hopping terms; they are p-h
symmetric, but clearly not isospin invariant.

We remark in passing that the p-h transformation operator U = exp(in¥) is an element
of SU<2)150.

2.3.5 Parity Z, and flavor symmetry SU(2)g.yor

In addition to “internal” symmetries in spin and isospin space, impurity problems describing
systems of quantum dots may also have real-space symmetries, such as reflection symmetry
Zo with respect to a mirror plane passing through the middle of the impurity region. The
reflection maps the left lead into the right lead and vice versa. Every discrete transfor-
mation is associated with a quantum number, in this case the quantum number of parity
under left-right reflection transformation. Subspaces with different parities decouple and
can be diagonalized separately. We define as even (P = 1) those states that are invariant
with respect to the reflection, and as odd (P = —1) those that change sign.

Parity Zy symmetry group is a subgroup of a larger flavor symmetry group SU(2)gayor With
generators 2

1=Y1, (2.24)
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where n runs over one half of the system sites (for example, the left half), and J,, are “local”
flavor operators which mix the states from left (&« = —1/2 =|) and right (o = 1/2 =7)
conduction channel with the same n (see Fig. 2.3):

J, = Z ZCLLW (%a’aa/) Ana - (2.25)
©o ool

Index « therefore plays the role of a channel (flavor) pseudo-spin. Group SU(2)gayor cOm-
mutes with SU(2)spm, however it does not commute with SU(2)js0.%"

|
Index n |

Left,a=) |  Right, a=T
Reflection plane

Figure 2.3: Reflection symmetry and the channel pseudo-spin index «.

Affleck et al.?! have shown that for reflection symmetric problems two types of the particle-
hole symmetry can be distinguished. Under the p-h symmetry of the first type

¢6,E - ¢Z7_E7
Yop — U _p,

where e, 0 denote even or odd combination of electrons from left and right half of the
system, 1., = 1/v/2(11, & 9¥r), while under the p-h symmetry of the second type

we,E - wi,fE7
Yop — ¢Z,—E‘

For linear chains of impurities coupled by electron hopping terms, the p-h symmetry is
of the first type for odd number of impurities and of the second type for even number of
impurities. The symmetry of the first type constrains the possible scattering phases for
electrons in even/odd channels and its existence was used in the argument for the existence
of the phase transition in the two-impurity Kondo (2IK) problem.?! Tt was later shown
that this is merely a sufficient, but not a necessary condition for observation of the 2IK
non-Fermi-liquid critical behavior.”?

(2.26)

(2.27)

2.4 Fermi liquid and non-Fermi liquid systems

Quantum impurity models can be classified into two groups: those that behave as Fermi
liquids (FL) at low temperatures,” and those that do not — non-Fermi liquids (NFL).%:%
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FL systems are characterized by their behavior near 7" = 0: they have a linear coefficient of
heat capacity, a constant zero field magnetic susceptibility and their resistance decreases
as T?.2 Their excitations are related to the bare excitations of non-interacting Fermi
systems; in particular, their finite-size spectra feature equidistant levels at integer or half-
integer values.” Single-channel Kondo and Anderson models both behave as FL at low
temperatures, as do most of the other models studied in this work.

The ground state for a system of a magnetic impurity with spin S interacting antiferromag-
netically with N conduction bands must have total spin S — N/2. This general theorem
has been proved (for a single band) by Mattis.”” Hence for S = N/2 the ground state is a
singlet with complete spin compensation, for S > N/2 there will be residual spin (under-
screening), while for S < N/2 the electrons tend to overscreen the impurity. In fact, both
for S > N/2 and for S < N/2 the residual spin is |S — N/2|. The important difference
lays in that the residual exchange interaction is ferromagnetic and it scales to zero for the
case of underscreening, while the residual interaction is antiferromagnetic in the case of
overscreening.

Mehta et al. have shown that while for S > N/2 the system is a FL, the concept of a FL
needs to be refined.”® A S = N/2 system with complete compensation is a reqular FL , a
S > N/2 system with residual spin is a so-called singular FL. In a regular FL, the inelastic
scattering vanishes quadratically and on the lowest energy scale oipa(W) = Oelastic(w),
where o is the scattering cross-section. In singular FL, however, the inelastic scattering
falls off much more slowly.

NFL systems, on the other hand, have characteristically different properties.?® For S <
N/2 the residual interaction is relevant and the FL fixed point is unstable; this leads to
non-trivial physics.?? % The thermodynamic quantities of NFL systems diverge at low
temperatures, the resistivity decreases as T%/2 and there is a finite residual entropy which
is not a logarithm of an integer number . In this work we will meet two such models:
the over-screened two-channel Kondo (2CK) model (with S = 1/2 and N = 2, see also
Section 6.2) , and the two-impurity Kondo model (Sec. 7.4) . Some further examples of
NFL systems are the two-channel spin-flavor Kondo model,?* %! the single-channel Kondo
problem with J = 3/2 conduction band,'®® the compactified (0 — 7) Kondo model'3107
and the three-impurity Kondo problem.37>38

NFL behavior usually appears for special values of model parameters. It often occurs that
two different FL phases are separated by a continuous quantum phase transition (QPT)
and that precisely at the transition point the system has a NFL low-temperature fixed
point. Near the phase transition, the system may exhibit NFL characteristics at finite
temperatures, but as the temperature is decreased it eventually evolves into a FL. ground
state.

The levels in the finite-size spectra of NFL systems are not equidistant, but can often
be expressed as fractions. In the 2CK model, the lowest levels are, for example, 0, 1/8,
1/2, 5/8, 14+1/8, ... ™18 (see Sec. 8.1). In conformal field theory, excitation energies
are determined by the scaling dimensions of operators characterizing the fixed point: one
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operator for each eigenvalue. The fact that eigenvalues are not merely integers or half-
integers is a direct proof that the system is a NFL, since its excitations cannot be expressed
in terms of fermionic operators.'®®

Emery and Kivelson explained the NFL behavior in the 2CK model by the observation
that only one of the impurity’s Majorana degrees of freedom couples to the conduction
electrons'®. Since one Majorana fermion corresponds, roughly speaking, to one half of a
physical Dirac fermion, the deviation from usual FL behavior is not surprising. The idea of
obtaining NFL fixed point by “twisting” an odd number of Majorana fermions was further
elaborated by J. Maldacena and A. W. W. Ludwig™ and J. Ye.92110-112

Calculation of thermodynamic properties alone may not suffice to ascertain if the ground
state is FL or NFL. Instead, correlation functions or excitation spectra must be determined.
Using the NRG, both are easily accessible.

2.5 Effective field theories of the Kondo problem

While models of physical systems that arise in the condensed matter theory naturally take
the form of lattice models, effective models may be defined on the continuum. The field
theoretic version of the Kondo Hamiltonian (2.1) is a one-dimensional (1D) relativistic
quantum field theory (QFT). The theory is one-dimensional since the magnetic impurity is
assumed to couple only to a one-dimensional continuum of conduction electron states with
s symmetry about the impurity site:®® this holds more generally and, in fact, all QIMs
are essentially one-dimensional. The theory is said to be relativistic since the electron and
hole excitations in the vicinity of the Fermi level are dispersionless and therefore behave
as ultrarelativistic massless particles.

Due to the presence of an impurity interacting with the 1D continuum, QIMs form a
class of quantum models with properties in between 2D models, where critical behavior is
possible, and true 1D models where criticality does not occur.’® In fact, the Kondo effect
was described as an “almost broken symmetry”,''3 a low-dimensional critical phenomenon
involving long-time fluctuations at the magnetic site, but no critical fluctuations in space.
In QIMs, low dimensionality of fluctuations prevents the development of a true broken
symmetry; as a consequence, the transition to a Kondo correlated state is not a phase

transition, but rather a cross-over.

The validity of the effective QFT of the Kondo problem is limited to energies low enough
that the linear approximation to the dispersion relation is possible. In real space, the
Hamiltonian is expressed in terms of a field v, (z) defined on a continuous line parameter-
ized by some fictitious position x:

H=ivp ) /Z dx@bl(x)%(x) +vpAJ5(0) - S. (2.28)

Xz
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Here vp is the Fermi velocity, A = pJ is the dimensionless Kondo antiferromagnetic coupling
constant and Jg(x) is spin density

I5() = 3 Ul () 50t ), (2.29)

QFTs need to be regularized to remove the divergencies that appear due to the infinite
number of quantum modes;*? in effective QFTs of lattice models a natural choice of the
high-energy cut-off is provided by the lattice spacing.

2.6 Spin-charge separation

Low-dimensional field theories have unique properties due to topological restrictions in
reduced dimensionality; for example, fermions constrained to live on a 1D line can scatter
only forwards and backwards. A notable effect in one-dimensional systems is the separation
of electron spin and charge which had been intensively studied in Luttinger liquids:'*
fundamental low-energy excitations are not charged spin-1/2 Fermi-liquid quasiparticles,
but rather spin-1/2 neutral particles (spinons) and charged spinless particles (holons). Such
behavior has been found, for example, in one-dimensional solids such as SrCuO,''® and
ballistic wires in GaAs/AlGaAs heterostructures.'!®

Spin-charge separation also occurs in the Kondo problem. Using bosonization techniques,'%6-108,109,117, 118

conduction band fermion fields can be described in terms of spin-up and spin-down boson
fields. These bosons correspond to the particle-hole excitations in the conduction band
and they can be recombined to form separate spin and charge fields which are essentially
independent, but subject to a gluing condition °%!8 which is the only remnant of the
charge-1, spin-1/2 nature of physical fermion particles. In the single-impurity spin Kondo
problem, the impurity spin couples only to the spin field, while the charge field is decou-
pled.?% 103119 Dyring the Kondo cross-over, the spectrum of charge excitations remains
unchanged, only the spin sector is affected.?® In this sense, the spin and charge degrees of
freedom are separated.

In the absence of interactions, the Fermi velocity vg is the only characteristic velocity scale
of the problem. When interactions in a one-dimensional system lead to the spin-charge
separation, two different velocities v, and v. appear; these are the velocity of spin and
charge excitations.®? Specific heat coefficient depends both on spin and charge modes and

is given by!2"
1 ( VF UF
=s|—4+—], 2.30
=4 (2 +2E) (2:0)
while spin susceptibility only depends on the spin mode and is given by

% - Z—F (2.31)
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where vy and x( are specific heat coefficient and spin susceptibility of non-interacting elec-

tron gas. Wilson ratio is the ratio of spin susceptibility and the specific heat coefficient: it

thus measures the fraction of the specific heat coming from the spin degrees of freedom.?>°¢

It is given by

X/xo . 2v
Y/ vetus

If there is no spin-charge separation, this ratio is equal to one. Deviations form unity are

a sign of spin-charge separation;'?’ in the single-channel Kondo problem, for example, we

Ry

(2.32)

2.7 Conformal field theory

The boundary conformal field theory (CFT) for impurity models is a generalization of
Noziére’s local Fermi liquid approach. It is applicable to both Fermi liquid and non-Fermi
liquid Kondo systems and provides a description of the ground state and the leading cor-
rections that determine finite temperature behavior. The technique was developed in a
series of papers by 1. Affleck and A. W. W. Ludwig.255%56,778L 121122 Tt can be applied
to multi-channel and higher-spin Kondo effect,?®80:81:121 two-impurity Kondo effects 217
impurity assisted tunneling, and impurities in one-dimensional conductors or 1D antifer-
romagnets.”® An important feature of the approach is that the symmetry of the problem
and the separation of the spin and charge sectors is directly exhibited.

The essence of the CFT approach to impurity problems is the reformulation of the theory
in terms of separate degrees of freedom using non-Abelian bosonization.’® In the case of a
single conduction band, we introduce spin and charge (isospin) “currents” (densities) as

J9(z) = Z : ¢L(I)%GW¢V($) :
" . (2.33)

(@) = Y ) oasta(o)
ap

where &I (z) = {ﬂ (x), 1, (x)} is the real-space Nambu spinor. Normal ordering (double
dots) has been introduced to remove divergences due to filled electron levels below the
Fermi level. The conduction band Hamiltonian can then be rewritten in the Sugawara
form

Hypna=— | = Y e B JY L J7 . 2.34
Here J9 and J¢ are the Fourier modes of the real-space currents J°(x) and J(x) in a
finite system of length 2I. They each satisfy SU(2); Kac-Moody commutation relations

. 1
[JS/C0 JSIOV — e Jo1C + Sabnm 051 (2.35)
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where €% is the antisymmetric tensor.2!’ The modes from different sectors commute:
[, ISP = 0. (2.36)

This commutation relation embodies the (trivial) spin-charge separation of the free elec-
trons. The full Kondo Hamiltonian is

H = Hyma + == (A;Jn : S) . (2.37)

[ draw attention to the fact that the impurity spin couples only to the spin degrees of
freedom of conduction band electrons, while charge degrees of freedom are unaffected. At
a special value A\ = 1/3, we can introduce a new current JS = J5 4+ S which satisfies
the same Kac-Moody commutation relations as the old currents. The spin part of the
Hamiltonian then becomes (up to a constant term)

™ 1 = -
H® = TFZ§ VAN (2.38)

from which the spin impurity S has disappeared (it was “absorbed” by the conduction
band). The charge sector remains unaffected by this change. The special value A = 1/3 is
identified with the strong coupling fixed point of the problem.?

Even though the spin Kondo effect occurs in the spin sector, without involving the charge
sector, the spin and charge degrees of freedom are not entirely decoupled; they are con-
strained by the gluing condition. The gluing condition declares which combinations of
quantum numbers are allowed taking into account the charge-1 spin-1/2 nature of physical
particles — electrons. In the present context the gluing condition depends on the boundary
conditions (b. ¢.) imposed on the field 1 (z).

We first consider the case of anti-periodic b. c., ¥(l) = —¢(—[). We can obtain half-integer
spin only with an odd number of electrons (i.e. for half-integer isospin).”> Therefore 21*
and 25% must have the same parity; this is the gluing condition. There are thus two
Kac-Moody conformal towers with highest-weight states having (I,S5) = (1/2,1/2) and
(1,5) = (0,0), respectively.

For periodic b.c. 1(l) = ¥(—1), and keeping in mind that the z-component of the isospin
is defined with respect to half filling, we obtain half-integer spin for integer isospin and
integer spin for half-integer isospin; 277 and 25% must then have different parity. There
are two conformal towers, (I,S5) = (1/2,0) and (1, S) = (0,1/2). Note that changing the
b. c. from periodic to anti-periodic (or vice versa) amounts to imposing a phase shift of
7/2 on the wave function.”™

In the single impurity Kondo model, the finite-size spectrum of the strong coupling fixed
point is obtained by a fusion in the spin sector.’®7" This means that the isospin sector
remains intact, while the spin quantum number changes as S — 1/2—S. As a consequence
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(1/2,1/2) — (1/2,0) and (0,0) — (0,1/2), i.e. the gluing conditions change from those
for the anti-periodic b. c. to those for periodic b. c., and vice versa, which is equivalent
to the characteristic 7/2 phase shift for quasiparticle scattering in the Kondo regime.



Chapter 3

Renormalization group

The renormalization group (RG) technique, in particular as applied in the field of con-
densed matter physics and many-body theory, is an important tool to study the effective
behavior of systems at low energies and long wavelengths, i.e. their macroscopic response
functions.?>1237129 RG is more than a computational tool that provides us with effective
Hamiltonians; the concepts that emerged from RG (renormalization flow, scaling, running
coupling constants, fixed points, criticality, critical exponents, operator content, relevance,
irrelevance, marginality, universality, etc.) are the central notions of modern physics. K.
G. Wilson’s contribution in this domain was acknowledged by the Nobel prize awarded to
him in 1982 “for his theory for critical phenomena in connection with phase transitions”.

Renormalization is a way of understanding the relation between the different ways a phys-
ical system behaves at different energy scales. To study a system at low energies, the
irrelevant high-energy short-wavelength degrees of freedom are integrated out to obtain
an effective description in terms of modified, “renormalized” coupling constants. Let us
consider an example which — while not computationally practicable — illustrates well the
perspective from which a system is considered from the renormalization group point of
view. We focus on electrons in a piece of metal, neglecting the motion of nuclei (phonons),
Fig. 3.1a. As a first step of the renormalization, we can imagine “tracing out” the core elec-
tron levels to obtain an effective description of the valence levels. This effective description
could, for instance, take the form of a tight-binding model for orbitals near the Fermi level
with electron-electron interactions, i.e. a Hubbard-like model, Fig. 3.1b. The next step
might consist of “tracing out” the charge-fluctuation degrees of freedom (on the scale of
U) to obtain the effective dynamics of spin degrees of freedom (on the scale of t*/U), i.e.
a Heisenberg-like model, Fig. 3.1c. A final RG step might then involve “tracing out” the
local moments to obtain a long-wavelength description in terms of collective modes such as
the spin density waves on the basis of a Ginzburg-Landau functional approach, Fig 3.1d.
We see that a simple Hamiltonian arises from more complicated ones; this is the origin
of the universality. Renormalization is thus an essential ingredient of model building in
many-body theory.!23
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Figure 3.1: Renormalization as a way to proceed from complex microscopic models to
simple universal effective models.

In this chapter I present several aspects of the renormalization group theory. Section 3.1
is devoted to the concepts of renormalizability and universality; it also describes the RG
approach to the Kondo model in the form of a simple scaling theory. Section 3.2 introduces
Wilson’s numerical renormalization group (NRG) and contains a brief review of its many
applications, while Section 3.3 is an overview of my implementation of this technique for
studying general multi-impurity multi-channel quantum impurity models. The following
sections are devoted to the main elements of NRG: logarithmic discretization, hopping
Hamiltonian (Sec. 3.4), symmetries and basis construction (Sec. 3.5), RG transformations,
iterative diagonalization and truncation (Sec. 3.6), finite-size spectra, fixed points, expan-
sions around fixed points, thermodynamic quantities, correlation functions and dynamic
properties (Sec. 3.7), and recursion relations (Sec. 3.8). Finally, Section 3.9 introduces
the density-matrix NRG technique and its implementation in the basis with well defined
charge and total spin quantum numbers.

3.1 Renormalizability, universality and scaling theories

The Kondo Hamiltonian, Egs. (2.1) and (2.28), defines a renormalizable quantum field the-
ory. 1397132 This is equivalent to saying that the field theory is fully determined by a limited
number of running coupling (renormalization) constants. The notion of renormalizability
is therefore related to the concept of universality: the existence of only a limited number of
renormalization constants implies that apparently different Hamiltonians can be mapped
into each other at low energy scales and will thus exhibit universal properties.

Writing the dimensionless coupling constant in the Kondo model as A = p.J, we find that the
Kondo model in the wide-band (D — o0) limit is a scale-invariant theory, i.e. there appears
to be no characteristic length scale. Nevertheless, a length scale given by & = vp/(kpTk)
is dynamically established due to many-particle corrections. The phenomenon where a
dimensionless coupling constant (A) becomes dimensionful (7) is known in particle physics
as dimensional transmutation and it is closely related to the emergence of the scaling
laws.'337136 In the context of the Kondo problem, the dimensional transmutation means
that instead of a range of theories, parameterized by a dimensionless coupling A = pJ, we
have a range of theories differing only in the value of a dimensional parameter, the Kondo
temperature Tk.'3® This implies that the behavior of all problems in the universality class
of the Kondo problem can be described by universal functions; for example, the magnetic
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Figure 3.2: Cutoff renormalization: the particle and hole excitations from the hatched
regions at the top and bottom of the conduction band are integrated out to obtain an
effective Hamiltonian at lower energy scale.

susceptibility x is a universal function of T'/Tx.* The Kondo problem therefore has scaling
property.

Some of the first applications of the RG ideas to the Kondo problem are due to P. W.
Anderson.'3" % Among other results, he derived the scaling laws of the Kondo model in
the perturbative regime using a simple (“poor man’s”) cutoff renormalization technique.'*
Cutoff renormalization consists of tracing out the degrees of freedom in the two infinites-
imal energy intervals near the top (electrons) and bottom (holes) of the conduction band
and determining the effect these states have on the coupling constants in the Kondo Hamil-
tonian, see Fig. 3.2 and Appendix D. It is found that the effective model of the Kondo
model is (at least approximately) the same Kondo model with modified coupling constants,
i.e. in this so-called scaling regime the Kondo model is self-similar under the renormaliza-
tion flow. In the first-order perturbative renormalization, the following scaling equation is
obtained after some simplifications:?
aJ

dnD —pJ?, (3.1)

with J(D = D) = J, where D and J are bare bandwidth and bare coupling, J is the
running coupling constant, D is the running parameter (energy scale), and p is the spectral
density (density of states) of the conduction band. As the energy scale is reduced, the
coupling constant increases. Assuming constant p, a solution may be obtained in closed
form:

J
~1—Jpn(D/D)’
The physics on the energy (or, equivalently, temperature) scale D depends on the renor-
malized parameter 7 (D) rather than on the bare parameter J: the renormalized parameter
takes into account the effects of the high-energy intermediate states. This approach works
as long as pJ < 1, so that the use of the perturbation theory makes sense.

J (D) (3.2)

The scale of the Kondo temperature is determined by the value of the running parameter D
where the renormalized coupling constant becomes large, for example pJ ~ 1. We obtain

Tw ~ Dexp (——) . (3.3)
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On this energy scale the perturbative renormalization fails. Higher-order scaling equation
can be calculated:?
aJ

dnD —pT*+ P’ T*+ O(TY). (3.4)

It gives a better estimate of the Kondo temperature, however pushing scaling calculations

to higher orders does not reveal the behavior of the problem as the temperature tends to
zero. The reason is simple: the behavior of the Kondo system is, in fact, qualitatively
different for 7' > Tk and for T < Tk. The self-similarity (scaling) breaks down at the
energy scale of Tx. For T' > Ty, the perturbative scaling approach gives adequate results,
while for T' < Tk, Noziéres’ local Fermi liquid theory gives a full account of the behavior.?
It turns out that the most complex regime is precisely the cross-over at 1" ~ T which links
the asymptotically-free high-temperature regime to the strong-coupling low-temperature
regime. A mnon-perturbative approach is required to tackle the Kondo problem on the
energy scale of T this is the topic of the following section.

3.2 Numerical renormalization group

The numerical renormalization group (NRG) is a non-perturbative RG approach to the
quantum impurity problems.?? 31129 Being non-perturbative, it does not suffer from log-
arithmic singularities, as scaling approaches do. NRG builds upon the RG approach to
the Kondo problem of Anderson, Yuval and Hamann,'? 37139 however in NRG the RG
transformations are performed numerically. The essential advantage of this approach is
that the calculation need not be guided by “physical intuition” and is therefore unbiased;
however, by the same token there is no straight-forward description in terms of running
coupling constants to provide a simple physical picture.

Schematically, NRG consists of logarithmic discretization of the conduction band(s) and
of iterative diagonalisation of a series of Hamiltonians. The method was expounded in
K. G. Wilson’s seminal paper “The renormalization group: Critical phenomena and the
Kondo problem” (Rev. Mod. Phys., 1975)?° where it was applied to numerically solve the
Kondo problem. This work represents a turning point in the field of impurity problems
since an essentially exact solution for the temperature dependence of the thermodynamic
quantities in the cross-over region between the high-temperature local-moment regime and
the low-temperature strong-coupling regime was obtained for the first time.

NRG has since then become the principal tool in the field of the quantum impurity physics.
The approach was used to study the potential scattering in the Kondo problem ,'3% ! the
s-d problem with spin 1 %1123 the two-channel Kondo problem ,288%91144,145 hayticle-
hole symmetric3®146 and asymmetric®® Anderson model, orbitally degenerate Anderson
model™" %0 and models where different magnetic configurations are mixed.'* More com-
plex multi-impurity problems are also tractable: significant effort was devoted to the two-
impurity Kondo problem ,20:192°15% two-impurity Anderson model'® %6 and, more recently,
to clusters of three and more Anderson impurities.'®”'%® In addition, local phonon modes
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can also be taken into account as in the Anderson-Holstein model.3%40:1597161 Neyw di-
rection are applications of NRG to quantum impurity problems with bosonic continuum
bath,6% non-trivial density of states (pseudo-gap) of the conduction band,*®*1%® non-Fermi
liquid fixed points ,!%>1897171 magnetic impurities in superconductors!”>!™ and quantum
phase transitions .!™ 1™ Recently, NRG has become widely applied to study conductance
through single,'™17 double,?3 1807188 t1iplel®7:158:189 and multiple quantum dots,’>!% in-
cluding quantum dots attached to ferromagnetic leads,'*>'%? and to study singlet-triplet
transitions.5% 7193 A number of exotic Kondo states were found, among them the SU(4)
Kondo effect.'?*

NRG is increasingly often used as the impurity solver in the dynamical mean-field theory
(DMFT) approach to lattice problems.'?%195:19 DMFT builds on the observation that
in the limit of infinite connectivity, lattice models can be mapped to effective impurity
models subject to a self-consistency condition that relates the impurity Green’s function
to the hybridization function. Examples of using NRG as the solver are applications to
the Hubbard model,'” the periodic Anderson model,'”® the Hubbard-Holstein mode]'%%:2%0
and the two-band Hubbard model.?"!

3.3 Implementation overview

For the purposes of this dissertation a new NRG code (named “NRG Ljubljana”??) was
designed and implemented from scratch. The main design goals were flexibility in setting
up new problems, ease of taking into account various symmetries, and speed. The code
was implemented in a layered architecture, see Fig. 3.3. The cornerstone is a Mathematica
package sneg for performing calculations with second quantization operators. This package
is used, on one hand, in deriving the recursion relations for the NRG iteration and, on the
other hand, for exactly diagonalizing the initial Hamiltonian and transforming the matrices
of all operators of interest in the basis of eigenstates of the Hamiltonian in each invariant
subspace. The NRG iteration routines are implemented in C+-+ for speed. Diagonalisations
are performed using dsyev and dsyevr routines from the LAPACK library,?°® while all other
matrix and vector operations use the ublas library from the project boost. Standard
Template Library containers are heavily used, which makes the code easy to read (and
maintain) and helps avoid memory leaks. Additional information can be found on the
“NRG Ljubljana” home page http://nrgljubljana.ijs.si/. The package was released
freely for general use under the GNU Public license.?%*

3.3.1 Package sneg

Package sneg is a collection of transformation rules for Mathematica, which simplifies cal-
culations using the anti-commuting fermionic second quantization operators. The founda-
tion is a definition of non-commutative multiplication with automatic reordering of opera-
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Figure 3.3: The three-step procedure from the problem definition to the results in “NRG
Ljubljana” code.

tors in a standard form (normal ordering with creation operators preceding the annihilation
operators), which takes into account selected (anti-)commutation rules. Standard form re-
ordering allows simplification of expressions and the choice of normal ordering permits
efficient evaluation of matrix elements in a given basis. Some of the additional capabilities
of the package that are relevant to the NRG code are:

e Generation of basis states with well-defined number @) and spin S (or other quantum
numbers).

e Generation of matrix representations of operators (in particular of the Hamiltonian)
in selected basis.

e Collection of functions that generate various operator expressions, such as electron
number, electron spin and isospin, one-electron and two-electron hopping, exchange
interaction, etc.

e Occupation-number representation of states and evaluation of operator-vector ex-
pressions.

Among miscellaneous features of the package are manipulation routines for operator expres-
sions (canonic conjugation, spin inversion), calculation of vacuum expectation values of op-
erator expressions, transformations from product-of-operators to occupation-number rep-
resentations of states and vice-versa, Dirac’s bra-ket notation, simplifications using Wick’s
theorem, support for sums over dummy indexes (momentum, spin) and simplifications of
such expressions, etc. Package sneg is useful beyond NRG calculations. It has been ap-
plied to perform exact diagonalizations on Hubbard clusters, perturbation theory to higher
orders® and calculation of commutators of complex operator expressions. It should also be
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suitable for educational purposes, since it makes otherwise tedious calculations a routine
operation: the nicest feature is perhaps that the use of the package prevents inauspicious
sign errors when commuting fermionic operators. Package sneg was also released freely for
general use under the GNU Public license (http://nrgljubljana.ijs.si/sneg).

3.4 Logarithmic discretization

The essential element of the NRG approach is the logarithmic discretization of the con-
duction band whereby the infinite number of the continuum degrees of freedom is reduced
to a finite number; this renders the numerical computation tractable. If we attempted to
discretize the band linearly, we would obtain a single interval centered around k = 0 that
would contain an infinite number of different energy scales: this is undesirable, since it is
known that in the Kondo problem excitations at each energy scale contribute equally. It
is thus preferable to perform a discretization which divides the band into a set of different
energy scales; in this manner the energy-scale separation — a known property of QIMs — is
achieved explicitly. Viewed from another perspective, the logarithmic mesh gives a good
sampling of the states near the Fermi energy which play an essential role in the Kondo
problem. Wilson’s logarithmic discretization consists of the following steps:2%3°

1. The conduction band is divided into slices of exponentially decreasing width, for
example into intervals I, = [-A™™, —A~=(™*]D for holes and I, = [A=("*V A=™|D
for electrons with m > 0, see Fig. 3.4. A > 1 is called the logarithmic discretization
parameter (parameter Lambda in “NRG Ljubljana”). An upper bound of A = 3
has been established for reliable computation of thermodynamic properties in this
discretization scheme.??:205

2. Each interval is Fourier-transformed, i.e. we construct a complete set of wave func-
tions 1/)321 inside each interval:

+(e) = 1/(;)—:: exp(iwyle), foree I}, (3.5)
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Figure 3.4: Original Wilson’s division of the conduction band into bins of geometrically
decreasing width. Each thick colored line corresponds to a state which represents the entire
interval of conduction band states delimited by a pair of dashed lines.



3.4. LOGARITHMIC DISCRETIZATION 39

b)

A" /K,

o [ @000

Figure 3.5: Various representations of the logarithmic discretization in quantum impurity
problems. a) Discretized problem and coupling connectivity of wave-functions ¢=,. b)
Onion-shell representation of Wannier orbitals around the impurity. ¢) Hopping or Wilson
chain Hamiltonian.

where w,, is the fundamental Fourier frequency in the mth interval, w,, = 2rA™ /(1 —
A1), and [ > 0. Functions ¢, are defined similarly for ¢ € I.. The first wave
function (I = 0) in each interval is a constant. Only such “average states” ¢, couple
to the impurity, while other Fourier components are localized away from it, Fig. 3.5a.
We therefore retain only %jﬁo and drop the remaining states from consideration. This
is clearly an approximation, since the states qﬁfd couple to 1/)”*10. It was shown that
this coupling goes to zero as A — 1 (i.e. in the continuum limit) and that even
for moderately large A = 2 up to A = 3 the approximation is good.? Physically,
we are neglecting those conduction band states that are localized far away from the
impurity in the real space and, at the same time, far away from the Fermi surface in
the reciprocal space.??2% There is no a priori justification for this approximation; in
the words of Wilson: “The only true justification for using the logarithmic division
is that a successful calculation results.”

3. Unitary transformation to a tridiagonal basis is performed using the Lanczos algo-
rithm. The initial state is the Wannier orbital about the impurity site; this is the
orbital to which the impurity is coupled in the standard Kondo problem. Lanczos
states correspond to creation operators fg, flT and have a radial extent of A'Y/2/kp,
A3/2/kp, ... about the impurity:?*°" they form “onion shells” around the impurity,
Fig. 3.5b. The conduction band Hamiltonian rewritten in this basis takes the form
of a one-dimensional tight-binding model with interacting impurity attached to its
end, Fig. 3.5c. This tight-binding Hamiltonian is named the hopping Hamiltonian or
the Wilson chain. The problem is thereby reduced to an effective one dimensional
problem. In the A — 1 limit, a continuum model is recovered. It may be noted
that the low-energy levels for small A are approximately equidistant (as in the field
theory defined on a finite-size system), while for moderate A the energies are spaced
exponentially starting with the third level, Fig. 3.6.
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Figure 3.6: Positive one-particle eigenenergies of the Wilson chain Hamiltonian with even
number of sites as a function of the discretization parameter A.

4. The total Hamiltonian is defined on an infinitely long chain with exponentially de-
creasing coupling constants:

H = Himp + HC + Hchain

Hchain - Z anA_n/Q (f;;uafn—f—l,ua + HC) )

n=0 po

(3.6)

where Hjp,p, is the impurity Hamiltonian, H¢ is the coupling Hamiltonian, and Hpain
is the Wilson chain Hamiltonian. In the original Wilson’s scheme &,, are correction

factors i)
1—A""
é-n - 1/27 (37)
[(1 — A=(@ntD)) (1 — A-(n+3))]
which rapidly tend to 1. The coupling Hamiltonian Hc must be rewritten in terms of
the Wilson chain operators. In the simplest case of the single-impurity one-channel

Kondo problem, it is equal to

1
Ho=JS- Z f(;r,u <§°’uu’) Jour (3.8)

Hop

where S is the impurity spin operator. It was found that to connect the numerical
results at finite A to the A — 1 limit, it is necessary to correct the coupling constant
I’ (Anderson-model-like coupling) or J (Kondo-model-like coupling) by multiplying
it by a correction factor3?-207

11+A

A
This correction can be enabled in “NRG Ljubljana” by setting the option Alambda
to true. While A, is typically small (4y ~ 1.04, A3 ~ 1.1, A, ~ 1.16 ), it must be
recalled that I' or J enter the exponential function in the expression for the Kondo
temperature, therefore A, has a significant effect.



3.4. LOGARITHMIC DISCRETIZATION 41

N
1}
[
-~
N

N
1}
@
=

N
1}
=

1 1 1 1 1
A A2 A3 A3 A2

>

Figure 3.7: Yoshida’s discretization scheme and the interleaved method.

One should keep in mind that for A # 1, the Hamiltonian obtained from the discretization
is only an approximation to the original impurity model and that, strictly speaking, NRG
is not an exact method. Nevertheless, by comparing results with known analytical solution
(Bethe Ansatz), a remarkable agreement is found. The principal advantage of NRG is its
applicability to more complex problems where analytical approaches fail.

Improved discretization schemes are the interleaved method (also known as the “z-trick”)
154,205,208 and an approach based on an over-complete basis of states;2%?2!0 the latter was
found to give excellent results and was used in most of the calculations presented in this
work. All three approaches are implemented in “NRG Ljubljana”: the corresponding con-
figuration options are disc=wilson, disc=yoshida and disc=campo, i.e. they are named
after the first authors of the publication where they were introduced. In the interleaved
method (disc=yoshida), the first positive-frequency interval is 1 > € > A~% the others
are A7 > e > A7*7™ (m =1,2,--+), see Fig. 3.4; for 2 = 1 this reduces to the original
discretization. We then average over the sliding (twist) parameter z (z in “NRG Ljubl-
jana”) in the interval 0 < z < 1 to remove the oscillations in thermodynamic and dynamic
quantities which become pronounced for increasing value of parameter A.2% In practice an
average over a small number of values of z already gives very satisfactory results. Using
the z-trick, the discretization parameter A can be increased to large values. In Fig. 3.8 we
illustrate the rapid convergence to the A — 1 limit in the case of both improved methods.
In the case of Yoshida discretization, the correction factor A, was used, while no such
correction is necessary in the case of Campo discretization.

Varying the sliding parameter z can also be used to assess numerical accuracy of the results
by comparing eigenvalue spectra computed for different values of z. This is particularly
important if the finite-size spectrum itself is the result of interest: the z-trick namely
cannot be used to average the spectra in a meaningful manner. For large A, the spectra for
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Figure 3.8: Comparison of magnetic susceptibility and entropy of the single-impurity An-
derson model calculated using two different discretization types for different values of the
discretization parameter A. The coarse results were post-processed by averaging over z
(the z-trick) and even-odd effects were removed by averaging over two consecutive NRG

iteration steps.

different z can differ substantially, even though the z-averaged quantities (such as spectral
functions) are an excellent approximation to the A — 1 results.

There is no good a priori recipe for choosing the value of A, the number of values of
z, and the number of states retained in the NRG iteration; this depends on the number
of impurities (i.e. the degeneracy), the values of model parameters and the quantities
computed. For each new class of problems, a convergence study should be performed. The
majority of computations in this work were performed with A = 4 and for 4 or 8 values of

zZ.

The density of states (DOS) in the conduction band is usually taken to be independent of
energy, i.e. p = const, which is also known as the flat-band approximation. This choice
is particularly convenient as it leads to analytic simplicity and some calculations can be
performed in closed form.?!! In addition, RG treatment of the problem has shown that in
the case where all the energy scales of the problem are much smaller than the bandwidth,
the form of the DOS at large energies is irrelevant in the RG sense.?” Nevertheless, NRG
calculations can be setup for an arbitrary DOS of the conduction electrons.!63,165,208,210,212
“NRG Ljubljana” has built-in support for flat bands (band=flat) and for tight-binding
bands with cosine dispersion (band=cosine) where the hynridisation function is I'(€) o
1 —(¢/D)2. There is also a stub for arbitrary DOS to be defined by the user (band=dmft),
which is required if NRG is used as the impurity solver in DMFT.
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3.5 Symmetries and basis construction

The efficiency of NRG calculations can be significantly improved if the symmetries of
the problem are taken into consideration. In addition to the performance concerns, the
implementation of symmetries is important on a more fundamental ground: if the conser-
vation laws are not built-in, numerical round-off errors tend to induce accidental symmetry
breaking which, if relevant, can lead to erroneous results. Continuous symmetries (such
as SU(2)spins SU(2)isospins U(1)charge) can be taken into account by constructing the basis
states using the Lie group representation theory (i.e. Clebsch-Gordan coefficients and the
Wigner-Eckart theorem, App. A).** Discrete symmetries (such as parity or particle-hole
Zs symmetries) can be taken into account by projecting basis states to invariant subspaces
with well defined Zs quantum number using suitable projection operators. By taking ex-
plicitly into account the full symmetry of the problem, a formerly intractable problem falls
within the reach of modern computers. For example, while not so long ago it was deemed
difficult to obtain anything but the NRG eigenvalue flows for the two-channel problems,?
it is now possible to perform calculations of thermodynamic and even dynamic proper-
ties of multi-impurity two-channel problems.'®® In the current implementation of “NRG
Ljubljana”, the following symmetry types are supported:

o U(1)charge X U(1)spin, i-e. good quantum numbers are charge () and spin projection S,
(symmetry type QSZ in “NRG Ljubljana”) — suitable for general quantum impurity
models in the presence of the magnetic field;

® U(1)charge X U(1)spin X Zo, i.e. good quantum numbers are charge ), spin projection
S, and parity P (symmetry type QSZLR in “NRG Ljubljana”) — suitable for models
with reflection symmetry;

® U(1)charge X SU(2)spin, i.e. good quantum numbers are charge () and total spin S
(symmetry type NRG) — suitable for general QIMs in the absence of the magnetic
field;

® U(1)charge X SU(2)spin X Zo, i.e. good quantum numbers are charge (), total spin S
and parity P (symmetry type QSLR);

e SU(2)iso X SU(2)spin, i-€. good quantum numbers are total isospin / and total spin S
(symmetry type ISO) — suitable for QIMs at the particle-hole symmetric point;

o SU(2)iso X SU(2)spin X Zo, i.e. good quantum numbers are total isospin I, total spin
S and parity P (symmetry type ISOLR).

For each symmetry type, the basis and coefficients for various NRG transformations are
derived symbolically using a Mathematica program that uses the sneg library. In the fol-
lowing, we will describe the (@, S) and (1, .S) basis; other symmetry types are conceptually
similar.



44 CHAPTER 3. RENORMALIZATION GROUP

(a,s)  States (k)
—2.0) 1
(q,s) States (k) E—l l)) bJ{ aJ{
)9 )
(-1,0) 1 frt 1 (o tpt ottt
(07 %) aT (an) ble, 2 (ale — aTbl>, alaT
(1,0) alaT (0,1)  blal
20yl Hald
(a) One channel (2, ()) 4@5%1

(b) Two channels

Table 3.1: Basis states for additional sites for (Q,S) basis represented by the corresponding
electron creation operators that need to be applied on the empty vacuum state. Bold
small-case q and s are the quantum numbers of charge and spin on the added site(s), while
k indexes different states with the same (q, s).

3.5.1 Construction of (@, S) basis — symmetry type NRG

At the very least, all physically relevant models are charge-conserving. In the absence of
the magnetic field, the problems are also rotationally invariant in the spin space; the total
spin S and the component S, are then also conserved. In addition, the component S, can
be eliminated from the problem by the use of the Wigner-Eckart theorem (Appendix A).
It follows that we can classify states in subspaces according to quantum numbers ) and

S.

We first consider the case of a single conduction channel. For brevity, we denote by aL
the creation operator for an electron of spin p on the site of the Wilson chain that is
added at the (N 4 1)th NRG iteration, i.e. aL = fJTv+1,u- The Fock space for the new site
is composed of four states. Due to rotational invariance, states form spin-multiplets. A
single state from each such multiplet needs to be retained, as all other members of the
multiplet can be taken into account using the Wigner-Eckart theorem; by convention, in
each multiplet with spin S we retain the state with the highest projection S, = S. The
four basis states for the additional site are thus represented by the three states given in
Table 3.1a. In two-channel channel problems, two sites are added to the Wilson chain in
each iteration, one from each conduction band. The creation operators for the second band
are denoted by bf, = f]TVH%Q. The 16 states that form the Fock space of the two newly
added sites are represented by the 10 states given in Table 3.1b.

We also need a prescription for generating a basis with well defined @ and S for (INV+1)-site
Wilson chain given the eigenstates of the N-site Wilson chain from the previous iteration.
This is easily accomplished using the angular momentum algebra (Clebsch-Gordan coef-
ficients).?30 Let F;(QS) denote the subspace QS at stage N used to construct states
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|QSS.ri) vy with well defined @, S, S, at stage N + 1; index ¢ numbers the possible ways
of adding the angular momenta together (i = 1,...,4 for one-channel case, i = 1,...,16
for two-channel cases), while r numbers the consecutwe eigenstates in the subspace QS at
step N. For convenience, we also define f/(S.) = S, = S, — p, the spin projection S, for
p-term in the expression, and ¢!'(SS,) = SS,. With this short-hand notation established,
we are able to write the prescription as

QS S.ri) N1 = Z (9/(55.);5(0), ulSS2) |E(QS) I (Sr)w ® i), (3.10)

u=—=5(7)

where (Slm1;52m2|5m> denotes the Clebsch-Gordan coefficient for joining spins 57 and
Sy into spin S, |)y41 and |)y denote states for (N + 1)-site and N-site Wilson chain, |7, u)
are the states on the added site(s) tabulated in Table 3.1 and S(i) = s, the total spin
quantum number of the |i, u) state. The rules for forming the new subspaces are given in
Table 3.2. In “NRG Ljubljana”, these tables can be found in files coef/1ch-In.cpp and
coef/2ch-In.cpp or, generally, in coef/*-In.cpp. As an example, i = 2 and ¢ = 3 in the
one-channel case correspond to two different ways of obtaining total spin S by adding a
spin—% object, either from S = S — % or from S = S + % It should be noted in passing
that a singlet and a triplet never couple into a singlet state (that would be a violation of
the triangle inequality). This must be taken into account when constructing state i = 10

in the two-channel case; S = 0 is then forbidden.

3.5.2 Construction of (/,S) basis — symmetry type IS0

When the U(1)charge conservation of charge symmetry can be extended to the full SU(2);,
isospin symmetry, an additional complication arises due to the phase factor in the definition
of the isospin down component of the tensor operator (which corresponds to the annihi-
lation operator). The brackets of creation and annihilation operators must be expressed
using the irreducible matrix elements

(I'TLS"Su'| f1 TS S.r) = (TL;A 3| "IN S Sos 5| S"SLY (IS || ]| 1S7) (3.11)
and

(LIS S| fi W[ I LSSy = (1) (=2p){ I 153, =3 TIN5 S35, —p| S'SINI'S™Y | fil| LST).
(3.12)
Here 7 is the site index which takes even or odd values on the underlying bipartite lattice
(see Sec. 2.3 on the isospin symmetry). As the problem is assumed to be spin and isospin
isotropic, neither S, nor I, play any role in the diagonalization of Hy 1. The basis states

for the added site of the Wilson chain are given in Table 3.3.

DR

The invariant subspaces are constructed in analogy to the case of (@, S) basis in the
previous subsection. Again F;(1.S) denotes the subspace .S at stage N used to construct
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iQ S (a,s,k)
1 Q+2 S (—2,0,1)
2 Q+1 S-1 (-1,11)
3 Q+1 S+5 (=1,31)
4 Q+1 S—35 (-1,3,2)
—— = 5 Q+1 S+35 (-1,3,2)
b Q S (q> S, k) 6 Q S (07 0’ 1)
1 Q+1 S (-1,0,1) 7 @ S (0,0,2)
3 Q S+35 (0,3,1) 9 Q S—1 (0,1,1)
4 Q-1 S (1,0,1) 10 Q S (0,1,1)
11 Q S+1 (0,1,1)
(a) One channel 12 Q-1 S-— % (1, %’ 1)
13 Q-1 S+? ﬂqj)
4 Q-1 S-1 (1,5,2)
15 Q-1 S+35 (1,32
16 Q-2 S (2,0,1)

(b) Two channels

Table 3.2: Subspaces F;(QS) = (Q,S) and basis states for the additional site used to
construct ith combination of basis states for the new iteration for (Q,S) basis

(i,s) States (k)
(i,s) States (k)  (1,0) alcﬂb{lﬁ
(:0) afd] (3.3) aibly, ajajbi
(O,%) a (0,1)  —ajb;
0.0 5 (o 1), 5 el

(a) One channel

(b) Two channels

Table 3.3: Basis states for additional site in the isospin-spin (I, S) basis. Bold small-case
i and s are the quantum numbers of charge and spin on the added site(s), while k indexes
different states with the same (i,s).
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i I S (i,s,k)

1 I-1 S (1,0,1)

2 I S (1,0,1)

3 I+1 S (1,0,1)

LorodosoL (B

— — - 5 I+5 S—3 (lal>1)
i 1 S (i,s,k) 6 I—% S+§ (;;1)
1 -1 s Gon 7 o1+l s+1 (11
2 ]‘i‘% S (%7071) 8 I_% S_% (%’%’2)
31 0 s-L (0L 9 1+ s-1 (11
41 s+ioLy 10 -1 541 (119
1 r+1 941 (119

(a) One channel 12 I S—1 (0,1,1)

13 I S (0,1,1)

14 I S+1 (0,1,1)

15 1 S (0,0,1)

16 I S (0,0,2)

(b) Two channels

Table 3.4: Subspaces F;(IS) = (I,S) and basis states for the additional site used to
construct ith combination of basis states for the new iteration in the (7, S) basis

states [[1,SS.1i)ny1 at stage N + 1. We also define f{(I.) = I=1,—a, 1H(S,) = S, =
S, — u, g¥(I11,) = II, and g!'(SS.) = SS,. The new basis is then formed using a double
application of the angular momentum addition rules:

1(7) S(i)

ILSS.iyne = > Y {gPUL);I), ol ILY{g!'(SS-);S(i), u| SS-)

a=—1(i) i=—5(i)

‘FZ(IS)fza( Z)fz (Sz) >N ® ’iau>O‘>'

(3.13)

I(i) and S(i) correspond to i and s quantum numbers of states |i, u, ). The rules for
forming the states are summarized in Table 3.4.
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3.6 RG transformation and iterative diagonalisation

In this section we describe how the hopping Hamiltonian is actually solved. We define a
series of finite-size Hamiltonians of the form

N
Hy = A"? | Himp + Ho + > Y A28 (1 aforipe + He) | (3.14)

n=0 p,a
so that the full Hamiltonian is given by the limit

H= lim (A""?Hy). (3.15)

N—o0

The factor AN/? in the definition of Hy rescales the energy scale so that the smallest dimen-
sionless excitation energy of Hy becomes of order O(1). In some sense this is reminiscent
of the rescaling of the fields in the momentum-space renormalization or rescaling of the
free energy per site in the block-spin renormalization. The NRG iteration is then defined
by the recursion relation

Hy =R{Hy} = VAHy +> &n (1, afaripa + He). (3.16)

o

The energies are rescaled by v/A and one new site (one-channel problems) or two new sites
(two-channel problems) from the Wilson chain are attached to the system, see Fig. 3.9.
This recursion relation is the fundamental aspect of the NRG.?%3% Due to even-odd effects,
the RG transformation is actually defined by two consecutive NRG iterations:

Hy.o = R*{Hy}, (3.17)
so that the renormalization flow in the NRG is represented by the sequence of Hamiltonians

.—)HN,2—>HN—>HN+2H... (318)

A simple way of seeing that R by itself cannot be an RG transformation is that during an
iteration step the energy levels are rescaled by v/A, therefore R cannot have a fixed point,
since two successive energies in the discretized conduction-band Hamiltonian are separated
by a factor of A.2'3 R2 however, does have fixed points.?? It is also clear that the fixed
point for even and odd N are generally different.?®?® The number of NRG steps performed
is set by parameter Nmax.

It should be noted in passing that the word “group” in renormalization group is actually
inappropriate; in fact, it is a semi-group. There is namely no inverse transformation. This
is related to the fact that information is “lost” (integrated out), either by doing coarse
graining (real-space RG) or by truncation (NRG). An inverse NRG iteration is therefore
impossible. 2
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a) One-channel case

[ | T
! | | |
Impurity| J.[ 0 ' 4 4 4 -1
region . | .o‘ .e‘ .9‘ a
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Iteration 0 |
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Iteration 2 | |
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Iteration 3 !
b) Two-channel case

”‘t

Impurity g Q a ‘ : o=l
region J\I" ‘ wt ‘\ t’ ‘ ) ‘\ t) o=
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Iteration 1 | }
Iteration 2 1

Iteratlon 3
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Figure 3.9: Hopping Hamiltonians and the successive iterations of the NRG procedure:
one site from each channel is added during each RG step. As far as the NRG iteration is
considered, the impurity region is a black box: all that is required are the eigenstates of
the sum of the impurity and the coupling Hamiltonians, Hiy,, + Hc, and the irreducible
matrix elements of the creation operators for an electron on the first (indexed as 0) site of
the hopping Hamiltonian computed in the eigenbasis.
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The Hamiltonian Hy describes the physics at the energy (temperature) scale

D _
Ty x —AN2/3 (3.19)
kp
or, equivalently, at the length scale
Ly o< BAN? k. (3.20)

Here (3 is a parameter of order O(1); the corresponding setting in “NRG Ljubljana” is
betabar. In my calculations I typically used 8 = 0.46 or 3 = 0.75. The exact definition of
Ty depends on the discretization scheme:

D1

Ty = k_§(1 + ATHAWN=D25 0 for disc=wilson,
B
D1 I\ A—(N—2)/2 /7 : -
Ty = k_§(1 +AHA /3, for disc=yoshida, (3.21)
B
D1—-A"! =
Ty = P A~WN=2/2/3 " for disc=campo.
B n

From Egs. (3.19) and (3.20) it follows that NRG iteration corresponds to L — oo and
T — 0 at the same time, but in a way that the size of the system is finite at all times.
From this it follows that NRG gives finite-size spectra. It should be kept in mind that the
ground state degeneracy in a finite-size spectrum is obtained by taking the limit 7" — 0
first, then L — oo. By taking first L. — oo and then T" — 0, a different ground state
degeneracy can be obtained. The two limits do not commute?®!#! One should be aware of
this when comparing with results obtained by means of quantum-field-theoretical methods
in the L — oo limit.

One might expect that due to the exponential decrease of hopping parameters it might be
possible to treat the successive sites in the Wilson chain by perturbation theory. This is
not the case:*® when adding the (N + 1)st site(s) to a chain of N sites, the coupling of
order A=/2 is a strong perturbation for the lowest eigenstates of the N-site chain which
are also on the energy scale of A="/2. We thus add a new site by performing an exact
diagonalisation of a matrix Hy,1.

One NRG iteration (3.16) consists of using the states from previous step to construct the
Hamiltonian Hy . (nrg_makematrix routine), then diagonalizing it numerically (diagonalize
routine). The full information about the system at step N is contained in the eigenstates of
Hy and in the irreducible matrix elements (|| fi||) (class IterInfo); this is clearly a much
more detailed description compared to a small set of coupling parameters used in the con-
ventional RG (scaling) approach. The Hamiltonian is written in the direct product basis
|QSTi)ny1 ~ |QSTr)®i [here we consider the case of (Q,S) basis, see Sec. 3.5 for other cases|,
therefore the Hamiltonian matrix takes the form of a block-matrix: diagonal blocks are
diagonal matrices, the diagonal elements being the rescaled eigenvalues of the states |Q.Sr)
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1 4 channel coefficient
1 4 channel coefficient 6 12 a 1
1
1 4 a 1 7 13 b —?
1 5 a 1 s 7 14 a —?
P _ 1
2 6 b — s 7 15 a %
5 7 4 s 8 14 b 1
vi+2§ 8 15 b 1
2 9 a 1
_1l.9
I+5 12 b Al
1 1 coefficient 2 10 a Vit2s ) \/51
36 b 2(1+45) 9 14 a _Vats
12 1 iz vs
Jr =T
1 3 1 3 7 a \/m 10 12 b o \/52
9 4 28 3 10 a VS VE
V1+2S 1+28 10 13 b 2
3 4 V25+2 3 11 a 1 s
s A b _ S 10 14 a 7
V1155 Ve
(a) One channel 4 8 a _ {JQE‘S 10 15 a _ 1+2$
4 9 b —1 V534S
o s 11 13 b —Y2
/1129 V38
. L 11 15 a Y
V1$2S 12 16 V28
5 8 2(1+5) a T /1125
N VITES 13 16 a 2(145)
__VS V1t+28
A s 14 16 b s
5 11 b -1 V1129
2(145)
15 16 b Ak

(d) Two channels

51

Table 3.5: Coefficients for off-diagonal blocks in the Hamiltonian matrix in the (@, S) basis

from the previous iteration; the out-of-diagonal blocks are constructed from the irreducible
matrix elements (QS7||f||Q'S'r") weighted by coefficients that can be derived from the cor-
responding Clebsch-Gordan coefficients (see routine nrg_makematrix). These coefficients
are given in Table 3.5 for the case of (Q,S) basis (see also Ref. 30). In “NRG Ljubljana”,
these coefficients can be found in coef/1ch-offdiag.cpp and coef/2ch-offdiag.cpp or,

generally, in coef/*-offdiag.cpp.

