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Abstract

We consider a family of I-graphs I(n, k, l), which is a generalization of the class of
generalized Petersen graphs. In the present paper, we provide a new method for counting
Jacobian group of the I-graph I(n, k, l). We show that the minimum number of generators
of Jac(I(n, k, l)) is at least two and at most 2k+ 2l− 1. Also, we obtain a closed formula
for the number of spanning trees of I(n, k, l) in terms of Chebyshev polynomials. We
investigate some arithmetical properties of this number and its asymptotic behaviour.
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1 Introduction
The notion of the Jacobian group of a graph, which is also known as the Picard group,
the critical group, and the dollar or sandpile group, was independently introduced by many
authors ([1, 2, 4, 9]). This notion arises as a discrete version of the Jacobian in the classical
theory of Riemann surfaces. It also admits a natural interpretation in various areas of
physics, coding theory, and financial mathematics. The Jacobian group is an important
algebraic invariant of a finite graph. In particular, its order coincides with the number of
spanning trees of the graph, which is known for some simplest graphs, such as the wheel,
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fan, prism, ladder, and Möbius ladder [6], grids [23], lattices [25], prism and anti-prism
[26]. At the same time, the structure of the Jacobian is known only in particular cases
[4, 7, 9, 17, 20, 21] and [22]. We mention that the number of spanning trees for circulant
graphs is expressed is terms of the Chebyshev polynomials; it was found in [8, 27], and
[28]. We show that similar results are also true for the I-graph I(n, k, l).

The generalized Petersen graph GP (n, k) has vertex set and edge set given by

V (GP (n, k)) = {ui, vi | i = 1, 2, . . . , n}
E(GP (n, k)) = {uiui+1, uivi, vivi+k | i = 1, 2, . . . , n},

where the subscripts are expressed as integers modulo n. The classical Petersen graph
is GP (5, 2). The family of generalized Petersen graphs is a subset of so-called I-graphs
([3, 14]). The I-graph I(n, k, l) is a graph of the following structure

V (I(n, k, l)) = {ui, vi | i = 1, 2, . . . , n}
E(I(n, k, l)) = {uiui+l, uivi, vivi+k | i = 1, 2, . . . , n}.

where all subscripts are given modulo n.
Since I(n, k, l) = I(n, l, k) we will usually assume that k ≤ l. In this paper we will

deal with 3-valent graphs only. This means that in the case of even n and l = n/2 the
graph under consideration has multiple edges. The graph I(n, l, k) is connected if and
only if gcd(n, k, l) = 1. If gcd(n, k, l) = m > 1, then I(n, k, l) is a union of m copies
of the graph I(n/m, k/m, l/m). If m = 1 and gcd(k, l) = d, then the graphs I(n, k, l)
and I(n, k/d, l/d) are isomorphic [5, 16, 24]. In the case of l = 1 it easy to see that
the graph I(n, k, 1) coincides with the generalized Petersen graph GP (n, k). The number
of spanning trees and the structure of Jacobian group for the generalized Petersen graph
were investigated in [19]. The spectrum of the I-graph was found in [11]. Even though
the number of spanning trees of a given graph can be computed through eigenvalues of its
Laplacian matrix, it is not easy to find the number of spanning trees for I(n, k, l) using
them. In this paper, we obtained a closed formula for the number of spanning trees for
I(n, k, l), investigate some arithmetical properties of this number and provide its asymp-
totic behavior. Also, we suggest an effective way for calculating Jacobian of I(n, k, l) and
find sharp upper and lower bounds for the rank of Jac(I(n, k, l)).

2 Basic definitions and preliminary facts
Consider a connected finite graphG, allowed to have multiple edges but without loops. We
endow each edge ofGwith the two possible directions. SinceG has no loops, this operation
is well defined. Let O = O(G) be the set of directed edges of G. Given e ∈ O(G), we
denote its initial and terminal vertices by s(e) and t(e), respectively. Recall that a closed
directed path in G is a sequence of directed edges ei ∈ O(G), i = 1, . . . , n such that
t(ei) = s(ei+1) for i = 1, . . . , n− 1 and t(en) = s(e1).

Following [1] and [2], the Jacobian group, or simply Jacobian Jac(G) of a graph G is
defined as the (maximal) Abelian group generated by flows ω(e), e ∈ O(G), obeying the
following two Kirchhoff laws:

K1: the flow through each vertex of G vanishes, that is
∑
e∈O,t(e)=x ω(e) = 0 for all

x ∈ V (G);
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K2: the flow along each closed directed path W in G vanishes, that is
∑
e∈W ω(e) = 0.

Equivalent definitions of the group Jac(G) can be found in papers [1, 2, 4, 9, 12, 18, 20].
We denote the vertex and edge set of G by V (G) and E(G), respectively. Given u, v ∈

V (G), we set auv to be equal to the number of edges between vertices u and v. The matrix
A = A(G) = {auv}u,v∈V (G), called the adjacency matrix of the graphG. The degree d(v)
of a vertex v ∈ V (G) is defined by d(v) =

∑
u auv. LetD = D(G) be the diagonal matrix

indexed by the elements of V (G) with dvv = d(v). Matrix L = L(G) = D(G)−A(G) is
called the Laplacian matrix, or simply Laplacian, of the graph G.

Recall [20] the following useful relation between the structure of the Laplacian matrix
and the Jacobian of a graph G. Consider the Laplacian L(G) as a homomorphism Z|V | →
Z|V |, where |V | = |V (G)| is the number of vertices in G. The cokernel coker(L(G)) =
Z|V |/ im(L(G)) — is an Abelian group. Let

coker(L(G)) ∼= Zd1 ⊕ Zd2 ⊕ · · · ⊕ Zd|V |

be its Smith normal form satisfying the conditions di
∣∣di+1, (1 ≤ i ≤ |V |). If the graph is

connected, then the groups Zd1 ,Zd2 , . . . ,Zd|V |−1
— are finite, and Zd|V | = Z. In this case,

Jac(G) ∼= Zt1 ⊕ Zt2 ⊕ · · · ⊕ Zd|V |−1

is the Jacobian of the graphG. In other words, Jac(G) is isomorphic to the torsion subgroup
of the cokernel coker(L(G)).

