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Abstract. In this study we consider triple-periodical electrical charge distributions with
the pattern similar to the Weaire-Phelan structure. According to it, the space is splitted to
opposite-charged cells separated with electrically neutral border.

Possible configurations obtained as results of exchanges of these cells appear to have
properties that can be corresponded to the quantum numbers of known fundamental
particles.

We find it promising to use models of this kind, aiming to infer the axioms and con-
stants of the Standard Model from the emergent geometrical properties of the distribution.

Povzetek. Prispevek obravnava trojne periodične porazdelitve električnih nabojev, ki imajo
vzorec podoben Weaire-Phelan strukturam. V modelu je prostor razdeljen na celice z
nasprotnimi naboji, ki jih loči električno nevtralna meja.

Konfiguracije, ki sledijo z izmenjavo teh celic, imajo lastnosti, ki jih avtor poveže s
kvantnimi števili kvarkov in leptonov.

Avtor meni, da ti modeli omogočijo izpeljavo privzetkov in konstant standardnega
modela.

Keywords: Particle model,Weaire-Phelan tessellation

12.1 Introduction

The spin-charge-family theory presented in [1], [2], [8], [9] offers reasonable ex-
planations for the phenomena of the Standard Model of the fundamental parti-
cles. Originating from Clifford algebra, it comes to the binary internal degrees of
freedom, explaining properties of existing fundamental particles and predicting
existence of extra fermion families.

In turn, we reproduce particle properties starting with binary code model. As
we have shown in [7], Boolean models designed for fundamental particles can
reproduce most of their properties, including charges (electrical, color, weak and
hyper-charge), lepton- and baryon numbers, fermion flavor and family member-
ship, and boson spin magnitude. The particles are represented as combinations or
codes of symbols carrying one of two possible values, so these models are binary.
? E-mail: eliadmitrieff@gmail.com
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262 E.G. Dmitrieff

Developing these models, we started with well-known linear codes, that
consist of binary digits (bits) with usual values either 1 or 0. Then, in order to
reduce the amount of information carried by the code, we abandoned the linear
structure in favor of spatial one. Also we have symmetrized and normalized the
values carried by bits, using +1

6
and −1

6
instead of 1 and 0. These values could be

directly interpreted as electrical charge in units of electron charge e.
Using spatial combination of eight symbols of this kind, we managed to

represent all known fundamental particles. Also, analyzing unused combinations,
we proposed existence of new scalar particle forming the vacuum condensate. It
could be represented by this combination that is repeated periodically, filling the
space as a tessellation.

Since the tessellation can be chiral, the space filled with small alternating
charged regions, comparing to simple empty space, has an advantage of offering
possible explanation for difference between right- and left-handed particles in
respect of the vacuum.

Different particle codes, substituting vacuum codes in the tessellation, violate
the periodicity with different ways. We suppose that it may be used to infer
associated rest energies (masses) instead of postulating them.

Treating vacuum expectation value as Coulomb potential between neighbor-
ing opposite-charged ”bits” [11], we estimated that the distance between them
should be on scale of ≈ 10−21m.

Being inspired by idea of vacuum domains [3], we suppose that the interpre-
tation of these ”bits” as domains can explain the problem of their observations
absence. As asserted originally by Zeldovich with co-authors, the vacuum domains
should appear as consequence of symmetry break in the phase transition. In our
models, they do exist but have the correlation radius on sub-particle scale instead
of cosmological one. This should happen in case the 2-order phase transition is
not yet complete but just approaches its critical point.

Having a model with some spatial distribution of charged bits, or vacuum
domains, we recognize that it is necessary to find out the pattern of this distribution
which is consistent with other observable properties of vacuum and particles,
including their symmetry, mass spectrum, propagation, interactions and so on.

After checking simple (NaCl-like) and volume-centered (CsCl-like) cubic
lattices, we found out that the A15 (Nb3Sn-like) lattice, or Weaire-Phelan structure,
has some advantages allowing it to be the possible vacuum- and particle model.

12.2 Overview of the original Weaire-Phelan tessellation

The original Weaire-Phelan structure is described in [12]. It is a foam of equal-
volumed cells separated by thin walls. Among other structures, having the same
cell volume, this one has the minimal (known at the present time) inter-cell wall
area, so it is a candidate solution for the Kelvin problem [14]. There is evidence
of self-assembling of this tessellation driven by minimization of the surface en-
ergy [13].

Cells forming the Weaire-Phelan structure have almost flat faces and just
slightly curved edges, thus they can be closely approximated by irregular polyhe-
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dra. It is nesessary to use two kinds of them – dodecahedra (D) and tetrakaideca-
hedra (T )1.

Unlike dodecahedra, the tetrakaidecahedra have three possible orientations in
respect of the three Cartesian axes.

The cells of both kinds can be included in the tessellation in two ways, so they
became chiral.

Eight cells, differing in kind, chirality, and orientation, form one translation
unit. These translation units, in turn, form simple cubic grid.