We then diagonalize the Hamiltonian in each invariant sector separately to obtain the
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i i coeflicient i i coeflicient

2 1 1 31 1
25'+1 25'+1
4 3 == 4 2 A
(a‘) Ql = Q - ]-> (b) Q, - Q - ]->
S =5-1 S =5+1%

Table 3.6: Irreducible matrix elements (QSi||a'||Q"S"i’) for creation operator on the addi-
tional site in one-channel problems

eigenstates

|QSw) = Z Ugs(w, r1)|QSri), (3.22)

where Ugg is the unitary matrix which brings each Hamiltonian matrix in its diago-
nal form. Before proceeding to the next NRG iteration, the irreducible matrix elements
of the newly added site(s), (QSin]TVJrWaHQ/S’i’% need to be recomputed from the ir-

reducible matrix elements (QS@'Hf]TV’W||Q’S/i/) from the previous iteration. The coeffi-

cients are given in tables 3.6 and 3.7 and can be found in files coef/1ch-spinupa.cpp,
coef/1ch-spindowna.cpp, coef/2ch-spinupa.cpp, coef/2ch-spindowna.cpp coef/2ch-spinupb.cpp,
coef/2ch-spindownb.cpp or, generally, in coef/1ch-*.cpp; the corresponding routines

in “NRG Ljubljana” are recalc_f and recalc_irreduc.

Since the total number of states is an exponential function of the iteration number N
(x 4V in the one-channel case and o 16" in the two-channel case), Wilson proposed to
simply truncate the number of states to some manageable size of the order of 1000 after
each NRG iteration. The idea is that, since the coupling between consecutive sites of the
chain decreases exponentially for increasing chain length, only the lowest-lying eigenstates
are renormalized and the separation of scales is thus maintained iteration by iteration.2%2!4
This works because the matrix elements of f]TV are largest for similar eigenstates of Hy,
while the matrix elements of f;{, between the low-lying eigenstates of Hy and the highly
excited states that are truncated are small.?

In “NRG Ljubljana”, truncation is controlled by parameters keep, keepmin and keepenergy.
Parameter keep represents the maximum number of eigenstates that may be kept at each
iteration; it should be increased as much as possible within the limits set by available
computational resources. If parameter keepenergy is set to a positive value, the energy
cut-off truncation scheme is used: only the eigenstates with the (rescaled) energy below
the value of the parameter will be retained. The use of the energy cut-off truncation is
recommended since a high number of states is kept when the degeneracy is high, and a
low number when the degeneracy is low; in this fashion, the computational time is divided
optimally between the iterations. Finally, keepmin sets the minimum number of states
to be kept. It should also be remarked that eigenstates in NRG tend to be clustered. If
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~

) 1 coefficient 7 ¢ coefficient i' coefficient ¢ ¢  coefficient
5 1 1 4 1 1 3 1 1 2 1 1

25+ 1 251 1 T
T2 e T3 3= 6 2 jslf? 6 3 - ::[f

\/S+1 \/S+1 V251 257 +1
8 4 ﬁ: 8 5 - Turf 7 4 \/ZS@ T 5 =3 S

V251 _ 251
RO E1)0 ?2> —12S’+3 ns T E1)0 ;l e
13 6 1 12 6 1 S+1 12 7 ——

12 9 2 V2

49 VST 1T -k 5 o 7 L

vE 14 10 =5 ez VR
L7 -7 ﬁsi’lﬂ 13 10 gjg 13 11 —Y==2
15 10 —gj; 15 11 Y2 15 8 1 14 8 1

S, 1 /S’+l S’+l S’+l
16 12 \/?2 16 13 — S’+12 16 14 \/gz 16 15 — S’+12
(a)Q =Q-1,59 = (b) Q' =Q-1,5 = ()Q =Q-1,5 = (d)Q' =0Q-1,5 =
S+3 S—3 S+1 51

Table 3.7: Irreducible matrix elements (QSi||a’||@Q’S"i’) for creation operator a' (subtables
a and b) and for creation operator b’ (subtables ¢ and d) on the additional site in two-
channel problems

the states are truncated in the middle of such a cluster, systematic errors and symmetry
breaking may be induced. Parameter safeguard enforces retention of additional states,
so that the “gap” between the highest retained and the lowest discarded state is at least
safeguard.

3.7 Computable quantities

While K. G. Wilson originally applied NRG to obtain the spectrum of excitations and the
impurity contribution to the magnetic susceptibility,?? methods to calculate other quan-
tities were soon introduced: one can determine specific heat,?!%2% charge susceptibil-
ity,2'” entropy,?”® spin relaxation rates,?'® and various zero-frequency response functions
and equal-time correlation functions.?' NRG is likely the most versatile tool in the field
of quantum impurity physics.

3.7.1 Finite-size spectra and fixed points

The most easily obtained result in NRG is the spectrum of excitations above the ground
state as a function of the temperature. An important amount of information may be
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Running
coupling
constants
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| coupling
- ---! fixed point
Local

moment
fixed point

"Decreasing temperature"

Figure 3.10: Schematic representation of the NRG renormalization flow. The horizontal
direction represents the direction of decreasing energy scale (temperature), while the ver-
tical direction represents the multi-dimensional space of the effective Hamiltonians (which
can be considered to be parameterized by some large set of coupling constants). When the
system is near a fixed point (dashed boxes), its properties can be described by a perturba-
tive expansion around the fixed-point Hamiltonian. The diagram also illustrates the idea
of universality: even for widely different microscopic Hamiltonians, the low-temperature
behavior of the systems is essentially the same.

extracted from the consideration of such spectra alone. In fact, one of the central questions
regarding any strongly correlated system concerns precisely the nature of its low-energy
excitations.

It should be noted from the start that the system size in NRG is finite at any iteration
step: we say that we obtain finite-size spectrum. In contradistinction, the high-energy
cutoff scaling methods such as Anderson’s poor man’s scaling,'** multiplicative RG!3? and
Yuval-Anderson’s RG'* work in the continuum limit (L — oo, where L is the system
size).!1%® Some important quantities, such as the ground state entropy, depend on whether
the system size is finite or not when the 7" — 0 limit is taken®® (see also Sec. 3.6).

If the lowest lying eigenstates for successive (N — N + 2) NRG transformations remain
(nearly) unchanged, we say that a fized point has been reached. More accurately, fixed-
point Hamiltonian H* is defined as

H* = R*{H*}. (3.23)

With NRG, one can study the various fixed points of a given QIM, deviations from the
universal spectra (determined by the operator content of the fixed point!®®), and the cross-
overs between the different fixed points, Fig. 3.10.

If the excitation spectrum of a fixed point is in a one-to-one relation to the excitations
of free electron gas, such fixed point is called Fermi liquid fized point (see Section 2.4 on
Fermi liquid and non-Fermi liquid systems). The spectra of Fermi liquid fixed points are
composed of excitations that change particle number (particle and hole excitations) and
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Figure 3.11: Pictorial representation of the ground state and excitations of a Fermi liquid.

excitations where a particle is promoted to a higher level (particle-hole excitations), and
combinations thereof, Fig. 3.11. The excitations at non-Fermi-liquid fixed points do not
always have comparably simple interpretation.

For Hamiltonian Hy near a fixed point H*, the NRG recursion relation can be expanded in
powers of the deviation from the fixed point and linearized.?>3° Defining 0 Hy = Hy — H*,
we write

SHy o= R} H* +0Hy} — H =~ L*Hy, (3.24)
where £* is a linear transformation. Like any linear operator, £L* can be diagonalized
LO; = N O}, (3.25)
and we expand 0Hy as
0Hy =Y OOy, (3.26)
!

For A\j > 1, the contribution of corresponding eigenoperator O] will grow with N: we
say that such operators are relevant. For A\ < 1, the contribution will vanish and we
name such operators irrelevant. Finally, if A} = 1, the operator O} is called marginal and
its effect must be studied more carefully by considering non-linear corrections to the RG
transformation.??®  The operator content of a fixed point determines its stability with
respect to perturbations:*° a fixed point with relevant operators is called unstable, while
a fixed point with only irrelevant operators is stable. Fixed point with marginal operators
can be either stable or unstable, or may lead to the emergence of lines of fixed point and
to the breakdown of the universality.?”® The knowledge of the leading eigenoperators (i.e.
those with the highest eigenvalues A7) is instrumental in establishing effective Hamiltonians
given by the fixed point Hamiltonian H* plus correction terms:3°

H = H + o ANY25H, 4 o, AV-D250, 4 (3.27)

where w; and wy are some coefficients which can be determined by analyzing the NRG
spectrum. For example, finite-temperature corrections to the Fermi-liquid T = 0 behavior
of the Kondo model are determined by the leading irrelevant operators.?

Saving of eigenvalue results in “NRG Ljubljana” is controlled by parameters trace, dumpenergies
and dumpannotated.
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3.7.2 Static thermodynamic quantities: susceptibilities, entropy,
specific heat

Static thermodynamic quantities, such as magnetic susceptibility, heat capacity and en-
tropy, are determined primarily by the energy level splittings of order kgT. Energies much
higher than kgT" above the ground state are exponentially suppressed, while excitations
with much lower energy can be considered thermally washed out; this turns out to be a
good approximation. Thermodynamic quantities at temperature Ty can thus be calculated
from the energy spectrum at the Nth stage of the NRG iteration.?*>3%129 In the following,
brakets denote grand-canonical averaging

(0) = Tr [0 exp(—GH)] /2, (3.28)

where Z is the partition function Z = Tr(e_ﬂH) and f = 1/kgT. In practice, the traces
are computed in the truncated basis of NRG eigenstates at a given iteration step N, i.e.
from a finite-size spectrum. In “NRG Ljubljana”, the temperature dependence of static
thermodynamic quantities is output to file chi which must be postprocessed to obtain
presentable results.

Magnetic and charge susceptibility

The temperature-dependent impurity contribution to the magnetic susceptibility Ximp(7')
is defined as

2
(1) = L2 ((52) — (52)0) (3.29)
B
where S is the total spin and the subscript 0 refers to the situation when no impurities are
present (i.e. H is simply the band Hamiltonian Hy,,q), g is the electronic gyromagnetic
factor, pup the Bohr magneton and kp the Boltzmann’s constant. It should be noted
that the combination kg7 Ximp/ (g,uB)2 can be considered as an effective moment of the
impurities, peg. In the presence of the magnetic field applied only to the impurity site,
(S?) needs to be replaced by (S%) — (S.)? in accordance to the fluctuation-dissipation
theorem. It may also be remarked that while K. G. Wilson originally proposed to calculate
(S2)o analytically, I find that it is more practical to actually perform a NRG calculation of
S? for a problem without impurities. This has an added benefit in that similar artefacts
appear in (S?) and (5?%) and they cancel when subtraction is performed.

By analogy, charge susceptibility is defined as

1

)= 0 ((12) = (I2)0) (3.30)

Xcharge (T

where I, is the total isospin (recall that I, = @)/2). In the absence of the particle-hole
symmetry, (I?) needs to be replaced by (I2) — (I)>.
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Specific heat and entropy

Defining energy as E = (H) = Tr (He #H), the heat capacity can be calculated from

energy fluctuations as
OF
c(T) = a7 = kpl® [(H?) — (H)?], (3.31)
and we may define the impurity contribution to the heat capacity (impurity specific heat)
as Cimp(T) = C(T) — Cy(T'), where C is the heat capacity of the conduction band without
impurities. Furthermore, we have fF = —InZ and F = F + TS, therefore
S E-F

— = =p0E -fF =pBE+InZ 3.32
o= = PE—0F=pE+hzZ, (3.32)

and we may define the temperature-dependent impurity contribution to the entropy as
Simp(T) = S(T') — So(T"). From the quantity Sin,/kp we can deduce the effective degrees-
of-freedom v of the impurity as Simp/kp ~ Inv. In the following the suffix “imp” in Yimp,
Simp, etc. will often be dropped if no confusion can arise, but one should keep in mind that
impurity contribution to the quantity is always implied. We also set kg = 1.

The convergence with the number of states retained in the NRG iteration depends on the
quantity being computed. For example, the energy accuracy required for a specific-heat
calculation is considerably higher than that for the susceptibility.?!?

3.7.3 Correlation functions

To characterize the state of a quantum impurity system it is often useful to calculate
various correlations functions, i.e. thermodynamic expectation values of operators such as
the on-site occupancy (n;), local charge-fluctuations ((6n)?) = ((n; — (n;))?) = (n?) — (n,)?,
local-spin (S?) and spin-spin correlations (S; - S;). In turn, these can be used to compute
more complex quantities such as the concurrence which measures the entanglement between

two qubits.??!

In “NRG Ljubljana”, the operators of interest are specified by writing the corresponding
expression in terms of the second quantization operators. A number of auxiliary routines
are available to simplify this process and the most commonly occurring operators are
already built in the program (configuration setting ops). During the problem setup step,
the operators are transformed in their matrix forms and rotated into the eigenbasis of
the initial Hamiltonian by performing suitable unitary transformations: all these steps
are performed automatically “behind the scenes” by the Mathematica part of the NRG
package. This approach turned out to be extremely flexible, since the user can focus on
physics rather than hand-code low-level routines and to worry about implementational
details.

To be able to make full use of the symmetries of the problem, the operators need to be
expressed in the form that makes them singlets with respect to the symmetry group. For
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example, n? is a spin-singlet, and can be directly computed in the (Q,S) basis. It is not,
however, an iso-spin singlet, but (n; — 1)? = ¢? is. For a computation in the (I,S) basis,
one therefore performs a calculation for ¢? and adds 2(n;) — 1 = 1 to the results (recall
that (n;) = 1 due to the p-h symmetry). In the presence of mirror Zs symmetry, it must
be taken into account that operators may be even or odd with respect to the reflection. In
the case of two impurities embedded in a series between two conduction leads, for example,
ne = Ny + ng is even, while n, = n; —ny is odd. In a calculation where reflection symmetry
is explicitly taken into account, the expectation values (n;) and (ny) can be obtained by
calculating suitable combinations of (n.) and (n,) after the NRG run.

More generally, “NRG Ljubljana” supports operators that are singlet, doublet or triplet
with respect to spin and singlet or doublet with respect to isospin. This is sufficient for
all calculations of interest, but support for more general symmetries may in principle be
easily added.

3.7.4 Dynamic quantities

A major extension of the NRG was a method to calculate dynamic properties such as the
spectral functions.!47>208:222225 While 7' = 0, w = 0 conductance of Fermi-liquid systems
may be obtained from finite-size spectra alone, finite-temperature and finite-frequency
conductance, as well as the conductance of non-Fermi-liquid systems can only be computed
if spectral functions are known 2132267230 Using NRG, one can determine local single-
particle (spectral function, ((d,;d})).), magnetic (dynamic spin susceptibility, ((S.; S-)).,)
and charge excitations (dynamic charge susceptibility, ((n;n}),). It is also possible to
distinguish between elastic and inelastic contributions to the scattering cross-section.?3!

The conventional approach to the NRG spectral function calculations is based on the
observation of Sakai et al.'*” that as we proceed from one iteration to the next, the
lowest few eigenstates split due to the interaction with the added shell states, while the
intermediate lower levels do not show any essential change. The intermediate states thus
form a good approximation of the eigenstates of the Hamiltonian in the N — oo limit and

are thus used to compute the excitation energies and the transition matrices.
The spectral function matrix for multi-impurity problems is defined as (see Appendix B)

where G7;(w) = ((dig; dL))w is the (out-of-diagonal for ¢ # j) retarded Green’s function of

the impurity. It can be computed using standard NRG techniques from matrix elements
of the creation operators using the following spectral decompositions:

Auj(w > 0) Z Re [(( m\dj\n0>)* (mlding)| x 8(w = By,
7 . (3.34)
Aii(w < 0) Z Re [( mo\dj\m) <m0|d;\n>} X 8(w + Ey).

m07
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Indices mg, ng with subscript 0 run over (eventually degenerate) ground states and indices
m,n without a subscript over all states.

Calculations can be improved by directly calculating the one-particle self-energy ¥ (w);*!*

this approach leads to more accurate results and it is especially suitable for applications
of NRG as an impurity solver in the DMFTY" . Further improvements include a better
approach to merge partial spectral information from consecutive NRG iterations?*? (in
“NRG Ljubljana” the result of the conventional spectrum calculation is output to files
spec_x_pts_*.dat, while the result obtained with the N/N+2 trick is output to files
spec_x_dens_x.dat). For problems where the high-energy spectral features depend on
the low-energy behavior of the system, the spectral function has to be computed taking
into account the reduced density matrix obtained from the density matrix of the low-
temperature fixed-point: this is the density-matrix NRG (DMNRG) developed by W.
Hofstetter®*® (see Sec. 3.9). This approach is needed, for example, in the case of the
Anderson impurity in magnetic field,?*3 or for the side-coupled double quantum dot near
the points of ground state level crossing (see Sec. 7.3).

Recently, a time-dependent NRG was introduced?3* by generalizing the idea behind the
DMNRG: time-dependent NRG makes possible to study the effects of sudden changes of
the parameters and the ensuing relaxation to the steady state solution. In this approach, a
density matrix in full Fock space is introduced by judiciously using the information from the
discarded part of the NRG eigenstates. This idea has led to new approach for calculation of
equilibrium spectral functions: the “full density matrix” NRG?* or “complete Fock space”
NRG.23¢ This method does not suffer from over-counting of excitations, it fulfills sum rules
and correctly reproduces spectral features at energies below the temperature.

An important observation for practical calculations is that as the number of states re-
tained is increased, the calculated spectra do not suddenly change; they rather gradually
improve and converge toward the true spectrum.'” This implies that even rough spectra
are qualitatively correct.

3.7.5 Spectrum broadening and smoothing

Since QIMs are represented in NRG by hopping Hamiltonians of a finite size, the computed
spectral functions are represented as a sum of delta peaks. To obtain a meaningful con-
tinuous function, these peaks need to be broadened. The original approach to obtaining
a smooth curve was by Gaussian broadening, followed by separate spline interpolation of
results in odd and even steps, and by the averaging of the two curves.'” A better approach
is the logarithmic-exponential broadening:*? each data point (delta function peak at wp)

is smoothed into /1 ,
e (Inw — Inwy)
F = — - 3.35
b(w>w0) bﬁ exp ( b2 ; ( )
i.e. a Gaussian function on a logarithmic scale, where b is a broadening parameter, typically
b = 0.3. One should keep in mind an important feature regarding the broadening procedure.
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Namely, due to broadening the spectral resolution at energy w is always limited to
owy =w <ebm — 1)

Sw_ = w <1 _ e—bm) (3.36)

For high-energy part of the spectrum (say w = 1) this limits the resolution to [—0.22;0.28]
at b = 0.3. Peaks sharper than this will thus appear broader than they truly are. Naive
application of NRG is therefore not a reliable method to determine the spectral features
at high energies.

Furthermore, low energy features are also slightly deformed. The action of the broadening
is to replace

flw) = [ dnfn)dlo—wn) = Fw) = [ donflwn) Ffw,wo) (3.37)
Let us consider its effect on a narrow Lorentzian of width A centered at w = 0:

_ o] A2
f(w) = /O dwomﬁ’b(w,wo)

+o00 1 A2 67b2/4 (y _ y0)2

where we performed substitution Inwy = o and introduced y = Inw. The limit w — 0
corresponds to y — —oo. The integrand is a Gaussian-like function centered at y with
a yo dependent weight o< 1/(exp(y7) + A?). For small enough w (to be concrete, w <
A), this weight becomes a constant and the integral can be evaluated exactly. We find
lim,,_o f(w) = exp(—b?/4). For b = 0.3, this gives 0.98. In other words, even in the
absence of any other approximations, the logarithmic broadening at b = 0.3 introduces an
error of few percent in the Kondo peak weight. In addition, the Lorentzian is narrowed, see
Fig. 3.12. These facts must be taken into account when quantitative details in the results
are important. In that case b should be reduced as much as possible. Typically, the value
of b is chosen to be 0.3 or less (parameter loggauss_b).

(3.38)
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Figure 3.12: Effect of logarithmic broadening on a Lorentzian curve.

3.8 Recursion relations for operators

After each iteration, expectation values of operators of interest are computed and the
irreducible matrix elements of these operators recomputed in the new eigenbasis for the
next iteration. It is important to note that it is only possible to consider operators that
transform as tensor operators with respect to the symmetry group that is taken into account
in the NRG implementation. As an illustration, we consider the case of the (Q,S) symmetry
and a tensor operator operator O of rang M with respect to the spin SU(2) group. The
information about the operator O at iteration N is entirely contained in a matrix Oy of
irreducible matrix elements (Q.S7||0]|Q"S""). The non-zero subspaces for singlet operators
have @ = @' and S = 5, for doublet (creation) operators we must have @ = Q" + 1 and
S = S"+1/2 and for triplet operators (such as spin) we must have @) = Q" and S = S’ or
S = 5"+ 1. In the basis of eigenvalues |QSw) of the (N + 1)st iteration, we write

(Q55.6|0,/Q'S' S\ )41
(5'S1;M | SS.)

(QSw|OlQ'Sw ) 41 = (3.39)

To make this expression meaningful, we can choose, for example, S, = S, p = M, S, =
S — M. We then have

S s Uos(w, 1) Ugrisr (W', 77 )(QSSTi| On|Q'S', S — M, 1i' )y

S O /S/ ! _
(@5w[|O]| QS ) N1 (5',8 — M;MM|SS)

(3.40)
We then take into account the definitions of |QSS,ri) states, (3.10), and write

=YY (@S, Q'S i, a3)
e (5,8 — M;MM|SS) (3.41)

x Ugs(w, i) Ugrsr (o', 11 ) (FA(QS) f7(S)r|Ou | Fr(Q'S') [ (S — M)r') v,

where ¢(QS, Q'S’, i/, af3) is a scalar product between (q, s, k) states on the added sites of
the Wilson chain and «, § are the corresponding s, components of these states. We rewrite
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this as

c(QS, Q'S i, aB){gh(S", S — M);MM|g#(SS))
(5,8 — M;MM|SS)

-5

i a3

x D Ugs(w,ri)Ugs (o, r'd ) (F(QS)r(|O)| F(Q'S")r")

rr!

(3.42)

After taking into account which subspaces F;(QS) and Fj,(Q'S’") are connected by operator
O and performing the sums over « and [, it turns out that for given (QS) and (Q'S’)
subspaces, only a small number of (i) combinations contribute. We finally write

(QSw||0)|Q'S"W Y Ns1 = Zc QS, Q'S i ZUQS w, 1)) Ugrgr (W, 1) (F3(QS)r]|O|| Fy (Q'S")r) i

(3.43)
The coefficients Cpgs s are computed using a computer algebra system and they are
tabulated in the manual (Ref. 237). The corresponding routines in “NRG Ljubljana” are
recalc_singlet, recalc_doublet and recalc_triplet; they all call a low-level routine
recalc_general which performs the actual computation. The coefficient tables can be
found in files *-singlet.cpp (for singlet operators), *~doublet*.cpp (for doublet opera-
tors) and *-triplet*.cpp (for triplet operators).

3.9 Density-matrix NRG

At iteration N, the information about the behavior of the system at temperatures much
lower than Ty is yet unknown; in particular, the true ground state of the system is not
yet determined. Since the zero-temperature spectral function is defined by the matrix
elements between the ground state and the excited states, there is no guarantee that the
high-frequency part of the spectral function calculated by the conventional NRG procedure
will be correct. Discrepancies appear, for example, in the presence of the magnetic field:
for H > Ty, the impurity spin is polarized and the true spectral functions are asymmetric.
The asymmetry of functions calculated by the conventional NRG approach is strongly un-
derestimated, since at the temperature (energy) scale above H, the magnetic field does not
yet significantly affect the finite-size spectrum.?*® Density-matrix NRG technique!#8:206,233
remedies the shortcomings of the conventional approach. It was originally implemented by
W. Hofstetter for NRG calculations in (@, S,) basis for studying the effect of the magnetic
field on spin-projected spectral functions. In the absence of a magnetic field, it is advan-
tageous to use the (@Q,S) basis. The improvement in numerical efficiency is sufficient to
enable consideration of more complex systems, such as the double quantum dot.

Density-matrix NRG technique consists in running the NRG calculations in two runs. The
first run is a usual NRG iteration, with the sole exception that the Ugg matrices are stored
for later use. After the last iteration, the zero-temperature density matrix is estimated
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using the truncated basis as

p=— Y exp(—BEgs.)|Q5S:w)(QSS.wl, (3.44)
QSS.w

where w enumerates different states in each (Q,S) subspace and the grand-canonical sta-
tistical sum is

Z = Trlexp(—=SH)] = ) exp(—BEqgs.). (3.45)
QSS.w

The reduced density-matrices are then computed for higher temperatures. During the
second NRG run, the traces are computed with respect to these reduced density-matrices,
rather than using the grand-canonical density-matrix p = exp(—08H)/Z.

We now illustrate how the recursion rules for computing the reduced density matrix are
derived in the (@, S) basis for the single-channel case. Unitary transformation of states
from the Nth to (N + 1)th stage is (see Eq. (3.22))

QSS.w) a1 = Y Ugs(wlri)|QSS.ri) yai, (3.46)

i

where the |QSS.71) .1 states are defined by Eq. (3.10). They may be expanded as:*

_‘Q‘i‘l SST)N,
N+1_qu+1T|Q S — Sz_%7T>N+UfTN+1l|Q S_l S ‘f‘l T)N

N+1 — wf(N+1T‘QS+27S 2? >N+ny+1l’QS+2>S +2a >
‘QSSZTZL N+1 — f(N+1)Tf(N+1)1|Q -1, SSzT>N7

(3.47)

where fNJrl is the creation operator for electrons on the (N 4 1)th site of the hopping
Hamlltonlan and u,v,w, and y are the Clebsch-Gordan coefficients

C(S+SAYP rs—sAN\P s—s 41\ 5+ S 1\
Y=\ 2s T\ TS = 25 + 2 YT\ T2 12 '

(3.48)

Density matrix in the basis of |QSS,7i) 1 states is

p= Z exp(—fEgsw) Z Ugs(wlri)Ugs(w|r'i)|QSS.ri) y41(QSS.r"i |ny1.  (3.49)
QRSSw ri,r'i’

We now perform a partial trace over the states on the additional (N + 1)th site to obtain
projector operators defined on the chain of length N. Diagonal projectors (those with
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i =1') are:
Try1 (|QSS.r1){QSS.r'1]) = |Q + 1, SS.r)n{(Q + 1,557 | v
Tryi (|QSS.rd)(QSS.r'4]) = |Q —1,SS.r)n(Q — 1,SS.7|y
TrNJrl (‘QSSZTQ><QSSZTI2’) = u2’Qa S — %a Sz - %77.)]\/(@7 S — %7 SZ - %,T/’N

3.50
+0%Q, S — 1 .S, +1T>N<Q,S—%,SZ+%,T,‘N (3:50)
Tryi1 (|QSS.r3)(QSS.r3]) = w?|Q, S+ S, — 5, MmN (@, S + %, S, — %,W!N
Ty ’Qas+ 27SZ+ bR >N<Qas+%7sz+%ar/‘]\7
The i =i’ = 2 terms can be simplified after summing over S.:
s
Y Trwg (1QS95.r2)w1(QSS.r"2 1)
S.,=—8
s
= Z (ugsz + v%’,Szfl) ’Q? S — %7 SZ - %7T>N<Qa S — %a Sz - %77./ N (3 51)
S,=—S+1 .
25 +1 HO)
= 29 Z ’Qas - %aSz>N<Q>S - %asmr/’N
Se=—(5—3)

The spin multiplicity of (QS) 1 space is 25 + 1, while the spin multiplicity of (Q, S —3)n
is 25. The factor (25 + 1)/(295) is therefore merely a normalization factor. In the last
line we emphasize that in the N-site space the S, runs over all permissible values for spin
S — % An analogous simplification can be performed for i = ¢/ = 3. Out-of-diagonal terms
which correspond to different charge on the additional site are clearly zero, while other
out-of-diagonal terms such as i = 2, ¢/ = 3 give zero when summed over. Non-zero partial
traces of projector operators are therefore:

D Ty |QSSri)n 1 (QSSari |y = Giwci(S) Y |QiSiSeir) N (QiSiSur’ v (3.52)

Sz

with ¢; = ¢s = 1, ¢ = B, 3 = 2255, Q1 = Q+1, Q2 = Q3 = Q, Qs = Q — 1,
S1=58,=5,5=5- 53 S —1— = and corresponding S,; ranges over all possible values
for a given S;. The reduced dens1ty matrix is diagonal in its (QS) subspace index. In a
sense, it has similar symmetry properties as the singlet tensor operators. In general we
therefore have

Predmed = D > CON QS S.w) v 1(QSSw | v

QSS. ww'

— Z chj’NJrl Z UQS(wyri)UQS(w/‘r%/)‘QSSZT/L'>N<QSSZT/7;/‘N
QSS: ww ri, i

=D CM Y Ugs(wlri)Ugs(w'r'i)ei(S Z 148:S.57) 5 (QiSsSait” | -
QS ww’ ri,r!

(3.53)
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This is to be compared with

pﬁ\éduced = Z Z Cg§7N’QSSZT>N<QSSZT/’N' (354)
QSS. rr’

We finally obtain the recursion relation for calculation of coefficients C“" in the reduced

rr!
density matrix:

(ﬁ%N:E:Qﬁﬁ“”%b&AMHﬂbﬂﬂdvm

ww’

+ Z COT N MU s(wlrd) Ugar,s(w'|r'4)

(3.55)

(wr'2)

ww

25+ 2 Q,S+%,N+1
, 2
51 2-C U, s, 1(wr2)U,

- Q,5+35

2S5 Q.5—L N+1
C 7/ 2 U

NGRS >0 Q.5-3

ww’

1
S+5

wlr3)U W'r'3
(@I o1&/

This is the main result of the derivation. Using known Ugg matrices, recursion is applied
after the first NRG run to calculate density matrices for all chain lengths.

In the DM-NRG scheme the spectral function is evaluated in the second NRG run using
the reduced density matrix prequced aS

A (w) =Y (Gl lm) (LD i oot + (Gldflm) il Jm) o5 eet) 6 (w— (B —Enn)). (3.56)

igm

Both terms contribute at positive and negative frequencies.



Chapter 4

Other methods for impurity models

In this chapter, 1 briefly describe methods that are used in this work — in addition to
NRG — to solve impurity models. Section 4.1 describes the Green’s function method for
non-interacting models, while sections 4.2 and 4.3 are devoted to the variational methods
and Quantum Monte Carlo methods, respectively. I remark at this point that the results
of these methods (when used in their respective domains of validity) agree very well with
results obtained using NRG; for a direct comparison see, for example, page 154.

[ will also make use of the Bethe Ansatz (BA) method, which provides exact solution of the
Kondo model.?%:52:59,238,239 [Jging BA, the thermodynamics of the many-body problem is
reduced to a system of infinitely many non-linear integral equations?®24° which are easily
solved numerically. While BA does not clarify the physics behind the Kondo effect, it is
extremely useful since it provides exact results that can be compared with NRG calculations
to ascertain their reliability.

4.1 Green’s function method for noninteracting prob-
lems

While the topic of this work are effects of interactions, it is sometimes sufficient to describe
physical systems using effective non-interacting models. Since the electron spin then plays
no role, it may be dropped from consideration and the model usually takes the form of
a tight-binding Hamiltonian for spinless particles. In transport problems, the scatterer is
described using

Hipp, = Z hijli) (] (4.1)

66
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where 7, 7 range over the lattice sites of the scattering region. The scatterer couples to the
conduction leads via hopping terms of the form

H = — Z tri (Ji)(L] +H.c.) — Ztm (li)(R] + H.c.). (4.2)

For simplicity, let us assume that only single site (i = 1) is coupled to both the left and
right lead (this will, in fact, be the case when this method is applied to study the Fano
effect in side-coupled double quantum dot in Sec. 7.3). The retarded self-energy matrix
due to the coupling to the leads is

Y =X7 + %%, (4.3)
[¥7]11 = t%g},, other components zero, (4.4)
[Y7%]11 = t2gRhp, other components zero, (4.5)

where g7 ; and gjp are retarded Green'’s function of uncoupled left and right semi-infinite
lead, respectively. The effective Hamiltonian Heg = Himp + X" is then used to obtain the
retarded Green’s function of the impurity region:

G" = (el — Hyg) ™" (4.6)
Spectral function is defined as
A= - = —Zmae (4.7)
— — — = —— 1IN .
T 0 ’

while the spectral function is simply p = TrA. Finally, we define the transmission function:
tLR =Tr (FLGTFRGa) (48)
with I'y, = (X} — X9) and I'g = (X} — %), from which follows the conductance:

G = GotLR(G = 0) (49)

4.2 Gunnarsson-Schonhammer variational method

Variational method is an approximate technique to calculate ground state energy of a quan-
tum system. It can be shown that as the variational Ansatz is improved, the variational
energy will tend toward the true ground state energy. In general, however, the variational
(or “trial”) wavefunction will not necessarily tend toward the true ground state wavefunc-
tion; this implies that there is no guarantee that the calculated correlations approach the
actual values (but often they do). Nevertheless, variational methods are valuable in that
they allow very complex problems to be solved in a simple analytical manner, often with
results in closed form. The earliest application to the Kondo problem is Yosida’s wave



68 CHAPTER 4. OTHER METHODS FOR IMPURITY MODELS

function for the s-d model,® which was later generalized for the Anderson model.®! This

variational approach correctly reproduces the Kondo energy o exp(—1/pJ).

The variational method used in this work (the “Gunnarsson-Schonhammer variational
method”) was originally developed for the Anderson model by K. Schonhammer to study
hydrogen atom chemisorption on metal surfaces.?*%22 Solution of this problem requires
proper description of electron correlation effects because charge fluctuations on the hydro-
gen atom are strongly suppressed due to electron-electron repulsion. The method was later
extended to N-fold degenerate Anderson model by Gunnarsson and Schénhammer?42-244
to study photoemission and absorption spectra of rare earth and actinide compounds.

Variational calculation consists of finding a trial wavefunction with free parameters, de-
termining the ground state energy as a function of these parameters and performing a
minimization. The wavefunction with the lowest energy is then the best approximation to
the true wavefunction from the subspace of the trial wavefunctions. A good trial wave-
function must therefore have the characteristics that we expect the true ground state to
have. In particular, the exact ground state of the Anderson model is known to be a singlet,
so a good starting point for a variational calculation is the restricted Hartree-Fock ap-
proximation with identical orbitals for both spins. In the Hartree-Fock solution |Wyg) the
charge fluctuations cannot be properly suppressed (since electrons always come in pairs),

therefore K. Schonhammer proposed the following Ansatz:?*!

@) = (AoFPo + A1 Pip + A Pry + Ao P) W), (4.10)

with variational parameters \; and projection operators P; which project onto the subspaces
with 4 electrons on the impurity atom. In the case of a single orbital we can write the
projection operators as:

Po=(1—-n)(1—n)
Py =ny(1—n))
Pp=n(1-n)

Py =mnn,.

The motivation for Ansatz (4.10) is obvious: if Ay, are large compared to Ay and Xy, the
charge fluctuations in the Kondo regime are suppressed.

Improved results can be obtained if, instead of [Wyp), one uses a generalized Hartree-Fock
state |WUyp), constructed from non-interacting eigenstates ¢y of an effective single-particle

Hamiltonian Hg:2%?

Heff - Z €LMkp + Z(ed + U?’Lo)ndu + ‘7 Z(C-{udﬂ + hC) (415)

k,p H H

If no=ngrand V="V, then \\IJHF> goes over to the restricted Hartree-Fock ground state
|Wr). In general, ng and V' are additional free variational parameters.
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The variation of the \; leads to a 4 x 4 eigenvalue problem of the form det(H — eS) = 0.
Here S is the 4 x 4 over-lap matrix, since the projected states |V, ) = P,|Vyr) do not form
an orthonormal basis: Sg, = (V5| V,). The lowest eigenvalue gives the ground-state energy
as a function of ny and V. A minimization with respect to ng and V is then performed in
order to obtain the variational ground-state energy.

Schonhammer’s variational Ansatz for the single-impurity Anderson model becomes exact
in three limiting cases: (a) noninteracting case, U = 0, (b) uncoupled case, I' = 0, and (c)
zero band-width case, D = 0. The Ansatz is also known to give a very good interpolation
for all values of parameters.?*! In fact, the test results for a single Anderson site match very
well the exact Bethe Ansatz results .2*>24° It can be shown that this variational method
always gives ground-state energy which is lower or equal to the corresponding Hartree-Fock
ground-state energy.?*> Like all variational methods, this technique is, however, limited to
zero temperature calculations.

The procedure can be generalized to interacting systems with M sites.!57,221,245,247,248 Tp

the auxiliary noninteracting Hamiltonian, the arbitrary parameters are matrix elements
describing the hopping between the leads and the central region and all the matrix elements
of the central region C. The variational Hilbert space is spanned by a set of « = 1,...,4M
basis functions

o) = PolWur) = [ [ P21 Wur), (4.16)

ieC

where P! are projection operators on unoccupied, singly occupied and doubly occupied site
i =1,..., M. Variation of corresponding parameters A\’ again leads to a diagonalisation
of the original Hamiltonian in the reduced basis:

Hpodo = ESpad,, (4.17)

with Hg, = (5| H|1s) and Sgo = (¥]tha), Where [thy) = P,|Ung). To obtain the vari-
ational ground state we minimize the lowest eigenstate of this eigenvalue problem with
respect to the variable parameters of the auxiliary Hamiltonian.

Finally, the variational technique can also be extended to cases where phonon degrees of
freedom are present in the interacting region.*>2* In this case, |¥yg) is the ground state
of the effective electron-phonon system which is solved numerically exactly, while Kondo
interaction are treated variationally, as previously described.

To calculate expectation value of a local operator (for example the total occupancy N =
> n;), we write the variational wavefunction as

U =>"dota, (4.18)

where d,, are the variational coefficients of the ground state. We know that, by construction,
1, is associated with some definite occupancy N,. We thus have N|¢z) = Nglig). We



70 CHAPTER 4. OTHER METHODS FOR IMPURITY MODELS

write
N = 37 di{dal N5 ds (4.19)
e
= dids(taltos) Ny (4.20)
.,
= didsSasNs. (4.21)
.,

In this manner we can obtain the expectation values of all operators that can be expressed
in terms of occupancies n;; such operators are, for example, charge fluctuation n? and
local spin S? = 3/4(2n; — n?). Expectation values of more general operators, such as
(1halclealths), need to be evaluated using Wick’s theorem.

4.3 Quantum Monte Carlo method

Quantum Monte Carlo (QMC) methods are in many cases the only reliable numerical tool
for exploring the properties of quantum systems with very strong correlations between the
particles. Lattice fermion problems can be tackled with the auxiliary field (determinantal)
QMC method where the fermion degrees of freedom are integrated out of the problem at
the expense of introducing classical scalar auxiliary fields.

4.3.1 Projection to the ground state

The ground state of a quantum system can be projected out of an (almost) arbitrary
trial wavefunction W, by applying an exponential operator e=®# and taking the © — oo
limit.?>® For simplicity we disregard the normalization and we write

[Wo) = lim e M y), (4.22)

where Uy is the ground state. A necessary condition for the method to work is that the
trial wavefunction has some overlap with the ground state, (Vo|Wr) # 0. In practice this
requirement is easy to satisfy.

All measurable physical quantities can be obtained from the partition function

Z =Tr[e®"] =) (e " |y). (4.23)
[4)

At zero temperature, © goes to infinity and the ground state is projected out of any state
1. The expression above then reduces to

Z = (Uple | Wy), (4.24)

where W is again an arbitrary trial wavefunction. The expectation value Z of the evolution
operator e ®¥ is therefore the quantity of central interest.
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4.3.2 Trotter decomposition

We consider the evolution operator for a Hamiltonian which can be decomposed into hop-
ping and interaction part, H = H, + H:

e OH — o= OH+H) (4.25)

An exponential of a sum of commuting operators ! can be exactly decomposed in the form
of a product of exponentials using the Glauber formula?!

eATB — ABABI2if T4 B = const. (4.26)

Kinetic and electron-electron repulsion terms do not commute, so this simple expression
does not apply to interacting cases. Nevertheless, the two terms can still be approximately
separated. We divide the imaginary time © into small time steps (time slices):

e M = (em27M)™. (4.27)

Here m is the number of the time slices and A7 is the length of a time step, so that
© = mAr. If A7 is small, we can perform the approximate Trotter decomposition:**?

e—ATH _ e—AT(HH-HI) — e_ATer_ATHI + ... (428)

The dots denote a remainder of the order of A7r. Putting (4.27) and (4.28) together, we
obtain the final expression

e O = (e-amHie2THN™ 1 O(AT). (4.29)

By decreasing the step size A7, the systematic error can be made arbitrarily small, but
then the number of time steps needs to be increased. In reality, a compromise is made
between the number of steps and the numerical stability of the method.

4.3.3 Hubbard-Stratonovich transformation
Electron-electron interaction terms are quartic in operators:
Hy=U (ny = 3) (= ) = U (dld; = ) (ald, - 1) (4.30)

It is possible to transform quartic form 22 = y* into quadratic ones = y? using Gaussian
identity in the reverse:

i = —— [ dp e 3%+ (4.31)

!'Commuting in the broader sense that the commutator is a number and not an operator.
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The exponential of a quartic form z? is then found to be an integral over an auxiliary
variable ¢ of the exponential of a quadratic form z = y?, weighted by the Gaussian factor
e~3%" . If x is an operator quantity, this is called a Hubbard-Stratonovich transformation,5
and ¢ is called the auxiliary field conjugated to the operator x.

In the case of the Anderson Hamiltonian one can form a square of quadratic forms by
writing
1 1 1 , 1
- ) =—Z(n — - 4.32
(nT 2) (nl 2) 5 (1 = ny)"+ 7, (4.32)

—A7TU/4

V2r

and we obtain

6_ATU(”'T_%)("1_%) _ e

dp e—3¢ V/ATU20(n—ny). (4.33)

There is also a discrete version of the Hubbard-Stratonovich transformation due to Hirsch?**
where instead of the continuous integral one has a sum over two terms:
—A7U/4
~AtU(ni—3)(n;—1) _ € as(ny—n|)
o~ ATU(ni=5)(n1-%) — 5 ZL:le 1=ny)., (4.34)
sS=

Here o is a numerical constant defined by cosh(a) = e27Y/2. The Hubbard-Stratonovich
transformation can be considered as a replacement of the two-particle part H; of the Hamil-
tonian by an effective single-particle Hamiltonian 7#7(s), which depends on the stochastic
spin variable s.

We rewrite the projector e ©# as

m

ef@H _ 67ATH167ATHt _ . 67A7',9f}(sn)67A7'Ht
L
_ Z [ﬁ (eAT,?fI(sn)eATHt)] .

S1y-.48m Ln=1

(4.35)

We introduce the evolution operator Us(©) for the effective single-particle Hamiltonian
H' = H; + 5#(S) in a given configuration S (S denotes the set of field variables s,, for all

time slices):
m

Us(©) = [ [ (e 277 1bnlea7He) (4.36)

n=1
Operator Ug(©) makes the independent particles evolve for an imaginary time © in a
varying magnetic field S. Using the evolution operators, the projector can be rewritten as

e =3 "Us(®). (4.37)

We have split the interacting problem into a large number of non-interacting ones (one
for each realization of S) and we will have to sum over all possible configurations of the
auxiliary fields to recover the physics of e-e interactions.
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4.3.4 Integration over fermion degrees of freedom

The exponentials of single-particle operators that appear in the expression (4.36) can be
integrated exactly (recall that these are basically Gaussian “integrals”). Trial wavefunctions
are usually Slater determinants represented by matrices of coefficients P. It can be shown
that an exponential of a single-particle operator simply transforms a Slater determinant
into another Slater determinant, therefore

(Ur|Us(©)|¥r) = det[P'Bs Pl (4.38)

where Bg is the matrix representation of the evolution operator Us. The fermion degrees
of freedom then no longer appear in the problem, but now we have to sum over all possible
configuration of the auxiliary field:

(Urle " |Wr) = det[PTBsP). (4.39)

This problem can, in principle, be simulated with classical Metropolis algorithm.?> Un-
fortunately, simulations of fermion systems are unavoidably?°® plagued by the so-called
minus sign problem?*” 2% caused by the anti-commuting nature of the fermion fields. Here
the minus sign problem shows up in Eq. (4.39), since the determinant is not necessarily
positive definite.

4.3.5 Constrained Path Quantum Monte Carlo

In the Constrained Path Quantum Monte Carlo method,'"260-264 the ground state wave
function |Wy) is projected from a known trial function |¥7) using a branching random walk
that generates an over-complete space of Slater determinants |¢):

[To) = cylo), (4.40)
]

where ¢, > 0. To completely specify |Uy), only determinants satisfying (Ur|¢) > 0 are
needed, because |¥) resides in either of two degenerate halves of the Slater determinant
space separated by a nodal plane. In this manner, the minus-sign problem is alleviated.
Extensive testing has demonstrated a significant insensitivity of the results to reasonable
choices of |Ur).26%261:265 Tn the context of quantum dots, this method has been applied
to the single-impurity Anderson model?*® and to the chain of three Anderson impurities>”
(Section 8.1).



Chapter 5

Quantum transport theory

Mesoscopic effects occur when the coherence length of electrons exceeds the size of the
device through which the electric current flows; electrons then travel coherently through the
system and behave in a wave-like manner so that quantum mechanical interference effects
can occur. As the electrons scatter only off the boundaries (walls) of the device, rather
than on the defects or phonons, we say that the transport is ballistic. The conductance
through nanoscopic constrictions is often found to be quantized in units of the conductance

quantum , ,
2e e 1

Gy = = R 129k . (5.1)
This is the conductance of a single-mode conduction channel taking into account both spin
orientations.?6%27 In lateral quantum dots, for example, the tunnel barriers from the two-
dimensional electron gas to the quantum dot are obtained by successively pinching off the
propagating channels using the gate electrodes. When the last channel is nearly pinched
off, the Coulomb blockade regime develops. In this regime, only one channel in each lead
is coupled to the dot.®>™ Similar situation naturally occurs in the scanning tunneling
microscopy when the tip is controllably brought into atomic contact with the surface or
an adsorbate;?%%:269 the number of channels is then related to the chemical valence of the

contact atoms.

It is interesting to note in passing that thermal conductance also becomes quantized
when the thermal wavelength Ay, = 27he/(kgT') exceeds the size of the device; in bal-
listic one-dimensional channel the thermal conductance approaches 72k%T/3h per phonon
mode. 270,271

We focus on systems where a very small (essentially zero dimensional) scatterer is embedded
between two metallic contacts, i.e. on systems that can be described by quantum impurity
models. The two types of systems mentioned above are particularly relevant: quantum
dots and adsorbed atoms (or molecules) on surfaces of metals, Fig. 5.1, al and bl. Both
systems can be modeled using discrete lattice models as an impurity in contact with two
semi-infinite tight-binding chains. The main difference is that typically a quantum dot is
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al) bl) b2) ©
Left Right STM tip @ o=tip
lead lead O
Adsorbed atom ‘
a2)
Substrate
0500 1) =05056 ®
a=L a=R (@ o=substrate
®

Figure 5.1: al) Typical conductance measurement setup for probing transport properties
of quantum dots. b1l) STM measurement of the tunneling current through an adsorbed
impurity atom. a2, b2) Tight-binding model representations of both systems.

coupled to the conduction leads with comparable strengths, while adatom electron levels
are strongly hybridized with the substrate conduction bands and only weakly to the STM
tip unless the STM tip is brought from the tunneling regime to the atomic contact regime
with individual adatoms.?%?

It was observed that the temperature, source-drain bias, and magnetic field dependences
of the conductance through a magnetic impurity are qualitatively (but not necessarily
quantitatively) similar to each other.” Finite-temperature and finite-bias conductance
can therefore be inferred from the magnetic field dependence of the T = 0 zero-bias (i.e.
linear) conductances which is easily calculated using several different approaches.

In this chapter I describe calculation of conductance by extracting quasiparticle scattering
phase shifts from Fermi liquid fixed point NRG eigenvalue spectra (Sec. 5.1), by subtracting
total energies for periodic and anti-periodic boundary conditions of an auxiliary ring into
which the interacting region is embedded (Sec. 5.2) or using impurity spectral functions in
conjunction with Meir-Wingreen formula (Sec. 5.3). All three methods are used later on
in this dissertation.

5.1 Conductance from phase shifts

The low-temperature fixed point of the majority of quantum impurity models that are
relevant to describe transport through nanostructures is Fermi liquid; in fact, observing
non-Fermi liquid behavior is exceedingly difficult and is a subject of significant experi-
mental efforts.2? Fermi liquid systems are particularly simple, since they are essentially
non-interacting free fermion systems with twisted boundary conditions which determine
scattering phase shifts. At zero temperature, the transport properties of a scatterer can be
related to the phase shifts of electrons at the Fermi surface; the conductance is then com-
puted using the Landauer-Biittiker formula. The advantage of this approach is that the
quasiparticle scattering phase shifts can be extracted directly from the Fermi-liquid fixed
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point NRG eigenvalue spectra, .546%75,79,98,189,190,194,273,2T4 R,1 5 gingle-channel problem,
the conductance is fully determined by two phase shifts, 5&) and cﬁlp, which are equal in the
absence of the magnetic field. Two-channel problems can be characterized by four phase
shifts, o™, ooyt 99041 and 694!, These phase shifts encode all information about the
physics at zero temperature.”® This approach is also useful at finite temperatures as long
as the system is near the Fermi liquid fixed point, i.e. for T' < Tk in the case of Kondo

systems.

In the Landauer formulation, the conductance of a mesoscopic system is determined by the
scattering properties of the impurity region.6%266:275-277 The scattering of electrons near
the Fermi level is described by the scattering matrix S. Its elements are the amplitudes of
scattering S% , of electrons with spin p from lead o € {L, R} to lead «:

se= (g )= (k) 52
, )
Str Srr L Tr
where we have introduced alternative notation in terms of the reflection and transmission

matrices r and t. The scattering matrix can be diagonalized by rotation in the R — L space
to the new basis of channels a and 5%

622'535 0
USNUT:< o) (5.3)

The unitary transformation is U = exp(if7Y) exp(i¢7?), where 7° are the Pauli matrices in
the R — L space. Angle 6 mixes left and right conduction channel:

(5.4)

exp(if) = < cos 6 81110) ’

—sinf cosf

while ¢ changes the phase (it is zero for problems where wavefunction can be made real).
Note also that the phase shifts are defined only modulo 7, so that d., and dq, +7 are equiv-
alent. According to Landauer formula , the zero-temperature conductance is determined

by the transmission probability th, = Sk, ;266,276

G(T =0) = Gog Y Sk I (5.5)

m

In terms of the scattering phase shifts this equals®

G = Gosin®(20)3 Y sin(52 — %), (5.6)
o

The expression does not depend on ¢, while # sets the maximal conductance: the uni-
tary limit can be achieved only when 6 = +7/2, which corresponds to a symmetric (or
antisymmetric) problem with respect to reflection symmetry.
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In the case of particle-hole symmetry, we have S*S™* = 1 for the scattering matrix, so
that 6] 4+ 024 = 0, where v € {a,b}."" Even in the presence of the magnetic field we may
then write, for example,

.2 .2 b
G = Gysin®(26) sin® (6] — o0, (5.7)
or an equivalent expression in terms of 6311).

In the case of reflection symmetry (parity), a and b are even and odd channels. It should
be stressed that here the names ’even’ and 'odd’ refer to the combinations of states in the
conduction leads. Since in this case we also have § = +7/2, we finally obtain

G = Goj Y _sin® (55 — 55000, (5.8)
o

This is the expression for conductance that will be used in this work.

The required phase shifts are calculated from excitation energies. The approximate form
of the single-particle levels in a Fermi liquid for odd NRG iteration N are given by>*

mihy & AT0/™ 0 electrons, (5.9)
Mgy ~ AT0ee/T 0 holes. '

An attractive potential (positive phase shift) decreases electron excitation energies and
increases hole excitation energies; the opposite holds for repulsive potential 2™ These ex-
pressions hold to high accuracy for all [, except for the lowest [ = 0 level. Exact nzjfu can be
calculated numerically by diagonalizing the logarithmically discretized band Hamiltonian
in the single-particle basis; due to exponentially differing energy scales, such calculations
are best performed using arbitrary-precision arithmetics using computer algebra software
such as Mathematica. Results from such a calculation are presented in Fig. 5.2a, while in
Fig. 5.2b we show the full Fermi liquid excitation spectrum as a function of J,.

It may be noted that for [d,,| < /2, the lowest electron and hole excitation energies are
linear in dqp:™
+ 1 5(113
i (Oap) ~ 211(0) B} +— - (5.10)
™
This result is equivalent to continuum free-electron theory prediction for twisted boundary
condition with d,, phase shift. This is another manifestation of that fact that even for fairly

large A, the lowest excitation levels calculated by NRG can be compared to field-theoretical
predictions.

To determine 00¢, we need to extract the single-particle energies from the full many-particle
spectrum. The best approach is to make use of the known quantum numbers of the NRG
eigenvalues. Let us consider a general two-channel problem with reflection symmetry in
the presence of magnetic field, i.e. the (@Q,S,, P) basis is used. Let @), S and P’ denote

the quantum numbers of the ground state. Then the single-electron excitations necessarily
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Figure 5.2: (a) Single-electron energy levels and (b) the energy spectrum of the Fermi-
liquid many-particle excitations built from non-interacting particles and holes as a function
of the scattering phase shift d,, in the case of a single channel and in the absence of the
magnetic field, i.e. ¢l = 6. . Discretization parameter is A = 4.

carry quantum numbers Q" + 1, S, £ 1/2 and +P. More specifically:
B(Q +1,8. +1/2, P [Hieven

E(Q +1, S; —1/2, P
E@Q +1,S.+1/2,—-P
E(Q +1, S; —1/2,—F'

- ;

+],even
il

+71,0dd
l

Y

(5.11)

- )

~— ~— ~— e

+1,0dd
— .