Let M be an integer n× n matrix, then we can interpret M as a homomorphism from
Zn to Zn. In this interpretation M has a kernel kerM, an image imM, and a cokernel
cokerM = Zn/ imM. We emphasize that cokerM of the matrix M is completely deter-
mined by its Smith normal form.

In what follows, by In we denote the identity matrix of order n.
We call an n×n matrix circulant, and denote it by circ(a0, a1, . . . , an−1) if it is of the

form

circ(a0, a1, . . . , an−1) =


a0 a1 a2 . . . an−1
an−1 a0 a1 . . . an−2

...
...

...
. . .

...
a1 a2 a3 . . . a0

 .

Recall [10] that the eigenvalues of matrix C = circ(a0, a1, . . . , an−1) are given by the
following simple formulas λj = p(εjn), j = 0, 1, . . . , n−1 where p(x) = a0+a1x+ · · ·+
an−1x

n−1 and εn is the order n primitive root of the unity. Moreover, the circulant matrix
C = p(T ), where T = circ(0, 1, 0, . . . , 0) is the matrix representation of the shift operator
T : (x0, x1, . . . , xn−2, xn−1)→ (x1, x2, . . . , xn−1, x0).

By [15, Lemma 2.1] the 2n × 2n adjacency matrix of the I-graph I(n, k, l) has the
following block form

A(I(n, k, l)) =

(
Ckn In
In Cln

)
,

where Ckn is the n× n circulant matrix of the form

Ckn = circ(0, . . . , 0︸ ︷︷ ︸
k times

, 1, 0, . . . , 0︸ ︷︷ ︸
n−2k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
k−1 times

).
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Denote by L = L(I(n, k, l)) the Laplacian of I(n, k, l). Since the graph I(n, k, l) is
three-valent, we have

L = 3I2n −A(I(n, k, l)) =
(
3In − Ckn −In
−In 3In − Cln

)
.

3 Cokernels of linear operators
Let P (z) be a bimonic integer Laurent polynomial. That is P (z) = zp + a1z

p+1 + · · · +
as−1z

p+s−1 + zp+s for some integers p, a1, a2, . . . , as−1 and some positive integer s.
Introduce the following companion matrix A for the polynomial P (z):

A =

(
0 Is−1

−1,−a1, . . . ,−as−1

)
,

where Is−1 is the identity (s− 1)× (s− 1) matrix. We will use the following properties of
A. Note that detA = (−1)s. Hence A is invertible and inverse matrix A−1 is also integer
matrix. The characteristic polynomial of A coincides with z−pP (z).

Let A = 〈αj , j ∈ Z〉 be a free Abelian group freely generated by elements αj , j ∈ Z.
Each element of A is a linear combination

∑
j cjαj with integer coefficients cj .

Define the shift operator T : A→ A as a Z-linear operator acting on generators of A by
the rule T : αj → αj+1, j ∈ Z. Then T is an endomorphism of A. Let P (z) be an arbitrary
Laurent polynomial with integer coefficients, then A = P (T ) is also an endomorphism of
A. Since A is a linear combination of powers of T, the action of A on generators αj can
be given by the infinite set of linear transformations A : αj →

∑
i ai,jαi, j ∈ Z. Here

all sums under consideration are finite. We set βj =
∑
i ai,jαi. Then imA is a subgroup

of A generated by βj , j ∈ Z. Hence, cokerA = A/ imA is an abstract Abelian group
〈xi, i ∈ Z |

∑
i ai,jxi = 0, j ∈ Z〉 generated by xi, i ∈ Z with the set of defining relations∑

i ai,jxi = 0, j ∈ Z. Here xj are images of αj under the canonical homomorphism
A → A/ imA. Since T and A = P (T ) commute, subgroup imA is invariant under the
action of T. Hence, the actions of T and A are well defined on the factor group A/ imA
and are given by T : xj → xj+1 and A : xj →

∑
i ai,jxi respectively.

This allows to present the group A/ imA as follows 〈xi, i ∈ Z | P (T )xj = 0, j ∈
Z〉. In a similar way, given a set P1(z), P2(z), . . . , Ps(z) of Laurent polynomials with
integer coefficients, one can define the group 〈xi, i ∈ Z | P1(T )xj = 0, P2(T )xj =
0, . . . , Ps(T )xj = 0, j ∈ Z〉.

We will use the following lemma.

Lemma 3.1. Let T : A → A be the shift operator. Consider endomorphisms A and B of
the group A given by the formulas A = P (T ), B = Q(T ), where P (z) and Q(z) are
Laurent polynomials with integer coefficients. Then B : A→ A induces an endomorphism
B|cokerA of the group cokerA = A/ imA defined byB|cokerA(α+imA) = B(α)+imA,
α ∈ A. Furthermore

〈xi, i ∈ Z | A(T )xj = 0, B(T )xj = 0, j ∈ Z〉 ∼=
cokerA/ im(B|cokerA) ∼= coker(B|cokerA).

Proof. The images imA and imB are subgroups in A. Denote by 〈imA, imB〉 the sub-
group generated by elements of imA and imB. Since P (z) and Q(z) are Laurent poly-
nomials, the operators A = P (T ) and B = Q(T ) do commute. Hence, subgroup imA
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is invariant under endomorphism B. Indeed for any y = Ax ∈ imA, we have By =
B(Ax) = A(Bx) ∈ imA. This means that B : A → A induces an endomorphism of the
group cokerA = A/ imA. We denote this endomorphism by B|cokerA. We note that the
Abelian group 〈xi, i ∈ Z | A(T )xj = 0, B(T )xj = 0, j ∈ Z〉 is naturally isomorphic to
A/〈imA, imB〉. So we have

A/〈imA, imB〉 ∼= (A/ imA)/ im(B|cokerA) ∼=
cokerA/ im(B|cokerA) ∼= coker(B|cokerA).

The lemma is proved.

4 Jacobian group for the I-graph I(n, k, l)

In this section we prove one of the main results of the paper. We start in the following
theorem.