Assuming the size of translation unit to be l = 4λ in each dimension (where λ
is a scale factor, and 4 is used to get most of coordinates integer), we get the unit
volume Vu = l3 = 64λ3, and cell volume Vc = 1

8
Vu = 8λ3 (remembering that all

cells are equal-volumed).
Having the coordinate axes perpendicular to the hexagonal faces of the

tetrakaidecahedra, and associating the origin with the center of one of dodec-
ahedra, one can obtain coordinates of the centers of all other cells:

D Tx Ty Tz
R (0,0,0) (0,2,1) (1,0,2) (2,1,0)
L (2,2,2) (0,2,3) (3,0,2) (2,3,0)

These coordinates are expressed in units of λ and derermined up to 4λ, mean-
ing that one can obtain coordinates of each cell by adding of ”even” vector

VE = (4nx, 4ny, 4nz) λ, ni ∈ Z. (12.1)

Further, we omit the scale factor λwhere it shouldn’t cause misunderstanding.
Here we chose the R and Lmark of the chirality by the arbitrary choice.
There are four symmetry axis C3 defined by equations ±x = ±y = ±z.
Since the structure does not possess reflection symmetry, it is chiral, so there

are two mirror-reflected structures. For instance, after reflecting in the plane x = y
the chirality is reversed and the coordinates are changed as the following:

D Tx Ty Tz
L (0,0,0) (2,0,1) (0,1,2) (1,2,0)
R (2,2,2) (2,0,3) (0,3,2) (3,2,0)

After performing the shift (move) of the whole infinite structure with the
”odd” vector

VO = VE + (±2,±2,±2)λ, (12.2)

1 The dodecahedron is a pyrithohedron with twelve equal pentagonal faces, possessing
terrahedral symmetry Th, and the tetrakaidecahedron is truncated hexagonal trapezohe-
dron posessing rotoreflextion symmetry C3h, with two hexagonal faces, four large and
eight small pentagonal faces.
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i.e. for the half-size of the translation unit (2
√
3λ), in direction of C3 axis, we get

the original structure again:

D Tx Ty Tz
L (2,2,2) (2,0,3) (2,3,0) (1,2,0)
R (0,0,0) (0,2,1) (2,1,0) (1,0,2)

Thus, the structure possesses global PS symmetry, where P is parity (particu-
larly, exchange of any two coordinates) and S is shift along C3 axis on the half of
translation unit size (or, generally, on the odd vector).

It also means that despite of mirror asymmetry of each finite part, there is
only one infinite Weaire-Phelan structure, which is either right- or left-handed
depending on the choice of origin. It can be also considered as two overlapped
chiral structures consisting of the same elements but shifted in respect of each
other with the odd vector (12.2).

12.3 Dual-charged Weaire-Phelan structure

To use the Weaire-Phelan structure as a spatial version of binary-code model, we
need to assume that each cell carries electrical charge with magnitude of 1

6
. Since

the space containing no particles is electrically neutral, the counts of positive and
negative cells in any volume & l3 should be the same. Any change of cell charge,
that can be from +1

6
to −1

6
, or back, would cause the total electric charge to change

on ±1
3

. Thus, all the particles in this model will have discrete charges with step of
1
3

, that is according to experiments. So the existence of particles with charges, for
instance, of ±1

2
, is impossible.

In general, the charge inside cells can be distributed being determined by
physical law acting on this scale, for instance:

• all the charge can be concentrated in cell centers, in point-size sub-particles
(partons or rishons);
• the charge can be distributed smoothly inside cells around their centers, falling

to zero on the inter-cell borders;
• the charges of opposite sign can be concentrated on both sides of the walls

between opposite-charged cells, and also can be smoothly distributed along
them.

In the following subsections we consider these simplified assumptions of the
charge distribution.

We assume that the basic ”vacuum” alteration of charged cells in the tessella-
tion should fulfill the following requirements:

• each translation unit should be electrically neutral, and
• cells with opposite chirality should also be opposite-charged.
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So, we assume positive charge of cells of one chirality and negative for another.
However, at this stage we do not recognize any natural rule that would define the
absolute chirality. So, there are 23 = 8 choices of Ti charges and also 2 choices ofD.
We make this choice as shown in the following table:

Cell type Charge Coordinates Plane
DR − (0, 0, 0) x+ y+ z = 4n

TRi + (0, 2, 1), (1, 0, 2), (2, 1, 0) x+ y+ z = 4n+ 3

DL + (2, 2, 2) x+ y+ z = 4n+ 2

TLi − (0, 2, 3), (3, 0, 2), (2, 3, 0) x+ y+ z = 4n+ 1

In the last column of the table we show the equations of planes that contain
all the cell centers of particular type.

Making the choice of charge sign for Ti, we break the symmetry between C3
axis, so one of them becomes dedicated. Also, making this choice forD cell charge
breaks symmetry between opposite handednesses. So there are two possible dual-
charged Weaire-Phelan structures. That corresponds to the principal possibility of
physical vacuum with reversed chirality.

12.4 Cell Centers approximation

Here we abstract from the details of spatial distribution of the electric charge, and
suppose it is just concentrated somewhere in the vicinity of the cell centers. We do
so to simplify the charge calculation, replacing the integration of the charge density
in the volume of interest with counting the number of centers of positive and
negative cells falling into it. Since the coordinates of the cell centers are integers
(i.e., proportional to the scale factor λ), they can lay on the certain planes only,
between which, in this approximation, there is nothing.

12.4.1 CPS symmetry

The following set of grids (Fig. 12.1) illustrates the placement of positive and nega-
tive cells’ centers, as black and white circles, respectively, in the cubic translation
unit of size 4× 4× 4 starting with its left bottom front corner from the origin of
reference frame. Centers of D-cells are marked with double-border.

The first grid is the cross-section for plane z = 0, the second one is for plane
z = 1 and so on. The plane z = 4 is the same as z = 0 due to the periodicity.