The phase shifts are then extracted from known 7,7 (687) dependence or from the hopping

Hamiltonian Green’s function.!®1%% Ag a check, n;*” could be calculated from E(Q' —
1,S.+1/2,£P"), or even the low-lying part of the many-particle eigenvalue spectrum could
be reconstructed to verify that the system is fully renormalized to the Fermi liquid fixed
point.

This approach can be generalized to other symmetry types, taking Q"+ 1,5 +1/2,+P' to
obtain (53‘1;‘3“ = (53‘1;‘3“ and (53ng = (533“” in the case of U(1)arge X SU(2)spin X Zo symmetry,
or taking I' +1/2, 5"+ 1/2, £ P’ in the case of SU(2)i50 X SU(2)spin X Za, and so forth.

When the parity quantum number P is not tracked, it is not always possible to unambigu-
ously assign the 7 € {even, odd} label to the extracted phase shifts. Nevertheless, Eq. (5.8)
is symmetric with respect to the interchange of the labels v, therefore the conductance can
still be determined.™
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Figure 5.3: Auxiliary ring system with embedded impurity region. The ring is pierced by
a flux & = 0 of & = 7, which is equivalent to having periodic or anti-periodic boundary
conditions along the ring.

5.2 Sine formula

When the ground state of the quantum impurity model is Fermi liquid, the T"= 0 conduc-

tance is given by the “sine formula”:245 247,278

G = Gy sin? [ng(eF)(EO - Eﬂ)} . (5.12)

Here Ej . are the ground state energies of a large N-site auxiliary ring into which the
interacting system is embedded, with periodic and anti-periodic boundary conditions, re-
spectively (Fig. 5.3). The condition of validity is**®

Ot(e)
Oe

1
N> —
p(e)
where p(€) is the density of states in the leads and ¢(¢) is the energy dependent transmission
function. The method becomes exact in the thermodynamic N — oo limit, while in finite
rings the errors scales approximately as N 124

(5.13)

The sine formula can be proved rigorously for a non-interacting system by relating the
conductance to persistent currents in the auxiliary ring.2*> The reason this approach also
works for interacting systems with Fermi liquid zero-temperature fixed point is, basically,
that the fixed-point effective Hamiltonian is non-interacting, therefore the same proof goes
through unchanged for the quasiparticle Hamiltonian. The method does not seem to be
suitable for singular Fermi liquid systems , such as the problem of two parallel quantum
dots (Section 7.2), when the ground state energies are calculated using the variational
method (Section 4.2).2™ Since at T' = 0 this problem is equivalent to a Fermi liquid
system and an entirely decoupled spin-1/2 degree of freedom, in principle the presence of
the residual spin should not affect the energy difference in any way and the conductance
formula should apply. It seems likely that the problem is either the use of the variational
method for a problem with degenerate ground state or the very slow (logarithmic) approach
to the T = 0 fixed point;*® in either case, the problem seems to be computational in
nature and not a weakness of the formalism per se. Finally, it should be remarked that
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charge transfer between the conduction bands destabilizes known non-Fermi liquid fixed
points, 23158 therefore all systems with finite conductance from left to right conduction lead
are necessarily Fermi liquids. This implies that the sine formula holds for any two-lead
system in which conductance calculations makes any sense at all, i.e. it is fairly general.
Unfortunately, in a system with very small energy scales or very slow approach to the FL
fixed point, calculations of energy are impracticable since an exceedingly large auxiliary
ring system is required. The calculation of the quasiparticle phase shifts using NRG is the
method of choice in such cases.

5.3 Meir-Wingreen formula

Meir and Wingreen considered the problem of transport through an interacting region
embedded between two conduction leads in full generality.?’® The system is described by
the generic Hamiltonian:

=Y docra+Huld} )+ (vka,nc;adn n h.c.) . (5.14)
k,a€L,R n,k,a€L,R

Operator c,Tm creates an electron with momentum k in channel v in either the left (L) or the
right lead (R), while operators d! form a complete orthonormal set of creation operators in
the interacting region. Here o and n are multi-indexes which include all quantum numbers
that are necessary to uniquely specify the state (in addition to momentum k for lead
electrons). In other words, o may include spin and orbital quantum numbers, as well as a
lateral mode quantum number indicating the quantization level of the state in the lateral
confinement potential of the lead or of the contact area. Index n typically includes site
index and spin. Using Keldysh formalism,?! the expression for current is derived to be?%°

1= [ de (T {[f(T" ~ fa(OT™] (G" ~ @)} + T {(TF ~T%) G<}),  (515)
with
Fﬁ,m =27 Z P )V () [VE™(€)]". (5.16)

ael

G”, G* and G*= are retarded, advanced and lesser Green’s function matrices, respectively
(see Ref. 281 and Appendix B), p,(€) is the density of states in channel o and V, ,(€)
equals Via, for € = €4, Fermi-Dirac distribution functions are given by fr(e) = [1 +
exp((€ — pr)/kgT)]™" and an analogous expression for fr; the source-drain bias voltage
V' is defined as p;, — pur = €V. In equilibrium f1(€) = fr(€) = feq(€) and, furthermore,
G< = —foq(G" — G“), therefore the current vanishes.

Usually the tunnel coupling is spin-conserving and the hopping elements V™ are diagonal
in spin indexes. Then n and m indexes of I' matrices must be of the same spin and the
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coupling matrices I' have block-diagonal structure with respect to spin:

_ (T 0
1‘_{ . Fu] (5.17)

with I'y; = ')y = 0. In Meir-Wingreen formulas the I' matrix always left-multiplies a
Green function matrix and a trace is performed. We find

r 0 Gy G rvGy 'nGg
Tr I }[ il TlH:Tr[ e Ly TL]:TTFG TG
H 0 Ty, || Gy Gy r,G,; I,G, (T Gyp) + T ( u( u))
5.18

The important conclusion one can draw from this calculation is that in the case of spin-
conserving tunneling, we only need consider the Green’s functions that are diagonal in their
spin index. If the problem is, in addition, spin-isotropic, it suffices to consider a single spin
projection and then multiply the final result by 2.

For the purposes of this work, I consider the specialization to single-mode channels with
spin degree of freedom (no orbital degeneracy) and spin-conserving tunnel coupling de-
scribed by the general Hamiltonian

H= 3 auclaront B} Ada )+ D (Vilelyuduy +hc.) . (5.19)
kva:{L7R}’lL nzkva:{L7R}’lL

Now the channel index « takes only two values, L and R, and n indexes sites in the inter-
acting region; spin u has been factored out and it now appears explicitly in the expressions.
The Meir-Wingreen formula for current is rewritten as

= e (e [T @] (@ @) 4 T (17T G,
: (5.20)

with
Fﬁ’fn = 27TpL(6)VL“’"(e) [VL“’m(e)r . (5.21)

It should be appreciated that Meir-Wingreen approach applies under very general condi-
tions (for example, the system need not be in a Fermi-liquid ground state).

5.3.1 Proportionate coupling

We now consider the case of proportionate coupling where the couplings to the leads differ
only by a constant factor, so that T'*(e) = AI'*(¢) for all energies. The lesser Green’s
function G< then cancels from a symmetrized expression for current which takes a simpler

form:
2e

I=—= [ de[fe(e) - fr(e)] Y ImTr [T*G™], (5.22)
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where

A
O =TT /(08 4 T = M — (5.23)

Note that in the symmetric case T = T'% ie. A =1, we have I' = I‘L/Z.
The zero-bias differential conductance G(7T') = (dI/dV)y o is given by

GAT) = ~Go / ‘T coslh(e/kBT)) ; G 2

Taking the zero-temperature limit and noting that

_ 1
i 2T (1 + cosh(e/kpT)) oe), (5:25)

we obtain (for real T")
G(T =0) =Gy »_ Tr[T*Im G (c = 0)]. (5.26)

m

Application: single-impurity Anderson model

If a single dot is coupled to the leads, the matrix I'* reduces to a scalar quantity I', and
the current is determined by the spectral function A, = —%Im G of the dot at € = 0:

G = G()T(' [FTAT(E — 0) + FlAl(€ = 0)] . (527)

For spin-isotropic problems (i.e. in the absence of the magnetic field), I'y = I') = I" and
Ay = A|. Defining the spectral function as A = A; + A|, we obtain

G = GorT'A(e = 0). (5.28)

For a Fermi-liquid system A(e = 0) = sin®§,,/(7["), and we recover the expected result
G = Go Sil’l2 6qp-

In Fig. 5.4 I compare conductance calculated from the spectral function to that obtained
using the phase shift method from Section 5.1. While the results agree qualitatively, there
are nevertheless noticeable quantitative discrepancies due to systematic errors in NRG
calculations of spectral functions; in particular, the conductance does not reach unitary
limit as it should. Phase shift method is therefore more accurate if 7' = 0 results are
sought. On the other hand, spectral functions provide additional information about the
behavior of the system at finite frequencies from which one can also infer behavior at finite
temperatures.
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Figure 5.4: Conductance through a quantum dot described by the single impurity Anderson
model as a function of the gate voltage §. NRG discretization parameter is A = 4 and
averaging over 8 values of the sliding parameter z was used for the spectral function method.
The extracted phase shifts overlap for different values of z.

Figure 5.5: Three parallel quantum dots.

Application: parallel quantum dots

If several quantum dots (say N = 3) are coupled in parallel between two conduction leads,
Fig. 5.5, and there is no magnetic field, the components of the hybridization matrix are

Lo = mp(€)Va(e)Vir(e), (5.29)

where V/, is the hopping amplitude from the impurity orbitaln = 1, ..., N to the conduction
band. In a simplified model we assume a constant density of states py and an energy-
independent hybridization strength T' = 7p,|V|*> which is the same for both orbitals. All
components of the hybridization matrix are then the same: I',,, = I'. Equation (5.26)
simplifies to

1
G =—Gorl') Im (—;G;m) : (5.30)

The quantity in the parenthesis is related to the spectral matrix for all orbitals, A,,, =
—1/(2m)Im(G;,,+Gr,,.). We are particularly interested in the symmetrized and normalized
spectral density function g(e) defined by

g(e) =T Apn(e) (5.31)
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where n,m = 1,...,N. This quantity appears in the final expression for the 7" = 0
conductance:

G = Gog(e = 0). (5.32)

In a simple approximation, the temperature dependence of the conductance through the
quantum dots can be deduced from the energy dependence of the function g(e).

5.3.2 Strongly asymmetric coupling

In the case where an atom is chemisorbed on a surface and it is being probed by the
STM tip in the tunneling regime, the hybridization of the atom is much stronger to the
substrate than to the tip. Let index o = L stand for the substrate, and o = R for the
tip. Assuming that the voltage drop occurs between the adatom and the STM tip (i.e.
in the tunneling junction), and that the current is not too high, the atom must be in
thermodynamic equilibrium with the substrate and we may assume G< = — [ (G" — G%).
The expression for current then simplifies to

I= 523 [ delhulo - fale) TE™ (G — @),
5 (5.33)
= E 2 / de (fL(E) - fR(e)) TI'[F “Tm Gr,u].

Like in the case of proportionate coupling, only the spectral function is needed. It can be
computed for an effective equilibrium problem in which the STM tip is absent. The current
may then be computed even at finite bias voltage, since we assumed that the tip does not
probe the atom intrusively. Of course, the physical content of Eq. (5.33) is fully equivalent
to the Tersoff-Hamman approach which relates the tunneling current to the local density of
states.?®? This is the approach I will use in later chapters to study the scanning tunneling
spectroscopy of magnetic impurities on surfaces of noble metals.
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Chapter 6

Properties of single impurity models

Familiarity with the properties of simple single-impurity models is a necessary background
for understanding more complex models discussed in the following chapters. I thus present
the results of NRG calculations for the Kondo model (Sec. 6.1), the two-channel Kondo
model (Sec. 6.2), and the Anderson model (Sec. 6.3). In fact, these results alone demon-
strate most of the unusual behavior of QIMs; multi-impurity models differ mostly in that
Kondo screening may compete in a non-trivial way with other effects, in particular with
magnetic ordering.

6.1 Single-channel Kondo model

The single-channel S = 1/2 Kondo model was already introduced in Sec. 2.2 on the Kondo
effect. Its Hamiltonian is
H = Z chj;uck,u + Js-S. (61)

kp

Henceforth we assume a constant density of states p = 1/(2D) in the conduction band
(unless explicitly stated otherwise), where D is the half-bandwidth. The thermodynamic
properties for a range of values of the Kondo exchange constant J are shown in Fig. 6.1.

In Fig. 6.1a we observe the Kondo screening of the impurity spin degree of freedom from
the local moment value of 1/4 to the strong coupling value of 0. At the same time, the
dissolution of the impurity degree of freedom into the conduction band can be observed as
the decrease of entropy from In 2 to 0, Fig. 6.1b. Note also that the decrease of the entropy
occurs in a much narrower temperature range than the reduction of the susceptibility.
Finally, the Kondo effect is associated with a peak in the impurity contribution to the heat
capacity, Fig. 6.1c; this peak is yet another manifestation of the disappearance (freezing-
out) of a degree of freedom in the system. (Since the specific heat is simply the temperature
derivative of the entropy, it contains the same physical information.) The specific heat
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Figure 6.1: Impurity contribution to a) magnetic susceptibility, b) entropy and c¢) heat
capacity. Parameters used are A = 4, § = 0.46, energy cutoff 15wy, 8 values of slide
parameter z. Symbols on the curve for pJ = 0.1 correspond to the exact Bethe Ansatz
results for S = 1/2 Kondo model magnetic susceptibility.

peak occurs somewhat below Tx.2'> The Kondo temperature itself can be accurately
extracted by fitting the NRG results for the magnetic susceptibility with the universal
Kondo magnetic susceptibility curves obtained using the exact Bethe Ansatz approach; for
pJ = 0.1 we thus determine Tk /D = 1.07 x 107>, which agrees well with the estimate
Tx = Degv/pJ exp(—1/pJ) =~ 1.14 x 107, where I took D.g = 0.85D.2'5

These plots reproduce known results for the strong-coupling regime at T < Tx.2>2!5 The
specific heat is linear in temperature,

mkp w
Cimp(T) = —T, 6.2
oT) = 52 (6:2)
and the magnetic susceptibility is constant,
w
imp (T') = ? . 6.3
Ximp (1) = (g118)" 7 (6.3)

Here w ~ 0.4128 is the universal number for the Kondo model which is known as the
Wilson number. Even for calculations with relatively large A = 4 that were used to
produce Fig. 6.1, T obtain w ~ 0.421 from specific heat and w ~ 0.429 from magnetic
susceptibility calculation, i.e. an error for 2% and 4%, respectively. Incidentally, this also
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implies that the Wilson ratio

_X/xo _ 4A7%kE x _

Ry — _
YN 3(gus)? oy

(6.4)

to a good precision |here 7 is the linear coefficient of the heat capacity, v = C'/T, while x,
and vy are magnetic susceptibility and heat capacity coefficient of the conduction electrons
in the absence of the impurity, see also Sec. 2.6].

Potential scattering in the Kondo model can be described using perturbation Hamiltonian

H =" Kl (6.5)

KK’ !

This term only affects the charge sector, but not the spin sector, therefore the Kondo
effect persists. In fact, the potential scattering operator is exactly marginal, therefore the
strong-coupling fixed point is extended into a line of fixed points parameterized by the
scattering phase shift o, (for K =0, 0y, = 7/2) and the universality is lost.

In general, Tk for the Kondo model is defined by
kpTx = Dege™®¢D), (6.6)

where ® is some universal function of pJ and D.g is an effective bandwidth.?® The first
terms in the expansion of ® are

1 1

d(y) = ;3 In [y + O(y). (6.7)

The first two terms are usually retained, which gives

kT = Deg\/pJe #7. (6.8)
The effective bandwidth is D ~ 0.85D.215

The Kondo resonance can be observed in the spectral function of the first site of the
Wilson chain, i.e. of the Wannier orbital to which the impurity orbital couples via the
exchange interaction, Fig. 6.2. It should be noticed that the presence of the impurity
affects the conduction band spectral density even at energies above the scale of the Kondo
temperature.
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Figure 6.2: Spectral function of the first site of the Wilson chain for the Kondo model.
The increase of the spectral function at high frequencies is due to the band-edge effects.

6.2 Two-channel Kondo model

The two-channel Kondo (2CK) model was introduced by Noziéres and Blandin in their
paper on the Kondo effect in real metals (Ref. 100) where they considered various extensions
of the original S = 1/2 single-channel Kondo model. The 2CK model consists of a magnetic
impurity with spin S = 1/2 coupled to two equivalent channels. It was the first QIM with
a non-trivial NFL fixed point and it was studied by a variety of methods: NRG,™ %144
bosonization and refermionization,'%® 1% Bethe-Ansatz5%23%:283.284 and CFT.% 7728 The
2CK model describes the quadrupolar Kondo effect in some cerium and uranium heavy-
fermion materials.?®® Since a single QD embedded between two non-interacting leads
couples only to the symmetric combination of the electrons from both leads,*® such a
system is governed by the single-channel Kondo model. To observe 2CK behavior, more
elaborate setups with several QDs need to be used.?®2426:158 A related two-level system
model was proposed to explain zero-bias anomalies seen in tunnel junctions and point
contacts where two-level tunneling systems couple to the conduction electrons.?872%

An experimental realization of the 2CK model has been proposed in the form of a modified
single electron transistor (SET) with a large side-coupled quantum dot playing the role of
an additional “lead”.?* By finely tuning the gate voltages, an equal coupling of the leads
to the S = 1/2 local moment on the SET can be achieved.?®?® The two-channel Kondo
effect in this system has been recently observed.?"?

The 2CK Hamiltonian is'%°

H =Y exclo,Crop+ Y JuSa - S, (6.9)

kap «

where a@ = 1, 2 is the channel index and s, is the electron spin-density at the impurity site
of channel a:
Sa =Y foon (30u) foa- (6.10)
g

2CK system is said to be channel symmetric if J; = J; = J. For channel asymmetric models
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we define the average exchange constant Juy, = %(J1+J2) and parameter A = p(J;—.Js); the
asymmetry may be quantified by the asymmetry parameter A = A/(pJag)? (see below).

The two channels are strongly coupled through the impurity spin operator; the spins of
conduction electrons at the impurity site tend to be glued together to form a total spin
S = 1.1% For infinite coupling .J, the impurity spin would therefore be over-screened. What
happens instead is that the model scales into a strong-coupling fixed point with a finite
value of the coupling constant, where the screening is perfect.?:10%19% A fixed point with
finite coupling leads to critical behavior and to power-law dependences in thermodynamic
properties as H and T tend to zero (the critical point is H =T = 0). The ground state is
not a singlet and the entropy at zero temperature is finite S(7 = 0) = In2/2,77,283,284,292
see Fig. 6.3.
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Figure 6.3: Impurity contribution to magnetic susceptibility and entropy in the two-channel
Kondo model for different values of the parameter A = p(.J; — Jz). NRG parameters are
A =4, 8 =0.75, cutoff 8wy or at most 2000 states. SU(2)spin X SU(2)iso NRG code was
used.

Perturbative scaling estimate of the Kondo temperature is?®

1

Tk ~ DegpJ —— . 6.11
o~ DaapTexp (=) (6.11)

Using NRG, it can be verified that this expression gives a correct description for small
pJ, Fig. 6.4. For large pJ, the Kondo temperatures decreases exponentially with 1/p.J;
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moreover, small J and large J regimes are related by a duality transformation up to higher-
order logarithmic corrections.?®® The self-duality point occurs for J*/D = 0.7, where the
Kondo temperature is of the order of the bandwidth, 75 ~ 0.5D.2%3
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Figure 6.4: Dependence of T on the Kondo exchange constant J. I find D.g ~ 3D.

Resistance (scattering rate) due to a 2CK impurity goes as R(T)/R(0) ~ 1—AT"/2 28 which
is to be compared with the familiar 72 law for Fermi liquid systems. Such temperature
dependence has been observed in point contact experiments.?®

The NFL strong-coupling fixed point has O(3) x O(5) symmetry and its finite-size spectrum
is 0,1/8,1/2,5/8,1,1+ 1/8.7 11 Such non-integer succession of energies can be observed
in the NRG eigenvalue spectra, Fig. 6.5. two-channel Kondo model
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TET el e 0, 125

“32%e a0, 320000
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Figure 6.5: NRG eigenvalue flow of the 2CK model (A = 4,z = 1/6). The black strips
correspond to the 2CK NFL fixed point spectrum 1/8,1/2,5/8, 1 as predicted by the con-
formal field theory (after rescaling by 1.71781).

The model needs not be particle-hole symmetric to have a NFL fixed point. The potential
scattering only affects the charge sector which remains noninteracting, while the Kondo
physics occurs in the spin sector without affecting the charge sector.®' The potential scat-
tering is an exactly marginal operator, just like in the single-channel Kondo model; we thus
obtain a line of stable NFL fixed points.®! Interestingly, the zero-temperature scattering
matrix is universal even in the presence of p-h symmetry breaking;®' this implies that the
zero-temperature resistivity is independent of the phase shift if the channel symmetry is
maintained.
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The NFL fixed point is unstable with respect to channel symmetry breaking. If A =
p(Jo — J1) is not strictly zero, another cross-over occurs at some low temperature T2

A2
(pJavg)M
and the system ends up in the stable Fermi-liquid fixed point of the conventional single-

channel Kondo model. The criterion for observability of the NFL regime is clearly Th <
Tx,or A= A/(pJavg)? < 1.
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Figure 6.6: Dependence of Ta/Tk on the asymmetry parameter A (left plot) and the
average exchange constant pJ,, (right plot). The expected dependence is Ta /Ty = xA?
with A = A/(pJavg)?. I find consistently = ~ 0.14.

When magnetic field is applied, the system crosses over to a FL. ground state. The NFL
fixed point is, however, stable with respect to the exchange anisotropy.” %1% The broken
spin SU(2) symmetry of the original model is restored in the vicinity of the NFL fixed
point.1%®

6.3 Anderson model

The single-impurity Anderson model (STAM) was introduced by P. W. Anderson as a model
of the formation of local moments in solids.??* It consists of a single impurity orbital with
electron-electrion (e-e) repulsion U, hybridized with a band of conduction electrons. The
Hamiltonian is H = Hyang + Himp + He, with

_ E : T
Hyana = €kCrpChp
kp

Hirnp = €4n + Unml, (613)
He =Y Vi(el,d, +He.),

kp
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are the band Hamiltonian, the impurity Hamiltonian and the coupling Hamiltonian, re-
spectively. The number operator n, is defined as n, = deu and n = ny +ny, € is the
on-site energy and U is the on-site Coulomb electron-electron (e-e) repulsion. Hiy, can be
rewritten as

Hipmp = 0(n — 1) + g(n — 1) (6.14)
The advantage of this form is that the isotropy in spin space and (for § = 0) in isospin
space becomes manifest. I remark that for spin-1/2 operators (which are, essentially, Pauli
matrices) (1?)* = 1/31%. Therefore e-e repulsion term U/2(n —1)?, which is not manifestly
isospin invariant, is indeed isospin symmetric since U/2(n — 1)? = 2U(I%)? = 2/3UT>.
The relation between the parameter ¢ and the more conventional on-site energy ¢, is
d = eq+ U/2. For 6 = 0 the model is particle-hole symmetric under the transformation
CLM — Ch,—pis dL — —d_,. Parameter 0 thus represents the measure for the departure from
the particle-hole symmetric point. Equivalently, gate voltage ¢ is the isospin-space analog
of the magnetic field in spin space.

To cast the model into a form that is more convenient for a NRG study, we make two
approximations. We assume a constant density of states, p = 1/(2D). Second, we approxi-
mate the dot-band coupling with a constant hybridization strength, I' = 7p|Vj,.|2. Neither
of these approximations affects the results in a significant way.

The strong interaction regime in STAM is defined by U/(I'r) > 1.2% At this value of the
U/T ratio the Hartree-Fock theory fails and gives an unphysical magnetic ground state
with broken symmetry, (ng,) # (n4—,).2*® Sometimes it is said that SIAM becomes
non-perturbative in U for U > I'r. In fact, the perturbation theory is valid for all values
of U as evidenced by the Bethe Ansatz solution:? the impurity susceptibility has the form
of a power series in argument U/I" which is absolutely convergent for all U.2°7 This is,
however, of limited use, since an infinite number of diagrams would need to be summed.
It should be noted, however, that the Kondo problem is clearly not perturbative in I.

For every U and I', STAM will end up in the strong-coupling (SC) fixed-point (FP) be-
low some temperature. If U > I', the cross-over temperature is the Kondo temperature
Tx(T,U); for T > U, the threshold temperature is of the order T', assuming I' < D.3° If
we are at T = 0, we can’t tell from the fixed point properties alone whether we are in
the Kondo regime or not. At 7" = 0, there is no difference between the Kondo screened
system and the strongly hybridized (effectively non-interacting) impurity system as far as
the adiabatic measurements are concerned (magnetic susceptibility, specific heat, linear
conductance), as long as U # 0. Only high-energy probes (photoemission) can detect the
difference. To talk about Kondo effect, there really must be a local moment regime at
intermediate temperatures.

The fixed points are identified by considering special values (namely 0 and oo) for the
parameters 0, U and ' and comparing the resulting Hamiltonian Hy in the limit N — oo
with the free-electron Hamiltonian.?! Depending on the values of parameters 6, U, I' and
T, the system can be in a number of different regimes which are associated with different



94 CHAPTER 6. PROPERTIES OF SINGLE IMPURITY MODELS

fixed points of the model:3!

1. FO: free-orbital regime: the high-temperature regime where spin and charge fluctua-
tions occur and states |0),| T),| 1), |2) are equally probable. The entropy is clearly
Simp = In4, while the effective moment peg = kpTx/(gpg)?* is 1/8.

2. VF: wvalence-fluctuation regime, characteristic of the asymmetric Anderson model:
the regime where fluctuations between two values of charge occur. The low-energy
impurity states are, [0), | T) and | |) for 6 > 0, or | T), | |) and |2) for § < 0. The
entropy is Simp = In 3, the effective moment is peg = 1/6.

3. LM: local-moment regime, where the system behaves like a Kondo model, eventually
with potential scattering if § # 0. The impurity states are | T) and | |); the magnetic
susceptibility is Curie-Weiss like. The entropy is Simp = In2, and peg = 1/4.

4. SC: strong-coupling regime, this is the regime below the Kondo temperature where
the impurity magnetic moment is screened. The impurity spin and the conduction
band electrons form a singlet state; there are only residual interactions between
renormalized conduction-electron degrees of freedom. The magnetic susceptibility is
constant and the specific heat is linear: the system is a Fermi liquid.

5. FIL. frozen-impurity regime, this is essentially the same regime as SC. The two are
related by potential scattering, i.e. there is a line of fixed points joining FI and SC
fixed points.

The various regimes are schematically outlined in the “phase diagram”, Fiig. 6.7, for constant
U and I such that U/T'r > 1. We consider only 6 > 0, since due to the symmetry of the
Anderson model with respect to simultaneous particle-hole and 6 — —¢ transformation,
the phase diagram is symmetric about the § = 0 axis. For 6/U < 1, cross-over from FO to
VF occurs at T} = U/a, where « denotes a numeric value of order 1 (typically a ~ 5).3! On
this scale the excitations to the doubly occupied n = 2 states freeze out. In the VF regime,
the hybridization-induced virtual transitions from the n = 1 to the n = 0 subspace are still
important; they renormalize the impurity on-site energy e; which becomes temperature

dependent:3!2!!
r.uv
Ed(T) ~ ed—l——ln—. (615)
m T
If E4(T) <0 and |E4(T)| > I' as T decreases, the system is unstable with respect to LM

regime.>! The cross-over occurs at Ty given by
T ~ —Ey(T}) = —E. (6.16)

or Ej ~ €g+ ~In(—=U/E}). The condition for the existence of the LM regime is

—€q > (617)

L
mIn(U/7)’
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where 7y is some constant. In the LM regime, the impurity behaves like a Kondo impurity
and undergoes Kondo screening at the Kondo temperature Tk that will be defined below
in the section on the Schrieffer-Wolff transformation. For increasing §/U, the effective
exchange coupling pJ becomes of order unity and Tk rises to become of order T3

If E4(T) goes positive, the system crosses over from VF to FI regime at a temperature3!
T; ~ Ey(T3) = EJ. (6.18)

When |E4(T)| < T, there is a regime with non-universal properties where LM, VF and FI
regions of the phase diagram meet.

Iog1 0(T/ D)

0.6
S/

Figure 6.7: “Phase diagram” for the single-impurity Anderson model. All transitions are
smooth cross-overs, hence the boundaries and cross-over temperatures are “fuzzy”. Only
0 > 0 half-plane is shown due to symmetry.

The behavior of thermodynamic quantities in the symmetric case (0 = 0) is shown in
Fig. 6.8. For T' < 17, the behavior is identical to that of the Kondo model as described in
Sec. 6.1. The only new feature is the presence of the F'O regime at high temperatures. At
T ~ T7, the impurity charge degree of freedom is frozen, which is reflected in the decrease
of Xcharge, i the reduction of the entropy for In4 —In2 = In2, and in the peak in the
specific heat. Since on a single site charge and spin degrees of freedom are interlocked (at
one time, a single site can behave either as a spin or as an isospin), the freezing out of
the charge degree of freedom directly leads to an increase of the magnetic susceptibility to
~ 1/4.

6.3.1 Schrieffer-Wolff transformation

The Schrieffer-Wolff transformation (SWT) relates the Anderson model to the Kondo model
and STAM parameters U, 6 and I' to Kondo parameters J and K 2833207298300 Tt may be
generalized to more complex models with additional degrees of freedom on the impurity
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Figure 6.8: Impurity contribution to the magnetic susceptibility, charge susceptibility,
entropy and specific heat in the single-impurity Anderson model at the particle-hole sym-
metric point § = 0. Parameters used are A = 4, § = 0.46, energy cutoff 25wy, 6 values of
slide parameter z.

and to multi-impurity models.* A transformation similar to SWT is related to the physics
of the superexchange interaction;3°! it relates the Hubbard model to the Heisenberg model
with exchange interaction J = 4¢?/U.

SWT is a canonical transformation which eliminates hopping terms Vj, in H, to first order.?®
We require that B
H=e¢"He™® (6.19)

have no terms which are first order in V},. We expand H in terms of nested commutators:
_ 1
H:H+[S,H]+§[S, [S.H]| +... (6.20)

and write H = Hy + H,., where Hy = Hyang + Himp. We choose S to be first order in Vj,
and that
S, Hy] + H. = 0. (6.21)

The resulting effective Hamiltonian will then be given by?®

1
Har = Ho+ 5[S, H]. (6.22)
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The general result is that the strength of the effective antiferromagnetic exchange interac-
tion is proportional to the hybridization |V;|? divided by the change in energy during the
charge fluctuations, which is of order U. For SIAM, the generator § is

§=2.2.

kp a==+

d, — H.c. 6.23
€) — €q Cku C ( )

with e = d £ U/2 and the projection operators n?, are defined by

nt o =n_,,
o g (6.24)

n_, = I —n_,.

Here a = + corresponds to virtual transitions through doubly occupied states, and o = —
through unoccupied states. SWT then maps SIAM into the Kondo Hamiltonian with
potential scattering term:3%:2%8

HKondo Hband + JZ Z S <Ck“ Ck’ ’) + K Z Z C};“C}g/u. (625)

kK o kK

where J is spin-dependant scattering amplitude

P S U S S U D S
P\ S T Ure) 7 \T-5 T 5] T U1 —4(/0) '

and K is the potential scattering amplitude

r 1 1 r 1 1 )
KoL _ - _ 2
P 27 <—€d U—i—ed) 27 (%—(5 %—i—é) 2U'OJ (6.27)

Here I' = wpV2  These expressions hold for § < U and for a flat density of states
p=1/(2D). In the VF regime (6 — U/2), the impurity-orbital energy is renormalized to
B~ e;+ (U/m) In(=U/E3).3520%211 Then we have

.
PR\ CE U+ E; )
r 1 1
pK =~ — .
o —-E; U+ Ej

Whereas in the Kondo model only spin fluctuations are possible, in STAM with U < D and
|0] < D real charge fluctuations occur on the impurity at high temperatures. They freeze
out on the temperature scale U; at lower energy scales only virtual charge fluctuations
are possible and the Anderson impurity behaves as a spin (Kondo) impurity. If STAM is
to be mapped to the Kondo model, the effective bandwidth in the Kondo problem must
therefore be associated with the energy scale U.%2°7 In general, the effective particle and

(6.28)
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hole effective bandwidths D; and D, may be different. Haldane argued that the effective

bandwidth D.g is given by the geometric mean, since half the processes generating InT'

behavior are particle-like and half are hole-like:2°7

Deff =V D1D2 (629)

with InD; = In(W;/4) + 1/4 and W, = ~|U/2 + 6|, Wy = ~|U/2 — 4|, where v =
(2/m) exp C ~ 1.13387 and C' is Euler’s constant. We obtain

1/4

Dot = 768 U\/1—4(0/0), (6.30)

which gives in the particle-hole symmetric point (§ = 0)

Deg = 0.182U. (6.31)

This compares well with the NRG calculations for U/D < 0.1. For U > D, D.g is given by
the scale of the bandwidth D (recall that the effective bandwidth for the S = 1/2 Kondo
impurity is Deg ~ 0.85D, Ref. 215). In the intermediate U ~ D case, Deg/D is some
smooth function f of the argument £ = U/D with asymptotic behavior f(£) — 0.182¢ for
¢ — 0 and f(&§) — const for £ — oo.

In this work, I will often approximate the Kondo temperature using the following expression

1
Tx = 0.182U+/pJx exp <—7> : (6.32)
PIK

with pJx = 8'/mwU. This expression is valid for U < D and § = 0, i.e. for the symmetric
model in the wide-band limit.

6.3.2 Correlation functions

Additional insight in the behavior of SIAM can be obtained by computing correlation
functions, for example as a function of hybridization I for fixed U, Fig. 6.9. The first panel
presents charge fluctuations (¢*) = (n?) — (n)? on the impurity site. Charge fluctuations
decrease linearly in I" for I' > U, exponentially on the scale I' ~ U, while the low-
temperature asymptotic behavior is linear in I'/U and is given by a universal function

(q%) = (4/m)(/U). 22

The second panel presents charge fluctuations (q?} on the first site of the Wilson chain.
As this site is part of the non-interacting conduction band, {(¢7) ~ 1/2 for all T'/U. The
deviation from 1/2 is proportional to U/I" and drops to zero exponentially on a scale set
by I'. The increase of the deviation with the interaction strength U indicates that e-e
repulsion on the impurity site induces correlated electron behavior also in the conduction
band, as expected. The third panel present the charge-charge correlation function (qgqr) =
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((n —1)(ny —1)). A positive value of this correlation function indicates that occupancy
tends to be the same on both sites, i.e. both impurities tend to be either both empty or both
occupied; conversely, a negative value indicates that the impurity is doubly occupied when
the first site on the chain is empty and vice versa. For large value of I', (qqs) is strongly
negative. This is not unexpected: for large I', only short-distance behavior is important.
Taking into consideration only the impurity site and the first site on the Wilson chain, and
considering both sites half-filled on the average, the only charge fluctuation mechanism
is the transfer of one electron from one site to the other (if this is allowed by the Pauli
principle), resulting in one of the sites being empty and the other doubly occupied: such
fluctuations lead to negative charge-charge correlations, as explained above. On the scale
of I' ~ U, the charge-charge correlations become positive since for small I' large-distance
behavior becomes important — there is a small energy gain if the impurity and the first site
on the chain are both empty or both occupied at the same time. Finally, for I' < U the
charge-charge correlations drop to zero. The fourth panel presents spin-spin correlation
function between the impurity site and the first site of the Wilson chain, (S - Sy). It is
negative for all I'/U, as expected from the sign of the effective Kondo exchange interaction
as obtained using the Schrieffer-Wolff transformation. It should be noted that for small
['/U ratio, the spin-spin correlation function tends to zero in spite of the fact that the
Kondo effect must occur at some low temperature 7. This seems to be in contradiction
with the common description of the strong coupling fixed point as consisting of the first site
of the Wilson chain strongly bound into a spin-singlet state with the impurity site, while
the rest of the chain is decoupled. In reality, the Kondo screening cloud is an extended
object of size oc 1/Tk and for that reason the short-range spin-spin correlation (S - Sy)
may be small. There is, however, a sum-rule

/Ooo<s s(r))dr = -, (6.33)

where (r) is the spin-density at point r.3%3

6.3.3 Effect of magnetic field

The effect of the magnetic field applied to the quantum dot depends on the direction of the
field. If the field is applied in the plane of the 2DEG, there will be Zeeman splitting of the
spin states in the dot, while the orbital energies will be only slightly affected.%® Conversely,
for a perpendicular field the orbital energies will be strongly shifted and Zeeman splitting
can be in the first approximation neglected. Therefore in-plane field can be modeled as a
“Zeeman field”,

H' = gupBS, (6.34)
while perpendicular field can be absorbed in the definition of the on-site energies. In my
calculations, the gyromagnetic ratio g and the Bohr magneton pp will be absorbed in the
field B, so that the perturbation term is H' = BS. and the field is measured in units of
energy.
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Figure 6.9: Charge fluctuations, charge-charge and spin-spin correlation functions in STAM.
Quantities without a subscript refer to the impurity, while quantities with a subscript f
refers to the zero-th site of the Wilson chain, i.e. the localized conduction-band Wannier
orbital that the impurity hybridizes with.

The effect of the Zeeman field on impurity spin and charge fluctuations is demonstrated in
Fig. 6.10. For B < Tk, the magnetic field has no effect, while for B > T} the impurity spin
is completely polarized. The transition occurs on the scale B ~ Tg, but the approach to
asymptotic values is slow (logarithmic). There is also some effect on the charge fluctuations
(An?) for moderate B, but it only becomes appreciable when B becomes comparable to
U (such fields are mostly of academic interest; the highest laboratory continuous magnetic
fields are of the order of 45T (National High Magnetic Field Laboratory, Tallahassee),
which corresponds to ~ 5meV for g = 2).

6.3.4 Spectral functions and conductivity

Systems of coupled quantum dots and magnetic impurities on surfaces are mainly char-
acterized by measuring their transport properties. Conductance can be determined by
calculating the spectral functions or the quasiparticle scattering phase shifts (see Chap-
ter 5). Since in quantum dots the impurity level § (or €4) can be conveniently controlled
using gate voltages, we study the conductance as a function of §. If the coupling to the left
and right electrode of a single impurity is symmetric, it can be shown that the dot couples
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Figure 6.10: (Color online) Operator expectation values for an Anderson impurity in a
magnetic field. U/D =1, T'/U = 0.05, Tx = 2.14 x 107°D.

only to the symmetric combination of conduction electron wave-functions from left and
right lead, while the antisymmetric combinations of wave-functions are totally decoupled
and are irrelevant for our purpose.*8 We use Meir-Wingreen’s formula for conductance in
the case of proportionate coupling; at zero temperature, the conductance is

G = GorA(0), (6.35)

where Gy = 2¢?/h, A(w) is the spectral function (local density of states) of electrons on
the impurity site and I' = wpV2.

In Fig. 6.11 I plot the spectral function A(w) and the corresponding conductance of the
Anderson model for a range of values of the “gate voltage” . The conductance is high
for a range of 9 where the system is in the Kondo regime. This wide conductance peak is
sometimes called the Kondo plateau; it is delimited approximately by |§/U| < 0.5.

The w = 0 spectral function is related to the quasiparticle phase-shift through

2
sin® 4,

Alw=0) = —2=. 6.36

(w=0)="5 (6.36)

According to Friedel sum rule, we have 04, = 5(n) + a correction term which vanishes

in the infinite bandwidth limit due to Anderson’s compensation theorem.? 3% In STAM,

conductance can thus also be deduced from the impurity occupancy. Unfortunately, this

approach cannot always be generalized to multi-impurity models.

The Kondo (or Abrikosov-Suhl) resonance for § = 0 can be approzimately described as a
Lorentzian peak:
V%

2
AW) = pRe W o r.

= , (6.37)

where the Kondo resonance width ' is proportional to the Kondo temperature T, ' =
kpTr /0.2067.21%215 Tt might be noticed that since 1/0.2067 ~ 1.5, extracting Kondo
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Figure 6.11: Spectral function A(w) and conductance through a quantum dot described
by SIAM for a range of parameters 6 with U/D = 0.5, I'/U = 0.08. Color of each spectral
function corresponds to the value of the conductance.

temperature from the peak width by equating I'x = kgTk leads to a significant error;
nevertheless, this procedure is helpful when one is interested only in the scale of Ty. It
should also be observed that the weight of the quasiparticle peak in the spectral function
is low (of the order Tk /T"). Finally, I remark that the Lorentzian form is found only
asymptotically for w <« T; for w 2 Tk the tails are long and very slowly (logarithmically)
decaying.3%

For 6 # 0, the peak is displaced from the Fermi level by approximately 2Tk cotan dy,.2 For
d — £U/2, the Kondo peak merges with Hubbard satellites at w = €5 or w = ¢4 + U.
These features can be clearly observed in the spectral function sweep in Fig. 6.11.

The effect of the Zeeman field on the impurity spectral function is presented in Fig. 6.12.
For B ~ Tk, the main effect is the reduction of the Kondo peak amplitude, while the true
splitting of the peak becomes noticeable only for B 2> 3Tk.

The effect of the Zeeman field on the conductance is demonstrated in Fig. 6.13: as the field
B increases past the Kondo temperature T, the Kondo resonance splits in two so that
the value of the spectral function at w = 0 decreases and drives the conductance to small
values. It can be observed that the effect of the magnetic field to the zero-temperature
conductance is similar to the effect of non-zero temperature to the conductance in the
absence of the magnetic field.
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Figure 6.12: Effect of the magnetic field on the impurity spectral function for the single-
impurity Anderson model. In the subfigures, the field B stands for guB, while the tem-
perature Ty stands for kpTk.
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Figure 6.13: Conductance through a QD described by the SIAM in magnetic field of
increasing strength. Conductance is computed from extracted spin-dependent quasiparticle
scattering phase shifts dqp 5.
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Comparison of different conduction bands

In Fig. 6.14 we plot the conductance as a function of the gate voltage for three different
hybridization strengths I, and for a) linear dispersion ¢, = Dk (I'(¢) =T") and b) (co)sine
dispersion ¢, = Dsink (I'(e) = I'v/1 — €2). Differences are clearly minimal. The results
agree well in the Kondo plateau and for large d, while the differences are largest in the VF
regime (the flanks of the Kondo plateau) where the relevant energy scale is high. In the
Kondo regime, the Kondo temperature is set by the hybridization strength on the scale of
the Kondo temperature itself, i.e. essentially by the hybridization strength at the Fermi
level I'(e = 0). For the same I'(e = 0), T will be roughly the same, since only the effective
bandwidth D.g will be affected by the shape of the conduction band dispersion.

1 — T T T
— T'/D=0.08 (cosine)
— T/D=0.08 (linear) ]
0.8+ — T/D=0.04 (cosine) ||
T/D=0.04 (linear)
— T/D=0.02 (c_osine) 1
0.6k I[/D=0.02 (linear) | |
QC)
O]
0.4
U/D=0.5
02F A=4
I ]
0 1 1 1 P —
0 0.1 0.2 0.3 0.4

Figure 6.14: Comparison of the conductance sweeps obtained for two different types of con-
duction band: linear dispersion (“flat-band”) and cosine dispersion (tight-binding chain).



Chapter 7

Properties of two-impurity models

Magnetic and transport properties of systems of several magnetic impurities, such as mul-
tiple quantum dots or clusters of magnetic adatoms, depend on several elements. At low
temperatures, these systems tend to lower their energy and entropy by at least two different
mechanisms: by magnetic ordering and by Kondo screening. If both processes occur on
the same temperature scale, the resulting competition may lead to non-trivial physics. In
the two-impurity Kondo (2IK) model, for example, a quantum critical phase transition at
J ~ Tk separates two different regimes: strongly bound local magnetic singlet for J > T
and two separate Kondo singlets for J < Ty .20:21,153,155,306-308  Exactly at the transition
point, the 2IK model has an unstable non-Fermi liquid (NFL) fixed point.2%?2%111,112,309
The role of the antiferromagnetic (AFM) exchange interaction was also intensely studied
in the context of double quantum dots (DQD).!6:19,93,181,182,310-319 Gip e electron hopping
between the dots implies charge transfer between the conduction channels, the 2IK quan-
tum critical phase transition is replaced by a smooth cross-over; the NFL behavior may
nevertheless be observed at finite temperatures.”

Two mechanisms can contribute to the effective exchange interaction between the dots:
the conduction-band mediated Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction20322
and the super-exchange mechanism due to the inter-dot electron hopping.*! RKKY mag-
netic coupling arises when the magnetic moment on one impurity induces spin polarization
in the band which then affects other impurities. Due to recent advances in nanotechnology,
the effects of the RKKY interaction on transport properties became directly observable.'®
One should note the double role of the conduction electrons in multi-impurity models; on
one hand, they mediate the indirect RKKY exchange interaction,*?° on the other hand,
they provide a Kondo screening channel.

RKKY exchange interaction may be ferromagnetic (FM). This occurs, in particular, for
small inter-impurity distance, especially when the two impurities couple to the same Wan-
nier orbital of the conduction band.’! At temperatures on the scale of the RKKY ex-
change constant, impurity spins align, i.e. they order ferromagnetically; this is followed by
a (multi-stage) freezing out of their local moment as they become screened by the conduc-

105
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152 This scenario was corroborated by numerical studies of the 2IK Kondo

156

tion electrons.
model'® and of the Alexander-Anderson model.

In this chapter, we study the phenomena induced by the interplay between the Kondo
effect and the inter-impurity exchange interaction in two different realizations of two-
impurity QIMs. The first consists of parallel quantum dots embedded between conduction
leads. The second consists of two quantum dots in the side-coupled configuration: one
dot is embedded directly between two conduction leads while the second is side-coupled
to the first. The ordering is FM in the first case and AFM in the second. Our results
complement recent studies which show that AFM and FM interactions lead to different
transport properties of DQD systems.?23732

It is important to treat the problems with competing processes using suitable methods.
It was remarked early on that a number of methods that are applicable for the single-
impurity QIMs fail for the two-impurity models;*’ either they do not take into account
certain important diagrams or they are mathematically intractable. In light of this, NRG
is clearly the method of choice since it is unbiased and capable of resolving conflicting

effects. '8!

7.1 General properties of double quantum dot systems

In this section we review some general properties of models of two quantum dots (i = 1,2)
embedded between two conduction leads (v = L, R). We describe the dots as Anderson im-
purities (operators dju), while the conduction leads are represented by two Wilson hopping

Hamiltonians (operators f;au, where j is the site index along the chain). Let us consider

the following impurity Hamiltonian Hi,,, and coupling Hamiltonians H, (in the following,
sums over repeated spin indexes are implied):

U
Himp - Z |:52 (TLZ — 1) + E(nz - 1)2 — t(di‘udg‘u + hC)
e (7.1)
HC = — Z tiad;ruanp + h.c.

i=1,2;0=L,R

Here t,, are the hopping constants t;, = 2(I';o.D/m)"/? resulting from the transformation to
the hopping Hamiltonian form. We define even and odd conduction channels by symmetric
and antisymmetric combination of conduction electron states, so that for the first sites of
the Wilson chains we obtain

fho= 2 (o fe) =25 (R — fn) (7.2)
and rewrite the coupling Hamiltonian as

Hc = — Z <te,id1‘-uf0,e7“ + to7id1‘-“f0707“) -+ h.C. (73)

7
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with ¢/, = 1/ V2(tri£tg;). Clearly, in the case of left-right symmetry where each impurity
couples to the left and right electrode with the same coupling constant, the problem reduces
to a single channel QIM just like in the single impurity case.*® In general, however, these
models are genuine two-channel QIMs.

We now set 6; = 9, = 0 and diagonalize H;yp; the eigenstates are given in Table 7.1 for
reference purposes. Each eigenstate is denoted by its quantum numbers (@, S, S,,r); @ is
the charge, S, .5, are the spin and its component, while » numbers different states with the
same @, S, S, quantum numbers (sometimes r is called the seniority quantum number). In
the absence of the magnetic field, S, is irrelevant and will be omitted from now on; we
thus use (@, S, 7). Each (@, S, r) multiplet is then (25 + 1)-fold degenerate.

In the U > t limit, state (0,0,2) is an inter-impurity singlet 1/\/§(dhd;T - dhdgl) with
energy —J where J = 4t? /U, and state (0,0,3) is an excitonic state 1/\/§(deIT + dgldgT)
with energy U + J.

(Q,S) State (with maximum S, = 5) Energy
(—2,0) 1,1 —25+U
(dwd; 5 —t+U/2

73
2, 25 (di; — di, —0+t+U/2
0,0) 1, L (d}dl, ~ d;ld;T) U
2, e (dlydl + By (dl dly - dlydly ) +dlydly)  U/2 - LVT7 62
3, 7 (dlydl, + By (diydly - didly) +diydly)  U/2+ 3075162
(0,1)  1,d\d} 0
(1,3 1,3 (dldldh, —didbdb, §—t+U/2
2, 1 (dl,d},d}, +di,dbdl, S+t+U/2
(2,0) 1, d}d}dj dj, 26 +U
State number r A, B,
5 A U(U+w) U+\/lfttzw
3 A U(U-VI62+0?) @ D2
42 4t

Table 7.1: Eigenstates and eigenenergies for decoupled double quantum dot

In the particle-hole symmetric point (§ = 0), for any ¢/U the ground state is (0,0, 2),
while the first excited state is the triplet state (0,1,1). All other states are at least U/2
higher in energy. For U > I' and U > t, the occupation of each dot is n ~ 1 and low-
energy excitations are spin fluctuations.?? The effective Hamiltonian takes the form of a
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two-impurity Kondo model:
H = JSl . SQ + Se - (JelSl + JeQSQ) + S, (JolSl + JOQSQ) . (74)

The S; are spin operators associated with the dots and

Se/a = Z fg,e/o,u(%a-ﬂﬂ/)f(),e/o:#/ (75)
Hop!

are the spin operators of the Wannier orbitals in even and odd channels to which the impu-
rities couple. To leading order, we have J = 4¢*/U and p.J,; = 80, ;/7U. In general, the
Hamiltonian also features a channel-changing scattering terms which involve the operator

Se—o = Z fg,e,ﬂ(%auu/)fo,ou/ . (76)

Hop

These terms are especially important in the case of the double quantum dots coupled in
series between two conduction leads. Such systems, however, are not discussed at length
in this dissertation.

We may also rewrite the Hamiltonian in terms of the eigenstates of Hiyp:'8%327

Himp = ) E(a)la)(al (7.7)

Ho= " tejous—a 0)(B] foesoru + tjops—alteson 18)al. (7.8)
e/o,u,a.8
Multi-indexes o and 3 stand for quantum numbers (@, S, S,,r) and the effective hopping
coefficients

tejoulpa = D tejoilald!,|6) (7.9)

correspond to electrons hopping from the conduction band to the dots.

7.2 Double quantum dot: parallel configuration

In this section we study systems of parallel QDs coupled to the same single-mode conduc-
tion channel. Since a unified treatment is possible for any number of dots, we will discuss
the general N-impurity case whenever possible and specialize to N = 2 where needed. The
motivation for such models comes primarily from experiments performed on systems of
several QDs connected in parallel between source and drain electron reservoirs; these sys-
tems can be modelled in the first approximation as several Anderson impurities embedded
between two tight-binding lattices as shown schematically in Fig. 7.1. Assuming that the
coupling to the left and right electrode is symmetric, only symmetric combinations of con-
duction electrons play a role (see Sec. 7.1) and the use of a single channel model is justified.
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In fact, our model is relevant more generally for any system where RKKY interaction is
ferromagnetic, for example to clusters of magnetic adatoms on metallic surfaces.!*328329

We model the parallel QDs using the following Hamiltonian, which we name the “N-
impurity Anderson model”:

H = Hpang + Haots + He. (710)

Here Hyang = Zku ekc,Twcku is the conduction band Hamiltonian. Hyis = Zfil Hgot,i with

U 9
H,. .= — —(n: —1
dot,i 5 (nz ) + 2 (nz ) (711)

= eqn; + Unyiny;

is the N-impurity quantum dot Hamiltonian. Finally,

H, — \/% 3 (dejﬂcku + H.c.) (7.12)

ki

is the coupling Hamiltonian, where N, is the normalization constant (number of states in
the conduction band). We assume a constant density of states in the band, p = 1/(2D),
and a constant hybridization strength I'. Note that for N = 1 this model coincides with
the STAM discussed in Sec. 6.3.

a) N=2 b) N=3

Figure 7.1: Systems of parallel QDs. The tight-binding hopping parameter ¢ determines the
half-width of the conduction band, D = 2t, while parameter ¢’ is related to the hybridization
I'by I'/D = (t'/t)>

The discussion of this model is structured as follows: 1) using the generalized Schrieffer-
Wolff transformation we show that the effective Hamiltonian in the local moment regime
is the N-impurity S = 1/2 Kondo model; 2) we show that the ferromagnetic RKKY
interaction locks the spins into a state of maximal total spin, S = N/2; 3) we study the
single-channel S = N/2 Kondo screening of this collective spin in which half a unit of spin
is screened; 4) we demonstrate the robustness of this behavior by studying the stability
of the system with respect to various perturbations and we explore the quantum phase
transitions driven by these perturbations.
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7.2.1 Low-temperature effective models

We will demonstrate that the low-temperature effective model for the multiple impurity
system is the S = N/2 Kondo model:

H = Hband + JKS . S, (713)

where s is the local-spin density in the Wannier orbital in the conduction band that couples
to all N impurities, S is the collective impurity S = N/2 spin operator and Jg is the
anti-ferromagnetic spin-exchange interaction that can be derived using the Schrieffer-Wolff
transformation. The value of Jx will be shown to be independent of V.