Theorem 4.1. Let L = L(I(n, k, l)) be the Laplacian of a connected I-graph I(n, k, l).
Then

cokerL ∼= coker(An − I),

where A is 2(k + l)× 2(k + l) companion matrix for the Laurent polynomial

(3− zk − z−k)(3− zl − z−l)− 1.

Proof. Let L be the Laplacian matrix of the graph I(n, k, l). Then, as it was mentioned
above, L is a 2n× 2n matrix of the form

L =

(
3In − Ckn −In
−In 3In − Cln

)
,

where Ckn = circ(0, . . . , 0︸ ︷︷ ︸
k times

, 1, 0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
k−1 times

).

Consider L as a Z−linear operator L : Z2n → Z2n. In this case, coker(L) is an abstract
Abelian group generated by elements x1, x2, . . . , xn, y1, y2, . . . , yn satisfying the system
of linear equations 3xj − xj−k − xj+k − yj = 0, 3yj − yj−l − yj+l − xj = 0 for any
j = 1, . . . , n. Here the indices are considered modulo n. By the property mentioned in
Section 2, the Jacobian of the graph I(n, k, l) is isomorphic to the finite part of cokernel of
the operator L.

To study the structure of coker(L) we extend the list of generators to the two bi-infinite
sequences of elements (xj)j∈Z and (yj)j∈Z setting xj+mn = xj and yj+mn = yj for any
m ∈ Z. Then we have the following representation for cokernel of L:

coker(L) = 〈xi, yi, i ∈ Z | 3xj − xj+k − xj−k − yj = 0,

3yj − yj+l − yj−l − xj = 0, xj+n = xj , yj+n = yj , j ∈ Z〉.

Let T be the shift operator defined by the rule T : xj → xj+1, yj → yj+1, j ∈ Z.
Consider the operator P (T ) defined by P (T ) = (3− T k − T−k)(3− T l − T−l)− 1. We
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use the operator notation from Section 3 to represent the cokernel of L. Then we have

coker(L) = 〈xi, yi, i ∈ Z | (3− T k − T−k)xj = yj , (3− T l − T−l)yj = xj ,

Tnxj = xj , T
nyj = yj , j ∈ Z〉

= 〈xi, i ∈ Z | (3− T l − T−l)(3− T k − T−k)xj = xj , T
nxj = xj , j ∈ Z〉

= 〈xi, i ∈ Z | ((3− T k − T−k)(3− T l − T−l)− 1)xj = 0,

(Tn − 1)xj = 0, j ∈ Z〉
= 〈xi, i ∈ Z | P (T )xj = 0, (Tn − 1)xj = 0, j ∈ Z〉.

To finish the proof, we apply Lemma 3.1 to the operators A = P (T ) and B = Q(T ) =
Tn − 1.

Since the Laurent polynomial P (z) = (3− zk − z−k)(3− zl − z−l)− 1 is bimonic, it
can be represented in the form P (z) = z−k−l+a1z

−k−l+1+· · ·+a2k+2l−1z
k+l−1+zk+l,

where a1, a2, . . . , a2k+2l−1 are integers. Then the corresponding companion matrix A is(
0 I2k+2l−1

−1,−a1, . . . ,−a2k+2l−1

)
.

It is easy to see that detA = 1 and its inverse A−1 is also integer matrix.
For convenience we set s = 2k + 2l to be the size of matrix A.
Note that for any j ∈ Z the relations P (T )xj = 0 can be rewritten as xj+s =

−xj−a1xj+1−· · ·−as−1xj+s−1. Let xj = (xj+1, xj+2, . . . , xj+s)
t be s-tuple of gener-

ators xj+1, xj+2, . . . , xj+s. Then the relation P (T )xj = 0 is equivalent to xj = A xj−1.
Hence, we have x1 = A x0 and x−1 = A−1 x0, where x0 = (x1, x2, . . . , xs)

t. So,
xj = Aj x0 for any j ∈ Z. Conversely, the latter implies xj = A xj−1 and, as a con-
sequence, P (T )xj = 0 for all j ∈ Z.

Consider cokerA = A/ imA as an abstract Abelian group with the following repre-
sentation 〈xi, i ∈ Z | P (T )xj = 0, j ∈ Z〉.

Our present aim is to show that cokerA ∼= Zs. We have

cokerA = 〈xi, i ∈ Z | P (T )xj = 0, j ∈ Z〉
= 〈xj , j ∈ Z | x` + a1x`+1 + · · ·+ as−1x`+s−1 + x`+s = 0, ` ∈ Z〉
= 〈xj , j ∈ Z | (x`+1, x`+2, . . . , x`+s)

t = A(x`, x`+1, . . . , x`+s−1)
t, ` ∈ Z〉

= 〈xj , j ∈ Z | (x`+1, x`+2, . . . , x`+s)
t = A`(x1, x2, . . . , xs)t, ` ∈ Z〉

= 〈x1, x2, . . . , xs | ∅〉 ∼= Zs.

Now we describe the action of the endomorphism B|cokerA on the cokerA. Since the
operators A = P (T ) and T commute, the action T |cokerA : xj → xj+1, j ∈ Z on the
cokerA is well defined. First of all, we describe the action of T |cokerA on the set of
generators x1, x2, . . . , xs. For any i = 1, . . . , s − 1, we have T |coker(xi) = xi+1 and
T |cokerA(xs) = xs+1 = −x1 − a1x2 − · · · − as−2xs−1 − as−1xs. Hence, the action
of T |cokerA on the cokerA is given by the matrix A. Considering A as an endomorphism
of the cokerA, we can write T |cokerA = A. Finally, B|cokerA = Q(T |cokerA) = Q(A).
Applying Lemma 3.1, we finish the proof of the theorem.

Corollary 4.2. The Jacobian group Jac(I(n, k, l)) of a connected I-graph I(n, k, l) is
isomorphic to the torsion subgroup of coker(An − I), where A is the companion matrix
for the Laurent polynomial (3− zk − z−k)(3− zl − z−l)− 1.
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The Corollary 4.2 gives a simple way to find Jacobian group Jac(I(n, k, l)) for small
values of k, l and sufficiently large numbers n. The numerical results are given in the
Tables 2 and 3.