Considering the translation unit cube that is shifted with the ”even” vector
(2n+ 1)(2, 2, 2), for instance (−2,−2,−2), i.e. performing S operation, we get the
scheme on the Fig. 12.2 (the first grid is plane z = −2 and so on).

After reflecting in the plane x = y (P operation) we get the scheme on the
Fig. 12.3.

One can ensure that this shift operation (S) followed by reflection (P) has the
same result as the charge inversion (C). So these three operations being applied
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consequently (in any order) turn the structure back to its original state. It means
that the structure possesses the symmetry in respect of CPS combination, but
neither in respect of C, P, S individually nor in respect of their pairs CP=PC=S,
PS=SP=C, CS=SC=P.
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12.4.2 View in isometric projection

The distribution of charged cell centers also can be represented in the reference
frame ξζυ, in which ζ axis follows the diagonal of the translation unit cube. The
planes containing cells of one type, that are x+ y+ z = 4n+ k = ζ, are planes ξυ.
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We perform the reference frame transformation xyz 7→ ξζυ using O(3) rota-

tion matrix with Euler angles π
4

and arccos
√
2
3

:ξζ
υ

 =
1√
6


√
3 0 −

√
3√

2
√
2
√
2

−1 2 −1

xy
z

 . (12.3)

The diagram on Fig. 12.5 illustrates six faces of the translation unit with the
center in the point (0, 0, 0) (the cell center in this point is not shown since it does
not belong to the cube’s faces). The plane ξυ is faced to the observer while the ζ
axis directs away from the observer.
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Fig. 12.5. Translation unit cube with the center in (0, 0, 0) in the isometric projection on its
diagonal

The projection to the ζυ plane (Fig. 12.6) illustrates that in each translation
unit cube there are 12 planes perpendicular to its diagonal (ζ axis), that contain
charged cell centers, and that these planes are different. Starting from the 0th plane
with ζ = 0, and increasing ζ by 1√

3
, one can found that it is just the 12th one at

ζ = 12/
√
3, where the next translation unit starts, is the same with the 0th plane).

However, planes starting from the translation unit center (the 6th,, ζ = 6/
√
3)

repeat planes from 0th through 5th but reversed in charge. Since the translation in
ζ direction on 6/

√
3 is the S operation, that is equal to CP, they are also mirrored,

i.e. parity-inversed.
So any change in this structure, that is possible in any particular place, can

have its ”anti-change”, with opposite charge and parity, possible in places shifted
on some ”odd” vector VO (12.2).

The diagram on Fig. 12.7 illustrates the placement of the cell centers in the
projection on the υξ plane:

On this diagram the cells residing on the same plane perpendicular to the ζ
axis are joined together with lines and labeled with values of ζ coordinate (in units
of 1/

√
3), so one can see the equilateral triangles that they form2.

2 The visible ’constellations’ of T cell centers do not form equilateral triangles in the υξ
planes since they have different ζ.
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TheD cells of different charge overlap and hide each other along the projective
direction, so behind each positive cell the negative one is assumed, and vice versa.

The planes, cell types and the shapes the cell centers form, are listed in the
Table 12.1, from ζ = 0 to 12/

√
3.

ζ,× 1√
3

kind, charge shape size shape description

0 D− be − Axial D−

1 T−
ccc √14 Large T− triangle counterclockwise

2 D+

sesese √32 D+ triangle υ-down

3 T+
ss s √6 Small T+triangle (ξ-right)

4 D− bebebe √32 D− triangle υ-up

5 T− ccc √14 Large T− triangle clockwise

6 D+ se − Axial D+

7 T+
ss s √14 Large T+ triangle clockwise

8 D−

bebebe √32 D− triangle υ-down

9 T−
ccc √

6 Small T− triangle (ξ-left)

10 D+ sesese √32 D+ triangle υ-up

11 T+ ss s √14 Large T+ triangle counterclockwise

12 D− be − Axial D−

Table 12.1. Shapes of cell center placements in twelve different planes

12.4.3 Small T triangle and its environment

Consider the small triangle of three T+ cells with the same charge at ζ = 3/
√
3,

with edge of
√
6. The triangle has electric charge Σq3 = +1/2, so its environment

has the opposite charge qenv = −1/2 that ensures the total electrical neutrality.
The closest neighborhood of the small T triangle is asymmetrical: in ζ direc-

tion, there are two planes with different charge before it and two negative-charged
planes after it.

Namely, at ζ = 1/
√
3 there is a large (edge is

√
14) T− triangle carrying electric

charge q = −1/2, and at ζ = 2/
√
3 there is a D+ triangle (edge=

√
32) carrying

q = +1/2, altogether q = 0.
On the contrary, at the two following planes (ζ = 4/

√
3 and ζ = 5/

√
3) there

are triangles with the same structure as before, but both are negative-charged,
carrying together q = −1.

The same structure, due to the CPS symmetry, exists around small T− triangle
at ζ = 9/

√
3, with all the charges (and parity) inverted: both of the triangle in this

position, and of its environment.
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12.4.4 Choosing the translation unit cell

In our approach, the translation unit is a substitution for concept of a point of
space, as a place where a particle can reside.

Instead, a particle in the point is represented as some anti-structural defects
located in the corresponding translation unit, so the presupposed concepts of a
particle or material point gets unnecessary.