Let us consider the different time scales of the N-impurity Anderson problem, focusing
on the (nearly) symmetric case 6 < U well within the Kondo regime, U/(I'r) > 1. The
shortest time scale, 7y ~ hA/U, represents charge excitations. The longest time scale is
associated with the Kondo effect (magnetic excitations) and it is given by 7x ~ h/Tk
where Tk is the Kondo temperature of single-impurity Anderson model,

Tx = 0.182U+/pJ exp(—1/pJ), (7.14)

with pJ = 81'/7nU. As we will show later, there is an additional time scale 7; ~ h/Jrkky,
originating from the ferromagnetic RKKY dot-dot interactions:

64 1?
w2 U’
From the condition for a well developed Kondo effect, U/(I'w) > 1, we obtain Jrxky < U.
We thus establish a hierarchy of time scales 77 < 75 < 7.

Jrxky ~ UlpJg)? = (7.15)

Based on the three different time-scales, we predict the existence of three distinct regimes
close to the particle-hole symmetric point. The local moment regime is established at
T ~ Ty, where T} = U/« and « is a constant of the order one.?® In this regime the system
behaves as N independent spin S = 1/2 impurities. At T' ~ T, where T} = Jrxky/0 and
(3 is again a constant of the order one, spins bind into a high-spin S = N/2 state. With
further lowering of the temperature, at 7' ~ Ty the S = N/2 object experiences the Kondo
effect which screens half a unit of spin (since there is a single conduction channel) to give
a ground-state spin of S —1/2 = (N —1)/2.

7.2.2 Schrieffer-Wolff transformation for multiple impurities

For T' < Ty, SIAM can be mapped using the Schrieffer-Wolff transformation (SWT) to
the Kondo model, see Sec. 6.3.1. In this subsection we show that for multiple impurities
a generalized SWT can be performed and that below 77, the N-impurity Anderson model
maps to the N-impurity S = 1/2 Kondo model. Furthermore, the exchange constant is
shown to be the same as in the single impurity case, i.e. it does not depend on N.
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In the first approximation, each impurity can be considered independent due to the sep-
aration of time scales. Therefore, we choose the generator & in the SWT to be the sum
S = ) .S, of generators S;, where S; for each impurity has the same form as in the
single-impurity case:

Vi & %
Si=>_ — ng_chdiy — Hee. (7.16)
kupo
with e =0+ U/2 and nz—',tu =Ny My = 1=y The resulting effective Hamiltonian
given by
1
Hog = Hy + 5[5, H.] (7.17)

features O(V}?) effective interactions with the leading terms that can be cast in the form
of the Kondo antiferromagnetic exchange interaction

Heo =Y Jgs-S;, (7.18)

where S; is the S = 1/2 spin operator on impurity ¢ defined by S; = >__ Al (1/20)d;e
and the exchange constant is

1 1
=9 2 . 1
Jie = 21V (\6—U/2\ " 16+U/2r) (7.19)

This result is identical to Jx obtained for a single impurity, see Sec. 6.3.1.

In addition to the expected impurity—band interaction terms, SW'T produces impurity—
impurity interaction terms. In the p-h symmetric 6 = 0 case, these additional terms can
be written as

AH.g = QM f: n; — N | hyo (7.20)
U i=1 v
where
Ty = (djﬂdj“ n djﬂdw) . (7.21)
1<j,p

Since the on-site charge repulsion favors states with single occupancy of each impurity,
the term in the parenthesis in Eq. (7.20) is on the average equal to zero. Furthermore,
if on each site charge fluctuations are small, (n?) — (n;)*> ~ 0, hopping between the sites
is suppressed and the term Ay, represents another small factor. The Hamiltonian AH is
thus not relevant: impurities are indeed independent.

On departure from the p-h symmetric point (6 # 0), AH.g generalizes to

UVie* ([ 5
AHeﬂ = QM Z n; — N | — 2Nﬁ hhop‘ (722)

i=1
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For moderately large §/U this Hamiltonian term still represents only a small correction
to Eq. (7.18). However, for strong departure from the p-h symmetric point, close to the
VF regime (i.e. 0 — U/2), AHg becomes comparable in magnitude to H., and generates
hopping of electrons between the impurities.

The above discussion leads us to the conclusion that just below 77 the effective Hamiltonian
close to the p-h symmetric point is

Het = Hpana + Z Jks - S;. (7.23)

If the dots are described by unequal Hamiltonians Hg.,; or have unequal hybridizations
V¢, then the mapping of the multi-impurity Anderson model to a multi-impurity Kondo
model still holds, however with different effective exchange constants J.

7.2.3 RKKY interaction and ferromagnetic spin ordering

The RKKY interaction is expected to be ferromagnetic as shown by the following qualita-
tive argument. We factor out the spin operators in the effective Hamiltonian Eq. (7.23):

Heff - Hband + JKS : Z Sz (724)

Spins S; are aligned in the ground state since such orientation minimizes the energy of the
system. This follows from considering a spin chain with NV sites in a “static magnetic field”
Jis. The assumption of a static magnetic field is valid due to the separation of relevant
time scales, T > 7;. Impurity states with S < N/2 are clearly excited states with one or
several “misaligned” spins.

The inter-dot spin-spin coupling is a special case of the RKKY interaction, therefore a
characteristic functional dependence given by

6412 16Vk4F
U DU’
is expected. The factor U in front of (pJx)? plays the role of a high-energy cut-off, much
like the 0.182U effective-bandwidth factor in the expression for Tk, Eq. (7.14); this is due

to the fact that Anderson impurities behave as local moments only for temperatures below
17 < U.

Jrxky x U(pJx)? = (7.25)

Using the Rayleigh-Schrodinger perturbation theory we calculated the singlet and triplet
ground state energies Fg and Ep to the fourth order in Vj, for the two-impurity case (see
the Appendix in Ref. 51). The RKKY exchange parameter is defined as Jrxxy = Fs— Er;
positive value of Jrkky corresponds to ferromagnetic RKKY interaction. For U/D < 0.1,
the prefactor of (pJ)? in the expression (7.25) is indeed found to be linear in U. Together
with the prefactor the perturbation theory leads to®!

JRKKY = O62U(pJK)2 for U/D < 1, (726)
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which, as we will show later, fits very well our numerical results. The RKKY interaction
becomes fully established for temperatures below 7'y which is roughly one or two orders of
magnitude smaller than T} (7 is defined in the Appendix of Ref. 51). Since the RKKY
interactions in the first approximation do not depend much on the number of impurities, for
N > 2 the exchange interaction between each pair of impurities has the same strength as in
the two impurity case. Therefore, for temperatures just below T/, the effective Hamiltonian
for the N-impurity Anderson model becomes

Hy = Hyang + Jis - Z S; — Jrrky Z S, - Sj. (727)

1<j

When the temperature drops below a certain temperature 7', the spins align and form a
state of maximum spin S = N/2. The transition temperature T} is generally of the same
order as Jrkky, i.e. T5 = Jrkky/[3, where (3 is an N-dependent constant of the order one.
This relation holds if T3 < T7,.5

In conclusion, for T" < T} the states with total spin less than N/2 can be neglected, and
the system behaves as if it consisted of a single spin S of magnitude S = N/2. The effective
Hamiltonian at very low temperatures is therefore the S = N/2 Kondo model

Heff - Hband + ']KS : S; (728)

where S = P (>, S;) P and P is the projection operator on the subspace with total spin
S = N/2. Other multiplets are irrelevant at temperatures below T}:. We point out that the
Kondo temperature for this model is given by the formula for STAM, Eq. (7.14), irrespective
of the number of dots V, since the FM interaction only leads to moment ordering, while
the exchange interaction of the collective spin is still given by the same Jg.

It should be mentioned that if the exchange constants Ji for different impurities are
different, there will be some mixing between the spin multiplets. The simple description
of impurities as a collective S = N/2 spin still holds even for relatively large differences,
but in general the virtual excitations to other spin multiplets must be taken into account.
This is studied in detail for the case of two dots in Section 7.2.9.

7.2.4 Numerical results

We choose the parameters U and I' well within the Kondo regime, U/(I'r) > 1. The
relevant energy scales are then well separated (T < T} < T7) which enables clear iden-
tification of various regimes and facilitates analytical predictions (see also Section 7.2.1).

In Fig. 7.2 we show temperature dependence of magnetic susceptibility and entropy for
N = 1,2,3 and 4 systems. As the temperature is reduced, the system goes through the
following regimes:
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1. At high temperatures, 7' > 77, the impurities are independent and each is in the free
orbital regime (FO) (states |0), | T), | |) and |2) on each impurity are equiprobable).
Each dot then contributes 1/8 to peg = Tx/(gup)? for a total of ueg = N/8. The
entropy approaches Sy, = N In4 since all possible states are equally probable.*

2. For Ty < T < T} each dot is in the local-moment regime (LM) (states | ) and | |) are
equiprobable, while the states |0) and |2) are suppressed). Each dot then contributes
1/4 to per for a total of N/4. The entropy decreases to Simp, = N In 2.

3. For Tx < T < T} and N > 1 the dots lock into a high spin state S = N/2 due to
ferromagnetic RKKY coupling between local moments formed on the impurities. This
is the ferromagnetically frozen regime (FF)' with peg = S(S+1)/3 = N/2(N/2 +
1)/3. The entropy decreases further to Siy, = In(25 4+ 1) = In(N + 1).

4. Finally, for T < Ty, the total spin is screened from S = N/2to S = S — 1/2 =
(N —1)/2 as we enter the strong-coupling regime (SC) with peg = S(S +1)/3 =
(N —1)/2[(N —1)/2 +1]/3. The remaining S — 1/2 spin is a complicated object: a
S = N/2 multiplet combination of the impurity spins antiferromagnetically coupled

with a spin-1/2 cloud of the lead.' In this regime, the entropy reaches its minimum
value of S, =In(25 +1) =In V.

N Kondo temperature Tx /D LM-FO temperature 7} /D
1 1.20 x 10712 -

2 1.23 x 10712 1.87 x 107°

3 1.29 x 10712 2.11 x 107°

4 1.32 x 10712 2.32 x 107°

Table 7.2: Kondo temperatures for different numbers of quantum dots /N corresponding to
plots in Fig. 7.2.

In Fig. 7.2, atop the NRG results we additionally plot the results for the magnetic suscep-
tibility of the S = N/2 Kondo model obtained using the Bethe-Ansatz (BA) method. For
T < T}, nearly perfect agreement between the N-impurity Anderson model and the corre-
sponding S = N/2 SU(2) Kondo model are found over many orders of magnitude. This
agreement is used to extract Tk of the multiple-impurity Anderson model. The fitting is
performed numerically by the method of least-squares; in this manner very high accuracy
of the extracted Tk can be achieved. The results in Table 7.2 point out the important re-
sult of this work that the Tk is nearly independent of /N, as predicted in Section 7.2.3. In
this sense, the locking of spins into a high-spin state does not, by itself, weaken the Kondo
effect;'® 324 however, it does modify the temperature-dependence of the thermodynamic
and transport properties.®®9

It is instructive to follow transitions from F'O to LM and FF regimes through a plot combin-
ing the temperature dependence of the magnetic susceptibility and of other thermodynamic
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Figure 7.2: a) Temperature-dependent susceptibility and b) entropy of the N-dot systems
calculated using the NRG. The symbols in the susceptibility plots were calculated using
the thermodynamic Bethe Ansatz approach for the corresponding S = N/2 SU(2) Kondo
models (¢ S=1/2 B S =14 5=3/2, A5 =2).
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quantities, as presented in Fig. 7.3. Charge fluctuations ((dn)?) show a sudden drop at
T ~ Ty representing the FO-LM transition. In contrast, the magnitude of the total spin
S increases in steps: S = 1/2, (v/7—1)/2 and 1; these values are characteristic for doubly
occupied DQD in the FO, LM and FF regime, respectively.

U/D=0.01T/U=0.02 6=0

[N

o
©

o
o

o
~

o
[N

T x(Migug)’, <@n)>, S, <8, . S,>
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Figure 7.3: Temperature-dependence of susceptibility, charge fluctuations ((dn)?), total
spin S and the spin-spin correlations (S; - Ss) of the 2-dot system.

The LM-FF transition temperature 7 can be deduced from the temperature dependence
of the spin-spin correlation function. In the FF regime the spins tend to align, which leads
to (S1-Sy) —~ 1/4as T'— 0, see Fig. 7.3. The transition from 0 to 1/4 occurs at T' ~ T}.
We can extract T using the (somewhat arbitrary) condition

(S1-82)(Tr) = 1/2(S1 - S2)(T" — 0). (7.29)

In section 7.2.7 we show that this condition is in very good agreement with T} = Jrkky /[
obtained by determining the explicit inter-impurity AFM coupling constant J;5, defined by
the relation Jrkky + J12 = 0 that destabilizes the high-spin S = N/2 state. The extracted
T transition temperatures that correspond to plots in Fig. 7.2 are given in Table 7.2.
We find that they weakly depend on the number of impurities, more so than the Kondo
temperature. The increase of 77, with N can be partially explained by calculating 77 for
a spin Hamiltonian H = —Jgrkky ZK]. S; - S, for N spins decoupled from leads. Using
Eq. (7.29) we obtain T} ~ 1.18 Jrkky for N = 2, T} ~ 1.36 Jrkky for N = 3 and
T;i ~ 1.55 JRKKY for N = 4.

By performing NRG calculations of 77 for other parameters U and I' and comparing them
to the prediction of the perturbation theory, we found that the simple formula (7.26) for
Jrkky agrees very well with numerical results.

The effect on thermodynamic properties of varying U while keeping I'/U (i.e. pJk) fixed is
illustrated in Fig. 7.4 for 2- and 3-dot systems. Parameters I' and U enter expressions for
T} = Jrxky/0 and Tk only through the ratio I'/U, apart from the change of the effective
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Figure 7.4: a) Temperature-dependent susceptibility of the 2 and 3-dot systems with the
same I'/U ratio. Open (filled) symbols are Bethe-Ansatz results for the S =1 (S = 3/2)
Kondo model. b) Comparison of LM-FF transition temperature 7} with predictions of
the perturbation theory, Eq. (7.26). ¢) Comparison of calculated Tk with the Haldane’s
formula, Eq. (7.14).

bandwidth proportional to U, see Eq. (7.14) and (7.26). This explains the horizontal
shift towards higher temperatures of susceptibility curves with increasing U, as seen in
Fig. 7.4a. NRG results and BA results for the Kondo models with S = 1 and S = 3/2
show excellent agreement for 7" < T%. In Figs. 7.4b and 7.4c we demonstrate the nearly
linear U-dependence of T} and Tk, respectively.

In Fig. 7.5 we show the effect of varying I'/U while keeping U fixed. In this case, T} stays
the same, T} is shifted quadratically and Tk exponentially with increasing I'/U. Fig. 7.5b
shows the agreement of T} with expression (7.26), while Fig. 7.5¢ shows the agreement of
the extracted values of Tk with formula (7.14).

We note that for N > 2, eventual coupling to an additional conduction channel would
lead to screening by additional half a unit of spin'®%'%* and the residual ground state spin
would be S —1 = N/2 — 1. This may occur, for example, due to a small asymmetry in
the coupling to the source and drain (left and right) electrodes; the two screening channels
are formed by the even and odd linear combinations of the conduction electrons from both
electrodes. For N > 3 and three channels (due to weak coupling to some third electrode),
three half-units of spin would be screened, and so forth. These additional stages of Kondo
screening would, however, occur at much lower temperatures; all our findings still apply at
temperatures above subsequent Kondo cross-overs.

In systems of multiple QDs, an additional screening mechanism is possible when after the
first Kondo cross-over, the residual interaction between the remaining spin and the Fermi
liquid quasi-particles is antiferromagnetic.!™ This leads to an additional Kondo cross-
over at temperatures that are exponentially smaller than the first Kondo temperature, as
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Figure 7.5: a) Temperature-dependent susceptibility of the 2-dot system for equal e-e
repulsion U/D = 0.01 and for different hybridization strengths I".  Symbols represent
the Bethe-Ansatz susceptibility for the S = 1 Kondo model with corresponding Tk. b)
Comparison of calculated and predicted Tj, Eq. (7.26). c) Fit of Tk to the Haldane’s
formula, Eq. (7.14).

discussed in Sec. 7.3.3. In parallelly coupled systems, the residual interaction between the
remaining spin and the Fermi liquid quasi-particles is, however, ferromagnetic as can be
deduced from the splitting of the NRG energy levels in the SC fixed point:*® the SC fixed

point is stable.

7.2.5 Stability of N = 2 systems with respect to various perturba-
tions

The following subsections are devoted to the effect of various physically relevant perturba-
tions for the N = 2 system. We generalize the Hamiltonians to

Himp = Z Hdot,i + Um(nl — 1)(712 — 1) -+ tlg Z <dL¢d2,u + HC) + J1281 . SQ

I

Haot; = 0i(ni — 1) + %(nz —1)? (7.30)

He= "t (dl, fo + Hee)
iy

We will study different perturbation terms separately. It will be shown that FF regime
and the ensuing S = 1 Kondo effect are fairly robust against perturbation of increasing
strength; very strong perturbations, however, lead to quantum phase transitions (QPTs)
from the S = N/2 state. QPTs are triggered by the competition between various effects
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(such as magnetic ordering and Kondo screening) when the two relevant energy scales
become comparable.

Some of the results will be easier to understand if Hi,, and H. are transformed to sym-
metric and antisymmetric (gerade/ungerade) basis states [for Ji2 = 0]

_ 1 (gt t — t t
gL = (dlu + dZu) ) uL - E (dlu - dZu) : (7.31)

We define the asymmetry in coupling of dots to the band by At by ¢t; = t+A and to = t—At
and the difference in on-site energies Ad by 6,5 = 6 £ Ad. The transformed Hamiltonian
reads:

1mp + H ( — tlg ng — 1) ((5 -+ tlg)(nu — ].)

U+U U+U

+( i 12) o — 1) +(%) (ny —1)°
U+3U12)

+ —1)(n, — 1)+ (U +Uy2) S, - S,
( = D = 1)+ (U + U , )

U+U
+( 12) g}LgluTul+uT lQTQl)

_2t(f #gu%—hc)
— 24 (fwu” + h.c.) + Ad (gLu“ + h.c.) -+ const.

The hopping t15 leads to hybridization between the atomic levels and results in the forma-
tion of “molecular orbitals” with energies €, , = 0 = t12. We observe that for At = 0, only
symmetric (gerade) level is coupled to the leads. In addition, for Ad = 0, the two levels
are “decoupled”, i.e. there is no one-electron hopping from g to u.

7.2.6 Variation of the on-site energy levels
Deviation from the particle-hole symmetric point

A small departure from the p-h symmetric point does not destabilize the S = 1 Kondo
behavior: the magnetic susceptibility curves still follow the BA results even for 6 /U as large
as 0.4, see Fig. 7.6a. The triplet state is destabilized for some critical value ¢., beyond
which the S = 1 Kondo effect does not occur.

In the asymmetric STAM, the VF regime is characterized by peg = 1/6, see Sec. 6.3. For
two uncorrelated dots in the VF regime, we expect peog ~ 1/3. In Fig. 7.6a we plotted
a number of susceptibility curves for parameters ¢ in the proximity of the singlet-triplet
transition. While there is no clearly-observable VF plateau, the value of p.g is indeed near
1/3 between T7 and T35 (4.).

In Fig. 7.6b we compare calculated T with analytical predictions based on the results
for the single impurity model.3* For § # 0, we use the SWT results for exchange .Jx and
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Figure 7.6: a) Temperature-dependent susceptibility of the 2-dot systems on departure
from the p-h symmetric point. Symbols are fits to the universal susceptibility obtained
using the Bethe-Ansatz method for the S = 1 Kondo model. b) Calculated and predicted
Kondo temperature (fit 1), Eq. (7.34). For comparison we also plot T given by Eq. (7.14),
which shows expected discrepancy for large §/U (fit 2). ¢) Calculated T} and the fit to an
exponential function.

potential scattering K, see Sec. (6.3.1). The effective Jx that enters the expression for the
Kondo temperature is?! )
Jx = Jx [1 4 (mpK)?*] (7.33)

and the effective bandwidth 0.182U is replaced by 0.182|E%|. The Kondo temperature is
now given by

Ty = 0.182|E3|\/ pJ exp (—1/(pJK)> . (7.34)

This analytical estimate agrees very well with the NRG results: for moderate 6/U, the
results obtained for asymmetric single impurity model also apply to the multi-impurity
Anderson model.

In Fig. 7.6c we show the d-dependence of the LM-FF transition temperature 7. Its value
remains nearly independent of § in the interval § < 0.4U and then it suddenly drops. More
quantitatively, the dependence on 0 can be adequately described using an exponential
function

T:(8) = T3(0) {1 — exp (5 _A(SC)] (7.35)

where T7(0)/D = 1.8 x 1075 is the transition temperature in the symmetric case, d./D =
0.45 is the critical § and A\/D = 2.1 x 1072 is the width of the transition region. Exchange
interaction Jrxky does not depend on ¢ for U/D = 0.01 < 1, which explains constant
value of T7(5) for 6 < 0.4U. At a critical value d., T goes to zero and for still higher § the
spin-spin correlation becomes antiferromagnetic. Since the ground-state spins are different,
the triplet and singlet regime are separated by a QPT at 0 = d.. This transition is induced



7.2. DOUBLE QUANTUM DOT: PARALLEL CONFIGURATION 121

by charge fluctuations which destroy the ferromagnetic order of spins as the system enters
the VF regime. The exponential dependence arises from the grand-canonical statistical
weight factor exp[d(n —2)/(kgT)], where n is the number of the electrons confined on the
dots. The transition is of the first order, since for equal coupling of both impurities to the
band there is no mixing between the n = 2 triplet states and the n = 0 singlet state.'™

For § slightly lower than the critical ., the effective moment p.g = Tx(T)/(gup)? shows
a rather unusual temperature dependence. It first starts decreasing due to charge fluctu-
ations, however with further lowering of the temperature the moment ordering wins over,
lefr increases and at low-temperatures approaches the value characteristic for the partially
screened S = 1 moment, i.e. peg = 1/4.

log, (T/D)

0.6
d/VU

Figure 7.7: “Phase diagram” for the two-impurity Anderson model. Compare with the
diagram for the single-impurity model, Fig. 6.7.

The “phase diagram” for the two-impurity model that schematically represents the flow
between the fixed points is shown in Fig. 7.7. In comparison with the analogous diagram
for the single-impurity model (Fig. 6.7), there are two notable differences: an additional
ferromagnetically-frozen fixed point region FF appears, and the strong coupling SC and
frozen impurity FI regimes no longer correspond to the same line of fixed points, but are,
instead, separated by the quantum phase transition that was described above. Note that in
general, there may exist several qualitatively different intermediate-temperature high-spin
and low-temperature strong-coupling fixed points. For N > 3, there might in principle
exist (for § # 0) additional ferromagnetically-frozen regimes with S = n/2, where n < N
is the occupancy of the impurities near such fixed-points. The system would then make
a transition from such FF(n) regime to a SC(n) regime with residual spin S = (n —1)/2.
Since the SC(n) fixed points have different spin, the system will go through cross-overs or
true quantum phase transitions as § is increased toward U/2 at zero-temperature. There
can be at most N — 1 such transitions, since there are N SC fixed points with residual spin
ranging from 0 to (N — 1)/2 in steps of 1/2, where SC(N — 1) should be identified with
the FI fixed point. It turns out (results not shown), that for N = 3 there are indeed two
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Figure 7.8: a) Temperature-dependent susceptibility of the 2-dot system with unequal
(detuned) on-site energies, 0, = A, do = —A. Full symbols present Bethe-Ansatz results of
the equivalent S = 1 Kondo model, while empty symbols are BA results of a S = 1/2 Kondo
model. b) Comparison of calculated and predicted Kondo temperature, see Egs. (7.14) and
(7.36). ¢) The Kondo temperature of the S=1/2 Kondo screening on the singlet side of the
transition and a fit to Eq. (7.37).

quantum phase transitions and, surprisingly, the same holds for N =4 and N =5 as well.
The conductance through N parallel quantum dots is shown in Subsection 7.2.10.

Splitting of the on-site energy levels

We next consider the 2-dot Hamiltonian with unequal on-site energies §; and focus on
the case 0; o = £A. This model is p-h symmetric under a generalized p-h transformation
CLH — Ch,—ps dh — da,_y, d;u — dy —,,; the total occupancy of both dots is thus exactly 2 for
any A. We can therefore study the effect of the on-site energy splitting while maintaining
the p-h symmetry. This perturbation induces hybridization between gerade and ungerade
levels, see Eq. (7.32). Susceptibility curves are shown in Fig. 7.8a for a range of values of A.
For A up to some critical value A, &~ 0.47 the 2-dot Anderson model remains equivalent to
the S =1 Kondo model for 7" < T}. A singlet-triplet transition of the Kosterlitz-Thouless

type ™1™ occurs at A = A,.

Even though the two dots are now inequivalent, the Schrieffer-Wolff transformation yields
the same Jg for both spin impurities. We obtain

1 1
—9 2 ) .
JK |Vig| (‘A_ - + \A—FU/Q\) (7.36)

Due to the p-h symmetry no potential scattering is generated. In Fig. 7.8b calculated
Ty are plotted in comparison with analytical result from Eqs. (7.14) and (7.36). The
agreement is excellent.
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The properties of the systems with § # 0 and A # 0 become markedly different near
respective singlet-triplet transition points. For § # 0, the transition is induced by charge
fluctuations which suppress magnetic ordering and, due to equal coupling of both dots
to the band, the transition is of first order. For A # 0 the transition is induced by
depopulating dot 2 and populating dot 1 while the total charge on the dots is maintained,
which leads to the transition from an inter-impurity triplet to a local spin-singlet on the
dot 1. Since there is an asymmetry between the dots, the transition is of the Kosterlitz-
Thouless type.'™

The Kondo temperature of the S = 1/2 Kondo screening near the transition on the singlet
side, T™, is approximately given by

A-A
logT*/D = —a — [ exp (—T> : (7.37)
We obtain @ =~ 7,  ~ 2.8, A/D ~ 0.477 and \/D ~ 1.5 x 1073. This expression
is consistent with the cross-over scale formula T o exp[—Tk/Ji2| for a system of two
fictitious spins, one directly coupled to the conduction band and the other side-coupled
to the first one with exchange-interaction .Ji» that depends exponentially on A: Ji5 =

Tic/Bexpl(A — A)/.

7.2.7 Inter-impurity interaction
Inter-impurity exchange interaction

By introducing an explicit exchange interaction J;» between the localized spins on the dots,
the strength of the RKKY interaction, Jrkky, can be directly determined. We study the
two-impurity Anderson model with

2
Haors = Z Haoti + J12S1 - So,

i=1

where J15 > 0. As seen from Fig. 7.9, for J15 above a critical value J.., the RKKY interaction
is compensated, local moments on the dots form a singlet state rather than the triplet which
in turn prevents formation of the S = 1 Kondo effect. The phase transition is of the first
order.'™ Using Eq. (7.29), we obtain T%/D = 1.87 x 107 for the non-perturbed problem
with the same U and T, while J./D ~ 1.68 x 107°. Taking into account the definition
T} = Jrkky/B, where 3 ~ 1, we conclude that Jrxky agrees well with the critical value
of J,, i.e. J. = Jrixky. The perturbation theory prediction of Jrxxy/D = 1.6 x 107 also
agrees favorably with numerical results.

As long as Jio < J., even for Ji5 > Tk, the S = 1 Kondo effect survives and, moreover,
Tk remains unchanged, determined only by the value of pJx as in the Ji5 = 0 case. The
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Figure 7.9: Temperature-dependent susceptibility of the 2-dot systems for different anti-
ferromagnetic inter-impurity couplings Ji5. Circles are Bethe-Ansatz results for the sus-
ceptibility of the S = 1 Kondo model with the Kondo temperature which is equal for all
cases where Ji5 < J..

only effect of increasing .J;5 in the regime where Ji5 < J. is the reduction of the transition
temperature into the triplet state, which is now given by T} ~ Jog/3 with the effective
inter-impurity interaction Jog = Jrxxy — J12-

Hopping between the impurities

We now study the two-impurity Anderson model with hopping between the dots:

2
Hgots = Z Haoti — t12 Z (diudm + dg;ﬂm) ; (7.38)
=1 1%

This model can be viewed also as a single-channel version of the Alexander-Anderson
model®*® in the limit of zero separation between the impurities. This perturbation shifts
gerade and ungerade levels in opposite direction, i.e. it induces tunnel splitting, see
Eq. (7.32). Such tunable tunnel splitting has been experimentally studied in Refs. 313,
331,332. The magnetic-susceptibility curves are shown in Fig. 7.10 for several values of
the hopping parameter.

In the presence of interaction U there are two contributions to the energy of the low-
lying states: “kinetic energy” proportional to t15 and “magnetic energy” due to an effective
antiferromagnetic exchange Japy = 4t3,/U, which is second-order in t15. Even though
the kinetic energy is the larger energy scale, the Kondo effect is largely insensitive to the
resulting level splitting. Instead, the Kondo effect is destroyed when Japy exceeds Jriky,
much like in the case of explicit exchange interaction between the dots which was discussed
in the previous subsection. We should emphasize the similarity between the curves in
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Figure 7.10: Temperature-dependent susceptibility of the 2-dot systems with inter-dot
tunneling coupling t15. For t15/D & 2 x 1071, we have Japy/D ~ 1.6 x 107, which agrees
well with the critical value of J./D = 1.7 x 107 found in the case of an explicit exchange
interaction between the dots, see Fig. 7.9.

Figs. 7.9 and 7.10. In the wide-band limit U < D, Jrkxy/D =~ 0.62 x (64/7%) (I'?/U),
therefore the critical ¢15. is given by 2. ~ I' and it does not depend on U.

7.2.8 Inter-impurity electron repulsion

We study the effect of the inter-impurity electron repulsion (induced by capacitive coupling
between the two parallel QDs) by turning on the Ui term:

P
Haors = Z Haoti + Urz(ng — 1)(ng — 1). (7.39)

i=1

This perturbation breaks SU(2)is, symmetry to U(1)charge, See Sec. 2.3.4. Results in
Fig. 7.11 show that the inter-impurity repulsion is not an important perturbation as long
as Uya < U. Finite U2 only modifies the Kondo temperature and the temperature 77 of
the FO-LM transition, while the behavior of the system remains qualitatively unchanged.
Note that 77 is unchanged since Ujs equally affects both the singlet and the triplet energy.
For Uy > U the electrons can lower their energy by forming on-site singlets and the system
enters the charge-ordering regime.'8*

The system behaves in a peculiar way at the transition point U;s = U where Uy and U
terms can be combined using isospin operators as

U/2 (4(I7)% + 4(15)%) + UL I = 2U (I7). (7.40)

Note also that exchange and two-electron hopping terms drop of the Hamiltonian in the
gerade/ungerade basis, see Eq. (7.32). We now have an intermediate temperature fixed
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Figure 7.11: a) Temperature-dependent susceptibility of the 2-dot systems for different
inter-impurity electron-electron repulsion parameters U;s. Circles are the Bethe-Ansatz
results for the S = 1/2 Kondo model which fit the NRG results in the special case Uy =
U. b) Temperature-dependent entropy of the 2-dot systems for different inter-impurity
electron-electron repulsion Uss.

point with a six-fold symmetry of states with 7, = 0 as can be deduced from Eq. (7.40)
and the entropy curve in Fig. 7.11b).

While the SU(2)is, isospin symmetry is broken for any U;s # 0, a new orbital SU(2)om
pseudo-spin (approximate) symmetry appears at the special point U, = U. For two
impurities we can define an orbital pseudo-spin operator as

0=> > dl,(1/20;)d, (7.41)

root,j=1,2

where o is the vector of the Pauli matrices. Note that the orbital pseudo-spin and isospin
operators do not all commute, therefore the full orbital pseudo-spin and isospin SU(2)
symmetries are mutually exclusive. The quantum dots Hamiltonian Hg.s commutes for
Uy, = U with all three components of the orbital pseudo-spin operator; the decoupled
impurities thus have orbital SU(2)., symmetry. Furthermore, pseudo-spin O and spin
S operators commute and the symmetry is larger, SU(2)spin @ SU(2)m- In fact, the set
of three S?, three O' and nine operators S'O’ are the generators of the SU(4) symmetry
group of which SU(2)spin ® SU(2)e is a subgroup. The six degenerate states are the spin
triplet, orbital singlet and the spin singlet, orbital triplet'*? which form a SU(4) sextet (the
notation is |5, 5,0, 0,)):

‘1>1a070>:‘T7T>a ’0a071a1>:’TlaO>a
[1,0,0,0) = 1/v2(| 1, 1)+ 1,1)). 0,0,1,0) = 1/v2(] 1, 1) = | L, 1)),
‘17 _1>0a0> = ‘ l> l>a ‘O>0a 17 _1> = ’0a Tl)

It should be noted that the orbital pseudo-spin eigenstates |0,0,1,+1) can be combined
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into an isospin triplet eigenstate |S = 0,1 = 1,1, = 0) = 1/3/2(| T/,0) +10,T])) and an
isospin singlet eigenstate |S = 0,1 = 0) = 1/v/2(| 11,0) — [0, 1])). This recombination is
possible because I, (U(1)charge charge operator) commutes with both the Hamiltonian (see
Eq. (7.40)) and the orbital pseudo-spin operators.

The coupling of impurities to the leads, however, breaks the orbital symmetry. Unlike the
model studied in Ref. 184, our total Hamiltonian H is not explicitly SU(4) symmetric, and
unlike in the model studied in Ref. 194, in our system this symmetry is not dynamically
(re)established on the scale of the Kondo temperature. No SU(4) Kondo effect is therefore
expected. Instead, as the temperature decreases the degeneracy first drops from 6 to 4
and then from 4 to 2 in a S = 1/2 SU(2) Kondo effect (see the fit to the BA result in
Fig. 7.11). There is a residual two-fold degeneracy in the ground state. Perturbation theory
(Appendix in Ref. 51) shows that the sextuplet splits in the fourth order perturbation in
the coupling to the band, Vj. The spin-triplet states and the state |S = 0,1 = 0) form the
new four-fold degenerate low-energy subset of states, while the states |S = 0,1 = 1,1, = 0)
and |S = 0,0 = 1,0, = 0) have higher energy. The remaining four states can be expressed
in terms of molecular-orbitals v and g¢:

11,1,0,0) = glul|0),
11,0,0,0) = 1//2 (abﬁg{@) 10,

I1,-1,0,0) = glu}|0),
S=0,1=0)=1/V2 (ﬂg] —g{u}) |0).

(7.42)

The four remaining states are therefore a product of a spin-doublet in the gerade orbital
and a spin-doublet in the ungerade orbital. Due to the symmetry of our problem, only the
gerade orbital couples to the leads, while the ungerade orbital is entirely decoupled. The
electron in the gerade orbital undergoes S = 1/2 Kondo screening, while the unscreened
electron in the ungerade orbital is responsible for the residual two-fold degeneracy.

7.2.9 Unequal coupling to the continuum
We finally study the Hamiltonian that allows for unequal hybridizations I'; = mp|V}! |*.
We set V2 = aV)l, i.e. I'y = Ty, The effective low-temperature Hamiltonian can be now

written as
2

Her = Hyana +5- > JciSi — JikyS1 - Sa. (7.43)
i=1
with Jx o = a?Jk 1 and with the effective RKKY exchange interaction given by a general-
ization of Eq. (7.25)
‘]RKKY = O.62Up2JK71JK72 = OéQJRKKy, (744)

where Jrkky is the value of RKKY parameter at a = 1. In our attempt to derive the
effective Hamiltonian we assume that in the temperature regime 7' < J&,. the two
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moments couple into a triplet. Since the two Kondo exchange constants Jx,; are now
different, we rewrite Heg in Eq. (7.43) in the following form

Jx1+ J Jx1—J
S 5 K28, + S2)) +s- (7K’1 5 =2(8) - 32)) — JRkkyS1 - Sa.

(7.45)
Within the triplet subspace, S; 4+ Ss is equal to the new composite spin 1, which we denote

by S, S; — Sy is identically equal to zero, and S; - Sy is a constant —1/4. As a result, the
effective Jk is simply the average of the two exchange constants:

Jx1 + Jk 2
—

Heﬂ - Hband+s' <

JK off = (7.46)
Susceptibility curves for different o are shown in Fig. 7.12. Note that Tk determined using
Eq. (7.14) combined with the naive argument given in Eq. (7.46) fails to describe the actual
Kondo scale for a < 0.4 as seen from Fig. 7.13. This is due to admixture of the singlet state,
which also renormalizes J, even though the singlet is separated by J&k > Tk from
the triplet subspace. Note however, that J&L . is well described by the simple expression
given in Eq. (7.44) as shown in Fig. 7.13.

By performing a second-order RG calculation (see Appendix D), which takes the admixture
of the singlet state into account, we obtain T as a function of o which agrees very well with
the NRG results, see Fig. 7.13. The following effective low-temperature Kondo Hamiltonian

is used:
Heﬁ‘ = Hband -+ J1S . Sl -+ JQS . 82 — ch}f(KY (Sl . 82 — 1/4) s (747)

where I have added a non-significant additive constant Jrgkky/4. Introducing spin-1
operator S defined by the following Hubbard operator expressions: S, = X33 — X,
St =2 (X0 + Xo) and S~ = (ST)T, we obtain
H = Hyang + Js - S + Jek oy Xss
+A(SZ(X05' +X50) +S+(Xlg _XST) (748)
+57(Xsy = Xys)),

where index S denotes the singlet state and we have

= Ji+J
J= 1—5 2 _ g1+ a%)/2,
Wl (7.49)
A= SE Jo(1 —a?)/2.
Equations (D.4) reduce to two equations for .J and A
. J? A?
0J = poldD| | = + 57— | »
9D

SN = —2p07AJ.
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Figure 7.12: Temperature-dependent susceptibility of the 2-dot system with unequal cou-
pling to the leads, 'y = o®T';. a) The range of o where Ty is decreasing. b) The range of
a where T is increasing again. Circles (squares) are BA results for the S =1 (S = 1/2)
Kondo model. The arrows indicate the evolution of the susceptibility curves as the param-
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Figure 7.13: Comparison of calculated and predicted Kondo temperature Tk and effec-
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from which ensue the following scaling equations

dJ Iz A?D

— = —pod® = pos e
dA ~

N PN

dl £o ']a

where [ = log D. The initial bandwidth D is the effective bandwidth D.g = 0.182U for the
Anderson model and we take J(I = log Deg) = J and A(l = log Deg) = A with J and A
taken from Eq. (7.49). We integrate the equations numerically until .J starts to diverge.
The corresponding cut-off D defines the Kondo temperature.

For extremely small o, J&k . eventually becomes comparable to the Kondo temperature,
Fig. 7.13. For that reason the ferromagnetic locking-in is destroyed and the system behaves
as two S = 1/2 doublets, one of which is screened at Ty = Tk (Jx 1) as shown in Fig. 7.12b.

7.2.10 Conductance of parallel quantum dot systems

Using the spectral-function and the quasiparticle-scattering phase-shift methods, I have
computed the conductance through the system of N parallel quantum dots. The results
for N = 1,2,3 were computed using both methods and they agree up to the expected
errors associated with spectral function calculations in NRG. For N =4 and N =5, only
the phase-shift method was used. The results are shown in Fig. 7.14.

The results for N = 2 reflect the quantum phase transition discussed in Subsection 7.2.6.
The conductance at the transition point drops in a discontinuous manner for ~ 0.2Gy. At
this point, the occupancy changes only slightly, however the spin-spin correlations flip from
positive to negative (not shown). In the § < . regime, the low-temperature fixed points
lie on a line of S = 1 Kondo model strong-coupling fixed points with S = 1/2 residual
spin, while for § > J., the low-temperature fixed points lie on a line of free-impurity fixed
points. In the § > J. regime, the conductance goes through a maximum of conductivity
near 0 = U/2. When magnetic field is applied, it has a strong effect on the Kondo plateau
for 0 < 6., while it affects the narrow peak for 6 > J. only weakly unless the field is
extremely large.

The results for N = 3 reflect two different quantum phase transitions. The conductance
exhibits a discontinuous jump by ~ 0.2Gg at § = J.1, then the conductance decreases in the
narrow interval 0.1 < 0 < d.9 to 0. This is followed by a sudden jump from zero conductivity
to unitary conductivity at do., then the conductance slowly decreases toward 0. The first
transition point at d.; is similar to the transition in the N = 2 case: occupancy is affected
only slightly, while the spin-spin correlations change sign. The second transition point
at d.p is quite different: the occupancy changes by exactly 1 electron, while the spin-spin
correlations appear continuous. Since a change of electron occupancy by 1 corresponds, by
the Friedel sum rule, to a 7/2 phase shift in electron scattering, this explains the change
of conductance from 0 to Gj.



7.2. DOUBLE QUANTUM DOT: PARALLEL CONFIGURATION

0.8

- 0.6

GIG

0.4

0.2

0.8

- 0.6

G/G

0.4

0.2

Even number of dots

Odd number of dots

1
0.8

- 06

G/G

0.4+

0.2+
U/D=1, T/U=0.04 -

T T
T
’: ‘ B=10"D
, \ |=- B=10"D
! \\ B=10"D

\

T T T IG
| :\\ 1 I A
N=2 I\ N=3
l — I
I
|
]

/! ‘\ !

e

/
’|/ i |\T-L--L1.
\
/J \
1R
A A
/o \
S

/ el

» \_ | .

il R I{ [ T\(F - I P LT |\-
| /

I \\ _ B I \ _ N

N N=4 [ I\ N=5

\ I
! \\ [ ) \ N
S \ L , | \ i
R \\ -7 ‘ \ —
\\__ N
L | | | | [\ | |

02 04 06 08 O
o/U

02 04 06 08 1

S/u

131

Figure 7.14: Conductance through the system of N parallel quantum dots as a function of
the gate voltage for a range of magnetic fields. Results shown are obtained using the phase-
shift method. A = 4; 200 NRG iterations were performed to reach the zero temperature
limit. For the most demanding N = 5 calculation, up to 5000 states were retained in the

NRG truncation.
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For both N =2 and N = 3, the phase transitions are replaced by smooth cross-overs when
the impurity-band coupling constants are made unequal.

The conductances of N = 4 and N = 5 are similar to N = 2 and N = 3, respectively.
There are no additional discontinuities in the conductance as a function of the gate voltage.
It turns out that for all N > 3 with symmetric coupling to the band, there are precisely
two phase transitions of the same types that occur for N = 3. The second transition
corresponds to a change of total electron number by N —2. Since for N = 4 the occupancy
changes by two electrons, the phase shift is 7 and the quantum phase transition is not
mirrored by a discontinuity in the conductance, thus the conductance is similar to that of
N = 2. For N =5, the occupancy change by three electrons leads to a 37/2 phase shifts
and there is again a conductance jump from 0 to Gy, like for N = 3. These results can
be generalized for arbitrary N # 1: for odd N, there are two quantum phase transitions
and two conductance discontinuities, while for even N there are also two quantum phase
transition, but a single conductance discontinuity.

7.3 Double quantum dot: side-coupled configuration

We now study the DQD system in the side-coupled configuration. The first QD is embedded
between source and drain electrodes while the second QD is coupled to the first through
a tunneling junction; there is no direct coupling of the first QD to the conduction bands.
The Hamiltonian is

H = Hyana + Haots + He (7.52)

where Hyang = Zk“ ek.c,tuck.u and Hgois and H. are the impurity and coupling Hamiltonians

2
Hdots = Z Hdot,i - tz (dIHdZ/L + HC) s
i=1 W

He=1/v/No Y Vild),cr, + Hee),
kp

(7.53)

where Hgo; = 0(n; — 1) + U/2(n — 1)%. For simplicity, we choose the on-site energies and
Coulomb interactions to be equal on both dots (the effect of the on-site energy splitting
is studied in Ref. 188). Coupling between the dots is described by the inter-dot tunnel
coupling ¢.

By changing the gate voltage and the inter-dot tunneling rate, the system can be tuned to
a non-conducting spin-singlet state, the usual Kondo regime with odd number of electrons
occupying the dots, the two-stage Kondo regime with two electrons, or a valence-fluctuating
state associated with a Fano resonance; these regimes are shown in the phase diagram of
the system in Fig. 7.15. We will first study the case of large ¢ with wide regimes where the
conductance is enhanced due to the Kondo effect, separated by low-conductance regimes
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Figure 7.15: The phase diagram of the side-coupled DQD. U/D = 1, T'/D = 0.03. Grey
area represents Kondo regime where S ~ 1/2, (n) ~ 1 and G/Gy ~ 1. In shaded area,
called spin-singlet regime, where S ~ 0 and (n) ~ 2, there is strong antiferromagnetic
spin-spin correlation and G /Gy ~ 0. The two-stage Kondo regime is discussed in Subsec-
tion 7.3.3.

where localized spins on DQD are antiferromagnetically (AFM) coupled. In the case of
small £ we will study the two stage Kondo regime where the two local moments are screened
at different Kondo temperatures.!58:174,183,188

7.3.1 Strong inter-dot coupling
Conductance and correlation functions

The conductance through the DQD at different values of ¢ is shown in Fig. 7.16 as a
function of the gate voltage 6. The conductance is enhanced for a wide range of o due to
the Kondo effect. To better understand multidot problems in the case of strong inter-dot
coupling, it is helpful to rewrite the total Hamiltonian in terms of the eigenstates. The
eigenvalue diagram in Fig. 7.17 represents the gate-voltage dependence of the multiplet
energies E(Q,S,r) of the isolated DQD. From this diagram we can read off the ground
state and the excited states for each parameter §.

Such eigenvalue diagrams are a very useful tool to study multi-impurity and multi-level
systems. The Kondo effect tends to occur whenever the ground state of the system is
degenerate and there are excited states with @' = @Q £ 1, S = S £ 1/2. Ranges where
these conditions are fulfilled appear in the form of triangular level crossings such as ABC'
in Fig. 7.17. Here, these intervals are given approximately by ; < |[0| < 02, where §; =
t(24/1+ (U/4t)? — 1) and 6, = U/2 4 t. These estimates are obtained from the lowest
energies of states with zero, one and two electrons on the isolated DQD, see Table 7.1. The
widths of conductance plateaus (measured at G/Gy = 1/2) are therefore approximately
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Figure 7.16: Conductance and correlation functions of DQD. Besides different values of
t, indicated in the figure, other parameters of the model are I'/D = 0.03 and U/D =
1. Temperature is T/D = 107°, which for all parameters used corresponds to a zero
temperature limit. In particular, in the Kondo plateaux T' < T for all 9.
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Figure 7.17: FEigenvalue diagram for isolated DQD system. The diagram is symmetric,
since for § — =4, E(Q,S,r) — E(—Q,S,r). Points A and B correspond to valence-
fluctuation regions when the charge on the dot changes, while point C' corresponds to the

center of the Kondo regime, when the Kondo temperature is the lowest. Parameters are
U/D=1and t/D = 0.3.
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Figure 7.18: a) The width of conductance peak A vs. t as obtained from NRG calculations
(full circles), compared with the analytical result as given in the text (dashed line). b)
Kondo temperatures T vs. § as obtained from the widths of Kondo peaks (full circles).
Analytical estimate, Eq. 7.55, is shown using dashed lines. The rest of parameters are
identical to those in Fig. 7.16.

given by

A=U/2+2t(1 —/1+ (U/4t)?). (7.54)
Note that in the limit of large ¢, A ~ U/2, and in the limit of large U, A ~ 2¢. Comparison
of conductance-peak widths with the analytical estimate A is shown in Fig. 7.18a.

We now confirm the presence of the Kondo effect by considering various correlation func-
tions. In Fig. 7.16b we show S, calculated from expectation value (SZ ) = S(S + 1),
where Sios = S; + Sy. S reaches value 1/2 in the regime where G/Gy = 1 which indicates
that high conductance is associated with the presence of local moment on the DQD. The
average occupancy (n) in this regime approaches odd-integer values 1 and 3, Fig. 7.16c.
Transitions between regimes of nearly integer occupancies are rather sharp; they are visible
as regions of enhanced charge fluctuations measured by An? = (n?) — (n)?, as shown in
Fig. 7.16d. Finally, we show in Fig. 7.16e spin-spin correlation function (S; - Ss). Its value
is negative between two separated Kondo regimes where conductance approaches zero, i.e.
for —0; < 0 < &y, otherwise it is zero. This regime further coincides with (n) ~ 2. Each
dot thus becomes nearly singly occupied and spins on the two dots form a local singlet due
to effective exchange coupling J ~ 4t*/U.

In Fig. 7.18b we present Kondo temperatures Tk vs. ¢ extracted from the widths of
Kondo peaks in spectral functions. NRG results fit well the expression obtained using the
generalized SWT (see Sec. 6.3.1 and Appendix C):

Tx = 0.182U+/pJ exp[—1/pJ] (7.55)
with

(7.56)



136 CHAPTER 7. PROPERTIES OF TWO-IMPURITY MODELS

S0 o A()

DM-NRG

Figure 7.19: Zero-temperature spectral function A;(w) sweeps for t/D = 0.3. a) Spectral
function calculated using the conventional NRG approach. b) Spectral function calculated
using the DM-NRG approach. Note that the vertical line, representing the Kondo peak,
has been artificially broadened. Its true width is Tk.

where
a=[(~1,3,30d}| —2,0,0,0)]" = 1/2,
(4t + U + V1682 + 0?)" (7.57)
8 (16t2+ U (U + V1612 + U?))

B =1(0,0,0,0/d]| — 1,1, 1,0)* =

)99 9

Spectral function

Spectral function calculations using the conventional NRG approach fail for this model:
the spectral functions manifest spurious discontinuities and the normalization sum rule is
violated for some choices of model parameters.'®® Correct results can be, however, obtained
using the DM-NRG technique!'®®2% presented in Sec. 3.9. In Fig. 7.19 we present sweeps
of A;(w) calculated using both approaches. In vast regions of the plot the results are in
perfect agreement. The differences appear for those values of o where the ground state
changes. Three characteristic spectral functions calculated using the DM-NRG are shown
in Fig. 7.20.

Features in the spectral function sweeps can be easily interpreted using eigenvalue diagram
in Fig. 7.17. At low temperatures and for constant d, spectral function A(w) will be high
whenever the energy difference AE = E; — Ejy between the ground state (0) and an excited
state (1) is equal to +w (particle excitations, Q1 = Qo + 1, S; = Sy + 3) or to —w (hole
excitations, Q1 = Qo — 1, S1 = Sp = %) At 6 = 0 two broad peaks are seen located
symmetrically at w ~ 407 (see Fig. 7.19 and Fig. 7.20 at § = 0). At this point the model
is p-h symmetric and therefore E(Q,S,r) = E(—Q, S,r) for all Q, S, r. Consequently, the
spectrum is also symmetric, A;(w) = A;(—w). With increasing J, the particle excitation
energy E(1,3,0)— E(0,0,0) increases and the corresponding peak quickly washes out. The

hole excitation energy E(—1,3,0) — E(0,0,0) decreases and the peak gains weight.
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Figure 7.20: Three zero-temperature spectral functions A;(w) = pg(w) for t/D = 0.3:
at the p-h symmetric point § = 0, in the Kondo regime §/D = 0.62 and in the empty-
orbital regime §/D = 1. Inset: Scaling of spectral functions A;(w/Tk) in the Kondo region
0.52 < 6 < 0.76. Parameters are as in Fig. 7.16.

At 0 =4y, £(0,0,0) = E(—1,1,0) (point A in Fig. 7.17) and the system enters the Kondo
regime: a sharp many-body resonance appears which remains pinned at the Fermi level
throughout the Kondo region (see Fig. 7.19 and Fig. 7.20 at §/D = 0.62). Kondo effect
occurs since the ground state is a doublet, S = 1/2, and there are excited states with
S’ =0,1, = @+ 1. The high-energy peaks at w = F(0,0,0) — E(—1, %,0) > 0 and
w = E(-1, %,O) — E(—2,0,0) < 0 in the spectral function are also characteristic: they
correspond to particle and hole excitations that are at the heart of the Kondo effect.

In the case of the DQD we also see additional structure for §; < § < do: a broad peak
at w = F£(0,1,0) — E(—1, 3,0) which corresponds to virtual triplet excitations from the
ground state. These excitations could also be taken into account in the calculation of the
effective exchange interaction, Eq. (7.56), however due to their high energy, they only lead

to an exponentially small difference in the Kondo temperature, which may be neglected.

In the inset of Fig. 7.20 we show scaling of Kondo peaks vs. w/Tk. In the case of perfect
scaling, all curves should exactly overlap. However, Kondo temperatures of different peaks
differ by almost four orders of magnitudes, as seen in Fig. 7.18b. Moreover, Kondo peaks
become asymmetric near the edges of the Kondo region, i.e. for 6 2 §; and § < 5. Note
also that for each point in Fig. 7.18b there is a respective spectral function presented in
the inset of Fig. 7.20.
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Figure 7.21: Conductance and correlation functions at t/D = 0.001 (a,...,e), t/D = 0.01
(f,and g) and a blow-up of f) in the inset of g). Dashed lines in a) represent G//G, and
b) S of a single quantum dot with otherwise identical parameters. Dashed line in c)
represents (n;) of DQD, and finally dashed line in the inset of g) represents the semi-
analytical model described in the text. In h) a schematic plot of different temperatures
and interactions is presented as explained in the text. NRG values of the gap in A;(w)
at w=0and T K T1(<2) are presented with open circles and squares for /D = 0.001 and
0.01 respectively. Values of J and analytical results of T I((Q ) are presented with dashed and
dot-dashed lines for ¢/D = 0.001 and 0.01 respectively. For analytical estimates of T1(<2)
different values of ¢; = 2.2 and 1.3, respectively, were used. Other parameters of the model
are I'/D = 0.03,U/D = 1.
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7.3.2 Weak inter-dot coupling: the Fano resonance

We now turn to the case of weak inter-dot coupling, t/U < 1. Unless otherwise specified,
we choose the effective temperature 7' to be finite, 7" ~ 107°D, i.e. we stop the NRG
iteration after a predetermined number of iterations. It should be noted that 7" = 0 results
may be misleading for some models and parameter ranges, since the temperature scale
where the system crosses over to its 1" = 0 fixed point may be extremely low, much lower
than the experimentally relevant temperature. For the following discussion it will become
clear that the side-coupled DQD is an example of such system.