5 Counting the number of spanning trees for the I-graph I(n, k, l)

In what follows, we always assume that the numbers k and l are relatively prime. To get the
result for an arbitrary connected I-graph I(n, k, l) with gcd(n, k, l) = 1 and gcd(k, l) =
d > 1 we observe that I(n, k, l) is isomorphic to I(n, k′, l′), where the numbers k′ = k/d
and l′ = l/d are relatively prime.

Theorem 5.1. The number of spanning trees of the I-graph I(n, k, l) is given by the for-
mula

τk,l(n) = (−1)(n−1)(k+l)n
k+l−1∏
s=1

Tn(ws)− 1

ws − 1
,

where ws, s = 1, 2, . . . , k + l − 1 are roots of the order k + l − 1 algebraic equation

(3− 2Tk(w))(3− 2Tl(w))− 1

w − 1
= 0,

and Tj(w) is the Chebyshev polynomial of the first kind.

Proof. By the celebrated Kirchhoff theorem, the number of spanning trees τk,l(n) is equal
to the product of nonzero eigenvalues of the Laplacian of a graph I(n, k, l) divided by the
number of its vertices 2n. To investigate the spectrum of Laplacian matrix we note that
matrix Ckn = T k+T−k, where T = circ(0, 1, . . . , 0) is the n×n shift operator. The latter
equality easily follows from the identity Tn = In. Hence,

L =

(
3In − T k − T−k −In

−In 3In − T l − T−l
)
.

The eigenvalues of circulant matrix T are εjn,where εn = e
2πi
n . Since all eigenvalues of

T are distinct, the matrix T is conjugate to the diagonal matrix T = diag(1, εn, . . . , ε
n−1
n ),

where diagonal entries of diag(1, εn, . . . , εn−1n ) are 1, εn, . . . , ε
n−1
n . To find spectrum of

L, without loss of generality, one can assume that T = T. Then the blocks of L are diag-
onal matrices. This essentially simplifies the problem of finding eigenvalues of L. Indeed,
let λ be an eigenvalue of L and (x, y) = (x1, . . . , xn, y1, . . . , yn) be the corresponding
eigenvector. Then we have the following system of equations{

(3In − T k − T−k)x− y = λx

−x+ (3In − T l − T−l)y = λy
.

From here we conclude that y = (3In−T k−T−k)x−λx = ((3−λ)In−T k−T−k)x.
Substituting y in the second equation, we have (((3−λ)In−T l−T−l)((3−λ)In−T k−
T−k)− 1)x = 0.

Recall the matrices under consideration are diagonal and the (j+1, j+1)-th entry of T
is equal to εjn. Therefore, we have ((3−λ−εjkn −ε−jkn )(3−λ−εjln −ε−jln )−1)xj+1 = 0
and yj+1 = (3− λ− εjln − ε−jln )xj+1.
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So, for any j = 0, . . . , n − 1 the matrix L has two eigenvalues, say λ1,j and λ2,j
satisfying the quadratic equation (3− λ− εjkn − ε−jkn )(3− λ− εjln − ε−jln )− 1 = 0. The
corresponding eigenvectors are (x, y), where

x = ej+1 = (0, . . . , 1︸︷︷︸
(j+1)-th

, . . . , 0) and

y = (3− λ− T k − T−k)ej+1.

In particular, if j = 0 for λ1,0, λ2,0 we have (1− λ)(1− λ)− 1 = λ(λ− 2) = 0. That is,
λ1,0 = 0 and λ2,0 = 2. Since λ1,j and λ2,j are roots of the same quadratic equation, we
obtain λ1,jλ2,j = P (εjn), where P (z) = (3− zk − z−k)(3− zl − z−l)− 1.

Now we have

τk,l(n) =
1

2n
λ2,0

n−1∏
j=1

λ1,jλ2,j =
1

n

n−1∏
j=1

λ1,jλ2,j =
1

n

n−1∏
j=1

P (εjn).

To continue we need the following lemma.

Lemma 5.2. The following identity holds

(3− zk − z−k)(3− zl − z−l)− 1 = (3− 2Tk(w))(3− 2Tl(w))− 1,

where Tk(w) is the Chebyshev polynomial of the first kind and w = 1
2 (z+z

−1). Moreover,
if k and l are relatively prime then all roots of the Laurent polynomial

(3− zk − z−k)(3− zl − z−l)− 1

counted with multiplicities are 1, 1, z1, 1/z1, . . . , zk+l−1, 1/zk+l−1, where we have
|zs| 6= 1, s = 1, 2, . . . , k + l − 1. So, the right-hand polynomial has the roots 1, w1, . . . ,
wk+l−1, where ws 6= 1 for all s = 1, 2, . . . , k + l − 1.

Proof. Let us substitute z = ei ϕ. It is easy to see thatw = 1
2 (z+z

−1) = cosϕ, so we have
Tk(w) = cos(k arccosw) = cos(kϕ). Then the first statement of the lemma is equivalent
to the following trigonometric identity

(3− 2 cos(kϕ))(3− 2 cos(lϕ))− 1 = (3− 2Tk(w))(3− 2Tl(w))− 1.

To prove the second statement of the lemma we suppose that the Laurent polynomial
P (z) = (3 − zk − z−k)(3 − zl − z−l) − 1 has a root z0 such that |z0| = 1. Then
z0 = ei ϕ0 , ϕ0 ∈ R. Now we have (3 − 2 cos(kϕ0))(3 − 2 cos(lϕ0)) − 1 = 0. Since
3−2 cos(kϕ0) ≥ 1 and 3−2 cos(lϕ0) ≥ 1 the equations holds if and only if cos(kϕ0) = 1
and cos(lϕ0) = 1. So kϕ0 = 2πs0 and lϕ0 = 2πt0 for some integer s0 and t0. As k and
l are relatively prime, so there exist two integers p and q such that kp + ql = 1. Hence
ϕ0 = ϕ0(kp + lq) = 2π(ps0 + qt0) ∈ 2πZ. As a result z0 = ei ϕ0 = 1. Now we have
to show that the multiplicity of the root z0 = 1 is 2. Indeed, P (1) = P ′(1) = 0 and
P ′′(1) = −2(k2 + l2) 6= 0.