Since the translation unit of dual-charged Wheaire-Phelan structure consists
of eight different binary elements (i.e. cells charged ±1

6
e), the translation unit

has eight internal binary degrees of freedom pretending to replace the curled up
dimensions in Kaluza-Klein theories [4], [5], [6], [1], [2], [8], [9].

The translation unit cell can be chosen arbitrary as long as it includes eight
structure cells of different geometry3 [10].

The primitive translation unit cell is a body-centered cube (Fig. 12.5). Most of
cells included in it are cross-sectioned by the imaginary borders of the unit cell. It
is not quite useful for modeling purposes. Namely, the T cells are taken by halves
and while one D cell is taken by eighth parts, another one, residing in the cube’s
center, is included as whole.

Intending to study defects in the periodical structure, we choose the non-
primitive unit so the cells that would participate in the exchange are included as
whole, without cross-section.

We found also possible to include additional cells, that would overlay cells
with the same geometry while translating, in case these add-ons appear as mutu-
ally compensating pairs of cells having opposite parity and also opposite electrical
charge.

So we choose the neutral translation unit that consist of 3 positive charged
cells of small T -triangle at ζ = 3/

√
3, that would participate in the exchange, and

halves of negative charged cells of two large T -triangles both at 1/
√
3 and at 5/

√
3,

that would remain unchanged.
We do not consider the changes that may occur in cells of large T triangles

since each T cell belonging to any small triangle in one chiral sub-lattice also
belongs to a large triangle in another, mirror-reflected sub-lattice.

12.4.5 Anti-structure defects

Now we consider the inversion of the electric charge that can occur in particular
cell or cells for some reason. Namely, it should happen as result of an interaction.
Since the electric charge is conserved, the inversion in any particular cell must be
accompanied by reverse inversion in another cell nearby, so all the inversions are,
in fact, te results of exchanges.

However, we focus on possible single, double and triple inversions in the
cells of small T triangle supposing that the corresponding reverse inversions are
migrated or propagated into some location that is enough far away.

3 See the above in this section 12.2.
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Also, we can examine just one small T triangle of two, for instance, at ζ =

3/
√
3; another small T triangle at ζ = 9/

√
3 is located in position shifted on half-

unit size, so the latter should have the same properties as the first one, but CP-ed,
i.e. charge-inverted and mirror-reflected.

Consider the small T+triangle accompanied by several cells in its closest
neighborhood, keeping total electrical charge of them to be zero (Σqn means the
electric charge of three cell with the center at n-th plane, i.e. with ζ = n/

√
3):

Q = Σq1 + Σq3 = −
1

2
+
1

2
= 0, or

Q = Σq3 + Σq5 =
1

2
−
1

2
= 0, or

Q =
Σq1 + Σq5

2
+ Σq3 = 0, or

Q = q0 +
Σq1

2
+ Σq3 +

Σq5

2
+ q6 = 0, or

Q = q0 + Σq1 + Σq3 + q6 = −
1

6
−
1

2
+
1

2
+
1

6
= 0, or

Q = q0 +
Σq1

2
+
Σq2

2
+ Σq3 +

Σq4

2
+
Σq5

2
+ q6 = 0.

(12.4)

In all the cases, Q = Σq3 + qenv = 0, while Σq3 = +1
2

, so the environment
charge qenv = −1

2
.

It is obvious that this qenv is determined by T -cells only, since it is a charge of
initially neutral vacuum after ”removing” three positive-charged T+cells forming
the small triangle and keeping the original count ofD cells. So there are three extra
negative-charged T -cells while all the D-cells still compensate each other:

qenv =q
T
env = −

1

2
;

qDenv = 0.
(12.5)

Each plane of T -cells before the small triangle in ζ-oder has its corresponding
equal-charged plane after it at the same distance (for instance, at ζ = 1/

√
3 and

5/
√
3). This symmetry requires a half of environment charge, that is determined by

T sub-lattice, to be resided before the small triangle plane ζ = 3/
√
3, and another

half to be resided after it:

qTenv(ζ <
3√
3
) = −

1

4
;

qTenv(ζ >
3√
3
) = −

1

4
.

(12.6)

Due to the CPS symmetry, we also have

qTenv(ζ <
9√
3
) = +

1

4
;

qTenv(ζ >
9√
3
) = +

1

4

(12.7)

for the environment of the negative-charged small T -triangle at ζ = 9/
√
3.
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12.4.6 Handedness change as Exchange of D triangles

AlthoughD-sublattice has no influence on the total charge of the small T+triangle’s
environment qenv (12.5), exchanges in it can redistribute the electric charge be-
tween rear (ζ < 3√

3
) and front (ζ > 3√

3
) half-spaces because it is asymmetric in

respect of the plane (ζ = 3/
√
3).

We examine such exchanges whether they can be used to represent the parti-
cle’s handedness that also does not influence on its charge.

Following the model that assumes the charge is located closely to the cell
centers, we must conclude that D triangles just before and after small triangle at
ζ = 3/

√
3 have the charges

Σq2 = q
D(ζ =

2√
3
) = +

1

2
,

Σq4 = q
D(ζ =

4√
3
) = −

1

2
,

(12.8)

and in case they exchange, the charge of 1 will redistribute from rear half-space to
the front one4.

However, considering the case when the charge of cells is not concentrated in
their centers, being instead distributed on radii comparable to the inter-centers
distance (≈ 2 . . .

√
5 ≈ 2.236), we recognize that the charge of cells in plane

ζ = 2/
√
3 would not reside just before the plane ζ = 3/

√
3. It is so because the

offset between these planes is significantly less than the inter-center distance:
1/
√
3 ≈ 0.577 < 2 (Fig. 12.8), and is comparable with the distribution radius.