One may naively expect that in the small ¢ limit we obtain essentially identical conductance
as in the single-dot case, since dot 2 is expected to be decoupled and play no role. As d
decreases below 0 ~ U/2, G/Gy indeed follows results obtained for the single-dot case,
Fig. 7.21a. In the case of DQD, however, a sharp asymmetric resonance appears around
0 = U/2. It has the form of a Fano resonance and it coincides with the sudden jump in S,
(n), as well as with the spike in An?, Figs 7.21b,c, and d.

In the context of quantum transport, the Fano effect®3? is most easily described as an inter-
ference between a resonant and a non-resonant (direct, background) transport channel®?
or, equivalently, between a narrow and a broad resonance. Fano effect leads to a charac-
teristic Fano line-shape of the resonance in the transmission function, the Fano resonance,
which can be parametrised as

(q+e€)? ¢> — 1+ 2qe
T = =1+ - 7.58
e e (7.58)

where € = (F — FEy)/(I'/2) is a rescaled energy, Fy is the resonance position, I' its width,
while ¢ is the Fano parameter that determines the form of the resonance. Physically, ¢ is
the ratio between resonant and direct scattering probability. In the limit ¢ — oo, the Fano
resonance goes into the Breit-Wigner (Lorentzian) resonance, while in the ¢ — 0 limit it
has the appearance of a symmetric dip.

Fano resonances have been detected in QDs and SETs,?3*33% in QDs embedded in Aharonov-
Bohm interferometers®*® and in quantum wires with side-coupled QD.337

In our case, the Fano resonance is a consequence of a sudden charging of the nearly de-
coupled dot 2, as its energy € crosses the Fermi level at ez = 0. Meanwhile, the electron
density on the dot 1 remains a smooth function of J, as seen from (n;) in Fig 7.21c. This
can be qualitatively understood from a simple noninteracting model

H = e |1){(1] + e2|2)(2] + £ (|1)(2] + h.c.) . (7.59)

Using the Green’s function method (Sec. 4.1) we obtain the following expression for con-
ductance

4ea(t')*
Y2(e2 + 4(t)Y) — 26169t + 4

G=G (7.60)
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where ¢’ is the coupling of impurity 1 to the leads in the tight-binding description. Con-
ductance is clearly zero when the on-site energy e; of the side-coupled dot crosses the
Fermi level. If the levels are shifted using the gate-voltage (e, = V, and e = V,, — A,
where A is the detuning parameter), we find that G = 0 at V, = A and G = G at
Vy = %(A + VA2 + 4¢2). The width of the Fano resonance is proportional to the energy
difference between these extrema:

2

w:awN+MLﬁMN%+OM) (7.61)

In the interacting case, we may improve this calculation using a simple model. We will
consider the total Hamiltonian H in the ¢ = 0 limit exactly and then couple the two
subsystems using perturbation theory. For ¢ = 0, the exact Green’s function of impurity 1
at w=201s

cospsing  sin’¢ sing 4,

0 _ 1/(;T _ _ _
G, =1/(iT' =T cot¢) = T i~ =~

(7.62)

where ¢ is the scattering phase shift for single impurity model. This is simply an expression

of the Friedel sum rule3®* and follows from (all quantities are evaluated at w = 0)
2i¢ = In (G"(0)[G*(0)] ") or ¢ = arg G"(0) (7.63)
and
Iy =T, (7.64)

i.e. the imaginary part of the self-energy is due only to hybridization.3!%33 Near § = U/2,
the conductance of SIAM is G =~ G¢/2, thus ¢ ~ 7/4. Impurity 2 is decoupled and
its Green’s function is known exactly. The effect of impurity 2 in the ¢ # 0 is taken
into account using perturbation theory and the full Green’s function is obtained from the
Dyson’s equation

Gy

g1 ZQ‘erQ?ZQl = I—EQ?

=G//(1-1°G)Gy), (7.65)

since the self-energy is 3 = t2GY. For the Fano resonance at € = § —U/2 ~ 0, we keep only
the low-energy pole in the Green’s function of impurity 2,

Gy(w) ~ = (7.66)

w—e+in’?

where z = $ for e <0 and z =1 for € > 0. The conductance G = Gorl'(—1/7Im G;) is

2I'%¢? sin? ¢
+ 2122 — 22t* cos(2¢) — 22t2€l sin(2¢)

G =Gomm (7.67)

Results of the NRG calculation are compared to the prediction from Eq. 7.67 in the inset
of Fig. 7.21g. We see that general features are adequately described, but there are subtle
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differences due to non-perturbative electron correlation effects. Numerically calculated
Fano resonance is wider than the semi-analytical prediction and G does not drop to zero.
In particular, from Eq. 7.67 it follows that G = 0 at 6 = U/2 (or e = 0) and G = G at
§ =U/2+ t*tan ¢/T". These details are not corroborated by NRG results which show, for
example, mazrimal conductance at € = 0.

With increasing ¢, the width of the resonance increases, as shown for t/D = 0.01 in
Fig. 7.21f. For ¢t 2 0.1, the resonance merges with the Kondo plateau and disappears (see
Fig. 7.16a).

7.3.3 Weak inter-dot coupling: the two-stage Kondo effect

The two-stage Kondo effect is a generic name for successive Kondo screening of the impurity
local moments at different temperatures.®?7175,152,174,183,188  Thig term has been used in
two different (but closely related) contexts: 1) two step screening of S = 1 spin in the
two-channel case,'? 2) two step screening of two local moments in the single-channel
case.”® 1™ Tn the first case, the first-stage Kondo screening is an underscreened S = 1
Kondo effect which reduces the spin to 1/2, while the second-stage Kondo screening is a
perfect-screening S = 1/2 Kondo effect which leads to a spin singlet ground state.”® 233
In the second case, at a higher Kondo temperature T[((1 ) the Kondo effect occurs on the
more strongly coupled impurity; the Fermi liquid quasiparticles associated with the Kondo
effect on the first impurity participate in the Kondo screening of the second impurity on
an exponentially reduced Kondo temperature scale TI((2 ) 174,183,188 The first case is relevant
when the ground state is a triplet, while the second case occurs when the ground state is
a singlet, but there is a nearby excited triplet state.” In fact, the two cases are connected
through a quantum phase transition which occurs at the degeneracy point between the
singlet and triplet state; '™ this also demonstrates the connection between the two-stage
Kondo effect and the “singlet-triplet” Kondo effect.™

In the case of the side-coupled DQD, the inter-impurity exchange interaction is antiferro-
magnetic and it is given by the superexchange expression

t U\ > U 442
= = — 16 — — | = —. .
J 5 (t) +16 p o (7.68)

The two-stage Kondo effect of the second type occurs when J < Tk, where T = TI((D is
the Kondo temperature of the STAM that describes impurity 1 (without impurity 2).'83:188
The second Kondo crossover then occurs at

T = eoT exp(—e, TV ). (7.69)

Constants ¢; and ¢y are of the order of 1 and they are problem-dependent. The spectral
function A;(w) of impurity 1 increases at w ~ Tl((l), but then drops at w ~ TI(?), i.e. there
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Figure 7.22: Spectral function on the directly coupled impurity 1 for a range of values of
the interdot hopping parameter ¢.

is a gap in the spectral function and the system is non-conducting at zero temperature,
Fig. 7.22. In magnetic susceptibility plots, the two-stage Kondo effect manifests as two
successive decreases of the susceptibility which both have the form of the universal S = 1/2
Kondo susceptibility curves; the first from 1/2 to 1/4 occurs at T' ~ Tk and the second

from 1/4 to 0 at T2),183 Fig. 7.23.

If, however, J > Tk, the impurity spins bind in a singlet before any Kondo effect can
occur. There is again a gap of width J in the spectral function and conductance is zero
for T' < J. It should be noted that from the zero-temperature conductance plots alone we
cannot determine if the system underwent two-stage Kondo screening or if a local singlet
was formed; in fact, the T" = 0 fixed point is the same in both cases and, moreover, the
two regimes are continuously connected.'™

Equipped with this theory, we now return to the description of the results presented in
Fig. 7.21a for § < U/2. Just below 6 < U/2, J < TI((D and the system is in the two-stage

Kondo regime. In the range of 6 where T falls in the interval given by TI(?) T K Tl((l),
the conductance is high. For still lower ¢, T' < T I((Q ) and the conductance decreases. Finally,

for lowest 6, J > T I((l ) and the system is in the local singlet regime where the conductance
is zero. NRG results for the gap in the spectral function A;(w) calculated at 7= 0 (open

circles and squares) follow analytical results for Tz(? )(5) when J < T}Q ) and they approach
J when J > T}Q), as expected, see Fig. 7.21h.

As shown in Fig. 7.21a for 0.3D < § < U/2, G/Gy calculated at T = 102D follows results
obtained in the single quantum dot case and approaches value 1. The spin quantum number
S in Fig. 7.21b reaches the value S ~ 0.8, consistent with the result obtained for a system
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Figure 7.23: Spin susceptibility and specific heat of the side-coupled double quantum dot
for a range of values of the interdot hopping parameter . We begin to enter the two-stage
Kondo regime for ¢t/D < 1.8 107,

of two decoupled spin-1/2 particles, where (S?) = 3/2. This result is also in agreement
with (n) ~ 2 and the small value of the spin-spin correlation function (S; - Sy), presented
in Fig. 7.21c and 7.21e respectively.

With further decreasing of 4, G/Gy suddenly drops to zero at § < 0.3D. This sudden
drop is approximately given by T ~ TI((Q)((S), see Figs. 7.21a and h. At this point a gap
opens in A;(w) at w = 0, which in turn leads to a drop in the conductivity. The position

of this sudden drop in terms of 0 is rather insensitive to the chosen 7', as apparent from
Fig. 7.21h.

Below 0 < 0.25D, which corresponds to the condition J ~ Tl((l)(é), also presented in
Fig. 7.21h, the system crosses over from the two-stage Kondo regime to a regime where spins
on DQD form a singlet. In this case S decreases and (S;-Ss) shows strong antiferromagnetic
correlations, Figs. 7.21b and e. The lowest energy scale in the system is J, which is
supported by the observation that the size of the gap in A;(w) (open circles in Figs. 7.21h)
is approximately given by J. The main difference between ¢/D = 0.001 and ¢/D = 0.01
comes from different values of J = 4¢?/U. Since in the latter case J is larger, the system
enters the AFM singlet regime at much larger values of 9, as can be seen from comparison
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of Figs. 7.21g and f. Consequently, the regime of enhanced conductance shrinks.

7.4 Double quantum dots in magnetic field

In Fig. 7.4 T plot the conductance through the double quantum dot systems of different
coupling topologies as a function of the inter-dot exchange coupling J and of the applied
magnetic field B. The parameters entering the corresponding quantum impurity models
are chosen so that U and I' are the same in all cases. The effect of the magnetic field on the
conductance through the double quantum dot depends strongly on the type of the Kondo
effect which occurs in the system.

In the side-coupled DQD, two-stage Kondo screening occurs when J < T}Q ). In this regime,

the conductance is unitary if TI(?) < B T[((l), but it drops to zero for B < TI(?) and
for B > T1(<1)- This is clearly visible in Fig. 7.4a. For the smallest values of J shown,
T[(f) is essentially zero and the conductance is high for B below ng) ~ 107*D. For J of
the order of T[((1 ), non-monotonous field-dependence of the conductance can be observed
with a high-conductance plateau in the range TI(?) < B TI(;). This plateau evolves for

J > ng) into increasingly narrow peak centered near B ~ J. For B = J, the singlet and
the lowest triplet state are degenerate and the system conducts due to the singlet-triplet
Kondo effect. This plot therefore clearly establishes the relation between the two-stage
Kondo effect and the singlet-triplet Kondo effect : they are the two extreme limits of the
same type of behavior related to the near-degeneracy of singlet and triplet states.

In the serially-coupled DQD, the conductance is high in the absence of the field only
when J ~ T [((1 ). For smaller J , each impurity tends to form a separate Kondo correlated
state with the neighboring conduction lead, and the conductance is low. For larger J,
the impurities form a strongly-bound inter-impurity spin-singlet state, which again leads
to low conductance. For J ~ Tl((l), the system crosses over between these two regimes
and the conductance exhibits a unitary peak. It is interesting to note that the related
two-impurity Kondo system undergoes a true quantum phase transition with non-Fermi
liquid properties at the critical point at J ~ T}Q ), however the charge transfer between the
two channels destabilizes this NFL fixed point?® in the case of the serially-coupled DQD
where the exchange interaction is generated by the superexchange mechanism due to the
electron hopping ; similar behavior is found in the triple quantum dot system presented in
the following chapter. The lowest value of B shown in Fig. 7.4b is much lower than T}Q),
therefore the behavior is similar to the one in the absence of the field, with the exception
that the highest conductance does not quite reach the unitary limit. For stronger fields,
we obtain the singlet-triplet Kondo effect as in the case of the side-coupled DQD.

The parallel DQD undergoes S = 1 Kondo screening for J < Jrkky. The expected very
slow (logarithmic) approach to the unitary conductance limit is clearly visible in Fig. 7.4c.
For small B, the conductance drops abruptly to zero when .J is increased past Jrkiky,
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a) Side-coupled DQD

b) Serial DQD

logio(J/U)

logio(B/U)

Figure 7.24: Conductance of double quantum dot systems of different coupling topologies

as a function of the inter-dot antiferromagnetic exchange interaction J and of the applied
magnetic field B. The parameters are the same in all three cases: U/D =1, I'/D = 0.05,

o

shifts. In the plots for

0. Conductance is calculated by extracting quasiparticle phase

side-coupled and serial DQD, data points with G/Gy = 1 have been added to the singlet-

triplet Kondo peaks a posteriori for presentation purposes, therefore the widths of these

in fact, largely exaggerated.

narrow peaks are,
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since the spins bind into a singlet and the Kondo effect no longer occurs. For large B,
the decrease in conductance is less pronounced. It should be noticed that there is no

singlet-triplet Kondo effect in this system.



Chapter 8

Properties of three-impurity models

While the two-impurity models were intensely studied in the past (and still are), the
attention is recently shifting to more complex three-impurity models. Near the particle-hole
symmetric point (or, equivalently, at half filling), systems with even or odd number of QDs
have radically different behavior due to the distinct properties of integer and half-integer
spin states. The half-integer spin states are always degenerate and QD systems with such
ground states tend to exhibit some form of the Kondo effect for any coupling strength; the
zero-temperature conductance of systems of an odd number of dots will be high. In systems
with an even number of QDs, however, the range of half filling is generally associated with
Mott-Hubbard insulating behavior.2”® The prototype three-impurity model describes the
triple quantum dot (TQD) system in the linear configuration, usually modelled as a three-
site Hubbard chain embedded between two non-interacting electron reservoirs (conduction
leads). TQD structures have been manufactured in recent years and the analysis of their
stability diagrams demonstrates that a description with a Hubbard-like model is indeed
a good approximation.®3%340 Models of three Anderson-like impurities have already been
studied by a variety of techniques in different temperature regimes.?% 189,190,327, 3412347 \Whi]e
many features were previously known, detailed understanding of the underlying microscopic
mechanisms emerged only recently.'®7-158

In this chapter I study linear TQDs. The special feature of this system is the presence of
two equivalent screening channels (as in the 2CK model) combined with two-stage Kondo
screening and/or magnetic ordering. The main message conveyed by this chapter is that
the three-dot structures are a promising system for both theoretical and experimental study
of NFL physics.24!%® The relevance of these results is reinforced by the recent detection
of the 2CK effect in a system of a QD coupled to leads and to a quantum box:?"? exotic
Kondo effects can indeed be detected in semiconductor nanoelectronic devices.

147
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a) r ¢t -t T b) rJ—-J T
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Figure 8.1: a) Model I: the triple quantum dot embedded between two leads. b) Model II:
a related system with exchange interaction between the impurities.

8.1 Triple quantum dot: linear configuration

In this section, I consider two different but closely related systems of three Anderson
impurities coupled in series between two conduction channels, Fig. 8.1. They are described
by the Hamiltonian H = Hyana + Himp + H., where

Hband - Z Ekcikucuku (81)

vk, p

describes the left and right conduction lead (v = L, R), and

He =Y Vilchy,diy + chy,ds, + He) (8.2)

kp

describes the coupling of the bands to the left and right impurity (numbered 1 and 3, while
2 is the impurity in the middle, Fig. 8.1). In model I, Hyy,, is the Hubbard Hamiltonian

3 2
Hilmp = Z Haot,i + Z Zt (djﬂdiﬂ,u + H-C-) , (8.3)
i=1 =1 pn

with U
Haoti =6(n; — 1) + 5(7% - 1)2> (8.4)

where, as before, 0 is the on-site energy (gate voltage), U is the on-site e-e repulsion,
n; = Zu djﬂdw is the electron number on site ¢ and ¢ is the inter-impurity hopping. Model
IT is the exchange-only variant of the model I, with

3
HI =" Huy + JS1 - Sy + JSz - Sy, (8.5)

=1

where S; = >, dju(l/Qa'W/)dw/ is the spin operator on site i, and J is the exchange
constant. We set J to the superexchange value of J = 4¢*/U to relate the two models
for t < U. In two-channel QIMs, two different types of the particle-hole symmetry may
be realized, see Sec. 2.3.5 and Refs. 21,28. For o = 0, models I and II both have p-h
symmetry of the first type. As I show below, this has important consequences on the
zero-temperature conductance through the QD molecules.



8.1. TRIPLE QUANTUM DOT: LINEAR CONFIGURATION 149

The ground state of model I is Fermi liquid (FL) for any choice of parameters.'®8:189:190 Tf,

however, the impurities are coupled only by exchange interaction, as in model II, the system
has a non-Fermi liquid (NFL) ground state of the 2CK type with a residual In2/2 zero-
temperature entropy.?®® Replacing spin exchange interaction with hopping (i.e., going
from model IT to model I) enables charge transfer between the left and right conduction
channels, thereby inducing channel asymmetry?4% which drives the system to a FL ground
state.?® Nevertheless, model I exhibits NFL properties in an interval of finite temperatures
where the system approaches the (unstable) 2CK fixed point. It will be shown in the
following (Sec. 8.1.5) that there is in fact a range of hopping parameters ¢ where this
temperature interval is particularly wide. As this interval is entered from above, the
conductance through the side dots increases to a half of the conductance quantum, while
the conductance through the system remains small. At lower temperatures the conductance
through the system increases to the unitary limit as the system crosses over to the FL
ground state.

While our main tool will again be NRG, in this section comparisons with other methods are
also made. In particular, the zero-temperature conductance will be computed using the sine
formula (Sec. 5.2) with energies of the auxiliary ring system obtained using the constrained-
path quantum Monte Carlo (CPMC), Sec. 4.3, and with the Gunnarson-Schénhammer
variational method (GS), Sec. 4.2. The CPMC calculations were performed on a ring of
100-180 sites. As the number of sites with interaction is small, CPMC produces ground
state energies with excellent precision, typically of the order of AE/E = 107 On the
other hand, the constrained number of sites in the ring limits the energy resolution of this
approach. With GS, the size of the ring can be increased up to a few thousands sites.
While this improves the energy resolution by an order of the magnitude, none of these two
methods can compete with NRG which can in principle handle arbitrarily small energy
scales. In this section, I discuss both dispersionless bands (NRG calculations) and cosine
bands (NRG, CPMC, GS calculations). In the latter case, I' = 2t?/t, where ' is the
coupling between sites 1 and 3 of the TQD and the first sites in left and right tight-binding
chains.

8.1.1 Mapping to molecular-orbital levels

For large t/U, the TQD system described by model I behaves as an artificial molecule
composed of three atoms (QDs). In the non-interacting U — 0 limit, the molecule has
three distinct non-interacting levels: non-bonding (0), bonding (-) and anti-bonding (+)
molecular-orbitals (Fig. 8.2) with energies

Eig=4V2t,0 (8.6)

and effective hybridizations

3.1
I'iog=-TI,-I. 8.7
+.,0 8 ) 9 ( )
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When interactions are switched on, the non-bonding level remains at Ejy = 0, while the
other two are symmetrically shifted to By ~ £(v/2t+2U)+O(U?/t) where the U-term is a
consequence of the inter-orbital repulsion. The effective intra-orbital e-e repulsion is given
by Uy ~ 3U + O(U?/t) and Uy ~ U + O[U?/?]. These molecular orbitals are spatially
extended throughout the TQD system even in the presence of interactions. It should be
noted that bonding and anti-bonding wavefunctions are symmetric (even parity), while the
non-bonding wavefunction is antisymmetric (odd parity), Fig. 8.2.

Bonding (-) Non-bonding (0) Anti-bonding (+)
even odd even

Figure 8.2: Molecular-orbitals in a linear artificial molecule

The energy-level structure of the system can be conveniently represented in the form of the
eigenvalue diagram (see also Sec. 7.3.1). In Fig. 8.3 I show the case of both large ¢ /U and
small ¢/U. In the latter case, the description in terms of molecular-orbital levels breaks
down. The features in these diagrams will be commented in more detail in the following.

Figure 8.3: The energy-level structure for the decoupled TQD system in the case of a)
strong and b) weak inter-impurity tunnel coupling.

8.1.2 Phase diagram and physical regimes

The zero-temperature phase diagram of the TQD system, Fig. 8.4, features several phases
with enhanced conductance which will be discussed in this section.
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Figure 8.4: M1, M3: MO Kondo regime with (n) ~ 1,3. M2: non-conductive even-
occupancy state. L3: local Kondo regime with (n) ~ 3. TSK: two-stage Kondo regime.
Due to the p-h symmetry, the diagram is mirror-symmetric with respect to the 6 = 0 axis;
for negative 6 < 0 we thus find M4 non-conductive regime and M5 MO Kondo regime.

For large t/U, the molecular-orbital levels are filled consecutively by electrons as the gate
voltage is swept; this is clearly visible in the diagram a of Fig. 8.3, where the total number
of electrons in the ground state N = () 4+ 3 increases in steps of 1 at well separated gate
voltages 0. Each molecular orbital can accommodate two electrons, which bind into a
spin singlet (S = 0 for N even). The ground state is thus a spin doublet (S = 1/2)
only when the total occupancy N is odd, i.e., when there is a single electron in one of
the molecular orbitals. Model I then maps to an effective SIAM and we say that the
system is in the molecular-orbital (MO) Kondo regime (shaded regions labelled '"M1’ and
'M3’ in Fig. 8.4). The unpaired electron develops local moment for T < Uy, where
U is Uy for Q@ = 0 (N = 3) or Uy for Q = £2 (N = 1,5). The local moment is
then Kondo screened in the conventional single-channel Kondo effect by the electrons in
the leads. Depending on the symmetry of the relevant orbital wave-function (even for
bonding and anti-bonding levels and odd for non-bonding level), the Kondo effects occurs
either in the even or odd conduction channel formed by the symmetric or antisymmetric
combination of conduction band electrons. The Kondo temperatures T  for levels (+,0)
can be determined from Eq. (6.32) with effective parameters Ueg and o, where ' is Iy
or I'y. Just like in the case of a single-impurity Anderson model, in MO Kondo regime the
conductance approaches G = G for low temperatures, 7' < T o, while for intermediate
temperatures Ty ¢ < T' < Ueg the system is in the Coulomb blockade regime with G ~ 0
except along the border lines. Lightly shaded stripes of width ~ I'.s/2 represent the
transition regions, where G/Gy < 0.5. Phase M2’ is a non-conductive even-occupancy
singlet regime, where two electrons occupy the same molecular-orbital.

The orbital description breaks down for small ¢t/U. Referring back to Fig. 8.3b, this is
reflected in near degeneracy of several many-particle states. The excitation energies are no
longer on the scale of U, but rather on the smaller magnetic scale of the superexchange
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interaction, J = 4t>/U. Each impurity then behaves as a separate magnetic moment and
the system properties are qualitatively different. We refer to this regime as the local regime.
The behavior of the system is most easily understood around the p-h symmetric point § = 0.
For decreasing t /U, the MO Kondo regime M3’ is followed by antiferromagnetic spin-chain
(AFM) Kondo regime 'L3’ and two-stage Kondo ( TSK) regime "TSK’. In all three regimes,
the conductance is unitary below the respective Kondo temperature which is a function of
t.

In AFM regime, three on-site local moments bind at 7'~ J = 4t*/U into a rigid antiferro-
magnetic spin-chain with total spin 1/2; this is followed by the screening of the collective
spin by the Kondo effect at some lower temperature. Using SWT it can be shown that
the collective spin couples more strongly to the odd channel than to the even channel,
Fig. 8.5. Consequently the Kondo effect again occurs in the odd channel (see Sec. 6.2),
like in the case of the MO Kondo effect for the non-bonding molecular orbital. The tran-
sition between MO 'M3’ regime and AFM regime is very smooth; it is determined by the
competition between kinetic (¢) and magnetic (J = 4¢*/U) scales.

16 T

[ERN
N
T

odd channel

3, /(CimV)
[ee]

Figure 8.5: The effective Kondo exchange interaction between the ground doublet of the
TQD and the conduction band electrons in even and odd channels as a function of the
inter-dot tunneling. The results are meaningful only for MO and AFM regimes, where the
lowest-energy doublet is sufficiently separated from the first excited states.

In TSK regime, due to very weak coupling of the middle dot, the moments are quenched
successively: on left and right dot at the upper Kondo temperature T1(<1 ), while on middle
dot at an exponentially reduced lower Kondo temperature (Sec. 7.3 and Refs. 157,174,183,
188):

TE o T exp(—cT /). (8.8)

The cross-over to the T'SK regimes occurs for J ~ TI((D.

Note that all three regimes at 6 = 0 become qualitatively similar at sufficiently low temper-
ature: the remaining degree of freedom is one spin 1/2 coupled to two Fermi liquids. The
most general effective Hamiltonian describing model I that is allowed by the symmetries
is the 2CK model with broken channel symmetry.
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It was originally suggested that in the local regime with double occupancy, i.e. for t/U
small and (n) ~ 2, the left and right impurities (1 and 3) tend to form two relatively
independent Kondo correlated states, while the central impurity (2) plays no important
role.’®” We named this the “double Kondo regime”. That hypothesis was based on the
analogy with the DQD coupled in series between two leads®'® and the two-impurity Kondo
problem.? In DQD, the two relevant energy scales are the exchange energy J = 4¢*/U and
the Kondo temperature Tl((l); for t/U such that Tl((l) < J, the exchange interaction leads to
the formation of an inter-impurity singlet. In TQD, two electrons can reduce their energy
by hopping within the TQD, therefore instead of J the relevant scale is the kinetic energy
linear in ¢. We thus postulated the existence of a cross-over at ¢ ~ T[((1 ' to a double Kondo
phase, where the spin of each electron is screened by electrons from the nearest lead. In
reality, using NRG calculations I find that the T'SK regime actually extends in the region
of double occupancy and that there is no “double Kondo regime”.

In Table 8.1 I give quantitative relations for lines between different phases of the system.
Boundaries between phases 'M1’, 'M2’, 'M3’, and 'L3’ are determined in the molecular
[' — 0 limit by exact diagonalization and expansion to the lowest non-trivial order. The
expressions are in excellent agreement with numerical results for conductance presented in
the following section. It should be noted that all transitions are smooth cross-overs; there
are no abrupt phase transitions.

Phase 1 Phase 2 Condition

empty M1 §~U/2+ 2t
5~ U2+ 302U, t<U

M1 M2
§~U/8+V2t, t2U
~ - 2 <
v M3, L3 6~ U/2—2t+3t2 /U, t<U
S~ U(1/4+2UM?), t2U
M3 L3 V2t~ J
L3 TSK J ~ 2Tk

Table 8.1: Definitions of boundaries and cross-over regions between various phases in
Fig. 8.4. Here J = 4¢*/U.

Model IT has AFM and TSK regimes separated by the crossover regime. There is clearly no
MO regime; instead, the AFM regime extends to the region of high J, where the two models
describe very different physical systems. Since the left and right conduction channels are
not communicating (in the sense that there are no L < R cotunneling processes), the
channel symmetry is maintained and a stable 2CK NFL ground state is expected for all J.
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8.1.3 Zero-temperature conductance

In model I with £ = 0, left and right conduction channels become decoupled and the TQD
is clearly not conducting. In contrast, for large ¢ this system can be mapped to STAM (see
above) and is fully conducting at the p-h symmetric point.!*7190:348 The p-h symmetry of
the first type restrains the phase shifts for the even and odd channel, §g*" and (5ggd, to
either 0 or 7/2;?' the conductance, given by

G =Gy sin2((5gf}d — oo, (8.9)

qp

can thus be either G = Gy or G = 0. Consequently, there are only two possibilities:
either the conductance is G = Gy down to the t — 07 limit, or there is a quantum phase
transition to a zero conductance state at some small ¢. 1 will show that for 7' < T[(f) the
TQD is also fully conducting in the TSK regime for any ¢ # 0 and that the transition
from AFM to TSK regime is not a phase transition. Weak perturbations from the p-h
symmetric point are marginal, therefore the TQD is expected to have an extended region
of high 7" = 0 conductance as a function of the gate voltage.

In Fig. 8.6 T present the zero-bias conductance G along with the total occupancy (n) as a
function of the gate voltage for a range of ¢ and for fixed U/D = 0.5 and T'/D = 0.09. The
conductance is calculated with various methods, as explained in the introduction to this
section.

For t/U = 0.2, the system is in the MO regime. As the occupancy monotonically decreases
from 6 (full TQD) to 0 (empty TQD), the conductance exhibits well resolved peaks when
occupancy is odd and valleys when occupancy is even.”34 In this regime, the conduc-
tance obtained with CPMC and GS methods shows good agreement, and the Hartree-Fock
method gives reasonably good results.

The local regime emerges for ¢ /U < 0.2. The conductance is unitary near the p-h symmetric
point, while in the charge transfer region, § ~ U/2, the conductance exhibits humps
separated by dips. In this range the CPMC method is no more applicable since due to
the computational restrictions on the system size, its energy resolution is insufficient to
describe the small Kondo scale.

It should be noted that the TQD is fully conducting at the p-h symmetric point for any ¢
and as t/U is reduced the system goes continuously through three different Kondo regimes.

8.1.4 Correlation functions

In Fig. 8.7 T show the ground state expectation values of charge fluctuations (dn;)* =
n?—(n;)? and spin-spin correlations between neighboring S-S, and between side impurities
Si1 - Sz at the p-h symmetric point as a function of ¢. These calculations were performed
using NRG (A = 4, Campo-Oliveira discretization, truncation with energy cut-off at 12wy

or at most 2000 states kept).
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Figure 8.6: Conductance G /Gy and occupancy (n) as a function of the gate voltage for
various inter-dot hopping parameters t. Note that the energy scale in panels (d) and (e)
is different. Error bars of CPMC are smaller than the size of circles. For comparison the
Hartree-Fock (HF) results are also shown.

For model I, the smooth cross-over from MO to AFM regime, predicted to occur on the
scale of t; ~ U/2v/2 (Table 8.1) is reflected in the decrease of charge fluctuations and the
increase of spin-spin correlations. The cross-over from AFM to TSK regime occurs when

J ~ Tf((l) or tog ~ \/T[(;)U/Q: as t decreases past ty the spin-spin correlations tend toward
zero as the spins decouple. For model II, the results in the TSK regime match closely
those of model I, while in the AFM regime near ¢t ~ t; the differences become notable.
Large values of J > I" suppress charge fluctuations on side-dots, (6ny)?> — 0, while local
moments on impurities tend to form a well developed AFM spin-chain (for comparison, in
isolated three-site spin chain (S; - Ss) = —1/2 and (S; - S3) = 1/4).

If U/T is smaller, the local moments on sites 1 and 3 are less well developed since the charge
fluctuations are larger, Fig. 8.7b. The characteristic values of the spin correlation functions
in the AFM regime then cannot be attained. Consequently, the boundaries between various
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Figure 8.7: Charge fluctuations and spin-spin correlations of model I (lines without sym-
bols) and model II (lines with symbols) as a function of the inter-dot coupling ¢ (for model
I) or corresponding J = 4¢*/U (for model II) at the p-h symmetric point. Left panel
corresponds to U/D = 1, right panel corresponds to U/D = 0.5. The molecular-orbital
(MO) regime is characterized by large on-site charge fluctuations, the antiferromagnetic
spin-chain regime (AFM) by negative spin correlations of neighboring spins 1-2 and pos-
itive correlation of spins 1-3, and the two-stage Kondo regime (TSK) by vanishing spin
correlations.

regimes are more fuzzy.

We now focus on the local regime with double occupancy, Fig. 8.8 (for reference, results
at ¢4 = 0 are shown in panel b). For small ¢, I find (chc?,,) ~ 0 (not shown) and
S1-S3 ~ 0, which implies that sites 1 and 3 are uncorrelated: the second electron equally
occupies symmetric and antisymmetric orbitals 1/v/2(cy,, =& c3,). This implies that both
left and right sites are independent and both form a valence fluctuating state with the
neighboring lead. The electron on the central site then undergoes Kondo screening by
coupling antiferromagnetically with the quasiparticles from each valence fluctuating state.
The screening of spins thus occurs in two stages. The first stage corresponds to the behavior
found in the strongly asymmetric Anderson model with § — U/2, thus the screening has
exponential temperature dependence and is not Kondo-like. The second stage, however,
is Kondo-like screening: although ¢ is near U/2 on the central site also, the effective
hybridization is very small.

8.1.5 Thermodynamic properties

In Fig. 8.9a we plot the impurity contribution to the magnetic susceptibility and entropy
at the p-h symmetric point for U/D = 1 and a range of ¢ calculated using NRG (A = 4,
B = 0.75, Campo-Oliveira discretization, typically the truncation energy cut-off is set
at 12wy and up to 3500 states are kept). The ground state of model I is nondegenerate,
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Figure 8.8: a) Properties of the TQD at double occupancy, (n) = 2. b) Correlation
functions as a function of the inter-dot coupling ¢/D for ¢; = 0.

simp = 0, and the impurities are fully screened for all £. In MO regime the system undergoes
single-channel Kondo screening with T that increases with ¢ and becomes constant for
t > U, see Fig. 8.10. In this regime the system is well described by effective SIAM with
parameters Uy and I'y.

In AFM regime, the binding of spins is most clearly discernible in the curves calculated at
t/D = 0.05 which show a kink in i, at 3In2 (local moment formation), followed by an
exponential decrease t0 Sy, = In2 at T ~ 4¢*/U. The Kondo screening in AFM regime
is of single-channel type for ¢/D > 0.02. Between ¢/D = 0.02 and ¢, there is a cross-over
regime with NFL-like properties. Here magnetic ordering competes with the single-channel
Kondo screening of left and right impurity. The magnetic moment is rapidly quenched at
T ~ Ty ~ J, yet the entropy does not go to zero but exhibits a In2/2 NFL plateau.. At
still lower temperature Th, NFL fixed point is destabilized by the channel asymmetry and
the system crosses over to the FL ground state characteristic of the conventional Kondo
model. Note that in this regime T}, is high while T is low (Fig. 8.10), making this range
suitable for experimental study of NFL physics.

In TSK regime, the left and right impurity are screened by the single-channel Kondo effect
at temperature Tl((l) that is nearly the same for all ¢t < t5 (Fig. 8.10). The susceptibility
is reduced from ~ 3/4 to 1/4 and the entropy from 31In2 to In2. The central impurity

is screened by the 2CK effect at TI((Q), below which the system is near the NFL fixed
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Figure 8.9: Impurity magnetic susceptibility and entropy at 6 = 0 for model I (full lines)
and model IT (dashed line) with J = 4¢*/U. Left panel corresponds to U/D = 1, right
panel to U/D = 0.5. Lozenges 4 are a fit to Bethe-Ansatz results for one-channel Kondo
model (multiplied by two and shifted by 1/4) and squares B are a fit to NRG results for

2CK model. Inset: TI((Z) = aTI((l) exp(—bT[((l)/J) scaling of the second Kondo temperature
of model I. a = 0.97, b = 4.4, T /D ~ 1.0 1075,
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Figure 8.10: Cross-over scales of models I and II as functions of the inter-dot coupling. The
magnetic screening temperature Ty, is defined by Ty x(Tier)/(gup)? = 0.07; it is equal to
the Kondo temperature when screening is due to the single-channel Kondo effect. Th is
here defined as S, (Ta)/kp =1n2/4.
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point with In2/2 entropy. In the inset to Fig. 8.9 we show that Tz(?) scales as T[(f) x
T exp(—cTE /), as expected for the TSK effect, 174183188

Model II has a stable NFL ground state. For low J, it has a T'SK regime where the the
Kondo temperature T' I(f ), determined by J, is lower than that of the corresponding model
I, set by max{.Jy, o} = J; > J (Fig. 8.10). In the crossover regime physical properties of
model IT for T" > T)x match closely those of model I. In A FM regime, the Kondo temperature
is a non-monotonous function of J. The energy required to break the doublet spin-chain
state increases with J and the effective Kondo exchange constant Jx o I'/J decreases. Tk
therefore decreases exponentially with increasing J. In contrast, the Kondo temperature
of model I in MO regime increases monotonically with ¢ and becomes constant for very
large t.

The spin-1/2 degree of freedom responsible for NFL behavior is either the collective spin of
the three impurities forming a magnetic chain (in AFM regime) or the spin of the central
impurity (in 7SK regime). In the cross-over regime, the distinction between the two cases
is lost.

For smaller e-e repulsion U, Fig. 8.9b, the cross-over regime is not well developed. Further-
more, the difference between models I and II is accentuated. As previously commented,
the models differ in that in model 1 electrons can cotunnel between one lead to another.
The smaller U is, the more likely such tunneling events are, and the larger the channel
asymmetry is. Hence, the In2/2 plateau in the entropy curve disappears as Th becomes
comparable to T I(f ). For constant I', U thus controls the degree of the channel symmetry
breaking.

8.1.6 Fixed points

NRG eigenvalue flows show that for any ¢ # 0 (i.e. for MO, AFM and TSK regimes alike),
the model I at 6 = 0 ultimately flows to the same strong coupling FL fixed point. The
spectrum is a combination of two FL spectra: one for odd-length and one for even-length
free electron Wilson chain.?? By performing the calculation in a basis with well defined
parity, it can be ascertained that odd channel gathers a 7/2 phase shift, while even channel
has zero phase shift. The fixed point eigenvalues of a single chain for A = 2 are

1} = 0.6555129, 1.976002, 3.999881, A, A°,..., N odd;

8.10
75 = 1.296385,2.825966, 5.656852, A"/% A%2 ..., N even. (8.10)

The predicted fixed point spectrum fits very well the computed NRG energy levels.

The finite-size spectrum of the unstable intermediate-temperature fixed-point of model I
is in agreement with the boundary conformal field theory predictions for the 2CK model®
(Fig. 8.11). The same fixed point is obtained as the stable zero temperature fixed point
for all J in model II. In Fig. 8.12 we plot the NRG eigenvalue flow of model II in the
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Figure 8.11: NRG eigenvalue flow for odd-length Wilson chains of model I (A =2,z = 1) in
the cross-over regime (below) and the corresponding impurity entropy (above). The states
are classified according to the total isospin and total spin quantum numbers, (I, S). The
low-energy fixed point is a combination of one odd-length and one even-length Wilson chain
free-electron spectrum (black full stripes). The black full strips are at energies 0.655 = 77,
1.296 = 77, 1.311 = 277, 1.952 = n] + 0y, 1.967 = 3} and 1.976 = n*2. The intermediate-
temperature unstable fixed point is the 2CK NFL fixed point. Red hatched strips are
at energies (after rescaling by 1.296) 0, 1/8, 1/2, 5/8, 1, as predicted by the boundary
conformal field theory approach to the 2CK problem.®°

TSK regime for both even and odd iteration N. At intermediate temperatures (N ~ 15
to N ~ 35), the system behaves effectively as a FL with a (nearly) free local moment.
This agrees with the qualitative picture of the first stage Kondo effect leading to local
Fermi liquid systems, the quasiparticles of which then screen the non-compensated spin on
the impurity 2. It may be noted that there is no even/odd alternation in the finite size
spectrum at the 2CK fixed point, similar to the case of the single-impurity 2CK model.

The characteristic 0,1/8,1/2,5/8,1,1+1/8, ... sequence of excitation energies in the 2CK
model NFL fixed point can be reproduced using free Majorana fermion field theory with
appropriately twisted boundary conditions.”® 19511 The conduction band electrons are of
four different types (spin g =7 or |, channel a = L or R). We further decompose elec-
trons (Dirac fermions) into real and imaginary parts (Majorana fermions, Appendix F)
to obtain eight Majorana fermions in total.”® These have SO(8) symmetry (see Sec. 2.3).
Using bosonization into charge, spin, flavor, and spin-flavor bosons,'%:1!! followed by some
transformations and the refermionization, it can be shown that the NFL fixed point cor-
responds to the boundary conditions where three of eight Majorana fermions are twisted
and the free conduction band SO(8) symmetry is broken down to SO(3) x SO(5).76 !

The spectrum of a system of finite size with one type of free Majorana electrons with
periodic boundary conditions (Ramond sector) is'
TR

Bp=—rh k=123 (8.11)
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Figure 8.12: NRG eigenvalue flow of model II (A = 4, z = 1/6) for odd and even-length
Wilson chains. Note that there is no even/odd alternation in the finite size spectrum at
the 2CK NFL fixed point.

and with anti-periodic boundary conditions (Neveu-Schwartz sector) is

TUR

Ens = 7

—k, k=1/2,3/2,5/2,. (8.12)
Furthermore, the difference in the ground state (vacuum) energy between the two sectors
15 mup 1
TUR

Eor — Eons = AT (8.13)
Taking into account the twisted boundary conditions, the spectrum is generated by taking
three Majorana fermions from one sector and five Majorana fermions from the other.'!!
The construction can be presented in a pictorial manner, Fig. 8.13. To obtain the correct
degeneracies, one must take into account that the ground state degeneracy of N zero-energy
Majorana modes is 2/"/2 where [z] denotes the integer part of z. This approach leads to
correct energies and degeneracies of the 2CK fixed point.

8.1.7 Robustness of the NFL regime

In model I, the channel symmetry is broken intrinsically by the inter-impurity hopping,
which contributes a left-right cotunneling term of the form JirS-(spr+sr1) to the effective
2CK Hamiltonian. Here siy is the left-right spin operator?*

SR = Z CTLI@;L(l/2a-MM/)CRk'H" (814)

kK !

The impurities then couple to a symmetric and antisymmetric (even and odd) combination
of channels with exchange constants Jg a = Jawe £ Jir. The effective model at intermediate
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Figure 8.13: Schematic representation of the excitation spectrum of the two-channel Kondo
model fixed point.

temperature is

Heyg = Z Z engngW + Z J,s, - S. (8.15)

kpu v=S,A v=S,A
with
1 1 t
Gkps = %(Ck@ + Ck:uR)a Ikpa = ﬁ(ckuL - Ck:uR)a Sy = Z gkw(l/QUuu’)ngu-

KK pp!

(8.16)
Index v = S, A here runs over the two effective Fermi-liquid channels. It must be empha-
sized that these do not correspond to two decoupled semi-infinite conduction leads, but
rather to even and odd combinations of the former. Despite its weakness, the channel
asymmetry destabilizes the NFL state and leads to the FL fixed point characteristic of the
one-channel Kondo model. Since Jg > Jy, the second stage Kondo effect occurs in the
even channel. As the first stage Kondo effect led to 7/2 phase shifts in both channels,
the additional shift of 7/2 in the even channel gives total zero phase shift in this channel
(recall that the phase shifts are defined modulo 7), while odd channel quasiparticles still
experience 7/2 phase shift. This is consistent with the NRG eigenvalue flows presented in
the previous subsection.

The asymmetry parameter
A=NAN/T? (8.17)
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with A = p(Js — Ja) = 2pJir and J = p(Js + Ja)/2 = pJayg determines the cross-over
scale!!

Ta )Tk =~ A% (8.18)

Estimating Jgs and J,4 for /D = 0.005 using the Schrieffer-Wolff transformation we obtain
A?* ~ 107% to be compared with Ta/Ti; ~ 107° determined by the NRG calculation.
The discrepancy appears due to competing magnetic ordering and Kondo screening (and
emerging two-stage Kondo physics); simple scaling approach fails in this case.
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Figure 8.14: Effect of various perturbation terms on the impurity contribution to the
entropy. (a) Particle-hole symmetry breaking § # 0. (b) Parity breaking H' = V;_3(n;—n3)
(note that the channel asymmetry is not affected by this form of parity breaking). (c)
Unequal e-e repulsion U; = Us # U,. (d) “Dangerous” perturbation that breaks channel
symmetry H' = Vin;.

It is instructive to study the effect of various additional perturbation terms on the stability
of the In2/2 NFL plateau in the temperature dependence of the impurity contribution
to the entropy. We focused on the cross-over regime, which occurs for U/D = 1 and
I'/U = 0.045 around ¢t/D = 0.005. We find a high degree of robustness with respect to the
p-h symmetry breaking up to /U ~ 0.2, Fig. 8.14a, left-right symmetry (parity) breaking
up to Vi_3/U =~ 0.2, Fig. 8.14b, and unequal e-e repulsion parameters, Fig. 8.14c¢ and more
detailed 8.15. In this last case we notice that when U; = Us is decreased, the system is
pushed towards the AFM regime,'®® since the fluctuations on sites 1 and 3 increase and ng)
decreases below J. If, however, U; = Uj is increased, the system goes into the two-stage
Kondo regime since TI((U is higher than J. In this latter case, there will still be a In2/2
NFL plateau, however the relevant temperature interval is shifted to considerably lower
temperatures and becomes narrower.!® The most dangerous perturbation is the channel-
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Figure 8.16: Site occupancy, charge fluctuations and spin correlations as a function of the
on-site energy 0.

symmetry breaking, Fig. 8.14d, which rapidly wipes out the NFL plateau. It should be
noted, however, that those asymmetries of the device that break the left-right symmetry
can be corrected using gate voltages in experimental realizations of the three-impurity
model where the on-site energies and inter-dot tunneling parameters can be controlled
independently.

It is interesting to follow the behavior of correlation functions as the gate voltage ¢ is swept,
Fig. 8.16. We observe that the occupancy of side (left and right) dots decreases and the
charge fluctuations increase as we move towards the valence fluctuation regime of the side
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dots; the occupancy of the central dot is hardly affected due to its weak effective coupling.
An important consequence is the reduction of the spin correlations: the rigid spin chain
breaks near 6 = 0.3U and the system enters the two-stage Kondo regime, as is visible in
Fig. 8.14a.

8.1.8 Temperature dependence of conductivity

Measuring the differential conductance in a three-terminal configuration (see the insets
in Fig. 8.17) provides an experimental probe into the NFL behavior. The qualitative
temperature dependence of the zero-bias conductance through the system can be inferred
in a very rough approximation from the frequency dependence of the spectral functions.
The conductance through the system is given by Ggeial/Go ~ 4(7T Ay3)? (Ref. 350) and the
conductance through a side dot in three-terminal configuration by Ggq./Go ~ 7l A;.3%!
The appropriately normalized spectral densities are shown in Fig. 8.17 for the cases of
cross-over regime with a NFL region and AFM regime with no discernible NFL behavior.
In the NFL region (t/D = 0.005 and Tao < T < Ti), the conductance Ggge ~ 1/2G,
while Gieriar ~ 0. The increase of the conductance through the system at T < Ta is
concomitant with the cross-over from NFL to FL fixed point, since charge transfer (or,
equivalently, channel asymmetry) destabilizes the NFL fixed point like in the two-impurity
case.”> In the AFM regime with no NFL region, both conductances increase below the
same temperature scale, i.e. at T' < Ty... Measuring Gyige and Gyepa could therefore serve
as an experimental probe for observation of NFL physics.

In Ay (w), the Hubbard peak at U/2 corresponds to adding an electron to the site, while the
“magnetic-excitation” peak at J appears when, after adding an electron, the electron with
the opposite spin hops from the impurity into the band. This breaks the AFM spin chain,
increasing the energy by J, see Fig. 8.18. The magnetic peak evolves into a “molecular-
orbital” peak at the energy of the non-bonding orbital (for ¢ in MO regime) or into the
Kondo peak of the side dot [for ¢ in TSK regime, see Fig. (8.19)]. It may also be observed
that the approach to the w = 0 limit is different in FL. and NFL cases.

8.1.9 Conclusion

In a wide range of gate voltages around the p-h symmetric point, the TQD system has a
FL ground state with high conductance at 7' = 0. The different regimes exhibit different
approaches to this fixed point. At finite 7', the system has NFL properties which can
be detected by measuring Ggqe and Ggeial in a three-terminal configuration. The most
likely candidate for observing this 2CK behavior is the cross-over regime with competing
magnetic ordering and Kondo screening, J ~ Tx. In this regime the NFL behavior occurs
in a wide temperature range and it is fairly robust against various perturbation that do
not additionally increase the channel asymmetry.
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spectral function A, (w).
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Chapter 9

Scanning tunneling microscopy

The scanning tunneling microscope (STM) was invented by G. Binnig and H. Rohrer in
1982.352 Tt brought unprecedented resolution in imaging of surfaces of conducting samples
and quickly became one of the prominent tools in surface science. In this chapter I briefly
review some of the applications of the scanning tunneling microscopy (Sec. 9.1), describe the
construction of a low-temperature STM (Sec. 9.2) and give some background information
on ultra-high vacuum systems (Sec. 9.3) and sample preparation (Sec. 9.4). Finally, in
Section 9.5 I show some examples of images obtained with the new instrument.

9.1 Applications of the scanning tunneling microscopy

A number of good comprehensive review articles and books on scanning tunneling mi-
croscopy and related topics were published in the past.?*3%0 These cover general aspects
of imaging of clean and adsorbate-covered surfaces, tunneling theory and interpretation of
STM images, scanning tunneling spectroscopy and STM hardware. In addition, there is a
number of reviews of more specialized subject matters such as imaging of metal surfaces,3¢!
tunneling theory,?6? interaction of surface states with nanostructures,?®® high resolution im-
age interpretation,®¢*3% chemical identification via inelastic tunneling spectroscopy,%¢:367
manipulation of atoms*® and molecules®®® and single-molecule chemistry.>™® In this section

I thus only review topics that I personally find particularly interesting.

An important research field where STMs find use is surface chemistry and catalysis of
molecules. This domain of research has many immediate applications; some notable ex-
amples are organic light emitting diodes, thin film transistors and molecular electronics
(the use of single molecules as building blocks of electric circuits®™37). In Table 9.1 I
list some combinations of organic molecules and surfaces where successful imaging was
performed. Topographical STM images of molecules sometimes exhibit atomic scale fea-
tures. A particularly good example are planar molecules where the molecular “height”
is typically 2A and the internal structure is visible with ~ 0.4 A corrugation.?”™ Such

169
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planar molecules are highly interesting for molecular electronics; they typically have a cen-
tral aromatic = board and spacer-groups (“legs”) that lift the molecular backbone from
the surface.3™37™ Generally, internal structure features agree well with simple Hiickel
molecular-orbital calculations:3™37 image contrast is similar to calculated valence charge
density. In addition, STM can be used to determine a number of important properties®””
such as adsorbate orientation and binding site,>™®3™ diffusion rates,3¥%38% molecular con-

formations,37:376:387.388 conductance of molecules®®?3%! and growth and crystallization of
molecules on surfaces.375 392
Moleculo Surface  Referonce Molecule Surface Reference
C,H,  Cu(211) 393 pyridone Cu(L10) 106
CyH, Cu(100) 394,395 pyridine Cu(100) 391
butene Pd(110) 206 pyrollidine Cu(100) 407
CO Cu(211) 397 Cu-PC Cu(100) 379
CoHg, CO Rh(111) 400 [-carotene Cu(111) 409
benzene  Ag(110) 101 decacyclene Cu(110) 375
benzene  Pt(111) 378 HeBDC f\“(ﬂ?) jﬂ(l)
naphthalene Pt(111) 379 c%;)n;ge Ag(l 11) 419
azulene  Pt(111) 388 PTCDA A“EHO; 13
xylene - Pd(1L1) 402 Lander C1g1(110) 375,414
anthracene  Ag(110) 403 C Au(111) 4’15
pentacene  Cu(111) 404 C60 Au(110) 116
sexiphenyl  Ag(111) 405 CZZ Ag(100) 417,418

Table 9.1: Observation of molecules on different surfaces
Using magnetic tips, one can study magnetic ordering on atomic scale,*'* 420 magnetic vor-
tex cores,”?! and magnetic hysteresis.*?? An emerging field is combining STM with electron
spin resonance spectroscopy to detect the presence of localized spins on surfaces;*?3%24 in
this type of experiments, the STM is operated in a magnetic field and the high-frequency
components of the tunneling current are monitored to detect spin precession. From mea-

sured Larmor frequency, the gyromagnetic ratio of the spin entity can be inferred.*?*

Especially important is the tunneling spectroscopy which provides information on local
density of states (spectral functions)*?® with high spatial and energy resolution. It was
applied to systems which exhibit the Kondo effect,* 5 269426429 quperconductors,*3°43° and
artificial atomic chains,**® to name just a few. It is even possible to study vibrational
properties of single molecules®%40L407:437.438 30 q magnetic properties of single atoms,**”
spin chains*® %! and magnetic islands.**?> A new trend is to study molecules on a thin
oxide layer grown on metal surfaces, for example Al,O3 on NiAl(110) surface.%%43 Since
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the oxide is a tunneling barrier, the molecule is coupled to the metal conduction band
very weakly. This decreases the hybridization broadening of molecular-orbital electronic
levels; in addition, vibrational states become better defined.**® Very accurate tunneling
spectroscopy can then be performed.%®

The tip of the STM can also be used to perform manipulations. It is possible to perform lat-
eral and vertical manipulations of single atoms3%3397: 4147449 and molecules,369:397:4507453 and
to controllably induce reversible conformation changes of adsorbed molecules.?®” Atoms
can be extracted from the native substrate by controlled tip crash.*>* Finally, using STM
surface reactions can be studied at the single molecule leve],370394,396,429,438,455-457

I conclude this short review section by remarking that atomic-scale imaging is also possi-
ble using atomic force microscope (AFM)*8461 which also allows measuring of chemical-
bonding forces between two atoms.*%?