Let us set H(z) =
∏m
s=1(z − zs)(z − z−1s ), where m = k + l − 1 and zs are roots of

P (z) different from 1. Then by Lemma 5.2, we have P (z) = (z−1)2
zk+l

H(z).
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Lemma 5.3. Let H(z) =
∏m
s=1(z − zs)(z − z−1s ) and H(1) 6= 0. Then

n−1∏
j=1

H(εjn) =

m∏
s=1

Tn(ws)− 1

ws − 1
,

where ws = 1
2 (zs+z

−1
s ), s = 1, . . . ,m and Tn(x) is the Chebyshev polynomial of the first

kind.

Proof. It is easy to check that
∏n−1
j=1 (z − εjn) =

zn−1
z−1 if z 6= 1. Also we note that 1

2 (z
n +

z−n) = Tn(
1
2 (z + z−1)). By the substitution z = ei ϕ, the latter follows from the evident

identity cos(nϕ) = Tn(cosϕ). Then we have

n−1∏
j=1

H(εjn) =

n−1∏
j=1

m∏
s=1

(εjn − zs)(εjn − z−1s )

=

m∏
s=1

n−1∏
j=1

(zs − εjn)(z−1s − εjn)

=

m∏
s=1

zns − 1

zs − 1

z−ns − 1

z−1s − 1
=

m∏
s=1

Tn(ws)− 1

ws − 1
.

Note that
∏n−1
j=1 (1 − εjn) = lim

z→1

∏n−1
j=1 (z − εjn) = lim

z→1

zn−1
z−1 = n and

∏n−1
j=1 ε

j
n =

(−1)n−1. As a result, taking into account Lemma 5.2 and Lemma 5.3, we obtain

τk,l(n) =
1

n

n−1∏
j=1

P (εjn) =
1

n

n−1∏
j=1

(εjn − 1)2

(εjn)k+l
H(εjn)

=
(−1)(n−1)(k+l)n2

n

n−1∏
j=1

H(εjn)

= (−1)(n−1)(k+l)n
k+l−1∏
s=1

Tn(ws)− 1

ws − 1
.

Corollary 5.4. τk,l(n) = n
∣∣∣∏k+l−1

s=1 Un−1

(√
1+ws

2

)∣∣∣2 , where ws, s = 1, 2, . . . , k are

the same as in Theorem 5.1 and Un−1(w) is the Chebyshev polynomial of the second kind.

Proof. Follows from the identity Tn(w)−1
w−1 = U2

n−1

(√
1+w
2

)
.

The following theorem appeared after fruitful discussion with professor D. Lorenzini.

Theorem 5.5. Let τ(n) = τk,l(n) be the number of spanning trees of the graph I(n, k, l).
Then there exist an integer sequence a(n) = ak,l(n), n ∈ N such that

1◦ τ(n) = na2(n) when n is odd,

2◦ τ(n) = 6na2(n) when n is even and k + l is even,

3◦ τ(n) = na2(n) when n is even and k + l is odd.
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Proof. Recall that all nonzero eigenvalues are given by the list {λ2,0, λ1,j , λ2,j , j =

1, . . . , n− 1}. By the Kirchhoff theorem we have 2nτ(n) = λ2,0
∏n−1
j=1 λ1,jλ2,j .

Since λ2,0 = 2, we have nτ(n) =
∏n−1
j=1 λ1,jλ2,j . We note that λ1,jλ2,j = P (εjn) =

P (εn−jn ) = λ1,n−jλ2,n−j . So, we get nτ(n) = (
∏(n−1)/2
j=1 λ1,jλ2,j)

2 if n is odd and

nτ(n) = λ1,n2 λ2,
n
2
(
∏n/2−1
j=1 λ1,jλ2,j)

2, if n is even. The value λ1,n2 λ2,n2 = P (−1) =

(3 − 2(−1)k)(3 − 2(−1)l) − 1 is equal to 4 if k and l are of different parity and 24 if
both k and l are odd. The case when both k and l are even is impossible, since k and l are
relatively prime.

The graph I(n, k, l) admits a cyclic group of automorphisms isomorphic to Zn which
acts freely on the set of spanning trees. Therefore, the value τ(n) is a multiple of n. So
τ(n)
n is an integer. Hence

1◦ τ(n)
n =

(∏(n−1)/2
j=1 λ1,jλ2,j

n

)2

when n is odd,

2◦ τ(n)
n = 6

(
2
∏n/2−1
j=1 λ1,jλ2,j

n

)2

when n is even and k + l is even,

3◦ τ(n)
n =

(
2
∏n/2−1
j=1 λ1,jλ2,j

n

)2

when n is even and k + l is odd.

Each algebraic number λi,j comes into both products
∏(n−1)/2
j=1 λ1,jλ2,j and∏n/2−1

j=1 λ1,jλ2,j with all its Galois conjugate elements. Therefore, both products are in-
teger numbers. From here we conclude that in equalities 1◦, 2◦ and 3◦ the value that
is squared is a rational number. Because τ(n)

n is integer and 6 is a squarefree, all these

rational numbers are integer. Setting a(n) =
∏(n−1)/2
j=1 λ1,jλ2,j

n if n is odd and a(n) =
2
∏n/2−1
j=1 λ1,jλ2,j

n if n is even, we finish the proof of the theorem.

From now on, we aim to estimate the minimum number of generators for the Jacobian
of I-graph I(n, k, l).

Lemma 5.6. For any given I-graph I(n, k, l) the number of spanning trees τ(n) satisfies
the inequality τ(n) ≥ n3.

Proof. Recall that for any j = 0, . . . , n − 1, the Laplacian matrix L of I(n, k, l) has two
eigenvalues, say λ1,j and λ2,j , which are roots of the quadratic equationQj(λ) = (3−λ−
εjkn −ε−jkn )(3−λ−εjln−ε−jln )−1 = 0. So, λ1,jλ2,j = (3−εjkn −ε−jkn )(3−εjln−ε−jln )−1 =
P (εjn). Note that λ1,0 = 0 and λ2,0 = 2. Furthermore {λ1,j , λ2,j | j = 0, . . . , n − 1} is
the set of all eigenvalues of L. The Kirchhoff theorem states the following

2n τk,l(n) = 2n τ(n) = λ2,0

n−1∏
j=1

λ1,jλ2,j = 2

n−1∏
j=1

λ1,jλ2,j .