That is why one should assert that some part of q2 would reside after the plane
ζ = 3/

√
3, and some part of q4 would, in turn, reside before it (see Fig. 12.8).

To be the representation of the reversed handedness, the D-exchange oper-
ation should redistribute only the half of the charge (12.8). This requirement is
fulfilled in case a quarter of the charge of each D-cell in triangles is distributed on
the other side of the plane ζ = 3/

√
3 that is located at the 1/

√
3 of its center. So we

can use this condition to obtain more realistic rule of the charge distribution rather
than simple charged point in the cell center. Now we use the halved values of (12.8),
that are equal to qTenv by the magnitude, so they can effectively compensate them:

qD∗(ζ =
2√
3
) = +

1

4
,

qD∗(ζ =
4√
3
) = −

1

4
,

(12.9)

In this case,

qenv(ζ <
3√
3
) = qTenv(ζ <

3√
3
) + qD∗(ζ =

2√
3
) = −

1

4
+
1

4
= 0;

qenv(ζ >
3√
3
) = qTenv(ζ >

3√
3
) + qD∗(ζ =

4√
3
) = −

1

4
−
1

4
= −

1

2
,

(12.10)

4 Such an exchange also can be considered as a rotation of a spatial hexagon containing all
six cell centers of the both D-triangles, with the angle of 60◦ in any direction
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Fig. 12.8. Visually overlapping cells of two D triangles with ζ = 2/
√
3 and ζ = 4/

√
3 in

polyhedral approximation

and after exchange between D-triangles at ζ = 2/
√
3 and 4/

√
3 they would turn

into

qenv(ζ <
3√
3
) = qTenv(ζ <

3√
3
) + qD∗(ζ =

2√
3
) = −

1

4
−
1

4
= −

1

2
;

qenv(ζ >
3√
3
) = qTenv(ζ >

3√
3
) + qD∗(ζ =

4√
3
) = −

1

4
+
1

4
= 0.

(12.11)

So we can use them to represent weak isospin and weak hypercharge for ”down”
particles:

Tdown3 = qenv(ζ <
3√
3
) =

1

2
(Σq1 + Σq2) (12.12)

YdownW /2 = Σq3 + qenv(ζ >
3√
3
) = Σq3 +

1

2
(Σq4 + Σq5) (12.13)

At ζ = 9/
√
3, the small T -triangle and its neighborhood are inverted in respect

to ζ = 3/
√
3 due to the CPS symmetry, so original

qenv(ζ <
9√
3
) = qTenv(ζ <

9√
3
) + qD∗(ζ =

8√
3
) = +

1

4
−
1

4
= 0;

qenv(ζ >
9√
3
) = qTenv(ζ >

9√
3
) + qD∗(ζ =

10√
3
) = +

1

4
+
1

4
= +

1

2

(12.14)

would turn after D-exchange into

qenv(ζ <
9√
3
) = qTenv(ζ <

9√
3
) + qD∗(ζ =

8√
3
) = +

1

4
+
1

4
= +

1

2
;

qenv(ζ >
9√
3
) = qTenv(ζ >

9√
3
) + qD∗(ζ =

10√
3
) = +

1

4
−
1

4
= 0,

(12.15)
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and both the values qenv(ζ < 9√
3
) and Σq9+qenv(ζ > 9√

3
) would, again, coincide

with weak isospin T3 and weak hypercharge YW/2 for ”up” fermions, respectively:

Tup3 = qenv(ζ <
9√
3
) =

1

2
(Σq7 + Σq8) (12.16)

YupW /2 = Σq9 + qenv(ζ >
9√
3
) = Σq9 +

1

2
(Σq10 + Σq11) (12.17)

So the exchange between D triangles (or, that is the same, rotation of the
distorted D hexagon) can be used as a model representing switching between two
handednesses.

12.4.7 Down fermions as Inversions in small T+triangle

Inverting charges of cells it the small T+triangle q3, namely of q(2, 1, 0), q(2, 1, 0)
and q(2, 1, 0) in (x, y, z) reference frame5, one can get eight possible cases (Ta-
ble 12.2). The total electric charge Q, that changes with steps of ±1

3
according to

the count of inverted cells, coincides with the electric charge of eight ”down”6

fermions.

T3 :=
YW
2

:=

q(<3) q2 1 03 q1 0 23 q0 2 13 Σq3 q(>3) q(≥3) Q symbol

+ + +
ss s+1/2 0 0

ν̃L

− + +
ss c d

c1
R

+ − +
sc s+1/6 −1/3 −1/3 d

c2
R

1
2
×
ccc sesese + + −

cs s 1
2
× bebebeccc d

c3
R

+ − −
cc s ũ

c̃1
L

0 − + −
cs c−1/6 −1/2 −2/3 −2/3 ũ

c̃2
L

− − +
sc c ũ

c̃3
L

− − −
cc c−1/2 −1 −1 l−R

Table 12.2. Eight cases of inversions in the small T -triangle at ζ = 3/
√
3 with original

(unchanged) D-triangles at ζ = 2/
√
3 and 4/

√
3, associated with weak-uncharged ”down”

fermions

The original unchanged state withQ = 0 is the vacuum state, so it takes place
of the left-handed anti-neutrino, that, according to experiments, does not exist. In

5 In the (ξ, ζ, υ) reference frame they are q(
√
2,
√
3, 0), q(− 1√

2
,
√
3,− 3√

6
), q(− 1√

2
,
√
3, 3√

6
)).