9.2 Construction of the low-temperature STM

We have undertaken the construction of an ultra-high-vacuum (UHV) liquid-helium-cooled
low-temperature (LT) STM (Fig. 9.1) to complement an existing room-temperature (RT)
instrument Omicron UHV STM-1. The design constraint for the new LT STM was to accept
the Omicron sample plates in order to retain compatibility with the existing equipment, and
that the LT STM be housed in the same vacuum system. The long-term goal is to achieve
capabilities comparable to those of similar systems developed at the Freie Universitét
Berlin*%® and commercialized by SPS-Createc GmBH, i.e. vertical and horizontal stability
of ~1pm at 6 K.

Figure 9.1: Schematic drawing of the modified Besocke type STM scanner. Piezo tubes
are shown in yellow, the ramp disk in green, the tip holder and the tip in red, the sample
plate in dark blue and the sample clamping support in light blue.
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9.2.1 The cryostat

In low-temperature STMs, either the sample or the entire STM head with the sample can
be cooled down to low temperatures. The advantage of the latter approach is enhanced
stability, reduced transfer of impurities from hot to cold surfaces (i.e. to the sample), and,
most importantly, better energy resolution in tunneling spectroscopy. Several cryostat
types are used. Liquid-helium (LHe) bath cryostats are commonly used,*®® but it is also
possible to cool down an STM using flow cryostats.64-467

We have used a bath LHe cryostat (Fig. 9.2a) based on the original design by G. Meyer.%3
It consists of a 41 LHe reservoir suspended on a long thin-walled stainless-steel tube (neck)
which reduces losses through thermal conduction. The STM head itself is suspended on
three springs from the cold copper plate on the bottom of this reservoir. The head is
surrounded by a nickel-plated copper radiation shield which is solidly bolted to the LHe
reservoir. At the bottom of the radiation shield chamber, there is a gold-plated copper
plate that faces oppositely mounted plate which holds magnets; this assembly enables the
system of the tube, reservoir and radiation shield to play the role of a large magnetically
damped pendulum which reduces the transfer of the environmental horizontal vibrations to
the STM head. Liquid helium reservoir is enclosed in a larger (5.31) liquid nitrogen (LN2)
shroud whose main purpose is to reduce losses via radiation transfer from the vacuum
chamber walls at room temperature to the LHe part of the system. In addition, there
is a thermal link (copper braid) from the LN2 reservoir to the top of the LHe neck to
provide heat sinking to LN2 temperature; in this manner, the temperature gradient on
the longer portion of LHe reservoir neck is significantly smaller (furthermore, thermal
conductivity coefficients are lower at reduced temperatures). An additional nickel-plated
copper radiation shield is bolted to the bottom of the LN2 reservoir which provides another
layer of radiation shielding for the STM head. Care was taken to reduce any openings in the
shields as much as possible: radiation losses radiation losses are one of the main limiting
factors both for the ultimate working temperature of the STM head and for the cryogen
(in particular LHe) consumption. To reduce radiation losses in the vertical direction (i.e.
radiation from the RT top wall of the UHV chamber to the LHe reservoir), a number
of radiation plates are soldered to the LHe neck. Finally, there is a thermal link (three
100 pm high-purity Au wires) between the cold finger and the baseplate of the STM. This
link proved to be crucial to reduce the ultimate temperature of the STM head and to
provide thermal stability in time. It is very important how the thermal link wires are
installed: at low temperatures, the thermal conductivity of very pure gold is high and
an important source of thermal resistance is the contact resistance. Contact resistance
depends on materials on both sides of the junction; it is lowest in the case of homogeneous
junctions (the same material on both sides) when the thermal impedance is matched. Even
for homogeneous junctions, the differences are large: the conductance of gold-gold contacts
is 20 times larger than that of copper-copper contacts.*6%49 It is interesting to note that
the majority of heat is carried across the interface by thermal waves (phonons) rather than
by electrons.*®®4™ Thermal conductance increases linearly with the applied pressure so
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the contacts must be tight.
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Figure 9.2: Schematic drawings of the currently used and newly constructed LHe bath
cryostat.

The holding times in the fully assembled system with this cryostat are 14 h for LN2 and
26 h for LHe (provided that LN2 reservoir is never empty). The ultimate temperature of
the STM head is 5.9 K as measured on the sample holder stage using a Si diode (LakeShore
DT471). The cool-down time of the STM from RT to LN2 temperature is approximately
one day, and it takes further 15 h to go down from LN2 to the lowest attainable temperature.

In 2005, the construction of a new improved LHe bath cryostat was undertaken (Fig. 9.2b).
It was designed to solve a number of problems that we experience with the existing cryostat.
To assist design decisions, I have developed a simple Mathematica package Krio (http:
//auger.ijs.si/nano/krio) for building thermal models of cryogenic systems. As input,
it takes a list of parts of the system and thermal links (radiation, conduction) between
them. The equations are then set up automatically and numerically solved. Temperature
dependencies of thermal conductivity coefficients are taken into account. As output, we
obtain ultimate temperatures of all parts and thermal currents between them. Using this
package, one can easily identify critical elements which can then be optimized. One of
the interesting results is that the surface emissivity of reservoirs and radiation shields is
the most important element. Emissivity can be reduced by polishing and plating of large
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surfaces, or by wrapping them in gold-plated mylar sheets (as long as this does not spoil
the ultimate pressure in the vacuum system and reduce the pump-down time excessively).

In the new cryostat, the cryogen reservoirs are significantly larger (61 for LHe and 201
for LN2), which should improve holding time. The volume inside the LHe cryoshield
is enlarged to allow easier mounting of the STM head, better access for maintenance and
neater routing of the instrumentation wiring. The cryostat is assembled from separate LHe
insert and an external vacuum chamber with the LN2 reservoir; in this manner, LHe part of
the cryostat can be pulled out for installation of wiring and repairs (should the need arise).
There are additional vacuum flanges to improve flexibility of the system and the possibility
of adjusting the tilt of the LHe neck has been added. The cryostat was manufactured by
Vacutech, Ljubljana. At the time near the completion of this dissertation, the first tests
of the cryostat are being planned.

9.2.2 The STM head

The STM head we have built is based on modified Besocke-beetle type STM head:*1472
the modification consists in having a fixed sample, while the main piezo tube is mobile on
a ramp disk that can be coarsely positioned both horizontally and vertically using three
supporting piezoelectric tubes,3 4™ while in the original design the scanner was fixed and
the sample plate mobile.*™® The main parts for the head were purchased from Createc
GmBH, however the STM head was heavily adapted to accommodate samples mounted
on Omicron-type sample holders (Fig. 9.1). In addition, we used a different design for
magnetic eddy-current damping of vertical vibrations. The fully assembled STM head is
shown in Fig. 9.3.

Figure 9.3: Pictures of the assembled low-temperature STM head (left) and the ramp disk
(right).

Piezoelectric tubes with longitudinally quartered electrodes on the outside and a single
continuous electrode on the inside wall are used.*™ 4™ The coarse piezo tubes are Staveley
Sensors EBL #2 (PZT-5A), L = 18.5mm long, D = 6.4mm wide, t = 0.5 mm wall thick-
ness; the central piezo is Staveley Sensors EBL #2 (PZT-5A), L = 10.3mm, D = 6.4 mm,
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t = 0.5mm.*"® Some properties of this piezoceramic are given for reference purposes in
Table 9.2. To drive the piezotubes laterally, bipolar symmetric voltages on opposing seg-
ments of the outer (X, Y) electrodes are used, while the tubes are extended by applying
voltage to the inner electrode (Z). For this purpose we use a high-voltage amplifier manufac-
tured by Createc that is based on high-slew rate (up to 1000 V/us) Apex PA85 MOSFET
operational amplifiers.

To move the main piezo scanner with respect to the sample surface and to perform the
coarse approach of the tip to the surface, stick-slip technique is used to move the ramp
disk. 475473477 Saw-tooth like voltage profiles are typically used, but cycloidal*”” and
parabolic'™ profiles are more effective. Both the amplitude and the frequency of the driving
signal are important®™ and they must be carefully determined for different temperatures
at which the system is operated.

We repoled the piezo tubes after observing that the ramp disk plate was running askew
during rotation. This is achieved by applying high voltage (600V, positive on outside
electrodes, negative on inside electrodes) for a long time (several hours), while the piezos
are moderately heated using an incandescent bulb held in close proximity. No appreciable
deviations during rotation were observed after repoling. It should be noted that piezo
tubes can depole with time due to aging and thermal cycling and even during normal use
since scanning is equivalent to applying an ac field to the piezoelectric; taking the depoling
field value from Table 9.2, we obtain a depoling voltage value of 350 V rms for our tubes.

Property Value Units

d3 173 A/V at 293K
dss 3.80 A/Vat 293K
ds 031 A/Vat 42K
d33 0.69 A/Vat42K
Y, Young’s modulus 6.3 10N /m?

AC depoling field 7 kV/cm rms
Dielectric constant K7 1725

Curie temperature 350 °C

Thermal conductivity 1.5 W/m K
Density 7.5 g/cm?

Table 9.2: EBL #2 material properties. Source: Staveley Sensors.

During normal operation, the outer coarse piezos are used to scan over the surface area in
X and Y directions, while the main central piezo is used for vertical displacements; in this
mode of operation, the vertical and horizontal displacements are approximately decoupled.
The vertical expansion of a piezotube is given by

_dylL
ot

AZ

Vz, (9.1)
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where ds; is the piezoelectric coefficient, L tube length and ¢ wall thickness. This gives
35 A/V piezo constant in Z direction at room temperature and 6.4 A /V at LHe temperature
for the central piezo tube. Horizontal displacement is given by3%347

0.9d3, L?

AX,AY =
’ Dt

where D is the diameter of the tube. For the central piezo this gives 52 A/V piezo constant

at RT and 9.2 A/V piezo constant at LHe temperature, while for the coarse piezos we
obtain 170 A/V at RT and 30 A/V at LHe.

The piezoelectric behavior of the tubes, as well as the mechanical resonance frequencies
of the tubes themselves and of the scanner as a whole, can be studied by measuring the
double piezo response: one electrode (or a pair) is used to excite the piezo, another to
measure the response.?™ 8 An example of such measurements is shown in Fig. 9.4. The
lowest resonance frequency is found to be ~ 900 Hz. This lowest mechanical resonance
frequency limits the highest scanning speed attainable.*™

Capacitance of a piezo tube is
B 2K eqmL
~ InOD/ID

where ID = d and OD = d + ¢ are inner and outer diameter, K is the dielectric constant
and ¢ is the vacuum permittivity. This gives C' = 4.2nF for the central piezo and C =
7.5nF for coarse piezos. This is more than the capacitance of the wires, so measuring the
capacitance is a reliable test to determine if the wires make contact to the electrodes when
the system is already assembled. As a quick test, one can manually apply a high voltage
ramp to a pair of electrodes (e.g., 200V in one second) and observe the transient current
which should rise to a few pA.

C (9.3)

For assembling parts that need to be glued together, we used special two-component epoxy
glue which is sold as leak sealant by vacuum components companies (“epoxy patch” from
Caburn). Once cured, this glue has very low degassing rate and is suitable for ultra-high
vacuum applications. Excellent adhesion to sufficiently rough surfaces can be achieved
and the joints are very strong, especially if the curing process is performed at elevated
temperatures. Cured glue can withstand bake-out temperatures up to 125°C; at higher
temperatures it becomes softer.

The STM tip holder is attached at the center of the central piezo tube using a magnet
that is glued in a metal plated ceramic receptacle which, in turn, is glued to the end of the
main piezo tube. The tips are made of etched tungsten wire (see below); the wire segment
is inserted into a syringe tube and crimped.

We first attempted to wire the head using 50 um thick polyimide-insulated (HML) high-
purity copper wire (California Fine Wire Company) but this proved to be troublesome,
especially in the initial stages of our work when the system had to be repeatedly disassem-
bled for modifications and tuning. The wires tend to break near the soldering points where
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Figure 9.4: Double piezoelectric response for various electrode combinations. The first
electrode given in subfigure captions is being excited, the second is used to take measure-
ments.
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(a) Glued solder joints

(c) PTFE assembly 2

(d) Connector on (e) Omicron sample plate (f) STM head (g) Heat
the cold plate holder in cryoshield sink

Figure 9.5: Close-up pictures of some elements of the STM system and of wiring.
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the insulation is stripped and the mechanical strength of the wire reduced; in addition,
we observed that the wires tend to thin down during soldering, perhaps by the action of
the soldering flux. Later we opted for 75 um and 100 gm 0.45Ni-0.55Cu (constantan) wires
which are much more robust. Furthermore, we developed the practice of putting a small
drop of epoxy glue on the soldering points (Fig. 9.5a); the glue embeds the uninsulated
part of the wire and plays the role of a stress relief. Due to small confines of our present
LHe cryoshield, we had to be meticulous about the routing of the wires from the STM
head to the connector at the cold plate to avoid tangling of the wires and to prevent that
the wires touch the shield and bring in more environmental vibrations. We decided to use
multiple stages: the signal wires first go from attachment points (piezos, Si diode, sample
holder) to pins on a PTFE ring tightly attached to the guarding ring of the STM head
(Fig. 9.5b), from there to pins on another PTFE ring fixed to the bottom of the cold plate
(Fig. 9.5¢), and from this ring to the connector (Fig. 9.5d). Using pins and sockets provides
for easier maintenance. In addition, the wires are neatly coiled and, in a sense, become part
of the spring suspension system (see below). From the connector at the cold plate, 150 um
polyimide-insulated stainless steel (SS316) wires take the signals to the RT connector at
the top of the cryostat; stainless steel wires are chosen for their low heat conductivity and
(relatively) low electrical resistance of ~ 150€. We test all cables for mutual shorts at
> 400V and for shorts to the ground at > 300 V.

All signal wires must be properly thermally anchored. In the presently used cryostat, the
wires are anchored on the cold plates of the LN2 and LHe reservoirs: they are glued in
epoxy and embedded between two very thin mica plates over ~ 1cm length (Fig. 9.5g).
These plates are then glued to the cold plates. There is no heat sink at the top of the
cryostat as we do not have access to that area. In the new cryostat, the wires will be
thermally anchored to LN2 temperature at the top of the LN2 reservoir using gold-plated
copper bobbins (LakeShore Cryotronics, Inc.) and at the LHe cold plate at the bottom of
the cryostat using beryllium oxide heat sink blocks (LakeShore), so that the temperature
gradient from LN2 to LHe temperature will occur over a much longer length of wires
(~ 1m).

For soldering we use lead-free silver-tin alloy Castolin 157 in conjunction with Castolin
157N liquid flux. This combination is useful not only for soldering wires, but also for
assembling metallic parts, in particular stainless steel parts where excellent bond strengths
are achieved. It is very important to remove flux residue as it is etching. In addition, we
observed that the flux reacts at high temperatures with the epoxy glue to produce insoluble
conducting black goo which can lead to short circuits.

9.2.3 Bandwidths, resolution and vibrations

For an estimated ~ 10 nF capacitance of the piezotube and the internal and external wires,
and ~ 300 €2 of resistance of a pair of wires, we estimate the RC time constant to be of the
order of 3 us. For a 512 x 512 STM image recorded in one minute, assuming equal forward
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and backward scanning speed, the point-to-point mean time is ~ 100 us. The RC constant
is thus not a limiting factor. Neither is the 60 kHz bandwidth of the high-voltage amplifier
that drives the piezo tubes, nor the < 5 us conversion period of the D/A converters. We
are therefore limited essentially by the bandwidth of the tunneling current preamplifier
(for example, 1.2kHz at 10° V/A in the low-noise mode) and by the mechanical resonances
of the scanner (which are also of the order of 1kHz).*™

There is no intrinsic resolution limit in STM comparable to the diffraction limit of optical
and electron microscopes. STM is essentially a counting apparatus: we measure the number
of electrons that tunnel through the barrier in a unit of time. The wavelength of electrons
concerned plays no role in this regard (beyond the fact that transmission probability is
a function of electron energy/momentum). It is useful to remember that 1nA roughly
corresponds to ~ 10? electrons per second. At ~ 1kHz bandwidth, the relevant time
interval is 1ms, i.e. 10° electrons. Considering the tunneling as a Poissonian process, the
shot noise is ~ 1/ V106 = 1073 of the signal amplitude, i.e. 1pA. Johnson-Nyquist noise at
1 GS) impedance at 1 kHz is lower by an order of the magnitude even at room temperature.
Finally, the intrinsic noise of the current amplifier (Femto DLPCA-200) is declared to
be 4.3fA/\/I£, i.e. ~ 0.1pA at ~ 1kHz bandwidth. In usual circumstances, electronic
noise is not a limiting factor since it is much smaller than the set-point tunneling current
(provided, of course, that the system is properly shielded from external electromagnetic
interference). Instead, lateral resolution is limited by the width of the tunneling current
flux, i.e. by the atomistic details of the STM tip over which one has little control. Vertical
resolution is chiefly limited by the tip-sample vibration amplitude, which also affects lateral
resolution. For good results, stable tip and stable STM scanner are thus essential.

In order to reduce the noise due to external electromagnetic interference in the tunneling
signal, it is important to place the current amplifier as close to the tunneling junction as
possible. A convenient choice is to connect it directly to the BNC feed-through at the top
of the cryostat. The connection between the feed-throughs and the STM head is currently
made using shielded twisted-pair cable; one wire is used for the tunneling current, the other
for the bias voltage applied to the sample. A possible improvement would be to use two
separate insulated coaxial cables for these two signals and to make a common ground at
the input of the current amplifier. The two coaxial cables can then be twisted to eliminate
the 50 Hz power line noise. It is recommended to wire the tunneling signal separately from
the high-level signals used to drive the piezo-tubes to reduce noise coupling.

External cables for high-level signals also need to be properly shielded to prevent that they
pick up high-frequency electromagnetic interferences from the environment and radiate
them in the STM head. Shielded paired data transmission cables (liycy) are a good choice.
A pair of wires is used to carry a pair of signals that are connected to the opposite electrodes
of a piezo tube.

Another important aspect is correct grounding. Shields on cables should be grounded
at one point only to prevent the noise currents from flowing.*®! For ungrounded circuits
(such as the STM junction), the best shield connection point is at the current amplifier
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(amplifier common terminal).*®! Shields around amplifiers should also be connected to

amplifier common terminals.*®" All grounds should be solidly connected (soldered, bolted)
to avoid hard-to-diagnose problems later on.

The vacuum chamber, pumps and other vacuum equipment is always grounded to a safety
ground. It is appropriate to use separate signal grounds for all STM wiring and to con-
nect the two grounds at a single point at the main power inlet box of the laboratory, thus
avoiding possible ground loops and, more importantly, common ground impedance coupling
problems.*®! Unfortunately, this is not always practicable nor economical, since floating
vacuum electrical feed-throughs are more expensive. By trial and error, we largely suc-
ceeded in eliminating the 50 Hz power line noise. We also find that it helps significantly to
power the STM electronics through an insulation transformer; even better solution would
perhaps be a dual conversion online uninterruptible power supply (online UPS) which is
an excellent filter for removing line noise.

To monitor noise levels, it is very useful to perform real-time spectral analysis of the
tunneling current signal. Since the frequencies of interest are in the audible frequency range,
the signal can be fed to an audio input of a personal computer via a high-impedance buffer
(since audio inputs typically have relatively low input impedance). While this provides a
convenient and inexpensive way to perform spectral analysis, one should nevertheless note
that the frequency response in the consumer-grade audio cards is non-flat and that such
inputs typically have a high-pass filter which prevents to observe noise below 10 Hz which
also affects the operation of an STM in a significant manner. Typically, we observe that
spectra contain some 50 Hz noise and higher harmonics, as well as sharp peaks attributed to
mechanical resonances. Using a loudspeaker directed to the UHV chambers which is driven
by a frequency generator, it is also possible to study the transfer of acoustic vibrations from
the environment to the STM junction.

Most importantly, the stability of the system can be quantified by imaging flat crystalline
surfaces such as Cu(111) (Fig. 9.6a) and calculating the standard deviation of the topo-
graphical z signal along a line profile in the fast scanning direction (Fig. 9.6b, first three
rows) and along the slow scanning direction (Fig. 9.6a, last two rows). The heights can be
calibrated accurately from the known step height, 210 pm (Fig. 9.6b, first row). The stan-
dard deviation of the height on the lower part is ¢ = 1.2 pm and o = 1.5 pm. To calculate
these values, the image was leveled using the three-point procedure®®? and a polynomial
background of second order was subtracted from each segment of the line profile (Fig. 9.6b,
second and third row). The line profile along the slow scanning profile (Fig. 9.6b, fourth
line) exhibits more irregularities. The standard deviation is higher, 0 = 4pm. After
performed additional image processing (step line correction®? and subtraction of the poly-
nomial background of third order from the line profile, see fig. 9.6b, last line), the calculated
standard deviation is ¢ = 2 pm.
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Figure 9.6: Determination of the stability of the system from line profiles on flat surfaces.
Cu(111), U =943 mV, I = 0.38nA, image size (108 nm)?, 328 ms per line.
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9.2.4 Vibration isolation

To reduce transfer of environmental vibrations to the STM chamber, the entire vacuum
system is suspended on pneumatic vibration isolators (Melles Griot self-leveling vibration
isolators) which provide both vertical and horizontal isolation. Their resonance frequencies
are around 1Hz and transmissibility is below 6% and 10% for horizontal and vertical
vibrations, respectively, at 5 Hz which is the typical frequency of vibrations in buildings.

The STM head is suspended on stainless steel springs and its oscillations are damped by
eddy current damping.?>® This setup very effectively damps the high frequency (acoustic)
range of environmental vibrations that are transferred through the springs. The relation
between the axial load F', and the deflection A of a spring with coil diameter D, number
of coils n, and wire diameter d is F' = SA, where S is the stiffness or rate of the spring:

Gd*

= — 9.4
SnD?3 (9-4)

where G is the shear modulus of elasticity (modulus of rigidity). Elastic properties of some
materials used in STM applications are listed in Table 9.3. For packed springs the length
of the spring L = nd and S = Gd®/8LD>.

Material Modulus of rigidity Young modulus Thermal expansion coefficient
G [10'°N/m?| Y [101°N/m?]  «a [107°K™|

Aluminum 2.6 7 23

Platinum 6.1 16.8 9

Gold 2.7 7.8 14

Silver 3 8.3 19.6

Copper 4.8 13 17

[ron 8.2 21.1 12

Music wire 8 21

Stainless steel 6.7 17.3

Tungsten 16.1 41.1 4.5

Table 9.3: Shear modulus (rigidity modulus), and Young modulus of elasticity for a se-
lection of wire materials. The values are given for room temperature. Sources: CRC
Handbook of chemistry and physics, and http://www.matweb.com.

Let us consider the force exerted on the base plate of the STM if the attachment point of
the spring oscillates as A = Agsin(wt). It is clear that a hard string will transfer vibrations
more efficiently than a soft spring. The transfer of vibrations depends on the damping of
the STM head using the eddy-current damper. We define the () factor as

Wo

= % (9.5)
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Here wy = /S/m is the eigenfrequency of the vertical vibrations of the STM head of
mass m, while v is the damping rate. The transfer function of this mechanical system is
(Ref. 353; note that the power of wy in Eq. (10.17) in the book must be corrected to 4)

K(w) = \/ ( e (9-6)

wo — w2)2 + 4vy2w?’

If there is no damping, the transfer function at high frequencies is K(w) ~ (wg/w)?. With
damping, we have K(wo) =~ Q and K(w) =~ (1/Q)(wo/w) for w > Qup.>?® A Q value
of 3 — 10 is usually chosen as a compromise between the suppression of resonance and
the suppression of high-frequency vibrations.>*® Clearly, harder spring means higher @ if
damping is left unchanged.

Spring rate of typical coils used to suspend an STM head (d = 0.5mm, D = 4mm,
L = 10 cm, stainless steel) is S ~ 300N/m. For three coils, we have a total stiffness of
roughly 1000 N/m.

It may be noted that a set of 25 copper wires of d = 100 um diameter, each rolled into
a spring of diameter D = 3mm with n = 20 loops has a stiffness of S ~ 30N/m. For
a thicker wire of d = 200 um, the stiffness is S ~ 450 N/m, which is comparable to the
stiffness of the suspension springs, but probably still acceptable. The idea here is to use the
wires as part of the suspension system. The wires must be firmly mechanically attached
to the baseplate of the STM and only then routed to the final electrical connection point
(piezo electrodes, leads of thermometric diode, etc.). It is not a good idea to connect the
wires directly to their final connection point since in that case different forces are exerted
to various parts of the instrument; if all wires are fixed on the baseplate, the differences
are effectively compensated and the STM head tends to vibrate as a whole. The worst
case scenario is if the wires are routed directly to the scanner, since environment vibrations
then translate into sample-tip distance oscillations.

9.2.5 Tip preparation and characterization

Regarding the tip, three factors are important for reliable STM operation: the tip must
have high flexural resonant frequencies to allow high scanning rate, it must have a sharp
apex (ideally a single site of closest atomic approach) and it must be clean so that a series
resistance is not present.*®3 There is a large number of STM tip preparation recipes. Two
types of tips are most commonly used: etched tungsten (W) tips and mechanically cut
platinum /iridium (0.9Pt/0.1Ir) tips. W tips can be made very sharp, they are suitable
for tough samples due to their hardness which prevents deformations and erosion during
imaging, but their lifetime in air is short because of W oxidation.*84% The resistance of
a tungsten oxide layer can easily be much higher than the desired tunnel gap resistance;
such a tip would crash before the set tunneling current can be obtained.*®® In addition,
tunneling spectroscopy of metal surfaces using oxidized tips shows a spectrum characteristic
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of a semiconductor.*®® Pt /Tr tips, on the other hand, are oxide free and can be used in air
for very flat surfaces, but they are not suitable for highly corrugated surfaces.*®*487 These
tips are prepared by cutting the wire with scissors. The reproducibility is low: the method
“relies on operator’s skill rather than on controllable parameters”.*87

Other types of tips are also sometimes used. Ni tips are oxide free,’” while Co tips
form a homogeneous thin oxide layer which prevents further oxidation.*®® Both can be
reproducibly prepared by etching. Furthermore, they are ferromagnetic, so they can be
used to perform spin-polarized tunneling microscopy.

We mostly used W tips. We prepare them from polycrystalline tungsten wire of 99.95%
purity with a diameter of 0.25mm or 0.38 mm. We electrochemically etch?®5%% the wire
in a (typically) 2N solution of KOH at a depth of a few millimeters beneath the surface.
W wire is the anode and we use a ring of Au wire as the cathode. With an etching current
of 10mA, the process takes around 10min. We use a home-made electronic device to
accelerate the shutdown of the tunneling current when the wire starts to break apart since
a short cutoff time is necessary to obtain a sharp tip.**%1% As mechanical cutting of W
introduces defects, it is a good idea to remove the damaged material by etching away a few
millimeters of the wires.*> W tips are robust with respect to dipping in liquids and even
dropping if the very end of the tip is untouched.**! It was found, however, that ultrasonic
cleaning®®® or exposing the tip to a jet of water from a perpendicular direction bends the
tip apex. It is important that etching and rinsing be performed using clean and dust-free
liquids; we observed that tips are often covered with dust particles, often even near the tip
apexes, Fig. 9.7.

As etched, the tips are always chemically contaminated. Using ESCA, we have detected
K containing crystallites, while other groups reported existence of thin carbonaceous
phases. 181485192 Ahove all, the tip is always coated with a layer of tungsten oxide. These
contaminants can be removed by etching in concentrated HF.*®® Since a new oxide layer
would form on a time scale of several days®3484192 (3 contradicting report of Ekvall et
al.®! maintains that no traces of oxides were formed for more than one month), it is best
to perform the HF treatment just prior to introducing the tip in the UHV system. The
tip is exposed for 10s to concentrated HF, then immediately rinsed with deionized water
and dried with pure isopropanol (IPA). All tungsten oxides are soluble in concentrated
HF, while tungsten itself should be inert to attack by HF.*¥¢ Nevertheless, it is found that
the tip sharpness is reduced after prolonged HF etching.*®® On the other hand, short HF
treatments do not remove the insulating layer entirely.*”! It is thus very important to
perform further in-situ preparation of the tip using either ion bombardment*®® or anneal-
ing; 184485493 ypfortunately such treatments are not currently possible in our system since
we do not have the possibility to change tips in situ using a manipulator. Finally, and
most importantly, the tips can be improved by intentionally crashing them in a soft metal
surface (such as Cu or Ag) in a controlled manner and applying a large potential for a
short time;*®¢ the tip apex is then expected to be covered by sample atoms. We found
that such crashing treatment was required for all our tips to achieve stable operation and
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Figure 9.7: SEM images of two different electrochemically etched W tip with contamina-
tion: large-scale overview (left) and zoom to the apex region (right).

atomic resolution.

It is characteristic for bad tips to show an oscillating tunneling current when the tip is held
stationary. Often the oscillations have the appearance of a series of current spikes between
regions where the current is close to zero: a spike appears when a break is produced in an
oxide layer and metallic region is exposed.*®

The control of STM tip shape, bulk and surface composition is of extreme importance. To
characterize a tip, an optical microscope can be used to eliminate tips that are bent on a
large scale, while SEM and TEM can be used to obtain information on the apex region.
With the resolution of the SEM, it is not really possible to distinguish a sharp tip from a
blunt one.*** Only using TEM is it possible to study the very apex of the tip; one can even
detect a possible insulating layer.*”' A cheap alternative to TEM characterization is the
use of the field-emission from the tip apex to determine the effective apex curvature.??

9.2.6 Sample transfer mechanism

Due to budget constraints, instead of using standard but costly manipulators, a specialized
sample transfer mechanism has been constructed (Fig. 9.8). Its purpose is to convey the
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sample from the central chamber (where the sample storage carousel is located) to the
STM head. It has three degrees of freedom: linear motion to insert the sample in the
STM, vertical motion to let go the sample once it is properly fixed by the pair of clamps
in the STM head, and rotation to suitably orient the sample. The mechanism is affixed in
the narrow space of the flange neck in the UHV chamber where the STM is housed. The
mechanism is operated using a wobble stick, as well as by linear and rotary feed-throughs
that are located in other parts of the vacuum system and connected to the mechanism by
thin stainless steel braided wires.

Figure 9.8: Sample transfer mechanism

A major difficulty in mechanical assemblies operated in UHV systems is friction which
increases quickly as the oxide layers wear off, resulting in cold welds. Often even a single
motion cycle can lead to a grinding halt. It is interesting to note that similar problems
arise in the space technology. The solution consists in using light-load designs that rely
on UHV-compatible ball bearings; direct rubbing of components must be avoided. If this
is not possible, hard coating improves the situation considerably. We have experienced
excellent results with TiN coating which eliminated cold welding; in addition, it has low
coefficient of friction that does not increase with motion cycles in a perceptible manner.

Vacuum-related mechanical problems can easily remain undetected during prototype con-
struction at ambient conditions, therefore early testing in UHV is recommended.

9.3 Ultra-high vacuum system

An important development in vacuum technology was the invention of copper gasket seals
by Wheeler in 1962;%* this was the first reliable seal for achieving ultra high vacuum
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(UHV), defined as pressure below 107" Pa (or 10~ mbar). Pressures as low as 10714 Pa
have since been measured in the laboratory.?®> It is interesting to note that this is still
several orders of magnitude higher than the vacuum in the deep space.*’%

Use of UHV is important to study reactive surfaces with strong chemisorption of molecules;
at the limit pressure of 107 mbar it takes 10%s to cover a surface with a monolayer of
contaminants if the sticking coefficient cg is unity (oxygen sticking coefficient for poly-
crystalline Cu at RT is quite low, ~ 107,47 it is even lower for smooth single crystal Cu
surfaces;**® for more reactive metals and for semiconductors, it can be considerably higher).
Obtaining UHV is rather demanding: the experimental set-up needs to be constructed from
suitable materials, be extremely clean and have small surface area, and vacuum pumping
must be performed in multiple stages (rotation or diaphragm fore pumps, turbomolec-
ular pumps, and gettering ion and sublimation pumps when high vacuum is attained).
Furthermore, the entire vacuum systems needs to be “baked” to remove adsorbed water,
hydrocarbons, CO and CO,.*%° These species have a surface lifetime in the range of seconds
to hours and therefore hinder rapid pump-down; in contrast, species with longer lifetime
remain stuck to the surfaces, while species with shorter lifetime are quickly desorbed and
pumped out of the system.

Mean free path (for example of air molecules) at p = 1072 mbar is A\ ~ 50 km, therefore
gas molecules collide with chamber walls more often than they do with each other. The
corresponding Knudsen number Kn = \/d > 1 (here d is the characteristic size of, e.g., a
tube) and the flow characteristics are well within the free molecular flow regime.”® The
pressure can vary from chamber to chamber and even from point to point inside a single
chamber; it is important where the pressure reading is taken. It is worth noting that the
number of gas molecules adsorbed on the walls of the chambers is higher than the number
of flying molecules; at low pressure the surface area of the system is thus more important
than the volume.

Conservation of mass equation for gas in the chamber is*%*
dp
Vel = L+QA-Sp, (9.7)

where V' and A are the system volume and surface area, L is the leak rate, () is the out-
gassing rate per unit area and S is the pumping speed. To obtain UHV, it is essential that
L < QA, i.e. all seals must be tight and there must be no virtual leaks inside the system
(there will always be some permeation of the atmospheric helium and hydrogen®!). The
ultimate pressure is then

QA

Poo g
Note that the system volume drops out of this equation; it does affect, however, the
pump-down time. Usually the maximum value of the pumping speed S is limited by
available space if not budget. Furthermore, the theoretical maximum pumping speed is
approximately proportional to the chamber surface area A (for example 441s™tem™2 for

9.8)
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H, at 300 K).*9%495 To reduce the ultimate pressure it is therefore necessary to reduce the
out-gassing rate ) by suitable choice of materials and by baking the system.%!

The entire UHV system is schematically represented in Fig. 9.9.

Figure 9.9: Schematic representation of the UHV system with room-temperature STM (in
the green chamber to the left) and LHe low-temperature STM (in the green chamber to
the right) with cryostat (blue), manipulators and wobble-sticks for handling the samples
(orange and red), sample storage chamber (textured gray), sample preparation chamber
(gray) with a Knudsen evaporation source (dark gray) and a sample analysis chamber
(cyan). The system is mounted on a solid frame (light gray) which is carried on four
pneumatic isolation cylinders (not shown).

To check the composition of the residual gas, we use a quadrupole mass spectrometer
(QMS) to record mass spectra. Residual gases can then be identified by referring to
mass spectra cracking pattern tables which list largest peaks for common substances. The
background gases at the ultimate pressure are typically hydrogen and trace amounts of
low-weight hydrocarbons (CH,), nitrogen, oxygen and argon. As a rule of thumb, if the
oxygen peak (32) is higher than the argon peak (40), there is a leak from the atmosphere.
When the STM is cooled down to LHe temperatures, the pressure drops further due to
the cryopumping action of the cold cryostat walls. The residual gas inside the radiation
shields consists essentially of He atoms; the sample stays clean for days, if not months. For
reference purposes, I list largest peaks in QMS spectra for different vacuum conditions in
Tables 9.4.

UHYV is dynamically maintained by pumping the system using titanium sublimation getter
pump and ion pumps; the main purpose of the latter is to provide pumping for rare gases
and methane which are not pumped by sublimation pumps. We bake the system at 105 °C;
this relatively low temperature has been chosen to prevent softening of the glue used in
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m/q Species Intensity /103

1 H 0.4 m/q Intensity
2 H, 2.7 m/q Intensity

1 0.6
12 C 0.1 ) | 5 5
15 CHs 0.1 5 03 5 03
16 CHy, O 0.2

16 0.4 16 0.3
17 HO 0.25

17 0.6 18 0.3
18 H>O 0.8

18 1.5 28 0.5
2% CyH, 0.1 o5 05
28 N, CO 1.25 (c) LN2 in cryo-
32 04 <0.05 (b) Empty cryo- stat

stat

(a) Before bake-out

Table 9.4: Typical peaks in mass spectra (a) before bake-out (p = 2 x 10~" mbar) and (b,c)
after bake-out in the case of (b) empty cryostat reservoirs (p = 5 x 107 mbar) and (c)
with LN2 (p = 1.9 x 107" mbar) in the cryostat reservoirs. m/q is the mass/charge ratio
of ionized particles that is measured by QMS.

the assembly of the low-temperature STM head. During bake-out, the system is covered
with ironing table fabric cover which has very good thermal insulation properties in the
relevant temperature range and is straightforward to install due to its light weight. A
single radiative infrared bake-out heater with a fan is used. In addition, we have taped
heater cables on vacuum chambers: these are used to perform small bake-outs after sample
preparation processes such as sputtering which lead to increased contamination levels in
the system.

9.4 Preparation of clean surfaces and evaporation of
materials

For STM work, sample surfaces of good quality are required. Ideally, the surface would be
atomically flat with the same chemical composition as the bulk of the crystal. In reality,
all surfaces (with the possible exception of some layered compounds that can easily be
cleaved) are contaminated (oxidized) and rough. The samples must therefore be cleaned
by ion sputtering and annealed.’*? Ion sputtering is a process of removing surface atoms
by bombarding the surface with ions of high kinetic energy (we use Ar accelerated to
1keV).5%  Even if the surface is flat and ordered before sputtering, ion bombardment
disrupts the crystal lattice and the sample must be annealed. Unfortunately, annealing
brings contaminant atoms from the bulk to the surface by enhanced diffusion; in copper,
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for example, the most problematic species is sulphur. Cleaning must therefore be repeated
in cycles of sputtering and annealing. In this manner, a decreasing gradient of contaminant
concentration is achieved in the near-surface region of the bulk and the surface can be made
relatively clean. During the last cleaning cycles the acceleration voltage can be decreased
as the surface is already relatively flat; it should be just high enough to sputter off the
contaminants without damaging the surface excessively. Annealing temperature may also
be decreased.

The cleaning process was automatized to relief us from tedious manual work. Computer
regulates the sample temperature (through Oxford Instruments ITC4 temperature con-
troller) and acceleration voltage and filament current controls of the ion gun. During
annealing, the ion current is shut down by setting the acceleration voltage to zero and
the emission current is reduced by decreasing the filament current to improve the life-time
of the emission cathode. To calibrate the temperature control, we measured the surface
temperature using an optical pyrometer. As our pyrometer works in the near-IR range, we
constructed view-ports into which we mounted ZnSn plates; ZnSn is transparent both to
IR and to visible light, therefore the laser beam pointer of the pyrometer can be aimed at
the surface and the temperature read-out performed.

Single-crystal copper samples with (111) and (211) surfaces were used in this work. Orig-
inally, we had the samples cut using wire saw from ingots and polished mechanically;
results were modest and required extensive in-situ preparation. In addition, circular disk
sample geometry proved problematic for mounting on Omicron sample plates. We later
used purchased samples of square shape with mounting steps on edges (MaTeck GmbH,
Germany, and Surface Preparation Laboratory, Netherlands). These samples are cut using
spark erosion and polished with high orientational accuracy (to within 0.1°) and to very
low surface roughness (average roughness R, ~ 30nm); a few cycles (~ 10) of sputtering
and annealing were sufficient to obtain large atomically flat terraces with little defects on
new samples.

To monitor the composition and crystal order of the surface we use Auger electron spec-
troscopy (AES) and low-energy electron diffraction (LEED). In AES, we irradiate the
surfaces with high-energy (of the order of 3keV) electrons which knock out core-state
bound electrons. The resulting core-level holes are filled by electrons from higher energy
outer-shell orbitals of the same atom and the difference in energy is carried away by a
third electron which is ejected from the atom (Auger process); it is these latter electrons
that are measured in AES after they leave the surface. With our equipment (Omicron
SpectaLEED) we can detect electrons in the 50eV to 1keV range: electrons in this range
have a very short escape length, therefore they originate from the topmost surface layers.
As the energy differences are characteristic of the element where the Auger process had
occurred, surface composition and chemistry (bonding state) can be probed in this manner.
Our main use of AES is to measure the level of the surface contamination. An example of
AES spectrum is given in Fig. 9.10. Typical contaminants on metal samples are oxygen,
carbon and nitrogen, and sulphur on some lower grade Cu samples.
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Figure 9.10: Auger electron spectrum of a relatively clean Cu sample, captured with Omi-
cron SpectaLEED electron optics and Stanford Research SR830 lock-in amplifier, and
smoothed using Savitzky-Golay smoothing filter which preserves positions of spectral peaks
and their width (in contrast, moving average filters tend to reduce height and increase
width). Red vertical lines correspond to positions of Cu peaks. Some O, C, and S contam-
ination can also be observed.

In LEED, low-energy electrons (E ~ 100eV) are emitted in the form of a narrow beam per-
pendicularly on a surface. Due to wave-particle duality, diffraction occurs and elastically
back-scattered electrons are observed on a phosphorescent screen. In a simple approxima-
tion, the LEED pattern corresponds to the Fourier transform of the charge density in the
surface region projected to a two-dimensional plane in real space. If the surface is perfectly
ordered, the pattern corresponds to the two-dimensional reciprocal lattice of the surface
atomic layer(s). In the presence of disorder, peaks will be smeared and the background
intensity increased. From the shape of smearing, it is possible to distinguish the type
of disorder (chemical inhomogeneity, structural inhomogeneity, etc.) When interpreting
spectra, one should take into account that the lateral coherence length (Ar. ~ 10nm at
E ~ 100eV) is much smaller than the beam spot (< 1mm). The pattern is thus an in-
coherent average of diffraction patterns over a large number of small areas. Examples of
LEED spectra are given in Fig. 9.11.

To evaporate metals in vacuum, atomic beam sources are used.’®*5% Such a source consists
of a container where a determined vapor pressure of a substance is sustained. The vapors
exit through a well-defined opening and a set of apertures. A directional beam is obtained
if the source is operated in the regime where the Knudsen number (ratio of the mean free
path to the diameter of the aperture) is greater than unity. The angular distribution of
the molecular effusion from the source is then described by the Knudsen’s equation

dQ2
dN = Em_JB cos (9.9)

where B is source area, n is the particle density in the source, and v is the mean molecular
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(a) E = 143eV (b) E = 183eV

Figure 9.11: LEED patterns of relatively clean Cu(111) samples. Color photographs of the
fluorescent screen were converted to gray-scale and inverted, so that dark spots correspond
to original bright spots.

velocity of the atoms in the source.’” A fairly uniform beam is obtained using a colli-
mator tube. If the vacuum is high enough, the atoms propagate in straight lines and the
deposited material has sharp boundaries. This approach is also applicable to compounds;
a beam of single molecules (and possibly small clusters) is obtained in this manner. We
used Omicron EFM3 Knudsen source with home-made stainless steel crucibles with noz-
zles to deposit copper-phthalocyanine (CoPC) molecules on metal samples. While this
electron bombardment heating Knudsen source is designed for evaporation of metals, it is
nevertheless possible to evaporate high-melting-point substances such as CoPC.

9.5 Sample STM images

In this section, examples of images obtained using the new low-temperature STM are
shown. They demonstrate that the instrument is capable of achieving atomic resolution
on low-corrugation metal surfaces.

9.5.1 Atomic resolution

The first topographic image with atomic resolution that we have obtained was that of
Cu(111) surface, Fig. 9.12. The lattice constant of copper is a = 3.6 A. On the (111)
surface, the nearest-neighbor inter-atomic distance is \/5/201 =25 A, the next-nearest-
neighbor distance is \/6/2a = 4.4 A and the step height is \/5/3a —21A.

We also obtain atomic resolution on more corrugated Cu(211)= (3(111) x (100)) surface,
Fig. 9.13. This vicinal surface is strongly anisotropic and the top-most atoms form narrow
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Figure 9.12: Topographic image of Cu(111) surfaces exhibiting atomic resolution (left).
V =190mV, I =2.2nA, 77 x 77 A2, T = 25K. The drawing represents the (111) plane
in the f.c.c. lattice (right).

(111)-facets separated by (100)-steps of monoatomic height.397-463:507.508 = The inter-row
distance is 6.35 A and the inter-atomic separation in the top-most atomic rows is 2.5 A.
On large scale images, one can observe that adatom rows form on top of the regular Cu(211)
surfaces along the [011] directions, giving the surface a filamentary appearance, Fig. 9.13a.
Individual missing surface atoms and single adatoms can be resolved, Fig. 9.13b. At higher
resolution, individual protrusion are resolved in the top-most rows, Fig. 9.13c. The distance
between the protrusions does not correspond to the expected inter-atomic distance of 2.5 A;
it is possible that only every second atom is imaged.

9.5.2 Spontaneous tip restructuring

The atomistic details of the STM tip apex change in time either spontaneously by relaxation
and atomic diffusion processes, or during scanning due to atomic forces exerted between
the tip and the sample and due to the strong electronic flux in the apex region. Such
dynamic tip effect can be observed in STM images where contrast is changed in parts of
images, Fig. 9.14. The slow scanning direction is top to bottom, and the fast scanning
direction is left to right. Especially interesting is the left image. In the upper half of the
image, double tip effects can be observed: adsorbates are imaged as deformed elliptical
depressions with a protrusion in the center. The image of the substrate is smeared and
underlying atomic lattice is not clearly resolved. The tip condition is then improved and
rather good atomic resolution is obtained in a narrow band. This is followed by a band of
intermediate tip condition with deformed adsorbate images and only rough atomic raster,
then the tip is improved again for a few scan lines and we finally return to the same bad
tip condition as in the upper part of the image.
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(a) V = 805mV, I = 0.6nA, 300 x (b) V = 805mV, I = 0.6nA, 300 x
300A° 300A°

(c) V =805mV, I = 0.76nA, 200 x
2004°

Figure 9.13: Topographic images of Cu(211) surfaces exhibiting atomic resolution. 7' =
7K.
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(a) U =200mV, I =1nA, T = 25K (b) U =313V, I =0.96nA, T = 25K

Figure 9.14: Examples of images taken with unstable tips

9.5.3 Surface-electron standing waves

Copper has a gap of 5.1 eV at the Fermi energy in the (111) direction, but there is a Cu(111)
surface state band which starts at 450 mV below the Fermi level as can be inferred from
photoemission studies and tunneling spectroscopy.*?® Surface states decay exponentially
in the normal direction but are extended in the transverse direction. On close-packed
noble metal surfaces, such as (111) surfaces of face-centered cubic lattices, the electrons
move almost freely in two lateral dimensions and the the band is highly isotropic. The
motion of this two-dimensional electron gas on surfaces is hindered by different kinds of
obstacles, such as step edges, dislocations, point defects and adsorbates. Scattering at these
obstacles perturbs the surface state charge density and leads to wave-like patterns that can
be observed using STM.?% 5! The observed patterns are electron standing waves, which
are often claimed to be Friedel oscillations. Strictly speaking, true Friedel oscillations are
charge density (p(r)) oscillations around impurities.”’? What we observe on topographic
STM images are rather energy-resolved charge-density (n(r, F)) Friedel oscillations.’'® The
two quantities are related by

p(r) = —e/ F n(r, £)dE, (9.10)

—00
where Fr is the Fermi energy.

We have observed standing waves around impurities on Cu(111), Fig. 9.15. On highly
symmetric surfaces such as Cu(111) scattering on adsorbed atoms is isotropic to a good
approximation, thus the patterns are circular. At the Fermi level, surface state electrons
have a wavelength of approximately 14 inter-atomic distances, but one should recall that
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(a) U = 98mV, I = 0.56nA, T = (b) U = 89mV, I = 0.76nA, T =
25K 25K

Figure 9.15: Standing waves around impurities on Cu(111) surface.

in local density (|1 (r)|*) wavelength looks half as long. The problem of surface standing
waves can be formulated as a scattering problem in two dimensions. The two-dimensional
scattering matrix 7 is:>!*

T(E) o« e sin §(E), (9.11)

where ¢ is the s-wave phase shift of the electrons that are scattered at the defect. § is a
complex number; imaginary part accounts for absorption of the scattered wave to the bulk.
This expression is used in the Dyson’s equation G = Gg + GoT'G to obtain the Green’s
function, from which we extract the local density of states (spectral function) at a given
point:

A(B.r) = — T (G B)] ~os Ag(E) |14 —LRe (Gt (9.12)
') = 27 m r,T, ~kr>1 410 27T2 2% Lr ) .

where k is the energy dependent wave-number of the surface-state electrons, and Ay(F) is
the spectral function of the unperturbed 2DEG. This equation is valid in the far field of
the scatterer.

9.5.4 Molecules on surfaces

On many occasions, we have imaged Cu(111) terraces covered with individual molecules,
Fig. 9.16. Each molecule is imaged as a depression surrounded by a protruding ring. The
molecules were not deposited intentionally; these are rather molecules which are difficult to
eliminate in the sample cleaning process, most likely CO molecules which are a notorious
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contaminant species on Cu(111) surfaces. CO adsorbs on the top site with carbon atom
down®® and it is imaged as a depression by clean metallic tips. The origin of the protruding
ring are Friedel oscillations around the adsorbed molecule.

(a) U = 211mV, I = 1nA, (b) U = 636mV, I = 1nA,
T = 25K T = 25K

Figure 9.16: Cu(111) covered with a low concentration of CO molecules.

We also observed in some cases that the molecules are displaced under the effect of the
tip, Fig. 9.17. The molecules appear to be pushed away from the tip during successive line
scans, which leads to appearance of worm-like linear structures; each such line corresponds
to a single molecule being displaced. It should be noticed that not all molecules seem to be
moved by the tip; some are immobile and imaged as depressions (black spots) without any
artifacts. Later, when we attempted to perform controlled manipulations, it was confirmed
that some molecules are indeed more easily displaced than others. It is likely that some
molecules are trapped by subsurface impurities which lead to stronger binding, or that
there are in fact two different molecular species on the surface.
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Figure 9.17: Cu(111) covered with a low concentration of CO molecules. U = 501mV,
[ =0.96nA, T = 25K,



Chapter 10

Clusters of magnetic adatoms and
surface Kondo effect

Magnetic nanostructures are attractive candidate systems for data recording applications
(information storage in a magnetic medium) and for spintronics (information processing
using spin degrees of freedom). Studies of magnetic properties of clusters of magnetic im-
purities elucidate how magnetism appears as the system size is increased.’'®*'" Properties
of small clusters adsorbed on surfaces depend strongly on their size and geometry, as well
as on their coupling to the substrate. Due to surface interactions the inter-atomic distances
and cluster shapes may be very different from free clusters in vacuum:*'®°!¥ the adatoms
in the smallest clusters (2-10 atoms) are often found to be planar and in registry with the
surface atoms.’” Furthermore, in addition to bonding interaction (roughly equivalent to
electron hopping in the context of quantum dots ) and direct exchange interaction, there
will always be some substrate-mediated long-range indirect interaction between constituent
atoms (indirect hopping, RKKY exchange interaction).

Co, Fe, Mn and their dimers on NiAl(110) were studied using STS by Lee et al.’*® Sin-
gle adatoms have spin-split single-electron resonances of sp character that can be easily
observed in STS spectra. Spin-splitting originates from the exchange interaction with the
spin-polarized, partially filled 3d states. When two such adatoms are brought together,
the hybridization of these sp resonances depends of the sign of the magnetic interaction
between the atoms. In the case of AFM coupling two spin-degenerate states are expected,
while in the case of FM coupling four exchange-split resonances should appear. The spec-
tral resolution in STS is sufficient to discern between the two possibilities: all three dimers
were found to be ferromagnetic. This demonstrates that STM can be used to study internal
magnetic coupling in metal clusters even without a spin-polarized tip.

The Kondo effect that occurs in the systems of magnetic impurities on metal surfaces is of
special importance; using a low-temperature STM it is possible for the first time to study
a single magnetic adatom in interaction with a continuum of states in the substrate.®> In
bulk Kondo systems we are in fact considering an ensemble average over a macroscopic

200
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number of impurities with random inter-impurity interactions. The Kondo resonance has
been observed, for example, using high-resolution photo-electron spectroscopy that aver-
ages over a typical surface area of 1 mm?.52! An STM, however, has atomic resolution in
space and < 1meV resolution in energy: with STM, magnetic impurities can be charac-
terized both spectroscopically and in space. By measuring the difference of the dI/dV
signal at the minimum and the maximum of the Fano resonance resulting from the Kondo
effect, it is possible to locate spin centers in magnetic molecules with atomic precision.
In Co(CO)4 complexes, for example, the Fano spectral signature is well visible when the
tip is positioned above the center where the cobalt atom is located and it decays within a
radius of 2.5 A.15

Another field of study focuses on the effects of magnetic impurities on correlated materials
such as superconductors. It has been shown, for example, that a magnetic adatom (Fe) on
a conventional BCS superconductor (Nb) breaks Cooper pairs, as expected.*3°

In this chapter I focus on the Kondo effect induced by magnetic adatoms and clusters. In
Section 10.1 I review known experimental results, while in Section 10.2 I briefly present
effective phenomenological and microscopic models in common use. Finally, in Section 10.3
I present results of my NRG calculations of the tunneling current affected by the presence
of impurities; this section also provides the link to the first part of this dissertation.