Hence nτ(n) =
∏n−1
j=1 P (ε

j
n), where P (εjn) = (3−2 cos( 2jkπn ))(3−2 cos( 2jlπn ))−1.



I. A. Mednykh: On Jacobian group and complexity of the I-graph I(n, k, l) through . . . 477

It is easy to prove the following trigonometric identity

(
3− 2 cos

(2jkπ
n

))(
3− 2 cos

(2jlπ
n

))
− 1 =

4 sin2
(jkπ
n

)
+ 4 sin2

(jlπ
n

)
+ 16 sin2

(jkπ
n

)
sin2

(jlπ
n

)
.

Connectedness of I-graph implies gcd(n, k, l) = 1. It may happen that gcd(n, k) =
m 6= 1 and gcd(n, l) = m′ 6= 1. We will use the notation n = mq = m′q′, k = pm, l =
p′m′. We introduce three sets, J, Jk and Jl in the following way

J = {1, 2, . . . , n− 1},
Jk = {j | j = d q, d = 1, . . . ,m− 1} and
Jl = {j | j = d′ q′, d′ = 1, . . . ,m′ − 1}.

If j ∈ Jk then sin( j k πn ) = 0 and if j ∈ Jl then sin( j l πn ) = 0. We note that Jk and Jl do
not intersect. Otherwise, for j ∈ Jk ∩ Jl we have λ1,jλ2,j = P (εjn) = 0. Then at least one
of the eigenvalues λ1,j and λ2,j is equal to zero. This leads to contradiction, as we have
the unique zero eigenvalue λ1,0 = 0. Now we are going to find a low bound for τ(n). As
n τ(n) =

∏n−1
j=1 P (ε

j
n) we evaluate the product

n−1∏
j=1

P (εjn) =

n−1∏
j=1

(
4 sin2

(jkπ
n

)
+ 4 sin2

(jlπ
n

)
+ 16 sin2

(jkπ
n

)
sin2

(jlπ
n

))
≥
∏
j∈Jk

4 sin2
(jlπ
n

) ∏
j∈Jl

4 sin2
(jkπ
n

) ∏
j∈J\(Jk∪Jl)

16 sin2
(jkπ
n

)
sin2

(jlπ
n

)
=

∏
j∈J\Jk

4 sin2
(jkπ
n

) ∏
j∈J\Jl

4 sin2
(jlπ
n

)
.

Now we analyze individual component of the product. We make use of the following
simple identity cos( 2jpπq ) = cos( 2(j+q)pπq ).

∏
j∈J\Jk

4 sin2
(jkπ
n

)
=

∏
j∈J\Jk

(
2− 2 cos

(2jkπ
n

))
=
∏

j∈J\Jk

(
2− 2 cos

(2jmpπ
mq

))

=
∏

j∈J\Jk

(
2− 2 cos

(2jpπ
q

))
=

q−1∏
j=1

(
2− 2 cos

(2jpπ
q

))m
.

The Chebyshev polynomial Tq(x) = cos(q arccos(x)) has the following property. The
roots of the equation Tq(x) − 1 = 0 are cos( 2jπq ), j = 0, 1, . . . , q − 1. Since the leading
coefficient of Tq(x) is 2q−1, for x 6= 1 we have the identity

q−1∏
j=1

(
2x− 2 cos

(2jπ
q

))
=
Tq(x)− 1

x− 1
.
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As p and q are relatively prime we obtain

q−1∏
j=1

(
2− 2 cos

(2jpπ
q

))m
=

q−1∏
j=1

(
2− 2 cos

(2jπ
q

))m
=

(
lim
x→1

Tq(x)− 1

x− 1

)m
= (q2)m =

( n
m

)2m
.

Hence ∏
j∈J\Jk

4 sin2
(jkπ
n

)
=
( n
m

)2m
.

In a similar way we obtain

∏
j∈J\Jl

4 sin2
(jlπ
n

)
=
( n
m′

)2m′
.

To get the final result we use the following trivial inequality. For any integers a ≥ 2
and b ≥ 2 we have ab ≥ ab. Since q = n/m ≥ 2 and q′ = n/m′ ≥ 2, we conclude

n τ(n) =

n−1∏
j=1

P (εjn) ≥
( n
m

)2m( n
m′

)2m′
≥ n2n2 = n4.

Using Lemma 5.6, one can show the following theorem.

Theorem 5.7. For any given I-graph I(n, k, l) the minimum number of generators for
Jacobian Jac(I(n, k, l)) is at least 2 and at most 2k + 2l − 1.

Proof. The upper bound for the number of generators follows from Theorem 4.1. Indeed,
by this theorem the group coker(L(I(n, k, l)) ∼= Jac(I(n, k, l))⊕Z is generated by 2k+2l
elements. One of these generators is needed to generate the infinite cyclic group Z. Hence
Jac(I(n, k, l)) is generated by 2k + 2l − 1 elements.

To get the lower bound we use Lemma 5.6. Let us suppose that Jac(I(n, k, l)) is gen-
erated by one element. Then it is the cyclic group of order τ(n). Denote by D be a product
of all distinct nonzero eigenvalues of I(n, k, l). By Proposition 2.6 from [20] the order of
each element of Jac(I(n, k, l)) is divisor ofD.Hence, τ(n) is divisor ofD and we have in-
equality D ≥ τ(n). By the Kirchhoff theorem we have 2nτ(n) = λ2,0

∏n−1
j=1 λ1,jλ2,j . We

note that all algebraic numbers λi,j comes into product together with its Galois conjugate,
so 2nτ(n) is a multiple of D. In particular 2nτ(n) ≥ D.

From the proof of Theorem 5.5 we have nτ(n) = (
∏(n−1)/2
j=1 λ1,jλ2,j)

2 if n is odd

and nτ(n) = λ1,n2 λ2,
n
2
(
∏n/2−1
j=1 λ1,jλ2,j)

2 if n is even. Moreover, the value λ1,n2 λ2,n2 is
equal to 4 if k and l are of different parity and 24 if both k and l are odd. The case when
both k and l are even is impossible as k and l are relatively prime.