6 We consider anti-”up” fermions as ”down” ones, and vice versa. The ”up” particles as
well as ”up” (anti-”down”) anti-particles have the electric charge greater by 1 then the
charge of corresponding ”down” particles or anti-particles.
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T3 :=
YW
2

:=

q(<3) q2 1 03 q1 0 23 q0 2 13 Σq3 q(>3) q(≥3) Q symbol

+ + +
ss s+1/2 +1/2 0 ν̃R

− + +
ss c d

c1
L

+ − +
sc s+1/6 +1/6 −1/3 d

c2
L

1
2
×
ccc bebebe + + −

cs s 1
2
× seseseccc d

c3
L

+ − −
cc s ũ

c̃1
R

−1/2 − + −
cs c−1/6 0 −1/6 −2/3 ũ

c̃2
R

− − +
sc c ũ

c̃3
R

− − −
cc c−1/2 −1/2 −1 l−L

Table 12.3. Eight cases of inversions in the small T -triangle at ζ = 3/
√
3 with exchanged

D-triangles at ζ = 2/
√
3 and 4/

√
3 associated with weak-charged ”down” fermions

this model, the absence of left-handed anti-neutrino is explained by no differences
between it and the vacuum state.

Also consider the same cases but combined with exchanged D-triangles at
ζ = 2/

√
3 and 4/

√
3 (Table 12.3).

12.4.8 Up fermions as Inversions in small T -triangle

Considering the same cases but for the small T -triangle at ζ = 9/
√
3, we found

out that they can be as well associated with ”up” fermions. It is so because the
shift for half-unit (S) from ζ = 3/

√
3 to 9/

√
3 is equal to the CP operation. So this

triangle and its environment have the reversed handedness and opposite-charged
in respect to those considered before.The total charge Q is greater by 1 comparing
to the corresponding ”down” cases (Table 12.4).

Again, the original vacuum state corresponds to the non-existing particle, that
is the right-handed neutrino.

12.5 Polyhedral approximation

Considering the Polyhedral approximation of the dual-charged Weaire-Phelan
structure (section 12.3), one can see that walls between cells consist of flat polygo-
nal faces. It is obvious that there are two kinds of walls, since a face can separate
either equal-charged or opposite-charged cells.

Supposing the wall possesses a surface energy E that it is proportional to the
face surface area S, and there is a fixed difference in surface density ∆ρ between
both wall kinds, one could estimate the particle mass by the rest energy ∆E
associated with a particular defect configuration:

m = ∆E = ∆ρ∆S. (12.18)
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T3 := YW/2 :=

q(<9) q4 2 39 q3 4 29 q2 3 49 Σq9 q(>9) q(≥9) Q

+ + + sss +1/2 +1 +1 l+L

− + + ssc u
c1
R

+ − + scs +1/6 +2/3 +2/3 u
c2
R

1
2
× ss sbe bebe + + − css 1

2
× se sesess s u

c3
R

+ − − ccs d̃
c̃1
L

0 − + − csc −1/6 +1/2 +1/3 +1/3 d̃
c̃2
L

− − + scc d̃
c̃3
L

− − − ccc −1/2 0 0
νR

+ + + sss +1/2 +1/2 +1 l+R

− + + ssc u
c1
L

+ − + scs +1/6 +1/6 +2/3 u
c2
L

1
2
× ss sse sese + + − css 1

2
× be bebess s u

c3
L

+ − − ccs d̃
c̃1
R

+1/2 − + − csc −1/6 0 −1/6 +1/3 d̃
c̃2
R

− − + scc d̃
c̃3
R

− − − ccc −1/2 −1/2 0 νL

Table 12.4. Eight cases of inversions in the small T -triangle at ζ = 9/
√
3, repeated twice

with original and exchanged D-triangles at ζ = 8/
√
3 and 10/

√
3, associated with ”up”

fermions

Since D cell has 6 equal-charged and also 6 opposite-charged neighbors, the
inversion does not affect the area (∆S = 0) and

∆ED = 0. (12.19)

In contrast, among 14 neighbors of T cell six ones are equal-charged but there
are eight opposite-charged ones. Both opposite-charged neighbors that become
equal-charged ones in an inversion, are separated with the hexagonal faces with
area S6. So

∆ET = 2∆ρS6. (12.20)

Assuming the energy density for wall between equal-charged cells is greater than
for opposite-charged ones, ∆ρ > 0 and ∆E > 0.

In case of inversions of two neighboring cells, there is an additional effect
caused by their common face.

In case two neighbor cells exchange their charge (thus, they are D and T
touching each other with large pentagonal face S5L or two T touching each other
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with small pentagonal face S5s or hexagonal one S6) the common face remains
separating opposite-charged cells, instead of being turned into separating equal-
charged cells, so energy effect is negative:

∆ED�T = −2∆ρS5L,

∆ET�T5 = −2∆ρS5s,

∆ET�T6 = −2∆ρS6.

(12.21)

In case of two neighbor cells inverting in the same direction, the additional
effect of the common face is opposite, i.e. positive:

∆ED⇒T = 2∆ρS5L,

∆ET⇒T5 = 2∆ρS5s,

∆ET⇒T6 = 2∆ρS6.