10.1 Review of experimental results on surface Kondo
effect

Following the seminal work of Madhavan et al.* and Li et al.,” the surface Kondo effect
has been detected in a large number of adsorbate/surface systems in which the magnetic
moment is carried either by single atoms or by magnetic ions embedded in molecules; an
overview of some measured Kondo temperatures in various systems is given in Table 10.1.
It should be noted that experimentalists define the Kondo temperature as the half-width
of the Fano resonance. The half-width is only proportional (but not equal) to the Kondo
temperature. Since the coefficient of proportionality varies from case to case, published
values only indicate the scale of the true Kondo temperature. Another complication is that
extracting the half-width of the Fano resonance by fitting depends on the background-
subtraction procedure. These facts should be taken into account when using published
values of T in theoretical work. Kondo temperatures are seen to cover a wide interval from
much above the room temperature to temperatures below the experimentally achievable
range; this merely reflects the exponential dependence of T on the microscopic parameters.
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Surface  Adatom/complex Kondo temperature Reference
Au Co in bulk 300 — 700 K 4,522
Au(111) Co 70K 4,523
Au(111) Cog < 6K 523
Ag(111) Co 92 K 514,524
Cu Co in bulk ~ 500 K 525
Cu(111) Co 53+ 3K 426
Cu(111)  Co embedded 405+ 35K 526
Cu(111) Co 54+ 2K 525
Cu(100) Co 88 +4K 525
Cu(100) Co(CO), 165 + 21 K 15
Cu(100) Co(CO);3 170 £ 16 K 15
Cu(100) Co(CO)y 283 + 36 K 15
Cu(100)  (Co(CO)s)s 138 + 21 K 15
Cu(100) (Co(CO)3)2 176 £ 13K 15
Au(111) CoPC < 5K 429
Au(111) d-CoPC 208 K 429
Cu(100) Fe < 60K 15
Cu(100) Fe(CO), 140 + 23K 15
Au(111) Ti 70K 527
Au(111) Ni 100 + 20 K, mixed valent 13,527
Au(111) Ni, 42 £ 5K 13
Ag(100) Ti 40K 528
Ag(111) Ce 580K 5
Au(111)  V, Cr, Mn, Fe < 6K 527
Au(111) Cr < 7K 14
Au(111)  Crs, equilateral 50K 14

Table 10.1: Kondo temperatures for surface Kondo effect on metals.
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10.1.1 Kondo effect in a single magnetic adatom

A magnetic impurity (transition metal such as Co or lanthanide such as Ce) adsorbed on
the surface of a normal metal (usually a noble metal such as Cu, Ag or Au) induces a
characteristic narrow (~ 10mV for Co/Cu) anti-resonance-like structure near the Fermi
level in the electronic surface local density of states (LDOS). The characteristic asymmetric
line shape resembles that of a Fano resonance;* it should be contrasted with resonances of
non-magnetic adatoms which are typically much broader (hundreds of mV). The resonance
is spatially centered on the impurity atom and decays over a lateral distance of ~ 10 A,
where the spectrum becomes identical to the one obtained on a clean surface.*?® The
resonance line shape tends to become more symmetric as the tip is moved radially outward;
for Co/Au(111) a symmetric dip is observed at a distance of 4 A.* The observed features
do not depend on the tip used.*?

The simplest interpretation of these results is that the adatom magnetic moment is Kondo
screened and that the observed asymmetric feature in the tunneling spectrum is related to
the Kondo resonance. Since the d-orbitals of magnetic adsorbates are both spatially well
localized within the adatom and far away in energy from the Fermi level, it is reasonable
to assume that the majority of the tunneling current at small bias is carried by the sp-like
states resulting from the hybridization of the substrate states with the adatom electronic
levels (in particular adatom valence s levels). A good indication that this is true is the
independence of the tunneling spectra on the tip-sample distances.®426:427:525 \What the
STM probes is thus, in a very simple approximation, the LDOS of the conduction band
electrons at the position of the impurity local moment (or, more accurately, at the position
of the tip apex), and not the LDOS of the impurity d-level. The hybridization of an im-
purity site featuring a resonance in its spectral function with a continuum band induces a
sharp anti-resonance in the LDOS of the continuum band at the position of the impurity;
it is this anti-resonance that we observe in the experiments with magnetic adatoms. Using
NRG (see Ref. 529 and Sec. 10.3), it can be shown that for asymmetric single-impurity
Anderson model, the anti-resonance indeed has an asymmetric shape similar to that of the
Fano model. This point of view is more than a restatement of the conventional description
of the origin of the Fano resonance as an interference between two tunneling channels;*3°
I find it conceptually cleaner to describe the anti-resonance as a feature of the substrate
LDOS with the effects of the impurity d-orbital taken into account, rather than as an inter-
ference phenomenon between the tunneling in unperturbed substrate band and the indirect
tunneling through the perturbing impurity. The distinction between the two perspectives
becomes unmistakable when the impurity d-level is modeled as a Kondo impurity. In this
case, there is no hybridization to the d-level at all, only exchange interaction; neverthe-
less, a Kondo anti-resonance appears in the spectral function of the conduction band (see
Fig. 6.2). Of course, if part of the tunneling current actually does flow directly through
the impurity d level, the asymmetry is enhanced even further as described by the Fano
model.*?

Recently, the Kondo resonance has also been “directly” observed in the system of a Mn
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adatom on an Al,Oj island formed on NiAl(110) surface:*3° a narrow conductance peak
with Lorentzian shape was observed near zero bias. The magnetic ion is not directly
interacting with the substrate electrons; instead, the interaction is mediated by an oxide
film. More importantly, the tunneling mechanism is most likely different: in this case, the
electrons tunnel from the STM tip to the Mn adatom, and then they tunnel anew through
the oxide layer. This two-step tunneling process strongly depends on the impurity spectral
function and is, in fact, very similar to the transport phenomena in quantum dots weakly
coupled to two electron reservoirs that were the subject of the first Part of this dissertation.
When a magnetic field is applied, the peak decreases in amplitude and then splits:** this
is a conclusive demonstration that the origin of the resonance is the Kondo effect.

Kondo temperature increases with the number of atoms surrounding the impurity.52-526,531

For example, for Co/Cu(111) the coordination number Z = 3 and the Kondo temperature
is T = 54K, while for Co/Cu(100) Z = 4 and Tk = 88K."* Furthermore, impurities
in the bulk have significantly higher T than adatoms, while T = 405K of an impurity
embedded in the surface layer (Z = 9) interpolates between Tk for adsorbed Co atoms
and the bulk Tk of Co/Cu (Z = 12).526 A higher number of neighbors implies stronger
hybridization and thus higher T%. Knorr et al.®?® have proposed a phenomenological model
Jp o< Z which provides a reasonable fit.

Sharp features in LDOS at one focus of an elliptical quantum corral can be coherently
projected by the surface-state electrons to the other focus: this effect has been nicknamed
“quantum mirage”.*?6:532 The experiment is a clear demonstration of the wave nature of
electrons. From a semi-classical point of view, the mirage effect occurs due to the property
of an ellipse that the sum of the path lengths from the foci to an arbitrary point on the
ellipse is constant; if a scatterer is placed at one focus, all scattered waves will interfere
constructively at the other focus.*?® The corral behaves as a resonant cavity and the sharp
spectral feature projected is the Kondo/Fano resonance of the magnetic Co atom in the
focus. As expected, the mirage vanishes when the magnetic adatom is displaced from the
focus. A scattering theory that accounts quantitatively for these results was developed by
Fiete et al.533°3

10.1.2 Dimers of Kondo impurities

Dimers of magnetic adatoms are in many respects similar to the systems of double quantum
dots that were the subject of the first part of this dissertation. The insight developed in
studying quantum dots can also be applied to understand magnetic structures on surfaces.
We saw the important role played by the various inter-impurity interactions. Dimers
provide a convenient playground where the pair-wise interactions between Kondo impurities
can be studied as a function of their separation.???

In quantum corrals formed by Co atoms, the Kondo effect signature is present around

each adatom;*?® at the mean inter-atom distance of 10 A the adatoms thus behave to a

large extent as independent Kondo impurities. Other studies of Co/Au(111) show that
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the spectral line shape does not change in the presence of other Co atoms for inter-atom
separation down to as low as 6 A,* however the Kondo resonance abruptly disappears for
Co-Co separations less than 6 A.523

In another type of experiment, interaction effects between Co impurities on Au(111) re-
mained small as Co coverage was increased to 1 ML,*?" however the fraction of atoms that
exhibited the Kondo effect was reduced. This experiment indicates that long-range RKKY
interactions between Co atoms are weak. On the other hand, two focal magnetic adatoms
in quantum mirage experiments interact quite strongly with one another (the Kondo res-
onances were perturbed)*?® which hints that the surface-state electrons mediated RKKY
interaction can be significantly amplified by constructing a suitable resonant cavity. Calcu-
lations of inter-impurity interaction between two magnetic atoms located at the foci of an
elliptical quantum corral indicate that the quantum corral eigenmode mediated exchange
interaction is ferromagnetic.%3% %36

Madhavan et al. have studied the evolution in electronic properties of Ni/Au(111) as
two Ni atoms are merged to form a dimer.!> In free Ni, molecules, the inter-atomic
exchange interaction is ferromagnetic.’*” For inter-atom distance d > 12 A the adatoms
do not interact. Hybridization effects become observable at d ~ 7A. For d > 4 A the
Kondo temperature is 100 & 20 K, but it drops sharply at the closest separation of 3.4 A.
Using LSDA calculations, they explained their findings by impurity energy level shifts; the
system is moved from valence-fluctuation regime to a regime with stronger local moment
and strongly reduced Tk.

Recently, a study of Co dimers on Cu(100) was performed®* which sheds more light on
this problem. It was shown that for d > 5.7 A, the resonance features recover their d — oo
form, while for d = 2.56 A (compact dimer) the tunneling spectrum is featureless; finally, for
intermediate d = 5.12 A a strongly perturbed anti-resonance was found, which is broadened
compared to the spectrum of the isolated Co atom. An antiferromagnetic coupling J ~
16meV at d = 5.12 A was extracted, which should be compared with kgTy = 7.6 meV
for Co/Cu(100). This system is thus near the critical point at J ~ 2kgT}y. For the
compact dimer, the RKKY interaction is ferromagnetic, binding the spins to S = 1, and
it appears that the (upper) Kondo temperature is pushed below the temperature range of
the experiment.

10.1.3 Trimers of Kondo impurities

Jamneala et al.' have studied trimers of Cr atoms, a frustrated antiferromagnetic system.
Cr has 3d°4s' configuration with large atomic magnetic moment and strong inter-atomic
bonding.'* Cr; clusters can be reversibly switched between two configuration with different
electronic behavior. One has a resonance near ep, the other a featureless spectrum; in the
original experiment, the atomic positions of atoms could not be resolved. It was proposed
that the isosceles trimer shows the Kondo effect since it has magnetic moment, while a
compact symmetric trimer does not since the spins sum up to zero.'* This description in
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terms of classical spins is questionable: quantum mechanically, in a triangle we have an
octuplet of states which split into a quartet and two degenerate doublets. The original
interpretation has been superseded by different theories.?”3%%8 [t appears possible that
in the symmetric trimer exotic Kondo effect with non-Fermi liquid behavior leads to an
increased Ty .3"38

10.1.4 Kondo effect in adsorbed molecules

Kondo effect also occurs in adsorbed molecules containing a magnetic ion, for example in
Co(CO),, molecular complexes.'> The spectral features were related to the Kondo effect
by observing that the resonance remained pinned at the Fermi level when the number of
ligands was changed. Similar behavior was observed in binuclear cobalt carbonyls, which
consist of two cobalt atoms and a number of carbonyl groups.

The coupling between the spin of individual cobalt adatoms with their surroundings can be
controlled by attachment of molecular ligands (here CO molecules). A reasonable fit was
obtained using Jp = Jy+cn, where n is the number of ligands. The exchange interaction .J
and the Kondo temperature increase due to two factors: increased hybridization between
the orbital which carries spin and the conduction band, and delocalization of the d electrons
which decreases the on-site Coulomb repulsion. This implies that by choosing appropriate
ligands, the Kondo temperature can be controlled by modifying the chemical environment
of the spin center.!?

A similar experiment was performed on cobalt phthalocyanine (CoPC) molecules on Au(111).2

In free CoPC molecule, the Co atom has unpaired d electron with magnetic moment. As 8
hydrogen atoms were removed from the PC backbone, the molecule became more strongly
chemically bound to the surface and the Kondo temperature increased.

10.1.5 Kondo effect in metal clusters on nanotubes

Odom et al.?®® have studied small cobalt clusters on metallic single-walled carbon nan-
otubes (CNTs) with STM. On small nanotube pieces, quantum box effects were detected.
A peak near Er was observed above the center of Co clusters which disappeared over a
distance of 2nm from the cluster. Control experiments were performed with non-magnetic
Ag atoms and on semi-conducting CN'Ts: no resonance was visible in either case, which is
consistent with the hypothesis of the Kondo physics.

10.2 Theory of the surface Kondo effect

STM probes Fermi-level LDOS of the sample at the position of the tip,*?® i.e. the extended
sp wave functions rather than the well localized d or f orbitals,?%!3%40 see Fig. 10.1. In a
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first approximation, we may thus assume that the STM current is due only to tunneling
into the conduction band and we may neglect direct tunneling into the impurity d or f
level.*?” This holds approximately even when the tip is directly above the atom; in this
case the adatom sp orbitals that protrude into the vacuum are strongly hybridized with
the conduction band of the substrate.®* To understand the origin of the Fano resonances
in the tunneling spectra measured over magnetic impurities, we must thus study the effect
of the impurity on the continuum states.

A
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Figure 10.1: Radial wavefunctions of free Co atom in [Ar|4s?3d” configuration computed
using Hartree-Fock code.”? Note that the horizontal (radial) scale is logarithmic. The
orbital that extends the furthest outward is 4s.

10.2.1 Effective quantum impurity models

Magnetic impurities can be modeled as asymmetric Anderson model in the Kondo regime,
but not far from the valence-fluctuation regime (see Sec. 6.3). This model can be mapped at
low temperatures onto the Kondo model (Sec. 6.3.1 and Ref. 298). A simple approximation
for the effective Kondo exchange interaction J is®®

Var|”
min(|eq|, |eg + U|)

J o (10.1)

Here ¢, is the energy of the impurity d level, U is the on-site Coulomb repulsion, and V4
are hybridization matrix elements between the d level and the continuum of states. Only
Var for k on the scale of Tk are important in the formation of the Kondo resonance, i.e.
Var is determined by bulk and surface states with energies of the order of 10 mV from the
Fermi level. Generally the relevant d level lies below the Fermi energy, while U > |e4],
thus €4 sets the scale of J.

The effective (half-)bandwidth must be appropriately defined. It must be emphasized that
the effective bandwidth is not necessarily related to the width of either the bulk conduction
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band or the surface-state band. In fact, we have Deg ~ min(Dy, D;, U, EY}), where Dj, is the
half-bandwidth of the bulk band and D, the half-bandwidth of the surface-state band (if
both are at play), U is the Coulomb repulsion and E} is the renormalized impurity energy
which is usually the relevant energy scale in the valence-fluctuation regime (Sec. 6.3). E3
is the solution of transcendental equation3

™

r U
B :ed——ln< ) (10.2)
d _Ed

There are some indications that magnetic impurities on surfaces indeed are mixed valent
(for example Ni/Au(111)5%7). One must thus be very careful when extracting Deg and J
from experimentally determined Tk.

Measured temperature dependence of the resonance-width agrees with theoretical predic-
tions of broadening for Kondo impurities in the Fermi liquid (FL) regime.*?*52 In the
FL regime, one can make the following approximation, which holds in the particle-hole
symmetric case:?t 228,528,543

1 m GE(w _ 1 2 (w)
Alw,T) = WI G (w,T) T (W — (ea + SRW))2 + 2 ()2’
ZR(w,T) ~ —€q,
Y w,T) ~T +y(w, T), (103)

w 2 T\
T) =l 2 (
Y(w, T) =c (kBTK) +m (TK)
where A(w,T) is the impurity spectral function at temperature 7', 3 is the self-energy, and

the coefficient ¢ is 72/32 &~ 0.3. A simple approximation for the resonance line-width is
then52®

Y

FWHM = 2+/(7kpT)? + 1/c(kpTxk)?. (10.4)

Fermi liquid theory is actually valid only for w,T" < Tk. For w, T ~ Tk, logarithmic
corrections should be taken into account. Furthermore, the value of ¢ is not a constant
and it is different from ¢ = 72/32 if there is no particle-hole symmetry; since in general the
system is indeed asymmetric [for example ¢; = —0.84eV and U = 2.84¢eV, i.e. §/U = 0.2
for Co/Au(111)°??], large systematic errors are introduced in the determined value of Tk
if an arbitrary value for ¢ is used [c = 1/2 is often used for historical reasons®*.

10.2.2 Fano model of interfering discrete and continuum channels

Fano originally studied the interference between a discrete and a continuum channel in the
context of atomic physics for discrete auto-ionized states.®*® He has shown that such inter-
ference produces a characteristically asymmetric line shape in spectra. It should be noted
that the Fano effect is not, per se, a quantum mechanical effect; it is a wave interference
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effect that also arises in purely classical systems. Fano resonance can appear whenever
there is an interference between a narrow and a wide spectral feature (resonance); see, for
example, Sec. 7.3.2 where a Fano resonance appears in the context of side-coupled double
quantum dot system. The observation of a Fano-like resonance near the Fermi level in a
tunneling spectrum is by itself not a proof of Kondo effect. It must be shown that the
narrow spectral feature responsible for the Fano resonance is the Kondo resonance, i.e. is
of many-particle origin. A possible test is a measurement of the temperature dependence
of the spectral features which should follow the universal Kondo temperature dependence
and, in particular, the resonance should gradually disappear above Tk.??® The results of
such temperature-dependent measurements are unfortunately confounded by the fact that
the spectral resolution of the tunneling spectroscopy itself is of the order of kgT', therefore
the logarithmic decrease of the amplitude of the Kondo resonance cannot be accurately
followed for T" > Tk . A better test is thus the splitting of the Kondo resonance in strong
magnetic field.*3?

The experimental spectra can be fitted with a Fano line

2 2
latef ;£ 142 (10.5)
14 € 14 €
where € = (F — FEy)/(I'/2) is a rescaled energy, Fjy is the resonance position, I' its width,
with parameter ¢ that is typically between 0 and ~ 1.°*! The Fano line-shapes are plotted
in Fig. 10.2 for a range of parameter ¢. Fits to Fano line shape reproduce the dip structure,
the asymmetry and the shift in the minimum from Er.*?¢ Small ¢ < 1 corresponds to small
coupling of the discrete state to the tunnel-current carrying continuum states, while large
g > 1 would imply strong tip-impurity coupling, either directly (tunneling of electrons
into the localized d-orbital) or indirectly (tunneling of electrons to the d-orbital via the
conduction band).*?” The intermediate value ¢ ~ 1 means that such coupling is small, yet
significant. As we move away from the impurity, ¢ decreases,* and the line shape becomes
more symmetric (for ¢ = 0, the line shape is a symmetric dip). Presently used models have
difficulties in reproducing this feature.’4!544545

10.2.3 Microscopic theory

Systems described by the quantum impurity models exhibit universality: their low temper-
ature properties are described by a small number of parameters, often only two — the Kondo
temperature and the quasiparticle scattering phase shift. In contrast, the line shapes found
in the tunneling spectra measured over magnetic adatoms on surfaces are markedly dis-
similar. It turns out that they depend on the details of the substrate-electronic-structure
induced quantum interference phenomena.

Phenomenological impurity models discussed in the previous section account well for the
observed features. To gain more insight, theoretical predictions of the effective parameters
starting from microscopic theories were performed.52?:%3%:544-546 Ty particular, sophisticated
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Figure 10.2: Fano resonance lines for a range of parameter ¢. I plot function f(q,¢) =

c(‘fj:f, where ¢ is some g-dependent normalization constant. Note that f(—¢q, —€) = f(q, €),

therefore the Fano lines for negative ¢ are mirror reflections of those for positive q.

544,545 it was

522

methods to calculate the hybridization matrix elements V;; were sought for;
found early that these parameters are very sensitive to the details of the band structure,
which unfortunately reduces the predictive power of simple theories. In addition, the d-
level is shifted in energy by the surface potential; due to exponential dependence of Tk
on €4, a modest atomic level shift can lead to a big change in the Kondo temperature. To
complicate matters further, in addition to the Kondo effect, the LDOS around the impurity
is affected by the Friedel oscillations induced by the adatom.???

When a cobalt atom is adsorbed on a metal surface, its outmost s-wave electrons either
gets transferred to the metal conduction band or to its own d orbital, therefore Co tends
to form |Ar|3d® electronic configuration on a Cu surface, i.e. it has a single d-orbital hole
and S = 1/2.°2%%% Tn addition, there are good reasons to believe that the relevant d-
orbital is ds,2_,2 and that the orbital motion is quenched by the broken symmetry at the
surface (incidentally, this implies that the gyromagnetic ratio is g &~ 2). From this follows
that the Co adatom can indeed be roughly modeled using the single impurity Anderson
model. Ujsaghy et al. have studied the parameters that enter the effective model for
cobalt on Au(111).5* These can be used as simple modeling parameters and are given for
reference purposes in Table 10.2. On-site Coulomb repulsion was taken to be proportional
to the LSDA Stoner splitting. For the band cutoff (bulk and (111) surface bands of Au)
an assumed value of D = 5.5eV can be used (the effective bandwidth is controlled by U
and €; anyhow). With these parameters, we get T which is of the expected order of the
magnitude.
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Parameter Value

Broadening A = 7|V |?*p 0.2eV
On-site Coulomb repulsion U 2.84 eV
Orbital energy €4 -0.84eV

Band cutoff D 5.5eV

Table 10.2: Effective parameters for the Anderson model of Co/Au(111).522

10.2.4 Surface-state electrons or bulk conduction band electrons

One of the main difficulties in microscopic modelling of the surface Kondo effect is de-
termining the hybridization constants that enter the expression for the Kondo exchange
interaction. Both bulk Bloch waves and surface-state electrons can play a role and, gener-
ally, both do. Most experiments are performed on the (111) facets of noble metals where
bulk electrons coexist with Shockley surface-state electrons.”*” In recent years, the ques-
tion about which are predominant was widely debated. Clearly, the presence of the adatom
induces mixing between the bulk and surface states®?>°%® and the d-level couples to the hy-
bridized mixture of bulk and surface states; we may still be interested in the predominant
character (bulk vs. surface) of these hybridized states. The available experimental results
suggests a more important role of bulk states even on (111) surfaces.??%525:547:548 Recent,
studies based on DF'T calculations also indicate much larger contribution from bulk states
in Co/Cu(111) system.>®

The problem of a magnetic impurity on a surface is a two-band, but single channel problem,
since only one effective channel couples to the impurity. In this respect it is similar to
the quantum dot coupled to two distinct leads, but to a single channel of symmetric
combination of wave-functions. If there are two bands coupled to a single S = 1/2 impurity
orbital, a suitable effective model would be

_ b T s . f
H = § €xCh kpCokp T+ E :Ekcs,kucs,ku + Himpurity
ku kp

+ 3 W (dicpig + Hel) + 3 Vi (degpe + Hel)

ku ku

(10.6)

with, for example, Himpurity = 2 i eddeu + Unyn,. For definiteness we have assumed that
the first band b corresponds to the substrate bulk band (3D), while the second band s
corresponds to the surface-state band (2D). We assume that both bands are isotropic, the
first in three-dimensions and the second in two-dimensions, i.e. €} depends only on k = |k|.
It should be noted that k£ in 3D and k& in 2D are not comparable. In particular, the Fermi
moments are different, k% # k3.

We can furthermore safely assume that V|’ depends solely on the magnitude of k, but
not on its direction, i.e. only the s-wave symmetric combination of surface-state electrons
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couples to the dot. For V}? such an approximation cannot be made since the hybridization
clearly strongly depends on the direction of k. Nevertheless, we can compute the suitable
angular averages of Vi’ and label them by V. The impurity only couples to the one-
dimensional manifold of direction-averaged combinations of states. We then transform
from momentum-space to energy-space by defining a. = (dey,/dk)~"/?a;, when € = ¢,. We
obtain (sums over repeated spin indexes are implied)

Db Ds
_ T
H —/ eab7euab7€“d€ + ea;was,wde + Himpurity
7Db 7D5

Dy

+ / Db [0v(€)]/2Vi(e) (dfap,e + Hec.) de + / . [0s(6)]'?Vi(€) (d],aseu + Hoc.) de.
S (10.7)

Now comes the crucial step: at each energy €, the impurity couples only to the “symmetric”
combination

1/2 1/2
_ pb/ ‘/bab,ep, + Ps/ ‘/sas,eu

fe , 10.8
8 \Y pb‘/b2 + ps‘/s2 ( )
while it is decoupled from the “antisymmetric” combination:
1/2 1/2
_ pb/ ‘/bab,ep, - Ps/ ‘/sas,eu (10 9)

Je
. V vab2 + ps V2

We choose a new cut-off D = max(D,, Dy), define pV? = p,V2 + p,V;?, and write the
effective single-channel Anderson model:

D D
H = / EfjufeudE + Himpurity + / \V pV2 (deGN + HC) de. (1010)
-D _D

Thus p|V|* and consequently p.J are additive quantities.

10.3 NRG calculations

Numerical renormalization group is a powerful technique for computing spectral functions
(local densities of states) in problems where many-particle effects are important and need
to be properly taken into account. It may be applied in the field of tunneling spectroscopy
whenever the problem can be reduced to a quantum impurity problem with a small number
of impurity orbitals and one or two conduction channels. NRG is particularly suited
for studying the physics of Kondo impurities adsorbed on surfaces where the relevant
magnetic orbital is typically a single d-level and there may be a small number of broad sp-
derived levels near the Fermi level, while all other atomic levels away from the Fermi level
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are irrelevant: such atoms can be accurately modeled by some multi-level Anderson-like
impurity model.

To my knowledge, the impurity sp orbitals are entirely neglected in all phenomenological
as well as most microscopic theories that had been applied to the surface Kondo problem,
even though these orbitals may modulate the density of states that the d-level couples to.
Furthermore, these orbitals can carry a portion of the tunneling current when the STM
tip is located directly above the impurity atoms. The closer the energy of these orbitals is
to the Fermi level, the more important role they play.

In this section I show by NRG calculations that a) the anti-resonance in the differential
conductance is a direct consequence of the resonance on the d-level, b) the anti-resonance
diminishes and splits in applied magnetic field, c¢) the form of the anti-resonance depends
in an essential way on the proportions of the tunneling current that flows in the adsorbate
s-level and in the substrate band, d) the s-level modulates the density of states to which
the impurity couples, therefore the changes in the s-level energy can drive the Kondo
temperature to extremely small values.

The tunneling current is given by (see Sec. 5.3.2)
_ tip,p i
I=5>. / de (faubstrate (€) — fuip(€)) Te[TUP#(e)Im G (¢)). (10.11)
o

Here TV is the hybridization matrix between the STM tip states and the adsorbate levels,
while G" is the retarded Green’s function matrix of the adsorbate. At zero temperature, the
Fermi-Dirac distribution functions become fupstrate(€) = 0(€r —€), fup(€) = 0(ep +eV —¢),
where €z is the Fermi level and V' the voltage drop in the gap between the STM tip and
the adsorbate; for V' > 0 electrons flow from the tip to the sample. We then obtain

dI/dV = —Go/2>  Tr[T"#(e)Im G™(€)]cmepsev- (10.12)

I

The imaginary part of the Green’s function G" is essentially orbitally-resolved local density
of states of the impurity, while the hybridization matrix I' encodes both the density of
states in the tip and the tunneling probability to various orbitals. The tunneling probability
depends on the orbitals at play: the tunneling to the d-level is expected to be negligible or
small, while the tunneling to the s-level is substantial. In addition, part of the tunneling
current inevitably flows directly into the substrate states. This possibility is not taken
into account in Meir-Wingreen formula and therefore neither in Egs. (10.11) and (10.12).
In Bardeen’s theory, the tip-substrate current is proportional to a square of the surface

integral over a separation surface between the tip and the sample®
h2
M = ™ (X*V¢ —pVx*) - dS, (10.13)
m

b

where ¢ is the sample conduction band wave-function and y the tip wave-function. The
simplest approximation consists of assuming that the tip-substrate wave-function overlap



214CHAPTER 10. CLUSTERS OF MAGNETIC ADATOMS AND SURFACE KONDO EFFECT

is largest at the position of the impurity atom. From the perspective of NRG calculations,
this approximation corresponds to assuming that the tip probes the Wannier orbital f
of the Wilson chain®® . The idea here is to consider f; as part of the impurity system;
Eq. (10.12) then still applies, but the trace over impurity orbitals is extended to include
the fp orbital. The tunneling current then flows to some linear combination of orbitals,
described by an operator such as hL x tsdlu + tfofgu, where ¢, and ty, are the tunneling
amplitudes for tunneling in either the s-level or in the substrate electron band.??%530

Equation (10.12) simplifies to
dI/dV = Go/2> [T () Apple=csev (10.14)

I

where TP (e) = mpy,(€)(t2 4 t5,). We take t, and t;, to be energy-independent in the
relevant energy range around the Fermi level, but this assumption may be relaxed. It
should be emphasized that in this formalism the sum over different tunneling paths is
performed coherently and that all quantum interference effects are taken into account.

The quantity of central interest is thus the spectral function of the effective “orbital h”,
Ap e

Before focusing on the two-level impurity model, we first study the conventional description
of the surface Kondo effect using a single d-level Anderson model:*

U
Himp = 5(71(1 — 1) + 5(71(1 — 1)2,

1/2
H, = (?) > (d fou +He).

m

(10.15)

By writing the coupling Hamiltonian H. in this form, we assumed that the d-level hybridizes
with the conduction band orbital centered at the impurity site, fy. Furthermore, we assume
that when the STM tip is directly above the adsorbate the tunneling current flows only to
fo, 1.e. hL = fgu. The impurity d-level spectral functions and the conduction band LDOS
(or, equivalently, the spectral function of the fy orbital) are shown in Fig. 10.3.

In the absence of the impurity, the conduction band LDOS is flat near the Fermi level,
Ag(w) = 1/(2D). When the impurity is introduced, the impurity spectral function is
mirrored in the conduction band LDOS. The following relation holds for a flat band at
T = 0:518

Ap(w) = Ap (1 =T Ag(w)) . (10.16)
The conduction band LDOS is thus exactly zero at the Fermi level in the case of symmetric
Anderson model (6 = 0). When the Anderson impurity is asymmetric (§ # 0), the Kondo
resonance is also asymmetric and so is the anti-resonance, similar to what is found in the
experimental tunneling spectra.

It is known that applied magnetic field splits the Kondo resonance. This is expected to
be reflected in a diminished Fano anti-resonance for small fields, and a double dip anti-
resonance for strong fields, Fig. 10.4. To this date no experimental results of such splitting
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Figure 10.3: Impurity and conduction band spectral functions without an impurity (top),
with a symmetric impurity (center) and with an asymmetric Anderson impurity (bottom).

have been reported, however the Kondo resonance splitting was observed in a somewhat
different setting with a magnetic impurity adsorbed on an insulating island grown on
metallic surface.*3
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the single-impurity Anderson model. See the impurity spectral function counterpart in
Fig. 6.12.
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Figure 10.5: The two-orbital single-impurity model.

We now turn to the two-orbital model represented graphically in Fig. 10.5. The d-orbital
may be described by a single spin operator S, like in the Kondo model; since we neglect
tunneling to d-levels, this is a good approximation. The s-level is described as a non-
interacting level. Initially we assume that the d-level interacts via exchange interaction
only with the s-level. The corresponding Hamiltonian is thus

Hinp = €5y _di,dg, + JSq- S,

m

1/2
He = <@) Z (diuf(]u + H.c.) )

™
I

(10.17)

Here S, = % ZW dluawdsy is the spin operator of s-orbital. (I note that models of this type
have been recently studied in the context of double quantum dots®*®). The hybridization of
the s-level with the conduction band electrons is expected to be strong, therefore parameter
I' is large.

We first consider the case when the s-level is centered at the Fermi level, Fig. 10.6. In the
absence of the adatom, the conduction band LDOS is (assumed) flat near the Fermi level
(green line in Fig. 10.6b). When only the s-level is taken into account by setting J = 0,
the broad resonance in A,(w) is reflected in a broad anti-resonance in Az (w) (blue lines in
Fig. 10.6a,b). When exchange interaction is switched on, the Kondo effect leads to a narrow
dip Ag(w) in the broad s-level resonance (compare with Fig. 6.2), and this anti-resonance is
reflected in a resonance in Ag (w) (black lines in Fig. 10.6a,b). The spectroscopic signature
of the Kondo effect will depend in an essential way on the respective proportion of the
tunneling current that flows to the s-level or directly to the conduction band. A range
of spectral functions for different combinations is shown in Fig. 6.2c,d. The full range of
possible Fano line-shapes can be obtained, ranging from a symmetric dip (¢ = 0 for h = s)
to a symmetric peak (¢ large for h = fy). In other words, the Fano parameter ¢ can take
an arbitrary value.

Since in the simplest two-level model, the local moment couples only to the s-orbital, the
spectral function of the s-level near the Fermi level determines the Kondo temperature Tk.
It is highest when ¢, = 0, and it rapidly drops to very small values as the s-level is shifted
from the Fermi level, Fig. 10.7. Two effects in the A, (w) for h o< s+ fy are noteworthy. The
Fano line-shape changes (parameter ¢ increases), even though the combination h is kept
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Figure 10.6: Spectral functions in the two-level model for a magnetic adatom. a) s-level
spectral function. b) f; Wannier orbital spectral function. c¢) and d) spectral functions for
a linear combination of the s-level and the fy-orbital.

constant; this is another indication that the line-shape strongly depends on the microscopic
details of the problem. We also notice that the spectral peak in Aj(w) is shifted to higher
energies as compared to the spectral peak in A (w) and spectral dip in Ay (w). This
is a quantum effect resulting from coherent addition of various tunneling processes. This
suggests that parameter extraction from experimental spectroscopic measurements is model
dependent and that obtaining “true” microscopic parameters is difficult.

We now relax the assumption that the d-level interacts only with the s-orbital electrons.
We add a perturbation term H' = JySy - Sy, and study the effect of different ratios of J
and Jg while keeping the sum constant, Fig. 10.8. The most notable effect is the strong
reduction of the Kondo temperature, which drops to zero when the moment couples only to
band electrons. The origin of this behavior is the depletion of the conduction band LDOS
near the Fermi level due to the hybridization with the s-orbital.?*® When e, is shifted from
0 for large Jg, the Kondo temperature increases again since the conduction band LDOS
at Fermi level increases (results not shown).



218CHAPTER 10. CLUSTERS OF MAGNETIC ADATOMS AND SURFACE KONDO EFFECT

eS/D=O sS/ D=0.05 sS/ D=0.1 gS/Dzo_ 15

| 1 1 | 1 Il 1 | 1 | 1 I | 1 | 1

0

-0.3-0.15 0 0.15 -0.15 0 0.15 -0.15 0 0.15 -0.15 0 0.15 0.3
o/D o/D /D o/D

Figure 10.7: Spectral functions in the two-level model for a range of s-level energies ;.



10.3. NRG CALCULATIONS 219

~

3 - 100%s " 75%s, 25% f T 50% s, 50% fo T 25%s, 5% f, T 100%f, 7

1 | 1 1 | 1 1 | 1 | 1 | 1 | 1 | 1
EJ0.2 -0.1 0 0.1 -01 0 01 -0.1 0 0.1 -0.1 0 0.1 -0.1 0 0.10.2
o/D o/D o/D o/D o/D

Figure 10.8: Spectral functions in the two-level model for different proportions of coupling
of the magnetic impurity to either the s-level or to the conduction band electron Wannier
orbital fj.



Part 1V

Conclusion

220



Chapter 11

Conclusions

This concluding chapter provides a concise summary of the main ideas, techniques and
results contained in this dissertation and suggests some possible directions for further
research.

Quantum impurity models

Quantum impurity models describe a variety of different physical systems in which an
impurity with internal degrees of freedom is coupled to a continuum of states in its en-
vironment. Notable examples are magnetic impurity ions in bulk metal samples or on
their surfaces, and nanostructures such as systems of coupled quantum dots. The origin
of their unusual behavior are the internal degrees of freedom which may lead to anoma-
lously strong scattering at low temperatures — the Kondo effect. At high temperatures,
the models exhibit asymptotic freedom and can be studied by perturbation theory, while
the strong coupling regimes at low temperatures are generally non-perturbative. In the
case of magnetic impurities, the Kondo effect leads to the screening of the local moment
and the impurity becomes effectively non-magnetic. In addition, a characteristic narrow
Kondo resonance emerges near the Fermi level and it strongly affects the low-temperature
transport properties of the system.

The models discussed in this dissertation feature at most two continua of states (two
channels). Two-channel free-electron bands have internal SO(8) symmetry; the coupling to
the impurity reduces this symmetry to some subgroup of SO(8). The behavior of quantum
impurity models strongly depends on the symmetry of the problem; the most unusual effects
tend to occur in highly symmetric cases. Particularly important symmetry groups are
SU(2)spin related to the isotropy in spin space, SU(2);s related to charge conservation and
particle-hole symmetry, and SU(2)gayor related to the symmetry between the two channels,
as well as their various subgroups.

221
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Since impurities may be considered as point-like, they effectively couple to a one-dimensional
continuum of states (or, possibly, to a finite number of such continua). Furthermore, when
the continuum density of states does not exhibit any irregularities at the Fermi level, the
dispersion can be linearized in the relevant low-energy range. Quantum impurity models
then reduce to one-dimensional effective field theories with characteristic properties such
as the spin-charge separation. Their low-temperature fixed points can be Fermi liquid or
non-Fermi liquid in character. An important tool to study the fixed-points and their vicin-
ity is the boundary conformal field theory. It provides an intuitive picture of the Kondo
effect: the impurity degrees of freedom disappear from the problem, their only effect is to
modify the boundary conditions for the scattering of continuum particles.

While much is already known about the symmetries of quantum impurity models and the
relation between the symmetries and the stability of various fixed points, a comprehensive
study of the possible non-trivial non-Fermi liquid fixed points in models that are relevant
to the transport through nanostructures would be highly desirable. In this context, it is
worth noting that the boundary conformal field theory approach allows, in principle, to
systematically study all the fixed points of models with purely local interactions.

Renormalization group

The renormalization group idea is a way of understanding the different types of behav-
ior of a system at different energy scales and how they are related. The RG notions of
renormalizability, universality and dimensional transmutation are closely related; quantum
impurity models often exhibit universal behavior that depends only on a handful of param-
eters. In the high-temperature perturbative regime, impurity models can be described by
simple cut-off renormalization theories (scaling) which, however, fail as the strong coupling
regime is approached.

Wilson’s numerical renormalization group (NRG) is a non-perturbative approach to per-
forming RG transformations. A new flexible implementation of this method (“NRG Ljubl-
jana”) was coded in Mathematica and C++ for performing calculations of the properties
of quantum impurity problems that are relevant for studying quantum transport through
nanostructures.

NRG consists of the logarithmic discretization of the bands, followed by the iterative diago-
nalization of a series of Hamiltonians. The logarithmic discretization (or, more accurately,
the neglect of higher Fourier modes in each energy interval) is clearly an approximation;
nevertheless, it is shown a posteriori that this is a good approximation even for relatively
large values of the discretization parameter A. For complex multi-impurity and multi-
channel problems, it is imperative to take into account all the symmetry elements of the
problem at hand to reduce the computational demands. In “NRG Ljubljana”, computer
algebra system Mathematica was used to automate the generation of code for various
types of symmetries; for large symmetry groups, such as SU(2);so X SU(2)gpin X Z2, manual
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derivation of various coefficients becomes intractable.

The iterative diagonalization consists of successively adding sites from the hopping Hamil-
tonian and performing exact diagonalizations. The result of the diagonalization (eigen-
values and eigenvectors) at iteration N constitutes a description of the original problem
on the energy scale oc A~"/2. Since the number of states in the calculation would grow
exponentially with the number of iterations, a truncation to a finite number of sites is
performed after each diagonalization. This is a good approximation, since at each RG
transformation only the lowest-lying eigenstates are renormalized.

Using NRG, one can compute many important physical quantities. Much information can
be extracted from the finite-size spectra alone: for example, one can identify the fixed points
of the problem and study cross-overs between them. Furthermore, one can extract effective
Hamiltonians that describe the behavior of the system near fixed points and determine if
various perturbations are relevant, marginal or irrelevant. From finite-size spectra, static
thermodynamics quantities (such as susceptibilities and entropy) can also be obtained. In
addition, it is possible to calculate correlation functions (such as charge fluctuations and
spin-spin correlations) and dynamic quantities (such as spectral functions and dynamic
spin susceptibilities). In the density-matrix NRG method, the reduced density matrix is
used in the spectral function calculations so that the true ground state of the system is
taken into account also at higher excitation energies.

With the recent resurgence of the interest in impurity models, the NRG technique is also
experiencing significant development. Especially important are improvements in spectral
function calculations, which make NRG a very capable impurity solver in the dynamic
mean-field theory of extended correlated systems.

Other methods for impurity models

In addition to NRG, Gunnarsson-Schonhammer variational method and Quantum Monte
Carlo can be applied to study quantum impurity models.

In the variational method, a trial wave-function which takes into account the suppression
of charge fluctuations in the Anderson model is used as an Ansatz. Suitable wave-function
is constructed by projecting the Hartree-Fock wave-function to subspaces with different
occupancy of the impurity orbitals. The method can be improved by considering the
parameters of an effective quasiparticle Hamiltonian to be variable. Variational energy
minimization problem is then solved iteratively.

In auxiliary-field (determinantal) Quantum Monte Carlo (QMC), a problem of lattice
fermions is transformed to an Ising-model-like classical model using Trotter decomposi-
tion and Hubbard-Stratonovich transformation, followed by the integration over fermion
degrees of freedom. In the Constrained Path QMC, the fermionic minus-sign problem is
alleviated by restricting the calculation to one of the two degenerate halves of the Slater
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determinant space.

It would be interesting to implement the variational method using logarithmic discretiza-
tion of the conduction band; it seems possible that a better description of low energy
scales could be achieved. Another promising direction would be the development of the
variational Anstaz that took into account the degrees of freedom which become decoupled
from the Fermi liquid electron system at low energies: this might overcome the problems
when the method is applied to singular Fermi liquid systems. Finally, it would be very
interesting to implement a variational approach in terms of Majorana fermions that could
possibly be able to describe non-Fermi liquid systems.

Quantum transport theory

Transport through a system of quantum dots and tunneling spectroscopy of magnetic
adsorbates on a metallic surface are closely related problems; they can both be modeled
using quantum impurity models.

Zero-temperature conductance through an interacting region can be calculated from quasi-
particle scattering phase shifts if the ground state of the system is Fermi liquid. This
approach is based on the Landauer-Biittiker formalism. The scattering phase shifts can
be easily extracted from NRG finite-size spectra by making use of the known quantum
numbers of the excitations.

For Fermi-liquid systems, the 7" = 0 conductance can also be obtained using the “sine
formula” by calculating the difference in energies of two auxiliary ring systems with em-
bedded impurity region for periodic or anti-periodic boundary conditions. This approach
is especially suitable when used in conjunction with the variational method which provides
ground state energies with good accuracy.

Finally, the conductance can be calculated from spectral functions using the Meir-Wingreen
formula. The advantage of this approach is that the temperature dependence of the con-
ductance can be inferred from the energy dependence of the spectral functions.

Further research in the transport theory could be centered at non-equilibrium, time-
dependent and finite-temperature properties of impurity systems. While the basic trans-
port formalism is well developed, calculations of non-equilibrium properties of correlated
system is still a formidable problem. The recently developed time-dependent NRG tech-
nique appears very promising in this respect.

Single-impurity models

The characteristic property of the paradigmatic quantum impurity model — the Kondo
model — is screening of the magnetic moment below the Kondo temperature Ty. At very
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low temperature, 7" < Tk, the system behaves as a local Fermi liquid; its interacting nature
is seen in the non-trivial Wilson ratio R = 2. Without additional potential scattering, the
behavior of Kondo systems is universal and described by universal functions of T'/Tk. In
the presence of potential scattering, the low-temperature fixed points are parameterized
by an additional quantity, the quasiparticle phase shift d,.

In the two-channel Kondo model, the over-screening of the impurity spin leads to non-
Fermi liquid (NFL) behavior. The impurity has residual ground state entropy of kgln2/2
and the system has an unusual spectrum 0,1/8,1/2,5/8,1,1+4 1/8, etc.. NFL fixed point
is destabilized by channel asymmetry and the system crosses over to a Fermi liquid ground
state at some lower temperature.

Single-impurity Anderson model describes formation of local moments in systems such as
magnetic impurities (d-orbital) or quantum dots. Near particle-hole symmetric point, the
system flows with decreasing temperature from the free-orbital regime (spin and charge
fluctuations) to valence-fluctuation regime (charge fluctuations between two values) to
local-moment regime (spin fluctuations only), and it ends up in the strong-coupling regime
where the local moment is screened; the behavior of the system can be summarized in
a kind of “phase diagram” as a function of the on-site energy and the temperature. At
sufficient low temperature, the single-impurity Anderson model can be mapped to Kondo
model using the Schrieffer-Wolff transformation, which projects out charge fluctuations
from the problem.

Charge fluctuations on the impurity site are given for small I'/U by a universal function
(¢*) = (4/m)(T/U). The departure of the charge fluctuations on the first site of the Wilson’s
chain, (q]%), from the non-interacting value of 1/2 demonstrates that the impurity indeed
induces correlated behavior in the band. The charge-charge correlation function (ggys) is
negative for large I'/U and positive for I'/U < 1. The spin-spin correlation function (S-Sy)
is negative due to effective antiferromagnetic interaction between the impurity moment and
the conduction band electrons. It tends toward zero as the hybridization I' is decreased
which demonstrates that the Kondo screening cloud is an extended object.

The spectral function on the impurity site in the Kondo regime features two broad charge-
transfer peaks at €5 and ¢;+U (“Hubbard satellites”) and a characteristic narrow resonance
of width proportional to kgTy pinned near the Fermi level (“Kondo resonance”). The zero-
energy spectral function is related to the impurity occupancy by the Friedel sum rule.
Comparison of the conductance calculated for bands with different hybridization functions
which have the same value at the Fermi level shows that differences are small; they are the
most perceptible in the valence fluctuation regime where the relevant energy scale (T)
becomes comparable to the band-width. In an applied magnetic (Zeeman) field, the Kondo
resonance splits into two peaks that are centered at e; — gup|B|/2 and €5+ U + gug|B|/2
for upgB Z €4, U.

While it might appear that everything is already known about single-impurity models, I
would like to point out that, for example, models where an impurity is coupled to bosonic
bath (or even both fermionic and bosonic bath at the same time) only recently came under
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scrutiny by bosonic generalization of NRG.

Two-impurity models

Systems of two impurities such as double quantum dots (DQD) are the simplest systems
where the competition between magnetic ordering and Kondo screening can be studied.

Parallel double quantum dots (and N-dot generalizations) can be described by the multi-
impurity Anderson model. At low temperature, this model maps to a multi-impurity
Kondo model. It is found that the conduction-band-mediated RKKY exchange interaction
is ferromagnetic, Jrrxxy ~ U(pJi)? = (64/7%)(T?/U), therefore the impurity spins order
and the system effectively behaves as a single-impurity S = N/2 Kondo model which
undergoes S = N/2 Kondo effect. The Kondo temperature is the same irrespective of the
number of the impurities N. The residual spin at zero-temperature is N/2 — 1/2 if there
is no coupling to additional screening channels. The ferromagnetically ordered regime and
the ensuing S = N/2 Kondo effect are fairly robust against various perturbations. Very
strong perturbations lead, however, to quantum phase transitions (QPT) of different kinds,
which have been meticulously studied for the N = 2 case.

If the parallel DQD system is moved from the particle-hole symmetric point by equally
increasing both on-site energies, a QPT of the first kind between S = 1/2 and S = 0
ground states occurs. This transition is triggered by charge fluctuations which compete
with RKKY ferromagnetic ordering; the ferromagnetic ordering temperature drops to zero
as an exponential function of the on-site energies.

If symmetric splitting between the two on-site energy levels is induced, a singlet-triplet
QPT of the Kosterlitz-Thouless kind occurs. This is a transition between an inter-impurity
triplet and a local spin-singlet on one of the impurities. The cross-over temperature is an
exponential function T* o exp[—Tk /Ji2] where Jj5 is an exchange-interaction between two
fictitious spins which itself is an exponential function of the energy splitting.

The ferromagnetic ordering can be compensated by direct antiferromagnetic inter-impurity
exchange interaction. The value of the RKKY interaction can be extracted in this manner
and it is found to agree with the analytical estimates derived by fourth-order perturbation
theory in hybridization parameters. Hopping between the impurities has similar effect via
the superexchange mechanism. The critical hopping parameter t19 . is of the order of the
hybridization I" and does not depend on the value of U. It is interesting that the effect of
the level splitting o< t is less pronounced than the effect of the induced exchange interaction
ox t2.

If the inter-impurity electron repulsion Ui, is increased to U, the decoupled impurities have
SU(4) symmetry, since an additional SU(2),,, orbital pseudo-spin symmetry is established.
The SU(4) symmetry is broken by the coupling to the conduction channel, therefore there
is no SU(4) Kondo effect. Instead, the effective level degeneracy decreases from 6 (SU(4)
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sextuplet) to 4 (product of two spin-doublets) on the symmetry-breaking scale, then from
4t02ina S =1/2 SU(2) Kondo effect; there is a double degeneracy of the ground state
due to an effectively decoupled electron in the ungerade molecular orbital.

In the case of unequal coupling of the two impurities to the conduction channel, the high
energy singlet state admixes with the ground triplet states; second order scaling calculation
gives a good estimate of the Kondo temperature in this case. For very strong asymmetry,
the ferromagnetic locking-in is destroyed and the single-impurity S = 1/2 Kondo effect
occurs with the more strongly coupled impurity while the other spin remains uncompen-
sated.

The behavior of the double quantum dot system in the side-coupled configuration strongly
depends on the value of the inter-impurity hopping. For strong hopping, the system maps
to an effective single-impurity Anderson model where the role of the impurity orbital is
played by the bonding or anti-bonding molecular orbital. The use of eigenvalue diagrams
for studying the low-temperature behavior was demonstrated: the Kondo temperatures
can be accurately estimated from the energies of the lowest excited states of the double
dot. Two wide Kondo plateaus are expected in the conductance as a function of the on-site
energies in this regime. The spectral functions must be computed using the density-matrix
NRG in this model; the conventional approach leads to spurious discontinuities and to
the violation of the spectral sum rule. Density-matrix NRG in the basis with well defined
charge () and total spin S quantum numbers has been implemented for this purpose.

For weak coupling, the two-stage Kondo effect occurs: the spin on the directly coupled
impurity is screened at a higher Kondo temperature T I((l), while the spin on the side-
coupled impurity is screened at an exponentially reduced lower Kondo temperature T I((Q ),
The conductance can be high at finite temperatures even in the vicinity of the particle-hole
symmetric point if T [((1 )« T < TI(? ). In addition, at finite temperatures a Fano resonance
appears in the conductance; its origin lies in the sudden filling of the side-coupled dot when
its on-site energy crosses the Fermi level.

It can be claimed on quite general grounds that there are three different types of the
Kondo effect in the two-impurity Anderson models that are especially important for dou-
ble quantum dot systems: double Kondo effect (realized in serial DQD), S = 1 Kondo
effect (parallel DQD), and two-stage Kondo effect (side-coupled DQD). It would be in-
teresting to study the cross-overs (and, very likely, quantum phase transitions) between
the different strong-coupling fixed points of these systems; this is experimentally relevant,
since the parameters of DQD systems can be finely tuned using gate electrodes and various
realizations of DQD topology can be achieved in the same physical system.

Three-impurity models

Systems with even and odd number of impurities have markedly different behavior. The
simplest three-impurity system consists of three quantum dots coupled in series between
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two conduction channels. The behavior of the system depends strongly on the values of
the on-site energies and on the inter-impurity hopping. Based on extensive calculations
using several complementary methods, a phase diagram was established. It indicates the
parameter ranges where the zero-temperature conductance is high.

For strong inter-impurity coupling, the system can be mapped to an effective single-
impurity Anderson model where the role of the impurity orbital is played by the bonding,
non-bonding, or anti-bonding molecular orbital. In this regime, the conductance is high
when the occupancy is odd, and it is nearly zero when the occupancy is even.

For smaller inter-impurity coupling, the molecular orbital description becomes inappropri-
ate as the local behavior of the spins becomes important. Near the particle-hole symmetric
point (three electrons in the dots), the system crosses over from the molecular orbital regime
(t 2 U) to the antiferromagnetic spin-chain regime (J ~ t), and finally to the two-stage
Kondo regime (J < T[((l)). In the antiferromagnetic spin-chain (AFM) regime, the three
spins lock at 7" ~ J into a rigid spin-doublet state; at lower temperature, this collective
spin is screened by the conventional S = 1/2 Kondo effect. In the two-stage Kondo (TSK)
rezglime, the spins on the first and third sites are screened at higher Kondo temperature
TK), then the spin on the central site is screened at an exponentially reduced second Kondo
temperature Tz(?) x ng) exp(—cTIg)/J), where J = 4¢*/U. AFM and TSK regimes are sep-
arated by a cross-over region in which the system approaches the two-channel Kondo model
NFL fixed point at finite temperatures. The NFL regime is robust with respect to vari-
ous perturbations, such as particle-hole symmetry breaking, parity breaking and unequal
electron-electron repulsions; the only “dangerous” perturbations are those that increase the
channel asymmetry.

At the particle-hole symmetric point, the conductance increases to the unitary limit at
T = 0 for any non-zero value of the inter-dot hopping parameter ¢. Furthermore, the
stable low-temperature fixed point is found to be the same for all values of t: the odd
channel gathers a m/2 phase shift, while there is no phase shift in the even channel.

The NFL physics can be detected by measuring and comparing the conductance through
one of the side dots and through the system. It is found that the conductance though the
side dots increases to Go/2 while the conductance through the system is still low when the
NFL region is entered by decreasing the temperature. When the system crosses over from
NFL to FL fixed point, the conductance through the system increases to GGy. This agrees
with the observation that the charge transfer from one channel to the other is a relevant
perturbation which destabilizes NFL fixed point. The evolution of the spectral functions as
a function of the hopping parameter demonstrates how the molecular-orbital peak evolves
into a peak at J (AFM regime) and then into the first Kondo peak (TSK regime).

The two-stage Kondo regime is found to extend from the region of triple occupancy to
the region of double occupancy. Near double occupancy, the electron on the central site
undergoes Kondo screening by coupling to the quasiparticles from the valence fluctuating
states on each side dot.
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Accurate studies of the properties of more general three-impurity models are just com-
mencing and there is a vast parameter space to explore. A very interesting system appears
to be the triangular triple quantum dot coupled to two conduction channels. Depending
on the parameters, this system can behave, for example, as a two-channel single-impurity
Kondo model, two-impurity Kondo model, or as a frustrated antiferromagnet.