Now, we have 4nτ(n) = (2
∏(n−1)/2
j=1 λ1,jλ2,j)

2 if n is odd. Again, all algebraic

numbers λi,j comes into the product ρ = 2
∏(n−1)/2
j=1 λ1,jλ2,j together with its Galois

conjugate. Therefore, the product ρ is an integer number and contains all distinct nonzero
eigenvalues. Hence ρ is a multiple of D. So we obtain 4nτ(n) = ρ2 ≥ D2 ≥ τ(n)2.
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Also we get 4nλ1,n2 λ2,n2 τ(n) = (2λ1,n2 λ2,
n
2

∏n/2−1
j=1 λ1,jλ2,j)

2 if n is even. By a
similar argument, taking into account the inequality 24 ≥ λ1,n2 λ2,n2 we obtain 96nτ(n) ≥
4nλ1,n2 λ2,

n
2
τ(n) ≥ D2 ≥ τ(n)2.

As result, by Lemma 5.6 we have 4n ≥ τ(n) ≥ n3 if n is odd and 96n ≥ τ(n) ≥ n3 if
n is even. For n ≥ 10 this is impossible. So, the rank of Jac(I(n, k, l)) is at least two for
all n ≥ 10. For n less than 10 this statement can be proved by direct calculation.

For graphs I(4, 2, 3) and I(6, 3, 4), the Jacobian group Jac(I(n, k, l)) is generated by
2 elements. The upper bound 2k + 2l − 1 for the minimum number of generators of
Jac(I(n, k, l)) is attained for graph I(34, 2, 3) and I(170, 3, 4). See Tables 2 and 3 in
Section 7.

So the lower bound 2 and the upper bound 2k + 2l − 1 for the minimum number of
generators of Jac(I(n, k, l)) are sharp.

6 Asymptotic for the number of spanning trees
The asymptotic for the number of spanning trees of the graph I(n, k, l) is given in the
following theorem.

Theorem 6.1. Let P (z) = (3 − zk − z−k)(3 − zl − z−l) − 1. Suppose that k and l are
relatively prime and set Ak,l =

∏
P (z)=0, |z|>1 |z|. Then the number τk,l(n) of spanning

trees of the graph I(n, k, l) has the asymptotic

τk,l(n) ∼
n

k2 + l2
Ank,l, n→∞.

Proof. By Theorem 5.1 we have

τk,l(n) = (−1)(n−1)(k+l)n
k+l−1∏
s=1

Tn(ws)− 1

ws − 1
,

where ws, s = 1, 2, . . . , k + l − 1 are roots of the polynomial

Q(w) =
(3− 2Tk(w))(3− 2Tl(w))− 1

w − 1
.

So we obtain

τk,l(n) = n

k+l−1∏
s=1

∣∣∣∣Tn(ws)− 1

ws − 1

∣∣∣∣ = n

k+l−1∏
s=1

|Tn(ws)− 1|
/ k+l−1∏

s=1

|ws − 1|.

By Lemma 5.2 we have Tn(ws) = 1
2 (z

n
s + z−ns ), where the zs and 1/zs are roots of

the polynomial P (z) with the property |zs| 6= 1, s = 1, 2, . . . , k + l − 1. Replacing zs by
1/zs, if it is necessary, we can assume that all |zs| > 1 for all s = 1, 2, . . . , k+ l− 1. Then
Tn(ws) ∼ 1

2z
n
s as n tends to∞. So |Tn(ws)− 1| ∼ 1

2 |zs|
n as n→∞. Hence

k+l−1∏
s=1

|Tn(ws)− 1| ∼ 1

2k+l−1

k+l−1∏
s=1

|zs|n =
1

2k+l−1

∏
P (z)=0, |z|>1

|z|n =
1

2k+l−1
Ank,l.
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Now we directly evaluate the quantity
∏k+l−1
s=1 |ws − 1|. We note that

Q(w) = a0w
k+l−1 + a1w

k+l−2 + · · ·+ ak+l−2w + ak+l−1

is an integer polynomial with the leading coefficient a0 = 2k+l. From here we obtain

k+l−1∏
s=1

|ws − 1| =
k+l−1∏
s=1

|1− ws| =
∣∣∣∣ 1a0Q(1)

∣∣∣∣ = 2(k2 + l2)

2k+l
=
k2 + l2

2k+l−1
.

Indeed,

Q(1) = lim
w→1

(3− 2Tk(w))(3− 2Tl(w))− 1

w − 1

= −2T ′k(1)(3− 2Tl(1))− 2T ′l (1)(3− 2Tk(1))

= −2kUk−1(1)(3− 2Tl(1))− 2lUl−1(1)(3− 2Tk(1)) = −2(k2 + l2)

and a0 = 2k+l.

In order to get the statement of the theorem we combine the above mentioned results.
Then

τk,l(n) ∼ n
Ank,l

2k+l−1

/k2 + l2

2k+l−1
=

n

k2 + l2
Ank,l as n→∞.

Remark 6.2. It was noted by professor A. Yu. Vesnin that constant Ak,l coincides with the
Mahler measure of Laurent polynomial P (z) = (3− zk− z−k)(3− zl− z−l)− 1. It gives
a simple way to evaluate Ak,l using the following formula

Ak,l = exp

(∫ 1

0

log |P (e2πit)|dt
)
.

See, for example, [13, p. 6] for the proof.

The numerical values for Ak,l, where k and l are relatively prime numbers 1 ≤ k ≤
l ≤ 9 will be given in Table 1 in the Section 7.

7 Examples and tables
7.1 Examples

1◦ The Prism graph I(n, 1, 1). We have the following asymptotic

τ1,1(n) = n(Tn(2)− 1) ∼ n

2
(2 +

√
3)n, n→∞.