(12.22)

Note that numerical values of the faces’ areas (in units of λ2) are such that S5L
is almost equal to the arithmetic mean of S6 and S5s:

S5L ≈ 1.77477,
S5s ≈ 1.15338,
S6 ≈ 2.41260, so

S6 + S5s − 2S5L ≈ 0.0164.

(12.23)

Now we can build the simple hierarchical seesaw model of mass based on
addition and subtraction of energy effects.

• Since D exchanges have ∆E = 0, massless particles like photon and neutrino
must be associated with D-only exchanges.

• Following our 8-bit model [7], associate W+ boson with five defects combi-
nation shown on Fig. 12.9W. Note that it is colorless and has correct electric
charge Q = +1. The affected area of these defects is

W Z

Fig. 12.9. Models ofW+ and Z0 bosons in polyhedral approximation
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∆SW = 6 (S6 + S5L) = 25.12422. (12.24)

Using experimental value ofmW = 80.385GeV we get

∆ρ =
mW

∆SW
≈ 3.1995GeV/λ2. (12.25)

• Following the same way, we associate Z0 boson with neutral six T defect
configuration shown on Fig. 12.9Z. Using the same ∆ρ value, we get

mZ = 12∆ρS6 ≈ 92.629GeV. (12.26)

• The Higgs boson having, accordingly to 8-bit model, the defects structure
similar to Z boson but with one additional D defect pair (Fig. 12.9H), must
have one of D cells isolated the same way as W has, to get the appropriate
mass:

mH = ∆ρ(12S6 + 6S5L) ≈ 126.699GeV. (12.27)

γ H

Fig. 12.10. Models of γ photon and H0 bosons in polyhedral approximation

• For charged lepton we suppose the structure of small-T -triangle inversion com-
bined with eight inversions ofD cells providing the compensation (Fig.12.11).This
mechanism does not follow the pattern used in 8-bit model for fermion families
representation7, but it offers effective mass reduction below GeV scale.

ml = ∆ρ(6S6 − 12S5s + 6S5L) ≈ 0.315GeV. (12.28)

• The zero-charged compensating ”frame” consisting from D cells could be
associated with massless neutrino (Fig.12.11ν).

• Although the exchange between two or more stacked T cells has the positive
energetic effect, its magnitude does not depend on the stack length, and
originates just from the non-compensated ends of the stack that has the color
charge due to their asymmetry. So it can be associated with the gluon thread
terminated with quarks.

7 the latter involves additional T -D exchange.
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l− ν

Fig. 12.11. Models of charged lepton with compensated mass, and massless neutrino in
polyhedral approximation

12.6 Analytical approximation of charge distribution

In addition to the Polyhedral and Cell-Center approximations we consider an ap-
proximation of the structure by the triple-periodical analytical function of electrical
charge density distribution.

The electrical charge of the cell concentrated at its center (x0, y0, z0) can be
expressed analytically using the δ-function:

q =
e

6

∫
R3

δ(x− x0, y− y0, z− z0)dxdydz (12.29)

The delta function can be considered as the spherically-symmetrical Gaussian
distribution with zero deviation:

δ(x, y, z) = lim
σ→0 δ(x, y, z, σ); (12.30)

δ(x, y, z, σ) =
1

(σ
√
2π)3

e−
x2+y2+z2

2σ2 (12.31)

As we have shown in section 12.4.6, the model explaining the weak isospin
T3 = 0 for right-handed fermions and T3 = ±1/2 for left-handed ones by the
charge exchange between D-triangles at ζ = 2/

√
3 and 4/

√
3, requires one quarter

of the charge of each D cell to reside behind the section plane located at the
distance of 1/

√
3 from the cell center:

−1/
√
3∫

x=−∞
+∞∫

y=−∞
+∞∫
z=−∞

ρ(x, y, z)dxdydz =
1

4
(12.32)

Assuming charge density ρ(x, y, z) to be the Gaussian distribution (12.31), and
solving the equation

1

(σ
√
2π)3

−1/
√
3∫

x=−∞
+∞∫

y=−∞
+∞∫
z=−∞

e−
x2+y2+z2

2σ2 dxdydz =
1

4
(12.33)
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numerically, we found σ ≈ 0.87377.

Soliton model To construct the charge distribution in the analytical form, we can
use, instead of each cell, some spherical-symmetrical function, which decreases
quite rapidly on distance from its center, i.e. soliton.

We consider the soliton function as normalized error function

ρi = ±
e

6σ
√
2π

exp
[
−
(x− xi)

2 + (y− yi)
2 + (z− zi)

2

2σ2

]
, (12.34)

representing positive or negative charged cell with the center at (xi, yi, zi). The
charge density in the particular point is calculated as a sum of contributions of all
the cells in the model:

ρ =
∑
i

ρi (12.35)

One can manage the position and charge of each individual cell, so this model
should be flexible. On another hand, it requires extensive computation to calculate
each point.

Triple-periodic trigonometric function Since the most interesting application of
this model is to represent the only one or several defects being surrounded by the
”pure” vacuum, we looked for the periodic function that has the same symmetry
as the dual-charged Weaire-Phelan structure considered above. It is intended to
represent the pure vacuum avoiding calculating of plenty periodically allocated
solitons.

At first, we consider the real function that has zero surface close to the
Schwartz P minimal surface [15].