Low-temperature scanning tunneling microscopy

Scanning tunneling microscope (STM) is a versatile tool in the field of nanotechnology.
It can be used to both assemble and characterize a nanostructure; tunneling spectroscopy
provides insight into electronic and vibrational properties of the adsorbates.

Liquid-helium-cooled low-temperature STM operating at 5.9 K was constructed. It achieves
atomic resolution on low corrugation metal surfaces such as Cu(111). The STM head is
adapted to accommodate Omicron sample plates in order to retain compatibility with the
existing equipment. The assembly of the instrument was described with many details and
two methods to test and characterize the vibrational and electronic behavior of the scanner
were given: measurement of the double piezo response and spectral analysis of the tunneling
current. The lowest mechanical resonance is found at 900 Hz, which is comparable to the
values for similar scanners used by other groups.

The tips are prepared by electrochemically etching W wire in KOH solution using a home-
made rapid-shutdown electronic circuit. The tips are cleaned in hydrofluoric acid to remove
tungsten oxides and then further improved in-situ by intentionally crashing them into a
soft surface while increased voltage is applied.

A sample transfer mechanism was designed and constructed; its purpose is to carry the
sample from the sample storage chamber to the STM head. In order to avoid cold welding,
the mechanism uses UHV-compatible ball bearings and hard coatings on surfaces where
friction occurs.

To ensure that the surfaces remain clean, the STM is housed in an ultra-high vacuum
(UHV) system. The UHV is established by vacuum pumping in several stages and baking
the system to 105°C. In order to reduce the ultimate pressure, it is essential that the
outgassing is kept to a minimum by using suitable materials and by keeping the surface
area small. The volume of the system mainly affects the pump-down time.

The preparation of clean and ordered sample surfaces consists of alternating cycles of ion
sputtering and sample annealing. The process has been automatized by using computer
control. The surface condition is monitored by low-energy electron diffraction and by
Auger electron spectroscopy. With high quality samples, the surface of suitable quality for
STM work can be prepared in less than ten cleaning cycles. To evaporate materials on the
surface, a Knudsen evaporator is used.

Imaging of Cu(111) and Cu(211) surfaces was performed with atomic resolution. We have
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observed surface-electron standing waves (energy-resolved Friedel oscillations) and diffusion
of CO molecules on Cu(111). Dynamic changes of the condition of the tip can be inferred
from the changes in the image quality during a single scan.

A new bath cryostat with improved characteristics was recently designed and built. It
is expected to have longer holding time and the base temperature of the STM should be
further decreased due to better thermal insulation and better heat sinking of wires. The
cryostat also has better adjustment capabilities and it is easier to maintain.

Clusters of magnetic adatoms and surface Kondo effect

Magnetic properties of clusters of magnetic adatoms can be studied by tunneling spec-
troscopy even without spin-polarized tips. One possible approach involves probing the sig-
nature of the Kondo effect which takes the form of an asymmetric narrow anti-resonance
near the Fermi level in the d//dV tunneling spectrum.

The surface Kondo effect occurs in single magnetic adatoms, dimers and trimers, in ad-
sorbed molecules with embedded magnetic ion, and in metal clusters on carbon nanotubes.
To compare experimental measurements to theoretical calculations, it is important to find
a relation between the width of the anti-resonance to the true Kondo temperature of the
system. The inter-impurity interactions can be studied by following the evolution of the
anti-resonance as the impurities are brought together to form a cluster.

The anti-resonance in the tunneling spectrum can be explained by taking into account that
the d-level wave-function is strongly localized, so that the tunneling current flows mostly
into the sp-like states of the adsorbate that are strongly hybridized with the substrate
conduction bands. The tunneling spectrum is thus proportional, in a first approximation,
to the spectral function of the conduction band electrons at the position of the impurity.
An improved approximation is to describe the impurity using a two-level model featuring
a localized interacting d-level and a non-interacting s-level; the s-level strongly hybridizes
with the continuum, while the d level couples to the s-level predominantly via exchange
interaction.

There is currently a lack of experimental data at variable temperatures, especially in the
mK range, and in variable magnetic field. Such data would help resolve a number of open
questions. On the theoretical front, the relevant multi-level quantum impurity models
should be studied, especially their two-impurity generalizations; this is clearly a formidable
two-channel four-level impurity problem, but it appears within reach of the present-day
computers and NRG implementations.



Poglavje 12

Povzetek disertacije v slovenskem jeziku

V tem poglavju je povzeta vsebina disertacije v slovenskem jeziku. Navedene so tudi
nekatere moznosti za nadaljnje raziskovanje.

Modeli kvantnih necisto¢

Modeli kvantnih necisto¢ opisujejo raznovrstne fizikalne sisteme, pri katerih je necistoca
z notranjimi prostostnimi stopnjami sklopljena s kontinuom stanj v njeni okolici. Tipicen
primer so magnetne necistoce v notranjosti ali na povrsini kovin in nanostrukture, kot
so, denimo, sistemi sklopljenih kvantnih pik. Njihovo nenavadno vedenje je posledica
notranjih prostostnih stopenj, ki vodijo k mo¢nemu sipanju pri nizkih temperaturah — to
je Kondov pojav. Pri visokih temperaturah imajo ti modeli lastnost asimptotske svobode
in jih lahko proucujemo z uporabo teorije motenj, medtem ko so rezimi mocne sklopitve pri
nizkih temperaturah neperturbativni. V primeru magnetnih necisto¢ vodi Kondov pojav k
sencenju lokalne vrtilne koli¢ine in necistoca se obnaSa, kot da bi bila nemagnetna. Poleg
tega se pojavi znacilna ozka Kondova resonanca v blizini Fermijevega nivoja. Ta moc¢no
vpliva na transportne lastnosti sistema pri nizkih temperaturah.

Modeli, obravnavani v disertaciji, vkljuc¢ujejo najve¢ dva kontinua (re¢emo tudi dva kanala).
Dvokanalni pasovi prostih elektronov imajo notranjo simetrijo SO(8); sklopitev necistoce s
pasom podre simetrijo na neko podgrupo grupe SO(8). Lastnosti modelov kvantnih neci-
sto¢ so izrazito odvisne od simetrije in izkaze se, da pride do najbolj nenavadnih pojavov,
ko je simetrija visoka. Posebno pomembne so simetrijske grupe SU(2)spin, ki je posledica
izotropije v spinskem prostoru, SU(2);s,, ki je povezana z ohranitvijo naboja in s simetrijo
med delci in vrzelmi, in SU(2)gayor, ki opisuje simetrijo med obema kanaloma, ter razli¢ne
podgrupe navedenih grup.

Ker smemo necisto¢e obravnavati kot tockasta telesa, se te efektivno sklapljajo le z eno-
dimenzionalnim kontinuom stanj (lahko pa tudi s kon¢nim Stevilom taksnih kontinuov).

231
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Kadar gostota stanj v kontinuu nima posebnosti v blizini Fermijevega nivoja, lahko dis-
perzijo pri nizkih energijah lineariziramo. Modeli kvantnih necisto¢ se potem poenostavijo
na enodimenzionalne efektivne teorije polja, ki imajo znacilne lastnosti, kot je, denimo,
lo¢itev spina in naboja. Njihove nizko-temperaturne fiksne tocke imajo lahko znacaj Fer-
mijevih tekocin ali ne-Fermijevih tekoc¢in. Pomembno orodje za proucevanje fiksnih tock
in njihovih okolic je teorija konformnega polja z robom, ki nudi uporabno intuitivno sliko
bistva Kondovega pojava: notranje prostostne stopnje necistoce izginejo iz problema in
njihov edini uc¢inek je ta, da spremenijo robne pogoje za sipanje delcev kontinua.

Cetudi vemo Ze veliko o simetrijskih lastnostih modelov kvantnih necistoc¢ ter o povezavi
med simetrijami in stabilnostjo razli¢nih fiksnih tock, bi bilo nadvse koristno natancno
prouciti mozne netrivialne fiksne tocke z lastnostmi ne-Fermijevih tekoc¢in v modelih, ki
opisujejo transport skozi nanostrukture. Zato je vredno omeniti, da teorija konformnega
polja z robom naceloma omogoca sistemati¢no iskanje vseh fiksnih tock v modelih, kjer je
interakcija povsem lokalna (torej samo na mestu neéistoce).

Renormalizacijska grupa

Ideja renormalizacijske grupe pomaga razumeti obnasanje nekega fizikalnega sistema na
razlicnih energijskih skalah. Pojmi renormalizabilnosti, univerzalnosti in dimenzijske pre-
tvorbe so med seboj tesno prepleteni; modeli kvantnih necisto¢ se obi¢ajno obnasajo na
univerzalen nacin, ki ga lahko opiSemo s pes¢ico parametrov. V perturbativnem rezimu pri
visokih temperaturah lahko te modele obravnavamo s preprosto renormalizacijo roba pasu
(skaliranjem), ki pa odpovejo v blizini rezima mocne sklopitve.

Wilsonova numeri¢na renormalizacijska grupa (NRG) je neperturbativen pristop k izva-
janju renormalizacijskih transformacij. V Mathematici in C++ sem napisal novo imple-
mentacijo metode,“"NRG Ljubljana”, za ra¢unanje lastnosti problemov kvantnih necistoc,
ki nastopijo pri opisovanju kvantnega transporta skozi nanostrukture.

Metoda NRG temelji na logaritemski diskretizaciji pasov ter iterativni diagonalizaciji za-
poredja Hamiltonovih operatorjev. Logaritemska diskretizacija (oziroma, bolj natan¢no,
zanemaritev visjih Fourierovih nacinov v vseh energijskih intervalih) je resda priblizek,
vendar se izkaze a posteriori, da je tudi za visoke vrednosti diskretizacijskega parametra
A to dober priblizek. Pri kompleksnih problemih z vecjim Stevilom necisto¢ in kanalov
je klju¢nega pomena, da upostevamo vse simetrijske elemente in s tem poenostavimo ra-
¢unsko nalogo. V “NRG Ljubljana” sem uporabil avtomatsko generiranje programske kode
z uporabo sistema za racunalnisko algebro Mathematica, kar znatno poenostavi pripravo
razli¢ic programa za razli¢ne tipe simetrij. V primeru velikih simetrijskih grup, kot je,
na primer, SU(2)spin X SU(2)iso X Zg, postane ro¢no izpeljevanje potrebnih koeficientov
neizvedljivo.

Pri iterativni diagonalizaciji zaporedoma dodajamo mesta iz Wilsonove verige in opra-
vljamo to¢ne diagonalizacije. Rezultat diagonalizacije (lastne vrednosti in lastni vektorji)
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v N-ti iteraciji predstavlja opis zacetnega problema na energijski skali oc A=/2. Ker &tevilo
stanj v celotnem Fockovem prostoru narasca eksponentno s Stevilom iteracij, moramo po
vsaki diagonalizaciji omejiti Stevilo obdrzanih stanj na neko izbrano vrednost. Tudi to je
dober priblizek, saj se pri vsaki renormalizacijski transformaciji renormirajo le nizko lezeci
nivoji.

7Z NRG lahko izracunamo Stevilne pomembne fizikalne koli¢ine. Ze iz spektrov vzbujenih
stanj samih lahko marsikaj razberemo. Dolo¢imo lahko, denimo, fiksne tocke problema
in proucujemo prehajanje med njimi. Izlug¢imo lahko celo efektivne Hamiltonove opera-
torje, ki opisujejo obnasanje sistema v blizini razli¢nih fiksnih tock, in doloc¢imo, ali je
neka motnja relevantna, marginalna ali irelevantna. Iz spektrov lahko izracunamo Se sta-
ti¢ne termodinamske koli¢ine (razli¢ne susceptibilnosti, entropijo). Racunati je mozno tudi
korelacijske funkcije (fluktuacije naboja, spinsko-spinske korelacije) in dinami¢ne koli¢ine
(spektralne funkcije, dinamic¢ne spinske susceptibilnosti). Pri posploseni metodi density-
matrix NRG spektralne funkcije racunamo z uporabo reducirane gostotne matrike, s ¢imer
upostevamo dejansko osnovno stanje sistema tudi pri visokih vzbuditvenih energijah.

Zaradi ponovnega velikega zanimanja za modele necisto¢ znatno napreduje tudi podrocje
metod NRG. Izpostavim naj le izboljSave pri racunanju spektralnih funkcij, s ¢imer je NRG
postal odlikovano orodje za reSevanje efektivnih modelov necisto¢ pri teoriji dinamic¢nega
povprecnega polja za razsezne sisteme koreliranih elektronov.

Ostale metode za modele necistoc

Poleg NRG sta za obravnavo problemov necisto¢ uporabni metodi tudi Gunnarsson-Schonhammerjeva
variacijska metoda in metode kvantni Monte Carlo.

Temelj variacijske metode je preizkusna valovna funkcija, ki uposteva zmanjsane fluktuacije
naboja v Andersonovem modelu, in ki jo uporabimo kot variacijski nastavek. Primerno
obliko nastavka dolo¢imo tako, da projeciramo funkcijo, dobljeno v priblizku Hartree-
Fock, na podprostore z razli¢cnimi zasedenostmi orbital necistoc¢e. Pristop postane Se bolj
natancen, ¢e dopustimo, da so tudi parametri efektivnega kvazidel¢nega Hamiltonovega
operatorja prosti. Variacijsko energijo nato minimiziramo iterativno.

V metodi auxiliary-field Quantum Monte Carlo (QMC) problem fermionov na resetki presli-
kamo na klasi¢en model podoben Isingovemu z uporabo Trotterjevega razcepa in Hubbard-
Stratonovicheve transformacije, ¢emur sledi Se integracija po vseh fermionskih prostostnih
stopnjah. V metodi constrained path QMC tezave s predznakom fermionskih determi-
nant omilimo tako, da ra¢un omejimo na eno izmed dveh degeneriranih polovic prostora
Slaterjevih determinant.

Zanimivo bi bilo implementirati variacijsko metodo, pri kateri bi pas prevodniskih elek-
tronov diskretizirali logaritemsko. Tako bi nemara dobili boljsi opis dogajanja pri nizkih
energijskih skalah. Druga perspektivna smer bi bil razvoj variacijskih nastavkov, ki bi
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upostevali prostostne stopnje, ki se pri nizkih energijah razklopijo od prevodniskih elektro-
nov, ki tvorijo Fermijevo tekoc¢ino. Tako bi morda lahko variacijsko metodo uporabili za
obravnavo singularnih Fermijevih tekocin. Tretja zanimiva moznost bi bila izvedba vari-
acijske metode z uporabo Majoranovih fermionov, s ¢imer bi se lahko odprla moznost za
opis sistemov, ki so ne-Fermijeve tekocine.

Teorija kvantnega transporta

Transport skozi sistem kvantnih pik in tunelska spektroskopija magnetnih adsorbatov na
povrsini kovin sta sorodna problema in oba lahko opiSemo z modeli kvantnih necistoc.

Prevodnost skozi obmocje z interakcijami pri absolutni ni¢li lahko izrac¢unamo iz kvazi-
del¢nih sipalnih faznih premikov, kadar je osnovno stanje sistema Fermijeva tekocina. Ta
pristop temelji na Landauer-Biittikerjevemu formalizmu. Sipalne fazne premike zlahka
razberemo iz spektrov vzbujenih stanj, ki jih izra¢cunamo z NRG.

Prevodnost pri absolutni nic¢li Fermijevih tekocin lahko dolo¢imo tudi z uporabo “sinusne
formule”, pri ¢emer moramo izracunati razliko energij dveh pomoznih sistemov s periodic-
nimi ali antiperiodi¢nimi robnimi pogoji, v katera je vstavljeno obmocje z interakcijami. Ta
pristop je Se posebno uporaben skupaj z variacijsko metodo, s katero lahko zelo natan¢no
dolo¢imo energijo osnovnega stanja.

Prevodnost lahko dobimo tudi iz spektralnih funkcij z uporabo Meir-Wingreenove formule.
Poglavitna prednost tega pristopa je, da lahko temperaturno odvisnost prevodnosti v prvem
priblizku razberemo kar iz frekvenc¢ne odvisnosti spektralnih funkcij.

Nadaljnje raziskave na podrocju teorije kvantnega transporta bi lahko usmerili k nerav-
novesnim in ¢asovno odvisnim problemom, ter k transportu pri konc¢nih temperaturah.
éeprav je osnovni formalizem transportne teorije Zze dobro razvit, je ra¢unanje neravnove-
snih lastnosti koreliranih sistemov Se vedno zelo tezka naloga. Ustrezen pristop je morda
pred kratkim razvita metoda ¢asovno odvisne NRG.

Modeli ene necistoce

Znacilna lastnost prototipskega modela kvantne necistoce (Kondovega modela) je sence-
nje magnetnega momenta pod Kondovo temperaturo Tk. Pri zelo nizkih temperaturah,
T < Tk, se sistem obnasa kot Fermijeva tekocina, katere interagirajo¢ znacaj je razviden
iz netrivialnega Wilsonovega razmerja R = 2. Brez dodatnega potencialnega sipanja je
obnasanje Kondovih sistemov univerzalno in opisljivo z univerzalno funkcijo brezdimen-
zijske koli¢ine T'/Tx. V prisotnosti potencialnega sipanja dobimo ¢rto fiksnih tock, ki je
parametrizirana z dodatno koli¢ino, kvazidel¢nim faznim premikom dp.
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V dvokanalnem Kondovem modelu vodi prekomerno sencenje spina necistoce k vzposta-
vitvi stanja, ki je ne-Fermijeva tekocina (NFL). Nedistoc¢a ima tedaj rezidualno entropijo
kp1n2/2, energije vzbujenih stanj pa tvorijo nenavaden spekter: 0,1/8,1/2,5/8,1,141/8,
itd. NFL fiksno tocko destabilizira asimetrija med kanaloma in sistem zato preide v fiksno
tocno Fermijeve tekocine pri neki nizji temperaturi.

Andersonov model ene necistoce opisuje nastanek lokalnega magnetnega momenta v sis-
temih, kot so magnetne necistoce (orbitala d) in kvantne pike. Sistem ob renormalizaciji
teCe iz visokotemperaturnega rezima proste orbitale (kjer prihaja do spinskih in naboj-
skih fluktuacij) v rezim valen¢nih fluktuacij (fluktuacije naboja med dvema vrednostima)
in nato v rezim lokalnega momenta (samo fluktuacije spina), pri nizkih temperaturah pa
konca v rezimu mocne sklopitve, v katerem je lokalni moment zasencen. ObnaSanje sistema
v odvisnosti od temperature in energije orbitale lahko predstavimo v obliki “faznega dia-
grama”. Pri zadosti nizkih temperaturah lahko Andersonov model preslikamo na Kondov
model s Schrieffer-Wolffovo transformacijo, ki iz problema izprojecira fluktuacije naboja
na necistoci.

Fluktuacije naboja na necisto¢i za majhen I'/U so podane z univerzalno funkcijo (¢*) =
(4/7)(T'/U). Odklon fluktuacij naboja na prvem mestu Wilsonove verige, (¢7), od vrednosti
1/2, ki velja v neinteragirajoc¢ih sistemih, dokazuje, da neéistoca zares povzroéi korelirano
vedenje elektronov v pasu. Nabojsko-nabojska korelacijska funkcija (gqs) je negativna
za velike I'/U in pozitivna za I'/U < 1. Spinsko-spinska korelacijska funkcija (S - Sy¢)
je negativna zaradi efektivne antiferomagnetne interakcije med magnetnim momentom
necistoce in prevodnisSkimi elektroni. Ko zmanjSujemo hibridizacijo I', gre spinsko-spinska
korelacija proti nic¢, kar dokazuje, da je Kondov sencitveni oblak razsezen objekt.

Spektralna funkcija necisto¢e v Kondovem rezimu ima dva Siroka vrhova pri €4 in e+ U (to
sta “Hubbardova satelita”) in znacilno ozko resonanco, katere Sirina je sorazmerna s kT,
in ki se drzi Fermijevega nivoja (to je “Kondova resonanca”). Vrednost spektralne funkcije
pri energiji ni¢ je povezana z zasedenostjo necistoce preko Friedelovega vsotnega pravila.
Prevodnosti, izra¢unane za pasove z razli¢nimi hibridizacijskimi funkcijami, ki pa imajo
enako vrednost pri Fermijevem nivoju, se ne razlikujejo veliko; razlike so Se najbolj opazne
v reZimu valen¢nih fluktuacij, ko postane klju¢na energijska skala (kpTy) primerljiva s
Sirino pasu. Ce vzpostavimo Zeemanovo magnetno polje, se Kondova resonanca razcepi na
dva vrha, ki lezita za gupB 2 €4,U pri €5 — gup|B|/2 in €4+ U + gug|B|/2.

éeprav bi nemara lahko pri¢akovali, da o modelih ene necistoce vemo domala vse, to ne drzi.
Izpostavil bi rad, da se je, denimo, Sele nedavno pricelo temeljito proucevanje modelov, pri
katerih je necistoca sklopljena z bozonsko kopeljo (ali celo so¢asno s fermionsko in bozonsko
kopeljo), z uporabo bozonske posplositve NRG
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Modeli dveh necistoc

Sistemi dveh necisto¢, kot je dvojna kvantna pika (DQD), so najpreprostejsi sistemi, kjer
lahko proucujemo tekmovanje med magnetnim urejanjem in Kondovim sencenjem.

Vzporedno dvojno kvantno piko (in posplositve na N vzporednih pik) lahko opiSemo z
Andersonovim modelom ve¢ nec¢isto¢. Pri nizkih temperaturah se ta model preslika na
Kondov model ve¢ necisto¢. Izkaze se, da je efektivna izmenjalna interakcija med necisto-
¢ami, ki se prenaSa prek prevodniskega pasu (RKKY), feromagnetna, Jrxxy ~ U(pJx)? =
(64/7*)(I'%/U). Spini necisto¢ se zato uredijo in sistem se efektivno obnasa kot Kondov
model ene same necistoce z velikim spinom, S = N/2, pri katerem pride do S = N/2
Kondovega pojava. Kondova temperatura je vselej enaka, ne glede na Stevilo necistoc.
Rezidualni spin je N/2 — 1/2, ¢e le ni sklopitve na dodatne sen¢itvene kanale. ReZim fe-
romagnetne urejenosti in posledi¢ni S = N/2 Kondov pojav sta dokaj robustna napram
razli¢nim motnjam. Zelo moc¢ne motnje vseeno vodijo h kvantnim faznim prehodom raz-
licnih vrst, ki smo jih bolj natan¢no proucili v primeru N = 2.

Ce v vzporedni dvojni kvantni piki odpravimo simetrijo med delci in vrzelmi tako, da
obema necisto¢ama povisamo energijo v enaki meri, pride do kvantnega faznega prehoda
prve vrste med osnovnima stanjema s spinom S = 1/2 oziroma S = 0. Ta prehod povzro-
¢ijo fluktuacije naboja, ki tekmujejo s feromagnetnim urejanjem preko mehanizma RKKY;
temperatura feromagnetne ureditve pada proti ni¢ kot eksponentna funkcija energij neci-
stoc.

Ce vzpostavimo simetricen razcep energij na obeh necistocah, pride do Kosterlitz-Thoulessovega
kvantnega faznega prehoda med singletom in tripletom. To je prehod med kolektivnim tri-
pletnim stanjem elektronov na obeh necistoc¢ah in lokalnim singletnim stanjem na necistoci

z nizjo energijo. Temperatura prehoda je eksponentna funkcija T* o exp[—Tx/J12], kjer

je Jip izmenjalna interakcija med namisljenima spinoma, ki je eksponentno odvisna od
energijskega razcepa.

Ce odboj med elektroni na obeh neéisto¢ah (kapacitivna sklopitev) povecamo do Uy = U,
imata izolirani ne¢istoc¢i simetrijo SU(4), saj se vzpostavi dodatna orbitalna psevdospinska
simetrija SU(2)qp. Simetrijo SU(4) zlomi sklopitev necisto¢ na prevodniski pas, zato ne
pride do Kondovega pojava vrste SU(4). Namesto tega pade efektivna degeneracija s 6
(sekstuplet SU(4)) na 4 (produkt dveh spinskih dubletov) na skali zloma simetrije, nato pa
s 4 na 2 ob Kondovem pojavu tipa SU(2) s spinom S = 1/2. Osnovno stanje ostane dva-
krat degenerirano, saj v lihi molekularni orbitali ostane nezasencen elektron, ki je povsem
razklopljen od preostalega sistema.

V primeru neenakega sklapljanja obeh necisto¢ na prevodniski pas, se visje-energijsko sin-
gletno stanje primesa k osnovnemu tripletnemu stanju. V tem primeru dobimo dober
priblizek za Kondovo temperaturo z uporabo skaliranja drugega reda. Pri zelo mo¢ni
asimetriji se feromagnetna ureditev porusi in pride do Kondovega pojava z S = 1/2 na
necistoci, ki je moc¢neje sklopljena, medtem ko ostane drugi spin nezasencen.
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Lastnosti stransko sklopljene dvojne kvantne pike so moc¢no odvisne od sklopitve med
necistocama, torej od vrednosti parametra skakanja. Pri moc¢ni sklopitvi se sistem preslika
na efektiven Andersonov model za eno necistoco, pri ¢emer igra vlogo orbitale vezavna
ali anti-vezavna molekularna orbitala. Predstavljena je bila uporaba diagramov lastnih
stanj za napovedovanje obnaSanja pri nizkih temperaturah: Kondovo temperaturo lahko
rezimu pric¢akujemo dve Siroki Kondovi planoti v prevodnosti kot funkciji energije necistoc.
Spektralne funkcije moramo v tem modelu rac¢unati z metodo density-matrix (DM) NRG,
saj obicajni pristop vodi k nefizikalnim nezveznostim in h krsitvi vsotnega pravila. V ta
namen sem izpeljal DM NRG v bazi dobro dolo¢enega naboja @ in celotnega spina S.

V primeru Sibke sklopitve med pikama pride do dvostopenjskega Kondovega pojava: spin na
neposredno sklopljeni necistoci je zasencen pri visji Kondovi temperaturi T1(<1 ), medtem ko
je spin na stransko sklopljeni necistoci zasencen pri eksponentno nizji Kondovi temperaturi

Ti(f). Prevodnost je lahko pri kon¢nih temperaturah visoka tudi v blizini tocke, kjer obstaja

simetrija med delci in vrzelmi, ¢e je le izpolnjen pogoj TI(?) LT K TI(;). Poleg tega se

pri kon¢nih temperaturah pojavi Fanova resonanca v prevodnosti, katere izvor je nenadna
sprememba zasedenosti stransko sklopljene pike, ko njena energija precka Fermijev nivo.

V Andersonovih modelih za dve kvantni piki imamo lahko v splosnem tri razli¢ne vrste
Kondovega pojava, ki so pomembni za sisteme dvojne kvantne pike: dvojni Kondov po-
jav (do katerega pride v zaporedno sklopljeni DQD), S = 1 Kondov pojav (vzporedna
DQD), ter dvostopenjski Kondov pojav (stransko-sklopljena DQD). Zanimivo bi bilo prou-
¢iti prehajanje (ali, predvidoma, celo prave kvantne fazne prehode) med razli¢nimi fiksnimi
tockami mocne sklopitve v teh sistemih. To je relevantno za eksperimente, saj lahko pa-
rametre dvojne pike natan¢no nadziramo s spreminjanjem napetosti na elektrodah in tako
dosezemo razli¢ne efektivne topologije dvojne kvantne pike v istem fizikalnem sistemu.

Modeli treh necistoc

Sistemi z lihim $tevilom necisto¢ imajo opazno drugacne lastnosti kot sistemi s sodim
Stevilom. Najbolj preprost sistem treh necisto¢ sestoji iz treh kvantnih pik, zaporedno
vezanih med dva prevodna kanala. ObnaSanje sistema je moc¢no odvisno od vrednosti
orbitalnih energij in sklopitve med necistocami. Na podlagi obsirne numeri¢ne raziskave
z razlicnimi komplementarnimi metodami nam je uspelo dolo¢iti fazni diagram, ki doloca
obmocja parametrov, kjer je prevodnost pri absolutni nicli visoka.

V primeru mocne sklopitve med necisto¢ami lahko sistem preslikamo na efektiven An-
dersonov model ene same necistoc¢e, v katerem igra vlogo orbitale vezavna, nevezavna ali
antivezavna molekularna orbitala. V tem rezimu je prevodnost visoka, ko je zasedenost
pik liha, in zelo nizka, ko je zasedenost soda.

Pri sibki sklopitvi med necistoc¢ami opis z molekularnimi orbitalami ni primeren, saj po-
stane pomembno obnaSanje posameznih spinov. V blizini tocke, kjer imamo simetrijo med
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delci in vrzelmi (torej ko so v sistemu trije elektroni), sistem preide iz rezima molekularne
orbitale (¢ 2 U) v rezim antiferomagnetne spinske verige (J ~ t), in nato v rezim dvosto-
penjskega Kondovega pojava (J < T}Q)). V rezimu antiferomagnetne spinske verige (AFM)
se trije spini uredijo pri 7" ~ J v togo dubletno stanje, pri nizjih temperaturah pa je ta
kolektivni spin sencen v obi¢ajnem S = 1/2 Kondovem pojavu. V reZimu dvostopenjskega
Kondovega pojava (TSK) se spina na prvem in tretjem mestu zasencita pri vigji Kondovi
temperaturi Tl((l), spin na sredinskem mestu pa pri eksponentno nizji drugi Kondovi tem-
peraturi TI((Z) x Tl((l) exp(—cTI((l)/J), kjer je J = 4t?/U. Rezima AFM in TSK sta lo¢ena s
prehodnim obmodjem, v katerem se sistem pri kon¢nih temperaturah pribliza fiksni tocki
dvokanalnega Kondovega modela, ki ima lastnosti ne-Fermijeve teko¢ine (NFL). Rezim
NFL je robusten napram razlicnim motnjam, kot so, denimo, zlom simetrije med delci in
vrzelmi, zlom parnosti in neenak odboj med elektroni na razli¢nih mestih. Edine “nevarne”
motnje so tiste, ki dodatno povecajo asimetrijo med kanaloma.

V tocki, kjer obstaja simetrija med delci in vrzelmi, prevodnost naraste na unitarno mejo
pri 7' = 0 za poljubno od ni¢ razlicno vrednost parametra skakanja med pikami ¢. Poleg
tega se izkaze, da je stabilna nizkotemperaturna fiksna tocka enaka za vse ¢: v lihem kanalu
je fazni premik 7/2, v sodem kanalu pa faznega premika ni.

Fiziko ne-Fermijeve tekoc¢ine lahko zaznamo s primerjanjem prevodnosti skozi eno izmed
stranskih pik in skozi celoten sistem. Prevodnost skozi stranski piki naraste na Gy/2,
medtem ko je prevodnost skozi sistem Se vedno nizka, ko temperatura pade pod Kondovo
temperaturo. Ko preidemo iz fiksne tocko NFL v fiksno tocko Fermijeve tekocine, naraste
prevodnost skozi sistem na Gy. To je v skladu z opazanjem, da je prenos naboja iz enega
kanala v drugega natanko tista motnja, ki destabilizira fiksno tocko ne-Fermijeve tekocine.
Spreminjanje spektralnih funkcij v odvisnosti od parametra skakanja ¢ prikazuje, kako se
spektralni vrh molekularne orbitale razvije v vrh pri w = J (rezim AFM), ta pa nato v
prvi Kondov vrh (rezim TSK).

Rezim dvostopenjskega Kondovega pojava se razteza od obmocja trojne zasedenosti do
obmocja dvojne zasedenosti. V blizini dvojne zasedenosti je spin elektrona na sredinskem
mestu sencen preko sklopitve na kvazidelce, ki izvirajo iz stanj valen¢ne fluktuacije na obeh
stranskih mestih.

Natan¢no proucevanje lastnosti bolj splosnih modelov treh necisto¢ je Sele v povojih in
prostor modelskih parametrov, ki ga moramo raziskati, je ogromen. Zelo zanimiv sistem je
gotovo trikotnik iz treh kvantnih pik, sklopljen na dva prevodniska kanala. V odvisnosti od
parametrov se lahko ta sistem obnaga, denimo, kot dvokanalni Kondov model ene necistoce,
kot Kondov model dveh necisto¢, ali pa kot frustriran antiferomagnet.
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Nizkotemperaturni vrsti¢ni tunelski mikroskop

Vrsti¢ni tunelski mikroskop (STM) je vsestransko orodje na podro¢ju nanotehnologije.
Lahko ga uporabimo za sestavljanje in karakterizacijo nanostruktur: tunelska spektrosko-
pija nudi vpogled tako v elektronske kot v vibracijske lastnosti adsorbatov.

Sestavili smo s tekoc¢im helijem hlajeni nizkotemperaturni STM, ki deluje pri 5.9 K. Instru-
ment doseZe atomsko lo¢ljivost na povrsinah kovin z zelo nizko korugacijo, kot je Cu(111).
Glavo mikroskopa smo priredili tako, da lahko vanjo vstavimo vzorce, pritrjene na Omi-
cronove nosilce. Tako smo ohranili zdruzljivost z ze obstoje¢o opremo. Sestavljanje in-
strumenta sem opisal s Stevilnimi podrobnostmi in podal sem dve metodi za preizkusanje
in karakterizacijo vibracijskega in elektri¢nega obnagsanja skenerja: meritev dvojnega piezo
odziva in spektralno analizo tunelskega toka. Najnizjo mehansko resonanco najdemo pri
900 Hz, kar je primerljivo z vrednostmi podobnih skenerjev, ki jih uporabljajo drugod.

Konice pripravljamo z elektrokemijskim jedkanjem volframove Zice v raztopini KOH s po-
mocjo doma narejenega elektronskega vezja, ki hitro prekine tok, ko je jedkanje koncano.
Konice nato oc¢istimo v fluorovodikovi kislini, da odstranimo volframove okside, in jo do-
datno izboljsamo in-situ z nadzorovanim zaletavanjem konice v mehko povrsino.

Sestavili smo mehanizem za prenos vzorca iz komore za shranjevanje vzorcev v glavo mi-
kroskopa. Da se prepreci hladno privarjenje, mehanizem uporablja vakuumsko zdruzljive
krogli¢ne lezaje in trde prevleke na povrsinah, kjer prihaja do trenja.

Da opazovana povrsina ostane c¢ista, je mikroskop vgrajen v ultravisoko vakuumski sistem.
Ultravisoki vakuum (UHV) dobimo z vecstopenjskim ¢rpanjem in s pregrevanjem sistema
na 105°C. Da bi bil kon¢ni pritisk ¢im nizji, je klju¢nega pomena kar se da zmanj3ati
degasiranje z uporabo primernih materialov in ¢imbolj omejiti notranjo povrsino sistema.
Prostornina sistema vpliva predvsem na ¢as ¢rpanja, da dosezemo UHV.

Cisto in urejeno povrsino vzorca dobimo z izmeni¢nim ionskim sputtranjem in popuscanjem
vzorca. Ta postopek smo rac¢unalnisko avtomatizirali, stanje povrsine pa nadzorujemo z
uklonom nizkoenergijskih elektronov in spektrostopijo Augerjevih elektronov. Pri zelo
kvalitetnih vzorcih dobimo povrsino, ki je zadosti dobra za tunelsko mikroskopijo, v manj
kot desetih ciklih ¢isc¢enja. Razli¢ne adsorbate nato naprasimo na povrSino z uporabo
Knudsenove celice.

Povrsine Cu(111) in Cu(211) smo slikali z atomsko lo¢ljivostjo. Opazovali smo stojeca valo-
vanja povrsinskih elektronov (energijsko razlocene Friedelove oscilacije) in difuzijo molekul
CO na Cu(111). Dinami¢ne spremembe stanja konice so razvidne iz sprememb kvalitete
slik med skeniranjem:.

Pred kratkim smo konstruirali nov kriostat na helijevo kopel, ki bo imel daljsi ¢as pred
potrebnim dotakanjem kriogenih tekocin. Poleg tega bo mikroskopska glava dosegla nizje
temperature, saj bo sistem bolje izoliran, Zice pa bodo bolje toplotno sidrane. Kristat bo
imel boljSe moznosti za nastavljanje in ga bo lazje vzdrzevati.
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Skupki magnetnih necisto€ in Kondov pojav na povrSinah

Magnetne lastnosti skupkov adsorbatov lahko proucujemo s tunelskim mikroskopom tudi
brez spinsko polarizirane konice. Mozen pristop je, denimo, zaznavanje znacilne posledice
Kondovega pojava, ki se pojavi v obliki ozke antiresonance v blizini Fermijevega nivoja v
diferencialnem tunelskem spektru d7/dV.

Do Kondovega pojava na povrsinah lahko pride v posameznih magnetnih adatomih, di-
merih in trimerih, v adsorbiranih molekulah, ki vkljuc¢ujejo magnetni ion, ter v skupkih
kovinskih atomov na ogljikovih nanocevkah. Interakcije med necisto¢ami lahko proucu-
jemo tako, da dva adatoma postopno priblizujemo, dokler se ne povezeta v skupek, ob
tem pa spremljamo, kako se spreminja oblika antiresonance v spektrih. Pri primerjavah
meritev s teoretiCnimi izracuni je potrebno najti povezavo med Sirino antiresonance ter
pravo Kondovo temperaturo sistema.

Antiresonanco v tunelskem spektru najlaze razumemo, ¢e upoStevamo, da so valovne
funckije orbital d moc¢no lokalizirane, zato vecina tunelskega toka tece v orbitale sp ad-
sorbata, ki so moc¢no hibridizirane s pasom prevodniskih elektronov v podlagi. Tunelski
spekter je zato v prvem priblizku sorazmeren kar s spektralno funkcijo prevodniskega pasu
na mestu nedistoce. Se boljsi priblizek je, ¢e necistoCo opiSemo z dvonivojskim modelom,
ker upostevamo tako orbitalo d kot orbitalo s; orbitala s je moc¢no hibridizirana s konti-
nuom, medtem ko se orbitala d sklaplja z orbitalo s predvsem preko izmenjalne interakcije.

Se vedno primanjkujejo eksperimentalni podatki pri spremenljivih temperaturah, pred-
vsem v obmocju milikelvinov, ter v spremenljivih magnetnih poljih. Ti podatki bi lahko
nudili odgovore na Stevilna odprta vprasanja. Na podrocju teorije bi bilo vredno teme-
ljito prouciti ustrezne vecnivojske modele kvantnih necisto¢, predvsem njihove razsiritve
na dve necistoci. To je tezaven dvokanalni Stirinivojski problem, ki pa je verjetno v dosegu
zmogljivosti danasnjih ra¢unalnikov in implementacij metode NRG.
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Appendix A

Tensor operators and Wigner-Eckart
theorem

We consider a spherical tensor operator O of rank M with 2M + 1 components indexed by
uw=—M,...,+M. By definition, it satisfies the following relations

[1., 04 = Oy
[, OM] = A(M, p)OM | (A1)
[J-,0,"] = AM, =)0,

where .J are the generators of an SU(2) symmetry group and A(M, p) = /(M — pu)(M + p+1).
The eigenstates of a system with SU(2) symmetry then satisfy the Wigner-Eckart theorem:

(. 4,410 o 3", 32) = (33 M pl ) (e, GIlOM |, 57, (A.2)

where j,j' are spin quantum numbers, j,,j. are projection (magnetic) quantum num-
bers and «, o’ are additional non-angular quantum numbers. <j1jzl;j2jZ2|JJZ> are SU(2)
Clebsch-Gordan coefficients. The theorem is proved by inserting the defining commutators
(A.1) between bras and kets and operating with the generators J to the left on bras and
to the right on kets. The system of equations thus obtained is identical to the generating
equations for the Clebsch-Gordan coefficients.
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Appendix B

(Green’s functions

This appendix recapitulates essential formulas from many-particle physics and sets notation
for the main text.

An operator in the Heisenberg representation is defined by

O(t) = e™O(0)e 1 (B.1)
or by the equation of motion
i%O(t) =[0(t), H]. (B.2)

In general (and in particular for non-equilibrium problems) we need to define several
Green’s functions:2805%0

7 (w1, 9) = —i(p(x1)Y" (22))
G= (21, 29) = (Y (2) ¢ (21))
Gt(Il,ZEQ) == ‘9(751 - tg)G>(ZE1, 1'2) + Q(tg — tl)G<(I1,ZE2)
Gt(Il,ZEQ) = ‘9(752 — tl)G (ZEl, 1'2)74— Q(tl — tg)G<(I1,ZE2) (B3)
Gr(l'l,.’lfg) = = G> — Gt

= «9(751 - tg) (G=(x1,22) — G= (21, 29))
= —i0(ty — to) (Y (1) 9" (w2) + T (22) (1))
Gy, my) =G — G~ =G =G
G~ is greater Green’s function (GF), G< is lesser GF, G is time-ordered GF, G* is anti-
time-ordered GF, G" is retarded GF and G“ is advanced GF. Here z; stands for time %,

position r; and any other quantum numbers such as spin. Note that the Green’s functions
are defined in the Heisenberg representation.

At nonzero temperatures, the retarded Green’s function for systems in steady state can be
expressed as:

Gr(t—t') = —ib(t — ¢')Tr <e—ﬂ<K—ﬂ> [e(t)el () + ¢ (t’)ci(t)]> (B.4)
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Here and in the following ¢, 7 stand for any quantum numbers, in particular for the site
number and the spin of electron. K = H — uN, ¢;(t) = ef%¢;(0)e "% and € is the grand-
canonical partition function. We set ¢ = 0, so that G" depends only on ¢ and we perform
a Fourier transform to the energy (frequency) space:

G (w) = /_ dte'GL (1), (B.5)

The spectral representation in terms of the eigenstates defined by K|m) = E,,|m) can be
derived as follows:

Gi (t) = —io(t mz nle™e,(t)|m) (mlcf(0) ) + (nle™ e} (0)|m) {mlei(t)|n)

= —i(t)e” Z ¢ (M EE) (s m) (mef ) + € Er =) (| ) (m]es ) )

= —if(t)e Z M En=Em) () ¢;|m) (m]cj]m (e PP 4+ e FFm)
(B.6)
and after Fourier transforming we obtain
_ B f fy ¢ " Te
=e Z(m\c ]n) (mlcj|n) DB B i (B.7)
For i = j, we have <<m\cj\n>) (mlclln) = |(m]cl[n) > _ = Pl_iri(x)
can then be used to obtain the imaginary part:
Im G} ;(w) = —me”> " [(mlcl[n)* (7P + e Pm) § (w+ E, — Ey,). (B.8)
We define the spectral function as
1
Aij(w)=—=ImG],. (B.9)
ﬂ- )

It should be noted that some people define the spectral function without the 7 factor! Our
definition is such that [ A;dw = 1, while others prefer [ A;92 = 1. Note also that in the
case of § = % fermions, our spectral function A; refers to a particular spin orientation,
since index i includes o, i.e. A;(w) = A4, ,(w).

In the zero-temperature case we obtain'

Ai(w > 0) Z|m|cwn0\5(w— )
Ai(w < 0) = Z| (molc!|n)[?6 (w + E,) (B.10)

2:21
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where indexes mg,ny indicate summation over the eventually degenerate ground states,
while indexes m and n correspond to sums over all states. Z is the partition function.

For i # j, we consider the symmetrized function G7; + G7%;. Denoting the braket product
((m[cj]n}) (m]cj]n} by a, we see that the replacement i < j yields a*. The symmetric

sum of Green’s functions then features a real factor a + a* = 2Rea and we can again use
the Plemelj formula to obtain

m (G ;(w) + Gjy(w)) =
e’ Z 2Re [((mlcj\n)> <m\c;\n)} (e B + e FFm) §(w + B, — Ey). (B.11)
We define mixed spectral function
1 ., .
Aij(w) = =T (G5 + GG) - (B.12)

Specializing to T' = 0 we obtain:

A, j(w>0) Z Re [( m\c}]n@) (m]c}]no)} d(w—FEy)
7 . (B.13)
Aij(w < 0) Z Re [ ((molel|n)) " (molctln)] & (w + E.)
Note that there is a sum rule
/dWAi7j(W) = 52‘7]‘, (B14)

which is a consequence of the anticommutation relation for fermionic operators cz-c} —i—c}cz- =

5
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Appendix C

Generalized Schrieffer-Wolft
transformation

In this section I derive the Schrieffer-Wolff transformation to the Kondo model applicable
to the systems of multiple impurities. The derivation is based on the approach of Ref. 551.
We separate the Hamiltonian into a Hamiltonian of the isolated dots and conduction band
Hy and a coupling Hamiltonian Hi:

Hy = Z ekc;i,ackp + Z E.|a){al (C.1)

k,o

Hi= S tiotsoa |0)8] o + tigppachy 19)al. (€2)
k,o,0,0

where multi-indexes o and (3 stand for the quantum numbers, for example the set (Q, S, S.,w).
Coefficient #1535 correspond to electron excitations on the dots, while tza‘ 5o COITEspond
to hole excitations on the dots.

We perform a unitary transformation so that the transformed Hamiltonian will contain no
operators linear in coupling coefficients t.

ﬁ:eﬁhlﬂ;H+wuﬂ+%uﬂRHn+~~ (C.3)
H = Hy + Hy + [P, Hy) + [P, Hy] + O(V?). (C.4)

We require [P, Hy] = —Hj, so that we will obtain

H=Hy+ [P, H. (C.5)

Let |a) and |b) be two eigenstates of Hy. We get
(a|HoP — PHo|b) = (a|H:|b), (C.6)
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hence

(H1)a
Ea - Eb,
where E, and Ej are eigenenergies. By premultiplying by |a) and postmultiplying by (0|
and summing, we obtain

(a|P[b) = (C.7)

P=>Y" %yaxb{. (C.8)

a,b

Hamiltonian H; connects states that differ by one electron in the dot region, AQ = +1
and AS = £2. For transitions where an electron is added to the dots, we write a = (a, 0)
and b = (8, ko), where multi-indexes 5 = (@, S,S,,w) and a« = (Q + 1,5 + 7,5, + 0,0)
correspond to eigenstates of isolated dots, 7 = £+1/2, and the energy difference is E, —
Ej — €. For transitions where an electron is removed from the dots, we write a = («, ko)
and b = (3,0) with o = (Q — 1,5 — 7, S, —0,w’) and the energy difference is £, + ¢, — Ej.
Taking into account the definition of H, we then obtain

o) (8] () (Bl 4
P tko’ 184»01 k Rea + t ola— -  C o (Cg)
a%;g = By — Es — kolo=bp Byt e ©

Note that some |a) (] projectors contain all-in-all an odd number of fermionic operators,
because the electron number changes by £1. Then ¢, |a) (3] = —|a){B]|cko-

Now we need to compute the commutator [P, H;]. Outside charge fluctuation regions, we
may disregard two-electron hopping terms such as

) {6

S eV B S C.10
Ea—Eﬂ—Eka Ck ( )

tka\ﬁ—»atk’a’ |a—a’
because they only contribute as high-order corrections. The only relevant terms are those
that correspond to electron/hole hopping on and off the dots which are initially in the
ground state. These terms are

* , 1 | +
Z tko‘|a—>ﬂtk/a/|a14,ﬂ‘a ><Oé’ B F —c —+ E_E ey Ck;/g'/cko'
a,a!,B,ko,k'c! B a k 8 a k
(C.11)

bt ) (@] S !
—lko|B—alk o' B—a’ | ) (X Cpro'C -
ko|B k'a’|B Es— Eq + e E,G —E, + 62 K'o' Ok

The states |«) and |a/) correspond to degenerate ground states, which may in some cases
correspond to different (@, S,w) multiplets. These clearly cannot be mapped to a simple
Kondo-like problem, so from here on we assume that there is a single ground multiplet.

We're especially interested in terms with o = —o’. Then S,(¢/) = S.(«) + 20 and |o/) (|
raises or lowers spin by 1. This corresponds to STo~™ + S~ o™ term in the Kondo Hamil-
tonian. Due to spin isotropy, there must also exist corresponding S?c* terms for o = o’
which lead to S - o expression.
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There are also terms with ¢ = o', which correspond to mere energy renormalization of
the ground and excited states, and, in the absence of the particle-hole symmetry, potential
scattering terms, that we disregard.

Finally, the effective Hamiltonian is
Heﬂ‘ = H() + Z Jkk/S : (CL’/L’%GM’WWC]W) . (0.12)
KE' !
At low temperatures, only scattering near the Fermi energy is important, and we may use
Jkk’ ~J= ‘]k‘F,k‘FJ where

8tkrojapl’
J =t . C.13
Es— B, (C13)

The final expression is then
Heg = Hy+ JS - s. (C.14)



Appendix D

Scaling equations to second order in J

In this section Hubbard’s X-operator notation is used. This notation is defined by X, =
Ip){(q|, where |p) and |q) are states in a complete set of many particle states. The diagonal
elements X, are projection operators for the state |p). Products of operators can be

contracted:
Xp;qXp’;q’ = 5P/7QXP¥]" (D-l)

We consider an effective Hamiltonian of the form

H = Z EkaUCkU -+ Z E Xmm -+ Z JUU 'Xmm’ckgck’cr’a (D2)

mm/ kk’,oc0’
where J77', are generalized exchange constants. We write?
[Hll + Hya (E — Hap) ™' Hay + Hyo (E — Hyo) ™ Hm} U1 = En, (D.3)

where subspaces 2 corresponds to states with one electron in the upper [0D]| edge of the
conduction band, 0 corresponds to states with one hole in the lower |§D| edge of the band,
and 1 corresponds to states with no excitations in the edges that are being traced-over.
Furthermore, H;; = P;H P;, where P; are projectors to the corresponding subspaces i. After
some tedious algebra, we find that to second order the coupling constant are changed by

oo’ 1 TO 7'0 1 o'r or

(D.4)
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Appendix E

Transformations of band and coupling
Hamiltonians

In this appendix I map the conduction-band and coupling Hamiltonians in discrete form
(sum over wave-numbers k) to a continuous Hamiltonian in the energy space that is used in
NRG. The derivation roughly follows that of Ref. 30. The main difference is that [ specialize
from the outset to a one-dimensional conduction channel such as a tight-binding chain.
Furthermore, the wave-number k ranges from 0 to 7, whereas in bulk each component of
the wave vector ranges from —m to 7. The Hamiltonian of a one-dimensional single-mode
conduction lead with a coupling term is

H =Hya+ H. = Z ekCLuCkM + Z Vk(ciudu + H.c.). (E.1)
k k

Operators ¢, are normalized so that {cL,ck/} = Opp. We first go from discrete £ to a
continuum k in the standard way. Let a; be the continuum operators normalized so that
{al,ap} = 6(k — k). The replacement rule for sums over k is

N s
d - _C/ dk, (E.2)
k T Jo

where N, is the number of sites in the chain. The operators ¢, transform as

™
C — Eak. (E3)

This follows from the requirement that Zk,k,{ci, ¢x} = N, corresponds to [ dkdk'{al,a;} =
m. We obtain

Z GkCJ]LCk — /dk €k &L&k; (E4)

k
N 1/2
> View — (7) / dkViay. (E.5)
k
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Next we introduce energy representation by defining ap = (dE(k)/dk)~'/?ay, where E(k) =
€, which makes

dE(E)\
{al,,ap} = (%) S(k—K)=6(F —E). (E.6)
This gives
dE(k p
/ dkepalay = / dkey, <T§€)) alap = / dE E alag, (B.7)
-D
and

(%)1/2 / dkViay (E.8)
)
_ (%)1/2 / Z AE (%}i’“))m V(E) ag. (E.10)

Here D is the band edge (or half-bandwidth). As the density of states per spin is

ZéE E(k N/dka(E E(k N/dk ]’ZE;)“E _ A (dEdl(f)) ,
™

(E.11)
we finally obtain

D
H, — / AE[p(E)"*V (E)as. (E.12)
-D
The energy-representation version of H' is therefore

D D
H = /_ . dE E aly,ap, + /_ i dE[p(E))"*V(E)(al,d, + H.c.). (B.13)
In NRG calculations it is customary to measure all energies relative to the band edge D
by working in terms of the dimensionless variable e = E//D and operators a., = \/BaEu.
We also define the hybridization function as I'(¢) = mp(e)V (€)?. It should be noted that
all information about the energy dependence of the density of states and of the coupling
V is contained in the function I" alone.'®> The final expression is thus

H' 1 1 T(e)\"?
= = d T a, de [ —2 I d,+H.c). E.14
D » eeawaﬂ—i-/l G(ﬂ_D) (al,d,+H.c.) (E.14)

Let us consider the example of a one-dimensional tight-binding chain with hopping param-
eter ¢ and dispersion Ej, = —2t cos(k). The bandwidth is D = 2t and the density of states
is
N, 1
F)y="“F—— E.15
B = e (B.15)
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Furthermore, we take H, = —t Zu(dLCWﬂLH-C-), i.e the coupling consists of simple hopping
from the first site of the chain to the impurity site. The hybridization matrix elements are

sin k. (E.16)

The hybridization function is thus

N, 1 2 2 .
I'E) = | (¥ 2k E.1
(E) W(wm)( 7 ) (E17)
which for large N, becomes
['(e) =TpvV1— € (E.18)

where Ty = 2t"*/D = $(t'/t)?D. If a single quantum dot is coupled to two such tight-
binding chains, T is twice as large, i.e. Tg/D = (¢'/t).



Appendix F

Majorana fermions

Let us consider a single fermion mode described by creation-annihilation operator pair cf, ¢
with {c', ¢} = 1 and {c,c¢} = 0 and {cf,c'} = 0. These operators span a two-level Fock
space so that ¢f|0) = |1) and ¢|1) = |0). We decompose the annihilation operator ¢ in real
and imaginary parts by defining

c=Rec+ilme = x + i, (F.1)
where x and ¢ are real, in the sense that y' = y and ¢ = £, From this it follows
= x —ig. (F.2)

The anti-commutation relations then lead to £ = 1/4, x* = 1/4 and {x, ¢} = 0.

Two operators (c, ¢f) are needed to span a two-level Fock space in the case of complex
fermions. Likewise, both x and & need to be present to generate a two-level space; a single
real Majorana fermion by itself can only be associated with a trivial single-level space.
The degeneracy of a system with N Majorana modes is thus 2%/ where [z] denotes the
integer part of z.

Spin operators for S = 1/2 can also be expressed in terms of two Majorana fermions a and
b:
o* = —iab. (F.3)
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