2◦ The generalized Petersen graph GP (n, 2) = I(n, 1, 2). The the number of spanning
trees (see [19]) behaves like τ1,2(n) ∼ n

5A
n
1,2, n→∞, where

A1,2 =
7 +
√
5 +

√
38 + 14

√
5

4
∼= 4.39026.
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3◦ The smallest proper I-graph I(n, 2, 3) has the following asymptotic for the number
of spanning trees

τ2,3(n) ∼
n

13
An2,3, n→∞.

Here A2,3
∼= 4.84199 is a suitable root of the algebraic equation

1− 7x+ 13x2 − 35x3 + 161x4 − 287x5 + 241x6 − 371x7 + 577x8

− 371x9 + 241x10 − 287x11 + 161x12 − 35x13 + 13x14 − 7x15 + x16 = 0.

Here is the table for asymptotic constants Ak,l for relatively prime numbers 1 ≤ k ≤
l ≤ 9.

Table 1: Asymptotic constants Ak,l.

k\l 1 2 3 4 5 6 7 8 9

1 3.7320 4.3902 4.7201 4.8954 4.9953 5.0559 5.0945 5.1203 5.1382

2 - 4.8419 - 5.0249 - 5.1033 - 5.1414

3 - 5.0054 5.0541 - 5.1137 5.1320 -
4 - 5.0802 - 5.1244 - 5.1504

5 - 5.1201 5.1346 5.1461 5.1554

6 - 5.1438 - -
7 - 5.1589 5.1649

8 - 5.1691

7.2 The tables of Jacobians of I-graphs

Theorem 4.1 is the first step to understand the structure of the Jacobian for I(n, k, l). Also,
it gives a simple way for numerical calculations of Jac(I(n, k, l)) for small values of k and
l. See Tables 2 and 3.

The first example of Jacobian Jac(I(n, 3, 4)) with the maximum rank 13:

n = 170,

Jac(I(170, 3, 4)) ∼= Z2 ⊕ Z8
4 ⊕ Z6108 ⊕ Z30540 ⊕ Z22·3·5·103·509·1699·11593·p·q

⊕ Z22·3·5·17·103·509·1699·11593·p·q,

and

τ3,4(170) = 225 · 34 · 53 · 17 · 1032 · 5094 · 16992 · 115932 · p2 · q2,

where p = 16901365279286026289 and q = 34652587005966540929.
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Table 2: Graph I(n, 2, 3).

n Jac(I(n, 2, 3)) τ2,3(n) = | Jac(I(n, 2, 3))|
4 Z7 ⊕ Z28 196

5 Z19 ⊕ Z95 1805

6 Z19 ⊕ Z114 2166

7 Z83 ⊕ Z581 48223

8 Z161 ⊕ Z1288 207368

9 Z289 ⊕ Z2601 751689

10 Z1558 ⊕ Z3895 6068410

11 Z1693 ⊕ Z18623 31528739

12 Z5 ⊕ Z5 ⊕ Z665 ⊕ Z7980 132667500

13 Z25 ⊕ Z325 ⊕ Z325 ⊕ Z325 858203125

14 Z17513 ⊕ Z245182 4293872366

15 Z37069 ⊕ Z556035 20611661415

16 Z84847 ⊕ Z1357552 115184214544

17 Z6
2 ⊕ Z23186 ⊕ Z394162 584898568448

18 Z400843 ⊕ Z7215174 2892151991682

19 Z898243 ⊕ Z17066617 15329969253931

20 Z4
19 ⊕ Z5453 ⊕ Z109060 77502443441780

21 Z4301807 ⊕ Z90337947 388616412770229

22 Z9536669 ⊕ Z209806718 2000857223542342

23 Z20949827 ⊕ Z481846021 10094590780588367

24 Z5 ⊕ Z5 ⊕ Z9192295 ⊕ Z220615080 50598972420215000

25 Z101468531 ⊕ Z2536713275 257396569582449025

26 Z25 ⊕ Z325 ⊕ Z8923525 ⊕ Z17847050 1293976099416406250

27 Z490309597 ⊕ Z13238359119 6490894524578165043

28 Z49 ⊕ Z154342069 ⊕ Z4321577932 32683062689111444092

29 Z2376466133 ⊕ Z68917517857 163780147157583236981

30 Z19 ⊕ Z19 ⊕ Z275089049 ⊕ Z8252671470 819549256247415262830

31 Z11507960491 ⊕ Z356746775221 4105427794534925793511

32 Z25318259953 ⊕ Z810184318496 20512457185525873990688

33 Z55700389051 ⊕ Z1838112838683 102383600234281102459833

34 Z2 ⊕ Z6
4 ⊕ Z1915580948 ⊕ Z32564876116 511022336096582352633856

35 Z269747901677 ⊕ Z9441176558695 2546737566070056079431515
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Table 3: Graph I(n, 3, 4).

n Jac(I(n, 3, 4)) τ3,4(n) = | Jac(I(n, 3, 4))|
5 Z2 ⊕ Z10 ⊕ Z10 ⊕ Z10 2000

6 Z19 ⊕ Z114 2166

7 Z71 ⊕ Z497 35287

8 Z73 ⊕ Z584 42632

9 Z289 ⊕ Z2601 751689

10 Z2 ⊕ Z12 ⊕ Z60 ⊕ Z60 ⊕ Z60 5184000

11 Z1541 ⊕ Z16951 26121491

12 Z11 ⊕ Z11 ⊕ Z209 ⊕ Z2508 63424812

13 Z5 ⊕ Z5 ⊕ Z1555 ⊕ Z20215 785858125

14 Z16969 ⊕ Z237566 4031257454

15 Z2 ⊕ Z10 ⊕ Z17410 ⊕ Z52230 18186486000

16 Z71321 ⊕ Z1141136 81386960656

17 Z6
2 ⊕ Z23186 ⊕ Z394162 584898568448

18 Z400843 ⊕ Z7215174 2892151991682

19 Z37 ⊕ Z37 ⊕ Z23939 ⊕ Z454841 14906272578931

20 Z8 ⊕ Z12 ⊕ Z120 ⊕ Z79080 ⊕ Z79080 72042006528000

21 Z4487981 ⊕ Z94247601 422981442583581

22 Z10002631 ⊕ Z220057882 2201157792287542

23 Z22138559 ⊕ Z509186857 11272663275719063

24 Z187 ⊕ Z187 ⊕ Z259369 ⊕ Z6224856 56458663080288216

25 Z2114 ⊕ Z52850 ⊕ Z52850 ⊕ Z52850 312061332000250000
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