ρ0 = cos x+ cosy+ cos z, (12.36)

or, equivalently,
ρ0 =

∑
i

cos xi. (12.37)

ρ0 = cos
xπ

2λ
+ cos

yπ

2λ
+ cos

zπ

2λ
, (12.38)

It has minimum in points (2πnx, 2πny, 2πnz) = 2π(nx, ny, nz) and maxi-
mum in π(2nx + 1, 2ny + 1, 2nz + 1) since

∂ρ0

∂xi
= − sin xi = 0⇒ xi = πni, (12.39)

and
∂2ρ0

∂x2i
= − cos xi. (12.40)

The last equation also means that

∆ρ0 = −ρ0, (12.41)
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so ρ0 is eigenfunction of the Laplasian, with eigenvalue −1.
The translation unit with nx = ny = nz = 0 is a cube with xi ∈ [−π;π].
So, ρ0 has one minimum in (0, 0, 0) and one maximum in π

4
(2, 2, 2).

As the second step, we consider the surface ρ0 = 0. Its saddle points are the
same with the T cell center points. So we can add the function with extremals at
these points, namely at centers of D cells:

ρxz =
1

4
siny(1− cos x)(1+ cos z) (12.42)

ρyx =
1

4
sin z(1− cosy)(1+ cos x) (12.43)

ρzy =
1

4
siny(1− cos z)(1+ cosy) (12.44)

ρxy =
1

4
sin z(1− cos x)(1+ cosy) (12.45)

ρyz =
1

4
siny(1− cosy)(1+ cos z) (12.46)

ρzx =
1

4
siny(1− cos z)(1+ cos x) (12.47)

ρR = ρxy + ρyz + ρzx (12.48)

ρL = ρyx + ρzy + ρxz (12.49)

We construct right and left vacuum electric charge density as

ρ0R = ρ0 + ρR (12.50)

ρ0L = ρ0 + ρL. (12.51)

Note that ρxz (12.42) and other ρij can be rewritten in the following way:

ρxz =
1

4
(siny+ siny cos z− siny cos x− siny cos x cos z) , (12.52)

so ρR and ρL can be represented as sums of four functions listed below, which
accumulate summands of four particular types, that occur in (12.42).

Introducing ”Schwartz P”- like distribution

Pθ = cos(x− θ) + cos(y− θ) + cos(z− θ), (12.53)

right and left gyroid-like distributions

GR = cos x siny+ cosy sin z+ cos z sin x, (12.54)

GL = cos x sin z+ cosy sin x+ cos z siny, (12.55)

and ”layers-with-holes” distribution

H = cos x siny cos z+ cosy sin z cos x+ cos z sin x cosy, (12.56)
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we can express ρR through them:

ρ0R =
1

4

[
Pπ/2 +GL −GR −H

]
−
1

3
P0. (12.57)

Since G and H are also eigenfunctions of the Laplasian ∆:

∆G = −2G;∆H = −3H, (12.58)

one can find the scalar electric potential:

div gradϕ0R = ∆ϕ0R = 4πρ0R, (12.59)

ϕ0R = +
1

12π
P0 −

1

16π

[
Pπ/2 +

1

2
GL −

1

2
GR −

1

3
H

]
. (12.60)

Combining triple-periodical trigonometric equation for the vacuum state with
doubled opposite-charged soliton located in particular cell centers one can obtain
a model representing one or more particles surrounded by the vacuum.

12.7 Discussion

12.7.1 Two-dimension model

Consider the surface of zero potential (12.60):

ϕ0R = +
1

12π
P0 −

1

16π

[
Pπ/2 +

1

2
GL −

1

2
GR −

1

3
H

]
= 0. (12.61)

It defines the manifold with the mostly negative Gaussian curvature that can be
studied using two-dimensional Einstein GRT equation.

The three-dimensional space, discrete with the grid size l ≈ 4 · 10−21m,
appears in this model as a result of the foam-like structure of this two-dimensional
manifold. So the continuous three-dimensional space can be considered just as
an asymptotic on distances lager than the grid size. As a consequence of this
approach, the three-dimensional gravity should not be considered in its usual
form on distances comparable to or less than the grid size.

12.7.2 Liquid-Liquid Phase Transition model

We suppose that the structures close to one considered above can emerge in
systems possessing 2-order phase transition near the critical point, for instance, in
liquid-liquid mixtures like H2O−−C6H5OH.

12.7.3 Other topics

There are some topics that we’d like to mention here as directions in which the
research can be continued.
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Firstly, it is the dynamics. Each defect in the vacuum structure is supposed
to be able to change its localization. It can be considered from several viewpoints
listed above and also using other approaches, for instance, the cellular automata.

Secondly, the interactions and the virtual particles. Our approach can be also
applied to bosons. Some ’bosonic’ exchanges seem to have no influence on the two-
dimensional manifold topology, so there is no sharp difference between particles
(defects) and classical fields (distortions).

Thirdly, there can be another structures with the properties allowing to use
them as a model of vacuum and particles. We have found and tested just one.

12.8 Conclusion

We presented here our approach to the particle and vacuum modeling, based on the
assumption that on scale≈ 10−19 cm there are areas with non-zero electrical charge
density and they are self-assembled in the structure close to the Weaire-Phelan
tessellation. This structure possesses CPS symmetry and allows the existence
of anti-structure defects in it, that can be corresponded to known fundamental
particles (at least, for one fermion family), reproducing their known properties.
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1. N.S. Mankoč Borštnik, ”Can spin-charge-family theory explain baryon number non
conservation?”, Phys. Rev. D 91 (2015) 6, 065004, [arXiv:1502.06786v1]
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